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Abstract 

Multiple Sclerosis (MS) is the most common non-traumatic, neurodegenerative disease 

affecting young adults worldwide with a total of 2.8 million people diagnosed. Main 

characteristics of the disease are the appearance of demyelinating plaque on neuronal structures. 

When demyelination occurs in the facial pathway, motor manifestations affecting the facial 

expression may arise which can include facial myokymia, hemifacial spasm or facial palsy. These 

all belong to the most common presentations of movement disorders in MS. Currently, there is 

no existing easy-to-use, objective and fully automatic tool enabling fast and reliable assessment 

of facial movement disruption for MS. The goal of this presented thesis is to develop a tool for 

the computerized, video-based assessment of facial disruption to facilitate an accurate, objective, 

easily applicable, and cost-effective method to evaluate facial movement in patients with MS. 

Forty native Czech-speakers have been recorded during a facial expressivity examination and 

one-minute-long video-recordings of their freely spoken monologue were used in the subsequent 

analysis. To analyze the disruption of facial movement, an end-to-end neural network based facial 

landmark detection algorithm “Face Mesh” was applied and a total of six facial movement 

markers have been proposed to parametrize asymmetric movement of the face.  

Significant differences were found in the face symmetry between MS patients with facial palsy 

and a healthy control group. Subsequently, a classification algorithm was trained using 

multinomial logistic regression that reached an AUC of 0.71.  

The results of this work confirmed the utility of an automated objective tool for facial 

disruptions in MS and present the disruption of facial movement as a possible disease biomarker. 

Moreover, the classification experiment emphasized the need of regional assessment in the 

evaluation of facial manifestations in MS. 

Keywords: Multiple Sclerosis, Facial Palsy, Facial Landmark Detection, Diagnostic Markers 
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 Introduction – Multiple Sclerosis 

Multiple Sclerosis (MS) is the most common non-traumatic, neurodegenerative disease 

affecting young adults worldwide (Calabresi, 2004; Dobson and Giovannoni, 2019) with a total 

of 2.8 million people diagnosed (MSIF, 2020) . While its prevalence is rising similarly in Africa, 

Australia, Asia and Europe, actual numbers vary widely around the globe with Europe showing 

approximately half of all MS cases (Evans et al., 2013; Kingwell et al., 2013; Makhani et al., 

2014). After a usually silent onset, the disease eventually leads to full disability of its sufferer, 

gradually accruing irreversible axonal damage. While many environmental and genetic factors 

have been described that increase one’s individual risk of developing MS, its direct cause remains 

unknown. However, recent studies report a 32-fold risk increase of MS development after 

infection with Epstein-Barr-Virus (EBV), suggesting it to be a leading cause in the development 

of MS (Bjornevik et al., 2022) . Smoking increases the risk by about 50% (Palacios et al., 2011) 

and an increase in geographical latitude which is linked to decreasing UV-B exposure and lower 

vitamin D levels, correlates with increased MS prevalence in the population (Sintzel, Rametta and 

Reder, 2018; Dobson and Giovannoni, 2019). Furthermore, even though women seem to be twice 

as likely to be affected by MS than men, their prognosis is often better and the course of the 

disease less aggressive (Di Stadio and Bernitsas, 2018).  

When symptomatic, MS can manifest as both motor and sensory disability. Most common 

symptoms include sensory or cerebellar ataxia, cognitive and progressive visual failure as well as 

spastic paraparesis. Additionally more than 50% of patients with MS suffer from depression 

(Calabresi, 2004). It has been estimated that the disease prodromal phase lasts between 5 to 10 

years and is characterized by the presence of subtle nonspecific symptoms such as cognitive 

decline, psychiatric morbidity, fatigue, sleep disorders, pain, fibromyalgia, bowel, bladder and 

dermatological issues (Tremlett, Munger and Makhani, 2022). MS’ subtle and nonspecific onset 

makes an early diagnosis especially challenging and hinders the success of upcoming promising 

immune reconstitution therapies. For people with MS these therapies offer a first significant 

chance to alter the disease course to the point of no progression or even a potential cure. Early 

diagnosis is however critical in order to reduce disease progression in these treatment options 

(Dobson and Giovannoni, 2019). 
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1.1. Multiple Sclerosis - Etiology and Clinical Features 

By clinical definition, MS describes the phenomenon of plaque on structures of the nervous 

system, primarily on axons and their myelin sheath (Di Stadio et al., 2020). The demyelinating 

plaque is a result of perivenular inflammatory lesions. Active lesions contain lymphocytes such 

as T-cells and B-cells that cause not only demyelination but also oligo dendrite damage (Dobson 

and Giovannoni, 2019). While axons often fully recover after remission in early stages of the 

disease, irreversible damage accumulates over the course of MS leading to dysfunction of the 

affected axon. Inflammation can appear wherever the immune cells are located within the nervous 

system but in most cases it primarily appears in the central nervous system (CNS) as opposed to 

the periphery (Di Stadio et al., 2020). When inactive, lesions are surrounded by plaque and the 

inflammation core by activated macrophages and micro philia (Prineas et al., 2001). 

Symptomatology of MS depends on the location of an active or inactive lesions. When a motor 

area is affected, the patient might experience stiffness or numbness at the innervated location and 

may develop a movement disorder. Analogously, with inflammation of sensory nervous tissue, 

the patient’s sensorial perception will be affected (Di Stadio and Bernitsas, 2018). Over time, MS 

leads to disability, brain atrophy and end-organ damage. As clinically apparent symptoms differ 

with location and size of a lesion it is not possible to predict individual symptomatology and its 

severity. A post-mortem pathological evidence found 25% of MS cases that were never clinically 

diagnosed during their lifetime (Engell, 1989).  

Clinical MS is divided into two stages; the inflammation dominant stage with profound active 

lesions called relapse remitting MS (RRMS) and the often-subsequent neurodegeneration 

dominant phase known as primary or secondary progressive MS (PPMS or SPMS). While 

traditionally described as separate diseases, research suggests that those phases exist on a 

continuous spectrum. A patient usually develops SPMS 10 to 15 years after being clinically 

diagnosed with RRMS (Dobson and Giovannoni, 2019). Only around 5-15% of people with MS 

are diagnosed with PPMS when the disease becomes clinically apparent, indicating that it most 

often gradually progresses from relapses to non-relapsing progression (Dobson and Giovannoni, 

2019). Inflammatory rates are commonly highest in RRMS. As a new relapse develops, it reaches 

its peak within hours to days and stays highly symptomatic for any time period from weeks up to 

months. It then remits over time after which the patient recovers seemingly to full ability. 

However, each discrete relapse produces permanent neuronal damage even if in the form of 

microscopic lesions. It has been shown that up to 10 asymptomatic lesions can appear during one 

relapse and silently promote the disease evolution (Dobson and Giovannoni, 2019). 

Moreover, pathological studies show that the preclinical phase of MS could be between 5 to 

10 years (Tremlett, Munger and Makhani, 2022); neuroinflammation and neurodegeneration 
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usually occur before the first clinical attack while end-organ damage is proven to progress from 

the onset of MS. Because of this, inactive lesions may already arise in the prodromal phase likely 

due to asymptomatic relapses. Patients found with inactive lesions will be diagnosed with 

clinically isolated symptom (CIS) which describes a first clinical appearance of MS usually 

supported with explanatory lesions on an MRI scan. Further prodromal diagnoses may include 

asymptomatic MS or radiologically isolated symptom (RIS). RIS is diagnosed upon isolated 

findings of white matter lesions that are typically discovered on unrelated MRIs without ever 

having been clinically apparent. In young people with CIS, brain volume loss has been shown 

(Aubert-Broche et al., 2014) and in 25% of people diagnosed with RIS significant cognitive 

impairment has been found similar to patients with established MS diagnoses (Amato et al., 

2012). This strongly highlights the importance of enabling pre-symptomatic diagnosis. Tremlett 

et al. (2022) argues that biomarkers may be the key to detecting MS in the prodromal phase 

arguing that they may increase specificity and accuracy of the diagnosis. However, this is in need 

of further formal validation (Tremlett, Munger and Makhani, 2022). In addition, the onset of 

clinical MS may be sudden, and the naturally resolving nature of relapses may increase difficulty 

for the affected patient to first understand that the underlying cause is a neurological disease.  

As of now, the clinical diagnosis of MS requires dissemination of MRI lesions in time and 

space over a period of three months, without any other causal explanation. This exclusion of 

asymptomatic and even prodromal MS is being criticized since it withholds crucial treatment that 

might prevent the clinical appearance overall. Patients diagnosed with CIS or RIS are ineligible 

for MS treatment (Dobson and Giovannoni, 2019). 

1.2. Treatment of MS 

Treatment of MS can be divided into two categories: disease-modifying therapies and 

symptomatic therapies. Symptomatic therapies are commonly non-MS specific treatments that 

are used in any neurological disorder. They can include pharmaceutical and physical therapies 

that target specific symptoms e.g., urinal bladder disfunction or even certain motor disorders.  

Disease-modifying therapies on the other hand are the closest opportunity for people with MS to 

a long-term remission of the disease. These treatments are MS-specific and are now focusing on 

early treatment admission after years of research progression (Dobson and Giovannoni, 2019). 

The three existing types of therapy, immunosuppressant, immunomodulatory and immune 

reconstitution therapy, differ in treatment duration and effect. Previously, immunosuppressant 

and -modulatory treatments have been used to prevent further inflammation and MS progression, 

immune reconstitution therapy however brings the added benefit of having a finite treatment 

length while allowing long term results. These are said to be the closest to a potential cure of MS 

to date (Dobson and Giovannoni, 2019). Dobson et al even raises the question if this is the proof 
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that early or pre-symptomatic treatment could be preventing the clinical appearance of the disease 

overall (Dobson and Giovannoni, 2019). Subsequently to improve categorization of nonclinical 

MS, the concept of no evident disease activity (NEDA) was introduced. Five levels of NEDA 

describe disease activity ranging from absence of relapses and clinical disease progression 

(NEDA-1) over inflammatory MRI activity to MRI atrophy and levels of biomarkers (NEDA-5). 

The success of early treatment in MS and the possibility of precise identification of the at-risk 

population strongly suggests that a pre-symptomatic screening of said population could further 

improve treatment and significantly reduce clinically apparent MS overall and even set the stage 

to start population screening in other neurodegenerative diseases (Dobson and Giovannoni, 2019). 

Until then, research stresses early treatment which inevitably follows early, fast, and definite 

detection of signs and symptoms of the disease at any stage, be it asymptomatic, prodromal, or 

clinical. To attain to this target, this thesis handles a specific subset of symptoms, facial 

manifestations, and their reliable detection. 
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1.3. Facial Manifestations in MS 

Any damage to the facial pathway in MS may lead to motor manifestations that affect the 

facial expression. The facial pathway describes the 7th cranial nerve, the facial nerve, that leads 

from its terminal branch on one side of the face through the pons up to the contralateral motor 

cortex area M1 (see Fig. 1) (Campbell and DeJong, 2005). Movement disorders that develop upon 

impairment of the facial pathway may be (continuous) facial myokymia (FM), hemifacial spasm 

(HS) or facial palsy (FP). FM, HS and FP belong to the most common presentations of movement 

disorders in MS (Ghosh et al., 2022). Facial myokymia is defined as involuntary wave-like 

movements across all facial muscles, often related to lesions in the brainstem. Hemifacial spasm 

presents itself as synchronous spasms on one side of the face for which lesions attributed to the 

ipsilateral facial nucleus are the cause (Mehanna and Jankovic, 2013; Etemadifar et al., 2022). 

And lastly, facial palsy, the most common presenting facial disorder of the group, describes the 

inability of a patient to voluntarily move one side of their face (Etemadifar et al., 2022). 

 
Fig. 1 The Facial Pathway from the 
Periphery to the Brain Motor Cortex 
Area M1 taken from (Di Stadio and 
Bernitsas, 2018) 

 

The actual incidence of facial manifestations in literature is ambiguous. According to Ghosh 

et al., FM is frequently reported as a presenting feature of MS whereas in another recent study of 

2260 patients, FP had the highest prevalence at 3.27% followed by FM with 1.28% and HS with 

0.84% (Etemadifar et al., 2022; Ghosh et al., 2022). Moreover, the prevalence of FP alone varies 

throughout research between 3% and 20% (Fukazawa et al., 1997; Danesh-Sani et al., 2013; 

Lassemi et al., 2014; Di Stadio and Bernitsas, 2018) which suggests difficulties and 

methodological differences in the diagnosis of facial manifestations. Contributing to the issue is 

that every author has their own way of documenting symptoms, and it is difficult to ascertain if 
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the symptom was not only verbally reported by the patient to the author. Diagnosis is often carried 

out by trained neurologists or ear, nose and throat (ENT) specialists using classical neurological 

examinations and grading the results based on a set scale like the House-Brackmann scale (HBS) 

(Fukazawa et al., 1997; Di Stadio, 2015; Etemadifar et al., 2022).  

Contributing to the discussion of FP diagnosis is its clinical separation into two types: central 

facial palsy (cFP) or peripheral facial palsy (pFP). cFP denotes the paresis or reduced motor 

function of facial muscles of only the lower two thirds of the face while pFP is defined to affect 

all facial muscles on one side (Di Stadio, 2015). This distinction originates in the bilateral 

innervation of the frontalis muscle. When a central lesion in one hemisphere is present, the 

frontalis muscle will be unaffected due to its secondary innervation by the contralateral 

hemisphere, thus classifying this type as central FP. 

In a group of 107 patients diagnosed with MS, 4.7% developed FP as an early onset symptom 

(Fukazawa et al., 1997). Another study of a subset of MS patients that were clinically evaluated 

to show FP, found about 25.8% developed FP as an early onset symptom (Di Stadio et al., 2020). 

The general rate of FP manifestation during MS is more variable ranging from 2.6% (Kurtzke et 

al., 1977) to 31% (Fukazawa et al., 1992). On top of that, there has been evidence suggesting that 

facial nerve damage is much more profound than actually reported; an autopsy series found facial 

nerve damage in over 50% of the examined cases (Fukazawa et al., 1997). Di Stadio et al points 

out the difficulties in correctly diagnosing the origin of FP and warns of the dangers of 

misdiagnosing the underlying cause as Bell’s Palsy (BP) instead of FP. In the mentioned study 

21.7% of a group that presented with FP were initially misdiagnosed as Bell’s Palsy or stroke (Di 

Stadio et al., 2020). BP is defined by damage of the peripheral facial nerve (thus is symptomatic 

as pFP) and is often treated with corticosteroids after examination without further investigation, 

possibly missing MS as an underlying cause (Saleh et al., 2016; Di Stadio et al., 2020). To 

summarize, the prevalence of FP in MS reportedly has a wide variability, suggesting possible 

difficulties in the diagnosis of FP itself as well as in the correct assignment of the underlying 

cause of FP as MS. This may be due to the nature of the clinical assessment used to evaluate a 

patient that shows signs of FP. The next subchapter will further investigate methods used to 

evaluate FP. 
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1.4. Clinical Assessment of Facial Palsy 

The assessment of facial manifestations is traditionally carried out by experts of various fields 

by visually evaluating the patient’s face in static, dynamic and synkinetic state. To allow 

comparison, experts adhere to facial nerve grading systems (FNGS) when assessing severity. The 

most used FNGS internationally remains the House-Brackmann scale that was presented in 1985 

likely because of its endorsement by the Facial Nerve Disorders Committee (House and 

Brackmann, 1985). Over the years, there have been numerous proposals for further FNGS and 

even algorithms for a computerized comparison of different FNGS (Bansal et al., 2020). 

However, the simplicity of the HBS leads to its ongoing preference (Di Stadio, 2015). Criticism 

of the HBS addresses the importance it is putting on the ocular area and lack of importance of 

other facial muscles even when considering the revised version HBS-2 which was designed to be 

more regional (Vrabec et al., 2009). Di Stadio et al. proposed the use of the Arianna Disease Scale 

(ADS) which parts the face in three sub areas where further grouping focuses on the evaluation 

of smaller muscle groups that are all weighted equally. Other proposed scales over the years 

include the Sunnybrook and Yanagihara Scale (Ross, Fradet and Nedzelski, 1996; Yanagihara 

and Hato, 2003) that are similar to the HBS but require more time for the assessment. The frequent 

introduction of new grading scales itself argues for an underlying issue with the diagnosis (Bansal 

et al., 2020). Moreover, the proposed systems do not manage to reduce the clinicians’ subjectivity 

which can pose as the biggest problem especially when used by clinicians who do not frequently 

work with the applied scales (Lee et al., 2013). Already in 1983, House observed that the 

subjective interpretation in clinician-based FGNS should be reduced as much as possible (House, 

1983). 

A recent proposal aims to eliminate the subjective part of the evaluation by developing a 

simple, objective and mathematical model for the quantification of the severity of FP (Bansal et 

al., 2020). It requires physicians to physically take measurements of defined distances in the face 

of the patient in various static states. While this approach may reduce subjectivity in evaluation, 

reasonable doubt can be expressed about the accuracy and reproducibility of measurements taken 

by clinicians with a Vernier Caliper and about the safety of patients since the measurements are 

in close vicinity to extremely sensitive structures e.g., the eyes. 

The choice of an automated, computerized method may be the most feasible option to reduce 

the subjective component in assessing a patient’s face whilst achieving reproducible and fast 

results for an evaluation. The next subchapter presents options for implementing automated facial 

evaluation methods. 

  



 

 17 

1.5. Automatic Assessment of Facial Movement  

Automatically assessing and evaluating facial motor dysfunctions requires the capturing of 

facial movement over an extended period of time. One possible implementation of this is the 

application of automatic facial landmark detection algorithms on video-recordings of freely 

spoken monologues. 

Facial landmark detection describes the localization of key points (landmarks) around facial 

components and facial contours that can further be used for facial analysis tasks. Algorithms that 

perform this task commonly use RGB or grayscale images and return a vector of 2D or 3D 

coordinates of the landmarks. In these algorithms, face detection is often assumed to have already 

been carried out. Facial landmark detection has been one of the heaviest researched topics in 

computer vision over the last decade (Bulat and Tzimiropoulos, 2017). This is likely due to the 

opportunities its application provides in a range of different fields such as security, medical 

applications and the field of augmented reality applications (Wu and Ji, 2019). The localization 

of fiducial facial landmark points however is not a trivial task especially as many applications 

rely on the accurate detection of the landmarks. Challenges in the automated detection may arise 

for several reasons such as changing environmental factors like illumination, differing facial 

expressions leading to a change of facial appearance and lastly possible facial occlusion by third 

objects or even self-occlusion as a result of extreme head poses that may lead to incomplete facial 

appearance information (Wu and Ji, 2019). Several different algorithms have been developed over 

the past decades to best tackle the task of landmark detection. According to Wu and Ji (2019) the 

developed algorithms can be classified into three categories, the holistic methods, the Constrained 

Local Model (CLM) methods or the regression-based methods (see Fig. 2) (Wu and Ji, 2019). 

Between them, they differ mainly on how they model facial appearance and facial shape patterns. 

Holistic methods describe algorithms that explicitly model the holistic facial appearance and 

global facial shape patterns while CLMs rely on explicit local facial appearance and explicit 

global facial shape patterns. Whilst these two methods share modelling of the global facial shape, 

the CLMs have an advantage in using the local appearance around landmarks instead of a holistic 

one, making it more robust towards illumination changes and facial occlusion (Wu and Ji, 2019). 

Both methods can be further subdivided into different approaches to their general solutions such 

as the Active Appearance Model (AAM) as the classic holistic model (Cootes, Edwards and 

Taylor, 1998) or local appearance models as an example for CLMs (Cristinacce and Cootes, 

2006). Regression-based methods differ in the sense that they directly learn the mapping from 

image appearance to the landmark locations i.e., they do not build a global face shape model (Wu 

and Ji, 2019). Within the regression-based methods direct regression, cascaded regression or 

deep-learning based regression methods can be further classified. Altogether, regression-based 
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models are viewed as the most promising in successfully accomplishing the task of facial 

landmark detection. They directly predict the landmarks as opposed to predicting model 

coefficients as in the holistic methods and CLMs which can turn a small error in the model 

coefficients into a large landmark error (Wu and Ji, 2019). 

 

 
 

Fig. 2 Major categories of facial Landmark detection algorithms 

Taken from (Wu and Ji, 2019) 

 

Over the past years, deep learning based regression methods have shown incomparable 

advances in accuracy and efficiency when applied for the localization task (Bulat and 

Tzimiropoulos, 2017). Especially the use of Convolutional Neural Networks (CNN) has become 

a popular choice for deep learning models and most of them follow the direct regression or 

cascaded regression framework (Wu and Ji, 2019).  One of the first developed algorithms using 

CNNs has been presented by Sun et al. (2013) which uses four convolutional layers to predict 

five facial landmarks in a cascaded manner (Sun, Wang and Tang, 2013). Their proposed solution 

has been improved over years in performance and in cascaded procedure to increase the number 

of predicted landmarks e.g., from 5 landmarks to 68 (Zhou et al., 2013). 

The application of these methods has been previously done in the field of neuropsychiatric and 

-degenerative disorders for example with the aim to draw conclusions about facial expressions, 

which are then used in multimodal fusion for emotion recognition as in Schoneveld et al (2021). 
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Here, audio and visual deep convolutional neural networks were applied to extract voice and facial 

features (Schoneveld, Othmani and Abdelkawy, 2021). Another similar application uses deep 

convolutional neural networks that extract audiovisual features to develop objective automatic 

depression estimation systems (He et al., 2022). In the field of neurodegenerative pathologies, 

Polet et al (2022) used an eye-tracker to evaluate the eye gaze of patients with Alzheimer disease 

and Parkinson disease to determine whether facial emotion recognition impairment is linked with 

inappropriate eye-gaze strategies (Polet et al., 2022). In the field of Parkinson disease, Novotny 

et al (2022) employed a convolutional neural network that localizes 68 facial landmarks (Gross 

et al., 2010) in each frame and used a selected combination of the landmarks to describe the 

dynamics of different facial regions for an automatic assessment of hypomimia (Novotny et al., 

2022). However, no method for computerized assessment of facial motor impairments has been 

previously applied in the field of MS at the time of this paper.  

 

1.6. Objectives of this thesis 

With the goal of eliminating subjective errors in the clinical assessment of facial movement 

disorders, this paper aims to develop a tool for their computerized assessment to facilitate an 

objective, simple, economical, and reproducible method to evaluate facial movement without 

bias. The detailed objectives of this thesis are: 

(1) The application of a deep learning based landmark detection algorithm to extract 

key points of facial expressivity of the subjects for further analysis 

(2) The analysis of disruption of facial movement in patients with multiple sclerosis 

(3) The proposition of an automatic approach for facial movement parametrization 

in patients with multiple sclerosis that exhibit signs of facial paralysis 
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 Data and Methods 

2.1. Subjects 

Between 2016 and 2017, a total of 40 native Czech-speakers have been subjected to the facial 

expressivity examination for this study including 20 people (10 women) diagnosed with MS and 

20 healthy controls (HC) (10 women). Video data of the MS participants were collected within 

the scope of an original study (Rusz et al., 2018) investigating the relationship between the 

severity of speech disorders and neurological involvement in MS. The MS patients that were 

clinically confirmed with a diagnosis of definite MS based on the revised McDonald Criteria 2010 

(Polman et al., 2011). Within the MS group, 15 patients were diagnosed with relapse-remitting 

MS, 3 with secondary progressive MS, 1 with primary progressive MS and 1 with clinically 

isolated symptom. All MS patients have not had a relapse for at least 30 days prior to the data 

collection. Additionally, each patient has been ranked by a board certified neurologist according 

to the Expanded Disability Status Scale (EDSS) (Kurtzke, 1983) and received scores evaluating 

their severity of depression based on the Beck Depression Inventory (BDI) (Beck, Steer and 

Brown, 1987).  

The HC group consisted of 20 age- and sex-matched individuals with no previous history of 

neurological or facial disorders which would interfere with the analysis of facial movements. 

Each participant provided written and informed consent for their inclusion. The study received 

approval from the ethics committee of General University Hospital in Prague, Czechia, and has 

been performed in accordance with the ethical principles laid down by the Declaration of Helsinki. 

2.2. Facial movement examination 

The facial movement examination was conducted in a room with standard indoor lighting 

using a digital camera (Panasonic Handycam HDR-CX410, Osaka, Japan) that was fixed in 

position with regards to artificial and natural sources of light. It was set up at a distance of 

approximately one meter to the subjects’ faces. The recordings were captured at a resolution of 

1440 x 1080 pixels (HD) and a frame rate of 25 RGB frames (24-bits) per second. The recordings 

contain one minute of freely spoken dialogue from each patient on a topic given by a speech 

specialist conducting the examination.  
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2.3. Perceptual analysis 

A speech-language specialist trained in facial expressivity examination provided an 

assessment of facial paralysis from the recordings. Each patient was assigned a score based on a 

five-point scale with 0 representing normal facial movement, 1 representing slight paralysis, 2 

mild, 3 moderate and 4 severe paralysis. A summary of the scores is shown in Table 1. 

 

Table 1 Demographical and clinical information about the MS patients 

Multiple sclerosis participants (n = 20, 10 women) Mean(Standard deviation, range) 

    

Age (years)   49.6 (8.59, 33-70) 

Disease duration (years)   14.75 (8.43, 2-31) 

EDSS score   1.85 (0.37, 1-2) 

BDI score   10.5 (6.75, 1-27) 

Perceptual analysis score (0-5)   1.8 (0.62, 1-3) 

    

Healthy control group  (n = 20, 10 women)  

Age (years) 48.8 (8.18, 40-77) 

Perceptual analysis score (0-5) 0 (0, 0) 

EDSS – Expanded Disability Status Scale 

BDI – Beck Depression Inventory 
 

 

2.4. Computerized assessment of facial movement 

2.4.1. Facial landmark detection 

To detect the facial landmarks, the end-to-end neural network based facial landmark detection 

algorithm “Face Mesh” described in Kartynnik et al (2019) was applied. It creates 3D facial 

landmark estimations forming a mesh of 468 points (see Fig. 3) with only single RGB video 

frames as its input. The algorithm worked with a machine learning pipeline of two real-time, deep 

learning neural networks: it first applied a face detector that creates a rectangle around the 

detected face(s) as well as a number of basic landmarks like the center of the eyes or the nose tip. 

The original frame was then cropped and fed into the second 3D mesh prediction neural network 

that predicted the approximate 3D surface via regression and outputs a vector of the desired 3D 

landmark coordinates (see Fig. 4) (Kartynnik et al., 2019). Along with the 3D landmark 

estimations, the mesh prediction network returned the probabilities of a face being contained 
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within the cropped frame and reasonably aligned. The Face Mesh algorithm has been primarily 

developed for real-time augmented-reality (AR) applications and has been pre-trained on 30K in-

the-wild mobile camera photos taken from a wide range of sensors and under different lighting 

conditions. Considering the standardized recording conditions during the clinical assessment the 

30K in-the-wild provided sufficient sensitivity and robustness for the subsequent feature 

extraction.(Kartynnik et al., 2019).  

 

 
 

Fig. 3 468 Facial Landmarks of Google’s Mediapipe Face Mesh Algorithm with highlighted areas 

of interest 
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In addition to the 3D face landmark detection models, another so-called Attention Mesh model 

was available that further refined landmarks of higher interest in areas such as the lips and eyes 

and adds further ten landmarks describing both irises, bringing the total number of estimated 

landmarks to 478. At a cost of higher computing, a more precise measurement around these areas 

can be achieved. 

The landmark detection algorithm was executed in the PyCharm Professional environment 

with Python 3.8 (JetBrains s.r.o.). The described Face Mesh solution provides the option to define 

a maximum number of faces to track in an image, max_num_faces, which has been set to one. 

The refine_landmarks option has been activated, leading to 478 more robust landmarks that are 

refined around the mouth- and eye-areas. The script was modified to create a mat-file for each 

frame containing all 478 landmarks as 3D coordinates, normalized to the image size, that would 

subsequently be used for the estimation of facial paralysis markers. 

 

 

 

 

 

 

 
Fig. 4 Inference and Tracking Pipeline of Google’s Mediapipe Face Mesh (Kartynnik et al., 

2019) 
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2.4.2. Estimation of makers for facial paralysis 

The marker assessment was performed in the MATLAB environment (Mathworks, Natick, 

MA, USA). Using the detected landmarks, differences between the left and right variants of the 

following six facial measures were estimated: 

(i) Eyebrow elevation / depression 

(ii) Eyebrow curvature angle 

(iii) Palpebral fissure dynamic behavior 

(iv) Mouth corner elevation / depression 

(v) Mouth corner horizontal movement 

(vi) Mouth asymmetry  

 

To assess differences between left and right variants in the case of all markers aside from (ii) 

and (vi), the areas under the curves describing the distances over all frames have been calculated 

and subsequently subtracted from each other. The result was then normalized with regards to the 

total number of frames. This measure has been chosen after the distance measures revealed high 

movement artefacts that introduce significant bias into any measure of deviation, overshadowing 

small differences between each side. To illustrate this, an additional video of the author of this 

paper was fed into the landmark detection algorithm where the head was kept still and oriented 

frontal to the camera. Fig. 5 shows the comparison between the reference video and one patient’s 

measurement of the mouth horizontal marker.  

By subtracting the total areas, the movement artefacts are reduced while differences between 

each side remain. In case of the mouth asymmetry marker, the median has been selected in order 

to describe median total mouth asymmetry for one subject. Lastly, for the eyebrow curvature 

marker, the difference of the deviation measure of each side was calculated to assess their 

differences. All markers are described in greater detail in the following paragraphs. 
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Fig. 5 Comparative figures for the mouth horizontal movement markers 

The upper figure shows the mouth horizontal movement marker for one subject in one 

recording. 

The lower figure shows the mouth horizontal movement marker from a monologue recorded 

from the author where the head was kept frontal to the camera and not moved. Horizontal 

movements of the lips that denote a smile are clearly visible. 
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The eyebrow elevation/depression marker was estimated as a measure of the normalized 

distance between the nose tip and a centroid created from all ten eyebrow landmarks per side. 

Dissimilarity between sides was calculated as the difference between areas under their distance 

curves. This marker describes differing dynamic movement of the eyebrows where a higher value 

indicates greater digression from symmetric movement. 

The eyebrow curvature marker describes the differences in dynamic change of the angle in the 

middle of the eyebrow. To estimate the angle two lines leading up to the middle of each brow had 

to be fitted to the landmarks. Single value decomposition was used to fit the lines and determine 

their directional vector as the smallest singular value. The angle of the eyebrow could then be 

determined from the dot-product of the resulting two directional vectors per eyebrow. Following, 

the absolute difference of the median absolute deviation (MAD) was calculated between both 

sides. This marker describes the dynamic changes in eyebrow shape and shows greater difference 

in symmetry at a higher value. 

To describe the palpebral fissure’s difference in dynamic behavior, the area encompassed by 

the eyelids of a subject was determined by triangulating the area that the sixteen eye landmarks 

encompass and subsequently calculating each triangles’ area. The triangulation was performed 

using the function delaunayTriangulation(). The determined area was then normalized by the 

square of all summed distances to the nose tip. To determine the difference between sides, the 

areas under the curves were calculated, subtracted and normalized.  

The mouth corner elevation/depression marker was calculated as the difference of area under 

the curves of the normalized distance between a mouth corner centroid and the nose tip. The 

mouth corner centroid is composed of four landmarks per side (see Table 2). Analogously, the 

mouth corner horizontal movement marker was determined using the normalized distance to a 

centroid in the middle of the mouth, created from eight landmarks. 

Lastly, the mouth asymmetry marker was calculated by mirroring the left side of the mouth 

onto the right side of the mouth using a sagittal plane fitted through the middle mouth landmarks 

as the reflector (see Table 2). The plane was created using eigenvalue decomposition of the 

landmarks in order to find the normal vector to the plane and construct the plane equation. Next, 

normalized distances between each corresponding mouth landmark were calculated and summed 

to create one asymmetry metric per frame. For the total asymmetry, the median of all values was 

calculated. 

Prior to the decision of the descriptive measure of the markers, all measurement distributions 

i.e., the distribution of measurements over all frames per marker, were tested for normality using 

the Kolgomorov-Smirnov test. The result showed a non-normal distribution for all markers. Close 

inspection revealed that the majority of distributions exhibit negative kurtosis and therefore, non-
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parametric measures such as the median have been chosen for the estimation of the expected value 

or the median absolute deviation for the measure of deviation. 

A more detailed illustration of the landmarks including their indices from all areas of interest 

(mouth, eyes and eyebrows) can be found in Supplementary Material 2-4. 

 

2.5. Statistical Analysis 

Because the one-sample Kolmogorov-Smirnov test revealed non-normal distributions of the 

proposed markers, between group differences were assessed using the Kruskal-Wallis test with 

the possible presence of outliers. Furthermore, the strength of between group differences was 

calculated using Cohen’s effect size (ES). The level of significance for testing between group 

differences was set to 𝛼 = 0.05. 

As a test for the relationship between perceptual analysis and the automated video-based 

analysis, spearman’s correlation coefficient was used for the merged MS- and HC-group. 

To estimate the ability to distinguish between MS patients and healthy control using the 

calculated markers, multinomial logistic regression was applied in combination with leave-one-

out cross-validation. In order to find the optimal combination of markers, multiple combinations 

have been considered with the aim to maximize the area under the receiver operating 

characteristic curve (AUC) using the grid-search approach. The regression model was then fitted 

using the determined optimal markers and the grouping categories “MS” or “HC” were chosen as 

the categorical outcomes for the algorithm with “MS” as the reference category. The algorithm 

fits the predictors to the following equation, that determines the log-odds of a sample belonging 

to the secondary category as opposed to the reference category. 

𝑙𝑛 (
𝜋𝐻𝐶
𝜋𝑀𝑆

) =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝛽𝑋3 (1) 

 The diagnostic accuracy of the classifier was then obtained from the receiver operating 

characteristic curve and reported. 
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Table 2 Description of analyzed facial areas and depiction of their estimation 

Marker Definition Illustration 

Eyebrows   
Eyebrow elevation / 

depression 

The normalized difference between the 

area under the curve of left and right 

variants of the normalized distance of one 

eyebrow centroid to the nose tip 

 
Eyebrow Curvature The absolute difference between left and 

right median absolute deviations of the 

eyebrow curvature angle between the 

directional vector of two lines fitted 

through half of each eyebrow  

Eyes   
Palpebral fissure dynamic 

behavior 

The normalized difference between the 

area under the curve of left and right 

variants of the total area encompassed by 

the eyelids  

Mouth   

Mouth corner elevation / 

depression 
The normalized difference between the 

area under the curve of left and right 

variants of the normalized distances 

between a centroid of the mouth corners 

taken from four landmarks and the nose tip  
 

Mouth corner horizontal 

movement 

The normalized difference between the 

area under the curve of left and right 

variants of the normalized distances 

between a centroid of the mouth corner 

and a centroid representing the middle of 

the mouth in each frame for each side 

 

Mouth asymmetry The median of the summed normalized 

distances between corresponding mouth 

landmarks from both sides when one side 

is mirrored onto the other side by the 

vertical mouth parting-plane (for 

simplicity, only one distance is marked) 
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 Results 

3.1. Between-group differences 

All results for each marker per group including their median and interquartile range (IQR) as 

well as effect size are summarized in Table 3. There was a statistically significant relationship for 

the mouth horizontal movement marker between the MS- and HC-group (𝜒2 = 5.41, 𝑝 = 0.02) 

with a median of 5.01e-5 for the MS-group and 2.37e-5 for the HC. The remaining markers did 

not reach the level of statistical significance, yet the mouth asymmetry marker (𝜒2 = 3.28, 𝑝 =

0.0699) and the mouth elevation depression marker (𝜒2 = 3.09, 𝑝 = 0.0787) suggest a possible 

trend, both showing also higher medians for the MS-group than for the HC. Moreover, the 

horizontal mouth marker reached the largest effect size (𝐸𝑆 =  0.818, 𝐶𝐼 = [0.179 1.45]), 

followed by the mouth asymmetry marker reaching medium effect size (𝐸𝑆 =  0.5046 , 𝐶𝐼 =

[−0.117 1.12]) and the mouth elevation/depression marker reaching small effect size (𝐸𝑆 =

 0.461, 𝐶𝐼 = [−0.158 1.09]). A visual illustration of the marker comparison is displayed in Fig. 

6.  

 

 

Table 3 Overview of Results 

# Feature HC MS Effect 

  Median IQR Median IQR Size 

Eyebrows      

(i) Elevation / Depression  0.971e-4 1.78e-4 1.34e-4 1.33e-4 0.00125 

(ii) Curvature 0.182 0.275 0.2321 0.364 0.234 

Eyes      

(iii) Palpebral Fissure 0.922e-7 1.30e-7 1.26e-7 1.14e-7 0.366 

Mouth      

(iv) Elevation / Depression 3.684e-5 6.15e-5 7.51e-5 8.49e-5 0.461 

(v) Horizontal 2.366e-5 2.12e-5 5.01e-5 6.48e-5 0.818* 

(vi) Asymmetry 1.98e-3 0.0018 2.43e-3 0.0011 0.505 

Asterisks denote significance of values: *p < 0.05 
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Fig. 6 Between-group differences for each facial marker 

The line in the boxplots represents the median and the boxes denote the 25th and 75th percentiles. Vertical lines denote the standard 

deviation. The Kruskal-Wallis test has been used to test for group differences: *p < 0.05. MS – Multiple Sclerosis group, HC – Healthy 

Control group 
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3.2. Comparison with perceptual assessment 

Spearman’s correlation coefficient revealed a significant positive correlation in the case of the 

mouth horizontal movement marker (𝑟 = 0.39, 𝑝 = 0.014). Other facial markers also showed a 

positive correlation coefficient, but not significant. Table 4 shows the summary of the correlation 

analysis.  

Table 4 Results for Spearman’s correlation coefficient for each marker 

# Feature Spearman’s correlation 

  r p 

Eyebrows   

(i) Elevation / Depression  0.0935 0.566 

(ii) Curvature 0.0565 0.729 

Eyes   

(iii) Palpebral Fissure 0.231 0.151 

Mouth   

(iv) Elevation / Depression 0.181 0.263 

(v) Horizontal 0.387 0.0137 

(vi) Asymmetry 0.245 0.128 

Asterisks denote significance of values: *p < 0.05 
 

 

3.3. Classification 

In the classification experiment, the best combination of markers to fit a multinomial logistic 

regression was determined using grid-search, followed up by leave-one-out cross-validation 

with AUC as the measure of performance. When considered separately, the mouth horizontal 

movement marker performed best (𝐴𝑈𝐶 = 0.64), followed by the mouth asymmetry marker 

(𝐴𝑈𝐶 = 0.55), the mouth elevation/depression marker (𝐴𝑈𝐶 = 0.53), the palpebral fissure 

marker (𝐴𝑈𝐶 = 0.49), the eyebrow curvature marker (𝐴𝑈𝐶 = 0.31) and lastly the eyebrow 

nose-distance marker (𝐴𝑈𝐶 ≈ 0) (see Table 5). The most performant combination of markers 

consisted of the mouth horizontal movement marker, the palpebral fissure marker and the 

eyebrow curvature marker. Together, they achieved the highest overall 𝐴𝑈𝐶 (0.71) with an 

accuracy of 63% (sensitivity of 65% and specificity of 60%). The receiver operating 

characteristic curve for this combination of predictors is displayed in Fig. 7. Performance 

metrics for the four best combinations of predictors are shown in Supplementary Material 1. 
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Table 5 Results of diagnostic sensitivity analysis for facial palsy listing AUC, sensitivity, specificity 

and accuracy for single facial paralysis markers 

# Feature AUC Sensitivity Specificity Accuracy 

Eyebrows     

(i) Elevation / Depression  0 0 0 0 

(ii) Curvature 0.31 0.60 0.30 0.45 

Eyes     

(iii) Palpebral Fissure 0.49 0.60 0.50 0.55 

Mouth     

(iv) Elevation / Depression 0.53 0.60 0.55 0.58 

(v) Horizontal 0.64 0.80 0.60 0.70 

(vi) Asymmetry 0.55 0.75 0.50 0.63 

AUC = Area under the curve 
 

 

 

 

 
Fig. 7 Receiver operating characteristic curve for the multinomial logistic regression using the 

mouth horizontal movement, eyebrow curvature and palpebral fissure marker  
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A summary of mean coefficients and deviations of the optimal multinomial logistic regression 

model with the three determined markers as predictors: mouth horizontal, palpebral fissure and 

eyebrow curvature can be found in Table 6. For the palpebral fissure predictor, the mean 

coefficient was equal to 𝛽1 =  −1.05 ∙ 107, indicating that the relative risk of a sample belonging 

to the group HC as opposed to MS decreases by 𝑒1.05∙107 with one unit increase of the predictor 

while all other predictors remain constant. Analogously, the risk would decrease for the mouth 

horizontal predictor with 𝛽2 =  −2.95 ∙ 104 and for the eyebrow curvature predictor with 𝛽3 =

 −1.82. The mean intercept was 𝛽0 =  3.10. 

 

 

Table 6 Multinomial logistic regression model coefficient statistics 

Predictors  𝝁 𝝈 95% CI 

Intercept 𝛽0 3.10 0.207 [0.573   5.62] 

Palpebral fissure  𝛽1 −1.05𝑒7 9.95𝑒5 [−2.24𝑒7   1.41𝑒6] 

Mouth horizontal movement  𝛽2 −2.95𝑒4 2.64𝑒3 [−5.42𝑒4   4.89𝑒3] 

Eyebrow curvature  𝛽3 −1.82 0.236 [−4.15    0.516] 

     

Deviance of the fit 43.2 1.11  

95% CI  – 95% confidence interval 

𝜎  – standard deviation 

𝜇  – mean 

The deviance of the fit denotes the sum of deviance residuals 
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 Discussion 

In this thesis, a novel approach to identifying facial manifestations in MS has been presented. 

The Face Mesh algorithm was successfully used to extract 478 face landmarks that have then 

been used for the design of 6 individual facial movement markers, describing the difference in 

symmetric movement from 3 distinct face regions: the eyebrows, the eyes and the mouth. Using 

the designed markers, facial movement of 20 MS patients and 20 healthy controls has been 

analyzed with an automatic facial movement parametrization algorithm. Subsequently, 

multinomial logistic regression has been applied to create a classifier between MS patients that 

exhibit signs of facial palsy and healthy controls. The overall objectives of this paper, to do the 

first employment of a deep learning based landmark detection algorithm in the field of MS, to 

analyze the disruption of facial movement in patients with MS and to propose an automatic and 

objective approach for facial movement parametrization in patients with multiple sclerosis have 

been achieved. The strength of this algorithm lies in its ability to categorize a possible disruption 

of facial movement from freely spoken monologue that is the most naturally available form of 

facial movements. A computerized method of assessing facial manifestations in MS has great 

potential as it is non-invasive, easily interpretable and inexpensive. Specifically, the employed 

facial landmark detection algorithm was designed for a robust performance on mobile phones, 

which provides great scalability for possible future application in a wider population and may 

enable easy at-risk population-screening as it only requires e.g., a video-call with any subject. As 

opposed to previous proposed facial nerve grading systems that all require a physician to execute 

the assessment, the computerized aspect of the presented approach is able to eliminate any 

subjective component from the assessment and adds reproducibility to the measurement; it marks 

the first approach of an automatic, objective and video-based assessment for facial manifestations 

in MS. The proposed classification algorithm was able to differentiate between the MS group and 

the healthy control group with only natural speech recordings as its input with a moderately high 

accuracy of 62.5% and an area under the receiver operating curve of 0.71. 

The three mouth markers were reported to have the most pronounced difference between the 

HC- and MS-group, with the mouth asymmetry marker reaching the level of significance 

(p < 0.05). This shows that facial asymmetry was by far best captured by analyzing the behavior 

of the opposing sides of the mouth. However, the reason of their above average performance may 

partly lie in the nature of the recordings, since in natural speech, the mouth shows the most 

voluntary movement, which inevitably may lead to a higher difference between groups because 

of more overall movement (McGettigan and Scott, 2014). Markers other than the mouth 

horizontal marker showed the expected trends towards decreased symmetry of facial movement 
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(see Fig. 6) but did not reach significance. The difference in mean ranks agrees with the design 

of the markers, where higher values indicate larger deviations from facial symmetry.  

In the comparison of the computerized analysis and the perceptual assessment of the merged 

group of MS and HC, every marker agreed with the perceptual assessment score, showing a 

positive correlation. The mouth horizontal marker here too showed the highest significant 

correlation which supports that the markers indeed work analogously to a perceptual assessment 

and can be used in the future to create a similar grading system as it exists in the perceptual 

assessment beyond a binary classification. The reason for the moderate levels of correlation may 

lie in the crude nature of the perceptual assessment scale and the relatively limited sample size.  

When considering highest performance of markers for the machine learning algorithm using a 

single predictor, the three markers describing movement of the mouth again performed best in the 

same order i.e., the mouth horizontal movement marker as best, then the mouth asymmetry marker 

and the mouth elevation/depression marker. On the contrary, the marker combination that led to 

the best overall AUC consisted of three markers, one of each examined separate facial region i.e., 

the eyebrow curvature marker, the palpebral fissure marker and the mouth horizontal marker. This 

may support the importance of regional assessment for classification in FNGS, as indicated by 

the many criticisms of the House-Brackman scale (Yanagihara and Hato, 2003; Di Stadio, 2015; 

Bansal et al., 2020). Remarkable is that the algorithm was able to distinguish moderately well 

between the two groups even though the patients were not asked to perform specific unnatural 

movements that are commonly used in FNGS to assess the performance of specific muscles such 

as raising the forehead or closing of the eyes (House and Brackmann, 1985; Di Stadio, 2015).  

A challenge to the performance of the landmark detection algorithm has been the natural head 

movements of the patients during the recording. As the head positions of the subjects were not 

fixed in order to not restrain the patient too much, subjects where free to move. Any head 

movement may have affected the sensitivity of the algorithm by introducing projection artefacts 

as noise to the measurement that can overshadow actual differences in movement between sides. 

Even though several steps have been made to minimize its effect, it may explain the lower 

between group differences of longer distance measure markers like the eyebrow 

elevation/depression marker. The low-frequency drift that is introduced by head movements could 

have eliminated small diversions in the relatively long distance between eyebrow and nose 

between the face sides. Nevertheless, distance markers concerning the mouth have performed 

much better, likely because the whole mouth is similarly affected by any head movement on both 

sides and the measured distances overall are smaller. For future applications, this challenge could 

be resolved or its effect further minimized either by determining the rotation and translation of 

each face by solving the pose computation problem and rotating the landmarks into a neutral 
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position (Marchand, Uchiyama and Spindler, 2016), or possibly by filtering the acquired 

measurements of both sides in order to eliminate the drift. It can be assumed that minimizing the 

issue of head movement will considerably improve the marker performance. Further limitations 

of this study include that the subjects were only European and, more specifically, Czech native 

speakers. This may raise uncertainty about the algorithm’s performance for different ethnic 

groups. The markers however are mostly based on normalized distances, reducing the impact of 

differing facial features. Plus, the Face Mesh algorithm has been trained on 30k in-the-wild photos 

that include all ethnic groups. Lastly, the size of the database presents a limiting factor for this 

work that reduces the power of statistical inference. Because of this, no Bonferroni correction for 

multiple comparison has been applied as it would be too strict at 𝛼 = 0.05
6

= 0.0083̅. With a 

bigger database, features that showed to be significant or close to it e.g., the mouth markers, may 

reach higher significance that will be important for possible future applications such as clinical 

assessment. 

For future works, this analysis may be rerun on an enlarged database and may be enhanced 

with regards to the noises introduced from the nature of the landmark detection. The selection of 

proposed markers can also be extended e.g., markers for the cheek movement or forehead 

movement can be introduced to explore further areas to possibly observe facial asymmetry and 

ensure a more robust classification.  

On top of that, the proposed solution shows great possibilities for future applications. On one 

side, it has high potential to be expanded into a variety of use-cases e.g., creating a mobile version 

of the algorithm to minimize the threshold for the at-risk population of attending an examination. 

Or, on the other side, the proposed algorithm may be expanded to assess other facial 

manifestations such as facial myokymia or hemifacial spasm. With revised markers, a regional 

score can be implemented in addition to an overall score, allowing a precise tracking of disease 

development or treatment impact. 
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4.1. Objectives of this thesis – completion 

(1) The application of a deep learning based landmark detection algorithm to extract key 

points of facial expressivity of the subjects for further analysis 

 

 I have successfully applied Google’s Mediapipe toolkit to extract facial landmarks. 

Based on these landmarks, six parameters describing the disruption of facial movement 

were extracted. 

 

(2) The analysis of disruption of facial movement in patients with multiple sclerosis 

 

 I have found significant differences in the symmetry of mouth movement. The proposed 

marker shows positive correlation with perceptual assessment. 

 

 

(3) The proposition of an automatic approach for facial movement parametrization in 

patients with multiple sclerosis that exhibit signs of facial paralysis 

 

 I have employed a fully automatic approach as a classification experiment reaching an 

AUC of 0.71, showing the utility of fully automatic video-based assessment of facial 

symmetry in MS. 
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 Conclusion 

In conclusion, this work presented a fully automatic, video-based approach to analyzing 

asymmetries in facial movements for patients with multiple sclerosis. It has successfully been the 

first employment of a deep learning based facial landmark detection algorithms in the analysis of 

facial manifestations in MS. A total of six facial movement markers have been proposed to 

parametrize asymmetric movement of the face. Significant differences were found in the face 

symmetry between MS patients with facial palsy and a healthy control group. Subsequently, a 

machine learning categorization algorithm, multinomial logistic regression, showed the 

applicability of the presented approach to automatically detect signs of facial paralysis and differ 

between the two groups. Results of this work confirmed and emphasized the need of regional 

assessment in the evaluation of facial movement disruption, the utility of an automated objective 

tool for facial disruptions in MS and presents disruption of facial movement as a possible disease 

biomarker.  
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Supplementary Material 

Supplementary Material 1 Results of diagnostic sensitivity analysis showing AUC, sensitivity, 

specificity and accuracy for the four best predictor combinations 

Predictor combination AUC Sensitivity Specificity Accuracy 

Best Performing 

0.713 0.65 0.6 0.63 
(i)  Eyebrow curvature 

(ii) Palpebral Fissure 

(iii) Mouth horizontal 

2nd Best 

0.695 0.70 0.60 0.65 

(i)  Eyebrow curvature 

(ii) Palpebral Fissure 

(iii) Mouth horizontal 

(iv) Mouth elevation/depression 

(v) Mouth asymmetry 

3rd Best 

0.693 0.65 0.55 0.60 

(i) Palpebral Fissure 

(ii) Mouth horizontal 

(iii) Mouth elevation/depression 

(iv) Mouth asymmetry 

4th Best     

(i) Eyebrow curvature 

0.690 0.70 0.55 0.63 
(ii) Palpebral Fissure 

(iii) Mouth horizontal 

(iv) Mouth asymmetry 

AUC = Area under the curve 
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Supplementary Material 2 Close up view the eyebrow landmarks of the Face Mesh landmark 

detection algorithm 

 

 
Supplementary Material 3 Close up view of the eye landmarks of the Face Mesh landmark 

detection algorithm 

 

 
Supplementary Material 4 Close up view of the mouth landmarks of the Face Mesh landmark 

detection algorithm  
 




