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Abstrakt / Abstract

Tato práce se zaměřuje na problém
strategického zkreslení dat, ukazuje, kde
se může vyskytnout a jaká je motivace
k jeho řešení. Na tento problém se dívá
prostřednictvím teorie her a vysvětluje
motivaci tohoto přístupu. Dále se práce
zabývá několika algoritmy pro řešení
tohoto druhu problému. Aby potvr-
dila správnost teoretických konceptů,
provádí několik experimentů. Poté se
zaměřuje na konkrétní model a zkouší
různé způsoby řešení tohoto problému.
Nakonec článek rozšiřuje stávající model
a provádí s ním experimenty.

Klíčová slova: teorie her, hry s nenu-
lovým součtem, spojité hry, nekonečné
hry, potenciální hry, Bayesovské hry,
Double Oracle, Iterated Best Response.

This paper focuses on the problem of
strategic data distortion, shows where it
can occur, and what the motivation for
the solving is. It looks at this problem
through game theory and explains the
motivation behind this approach. The
paper then considers several algorithms
for solving this kind of problem. In or-
der to confirm the correctness of the-
oretical concepts, makes several exper-
iments. Then it focuses on a specific
model and attempts different ways of
solving this problem. In the end, the
paper tries to extend the existing model
and conducts experiments with it.

Keywords: game theory, nonzero-
sum games, continuous games, infi-
nite games, potential games, Bayesian
games, Double Oracle, Iterated Best
Response.
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Chapter 1
Introduction

1.1 The Dilemma of Balancing Privacy and Accuracy of
Recommendations in Personal Data Disclosure

Data is becoming an increasingly valuable commodity in today’s digital age. Com-
panies and organizations collect vast amounts of data about people in order to offer
personalized services and recommendations. However, collecting and sharing personal
data raises important privacy and accuracy issues.

A major problem is noise distortion present in the data. Naturally, the quality of
the data, distorted by such noise, is key to the accuracy of the model. In many cases,
however, obtaining high-quality data can come at a cost to the data source.

For example, this occurs when the data are personal. Accordingly, people who care
about their privacy tend to distort the data. Or, in extreme cases, they refrain from
disclosing it at all.

In cases where high-quality personal data are expensive, it is worth considering the
strategic behavior of the participants providing data about themselves. We consider
a situation where globally successful data analysis can benefit the people from whom
the data is gathered. Open collaboration projects, by their very nature, implicitly
imply shared benefits associated with the success of the collaboration. If such benefits
outweigh the associated costs of privacy or effort, people may consent to the collection
and analysis of high-quality data.

One area where this dilemma is particularly acute is in questionnaire-based rec-
ommendation systems. These systems collect personal data from participants to create
personalized recommendations. The accuracy of recommendations depends on the hon-
esty of all participants. If all participants tell the truth, the recommendations will be
helpful. However, if only one participant lies, they may gain unfairly at the expense
of others. This creates a dilemma for participants who are torn between wanting to
maintain confidentiality and wanting accurate recommendations.

To better understand this dilemma, it is helpful to look at the two types of partic-
ipants commonly present in a given game: participants sensitive to privacy (and thus
prone to misrepresentation) and participants for whom disclosure of personal data is
not a big deal. We can also look at these two types from a different angle. The first
type does not care about the survey’s outcome (the model’s accuracy). They are will-
ing to risk the benefits of participation in exchange for preserving their privacy. The
second type, more conservative, is not ready to risk the outcome of the whole project to
protect their privacy and tends to disclose data about themselves. The above types are
extremes that also involve intermediate options. The dilemma for participants is to find
a balance between confidentiality and the benefits derived from the model’s accuracy
(based on survey data).

Existing literature [1] focuses on the case where all participants are equally aware
of each other and respectively know each player’s type, based on which they can build
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
their strategy. We will extend this problem to the Bayesian setting. When participants
do not have information about the other agent types, they do not know their attitudes
toward privacy and risk.

1.2 Game theory
A dilemma where participants should offer more or less their personal data is a strategic
problem because there are several participants who choose between different policies.
Moreover, the outcome of each player depends not only on his own choices but also on
the choices of the other participants. At the same time, none of the players knows what
choice will be made by the other, and each player seeks to maximize his own winnings.
This means that each player must consider the possible actions and reactions of the
opponent to choose the best strategy.

Game theory provides tools for analyzing strategic games as this. Solving the
dilemma with game theory allows us to determine the optimal strategies for each
player and find an equilibrium in that system. This helps to better understand and
predict the behavior of the participants in general, which is necessary if we are looking
at the situation from the perspective of a data analyst.

Approaches that do not involve game theory may not take into account the interaction
and interests of other players, which can lead to ineffective decisions and unpredictable
outcomes. Also, using other approaches, not related to game theory, may be less ef-
fective. Therefore, game theory is the most appropriate tool for analyzing and solving
this situation and many other strategic games.

1.3 Applications
This personal information disclosure dilemma can occur in a variety of fields, including
medicine, marketing, finance, social media, etc.

For example, in medicine, patients may face the dilemma of disclosing their personal
health information. If they don’t disclose their information, it can lead to inaccurate
diagnosis and treatment. On the other hand, if they disclose their information, it may
help research the disease and invent new treatments, but they sacrifice their confiden-
tiality. In marketing and advertising, customers may also face the same dilemma. For
instance, they may receive personalized recommendations and offers based on their
personal information, but sacrifice their privacy. Another case in point is using social
media. If users do not disclose their information, they may miss out on opportunities
to connect with friends and colleagues.

1.4 Summary of the thesis
We have studied several types of games. We started with the simplest one and gradually
made it more complicated in order to get closer to the final problem that we wanted
to solve. We considered what solution is in our games and what strategies agents can
use. Then we’ve considered several ways (algorithms) to solve these games. We made
several experiments in order to confirm our theoretical knowledge of algorithms. And
after that, we found a solution to our main problem - the dilemma of balancing privacy
and accuracy of recommendations in personal data disclosure.
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Chapter 2
Basic Notions

2.1 Game theory

Game theory is a mathematical framework used to analyze the behavior of groups and
individuals in strategic situations where the outcome of one’s decision depends on the
decisions made by others. This is a field of applied mathematics that is widely used in
fields such as psychology, politics, economics, and computer science.

Game theory deals with the study of decision-making in situations where there are
multiple players, each with their own goals and preferences. These players interact
with each other, and the outcome of the game depends on the choices they make. In
particular, game theory is interested in understanding how players can make rational
decisions in such situations, and how the outcome of the game can be predicted based
on the players’ decisions. In fact, game theory can find its place wherever we are
interested in the competition of agents, or the collaboration of agents. On this basis,
we can distinguish two areas in game theory: zero-sum and nonzero-sum games. The
first type isn’t cooperative at all, because as much as one participant wins, the same
amount the other loses. In sum, their gain is always zero (or a constant). However, the
second type is something between cooperative and non-cooperative. In our work, we
focus on nonzero-sum games.

2.1.1 Strategic games

We will describe the main aspect of game theory, which is the strategic form of the game.
What do we need to know in order to describe the game and then work with it? Of
course, we need players, but it is not enough to describe one player and copy the given
rules for all. Each of them may have different strategies and rewards associated with
their actions. So everyone may have their own set of strategies and set of outcomes or
cost functions. It is important to add that this type of game is not dynamic. All moves
occur simultaneously. No players make arbitrary moves, they try to act rationally and
they don’t have the ability to work together to achieve better results.

The following basic principles and definitions are based on the book [2].

Definition 2.1. A game in strategic form (normal) is a tuple

𝐺 = (𝑁, 𝐴, 𝑐)

where:

. 𝑁 is a set of agents;

. 𝐴 = 𝐴1× . . . ×𝐴𝑛, where 𝐴𝑖 is the set of actions available to player i;

. 𝑐 = (𝑐1, . . . , 𝑐𝑛), where 𝑐𝑖: 𝐴 → ℝ is the cost function for player i.
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2. Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We can distinguish two kinds of games: finite and infinite. If the set of actions for

each player is finite, then it is the first type. If the number of actions is an infinite set
(e.g., the interval [0, 1]), then it’s the second type. Next, we can distinguish a subtype.
Continuous game is an infinite game where every strategic set is a subset of Euclidian
space and the cost function is continuous.

We have looked at the spaces in which we choose actions, then we look at what
can happen in these games. What decisions agents can make. For this purpose,
we introduce several definitions relating to the strategies. The most trivial move a
player can make is to choose what he thinks is the best action and follow it. We
call this pure strategy. Each player may select a pure strategy 𝑎𝑖 from a nonempty
set 𝐴𝑖. Pure strategies of all players about a particular game can be written as an
𝑛-tuple 𝗮 = (𝑎1, . . . , 𝑎𝑛). But this strategy may not be sufficient if the opponents
begin to change their choices. In order to minimize the average loss in either outcome,
it is better to try something else. As opposed to a pure strategy, there is also a
mixed strategy. In this case, the player randomly chooses a move with a certain proba-
bility distribution over a set of available actions. Here is the definition of mixed strategy.

Definition 2.2. Probability distribution. Let X is any set, then Π(X) is the set of all
probability distributions over X.

Definition 2.3. Mixed strategy. Let (N, A, c) be a normal-form game. Then the set
of mixed strategies for player i is 𝑆𝑖 = ∏(𝐴𝑖). Therefore, each player 𝑖 can choose a
mixed strategy 𝑠𝑖 ∈ 𝑆𝑖.

Definition 2.4. Mixed-strategy profile. The set of mixed-strategy profiles is the Carte-
sian product of the individual mixed-strategy sets, 𝑆1 × · · · × 𝑆𝑛.

But the strategy is only a tool to achieve a goal. The purpose of the players is to
minimize the cost function. When an agent knows how the other participants will
play, he will try to choose the best response. It’s the best strategy in response to an
opponent’s strategies. Depending on the opponent’s moves, the best response may be
different and it does not have to be the only one. This concept is important to us
because we use it often in algorithms (described in section 2.2).

Definition 2.5. Opponents’ strategy. 𝑠−𝑖 = (𝑠1, . . . , 𝑠𝑖−1, 𝑠𝑖+1, . . . , 𝑠𝑛) is a strategy
profile 𝑠 without agent 𝑖’s strategy.

Definition 2.6. Best response. Player i’s best response to the strategy profile 𝑠−𝑖 is a
mixed strategy 𝑠∗

𝑖 ∈ 𝑆𝑖 such that 𝑐𝑖(𝑠∗
𝑖 , 𝑠−𝑖) ≤ 𝑐𝑖(𝑠𝑖, 𝑠−𝑖) for all strategies 𝑠𝑖 ∈ 𝑆𝑖.

We have roughly defined the rules of the game, who plays, and what strategies they
can follow. But what is the solution to these games? The basic concept of game theory
is Nash equilibrium (NE). It is a set of strategies in which no one can improve their
results by changing policy subject to the condition that the other players continue to
play their optimal strategies. That is, each agent’s choice is the best response and the
system (all agents) is in balance. Assuming, the absence of external involvement.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Game theory

Definition 2.7. Nash equilibrium(abbreviated NE). A strategy profile 𝑠 = (𝑠1, . . . , 𝑠𝑛)
is a Nash equilibrium if, for all agents 𝑖, 𝑠𝑖 is a best response to 𝑠−𝑖.

If all strategies in the equilibrium are pure, it is called pure NE. According to Nash’s
theorem, an equilibrium exists in any finite game, but not necessarily a pure one[2]. In
continuous games, unfortunately, there may be no equilibrium. It is also worth adding
that the Nash equilibrium isn’t necessarily unique. It can be several in the same game.

In order to find a Nash equilibrium there are many ways to do it, from simple brute-
force(in the case of the finite game) to optimization methods. We discuss some of them
in the Algorithms section.

2.1.2 Potential games
Investigating the Nash equilibrium can be very problematic due to the fact that each
player has a different cost function. To solve this problem, we can use the concept of
potential games in which the functions of all players are combined into one. The local
optimums of the potential function are a set of pure Nash equilibria. This gives us the
ability to solve games using common optimization methods.

Definition 2.8. Potential game. A game 𝐺 = (𝑁, 𝐴, 𝑐) is a potential game if there
exists a function P : A →ℝ such that, for all 𝑖 ∈ 𝑁, all 𝑎−𝑖 ∈ 𝐴−𝑖 and 𝑎𝑖, 𝑎′

𝑖 ∈ 𝐴𝑖,
𝑐𝑖(𝑎𝑖, 𝑎−𝑖) − 𝑐𝑖(𝑎′

𝑖, 𝑎−𝑖) = 𝑃(𝑎𝑖, 𝑎−𝑖) − 𝑃(𝑎′
𝑖, 𝑎−𝑖).

Also in (finite) potential games, there is always a pure Nash equilibrium.
Proof. Let 𝑎∗ = arg max𝑎∈𝐴 𝑃(𝑎). Clearly for any other action profile 𝑎′, 𝑃(𝑎∗) ≥ 𝑃(𝑎′).
Thus by the definition of a potential function, for any agent 𝑖 who can change the action
profile from 𝑎∗ to 𝑎′ by changing his own action, 𝑐𝑖(𝑎∗) ≥ 𝑐𝑖(𝑎′).

For better understanding, we look at an example1 to see how it works. Let’s take
the game G = (𝑁, 𝐴, 𝑐) where:
. 𝑁 = {1, 2},
. 𝐴 = {−1, 1}2,
. 𝑐1(𝑎1, 𝑎2) = −2 ∗ 𝑎1 − 3 ∗ 𝑎1 ∗ 𝑎2 and 𝑐2(𝑎1, 𝑎2) = −1 ∗ 𝑎2 + 3 ∗ 𝑎1 ∗ 𝑎2.

The payoff matrix is in Table 2.1. We can construct potential function 𝑃(𝑎1, 𝑎2) =
−2 ∗ 𝑎1 + 𝑎2 − 3 ∗ 𝑎1 ∗ 𝑎2 and check if it satisfies the definition of the potential function.

𝑐1(1, 𝑎−𝑖) − 𝑐1(−1, 𝑎−𝑖) = (−2 − 3 ∗ 𝑎2) − (2 + 3 ∗ 𝑎2) = −4 − 6 ∗ 𝑎2

𝑃(1, 𝑎−𝑖) − 𝑃(−1, 𝑎−𝑖) = (−2 + 𝑎2 − 3 ∗ 𝑎2) − (2 + 𝑎2 + 3 ∗ 𝑎2) = −4 − 6 ∗ 𝑎2

The same is true for the second player cost function. In this potential function, we can
find two local minimums. At point (1, 1) the function has a value of -4, and at point
(-1, -1) the function has a value of -2. Accordingly, these strategies are Nash equilibria.

1 -1
1 -5, -2 1, 2

-1 5, 4 -1, -4

Table 2.1. Payoff matrix based on the cost functions.

1 https://en.wikipedia.org/wiki/Potential_game
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1 -1
1 -4 0

-1 6 -2

Table 2.2. Payoff matrix based on the potential function.

2.1.3 Bayesian games
In strategy games, we always know each player’s cost function. In the real world,
however, we don’t always know who we have to play against. These can be different
players, tending to different strategies, and most importantly, with different goals, and
sensitivities to the result. For example, you find an unknown person in your home, and
you have a gun. You both need to decide simultaneously whether to shoot or not. If
it’s a thief and you decide to shoot, you might kill a person who wasn’t planning to
harm your health. And if it’s a murderer and you don’t shoot, you might just die (this
example with cost functions is shown in Table 2.3). In this case, we get two strategic
games at once.

Thief Murderer
Shoot Not Shoot Not

Shoot 1, 3 1, 2 Shoot 0, 0 1, 2
Not 2, 1 0, 0 Not 2, -2 -1, 1

Table 2.3. The householder doesn’t know which of these two games he should play.

To solve such a situation, we need to introduce a new concept.

Definition 2.9. Bayesian game. A Bayesian game is a tuple (𝑁, 𝐴, Θ, 𝑝, 𝑐) where:

. 𝑁 is a set of agents;

. 𝐴 = 𝐴1× . . . ×𝐴𝑛, where 𝐴𝑖 is the set of actions available to player i;

. Θ = Θ1× . . . ×Θ𝑛, where Θ𝑖 is the type space of player i;

. p : Θ → [0, 1] is a common prior over types; and

. 𝑐 = (𝑐1, . . . , 𝑐𝑛), where 𝑐𝑖: 𝐴 × Θ → 𝑅 is the cost function for player i.

A few additions to our normal form of strategy game appear. The first is the types of
players, now they can be different from each other. The loss function accordingly now
includes not only the choices of players but also their types. A probability distribution
function is also added. Using it, we know the probability of each game. And based on
this we can calculate our average loss in order to choose the best response. Despite the
fact that these additions may not seem important they bring us closer to the simulation
of real situations and make the game more realistic.

Since we have changed the space in which the agents play quite a lot. We have to
redefine what their strategies are. A (pure) strategy of player 𝑖 ∈ 𝑁 in a Bayesian game
is a mapping

𝑠𝑖: Θ𝑖 → 𝐴𝑖.

For each type, it has a specific action. A mixed strategy is the same as in the normal
form game. It is a probability distribution set over pure strategies. As before, we denote
a mixed strategy for 𝑖 as 𝑠𝑖 ∈ 𝑆𝑖, where 𝑆𝑖 is the set of all 𝑖’s mixed strategies. Later we

6
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use the notation 𝑠𝑗(𝑎𝑗|𝜃𝑗) to denote the probability under mixed strategy 𝑠𝑗 that agent
𝑗 plays action 𝑎𝑗, given that 𝑗’s type is 𝜃𝑗. Next, it is very important to define three
concepts in the Bayesian game: ex post, ex interim, and ex ante. The first represents
the stage of the game when an agent knows his type and the types of other agents. The
second represents the stage when an agent knows only his type. And the last denotes
the stage when an agent doesn’t even know his type. For each stage, we consider the ex-
pected loss. Based on this we further define the Nash Equilibrium in the Bayesian game.

Definition 2.10. Ex post expected loss. Agent 𝑖’s ex post expected loss in a Bayesian
game (𝑁, 𝐴, Θ, 𝑝, 𝑐), where the agents’ strategies are given by 𝑠 and the agent’ types are
given by 𝜃, is defined as

𝐸𝐿𝑖(𝑠, 𝜃) = ∑
𝑎∈𝐴

( ∏
𝑗∈𝑁

𝑠𝑗(𝑎𝑗|𝜃𝑗))𝑐𝑖(𝑎, 𝜃).

In this formula, we enumerate all possible combinations of pure strategies, consider the
probability that agents choose them, and multiply by the cost function.

Definition 2.11. Ex interim expected loss. Agent 𝑖’s ex interim expected loss in a
Bayesian game (𝑁, 𝐴, Θ, 𝑝, 𝑐), where 𝑖’s type is 𝜃𝑖 and where the agents’ strategies are
given by the mixed-strategy profile 𝑠, is defined as

𝐸𝐿𝑖(𝑠, 𝜃𝑖) = ∑
𝜃−𝑖∈Θ−𝑖

𝑝(𝜃−𝑖|𝜃𝑖)𝐸𝐿𝑖(𝑠, (𝜃𝑖, 𝜃−𝑖)).

In this stage of the game, we don’t know the type of the other players, so we have to
multiply our expected loss by the probability of each combination type.

Definition 2.12. Ex ante expected loss. Agent 𝑖’s ex ante expected loss in a Bayesian
game (𝑁, 𝐴, Θ, 𝑝, 𝑐), where the agents’ strategies are given by the mixed-strategy profile
𝑠, is defined as

𝐸𝐿𝑖(𝑠) = ∑
𝜃𝑖∈Θ𝑖

𝑝(𝜃𝑖)𝐸𝐿𝑖(𝑠, 𝜃𝑖),

or equivalently as
𝐸𝐿𝑖(𝑠) = ∑

𝜃∈Θ
𝑝(𝜃)𝐸𝐿𝑖(𝑠, 𝜃).

Now we can finally calculate our loss knowing only the strategies of other players. And
this allows us to denote the best response, which minimizes our expected loss.

Definition 2.13. Best response in a Bayesian game. The set of agent 𝑖’s best responses
to mixed-strategy profile 𝑠−𝑖 are given by

𝐵𝑅𝑖(𝑠−𝑖) = arg min
𝑠′

𝑖∈𝑆𝑖

𝐸𝐿𝑖(𝑠′
𝑖, 𝑠−𝑖).

We recall that the best responses may be several, for this reason, this formula returns
set. Concluding this section we introduce the definition of Bayes–Nash equilibrium.

Definition 2.14. Bayes–Nash equilibrium. A Bayes–Nash equilibrium is a mixed-
strategy profile 𝑠 that satisfies ∀𝑖 𝑠𝑖 ∈ 𝐵𝑅𝑖(𝑠−𝑖).
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2. Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In fact, this definition is no different from the one we gave before. However, we

needed to define the best response in the Bayesian game in order for this definition to
be correct. Note, it’s quite difficult to calculate the best response, and even more to
find a Nash equilibrium. Therefore, the solution to this problem can be difficult to find.
But there is a way to transform the Bayesian form of the game into the normal form.
To illustrate this approach we transform our previous game 2.3.

The table already defines the types of players, their possible actions, and the cost
functions, we only need to add the probability of each type. The first player (house-
holder) has only one type (H), so its probability equals 1. The second player can be
a Thief (T) or Murderer (M). Let the probability of each type be 0.5. Accordingly
𝑝(𝑇 ) = 0.5 and 𝑝(𝑀) = 0.5. We look at one of the scenarios for this game. Assume
that both players choose a pure strategy to shoot (e.g. 𝑠1 = (𝑆) and 𝑠2 = (𝑆𝑆)). The
result of our expected loss for each player is a new cost function in a normal game.

𝑐1(𝑆, 𝑆𝑆) = ∑
𝜃∈Θ

𝑝(𝜃) ⋅ 1 ⋅ 𝑐1(𝑎, 𝜃)

= 𝑝(𝐻, 𝑇 ) ⋅ 𝑐1(𝑆, 𝑆𝑆, 𝐻, 𝑇 ) + 𝑝(𝐻, 𝑀) ⋅ 𝑐1(𝑆, 𝑆𝑆, 𝐻, 𝑀)
= 0.5 ⋅ 1 + 0.5 ⋅ 0 = 0.5

𝑐2(𝑆, 𝑆𝑆) = ∑
𝜃∈Θ

𝑝(𝜃) ⋅ 1 ⋅ 𝑐2(𝑎, 𝜃)

= 𝑝(𝐻, 𝑇 ) ⋅ 𝑐2(𝑆, 𝑆𝑆, 𝐻, 𝑇 ) + 𝑝(𝐻, 𝑀) ⋅ 𝑐2(𝑆, 𝑆𝑆, 𝐻, 𝑀)
= 0.5 ⋅ 3 + 0.5 ⋅ 0 = 1.5

Similarly, we can calculate the expected loss and create new cost functions for other
combinations of strategies. And then build a normal game 2.4 2×4 on the basis of this.

SS SN NS NN
S 0.5, 1.5 1, 2.5 0.5, 1 1, 2
N 2, -0.5 0.5, 1 1, -1 -0.5, 0.5

Table 2.4. Example of the normal game created from the Bayesian.

2.2 Algorithms
The Double Oracle and Iterated Best Response algorithms are two of the most common
methods for finding Nash equilibrium in non-cooperative games. They are used to find
optimal strategies for all players that reach a Nash equilibrium.

In this section, we look at both algorithms, starting with Iterated Best Response,
which is a simpler and easier to understand algorithm (because it only uses pure strate-
gies), and ending with the more complex Double Oracle algorithm (which uses a mixed-
strategy space). We study each of the algorithms in detail and describe their features,
advantages, and disadvantages. In the next chapter, we use these algorithms for our
experiments.

2.2.1 Iterated Best Response
Sometimes calculating Nash equilibrium involves trying all possible variants (brute
force). This can be very costly in terms of time/resources. In this case, Iterated Best
Response algorithm can help us. The IBR algorithm consists of each player sequentially
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choosing the best response strategy to the current strategies of all other players until
the maximum specified limit of iterations is reached. The algorithm goes through the
following steps:

. each player chooses an initial policy

. each player chooses his best response strategy to the current strategies of all other
players

. continue the previous step until the change in the profit of all players is greater than
the 𝜖

This approximate algorithm usually works fast because it chooses the best policy
for only one agent at a time. But since the algorithm is iterative, it converges to a
local optimum. In potential games, this converges to Nash equilibrium [3](Theorem
19.12). However, the IBR algorithm does not guarantee a global Nash equilibrium.
Depending on the initial profile of strategies and the number of iterations, the algorithm
may converge to a local Nash equilibrium. But if the potential function is convex or
concave, the local optimum is global as well, and this algorithm always finds a global
NE. In addition, compared to the following Double Oracle algorithm, IBR searches for
equilibrium on a set of pure strategies, which makes it more efficient.

2.2.2 Double Oracle

Sometimes, even if we have all the time in the world and the most powerful computer,
it is impossible to go through all possible variants to find the Nash equilibrium. This
happens, for example, in continuous games(or in problems where the equilibrium is
a mixed strategy), where the set of moves is infinite. Double Oracle algorithm [4–5]
tries to reduce an infinite number of moves to a finite game, and it uses optimization
methods to find a new finite game. This approach provides high efficiency for finding
a NE.

How does it work? In the first game, each player makes a random move 𝑀1. We can
represent each player’s strategy as choosing 𝑀1 with a probability of 100%. Then in
the following games, everyone does three steps:

. try to find a pure strategy (𝑀𝑖) based on the previous strategy of the opponents

. add 𝑀𝑖 to the subgame 𝐺∗

. solve this finite subgame(find mixed strategy)

These iterations are repeated in the cycle N times or until the change in the profit of
all players is greater than the 𝜖.

Figure 2.1. [6] Two iterations of Double Oracle.

9



2. Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Although the Double Oracle algorithm is a powerful tool for finding Nash equilibria,

it has several drawbacks:

1. Computational complexity: the Double Oracle algorithm requires a lot of computa-
tional resources to determine each player’s optimal strategies. This can be a problem
in games with a large number of players or in games with a large number of possible
actions. This is especially noticeable in problems with pure NE, which this algorithm
solves through the space of mixed strategies.

2. Initial point sensitivity: the Double Oracle algorithm can be sensitive to the initial
point.

Despite these weaknesses, the Double Oracle algorithm is still one of the most effi-
cient and powerful tools for finding Nash equilibria in strategic games with complete
information.

10



Chapter 3
Estimation from strategic Data sources

We try to solve the existing problem [1], verify the experimental results, and later
extend it to the Bayesian game. However, we look at it from the other side and try to
find an equilibrium using algorithms to find NE.

3.1 Problem definition

3.1.1 Original game
Briefly repeat what the task is. We want to build a model based on data from users, but
it contains noise. We want to find this distortion through Nash equilibrium. Therefore,
the main task is to study how users behave.

There are 𝑁 agents (𝑁 = {1, . . . , 𝑛}). The text assumes that the agent has public
features 𝑥𝑖. The accuracy with which they give their private data is 𝜆𝑖. This is actually
the main variable influenced by the participants. The given noise can obtain values
in the range [0, 1/𝜎2]. Each agent 𝑖 ∈ 𝑁, choosing the amount of distortion, tries to
minimize the loss function

𝐽𝑖 (𝜆𝑖, 𝜆−𝑖) = 𝑐𝑖 (𝜆𝑖) + 𝑓(𝛌).

Where 𝑐𝑖 : ℝ+ → ℝ+ is the disclosure cost (the price an agent loses by disclosing its data)
and 𝑓 : ℝ𝑛

+ → ℝ+ is the estimation cost (value of loss for inaccurate recommendations
received). Therefore, the Nash equilibrium is

𝜆∗
𝑖 ∈ min 𝐽𝑖(𝜆𝑖, 𝜆∗

−𝑖), for all 𝑖 ∈ 𝑁.

For the reason that the game is potential, there is the potential function Φ : [0, 1/𝜎2]𝑛 →
ℝ such that

Φ(𝛌) = 𝑓(𝛌) + ∑
𝑖∈𝑁

𝑐𝑖(𝜆𝑖), (𝛌 ∈ [0, 1/𝜎2]𝑛).

3.1.2 Bayesian game
The previous game assumes complete information, that is, agents know the loss function
of other participants. We extend this problem to a Bayesian setting by adding type
space and common prior probability over types. Now the game is

Γ = ⟨𝑁, 𝐴, Θ, 𝑝, (𝐽𝑖)𝑖∈𝑁⟩ . (1)

. The set of players 𝑁 = {1, . . . , 𝑛}

. The action set is 𝐴𝑖 = [0, 1], and 𝐴 = 𝐴1 × · · · × 𝐴𝑛. The set of types for each 𝑖 ∈ 𝑁 is Θ𝑖 = { 1
4 , 1

2 , 3
4 , 1}

. The type space Θ = Θ1 × · · · × Θ𝑛 is endowed with a strictly positive probability
distribution 𝑝: Θ → [0, 1]

. 𝑝(𝜃) = 1
|Θ𝑖|𝑛. The loss function 𝐽𝑖: 𝐴 × Θ → ℝ is given by

11
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𝐽𝑖 (𝗮, 𝛉) = 𝑐𝑖 (𝑎𝑖) + 𝑓(𝑑𝑖𝑎𝑔(𝛉) ⋅ 𝗮)

The first type means that a player is completely indifferent to the accuracy of the
model (its argument in function 𝑓 is four times smaller, so it is only interested in
disclosure cost), it only worries about its privacy. The last type characterizes a player
as conservative, trying not to risk the accuracy of the results, and more disposed to
disclose its data. The prior probability is a constant and has a uniform distribution.

We can represent our new function 𝑓 as 𝑓(𝐴𝑥 + 𝑏) where 𝐴 = 𝑑𝑖𝑎𝑔(𝛉), 𝑏 = ⃗0 and
𝑥 = 𝗮. Since convexity is invariant under an affine map, 𝑓(𝑑𝑖𝑎𝑔(𝛉) ⋅ 𝑎) is still convex.
Therefore 𝐽𝑖 is convex as well (because the sum of the convex functions gives the convex
function).

Recall that a (pure) strategy of player 𝑖 ∈ 𝑁 in a Bayesian game is a mapping
𝑠𝑖: Θ𝑖 → 𝐴𝑖. Note that each 𝑠𝑖 is just a vector in [0, 1]4. Let 𝑠 = (𝑠1, . . . , 𝑠𝑛) be the
profile of such strategies. Player’s 𝑖 ex-post loss 𝑙𝑖(𝑠, 𝜃) is then defined by

𝑙𝑖(𝑠, 𝜃) = 𝐽𝑖(𝑠(𝜃), 𝜃), 𝜃 ∈ Θ
where 𝑠(𝜃) = (𝑠1(𝜃1), . . . , 𝑠𝑛(𝜃𝑛)) ∈ 𝐴.

We define the ex-ante loss function 𝐿𝑖 of player 𝑖 by

𝐿𝑖(𝑠) = ∑
𝜃∈Θ

𝑝(𝜃) ⋅ 𝑙𝑖(𝑠, 𝜃)

for any strategy profile 𝑠. A strategy profile 𝑠∗ is called a Bayes-Nash equilibrium if

𝐿𝑖(𝑠∗) ≤ 𝐿𝑖(𝑠∗
−𝑖, 𝑠𝑖)

for every 𝑖 ∈ 𝑁 and every strategy 𝑠𝑖.

3.2 Experiments
In this section, we demonstrate how the algorithms work with a few examples. For
visualization, we make graphs. Specifically for Double Oracle, we calculate instability

𝑐𝑖(𝑎
𝑗+1
𝑖 , 𝑠𝑗

−𝑖) − 𝑐𝑖(𝑠𝑗)

where 𝑗 is an iteration number in the algorithm. It is the difference between the result of
a pure strategy and a mixed strategy. It provides a simple metric to check the efficiency
of the approximation. In other cases, we calculate the difference in the profit of players
or precision at equilibrium. For all algorithms, the maximum number of iterations is
set to 10.

3.2.1 Environment and implementation
All the codes were run on a laptop with the Ubuntu 20.04 LTS subsystem. The laptop
has processor Intel i5-1135G7 and 8 GiB of system memory to perform our experiments.
All the algorithms were implemented in the Julia programming language. We use Julia
1.8 and JuMP. We also use optimization methods to find optimums using the library
Ipopt [7]. Implementations of all algorithms are available on Git [x] 1

1 https://gitlab.fel.cvut.cz/lariovia/nash-equilibria-for-regression-models-over-strategi
c-data.git
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3.2.2 Double oracle
First, we run tests to make sure that our algorithm works correctly. Example 1 is the
game Cournot oligopoly [8]. Cost function is

𝑐𝑖(𝑎1, 𝑎2) = { −𝑎𝑖 ⋅ (𝑑 − 𝑎1 − 𝑎2 − 𝑐) 𝑎1 + 𝑎2 ≤ 𝑑
𝑎𝑖 ⋅ 𝑐 otherwise

where 𝑑 = 10 and 𝑐 = 1. And strategy set is the interval between 1 and 10. Using 10
steps our algorithm returns 𝑎1 ≈ 3.004 and 𝑎2 ≈ 3.002.
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Figure 3.1. Convergence in Cournot Oligopoly.

Another example is the Torus game [9]. It is a two-player game. Each strategy set
is the unit circle 𝑆1 = [−𝜋, 𝜋] and the cost functions are

𝑐1 (𝜃1, 𝜃2) = −𝛼1 cos (𝜃1 − 𝜙1) + cos (𝜃1 − 𝜃2) ,
𝑐2 (𝜃1, 𝜃2) = −𝛼2 cos (𝜃2 − 𝜙2) + cos (𝜃2 − 𝜃1)

where 𝜙 = (0, 𝜋/8) and 𝛼 = (1, 1.5). Using Ipopt as the best response oracle, our
method returns one of two NE: pure strategies 𝜃1 ≈ 1.408, 𝜃2 ≈ −0.325 or 𝜃1 ≈
−1.063, 𝜃2 ≈ 1.015.

We have checked on two games that our Double Oracle works correctly and stable,
now we can move on to solve our problem.

Example 1. The game is the tuple

Γ = ⟨𝑁, [0, 1/𝜎2]𝑛 , (𝐽𝑖)𝑖∈𝑁⟩ .

We consider a 1-dimensional model (𝑑 = 1) with two agents (𝑛 = 2). We assume that
the disclosure cost of Agent 1 is 𝑐1(𝜆) = 𝜆1.01 while the disclosure cost of Agent 2
is 𝑐2(𝜆) = 𝜆20. The scalarization function is the identity, which means that 𝑓(𝛌) =
1/(𝜆1 + 𝜆2) + 𝛿/𝜆1 + 𝛿/𝜆2, where 𝛿 = 0.01. We set the maximal precision to 1/𝜎2 = 1.
Payoff function is

𝐽𝑖 (𝜆𝑖, 𝜆−𝑖) = 𝑐𝑖 (𝜆𝑖) + 𝑓(𝛌). (2)
Using Ipopt as the best response oracle, our method returns pure strategies 𝜆1 ≈
0.248, 𝜆2 ≈ 0.845.
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Figure 3.2. Convergence in Torus game.
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Figure 3.3. Double Oracle convergence.

3.2.3 Iterated Best Response

The first example we start with is the previous one. We try to solve the same game, only
using the Iterated Best Response algorithm. The answer is the same (𝜆1 ≈ 0.248, 𝜆2 ≈
0.845), but the algorithm does it in fewer iterations on average 3.4.

Example 2. We try to complicate this game by increasing the dimension and the
number of players. Our game consists of 𝑑+1 players and 𝑑 dimensions. The disclosure
cost of the first 𝑑 agents are 𝑐𝑖(𝜆) = 𝜆20 (for 𝑖 ∈ {1, . . . , 𝑑}) and the disclosure cost of
the last agent is 𝑐𝑑+1(𝜆) = 𝜆1.5. The maximal precision is the same (1/𝜎2 = 1). Note
that our original estimation cost function is

𝑓(𝛌) = 𝐹(𝑉 (𝛌)), 𝐹 (𝑉 ) = trace(𝑉 )
𝑉 (𝛌) ≡ (𝑋𝑇Λ𝑋)−1 + 𝐷𝑇Λ−1𝐷, Λ = diag(𝛌)
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Figure 3.4. IBR convergence.

Therefore in this example, we should define 𝑋 (the public features) and 𝐷 (pertur-
bation) matrices:

𝑋 =
⎡
⎢
⎢
⎣

1 0
. . .

0 1
1/𝑑 · · · 1/𝑑

⎤
⎥
⎥
⎦

, 𝐷 =
⎡
⎢
⎢
⎣

√
𝛿 0 0 · · ·

... 0 0 · · ·√
𝛿 0 0 · · ·

−𝑑
√

𝛿 0 0 · · ·

⎤
⎥
⎥
⎦

.

Below there are the Nash equilibria for different dimensions. Despite the increased
number of agents and dimensions, the algorithm also converges quickly.

(𝑑 = 2, 𝛿 = 0.001) The NE is 𝜆1 ≈ 0.862, 𝜆2 ≈ 0.862, 𝜆3 ≈ 0.190
(𝑑 = 5, 𝛿 = 0.00001) The NE is 𝜆1−5 ≈ 0.866, 𝜆6 ≈ 0.053
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Figure 3.5. IBR convergence (𝑑 = 2).
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Figure 3.6. IBR convergence (𝑑 = 5).

3.2.4 Verification of experiments

We verify our results by finding a solution using optimization methods. Simultaneously,
we try to repeat the results and experts achieved in [1]. Since our game is potential, we
can find a Nash equilibrium using optimization methods. Also, since our loss function
is convex, the local optimum is global. Based on this, we can discover equilibria using
Ipopt (Nonlinear solver for Julia).

Example 1. Using the same settings the optimum of function (2) is 𝜆1 ≈ 0.248, 𝜆2 ≈
0.846. Then we plot how the optimum and estimation cost behaves depending on
perturbation 3.7.
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Figure 3.7. Example 1. Estimation cost (left) and precision of agents (right).

Example 2. Similarly, as in the previous example, we find the optimum, compare it,
and draw plots.

𝜆1 ≈ 0.862, 𝜆2 ≈ 0.862, 𝜆2 ≈ 0.190 for 𝑑 = 2, 𝛿 = 0.001
𝜆1−5 ≈ 0.866, 𝜆6 ≈ 0.052 for 𝑑 = 5, 𝛿 = 0.00001
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Figure 3.8. Example 2. Estimation cost for d = 2.
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Figure 3.9. Example 2. Estimation cost for d = 5.

We confirmed the experiments obtained in this paper [1]. It also shows that all our
algorithms work correctly.

3.2.5 IBR for Bayesian setting
In this part, we consider how agents would behave in the case of a Bayesian game.
How much this setup affects their strategy. We find a Nash equilibrium in the game (1)
using the algorithm Iterated Best Response.

First, we describe the IBR algorithm for the Bayesian setting. There are minor
changes.
. In order to find an equilibrium, start with a randomly generated strategy profile

𝑠0 = (𝑠0
1, . . . , 𝑠0

𝑛) ∈ [0, 1]4𝑛

. For each player 𝑖 ∈ 𝑁, compute the best response 𝑠1
𝑖 to the strategy 𝑠0

−𝑖,

𝑠1
𝑖 ∈ arg min

𝑠𝑖
𝐿𝑖(𝑠𝑖, 𝑠0

−𝑖)

. Repeat

. This generates a sequence of profiles 𝑠0, 𝑠1, 𝑠2, . . .
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. Its limit should be a Bayesian Nash equilibrium

The graph 3.10 shows that the most selfish agents are now less likely to distort
data about themselves. And also, the strategies do not vary greatly depending on
the type of player.
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Figure 3.10. Convergence in the Bayesian game.
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Chapter 4
Conclusion

4.0.1 Verification
We have implemented several algorithms to find the Nash equilibrium and tested their
correctness on games we know the solutions to. Experiments have confirmed what we
know theoretically. The Double Oracle and Iterated Best Response algorithms both
converge to local optima. Sometimes, it is necessary to change the initialization to
find a whole set of solutions. In the case of potential games with a convex or concave
function, it is enough to run the algorithm once (since the local optimum is global).
In most cases, only a few iterations are enough to find the Nash equilibrium.

After ensuring the algorithms worked correctly, we have repeated the experiments
from the paper [1]. We have approached this problem from different sides. We’ve
looked at it as an optimization problem and as a game in normal form (Double
Oracle), including using the fact that this is a potential game (IBR). As a result of
all the experiments, we have received the same numerical answers.

4.0.2 Expanding the problem
We’ve extended the problem to the Bayesian settings with incomplete information
to bring it closer to the real world and experimented with numerical methods to find
equilibria.
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