
Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Cybernetics

Multi-robot Systems

Drone Simulation Using Unreal
Engine

Bachelor’s Thesis

Jakub Jirkal

Prague, May 2023

Study programme: Open Informatics
Specialisation: Artificial Intelligence and Computer Science

Supervisor: Ing. Vojtěch Vonásek, Ph.D.

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492212 Personal ID number: Jirkal Jakub Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Drone Simulation Using Unreal Engine

Bachelor’s thesis title in Czech:

Využití nástroje Unreal Engine pro simulaci helikoptér

Guidelines:

1. Get familiar with Unreal Engine (version 5) [2] (UE5), study current topics in the robotic simulations [1,3].
2. Design a server-client system for simulation of drone flight in the virtual environment of UE5, where a server (virtual
environment provided by UE5) provides data to the client (e.g. a user that wants to control the drone). The simulation
should support managing multiple clients, should provide data from at least lidar (or similar) sensor and RGB (or RGB/D)
camera. Design an efficient (fast, reliable) communication between the UE5 and the clients. The supposed usage of the
simulation is mostly for providing realisic visualization in offline learning tools (e.g. for evoluationary robotics, reinforcement
learning). The dynamics/kinematics of the drones is not important and can be assumed that it will be provided by an
external library.
3. Implement the whole system (in c++), use state-of-the-art libraries for supporting functions (e.g. for communication).
Design (model) virtual environments with indoor and outdoor scenarios.
4. Design and implement use-case for using the simulation in a reinforcement learning task [4]. Consider tasks that rely
mostly on visual data (e.g. collision avoidance, flight to a position, formation following, etc.). Use a state-of-the-art library
for reinforcement learning (e.g. using framework OpenAI).
5. (Optional) Investigate how to implement additional features: creating of drones/agents on the fly, reading mesh data
(or bounding boxes) from UE5. Implement them if possible.
6. (Optional) Use dynamic model to simulate realistic flight of the drone. Use an external library for it (will be provided by
the supervisor).

Bibliography / sources:

[1] J. Collins, S. Chand, A. Vanderkop and D. Howard, "A Review of Physics Simulators for Robotic Applications," in IEEE
Access, vol. 9, pp. 51416-51431, 2021, doi: 10.1109/ACCESS.2021.3068769.
[2] Unreal engine 5, https://www.unrealengine.com/en-US/unreal-engine-5.
[3] Staranowicz, Aaron, and Gian Luca Mariottini. "A survey and comparison of commercial and open-source robotic
simulator software." Proceedings of the 4th International Conference on PErvasive Technologies Related to Assistive
Environments. 2011.
[4] Arulkumaran, Kai, et al. "Deep reinforcement learning: A brief survey." IEEE Signal Processing Magazine 34.6 (2017):
26-38.

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Name and workplace of bachelor’s thesis supervisor:

Ing. Vojtěch Vonásek, Ph.D. Multi-robot Systems FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 26.05.2023 Date of bachelor’s thesis assignment: 24.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Vojtěch Vonásek, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

v

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor
Ing. Vojtěch Vonásek, Ph.D. for his guidance, feedback, assistance and valuable
suggestions. I would also like to thank my family and my girlfriend for their support
and patience throughout my studies.

Declaration

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instruc-
tions for observing the ethical principles in the preparation of university theses.

Prague, May 26, 2023 Jakub Jirkal

vi

vii

Abstract

Drone simulators differ in many ways and only a section of them supports realistic
rendering. Differences between the simulated and the real world can be critical, as
just a slight inconsistency could cause the drone model trained in the simulator to
crash in the real world. The game industry nowadays produces games with realistic
environments using different engines, among which Unreal Engine 5 stands out the
most in terms of realism. The core concept of this thesis is to use the Unreal Engine
5 as a base for a photorealistic drone simulator.

We introduced and developed a simulator based on the Unreal Engine 5 with features
such as a LiDAR sensor, an RGB camera, a position/tilt sensor and multiple drone
support. The simulator is divided into multiple TCP/IP servers and allows for fast
and reliable communication with the clients. We benchmarked the simulator on
various scenarios and compared its performance in different environments and drone
counts. We trained two drone models in reinforcement learning tasks and confirmed
the ability of the simulator to serve machine learning purposes.

Keywords Drone simulation, Unreal Engine 5, Realistic rendering, Reinforcement
learning

Abstrakt

Simulátory dron̊u se rozlǐsuj́ı v mnoha aspektech a pouze několik z nich podporuje
realistické renderováńı. Rozd́ıly mezi simulovaným a reálným světem mohou mı́t
kritické následky, jelikož drobná nesrovnalost mezi nimi může zapř́ıčinit havárii
dronu v reálném světě s modelem natrénovaným v simulátoru. Herńı pr̊umysl pro-
dukuje hry s realistickými prostřed́ımi za pomoci r̊uzných engin̊u, mezi kterými z
pohledu realističnosti nejv́ıce vyčńıvá Unreal Engine 5. Základńım konceptem této
práce je použit́ı Unreal Engine 5 jako základu pro fotorealistický simulátor dron̊u.

Představili a vyvinuli jsme simulátor založený na Unreal Engine 5. Simulátor ob-
sahuje LiDAR sensor, RGB kameru, pozičńı/rotačńı sensor a podporu několika
dron̊u. Simulátor je rozdělen do několika TCP/IP server̊u a podporuje rychlou a
spolehlivou komunikaci s klienty. Změřili jsme výkon simulátoru na několika ro-
zlǐsných scénář́ıch a výsledky porovnali na základě rozd́ılných prostřed́ı a počtu
dron̊u. Natrénovali jsme dva modely dron̊u v úlohách zpětnovazebného učeńı a
potvrdili jsme schopnost simulátoru sloužit pro účely strojového učeńı.

Kĺıčová slova Simulace dron̊u, Unreal Engine 5, Realistické renderováńı,
Zpětnovazebné učeńı

viii

ix

Abbreviations

API Application Programming Interface

FOV Field of View

FPS Frames Per Second

GPS Global Positioning System

GUI Graphic User Interface

IMU Inertial Measurement Unit

LiDAR Light Detection and Ranging

MRS Multi-robot Systems

RGB Red Green Blue

RGBD Red Green Blue-Depth

UAV Unmanned Aerial Vehicle

x

xi

Contents

1 Introduction 1
1.1 Goals . 3

2 Related work 5

3 Problem overview 9
3.1 Movement and collisions . 9
3.2 Sensors . 10
3.3 Controls . 11

4 UEds simulator 13
4.1 Architecture . 13
4.2 Game thread . 15
4.3 Movement and collisions . 16
4.4 Position and tilt sensor . 16
4.5 LiDAR . 17
4.6 Camera . 17
4.7 Communication . 20
4.8 Support . 20

5 Benchmarks 23
5.1 Drone movement . 24
5.2 LiDAR . 26
5.3 Camera . 28
5.4 Conclusion . 30

6 Experiments 31
6.1 Prerequisites . 31
6.2 LiDAR . 32
6.3 Camera . 36
6.4 Conclusion . 40

7 Conclusion 41
7.1 Future work . 41

8 References 43

A Appendix A — Included attachments 47

xii

xiii

List of Figures

1.1 A sample of Unreal Engine Marketplace. Captured from [11]. 2

1.2 A sample of an environment and drones with LiDAR beams captured from the
proposed simulator. 2

2.1 A sample of a drone and an environment in Webots. Taken from a thumbnail
of a video [36], referenced at [2]. 6

2.2 A sample of a drone and an environment in jMAVSim. Taken from [28]. 6

2.3 A sample of a drone and an environment in MATLAB with Simulink. Taken
from [33]. 7

2.4 A snapshot from AirSim. Taken from [43]. 7

2.5 A system overview of Flightmare. Taken from [41]. 8

2.6 A snapshot of a rendering of an environment in FlightGoggles. Taken from [42]. 8

3.1 A sample a drone transition from point A to B in 2D space. The full line
represents the transition line segment. Greyed-out drones represent iterations
of the transition. 10

4.1 A diagram of the simulator architecture. The blue boxes represent the ob-
jects existing in the Unreal Engine environment, the red boxes represent the
servers of the objects and the yellow boxes represent the clients connected to
the servers. Both the objects and the servers exist under the Unreal Engine en-
vironment and the clients are connected over TCP/IP socket from the network. 14

4.2 Flow of instruction processing. (1): A server adds an instruction to an instruc-
tion queue on request. (2): An object reads the instruction from the instruction
queue in the Tick function. (3): The object processes the instruction. (4): The
object marks the instruction as finished. (5): The server notices that the in-
struction is finished. 16

4.3 A model of Tarot 650 frame, motors, propellors and the corresponding collision
model captured using Unreal Engine. The green lines represent the collision
model, made of a convex hull wrapped around the model. 17

4.4 An example of LiDAR configurations. Captured in the UEds simulator. The
colors were inverted to make the beams more visible. 18

4.5 Flow of the camera capture. (1): A render target component is updated by a
scene capture component. (2): A camera data buffer is filled with data from
the render target. (3): The camera data buffer is accessible to a drone server. . 18

4.6 An example of camera configurations. Captured in the UEds simulator. The
background color of the drones was modified to white for better visibility of
the camera. 19

4.7 An example of captured camera images with various FOV angles. Captured in
the UEds simulator. 20

xiv

5.1 FPS in time relative to drone count measured at drone movement benchmark. . 24
5.2 Response time in time relative to drone count measured at drone movement

benchmark. Data are based on a 35% sample of the original data. 25
5.3 A LiDAR benchmark setup with 125 beams. 27
5.4 Samples of the environments captured during camera benchmark. 28

6.1 Training playgrounds used in the LiDAR experiment. All of the playgrounds
have the same 1,400 cm × 1,400 cm × 525 cm dimensions. The pillars in the
playgrounds have a diameter of 50 cm. The red sphere corresponds to the start
of the playground, the yellow spheres correspond to the waypoints and the
green sphere corresponds to the goal of the playground. 32

6.2 Reward value in steps of the LiDAR experiment training. 34
6.3 Learned paths in the training playgrounds of the LiDAR experiment. The green

line represents the trail of the drone. 35
6.4 Learned paths in the validation playgrounds of the LiDAR experiment. The

green line represents the trail of the drone. 35
6.5 Steps of extracting the direction from the center of the camera capture to

the green color space. The green color space is filtered from the original camera
capture (Fig. 6.5a) and results in a mask (Fig. 6.5b). The center of the boundary
box of switched-on bits of the mask represents the center of the green color space
and the direction is calculated as a vector from the center of the original image
to the center of the boundary box. 37

6.6 Training playgrounds used in the camera experiment. Both of the playgrounds
have the same 1,400 cm × 1,400 cm × 525 cm dimensions. The pillars in the
playgrounds have a diameter of 50 cm. The red sphere corresponds to the start
of the playground and the green sphere corresponds to the goal of the playground. 38

6.7 Reward value in steps of the camera experiment training. 39
6.8 Learned paths in the training playgrounds of the camera experiment. The green

line represents the trail of the drone. 39
6.9 Learned paths in the validation playgrounds of the camera experiment. The

green line represents the trail of the drone. 39

xv

List of Tables

4.1 A list of operations implemented in the game mode server. 21
4.2 A list of operations implemented in the drone server. 21
4.3 A list of platforms, where the simulator was tested, validated and proved to be

working. 21

5.1 A platform, where the simulator benchmarked. 23
5.2 FPS statistics relative to drone count measured at drone movement benchmark. 25
5.3 Response time statistics relative to drone count measured at drone movement

benchmark. 26
5.4 FPS statistics relative to beam count measured at LiDAR benchmark. 27
5.5 Response time statistics relative to beam count measured at LiDAR benchmark. 27
5.6 FPS statistics relative to camera capture mode, drone count, scenario and en-

vironment measured at camera benchmark. 29
5.7 Response time statistics relative to camera capture mode, drone count, scenario

and environment measured at camera benchmark. 29

6.1 A list of parameters used for the reward function of the LiDAR experiment. . . 34
6.2 A list of parameters used for the PPO algorithm in the LiDAR experiment. . . 34
6.3 A list of parameters used for the reward function of the camera experiment. . . 37
6.4 A list of parameters used for the PPO algorithm in the camera experiment. . . 38

xvi

1. INTRODUCTION 1/47

Chapter 1

Introduction

It is not always possible to operate drones in the real world. For drone model evaluation
and learning purposes, it is better to use a simulation rather than the real world for numerous
reasons. First, drone model failures are possible and it is better to catch them in a simulated
environment, as it is cheaper and safer. Second, there can be multiple drones operated at the
same time in the same environment, as simulators either allow for parallel computing or can
be run side-by-side. Third, the simulators can run faster than the real world, which allows for
faster evaluation and learning. Fourth, in contrast to the real world, the simulated environment
allows for easy map and scenario change in a matter of seconds. The major disadvantage of
simulation is the possible inconsistencies between the simulated environment and the real
world, being it either non-realistic collision handling, physics simulation or rendering.

The inconsistencies between the real world and the simulated environment can be crit-
ical. For instance, imprecise collision detection in the simulator can cause the drone to crash
in the real world. Likewise, realistic rendering is crucial for learning a drone model based on
camera data, as just a slight inconsistency could make the learned model malfunction in the
real world. Reasons described above lead to an emerging trend for realistic simulators, which
can find their place in machine learning tasks.

Nowadays, the game industry produces games with immersive and realistic environ-
ments. These environments are processed and rendered in a game engine, which is the base
of the game. The game engines differ in many ways, however, the Unreal Engine 5 [15] stands
out in the realistic rendering field. The Unreal Engine 5 features state-of-the-art rendering
capabilities, physics simulation, precise collision handling and a marketplace [18] with a rich
selection of community digital assets (objects, textures, etc.) and maps. A capture of the
marketplace can be seen in Fig. 1.1. The creation of the environment in the Unreal Engine is
a simple task with the addition of the marketplace and allows the user to focus more on the
actual drone training rather than creating the environment and the assets. The main idea of
this thesis is to leverage the realistic rendering capabilities the Unreal Engine 5 offers and use
the engine as a base for the drone simulator.

Several simulators with realistic rendering capabilities exist in the field of aerial robotics
and will be discussed in Chapter 2. This thesis is assigned by the Multi-robot Systems (MRS)
Group [23]. The group assumes the increasing usage of reinforcement learning in drone learning
tasks based on camera data and plans to use the simulator proposed in this thesis in their
research and as a base for students writing their thesis under the MRS Group. The group
does not want to be dependent on external simulators, as their support is not guaranteed
and the community is smaller compared to the Unreal Engine. Other advantages of having
a custom simulator are bigger control over the simulator and the possibility to implement
custom functionalities. The disadvantage of this approach is the need for people, who will be
extending and maintaining the simulator.

CTU in Prague Department of Cybernetics

2/47

Figure 1.1: A sample of Unreal Engine Marketplace. Captured from [11].

Figure 1.2: A sample of an environment and drones with LiDAR beams captured from the
proposed simulator.

CTU in Prague Department of Cybernetics

1. INTRODUCTION 3/47

1.1 Goals

The goal of this thesis is to research and develop a simulator focused on realistic vi-
sualization based on Unreal Engine 5. The research includes an analysis of drone simulator
components, the simulator efficiency and the possible capabilities. The simulator will expose
a server to which clients can connect and operate the drones in a fast and reliable way. Colli-
sion detection will be handled appropriately and the drone will be comprised of a real-world
drone model. Features such as a Light Detection and Ranging (LiDAR) sensor, an Red Green
Blue (RGB) camera and a localization sensor will be present. The simulator will be able to
create and remove drones on the fly. The drone dynamics/kinematics model is assumed to be
provided by an external library and will not be implemented. A sample captured from the
proposed simulator can be seen in Fig. 1.2.

Another goal of this thesis is to develop a client for the simulator in C++. The client
will be able to operate the drone and the state of the simulator over the network. On top of
the client, there will be an OpenAI Gym environment [24] implemented, which allows for easy
reinforcement learning development.

The simulator will be benchmarked on various scenarios. Two reinforcement learning
tasks will be prepared, learned and validated. The first task will rely on LiDAR data with a
direction vector to a target and the drone will be learned to fly through an obstacle playground
to the target. On the second task, the drone will be learned to avoid obstacles and fly to the
target as well, with the difference that RGB camera data will be provided and the drone must
find the target using the provided camera data.

CTU in Prague Department of Cybernetics

4/47 1.1. GOALS

CTU in Prague Department of Cybernetics

2. RELATED WORK 5/47

Chapter 2

Related work

Several simulators exist in the field of aerial robotics. This chapter focuses on an overview
of simulators, that are suitable for training and evaluating drone models. As the goal of this
thesis is to research and develop a simulator focused on realistic visualization, we will mainly
be discussing the simulators, that support such capabilities.

In 2011, there was a survey paper of both open-source and commercial robotic simulators
created [46]. The paper displays signs of being antiquated, as some of the information is
outdated, for instance, according to [3], Webots is open-source, despite authors claiming it to
be commercial. Due to this fact, we will discuss eligible simulators from this paper, but will
base the information about them on recent sources.

In [39], authors dedicated a chapter specifically for aerial robotics. They provided a table
of feature comparisons of aerial robotics simulators which shows that the differences between
such simulators are noticeable. The authors state that AirSim and Flightmare support realistic
rendering and thus will be discussed more in-depth.

There are a few features that the simulator must have to be able to simulate drones.
First of all, it must work in 3D space. Some simulators work only in a 2D space, but the third
dimension is essential for providing a realistic environment. Secondly, fast collision detection
has to be supported. This is crucial, as crashing a drone in the real world can be an expensive
mistake. At last, some sensors implementation must be present — usually a combination of
a camera, LiDAR, Inertial Measurement Unit (IMU) and Global Positioning System (GPS).
Without the sensors, the drone is “blind” and has no way of navigating in the space.

ROS (Robot Operating System) is an open-source framework, featuring a set of tools
and libraries for developing robotics software [47]. It aims to provide a common interface for
building and testing various robots, regardless of their hardware and software. Out of the
box, the ROS is not capable of simulating drones, but many of the simulators listed below
implement ROS interface and allow for using a unified communication protocol.

Gazebo is a popular open-source multi robot simulator [39, 49]. The rendering engine is
based on OpenGL, which is an Application Programming Interface (API) to graphics hard-
ware, enabling 2D and 3D graphics rendering [48]. As authors of [39] state, Gazebo does not
provide realistic rendering. Drone dynamics is handled by the Open Dynamics Engine [30].
Sensor-wise, the simulator implements an Red Green Blue-Depth (RGBD) camera, an IMU,
a LiDAR and a GPS. Gazebo is commonly used in combination with ROS and is an industry
standard.

Webots is an open-source 3D mobile robots simulation software [3, 50] developed by
Cyberbotics Ltd. It features a set of predefined robots, including DJI Mavic 2 PRO quad-
copter [2]. Webots offers a LiDAR, IMU, GPS and camera sensor, but it does not offer a
realistic environment rendering (see Fig. 2.1) [39].

CTU in Prague Department of Cybernetics

6/47

Figure 2.1: A sample of a drone and an environment in Webots. Taken from a thumbnail of
a video [36], referenced at [2].

jMAVSim is an open-source multirotor simulator written in Java [1], focusing mainly
on the simulation of drone dynamics. It supports a MAVLink protocol, which is a lightweight
messaging protocol for communicating with drones [22]. The rendering of the simulator is
based on Java 3D library [26] and does not provide realistic rendering, as can be seen in
Fig. 2.2. jMAVSim implements an IMU and a GPS and does not offer a LiDAR and a camera
in contrast to other simulators. As per [1], the project is now discontinued.

Figure 2.2: A sample of a drone and an environment in jMAVSim. Taken from [28].

MATLAB with Simulink establishes a general-purpose simulation environment with a
set of toolboxes and algorithms [31]. The UAV Toolbox includes a framework with Unmanned
Aerial Vehicle (UAV) models and environment based on Unreal Engine [32], which provides
realistic rendering. A sample of the environment can be seen in Fig. 2.3. The framework
features a predefined scene, a quadrotor model, an RGBD camera and a LiDAR sensor. The
simulator is tightly incorporated into the Matlab ecosystem and does not provide a universal
API.

CTU in Prague Department of Cybernetics

2. RELATED WORK 7/47

Figure 2.3: A sample of a drone and an environment in MATLAB with Simulink. Taken
from [33].

AirSim is an open-source simulator [43] developed by Microsoft. The simulator is based
on Unreal Engine 4 (which is now a legacy version) and provides realistic rendering and
collision detection. It features a GPS, an RGBD camera, a LiDAR and an IMU sensors and
provides a drone model with dynamics out of the box. A snapshot from AirSim with various
cameras and their modes can be seen in Fig. 2.4. As authors of [39] state, AirSim is resource-
intensive and requires powerful hardware.

Figure 2.4: A snapshot from AirSim. Taken from [43].

Flightmare is an open-source flexible modular quadrotor simulator [41]. Its central prin-
ciple is the decoupling of a rendering and physics engine, which brings the benefit of letting
the end user to decide, whether he needs both of the engines running. The system overview
and decoupling schema of Flightmare can be seen in Fig. 2.5. As the authors show, turning
off the rendering engine increases performance — they achieved 230 Hz with a rendering sim-
ulation in comparison with 200,000 Hz with a physics simulation. The rendering engine is
based on Unity [34], which is a popular 3D game engine. Flightmare offers three variants of
quadrotor dynamics, the implementation of an RGBD camera, IMU sensor and an API for
extracting point clouds of the environment. In contrast to other simulators, it does not offer
a LiDAR [39].

CTU in Prague Department of Cybernetics

8/47

Figure 2.5: A system overview of Flightmare. Taken from [41].

FlightGoggles is an open-source simulator based on Unity [42]. Its primary concept is
the utilization of photogrammetry — an approach for generating 3D objects and environments
from photos [51]. Using this method, real world environments can be scanned, processed into a
simulation environment and used for simulation purposes. A snapshot of such an environment
can be seen in Fig. 2.6. Similarly to Flightmare, it features a modular architecture, which
allows for running rendering and collision detection separately. FlightGoggles includes an
RGBD camera, an IMU and a LiDAR.

Figure 2.6: A snapshot of a rendering of an environment in FlightGoggles. Taken from [42].

We have discussed the popular and state-of-the-art simulators currently available. The
emerging trend for simulators with realistic rendering is noticeable and can be interpreted as
a consequence of the need for realistic data for model training and the continuous availability
of stronger hardware.

CTU in Prague Department of Cybernetics

3. PROBLEM OVERVIEW 9/47

Chapter 3

Problem overview

In the previous chapter, we have discussed the features of currently available drone
simulators. As we can see, many simulators implement a set of common, base features —
mainly collision detection, a camera, an IMU sensor, a LiDAR sensor and a GPS sensor.
Combined with the required features discussed in Chapter 1, this forms a set of components,
that the simulator will present.

In this chapter, we will analyze the elements, that are crucial for the drone simulator.
We will discuss the approaches, that can be taken to simulate such elements realistically. At
last, we will look into the communication with the drones and the environment.

3.1 Movement and collisions

In the real world, drones fly by gaining thrust by spinning propellors attached to motors
on their body. When the propellors spin at the same rate, the drone flies upwards. A difference
in propellors spin rate causes the drone to rotate and fly in different directions.

As was already stated in Chapter 1, for the purposes of this simulator, we will not be
taking drone dynamics/kinematics into account. Instead, we can move the drone by simply
teleporting it across the map. This behavior brings a benefit: as we leave the drone dynamic-
s/kinematics on the client side, there can be any motion model integrated. A smooth transition
is then achievable by teleporting the drone in small steps, provided that the teleportation is
a fast enough operation. If we want to support drone dynamics in the future, we have two
ways of doing so: (i): implement the dynamics as a module, that will stand between the sim-
ulator and a client (middleware [38]). This approach is inspired by Flightmare [41], with the
difference that the rendering engine must be running nevertheless; and (ii): implement the
dynamics as a plugin inside of the simulator.

For this approach to work, we need to check for collisions. As we will be teleporting
between two points, we simply need to check that the drone will not collide with anything on
the line segment between those two points. If a collision will be present, we need to stop the
drone at the collision point. This can be achieved by iteratively calculating multiple positions
between the two points and for each of the positions, check that the drone does collide with
anything (see Fig. 3.1). We will discuss the implementation more in detail in Chapter 4, which
is dedicated to the simulator itself, as this type of transition is something that is baked right
into the Unreal Engine.

At one request, we should be able to either change location, change rotation or change
both. Changing both location and rotation in one request is especially useful, as drones in the
real world usually do the same.

CTU in Prague Department of Cybernetics

10/47 3.2. SENSORS

A

B
Figure 3.1: A sample a drone transition from point A to B in 2D space. The full line represents
the transition line segment. Greyed-out drones represent iterations of the transition.

A similar path can be taken for rotating the drone in any direction. For the collision
detection matter, we iteratively calculate multiple rotations in the direction of goal rotation
and check for impacts in each of those.

3.2 Sensors

GPS module provides geolocation to the drone. As authors of [44] state, the state-of-
the-art Differential GPS method achieves approximately 15 cm error. This error is inadequate
for drone orientation, as a few centimeters error could cause a crash. The GPS is prone to
error and might not even work in certain conditions — indoors, environments with a lot of
interference, etc.

As the environment will be simulated, we should be able to retrieve the exact location
of the drone in it. To make the simulation more realistic, we can introduce error generation
to the position retrieving mechanism (similar to AirSim [43]).

IMU sensor is primarily used for determining acceleration, angular velocity and rota-
tion. It mainly consists of two components: (i): accelerometers — used for obtaining linear
acceleration, and pitch and roll rotation angles; and (ii): gyroscopes — used for obtaining
angular velocity and all three rotation anglers. Some modifications of the IMU also provide a
magnetometer, which provides a yaw rotation angle. Measurements from mentioned compo-
nents are combined and provide calibrated output [45].

As the linear and angular velocity contributes mainly to the drone dynamics in the
context of the drone simulator and we will not be dealing with the dynamics, we can omit
their implementations from the simulator. The rotation that the IMU sensor provides us is
important and similar to GPS, we should be able to retrieve it easily from the environment.

LiDAR sensor is responsible for retrieving the distance between it and obstacles. In
short, it emits a laser beam and calculates the distance to the obstacle in the direction it
was emitted from the time it takes to deflect back. LiDARs have different maximal ranges of
operation (how far they “see”), counts of the beams and ranges of a shot (under what angles
they “see”, both 2D and 3D). The sensor itself can be mounted to various positions on the
drone.

CTU in Prague Department of Cybernetics

3. PROBLEM OVERVIEW 11/47

The simulated LiDAR should support all of the abilities and properties described above.
We should be able to send a beam in a particular direction from the LiDAR, as that is
something fairly common in a game engine — e.g. shooting a bullet in a videogame. The
Unreal Engine supports this and even supports retrieving the distance out of the box. We will
discuss the implementation in Chapter 4.

Camera provides video and photo input for the drone operator or for the model that
operates the drone. The cameras attached to drones can have depth-sensing, diverse resolution,
Field of View (FOV) angle, color space, exposure settings etc. Similar to LiDAR, the camera
can be mounted to various positions on the drone.

As discussed in Chapter 1, the camera should support an RGB color space without
depth sensing. Configurable FOV angle is an important setting, as it is commonly diverse in
drone cameras and should be implemented. It is crucial to have a camera input in a certain
orientation depending on the case and the mounting of the camera must be supported as well.

3.3 Controls

There are three ways of controlling the drone in the real world: (i): a drone is controlled
by software, that exists on the board attached to the drone; (ii): a drone is operated by a
human from a distance using a controller; and (iii): a drone is remotely controlled by software
on another machine.

We will focus on remotely controlling the drone, as it gives us much more flexibility.
This way, we can dynamically change its behavior from remote without reloading the drone.
Also, it gives us the benefit of controlling the drone from multiple endpoints. We can define
various commands (e.g. move, rotate, return lidar data) and send them directly to the drone.

CTU in Prague Department of Cybernetics

12/47 3.3. CONTROLS

CTU in Prague Department of Cybernetics

4. UEDS SIMULATOR 13/47

Chapter 4

UEds simulator

The UEds (Unreal Engine drone simulator) is the proposed drone simulator developed
in Unreal Engine 5. It consists of source code and graphical assets. In this chapter, we will
be discussing the architecture and the capabilities of the proposed simulator. We will also
talk about the performance limitations and their dependent root causes. The complications
of developing a simulator in Unreal Engine will be explained and clarified.

As stated before, the main focus of this simulator is the utilization of Unreal Engine
5 realistic visualization and collision handling. Another goal is to support multiple clients,
which allows the training and evaluation programs to run in parallel and thus those programs
can run faster than in a real world environment.

4.1 Architecture

The simulator is composed of three main parts: the environment, the game mode and
the drones.

The environment is an abstraction of Unreal Engine’s world, map and physics and
lightning simulation. It holds references to the objects that exist in it (e.g. walls, trees, terrain,
drones, skylight) and acts as a mediator between those objects — e.g. a tree stands on the
terrain, a light from the skylight falls on a tree and casts a show onto the terrain (lightning
simulation), a drone crashes into a wall (physics simulation). Objects can interact with the
environment in various ways depending on their type — e.g. cast shadow, collide.

The game mode is the main control unit of the simulator. It exists on top of the envi-
ronment and is able to manipulate it. In UEds, it holds references to all drones that exist in
the environment and allows for spawning and removing them on demand. Additionally, the
game mode is able to extract Frames Per Second (FPS) from the environment, which will be-
come convenient for benchmarking. As the game mode allows for environment manipulation,
it could be further used for changing the map, setting skylight/sun angle (time and cardinal
directions manipulation), dynamically spawning other objects, etc.

The drone is an object in the environment simulating a real world drone. It is currently
comprised of a model of a Tarot 650 frame, motors and propellors and can be switched to any
other drone model using an FBX format [12]. A LiDAR and an RGB camera are attached to
the drone object and can be manipulated by it. The drone is able to freely move and rotate
in the environment, can collide with it and registers the collision point in the environment
when it happens. As there can be many drones in the environment, they can not affect each
other — they are invisible to each other. This behavior is specifically configured and can be
changed.

Both the game mode and the drone objects are holding a reference to their custom
TCP server (see Fig. 4.1). This way, we can utilize the larger communication throughput

CTU in Prague Department of Cybernetics

14/47 4.1. ARCHITECTURE

for the game mode and each drone in comparison to one common server, which would pass
requests to the game mode and the drones. Also, this corresponds to the real world, where each
drone is being operated by its separate controller. Each server waits for incoming connections
and requests. Upon each request, the server parses the request, routes it and executes the
desired operation on the game mode or drone. We will discuss the implementations more in
Sections 4.2 and 4.7.

At the start of the simulator, the game mode server is started and waits for requests.
The start of the simulator does not spawn any drones and thus the game mode server is the
only running server in the beginning. On a request for a drone spawn, the game mode creates
a drone instance, starts the drone server and holds a reference to the drone in case the user
wants to remove the drone.

The simulator can run on top of any Unreal Engine map and environment, as there are
no configurations that bound the simulator logic to a specific map or environment. It exists on
its own in any environment and interacts with it using Unreal Engine common methods. The
only required steps are: (i): import the code of the UEds simulator; and (ii): set the default
game mode to the game mode provided by the UEds simulator.

Game Mode
Client 1

Game Mode
Client N

...

Drone Client 1

Drone Client M

...

TCP/IPNetwork Unreal Engine Simulator

Game Mode Server Game Mode

Drone Server 1

Drone Server P

...

Drone Pawn 1

Drone Pawn P

...

Drone Client 2

Figure 4.1: A diagram of the simulator architecture. The blue boxes represent the objects
existing in the Unreal Engine environment, the red boxes represent the servers of the objects
and the yellow boxes represent the clients connected to the servers. Both the objects and the
servers exist under the Unreal Engine environment and the clients are connected over TCP/IP
socket from the network.

CTU in Prague Department of Cybernetics

4. UEDS SIMULATOR 15/47

4.2 Game thread

In Unreal Engine and other game engines, the environment is rendered and displayed
to a user. The user sees the environment as a continuous sequence of pictures, called frames.
Each second, several frames are being rendered and displayed — the metric for that is called
FPS. The more FPS the game produces, the smoother it is.

During each frame render, the Unreal Engine processes rendering and post-processing
operations and synchronously and serially calls Tick function upon each object in the envi-
ronment, provided the object has the Tick function enabled. The Tick functions are called
from the main game thread, which is responsible for the game state, the rendering and the
user input handling. As a consequence, the operations that change the state of the objects and
the environment (in our context drone changing position and rotation, game mode spawning
and removing drones) must be called from the game thread.

Let us imagine a simplified version, where the engine calls the Tick function on each
object during each frame render and the rest of the frame render execution time is constant.
Then each frame calculation time can be expressed as

F =

N∑
i=1

ti + C, (4.1)

where F is the frame calculation time in milliseconds, N is the number of objects with the
Tick function, ti is the execution time of the Tick function of the object i in milliseconds and
C is the constant execution time of the rest of the frame render. Using equation (4.1), we can
calculate the FPS as

FPS =
1000

F
=

1000∑N
i=1 ti + C

, (4.2)

where FPS is the Frames Per Second and the rest of the variables correspond to the equa-
tion (4.1). From equation (4.2), we can denote that FPS is inversely proportional to the
execution time of the Tick function.

The Tick function is the only place in the drone and the game mode objects, from
where we could periodically check the server for incoming connections and requests. As we
denoted, every increase in the Tick function execution time lowers the FPS of the simulator.
Consequently, running the servers in the Tick function would lower the FPS and thus increase
the response time of the servers. Instead, we can run the servers from other threads, that
will not block the game thread. As we have shown, we can not run operations that change
the state of the objects and the environment from any other thread than the game thread.
Nevertheless, we can solve this issue by creating an instruction queue.

The instruction queue will take incoming operations from the server thread and process
them in the Tick function in the game thread. On each incoming request that holds an
operation that changes the state of the objects and the environment, the server pushes the
operation to the instruction queue and awaits its completion. The objects will check each Tick
for any operation in the instruction queue and process them if present. The figure of this flow
can be seen in Fig. 4.2. The instruction queue must be thread-safe, as two different threads
can access it at the same time. Here, we can utilize the Unreal Engines thread-safe queue [16]
implementation.

CTU in Prague Department of Cybernetics

16/47 4.3. MOVEMENT AND COLLISIONS

Object Server

4

Tick

3

2

Instruction
Queue

1

5
2 Instruction 1

Server loop

Figure 4.2: Flow of instruction processing. (1): A server adds an instruction to an instruction
queue on request. (2): An object reads the instruction from the instruction queue in the Tick
function. (3): The object processes the instruction. (4): The object marks the instruction as
finished. (5): The server notices that the instruction is finished.

4.3 Movement and collisions

In Chapter 3, we determined that we will move and rotate the drone by teleporting
it, provided that collisions will be handled appropriately. We also determined that we will
change either location, rotation or both in one request. Changing the location or rotation of
the drone are both operations that change the state of the drone and thus need to be run
from the game thread.

The Unreal Engine provides methods, that exactly serve the purpose described above [10,
13, 14]. All mentioned methods have an optional flag for turning on and off the collision de-
tection, which can become useful when we want to just teleport the drone to some location
(e.g. at the start of some learning scenario). Upon the collision, the drone is stopped and an
impact point is returned. The initial model was provided by the MRS Group and consisted
of 143,876 triangles. To optimize the performance of the simulator, the model was simplified
by the Unreal Engine upon the import to consist of 5,129 triangles (approximately a 96% re-
duction), which still results in a detailed image (see Fig. 4.6) The collision model was created
from the simplified model by wrapping a convex hull around it and can be seen in Fig. 4.3.

For the purposes of the evaluation of trained drone model behavior, we need some way
of tracing its path. The debug move line is an optional configuration, which draws a green line
between movement points and eventually forms a trace of the drone movement. The usage of
it can be seen in Chapter 6.

4.4 Position and tilt sensor

As discussed in Chapter 3, we will be simulating the GPS as a precise location retrieval
and the IMU sensor as a precise rotation retrieval. Both properties can be fetched using default
Unreal Engine methods [8, 9]. The location is in (X,Y, Z) format in unreal units relative to
the world, where one unreal unit is equal to one centimeter in the real world The rotation is
in (pitch, yaw, roll) angle format relative to the world. The location and rotation retrieval are
both immutable operations and thus can be run from the server thread.

CTU in Prague Department of Cybernetics

4. UEDS SIMULATOR 17/47

Figure 4.3: A model of Tarot 650 frame, motors, propellors and the corresponding collision
model captured using Unreal Engine. The green lines represent the collision model, made of
a convex hull wrapped around the model.

4.5 LiDAR

The Unreal Engine supports sending a line trace from a start point to an endpoint
including checking for collisions and returning a distance from the starting point to the obstacle
if the collision took a place [21]. The starting point is a center of the LiDAR, which can be
configured. The endpoint is calculated as a point in the space of configurable distance from
the start in the orientation of a beam. The orientation of the beam is calculated from the
orientation of the lidar and the configurable FOV angle. This line trace is conducted for each
of the beams and the measurements for each of the beams are then returned to the user.

The calculation of the LiDAR hits is not changing the state of the environment and can
thus be run in a server thread. We also do not need to precalculate the hits, as the calculation
is a fast operation and can be calculated on request. The benchmarks will be later discussed
in Chapter 5.

The LiDAR can be configured in several ways. First of all, the orientation and the offset
of the LiDAR mounting are configurable. Second, the number of the LiDAR beams, their
length (e.g. how far does the LiDAR “see”) and the FOV angle are customizable. Third, for
debugging purposes, the visibility of the beams is also configurable. Example configurations
can be seen in Fig. 4.4.

4.6 Camera

In Unreal Engine, capturing a snapshot from a camera attached to the drone is not a
trivial task. First of all, the default Unreal Engine camera component [17] does not support
retrieving a snapshot and is used only as a viewport for a Graphic User Interface (GUI).
Second, the rendering is being handled on a GPU and for the purpose of sending the snapshot

CTU in Prague Department of Cybernetics

18/47 4.6. CAMERA

(a) 35 beams; 270 FOV angle, facing forward (b) 15 beams; 90 FOV angle, facing forward
and down by 35 degrees

Figure 4.4: An example of LiDAR configurations. Captured in the UEds simulator. The colors
were inverted to make the beams more visible.

to the client, we need to transfer it to a CPU first. The image data will be compressed and
converted to the JPG format before being sent to the client. As the camera will primarily be
used for machine learning purposes, the default resolution is set to 640 x 480 px and can be
further changed.

The snapshot of an environment can be retrieved using a scene capture component [19],
but it needs to be projected to some render target before reading it from the CPU. For that,
we can use a simple 2D render target [20], which will be used as a holder of the snapshot.
The render target can be updated by the scene capture component only on demand, which
will later become useful. The update of the render target changes its state and thus needs to
be executed from the game thread. The flow of the camera capture can be seen in Fig. 4.5.

CPU GPU

1

Scene capture
component

2 Render target

3

Camera data buffer

Drone Server

Figure 4.5: Flow of the camera capture. (1): A render target component is updated by a
scene capture component. (2): A camera data buffer is filled with data from the render target.
(3): The camera data buffer is accessible to a drone server.

As already stated, we need to process a transfer from the GPU to the CPU and this
transfer happens when reading the binary image data of the render target. This is a compu-
tationally expensive operation, as the data need to transfer a significantly long path between
the GPU and the CPU. The update of the render target from the scene capture component is

CTU in Prague Department of Cybernetics

4. UEDS SIMULATOR 19/47

also a demanding operation. Let us imagine that we would process those operations at each
Tick, even if we don’t need the camera data. This introduces a computational bottleneck,
which is even multiplied by the number of drones existing in the simulation.

Because of the reasons mentioned above, we need some way of turning off the camera
updates (render target update and reading the render target data) if desired. We introduce
three camera capture modes. Each of the camera capture modes has its pros and cons.

• Capture all frames
– The mode updates the camera at each Tick and consequently slows down the game

thread every Tick.
– The image retrieval is instant, as the image data are always ready.

• Capture on movement
– The mode updates the camera at each Tick if the drone moves or rotates and

consequently slows down the game thread only on movement or rotation.
– The image retrieval is instant, as the image data are always ready.
– The mode is not suitable for dynamic environments, as it does not reflect the

changes in the environment.
• Capture on demand

– The mode updates the camera only on a request and thus slows down the game
thread only when requested.

– The client needs to wait for the camera update.

The benchmarks of the camera capture modes will be later discussed in Chapter 5.

Similar to LiDAR, the offset and the orientation of the camera can be configured. As
discussed in Chapter 3, the FOV angle configuration is also present. For debugging purposes,
the visibility of the scene capture component is also configurable. Example configurations of
mounting can be seen in Fig. 4.6 and example images with various FOV angles can be seen
in Fig. 4.7.

(a) facing forward (b) facing forward and down by 60 degrees

Figure 4.6: An example of camera configurations. Captured in the UEds simulator. The back-
ground color of the drones was modified to white for better visibility of the camera.

CTU in Prague Department of Cybernetics

20/47 4.7. COMMUNICATION

(a) 60 FOV angle (b) 120 FOV angle

Figure 4.7: An example of captured camera images with various FOV angles. Captured in the
UEds simulator.

4.7 Communication

In Section 4.1, we discussed that both the game mode and the drones are holding a refer-
ence to their custom server. Later in Section 4.2, we have shown an example of communication
between the object and its server using the instruction queue. Some of the operations do not
need to be run on a game thread and can thus be run on a server thread, with the benefit of
not impacting the overall simulator performance. Both the game mode and the drones expose
an API composed of several operations. The overview of such APIs can be found in Table 4.1
and Table 4.2.

The messages between the server and the client are being sent in a serialized form using a
cereal serialization library [35]. The library allows for the serialization and the deserialization
of C++ data structures from and into several formats, including binary, JSON and XML.
As there is no need for a human-readable message format, we can use the binary format.
This brings a benefit, as serializing and deserializing binary format is faster and the serialized
output is smaller than in JSON and XML formats. If there is a need for using a human-
readable format, we can easily switch the formats.

As mentioned in Chapter 1, part of this work is also to create a client for the simulator
written in C++. The client is called UEds-connector and exposes two main interfaces/con-
trollers — the game mode controller and the drone controller. Both controllers are TCP
clients pointing to their relevant server with a mapping to serialized requests and responses.
The controllers follow the operations described in Table 4.1 and Table 4.2.

4.8 Support

The simulator was tested, validated and proved to be working on all three major plat-
forms — Windows, macOS and Linux. The simulator has not shown any defects on all three
platforms and worked as expected. The table of the exact test platforms can be seen in Ta-
ble 4.3.

CTU in Prague Department of Cybernetics

4. UEDS SIMULATOR 21/47

Operation Game thread Description

Ping ✗ Reachability test
GetDrones ✗ Returns an array of ports of spawned drones
SpawnDrone ✓ Spawns a drone
RemoveDrone ✓ Removes a drone
GetCameraCaptureMode ✗ Returns a camera capture mode of all drones
SetCameraCaptureMode ✓ Sets a camera capture mode of all drones
GetFps ✗ Returns FPS

Table 4.1: A list of operations implemented in the game mode server.

Operation Game thread Description

Ping ✗ Reachability test
GetLocation ✗ Returns the location of the drone
SetLocation ✓ Teleports the drone
GetCameraData ✓ Returns a JPG binary data of a camera output
GetRotation ✗ Returns the rotation of the drone
SetRotation ✓ Rotates the drone
SetLocationAndRotation ✓ Teleports and rotates the drone
GetLidarData ✗ Returns an array of distances and orientations of the LiDAR beams
GetLidarConfig ✗ Returns a configuration of the LiDAR
SetLidarConfig ✗ Sets a configuration of the LiDAR
GetCameraConfig ✗ Returns a configuration of the camera
SetCameraConfig ✓ Sets a configuration of the camera
GetMoveLineVisible ✗ Returns visibility of the move line
SetMoveLineVisible ✗ Sets visibility of the move line

Table 4.2: A list of operations implemented in the drone server.

Operating system CPU RAM GPU

Fedora 37 with kernel 6.2 Intel Core i5-13600KF 14-Core 20-Threads 32GB DDR4 NVIDIA GeForce GTX 1070
Windows 11 Intel Core i5-13600KF 14-Core 20-Threads 32GB DDR4 NVIDIA GeForce GTX 1070
macOS 13 M1 Pro 10-Core (ARM) 32GB LPDDR5 M1 Pro

Table 4.3: A list of platforms, where the simulator was tested, validated and proved to be
working.

CTU in Prague Department of Cybernetics

22/47 4.8. SUPPORT

CTU in Prague Department of Cybernetics

5. BENCHMARKS 23/47

Chapter 5

Benchmarks

The operations that are invokable upon the drone can take some time to execute. The
execution time depends on several factors — the number of drones in the environment, LiDAR
and camera settings etc. To make the connection between the performance and the factors
clearer, we will benchmark three scenarios and discuss the results. The scenarios are: (i): the
drone movement, as it is an operation that must be run on the game thread; (ii): the LiDAR
data retrieval, as there are many configurable parameters; and (iii): the camera data retrieval,
as there are configurable camera modes and it must be run on the game thread.

We will be performing a stress test — e.g. pushing the simulator to its limits by executing
the same operation for a certain amount of time all over again. Two metrics will be captured:
(i): the FPS of the simulator, which shows us the performance of the game thread; and
(ii): the response time of each operation, which tells us the overall performance (game thread
and server thread). All of the benchmarks will be conducted under a fresh start of the OS
with no unusual background applications running.

For later benchmark analysis, we need to examine the architecture of the CPU first.
The benchmarks will be performed on a desktop from Table 5.1. The CPU uses a new In-
tel architecture, which uses a combination of performance and efficiency cores and thus the
performance of calculations on the CPU differs based on which type of core the calculation
is being run on. The Intel Core i5-13600KF offers 6 performance and 8 efficiency cores and
12 performance and 8 efficiency threads. Whether some calculation will be run on the perfor-
mance or the efficiency thread depends on the OS scheduler. The CPU architecture needs to
be taken into account when reviewing the benchmarks for the reasons described above.

Operating system CPU RAM GPU

Fedora 37 with kernel 6.2 Intel Core i5-13600KF 14-Core 20-Threads 32GB DDR4 NVIDIA GeForce GTX 1070

Table 5.1: A platform, where the simulator benchmarked.

For instance, let us imagine, that we benchmark the simulator by running some oper-
ations on nine drones repetitively and that the OS does not take any CPU resources. This
means, that one CPU thread will be fully utilized by the game thread, nine CPU threads will
be utilized by the drone server responding to the operations and another nine CPU threads
will be utilized by the client asking the drone servers to do something. The game thread can be
considered blocked because the Unreal Engine tries to push the thread to its limits. The other
18 threads have “windows”, e.g. wait for request/response and will let other computations
take their place for some while. From our example, we can conclude, that out of 20 available
CPU threads, there will be only one CPU thread left and some of the servers or clients will
be running on the efficiency cores. If we modify our example by adding one or more drone
servers and drone clients, there will be no more available CPU threads and the servers and
the clients will have to take turns on the CPU threads.

CTU in Prague Department of Cybernetics

24/47 5.1. DRONE MOVEMENT

5.1 Drone movement

As already stated, the drone movement changes the state of the drone and thus must be
run on the game thread. In Chapter 4, we have shown that an operation running in the game
thread slows down the performance of the simulator and the execution of other operations in
the game thread. The assumption then is, that the more drone movement operations will be
performed, the less FPS and higher response time we will get.

For various numbers of drones, we will be moving the drone by a random distance from
interval < −10 cm; 10 cm > in each of the coordinates for 60 seconds all over again. Each
drone will be called from a different thread to ensure that the calls do not block each other.
We will be capturing the FPS for the 60 seconds and also the response time for each request at
each drone. The response times of each of the drones in one batch (number of drones) will be
merged before plotting statistics. We will project the basic statistics and compare the results
based on the drone counts.

0

20

40

60

T
im

e
[s
]

1 drone 2 drones 4 drones

0

20

40

60

T
im

e
[s
]

8 drones 16 drones 24 drones

0 100 200 300 400
FPS

0

20

40

60

T
im

e
[s
]

32 drones

0 100 200 300 400
FPS

64 drones

0 100 200 300 400
FPS

128 drones

Figure 5.1: FPS in time relative to drone count measured at drone movement benchmark.

CTU in Prague Department of Cybernetics

5. BENCHMARKS 25/47

FPS
Drone count # Mean Std Min Max 5th percentile 25th percentile 75th percentile 95th percentile

1 11695 279.02 13.22 192.19 399.98 257.09 269.47 289.15 297.05
2 11692 273.32 13.89 215.08 399.96 252.81 263.90 284.15 294.38
4 11689 263.82 12.05 114.49 399.99 246.46 257.92 269.20 284.26
8 11665 252.44 22.45 61.73 386.22 211.43 246.26 263.18 275.38
16 11708 185.46 41.18 41.76 341.07 120.55 159.24 213.11 250.18
24 11738 80.42 25.94 36.03 310.53 55.26 64.98 86.34 133.91
32 11683 65.52 18.46 28.31 297.32 47.95 56.33 68.79 99.27
64 11535 55.79 16.41 23.94 198.32 35.84 45.58 63.09 84.55
128 11751 33.49 19.86 7.50 143.06 13.52 19.24 44.75 70.14

Note: # refers to the number of measurements.

Table 5.2: FPS statistics relative to drone count measured at drone movement benchmark.

0

20

40

60

T
im

e
[s
]

1 drone 2 drones 4 drones

0

20

40

60

T
im

e
[s
]

8 drones 16 drones 24 drones

0 50 100 150
Response time [ms]

0

20

40

60

T
im

e
[s
]

32 drones

0 50 100 150
Response time [ms]

64 drones

0 50 100 150
Response time [ms]

128 drones

Figure 5.2: Response time in time relative to drone count measured at drone movement
benchmark. Data are based on a 35% sample of the original data.

CTU in Prague Department of Cybernetics

26/47 5.2. LIDAR

Response time [ms]
Drone count # Mean Std Min Max 5th percentile 25th percentile 75th percentile 95th percentile

1 16705 3.53 0.22 1.17 7.98 3.21 3.37 3.67 3.91
2 32718 3.60 0.25 0.46 8.69 3.24 3.43 3.75 4.00
4 63179 3.73 0.24 0.38 9.36 3.37 3.60 3.86 4.10
8 119918 3.94 0.58 0.87 16.41 3.47 3.72 4.03 4.72
16 170137 5.58 1.85 0.67 23.45 3.66 4.50 6.18 8.22
24 111490 12.86 3.63 0.14 71.20 6.56 10.18 15.29 18.47
32 122141 15.66 3.51 0.10 76.58 9.18 14.08 17.73 20.81
64 207649 18.40 4.90 0.52 66.25 11.15 14.92 21.22 26.66
128 241258 31.70 16.94 1.61 147.30 10.84 19.38 43.77 63.07

Note: # refers to the number of measurements.

Table 5.3: Response time statistics relative to drone count measured at drone movement
benchmark.

From Table 5.2 and Fig. 5.1, we can conclude that the original assumption that the FPS
are getting lower with the increasing number of drones stands. The stability of the frame rate
is approximately the same for each drone count, as the standard deviation does not noticeably
differ. The standard deviation for 16 drones is higher in contrast to the other drone counts and
is probably caused by the OS scheduler. The biggest FPS change is noticeable between 8 to 24
drones and is probably caused by the CPU hitting its limit, as described in the introduction
of this chapter.

Table 5.3 and Fig. 5.2 show us, that the response time is getting higher with a higher
drone count. As described in the introduction of this chapter, the CPU is not pushing its
limits until 10 drones. This is visible in both the mean and the standard deviation of the
response times, as until the 8 drones, both of the measurements stay approximately the same
and grow with higher drone counts.

5.2 LiDAR

In Chapter 4, we concluded that the LiDAR does not need to be run on the game thread
and that it is calculated on request. The execution time relies on the beam count and thus
this will be our main focus of this benchmark. The operation runs on the server thread and
we can assume that the performance of the game thread will not be influenced by growing
beam count.

During the benchmark, the drone can stay in a stationary position because the LiDAR
measurements are recalculated on each request. The setup of this benchmark can be seen in
Fig. 5.3. We will be retrieving the LiDAR data for various beam counts all over again for 30
seconds. Similar to the drone movement benchmark, we will be capturing the FPS and the
response times of the requests.

The assumption that the game thread is not affected by the LiDAR beam count is
correct, as the FPS stay approximately the same for various beam counts (see Table 5.4).
Similar to the drone movement benchmark, there is a noticeable change in FPS between 8
and 24 drones, which is probably caused by the CPU limitation. The Table 5.5 shows us, that
the response time is getting higher with increasing beam count. Nevertheless, the standard
deviation of the response time is low for drone counts within the CPU limitation which implies
that the LiDAR retrieval is a stable operation.

CTU in Prague Department of Cybernetics

5. BENCHMARKS 27/47

Figure 5.3: A LiDAR benchmark setup with 125 beams.

FPS
Beam count 35 125 250 500 1000
Drone count # Mean Std # Mean Std # Mean Std # Mean Std # Mean Std

1 5855 292.07 13.69 5854 291.90 13.24 5852 292.21 13.53 5849 292.03 13.40 5844 291.46 14.02
2 5856 286.47 13.49 5853 286.66 13.29 5851 285.24 13.84 5849 285.75 13.30 5848 285.12 13.62
4 5852 278.14 13.51 5851 277.68 14.57 5848 277.12 13.85 5846 277.39 15.33 5841 276.29 15.85
8 5829 243.80 26.57 5842 265.60 16.24 5834 258.24 22.28 5829 254.37 24.37 5824 254.45 25.94
16 5873 137.41 38.20 5854 166.87 34.99 5853 169.71 35.20 5852 167.99 37.09 5843 165.37 40.48
24 5877 115.29 33.71 5863 131.66 31.15 5855 130.23 31.36 5846 129.50 32.85 5832 128.31 37.02
32 5865 102.94 28.60 5851 112.49 25.93 5839 111.46 26.92 5815 108.93 29.11 5783 109.33 32.50
64 5752 59.89 27.40 5758 61.57 28.88 5725 59.06 29.61 5694 56.43 30.40 5673 54.32 31.41
128 4429 23.40 15.32 4373 22.59 18.40 4226 17.32 11.74 4209 16.49 13.26 4055 18.56 19.88

Note: # refers to the number of measurements.

Table 5.4: FPS statistics relative to beam count measured at LiDAR benchmark.

Response time [ms]
Beam count 35 125 250 500 1000
Drone count # Mean Std # Mean Std # Mean Std # Mean Std # Mean Std

1 235120 0.13 0.03 84381 0.35 0.07 46087 0.65 0.11 24495 1.22 0.17 12632 2.37 0.32
2 444573 0.13 0.03 158623 0.38 0.08 85246 0.70 0.13 44498 1.35 0.24 23044 2.60 0.42
4 785555 0.15 0.04 266192 0.45 0.12 138665 0.86 0.22 72028 1.66 0.42 37111 3.23 0.80
8 1103039 0.22 0.07 409492 0.58 0.14 198812 1.20 0.30 99322 2.41 0.60 50889 4.71 1.13
16 1452261 0.33 0.17 469994 1.02 0.35 240996 1.99 0.58 121594 3.94 1.01 61910 7.75 1.75
24 1503879 0.48 0.30 473711 1.52 0.62 239183 3.01 1.06 121936 5.90 1.77 61125 11.78 2.96
32 1467605 0.65 0.44 460877 2.08 0.97 235894 4.07 1.58 116188 8.26 2.68 57796 16.61 4.41
64 1265446 1.52 1.78 385607 4.99 3.77 196924 9.75 5.75 99371 19.32 9.02 49409 38.87 13.96
128 870900 4.40 4.80 258002 14.88 11.59 131139 29.29 20.70 65643 58.50 32.16 34015 113.10 49.40

Note: # refers to the number of measurements.

Table 5.5: Response time statistics relative to beam count measured at LiDAR benchmark.

CTU in Prague Department of Cybernetics

28/47 5.3. CAMERA

5.3 Camera

In Chapter 4, we demonstrated that camera capture is a resource-heavy operation, which
must be furthermore run on the game thread. We have also shown that there are situations,
where we do not need the latest camera data at each time, which led to the introduction of
the camera modes — capture all frames, capture on movement and capture on demand. The
performance impact of the complexity of the environment that is being captured is unknown
and should be benchmarked.

Similar to the other benchmarks, we will be calling the camera capture and recording
the FPS and response time. We will compare all of the camera capture modes side-by-side with
various drone counts. For each of the camera capture modes, we will compare capturing of two
environments — a simple and a complex one, differing in the complexity of the objects visible
to the camera (the environments can be seen in Fig. 5.4). Because of the logical differences
in the capture modes, there will be two scenarios tested: (i): drone stays stationary; and (ii):
drone moves before taking a snapshot from the camera. The measurements from the scenarios
should reveal the differences in the performance impact of the capture modes.

(a) A simple environment. (b) A complex environment.

Figure 5.4: Samples of the environments captured during camera benchmark.

The Table 5.6 shows us the differences in the game thread performance based on camera
capture mode, drone count, scenario and environment. Similarly, the Table 5.7 displays the
differences in the performance of the servers based on camera capture mode, drone count,
scenario and environment. The performance impact of the complexity of the environments
that are being captured is noticeable in both FPS and response time metrics.

In contrast to the other modes, the game thread in the capture all frames mode is under
a constant load as the FPS are lower. The standard deviation of the FPS metric is the lowest
one and thus the capture all frames mode game thread performance is the most stable one.
The response time metric in the stationary drone scenario is lower than in the drone moving
scenario and is most probably caused by the client asking for the camera capture data getting
ahead of the camera data refresh in the game thread. Compared to the capture on demand
mode, retrieving the camera data is more stable, as the standard deviation of the response
time metric is noticeably lower.

The capture on movement mode does not seem to impact the performance of the game
thread in the stationary drone scenario, other than the FPS drop between the 8 to 24 drones

CTU in Prague Department of Cybernetics

5. BENCHMARKS 29/47

FPS

Scenario
Stationary drone &

data retrieved recurrently
Drone moves recurrently &
data retrieved recurrently

Simple Complex Simple Complex
Camera mode Drone count # Mean Std # Mean Std # Mean Std # Mean Std

Capture all frames

1 2936 82.87 3.77 2939 57.20 5.86 2936 78.59 4.17 2938 56.58 5.55
2 2939 48.37 1.90 2940 31.96 2.25 2937 46.06 2.16 2938 31.71 2.49
4 2938 25.35 0.62 2939 16.49 0.32 2937 24.27 1.08 2940 16.22 0.68
8 2936 13.01 0.45 2931 8.37 0.39 2939 12.38 0.44 2938 8.57 0.10
16 2777 3.94 0.47 2855 2.68 0.24 2929 5.73 0.38 2940 4.02 0.26
24 2503 2.54 0.17 2122 2.50 0.00 2923 2.93 0.21 2905 2.50 0.00

Capture on movement

1 2924 294.96 19.04 2922 298.41 20.33 2933 311.04 201.68 2933 343.97 172.10
2 2923 281.91 19.92 2921 281.50 17.29 2937 53.14 17.36 2939 41.08 16.93
4 2920 270.97 16.91 2916 266.91 17.34 2937 25.53 20.08 2940 17.92 19.04
8 2881 228.81 30.09 2881 193.93 34.68 2938 14.39 22.07 2938 10.66 21.03
16 2661 102.22 33.05 2685 79.05 24.04 2931 7.09 9.71 2935 5.43 10.26
24 2376 68.15 11.70 2443 62.89 14.11 2911 4.98 10.16 2928 4.91 12.06

Capture on demand

1 2931 291.98 202.18 2932 337.65 173.00 2928 320.06 130.25 2931 264.70 143.50
2 2937 57.04 18.97 2939 41.36 16.41 2933 201.66 174.23 2935 182.32 181.42
4 2937 26.83 18.32 2939 18.19 20.09 2934 90.46 109.85 2936 66.20 102.42
8 2934 15.31 23.73 2936 10.57 18.96 2935 27.56 9.01 2935 45.74 77.04
16 2936 6.91 11.55 2944 5.72 14.79 2938 21.67 9.78 2950 14.30 15.89
24 2887 4.98 8.62 2907 4.05 7.89 2928 12.54 5.80 2872 18.07 24.60

Note: # refers to the number of measurements.

Table 5.6: FPS statistics relative to camera capture mode, drone count, scenario and environ-
ment measured at camera benchmark.

Response time [ms]

Scenario
Stationary drone &

data retrieved recurrently
Drone moves recurrently &
data retrieved recurrently

Simple Complex Simple Complex
Camera mode Drone count # Mean Std # Mean Std # Mean Std # Mean Std

Capture all frames

1 1756 8.54 5.34 845 17.76 1.96 700 12.70 0.66 417 19.64 1.83
2 52812 0.57 1.84 13028 2.30 4.40 1198 11.87 1.16 758 18.04 2.50
4 149421 0.40 1.19 37080 1.62 2.84 1455 12.16 1.16 975 18.81 2.06
8 320945 0.37 0.86 70142 1.71 2.17 1491 12.90 1.14 1035 19.07 1.78
16 361110 0.66 1.29 89965 2.66 2.83 1386 14.27 3.11 984 20.59 3.14
24 351430 1.02 1.81 87287 4.12 3.99 1081 17.59 3.99 828 23.46 4.34

Capture on movement

1 53187 0.28 0.04 13312 1.12 0.14 958 14.19 1.46 650 20.99 1.69
2 101631 0.29 0.04 24263 1.23 0.22 1333 12.28 1.32 908 18.79 2.50
4 188971 0.32 0.05 43583 1.37 0.21 1439 12.24 1.30 988 18.58 1.93
8 344131 0.35 0.09 64700 1.85 0.38 1486 12.94 1.27 1021 19.49 1.99
16 307206 0.78 0.82 73348 3.27 2.01 1378 14.34 3.24 972 20.97 3.54
24 342371 1.05 1.18 78718 4.57 3.06 1113 17.07 3.91 811 24.54 4.37

Capture on demand

1 1043 14.38 1.78 670 22.41 2.38 793 17.42 1.31 543 25.49 1.44
2 1411 21.27 4.42 906 33.13 3.96 1084 19.14 4.67 751 24.78 5.77
4 1528 39.30 4.95 996 60.33 9.06 1295 30.82 9.94 878 41.07 11.70
8 1567 76.77 8.58 1055 114.22 11.15 1393 51.66 16.84 951 71.05 28.19
16 1295 186.52 24.60 905 267.77 32.44 1273 104.49 44.45 840 154.36 72.20
24 1221 297.68 34.56 880 414.65 45.21 1141 174.48 83.24 793 244.40 121.37

Note: # refers to the number of measurements.

Table 5.7: Response time statistics relative to camera capture mode, drone count, scenario
and environment measured at camera benchmark.

CTU in Prague Department of Cybernetics

30/47 5.4. CONCLUSION

caused by the already discussed CPU limitation. The game thread performance of the capture
on movement mode in the drone moves recurrently scenario is better than in the capture all
frames mode, as the FPS are higher. The standard deviation of the FPS metric is higher and
thus less stable than in the capture all frames mode. The response time of the capture on
movement mode in the stationary drone scenario is low, which is caused by the camera not
being updated in the scenario. The response time of the capture on movement mode in the
drone moves recurrently scenario is comparable to the capture all frames mode.

The game thread performance of the capture on demand mode is slightly better than in
the capture all frames mode and is most probably caused by the camera not being refreshed
at each Tick because of the delay between the client and the server. On the other hand, the
standard deviation of the FPS metric is very high compared to the other modes and is caused
by the intermittent camera refreshing in the game thread. Based on that observation, the
Unreal Engine seems more optimized for a constant load. The response time of the capture
on demand mode is much higher and unstable compared to the other modes, which is caused
by the waiting for the camera capture.

The performance of the modes differs and is tightly coupled to the scenario. The capture
all frames mode is suitable for dynamic environments, where the camera data are being
retrieved at a high rate. The capture on movement mode is suitable for static environments,
where the camera data are being retrieved at a high rate. The capture on demand mode is
suitable for both dynamic and static environment, where the camera data are expected to be
retrieved on an infrequent basis.

5.4 Conclusion

We benchmarked the UEds simulator on various scenarios. As already stated, the game
thread runs on a single thread and thus the overall performance of the game thread and
the FPS count depends on the CPU single-thread performance. The servers run on separate
threads and as the stress tests have shown, the performance of the servers (response time)
in multi-drone scenarios depends on the thread count of the CPU. The performance impact
of the GPU is unknown, but it is expected to gain higher performance in the camera cap-
ture benchmark with a more powerful GPU than the one that was used for the benchmarks
described above.

The simulator is resource-heavy and requires a powerful multi-core CPU for running
a multi-drone scenario. Nevertheless, there is a limit to how many cores and threads can a
CPU pack and nowadays, the most high-performance and expensive CPUs have up to 64 cores
and 128 threads. The CPU with a high thread count might not even be fully utilized, as the
game thread depends on the single-thread performance and might bottleneck the servers while
executing the instructions that change the state of the environment.

To gain the highest performance out of the UEds simulator, we can run multiple in-
stances of the UEds simulator on single or multiple machines in cases where the environment
is static and the drones do not impact each other. This can become especially useful when
training a drone model based on a static environment.

CTU in Prague Department of Cybernetics

6. EXPERIMENTS 31/47

Chapter 6

Experiments

In previous chapters, we discussed the architecture of the UEds simulator and bench-
marked it on various scenarios. As already stated, the simulator is meant to be focused on
realistic rendering and collision handling and we need to verify that this is fulfilled. Both the
LiDAR sensor and the RGB camera must be not only benchmarked but also validated that
they work properly. As one of the primary usages of this simulator is training various drone
controllers, we can validate both the LiDAR sensor and the RGB camera in reinforcement
learning tasks, which will also be the focus of this chapter.

6.1 Prerequisites

Reinforcement learning is a machine learning subfield, where agents learn by taking
actions in an environment with some prior observation of the environment and subsequentially
getting a reward [52]. In the UEds simulator context, the agent is the drone, the environment
is the map and the objects that exist in it and the observation can be for instance a direction
vector to some goal, a measurement from LiDAR or an RGB camera data. Using a combination
of UEds-connector and some reinforcement learning framework, we can effortlessly train a
drone model for various tasks.

The UEds-connector is written in C++ and no major reinforcement learning frameworks
exist in the C++ ecosystem. Most of the reinforcement learning frameworks are based on
Python, as it is a standard for AI and scientific applications. However, there is a way of
binding code written in C++ to Python using pybind11 library [29]. The UEds-connector
controllers can be then wrapped using the library and used in the Python ecosystem.

OpenAI Gym is an open-source reinforcement learning library written in Python, which
exposes a unified API of the reinforcement learning environments [24]. The environments
are easily pluggable into many libraries implementing reinforcement learning algorithms. It
features a set of predefined environments (e.g. Atari games) and also allows for creating
custom ones. The custom environment can be created by extending the base OpenAI Gym
environment class and implementing common methods. We can develop a custom OpenAI
Gym environment by holding an UEds-connector drone controller inside of it and calling the
methods of the controller where necessary.

Stable-Baselines3 is an open-source state-of-the-art library containing reinforcement
learning algorithms using PyTorch as a backend [40]. It is tightly coupled with the OpenAI
Gym environment and provides an out of the box support for it. The library provides a set
of reinforcement learning algorithms and a common API for using them. The algorithms can
run in parallel using Vectorized Environments [7] and allow for training a single model from
multiple scenarios and environments. This can become useful for fast training of a drone model
in different environments.

CTU in Prague Department of Cybernetics

32/47 6.2. LIDAR

The UEds-connector is extended by the libraries described above. The drone and the
game mode controllers are wrapped using the pybind11 library and are accessible from Python.
The OpenAI Gym environments for the experiments described below are implemented and are
directly connected to the UEds simulator using the UEds-connector. The Stable-Baselines3
algorithms and Vectorized Environments will be used for the experiments described below.
This whole integration of the UEds-connector and the libraries discussed above forms a rein-
forcement learning framework over the UEds simulator.

6.2 LiDAR

To verify the functionality of the LiDAR sensor, we will try to train a drone controller
based mainly on the data provided by the sensor. We will spawn a drone in a playground with
obstacles and train it to fly to a certain predefined point. To ease the process of the training,
the drone will have to fly through predefined waypoints before reaching the goal without
crashing into anything. We will use five different training playgrounds upon which will be one
drone controller trained in parallel using the Stable-Baselines3 Vectorized Environments. The
training playgrounds can be seen in Fig. 6.1.

(a) Training playground 1. (b) Training playground 2. (c) Training playground 3.

(d) Training playground 4. (e) Training playground 5.

Figure 6.1: Training playgrounds used in the LiDAR experiment. All of the playgrounds have
the same 1,400 cm × 1,400 cm × 525 cm dimensions. The pillars in the playgrounds have
a diameter of 50 cm. The red sphere corresponds to the start of the playground, the yellow
spheres correspond to the waypoints and the green sphere corresponds to the goal of the
playground.

To ease the process of the training, the action space will be set as a discrete space rather
than a continuous one. We will let the drone move in six directions — up, down, left, right,

CTU in Prague Department of Cybernetics

6. EXPERIMENTS 33/47

forward and backward. The step will be set to 10 cm, which is around a ninth of the drone
length (the drone dimensions are 93 cm × 59 cm × 20 cm). The rotation will not be taken
into account and the playgrounds are designed with this in mind.

The observation space consists of two parts — the direction to the current goal and the
LiDAR measurements. The direction is set either to the waypoint or the goal, depending on
the current state. To make the model work with any direction, the direction is a normalized
direction vector to the current goal. Similarly, the LiDAR measurements are also normalized
for the same reason. The LiDAR is set with a 270 degrees FOV angle, 35 beams, a beam
length of 300 cm and is facing forward.

The reward function is based on the reward function from [37] and consists of five
different variables — distance reward, crash penalty, free space reward, step penalty and
acceleration penalty. The distance reward is calculated as

rd =

{
Rgoal if d < Tgoal

∆d otherwise,
(6.1)

where d is the distance to the current goal, Rgoal is the reward for achieving the current goal
and Tgoal is the threshold for the current goal distance. The crash penalty is calculated as

pc =


−Rgoal if drone crashed

minl∈L l −MOD ∃l ∈ L : l < MOD

0 otherwise,

(6.2)

where L is the set of normalized LiDAR measurements, Rgoal is the reward for achieving a
goal and MOD is the maximal obstacle distance. The free space reward is calculated as

rf =

∑
l∈L(

l
MOD

− 1)

|L|
MOD

− |L|
, (6.3)

where L is the set of normalized LiDAR measurements and MOD is the maximal obstacle
distance. The step penalty is calculated as

ps = − S

MS
, (6.4)

where S is the current number of the learning step and MS is the maximal step number. The
acceleration penalty is calculated as

pa =

{
0 if the current step is the same as the last one

−1 otherwise.
(6.5)

The reward is then calculated as

Rl = rd + pc + rf + ps + pa. (6.6)

The parameters used for the training can be seen in Fig. 6.1.

The Stable-Baselines3 library provides several reinforcement learning algorithms. DQN,
A2C and PPO algorithms [4–6] were tested for the LiDAR experiment. Only the PPO algo-
rithm has shown promising results and the learning is thus based on the PPO algorithm. The

CTU in Prague Department of Cybernetics

34/47 6.2. LIDAR

Parameter Notation Value

LiDAR beam count |L| 35
Goal threshold Tgoal 50 cm
Goal reward Rgoal 10000
Maximal obstacle distance MOD 0.2
Maximal step number MS 3000

Table 6.1: A list of parameters used for the reward function of the LiDAR experiment.

Parameter Value

Learning rate 0.0003
Discount factor 0.99
Clipping parameter 0.2
The number of steps to run
for each environment per update

2048

Policy MlpPolicy

Table 6.2: A list of parameters used for the PPO algorithm in the LiDAR experiment.

algorithm was run with the default parameters provided by the Stable-Baselines3. A subset
of the PPO algorithm parameters can be seen in Fig. 6.2. The training will be conducted with
40 drones — eight for each of the training playgrounds.

The training was conducted for 36,864,000 steps with an average speed of 1,327 steps
per second. The progress of the training reward value can be seen in Fig. 6.2. The training was
able to achieve a positive reward value just after 3,358,720 steps. The trained model is able
to fly from the start to the goal of all of the training playgrounds without crashing (several
learned paths in the training playgrounds can be seen in Fig. 6.3). Two validation playgrounds
were created and the trained model is able to find a path from the start to the goal without
crashing in both of the validation playgrounds (see Fig. 6.4).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Step ×107

−10000

−5000

0

5000

10000

R
ew

ar
d

Figure 6.2: Reward value in steps of the LiDAR experiment training.

CTU in Prague Department of Cybernetics

6. EXPERIMENTS 35/47

(a) Training playground 2 (reward 11,344.6) (b) Training playground 3 (reward 11,435.5)

(c) Training playground 4 (reward 11,250.5)

Figure 6.3: Learned paths in the training playgrounds of the LiDAR experiment. The green
line represents the trail of the drone.

(a) Validation playground 1 (reward 11,422.6) (b) Validation playground 2 (reward 11,475.2)

Figure 6.4: Learned paths in the validation playgrounds of the LiDAR experiment. The green
line represents the trail of the drone.

CTU in Prague Department of Cybernetics

36/47 6.3. CAMERA

6.3 Camera

In the last experiment, we gave the drone controller a direction to a predefined goal
and LiDAR measurements as an observation and trained it to reach it without crashing
into anything. To verify the functionality of the RGB camera, the direction to the goal will
be calculated from an image captured using the RGB camera attached to the drone. We
will find the location of the green sphere (goal) in the image and convert it to a direction,
which will be used as an observation. Similarly to the LiDAR experiment, the playgrounds
consist of obstacles and a goal, which is the green sphere. We will use two different training
playgrounds upon which will be one drone controller trained in parallel using the Stable-
Baselines3 Vectorized Environments.

At each step, the drone controller will capture an image using its camera. Green color
space will be filtered-out from the image using opencv-python library [25], which produces
a mask, where the green color space has switched-on bits. If there are any switched-on bits
in the mask, we find a boundary box around it using Pillow library [27]. We create a vector
from the center of the original image to the center of the boundary box and thus retrieve
a direction to the goal. If no green color space is present, the direction will be set as a null
vector. The steps of extracting the direction can be seen in Fig. 6.5. The floors and the walls
of the playgrounds were set to a white color to ease the green color space localization. The
playgrounds used for the training can be seen in Fig. 6.6.

The action space is similar to the LiDAR experiment but was simplified to accelerate
the process of the training. The drone will move by 10 cm in three directions — forward, left
and right. The playgrounds are built with this in mind and the LiDAR FOV angle will be
reduced to 180 degrees.

As already discussed, the first part of the observation space will be set as a direction
to the green sphere captured from the camera. The action space permits the drone to move
in the up and down direction, so only a direction in the width of the image will be used. To
make the model work with any size of the captured image, the direction is normalized. We also
pass the boundary box area to the captured image area ratio, which indicates the drone how
close it is to the green sphere. Similar to the LiDAR experiment, the model needs to avoid
collisions and normalized measurements from the LiDAR will be passed to the observation
space as well. The LiDAR is configured with 180 degrees FOV angle, 20 beams, a beam length
of 300 cm and is facing forward. The camera is configured with 90 degrees FOV angle and is
facing forward.

The reward is calculated in the same way as in the LiDAR experiment with an addition
of an outrun penalty. We introduce the outrun penalty, because the drone can not rotate,
moves only in three directions and might outrun the goal. The outrun penalty is calculated
as

po =

{
−Rgoal

10 if x > Xgoal + Tgoal

0 otherwise,
(6.7)

where Rgoal is the reward for achieving the current goal, x is an X coordinate of the current
location of the drone, Xgoal is an X coordinate of the current goal and Tgoal is the threshold
for the current goal distance. The reward is then calculated as

Rc = Rl + po, (6.8)

where Rl is the reward from (6.6). The parameters used for the training are similar to the
ones used in the LiDAR experiment and can be seen in Fig. 6.3.

CTU in Prague Department of Cybernetics

6. EXPERIMENTS 37/47

(a) A camera capture. (b) The filtered-out green color space. The black color
space represents the filtered-out green color space
and the white color space represents a blank space. A
black border was added and the colors of the original
mask were inverted for better visibility.

(c) The original camera capture with a direction from
the center of the image to the center of the green color
space, represented by the red arrow. The black box
represents the boundary box of the green color space.

Figure 6.5: Steps of extracting the direction from the center of the camera capture to the green
color space. The green color space is filtered from the original camera capture (Fig. 6.5a) and
results in a mask (Fig. 6.5b). The center of the boundary box of switched-on bits of the mask
represents the center of the green color space and the direction is calculated as a vector from
the center of the original image to the center of the boundary box.

Parameter Notation Value

LiDAR beam count |L| 20
Goal threshold Tgoal 50 cm
Goal reward Rgoal 10000
Maximal obstacle distance MOD 0.2
Maximal step number MS 3000

Table 6.3: A list of parameters used for the reward function of the camera experiment.

CTU in Prague Department of Cybernetics

38/47 6.3. CAMERA

(a) Training playground 1. (b) Training playground 2.

Figure 6.6: Training playgrounds used in the camera experiment. Both of the playgrounds
have the same 1,400 cm × 1,400 cm × 525 cm dimensions. The pillars in the playgrounds
have a diameter of 50 cm. The red sphere corresponds to the start of the playground and the
green sphere corresponds to the goal of the playground.

Similar to the LiDAR experiments, DQN, A2C and PPO algorithms were tested for the
training. Only the PPO algorithm was able to train the model in a reasonable time and thus
is used for this experiment. A subset of the PPO algorithm parameters can be seen in Fig. 6.4.
The camera capture and the green sphere localization is substantially slower operation than
obtaining an exact position of the goal and it is expected that the training will be slower than
in the LiDAR experiment. The experiment will also block the game thread more than the
LiDAR experiment due to the camera capture. Because of the reasons described above, we
will perform the training with eight drones — four for each of the training playgrounds.

Parameter Value

Learning rate 0.0001
Discount factor 0.99
Clipping parameter 0.2
The number of steps to run
for each environment per update

2048

Policy MlpPolicy

Table 6.4: A list of parameters used for the PPO algorithm in the camera experiment.

We conducted the training for 4,400,000 steps with an average speed of 74 steps per
second, which is about 95.5% slower than in the LiDAR experiment. We trained the model to
be able to fly through both training playgrounds without crashing and successfully reach the
goal. The progress of the training reward in steps can be seen in Fig. 6.7 and the learned path
can be seen in Fig. 6.8. The model was also successfully verified in two validation playgrounds
and the learned paths in the validation playgrounds can be seen in Fig. 6.9.

CTU in Prague Department of Cybernetics

6. EXPERIMENTS 39/47

0 1 2 3 4
Step ×106

−7500

−5000

−2500

0

2500

5000

7500

10000

R
ew

ar
d

Figure 6.7: Reward value in steps of the camera experiment training.

(a) Training playground 1 (reward 10,975.6) (b) Training playground 2 (reward 10,993.7)

Figure 6.8: Learned paths in the training playgrounds of the camera experiment. The green
line represents the trail of the drone.

(a) Validation playground 1 (reward 10,976.8) (b) Validation playground 2 (reward 10,991.8)

Figure 6.9: Learned paths in the validation playgrounds of the camera experiment. The green
line represents the trail of the drone.

CTU in Prague Department of Cybernetics

40/47 6.4. CONCLUSION

6.4 Conclusion

A reinforcement learning framework over the UEds simulator was created using the
OpenAI Gym environment and the Stable-Baselines3 library. We were able to train drone
controllers based on LiDAR measurements and camera data to fly from a start to a goal
through obstacle playgrounds. As expected based on the benchmarks, the training in tasks
requiring camera data refreshes was substantially slower. Nevertheless, we were able to achieve
1,327 steps per second in the LiDAR experiment and 74 steps per second in the camera ex-
periment. The LiDAR and the camera implementations proved to be working and we verified
their applicability in machine learning tasks. The collision handling functionality was con-
firmed during the training, as crashing the drone into a pillar, a wall or a floor resulted in a
highly negative reward.

CTU in Prague Department of Cybernetics

7. CONCLUSION 41/47

Chapter 7

Conclusion

We proposed a drone simulator focused on realistic visualization and based on Unreal
Engine 5. We analyzed and researched the parts that are required for developing such a
simulator. The simulator supports operating multiple drones at once and exposes a server
for each of the drones and the main control unit. The main control unit is able to spawn
and remove the drones on the fly. The collision detection is being handled appropriately
and sensors such as LiDAR, RGB camera and position/tilt sensor were implemented. The
simulator is easily importable to any Unreal Engine environment and is supported on all
three major operating systems.

We implemented a client for the simulator written in C++ programming language. The
client communicates with the server over a TCP/IP socket in a fast and reliable way. We
wrapped the client using the pybind11 library to be able to use it from the Python ecosystem.
The OpenAI Gym environment for the simulator was created and can be used by various
reinforcement learning frameworks.

We benchmarked the simulator in various scenarios and revealed the performance impact
of particular configurations. All of the benchmarks were conducted for several drone counts
and disclosed the CPU thread count limitation under a stress test. The benchmarks have
shown the performance limitation of the single-threaded game loop and advise us to use the
simulator in multiple instances under a heavy load.

We created two reinforcement learning tasks based on the LiDAR sensor and the RGB
camera. The models trained in both of the tasks were able to fly through their corresponding
obstacle playgrounds without crashing. The created OpenAI Gym environments proved to be
working correctly and we formed a reinforcement learning framework over the UEds simulator.
We confirmed the ability of the simulator to serve machine learning purposes.

The proposed simulator proved to be working and stable on a mid-end desktop in
various scenarios. Essential features of the drone simulator were developed and tested. The
benchmarks and the reinforcement learning experiments demonstrated the capabilities of the
simulator in multi-drone scenarios. The requirements from the MRS Group were fulfilled and
there is a space for the development of more features.

7.1 Future work

We discussed several points of possible improvements and new features throughout this
thesis. Some of the features are implemented in the related drone simulators and implementing
them in the proposed simulator would be highly beneficial. The drone dynamics/kinematics
was not taken into account in this thesis and as discussed, should be implemented either as a
middleware or as a plugin directly in the simulator. An RGBD camera should be implemented,
as it is a fairly common feature in the drone simulation field. Implementing an endpoint for

CTU in Prague Department of Cybernetics

42/47 7.1. FUTURE WORK

reading the map mesh data (point cloud) would be valuable for path planning purposes. Sensor
flaw settings (errors, delays, etc.) should be implemented in order to achieve an even more
realistic experience. Implementing an endpoint for loading and creating a simple environment
(e.g. obstacle playground) would be beneficial, as many of the simple environments for machine
learning purposes are generated by an algorithm and creating them manually in the simulator
takes time.

CTU in Prague Department of Cybernetics

8. REFERENCES 43/47

Chapter 8

References

[1] Anton Babushkin. DrTon/jMAVSim: Simple multirotor simulator with MAVLink protocol sup-
port. https://github.com/DrTon/jMAVSim. [Online; accessed 28-April-2023].

[2] Cyberbotics Ltd. Webots documentation: DJI’ Mavic 2 PRO. https://cyberbotics.com/doc/
guide/mavic-2-pro. [Online; accessed 10-April-2023].

[3] Cyberbotics Ltd. Webots documentation: License Agreement. https://cyberbotics.com/doc/
guide/webots-license-agreement. [Online; accessed 10-April-2023].

[4] DLR-RM. A2C — Stable Baselines3 2.0.0a8 documentation. https://stable- baselines3.
readthedocs.io/en/master/modules/a2c.html. [Online; accessed 18-May-2023].

[5] DLR-RM. DQN — Stable Baselines3 2.0.0a8 documentation. https://stable- baselines3.
readthedocs.io/en/master/modules/dqn.html. [Online; accessed 18-May-2023].

[6] DLR-RM. PPO — Stable Baselines3 2.0.0a8 documentation. https://stable- baselines3.
readthedocs.io/en/master/modules/ppo.html. [Online; accessed 18-May-2023].

[7] DLR-RM. Vectorized Environments — Stable Baselines3 2.0.0a8 documentation. https : / /
stable - baselines3 . readthedocs . io / en / master / guide / vec envs . html. [Online; accessed
15-May-2023].

[8] Epic Games. AActor::GetActorLocation — Unreal Engine Documentation. https : / / docs .
unrealengine.com/5.1/en-US/API/Runtime/Engine/GameFramework/AActor/GetActorLocation.
[Online; accessed 1-May-2023].

[9] Epic Games. AActor::GetActorRotation — Unreal Engine Documentation. https : / / docs .
unrealengine.com/4.27/en-US/API/Runtime/Engine/GameFramework/AActor/GetActorRotation.
[Online; accessed 1-May-2023].

[10] Epic Games. AActor::SetActorLocation — Unreal Engine Documentation. https://docs.unrealengine.
com/5.1/en-US/API/Runtime/Engine/GameFramework/AActor/SetActorLocation. [Online; ac-
cessed 1-May-2023].

[11] Epic Games. Content by Epic Games - UE Marketplace. https://www.unrealengine.com/
marketplace/en-US/profile/Epic+Games?count=20&sortBy=effectiveDate&sortDir=DESC&
start=0. [Online; accessed 15-May-2023].

[12] Epic Games. FBX Scene Import in Unreal Engine — Unreal Engine 5.1 Documentation. https:
//docs.unrealengine.com/5.1/en-US/fbx-scene-import-in-unreal-engine. [Online; accessed
8-May-2023].

[13] Epic Games. SetActorLocationAndRotation — Unreal Engine Documentation. https://docs.
unrealengine.com/5.1/en-US/API/Runtime/Engine/GameFramework/AActor/SetActorLocationAndRotation.
[Online; accessed 1-May-2023].

[14] Epic Games. SetActorRelativeRotation — Unreal Engine Documentation. https://docs.unrealengine.
com/5.1/en-US/API/Runtime/Engine/GameFramework/AActor/SetActorRelativeRotation. [On-
line; accessed 1-May-2023].

[15] Epic Games. The most powerful real-time 3D creation tool - Unreal Engine. https://www.
unrealengine.com/en-US. [Online; accessed 8-May-2023].

CTU in Prague Department of Cybernetics

https://github.com/DrTon/jMAVSim
https://cyberbotics.com/doc/guide/mavic-2-pro
https://cyberbotics.com/doc/guide/mavic-2-pro
https://cyberbotics.com/doc/guide/webots-license-agreement
https://cyberbotics.com/doc/guide/webots-license-agreement
https://stable-baselines3.readthedocs.io/en/master/modules/a2c.html
https://stable-baselines3.readthedocs.io/en/master/modules/a2c.html
https://stable-baselines3.readthedocs.io/en/master/modules/dqn.html
https://stable-baselines3.readthedocs.io/en/master/modules/dqn.html
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html
https://stable-baselines3.readthedocs.io/en/master/guide/vec_envs.html
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/GameFramework/AActor/GetActorLocation
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/GameFramework/AActor/GetActorLocation
https://docs.unrealengine.com/4.27/en-US/API/Runtime/Engine/GameFramework/AActor/GetActorRotation
https://docs.unrealengine.com/4.27/en-US/API/Runtime/Engine/GameFramework/AActor/GetActorRotation
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/GameFramework/AActor/SetActorLocation
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/GameFramework/AActor/SetActorLocation
https://www.unrealengine.com/marketplace/en-US/profile/Epic+Games?count=20&sortBy=effectiveDate&sortDir=DESC&start=0
https://www.unrealengine.com/marketplace/en-US/profile/Epic+Games?count=20&sortBy=effectiveDate&sortDir=DESC&start=0
https://www.unrealengine.com/marketplace/en-US/profile/Epic+Games?count=20&sortBy=effectiveDate&sortDir=DESC&start=0
https://docs.unrealengine.com/5.1/en-US/fbx-scene-import-in-unreal-engine
https://docs.unrealengine.com/5.1/en-US/fbx-scene-import-in-unreal-engine
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/GameFramework/AActor/SetActorLocationAndRotation
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/GameFramework/AActor/SetActorLocationAndRotation
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/GameFramework/AActor/SetActorRelativeRotation
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/GameFramework/AActor/SetActorRelativeRotation
https://www.unrealengine.com/en-US
https://www.unrealengine.com/en-US

44/47

[16] Epic Games. TQueue — Unreal Engine Documentation. https://docs.unrealengine.com/5.1/
en-US/API/Runtime/Core/Containers/TQueue. [Online; accessed 25-April-2023].

[17] Epic Games. UCameraComponent — Unreal Engine Documentation. https://docs.unrealengine.
com/5.1/en-US/API/Runtime/Engine/Camera/UCameraComponent. [Online; accessed 1-May-2023].

[18] Epic Games. Unreal Engine Marketplace — Store of UE Assets for Games and 3D Rendering -
UE Marketplace. https://www.unrealengine.com/marketplace/en-US/store. [Online; accessed
8-May-2023].

[19] Epic Games. USceneCaptureComponent2D — Unreal Engine Documentation. https://docs.
unrealengine.com/5.1/en-US/API/Runtime/Engine/Components/USceneCaptureComponent2D.
[Online; accessed 1-May-2023].

[20] Epic Games. UTextureRenderTarget2D — Unreal Engine Documentation. https://docs.unrealengine.
com/5.1/en-US/API/Runtime/Engine/Engine/UTextureRenderTarget2D. [Online; accessed 1-
May-2023].

[21] Epic Games. UWorld::LineTraceSingleByChannel — Unreal Engine Documentation. https://
docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/Engine/UWorld/LineTraceSingleByChannel.
[Online; accessed 1-May-2023].

[22] MAVLink. Introduction · MAVLink Developer Guide. https://mavlink.io/en. [Online; accessed
28-April-2023].

[23] Multi-robot Systems Group. Multi-robot Systems. http://mrs.felk.cvut.cz/. [Online; accessed
8-May-2023].

[24] OpenAI. Gym Documentation. https://www.gymlibrary.dev. [Online; accessed 8-May-2023].

[25] OpenCV.Automated CI toolchain to produce precompiled opencv-python, opencv-python-headless,
opencv-contrib-python and opencv-contrib-python-headless packages. https : / / github . com /
opencv/opencv-python. [Online; accessed 21-May-2023].

[26] Oracle Corporation. Java 3D API. https://www.oracle.com/java/technologies/javase/java-
3d.html. [Online; accessed 28-April-2023].

[27] Pillow. Python Imaging Library (Fork). https://github.com/python-pillow/Pillow. [Online;
accessed 21-May-2023].

[28] PX4 AutoPilot. jMAVSim with SITL — PX4 User Guide. https://docs.px4.io/main/en/
simulation/jmavsim.html. [Online; accessed 28-April-2023].

[29] pybind. pybind11 — Seamless operability between C++11 and Python. https://github.com/
pybind/pybind11. [Online; accessed 11-May-2023].

[30] Smith, Russell. Open Dynamics Engine. http://www.ode.org. [Online; accessed 28-April-2023].

[31] The MathWorks, Inc. Simulink Documentation. https://www.mathworks.com/help/simulink.
[Online; accessed 29-April-2023].

[32] The MathWorks, Inc. Unreal Engine Simulation for Unmanned Aerial Vehicles - MATLAB &
Simulink. https://www.mathworks.com/help/uav/ug/3d-simulation-for-unmanned-aerial-
vehicles.html. [Online; accessed 29-April-2023].

[33] The MathWorks, Inc. US city block Unreal Engine environment - MATLAB. https://www.
mathworks.com/help/uav/ref/uscityblock.html. [Online; accessed 29-April-2023].

[34] Unity Technologies. Unity Real-Time Development Platform — 3D, 2D, VR & AR Engine.
https://unity.com/. [Online; accessed 25-April-2023].

[35] USCiLab. cereal Docs - Main. https://uscilab.github.io/cereal. [Online; accessed 5-May-
2023].

[36] UZH Robotics and Perception Group. DJI Mavic 2 PRO Simulation in Webots. https://www.
youtube.com/watch?v=-hJssj Vcw8. [Online; accessed 10-April-2023].

[37] Yongsheng Yang et al. “DRL-based Path Planner and its Application in Real Quadrotor with
LIDAR”. In: Journal of Intelligent & Robotic Systems 107.3 (2023), p. 38.

CTU in Prague Department of Cybernetics

https://docs.unrealengine.com/5.1/en-US/API/Runtime/Core/Containers/TQueue
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Core/Containers/TQueue
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/Camera/UCameraComponent
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/Camera/UCameraComponent
https://www.unrealengine.com/marketplace/en-US/store
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/Components/USceneCaptureComponent2D
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/Components/USceneCaptureComponent2D
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/Engine/UTextureRenderTarget2D
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/Engine/UTextureRenderTarget2D
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/Engine/UWorld/LineTraceSingleByChannel
https://docs.unrealengine.com/5.1/en-US/API/Runtime/Engine/Engine/UWorld/LineTraceSingleByChannel
https://mavlink.io/en
http://mrs.felk.cvut.cz/
https://www.gymlibrary.dev
https://github.com/opencv/opencv-python
https://github.com/opencv/opencv-python
https://www.oracle.com/java/technologies/javase/java-3d.html
https://www.oracle.com/java/technologies/javase/java-3d.html
https://github.com/python-pillow/Pillow
https://docs.px4.io/main/en/simulation/jmavsim.html
https://docs.px4.io/main/en/simulation/jmavsim.html
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
http://www.ode.org
https://www.mathworks.com/help/simulink
https://www.mathworks.com/help/uav/ug/3d-simulation-for-unmanned-aerial-vehicles.html
https://www.mathworks.com/help/uav/ug/3d-simulation-for-unmanned-aerial-vehicles.html
https://www.mathworks.com/help/uav/ref/uscityblock.html
https://www.mathworks.com/help/uav/ref/uscityblock.html
https://unity.com/
https://uscilab.github.io/cereal
https://www.youtube.com/watch?v=-hJssj_Vcw8
https://www.youtube.com/watch?v=-hJssj_Vcw8

8. REFERENCES 45/47

[38] Alexandros Gazis and Eleftheria Katsiri. “Middleware 101”. In: Commun. ACM 65.9 (Aug.
2022), pp. 38–42. issn: 0001-0782. doi: 10.1145/3546958. url: https://doi.org/10.1145/
3546958.

[39] Jack Collins et al. “A Review of Physics Simulators for Robotic Applications”. In: IEEE Access
9 (2021), pp. 51416–51431. doi: 10.1109/ACCESS.2021.3068769.

[40] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learning Implementations”. In:
Journal of Machine Learning Research 22.268 (2021), pp. 1–8. url: http://jmlr.org/papers/
v22/20-1364.html.

[41] Yunlong Song et al. “Flightmare: A Flexible Quadrotor Simulator”. In: Conference on Robot
Learning. 2020.

[42] Winter Guerra et al. “Flightgoggles: A modular framework for photorealistic camera, exterocep-
tive sensor, and dynamics simulation”. In: arXiv preprint arXiv:1905.11377 (2019).

[43] Shital Shah et al. “AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Ve-
hicles”. In: Field and Service Robotics. 2017. eprint: arXiv:1705.05065. url: https://arxiv.
org/abs/1705.05065.

[44] Mahanth Gowda et al. “Tracking Drone Orientation with Multiple GPS Receivers”. In: Pro-
ceedings of the 22nd Annual International Conference on Mobile Computing and Networking.
MobiCom ’16. New York City, New York: Association for Computing Machinery, 2016, pp. 280–
293. isbn: 9781450342261. doi: 10.1145/2973750.2973768. url: https://doi.org/10.1145/
2973750.2973768.

[45] Norhafizan Ahmad et al. “Reviews on various inertial measurement unit (IMU) sensor applica-
tions”. In: International Journal of Signal Processing Systems 1.2 (2013), pp. 256–262.

[46] Aaron Staranowicz and Gian Luca Mariottini. “A Survey and Comparison of Commercial and
Open-Source Robotic Simulator Software”. In: Proceedings of the 4th International Conference
on PErvasive Technologies Related to Assistive Environments. PETRA ’11. Heraklion, Crete,
Greece: Association for Computing Machinery, 2011. isbn: 9781450307727. doi: 10 . 1145 /
2141622.2141689. url: https://doi.org/10.1145/2141622.2141689.

[47] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA workshop on
open source software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.

[48] Dave Shreiner, Bill The Khronos OpenGL ARB Working Group, et al. OpenGL programming
guide: the official guide to learning OpenGL, versions 3.0 and 3.1. Pearson Education, 2009.
isbn: 9780321552624.

[49] N. Koenig and A. Howard. “Design and use paradigms for Gazebo, an open-source multi-robot
simulator”. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (IEEE Cat. No.04CH37566). Vol. 3. 2004, 2149–2154 vol.3. doi: 10.1109/IROS.2004.
1389727.

[50] Olivier Michel. “Cyberbotics ltd. webots™: professional mobile robot simulation”. In: Interna-
tional Journal of Advanced Robotic Systems 1.1 (2004), p. 5.

[51] Edward M Mikhail, James S Bethel, and J Chris McGlone. Introduction to modern photogram-
metry. John Wiley & Sons, 2001. isbn: 9780471309246.

[52] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. “Reinforcement learning: A
survey”. In: Journal of artificial intelligence research 4 (1996), pp. 237–285.

CTU in Prague Department of Cybernetics

https://doi.org/10.1145/3546958
https://doi.org/10.1145/3546958
https://doi.org/10.1145/3546958
https://doi.org/10.1109/ACCESS.2021.3068769
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
arXiv:1705.05065
https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/1705.05065
https://doi.org/10.1145/2973750.2973768
https://doi.org/10.1145/2973750.2973768
https://doi.org/10.1145/2973750.2973768
https://doi.org/10.1145/2141622.2141689
https://doi.org/10.1145/2141622.2141689
https://doi.org/10.1145/2141622.2141689
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727

46/47

CTU in Prague Department of Cybernetics

A. APPENDIX A — INCLUDED ATTACHMENTS 47/47

Chapter A

Appendix A— Included attachments

attachments.zip
ueds/

Source code of the UEds simulator
README.md file containing the project instructions

ueds-connector/
Source code of the UEds-connector (UEds simulator client)
Source code of the UEds reinforcement learning framework
README.md file containing the project instructions

models/
Reinforcement learning models used in the Chapter 6

photos/
Photos and plots used in this thesis

Assets (meshes, materials, etc.) used in the UEds simulator were obtained using the
Unreal Engine marketplace. The assets can be used free of charge, but can not be published
in their raw, unbuilt form. Therefore, we disclose only the source code of the UEds simulator
and the drone model provided by the MRS Group. The full version of the simulator including
the assets is stored in a version control system of the MRS Group.

CTU in Prague Department of Cybernetics

	Introduction
	Goals

	Related work
	Problem overview
	Movement and collisions
	Sensors
	Controls

	UEds simulator
	Architecture
	Game thread
	Movement and collisions
	Position and tilt sensor
	LiDAR
	Camera
	Communication
	Support

	Benchmarks
	Drone movement
	LiDAR
	Camera
	Conclusion

	Experiments
	Prerequisites
	LiDAR
	Camera
	Conclusion

	Conclusion
	Future work

	References
	Appendix A — Included attachments

