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Abstrakt / Abstract

Cieľom tejto práce je vytvoriť pipe-
line na detekciu a klasifikáciu kožných
lézií v rozsiahlych snímkach pomocou
modelov klasifikácie obrazu a detekcie
objektov založených na konvolučných
neurónových sieťach a hlbokom učení.
Prvá časť práce je zameraná na teore-
tické východiská počítačového videnia
a metód hlbokého učenia pri klasifiká-
cii obrazu a detekcii objektov. Potom
opisujeme state-of-the-art v diagnos-
tike kože pomocou metód počítačového
videnia. Trénujeme a vyhodnocujeme
výkonnosť state-of-the-art metód kla-
sifikácie obrazu a modelov detekcie
objektov na snímkach kožných lézií.
Vytvárame vlastný dataset snímok
kožných lézií a testujeme výkonnosť
modelu detekcie objektov na tomto sú-
bore údajov. Nakoniec spojíme modely
klasifikácie obrazu a detekcie objektov
do jedného pipeline-u, ktorý sa dá po-
užiť na detekciu klasifikáciu kožných
lézií na snímkach kože bez akejkoľvek
manuálnej intervencie používateľa.

Kľúčové slová: CNN, kožné lézie, kla-
sifikácia obrázkov, detekcia objektov, hl-
boké učenie, počítačové videnie

This thesis aims to create a pipeline
for the detection and classification of
skin lesions in wide-area images using
CNN-based image classification and ob-
ject detection models. The first part of
the thesis is focused on the theoretical
background of computer vision and deep
learning methods in image classification
and object detection. Then we describe
the state-of-the-art in skin diagnosis
using computer vision methods. We
train and evaluate the performance of
state-of-the-art image classification and
object detection models on skin lesion
images. We also create our own dataset
of wide-area skin lesion images and test
the performance of the object detection
model on this dataset. Lastly, we com-
bine the image classification and object
detection models into a fully-automated
pipeline, which can be used to classify
skin lesions in wide-area images without
any manual intervention.

Keywords: CNN, skin lesions, image
classification, object detection, deep
learning, computer vision
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Chapter 1
Introduction

Skin diseases are among the most common and costly health conditions worldwide
[1] and according to WHO, every third cancer diagnosed is skin cancer1. There were
approximately 57000 deaths caused by melanoma in 20202, which is one of the most
common malignant skin lesions.

This thesis focuses on the diagnosis of skin lesions using deep learning methods for
image classification and object detection. The goal of this thesis is to develop a method
for automatic detection and classification of skin lesions. The method is able to detect
skin lesions in wide-area images and classify them into one of the common types of skin
lesions. A new dataset of wide-area skin lesion images is created for the purpose of this
thesis.

Dermatologists examine skin lesions by visual inspection and by using dermoscopy,
which is a non-invasive technique that allows for a magnified view of the skin lesion.
The other method is a biopsy, which is a surgical procedure that involves the removal of
a small sample of the skin lesion for further analysis. Another method, called the ABCD
rule can be used by non-specialists to distinguish between benign and malignant skin
lesions. The rule is based on the following characteristics of the skin lesion: asymmetry,
border irregularity, color variation, and diameter [2].

Detecting melanoma, at an early stage can significantly improve the patient’s prog-
nosis [3]. Therefore, it is important to develop a method that can detect skin lesions
automatically, which can help not only dermatologists but also ordinary people to de-
tect melanoma in the early stages. Such methods include Computer-Aided Diagnosis
(CAD) systems. Developing CAD systems is a challenging task; while dermoscopy
photos are often of high quality, with the same lighting conditions, and taken from the
same distance or angle of view, the photos of skin lesions taken by patients can be of
different distances, angles, lighting conditions, and quality. Therefore, it is important
to develop a method that can diagnose skin lesions in different conditions.

1.1 Problem definition
The objective of this thesis is to develop a method for automatic detection and clas-
sification of skin marks and skin lesions (objects of interest) from medium-scale skin
images. The thesis is focused on the following tasks:

. Using existing state-of-the-art methods for object detection, train and evaluate their
performance on the 2D images from the Skin3D dataset (see “Sec. 5.1”).. Using existing state-of-the-art methods for image classification, train and evaluate
their performance on the available data. Study the performance as a function of
image quality - resolution, blur, color changes, etc.

1 https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv)-
radiation-and-skin-cancer
2 https://gco.iarc.fr/today/data/factsheets/cancers/16-Melanoma-of-skin-fact-sheet.pdf

1

https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv)-radiation-and-skin-cancer
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https://gco.iarc.fr/today/data/factsheets/cancers/16-Melanoma-of-skin-fact-sheet.pdf


1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Acquire a dataset using different types of cameras (smartphone, DSLR) and evaluate

the developed methods on this data.. Build a pipeline that combines both image classification and object detection into a
fully automated system

1.2 Structure of the thesis
The thesis is divided into 9 chapters. In the second chapter, we discuss the related
work in the field of object detection. The third chapter is dedicated to the related work
in the field of image classification. In the fourth chapter, we discuss the related work
in the field of skin lesion diagnosis, which includes both image classification and object
detection methods, as well as matching methods. Lastly this chapter also discusses ap-
plications available for users to self-diagnose skin lesions. The fifth chapter is dedicated
to the available datasets of skin lesions and we introduce our own dataset of wide-area
skin lesion images, called DermaNude. In next 3 chapters, we discuss our approach to
the problem of skin lesion diagnosis—detection, classification and creation of a pipeline
that combines both into a fully automated system. In the ninth chapter, we discuss the
achieved goals of the thesis and discuss the possible future work.
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Chapter 2
Object Detection

One of the goals of this thesis is to localize PSLs (Pigmented skin lesions) in images
of skin. To understand the state-of-the-art of localization of PSLs in images, it is
necessary to understand the current state-of-the-art in object detection generally. Ob-
ject detection is a computer vision task of localizing objects in images by predicting
bounding boxes around them. The problem has been studied for many years and many
different algorithms have been developed. Object detection can be split into two main
categories: object detection based on methods not using neural networks and object
detection based on methods using neural networks.

2.1 Traditional detectors
One of the most notable algorithms for object detection of the first category is the
Viola-Jones detector [4]. The Viola-Jones detector consists of three main stages: the
first stage is the Haar feature selection, the second stage is the AdaBoost training and
the third stage is the cascade classifier. The Haar-like feature selection is a method for
extracting features from images. The Haar-like features are rectangular patterns that
capture the contrast between the pixels within the feature area. The algorithm applies
these features to every possible location in the image and calculates the difference
between the sum of the pixels in the white area and the sum of the pixels in the
black area. The next step is to train the classifier using the AdaBoost algorithm. The
AdaBoost algorithm is used to select the most important features and to distinguish
between object and non-object regions. The last step is to combine the classifiers into
a cascade of classifiers. The cascade of classifiers is used to reduce the number of false
positives.

The next algorithm for object detection from the first category is the HOG (His-
togram of Oriented Gradients) detector [5]. The HOG detector is based on the HOG
descriptor. The HOG descriptor is a feature vector that describes the shape of an ob-
ject. The HOG descriptor is calculated by dividing the image into cells and calculating
the gradient histogram for each cell. The local gradient histograms are then normalized
and concatenated into a single feature vector. The HOG detector is trained using the
SVM (Support Vector Machine) algorithm. The SVM algorithm is used to find the
optimal hyperplane that separates the object and non-object regions.

The next algorithm for object detection from the first category is the DPM (De-
formable Part Models) detector. The DPM detector was firstly introduced by Felzen-
szwalb et al. in 2009 [6]. It was developed as a successor to the HOG detector. It is
based on the method of breaking down the objects into smaller parts and analyzing
them separately.

2.2 Neural network detectors
Neural network detectors can be divided into two groups: the first group is the one-stage
detectors and the second group is the two-stage detectors. The one-stage detectors use

3



2. Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a single CNN stage to directly predict the location of the objects in an image. The
two-stage detectors have an initial stage to propose regions of interest and a second
stage to classify the regions of interest.

2.2.1 Two stage detectors
In 2014, R. Girshick et al. [7] introduced RCNN (Regions with CNNs). They achieved
state-of-the-art results on the PASCAL VOC 2007 dataset—58.5% mAP compared to
33.7% mAP by previous state-of-the-art method [6]. The RCNN firstly uses a selective
search algorithm to generate region proposals. For each region proposal, a feature
vector is extracted using the CNN. The feature vectors are then passed through a
linear SVM classifier to determine the presence of an object as well as the class of the
object it belongs to. The RCNN’s main drawback is the speed. The RCNN is very slow
because it uses 2000 region proposals per image. RCNN is not suitable for real-time
applications.

In the next years, new models were introduced improving the speed and accuracy of
object detection. In 2014, K. He et al. [8] introduced the SPPNet (Single Shot Multibox
Detector). SPPNet is 24–102 times faster than RCNN. The mAP of SPPNet is 59.2%
on the PASCAL VOC 2007 dataset. In 2015, R. Girshick [9] introduced the Fast R-
CNN followed by the Faster R-CNN [10]. The Faster R-CNN increased both, the speed
and the accuracy—73.2% mAP on the Pascal VOC 2007 dataset. The architecture of
the Faster R-CNN may be seen in “Fig. 2.1”.

In 2017, T. Lin et al. [12] introduced the FPN (Feature Pyramid Networks). The
FPN is a top-down architecture with lateral connections. It generates a pyramid of
feature maps with strong semantics at all levels from a single input image. The FPN
serves as a backbone network for region proposal networks (RPNs). FPN provides
multi-scale feature pyramids where each level corresponds to a different scale of the
input image, allowing for better detection of objects at different sizes. The FPN is used
as a backbone network for many object detection algorithms.

2.2.2 One stage detectors
In 2016, J. Redmon et al. [13] introduced the YOLO (You Only Look Once) algorithm
as a first one-stage detector. The YOLO model processes images at a speed of 45 frames
per second (fps). The mAP of YOLO is 63.4% on Pascal VOC 2007 dataset. During
the following years, many improvements to the YOLO algorithm were introduced, im-
proving speed, accuracy, changing the architecture of the network. The YOLOv1 [13]
process of detection starts with dividing the input image into S ×S grid cells. Each grid
cell predicts B bounding boxes and confidence scores for each of the bounding boxes.
It also predicts C class probabilities for each bounding box. These predictions form a
tensor described as S ×S × (B ×5+C). Each bounding box is described by 5 variables:
x, y, w, h, c. The variables x, y are the coordinates of the center of the bounding box.
The variables w, h are the width and height of the bounding box. The variable c is
the confidence score of the bounding box. Low confidence score bounding boxes are
filtered out using the predefined confidence threshold. The bounding boxes are then
sorted by their confidence score and the non-maximum suppression algorithm is applied
to remove overlapping bounding boxes. The basic workflow of the YOLOv1 model is
shown in “Fig. 2.2”. The YOLOv1 network consists of 2 parts—the backbone network
and the head. The backbone network is a convolutional neural network that extracts
features from the input image. The head of the network is a fully connected layer that
turns the features extracted by the backbone network into the prediction tensor. The
backbone network is a 24-layer convolutional neural network.

4
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Figure 2.1. General architecture of the R-CNN models. From top to bottom: RCNN,
Faster RCNN and Fast RCNN. Modified image from [11].
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S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

Figure 2.2. Basic workflow of YOLOv1 model. [13]

The authors of the YOLOv1 introduced also the YOLOv2 (YOLOv9000) [14] and
YOLOv3 networks [15].

For a backbone network of the YOLOv3 algorithm, the authors decided to use the
Darknet-53, while YOLOv2 uses the Darknet-19. The latter uses 19 convolutional
layers, while the former uses 53 convolutional layers. YOLOv3 further distinguishes
itself from YOLOv2 and YOLOv1 by using a similar architecture to the FPN. The
format of the predictions is also different. YOLOv3 predicts three bounding boxes per
grid cell at different scales. The prediction tensors are described as S × S × (3×5+C),
then (2 · S) × (2 · S) × (3 × 5 + C) and finally (4 · S) × (4 · S) × (3 × 5 + C). This can
be combined and written as N × N × (3 × 5 + C). The YOLOv3 increased detection
accuracy for small objects. [15]

In 2020, Alexey Bochkovskiy et al. introduced the YOLOv4 algorithm. It is the first
YOLO version that is not created by the authors of the original YOLO algorithm. The
YOLOv4 algorithm uses the CSPDarknet53 backbone network. The CSPDarknet53 is a
modified version of the Darknet53 network. The second part of the YOLOv4 network is
the Neck. The Neck consists of the SPP (Spatial Pyramid Pooling) block and the PAN
(Path Aggregation Network) block. The SPP block is used to extract features from the
input image at different scales. The PAN block is used for parameter aggregation from
different backbone levels. The last part—the YOLOv3 head. [16]

In 2022, Alexey Bochkovskiy et al. upgraded the YOLOv4 which yielded the
YOLOv7 algorithm. The YOLOv7 introduces Extended Efficient Layer Aggregation
Network (EELAN). This paper also introduces the concept of Trainable Bag of Freebies
(TBoF) which is a reparameterization algorithm. [17]

In 2015, W. Liu et al. [18] introduced the SSD (Single Shot MultiBox Detector)
network. The algorithm generates a set of default boxes over different aspect ratios and
scales per feature map location. The SSD network then predicts the class probabilities
and bounding box offsets for each of the default boxes.

In 2017, F. Lin et al. [19] introduced the RetinaNet network. The paper introduces
the new loss function for object detection, the Focal Loss. The Focal Loss is a general-
ization of the cross-entropy loss. The Focal Loss is used to address the problem of the
class imbalance between the foreground and background classes.

In 2019, H. Law et al. [20] introduced the CornerNet network. The CornerNet
network brings a new approach to object detection. The CornerNet detects objects as
a set of keypoints—top left and bottom right corners of the bounding box. By this
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method, there is no need to use anchor boxes. CornerNet achieves state-of-the-art
results on the COCO dataset.

In 2019, X. Zhou et al. [21] introduced the CenterNet network. The CenterNet
network considers objects to be the center points of the bounding boxes. The network
then regresses other parameters such as size, orientation, pose, 3D location.

In 2020, M. Carion et al. [22] introduced the DETR network (DEtection TRans-
former). The DETR network uses transformer architecture which is a new state-of-the-
art type of neural network architecture. Their approach does not use Non-Maximum
Suppression (NMS) and anchor boxes.
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Chapter 3
Image classification

One of the goals of this thesis is to classify PSLs into classes. To understand the state-
of-the-art of classification of PSLs in images, it is necessary to understand the current
state-of-the-art in image classification generally. The image classificators for classifi-
cation can be divided into two main categories: the approaches using the traditional
computer vision techniques and the approaches using deep learning. The traditional
approaches include k-Nearest Neighbors, Support Vector Machines, Naive Bayesian al-
gorithm, etc.

The deep learning approaches are based on convolutional neural networks (CNN).
In 2012, A. Krizhevsky et al. [23] introduced the AlexNet architecture, which

achieved state-of-the-art results on the ImageNet dataset.
K. Simonyan, from Visual Graphics Group (VGG) from Oxford University introduced

the VGGNet architecture in 2014. One of the key contributions of VGGNet was the
introduction of the concept of deepness in convolutional neural networks. The model
consisted of up to 19 layers, which was much deeper than previous state-of-the-art
models such as AlexNet. [24].

Ch. Szegedy et al. [25] introduced GoogleNet also known as InceptionNet in 2014.
This architecture was designed to address the limitations of previous state-of-the-art
models, such as VGGNet, which had a large number of parameters and required a lot of
computational power. Another key contribution of InceptionNet was the introduction
of the concept of inception modules which allowed the model to learn both local and
global features.

ResNet or Residual Network was introduced by K. He et al. in 2015. The main
contribution of the ResNet architecture was the introduction of the residual connections,
which allows the model to learn from the residual error between the input and the
output of the layer. This architecture was designed to address the problem of vanishing
gradients, which was a major problem in the previous state-of-the-art models [26].

In 2016, S. Xie et al. [27] introduced ResNeXt architecture, which is based on
the ResNet architecture. ResNeXt builds upon the ResNet architecture by using a
split-transform-merge strategy to learn more diverse and powerful feature represen-
tations. This strategy involves creating a large number of parallel pathways (called
cardinality) within the network and then aggregating the information from all these
pathways using a merge operation. By doing so, ResNeXt can capture a broader range
of features and achieve state-of-the-art performance.

In 2017 S. Howard et al. introduced MobileNet family of models [28], which are
based on the concept of depthwise separable convolutions. These convolutions are
designed to reduce the number of parameters and computational power required by
the model. Therefore the MobileNet models are suitable for mobile devices. Instead of
standard convolutional layers, the MobileNet models perform two types of convolutions:
depthwise convolution and pointwise convolution. The depthwise convolution applies
a single filter to each input channel, pointwise convolution combines the output of the
depthwise convolution using 1x1 convolutional filters.
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In 2019 M. Tan and Q. V. Le introduced a family of EfficientNet models [29], which
are based on the concept of compound scaling. The idea is to scale the width and
depth of the network in a compound way, which allows to achieve better results with
less computational power. The family of EfficientNet models consists of 8 different
models, which differ in the scaling factor of the width and depth of the network. The
EfficientNet networks achieve state-of-the-art results on the ImageNet dataset.

3.1 Ensemble models
The common approach to improve the performance of the image classification models
is to use ensemble models. The ensemble models combine the predictions of multiple
models into a single prediction. The general equation for the ensemble model is as
follows:

Y ∗(x) =
N∑

i=1
wiy

∗
i (x)

where Y ∗(x) is the ensemble model’s prediction, y∗
i (x) is the i-th model’s prediction

and wi is the weight of the i-th model. The weights determine the importance or
contribution of each model to the final prediction. The ensemble models generally
improve the performance of the models and are more robust. However they are more
computationally expensive.
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Chapter 4
State of the art

In this chapter we shall describe the state of the art in the field of computerized diagnosis
of PSLs. This include the available datasets, types of the datasets and the methods
used for PSL (Pigmented skin lesion) diagnosis. Firstly we describe the state-of-the-art
in the field of object detection of PSLs, then we describe the state-of-the-art in the field
of image classification of PSLs. Lastly we describe the state-of-the-art in the field of
self-examination systems for PSLs.

4.1 Detection of PSLs
In 1989, D.A. Perednia et al. [30] used Laplacian-of-a-Gaussian (often referred to as
the Marr-Hildreth filter), to detect borders of the skin lesions. Later, in 1991, they
introduce the method, that considers the images to be 3D images where brightness is
considered to be height, the skin features appear as ’pits’. These brightness pits are
then used for detection by kNN or Fisher’s MDA algorithm [31]. Later, they combined
multiresolution hierarchical segmentation with the region-growing algorithm and neural
network for the detection of PSLs, which resulted in human-like performance in [32].

B. McGregor [33] explores the use of a computerized image registration technique
to align and compare non-dermoscopy images of pigmented skin lesions. Their method
has been restricted to the images of torso.

Tim K. Lee [34] proposed a method for counting the skin lesions of the wide area
photo of the back. The method involves pre-processing the image, applying mean shift
filtering and region-growing techniques to identify candidate moles.

In 2007, T.S. Cho et al. [35] presented a framework to detect PSLs. Firstly, they
detect pixels containing skin, then the skin regions are processed with a Gaussian filter
to propose the candidate regions. The candidate regions are then classified using the
SVM classifier. If the hair is present in the image, it is removed to increase accuracy
by using various filter techniques.

J.S. Pierrard et al., [36] in 2007 presented a framework for skin lesion detection on
images of a face. The model detection is based on normalized cross-correlation matching
where the Laplacian-of-Gaussian filter is applied beforehand.

K. Korotkov in his research [37–39] explored the way to match and track skin lesions
in time from whole body 2D scans. 2D scans of the whole body are taken from 23
turntable positions. The research matches the skin lesion by executing two methods.
Firstly by finding intra-exploration and later inter-exploration correspondences. Intra-
exploration is a method to match skin lesions on images acquired during one exploration.
Inter-exploration is a method to match skin lesions on images from successive scans.
The intra-exploration in Korotkov’s thesis is divided into several steps. Firstly the skin
lesions are detected. For detection, the research works with MSER (maximally stable
extremal regions). MSER [40] is a feature extraction technique which works by identi-
fying regions of an image which are stable under small intensity variations. The method
requires a lot of manual tuning of parameters and preprocessing of the images. Then,
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the homography transformation of MSER patches around detected moles is computed
by using SIFT (Scale-invariant feature transform). The SIFT correspondences are then
loaded to RANSAC (Random sample consensus) algorithm. The SIFT followed by
the RANSAC algorithm for skin lesion registration is described in detail in a study by
Anagnostopoulos et al. [41]. The stereo pairs are created from the images of the same
skin lesions from different cameras, then the stereo pairs are triangulated. The stereo
pairs are created and triangulated for every turntable position. Then, the mole sets are
acquired from skin lesions in each turntable position. Then, the triangulated moles can
be grouped into mole sets. Finally, the mole sets from adjacent positions are merged
to create a mole map of the whole body. Korotkov’s work uses a naive approach for
inter-exploration skin lesion matching. It assumes, that the skin lesion which has been
photographed by camera C at position P in one screening session is at the same/similar
C-P relation at second screening. The SIFT and RANSAC algorithm is used for lesion
matching across regions of interest. The author also states the matching problem of
skin lesions in case of patients with a lot of body hair.

Skin3D of Mengliu Zhao et al. [42] uses 3D images of the whole body and uses new
algorithms for detection and tracking of skin lesions. The contribution of this research
is also in the form of manual annotation of 3DBodyTex dataset discussed in “Sec. 5.1”.
The 3D meshes are expanded into 2D texture images. The skin lesions are detected
using R-CNN on these 2D texture images using the bounding boxes. The unwrapping of
images to 2D has been chosen due to the time consumption of the 3D annotation process
by human annotators. For tracking lesions in time it is necessary to map detected skin
lesions back into 3D coordinates. For anatomically corresponding vertices across scans
the work relies on 3D-Coded [43]. The research works with the optimization of 3D
geodesic distances between vertices of registered meshes. However, research by Bogo et
al. [44] suggested to register the meshes to a mesh template with unified UV mapping,
then the pixel locations are compared in the texture images which leads to identifying
the skin lesions. The problem with this method is, that sometimes anatomically close
distances between lesions may translate into large distances in 2D texture images. Zhao
et al. further expands on the problem of appearing and disappearing skin lesions, either
due to lack of visibility or natural disappearance/appearance, by using a “dummy node”.

Ahmedt-Aristizabal et al. [45] also researched the way of detection and longitudinal
tracking of skin lesions. Their approach uses a compilation of whole-body databases—
FAUST, 3DBodyTex, 3D human models from Renderpeople (see “Sec. 5.1”), and syn-
thetic images generated from these models. This work uses Scaled-YOLOv4 for skin
lesion detection. For anatomically corresponding vertices across scans the research uses
LoopReg [46] instead of 3D-Coded, which is used in Skin3D work by Mengliu Zhao et
al. The work then matches the skin lesions using the geodesic distance. The work does
not explore the problem regarding the appearing and disappearing skin lesions.

Works by Korotkov, Zhao et al., and Ahmedt-Aristizabal et al. are focused on the
detection and tracking of skin lesions in time. However these, works do not explore the
problem of skin lesion classification.

4.2 Classification of PSLs

The Section about state-of-the-art in the classification of PSLs is divided into two parts.
The first part describes the traditional methods used for the classification of PSLs. The
second part describes the deep learning methods used for the classification of PSLs.
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F. Xie et al. developed a novel method for the classification of PSLs [47] into benign and
malignant. Their method consists of three steps. Firstly, lesions are extracted using
a self-generative neural network. The second step was focusing on feature extraction
such as color, texture, lesion border. In total, 57 features are extracted. They use
Principal components analysis (PCA) to reduce the dimensionality of the features. In
the last, the third step, skin lesions are classified using an ensemble of neural networks.
Their work also compares the proposed method with other common methods used for
classification such as Random forest, kNN, SVM, etc. In conclusion, their method
achieved a better score (by 7.5%) than common classifiers. The work uses PH2 (see
“Sec. 5.1”), EDRA datasets, as well as dataset provided by Chinese People’s Liberation
Army General Hospital.

A. Masood et al. [48] compare three different ANN (Artificial neural networks)
methods for image classification applied on classification of PSLs. The methods are
Levenberg-Marquardt, Resilient Backpropagation and Scaled Conjugate Gradient.
Most of the images in their dataset come from the Melanoma Diagnostic Centre, Royal
Prince Alfred Hospital and Hôpital Charles Nicolle CHU Rouen in France. They
rescale the images into 150x150 with a bit depth of 24. Levenberg-Marquardt method
performed best with a specificity score of 95.1%.

W.F. Cueva et al. [49] proposed a system for the classification of PSLs based on
extraction of features according to the ABCD rule. PSLs are segmented using the
method called Mumford-Shah. It is used to detect the area, center, and diameter of
binary images. These parameters are then used to determine if the PSLs are symmetric
or asymmetric. Border irregularity is extracted by the Harris-Stephens algorithm. Color
extraction is done by using HSV color space. The system uses backpropagation feed-
forward ANN and classifies PSLs into 3 classes—common, non-common, and melanoma.

J.A. Jaleel et al. [50] proposed ANN based system for the classification of PSLs. The
system classifies dermoscopy images in a few steps. The first step is image processing,
followed by image segmentation to remove healthy skin from the mole. The image
segmentation is done by thresholding. The system uses a 2D-wavelet transform to
extract features from the segmented images (mean, standard deviation, mean absolute
deviation, L1 norm, L2 norm). The last step is to classify PSLs, this is done by using
backpropagation feed-forward ANN. The system uses 2 classes—cancerous and non-
cancerous.

R.B. Aswin et al. [51] introduced a new method using for dermoscopy PSLs classifi-
cation using the genetic algorithm and ANN. Their method consists of 4 steps. Firstly,
the images are pre-processed by using hair removal software called Dullrazor [52]. The
second step-segmentation uses Otsu color thresholding. The third step is a feature
extraction. Two feature extraction methods were employed—GLCM (Gray level co-
occurence matrix) and normalized red, blue, green color features. Seven features are
extracted and passed to ANN. The ANN used in this work is optimized by the Ge-
netic algorithm. The output of the classifier is cancerous or non-cancerous class. The
accuracy achieved by this sytem is 88%.

4.2.2 Deep learning methods
Previously, the research works used mostly hand-crafted features for the classification
of PSLs or used shallow neural networks. L.Yu et al. [53] proposed a novel method
for the classification of melanoma using deep learning. The deeper neural network is
used to extract richer features from the image of PSLs. The proposed work consists of
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two main steps—segmentation and classification. The segmentation is done by Fully
Convolutional Residual Network (FCRN) which has 16 residual blocks. The classifica-
tion is done by using a similar network as FCRN for segmentation. The classification
is given by average of Softmax and SVM. The accuracy of this automated method is
85.5 % with segmentation and 82.8 % without segmentation. The dataset used in this
work is ISIC 2016 [54]. This work won the classification part of the ISIC2016 challenge
with 64% balanced accuracy.1

K. Matsunaga et al. [55] used the approach of ensembling models. They formed
a classification model which classified PSLs into 3 classes—melanoma, nevocellular
nevus, and seborrheic keratosis. Their approach formed modified ResNet-50 for binary
classification of Seborrheic keratosis and the rest of the classes. Then they used modified
ResNet-50 for binary classification of melanoma and rest. Metadata such as age and
sex are used as input after the images are passed through the ResNet-50. The last step
is to classify the images into 3 classes. The proposed method achieved first place with
a balanced accuracy of 91.1% in the ISIC2017 challenge. 2

D.B. Mendes et al. [56] proposed a deep CNN based on ResNet152 architecture
to classify 12 different types of PSLs. The work uses a combination of the MedNode
dataset and the Dermofit Image Library, both discussed in see “Sec. 5.1”. The accuracy
of this method is 78%.

U.O. Dorj et al. [57] propose a method for the classification of PSLs into 4 classes.
AlexNet followed by SVM is used for classification. The work formed a custom dataset
by searching for images on the internet (the work does not specify the source of the
images). The research reports average accuracy between 91.8% and 95.1% for the 4
classes.

The best solution in the ISIC20183 for the classification by A. Nozdryn-Plotnicki et
al. [58] trained more than 15 different models, including different versions of ResNet,
SeResNeXt, InceptionNet etc. Then the models were ensembled. Then the yielded
probabilities are considered as features, passed to the XGBoost classifier for training.
Their best model (ensemble of 10 models) achieved an accuracy of 88.5% in the ISIC2018
challenge.

N. Gessert et al. [59], the winning solution of the ISIC20194 challenge, trained
various models (mostly models from the EfficientNet family) and formed an ensemble
from them. They report a sensitivity of 72.5% and an AUC of 95.4%. Among 9 classified
classes was also an unknown class of lesions. Their second approach using images with
metadata achieved sensitivity of 74.2%.

Q. Ha et al. [60] trained 18 models: various instances of EfficientNet-B3, B4, B5,
B6, SE-ResNext101, ResNet101. The models’ output size was 9, however, the objection
was to classify benign and malignant lesions, so the output was later reduced to 2. The
method also used 14 metadata features. The metrics reported include only AUC which
is 0.96. The solution ranked 1st in the ISIC2020 challenge5.

4.3 Self-examination systems for PSLs
In this section, we shall describe the state of the art in self-examination systems for
PSLs, which can be used by anybody to diagnose their PSLs.
1 https://challenge.isic-archive.com/leaderboards/2016/
2 https://challenge.isic-archive.com/leaderboards/2017/
3 https://challenge.isic-archive.com/leaderboards/2018/
4 https://challenge.isic-archive.com/leaderboards/2019/
5 https://www.kaggle.com/competitions/siim-isic-melanoma-classification/leaderboard
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D.E. Webster et al. [61] developed a mobile application for the self-examination of

PSLs. The general workflow of the application is as follows. The user selects a location
on the body from 59 locations. The user then takes a picture of the selected location
and drags and drops a pin on the moles. Then the user takes a picture of the specific
mole, but a reference subject (US coin, ruler, etc) must be in the picture as well. Two
circular regions are drawn on the screen, one for the reference subject and one for the
mole. The user is instructed to drag and resize the circles to match the size of the
reference subject and the mole. This is done to calculate the size of the mole. This
way the user can compare the size changes of the moles over time. The calculations are
done on the device, where the data is stored. However, the user can opt to upload the
data to the server. The limitation of this system is its availability only to devices with
iOS operating system1.

m-Skin Doctor developed by M.A.Taufiq et al. [62]. The system works as follows.
The Gaussian filter removes the noise from the image. Segmentation is done by the
GrabCut algorithm [63]. The classification is done by SVM. The system has been
developed for Android devices (at least Android 4.0 is required), however, it is not
available to the general public. The reported accuracies on the dataset used (provided
by Klinik und Poliklinik für Dermatologie und Allergologie, Technische Universitat
Munchen, Germany) in this work are 80% for melanoma and 75% for non-melanoma.
The research also reports the time to classify the image as ∼ 15 seconds.

SkinVision2 is a commercial system available for iOS and Android devices. The
algorithm achieves up to 95% sensitivity of detecting skin cancer [64–66]. The user
takes a picture a of single lesion and the system classifies it. The classifier uses a
Conditional Adversarial Network Algorithm followed by SVM [65]. It is available for
iOS and Android devices.

I. Kousis et al. [67] developed an application for Android devices (at least Android
8.0), which enables user to take a picture of a lesion, crop it, select specific lesion, and
classify it. The work uses a HAM10000 dataset (see “5.1”) for training. They train
and evaluate 11 CNNs and report accuracy of 92.5%, recall of 93.59%, and F1-score of
93.27% for DenseNet169. The work also reports concerns about using the ensemble of
models for classification on mobile devices. That is due to the fact that the ensemble
of models is computationally expensive.

C.A. Hartanto et al. [68] used an Android application to utilize a smartphone cam-
era for image classification. They developed and compared 2 CNNs: MobileNetv2 and
Faster R-CNN. The limitation of this work is that the dataset used has only 600 images
consisting of 2 classes—melanoma and actinic keratosis. They used a smartphone cam-
era with 13-Megapixel resolution. Their Faster R-CNN model achieved 86.3% accuracy
using the dataset, which combined the images from the ISIC challenges (not specified
closer) and 40 images from a smartphone camera. The models do not perform PSL
segmentation/detection.

P.N. Srinivasu et al. [69] proposed a method using MobileNetV2 and Long Short-
Term Memory (LSTM) for classification of PSLs. The work uses a HAM10000 dataset.
The MobileNetV2 achieved an accuracy of 85.34%, sensitivity of 88.24% and a specificity
of 92.00%. Part of this research is also a creation of an application called esmart-Health
for mobile phones. The work does use PSL detection.

S.S. Han et al. [70] proposed a method for the classification of 12 types of PSLs using a
ResNet152 model. The work uses an Asan dataset, Med-Node dataset, Hallym dataset,

1 https://apps.apple.com/us/app/mole-mapper-melanoma-study/id1048337814
2 https://www.skinvision.com/
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Dermofit library and Atlas dataset (19398 images in total). The research developed a
smartphone app (not specified closer) and a web application1. The reported average
accuracy of the model is 86.4% on the Dermofit library. The work does not explore the
detection of PSLs.

AI Dermatologist2 is a commercial system for the classification of PSLs. It is available
for iOS and Android devices, as well as web application. It classifies a single lesion
without the detection of PSLs. The authors do not report any metrics, nor the dataset
used for training, or the model used.

4.4 Summary
In this chapter, we have described the state-of-the-art in the field of computerized
diagnosis of PSLs.

The field of the classification of the PSLs is advancing rapidly, thanks to the ISIC
challenges, which provided large datasets of PSLs in years the 2016, 2017, 2018, 2019,
and 2020. The best results are achieved using deep learning methods, which are able
to achieve better than human-level performance.

The situation is different in the field of detection of PSLs, where the research is not
advancing as fast. The main reason is the lack of datasets of whole-body images of
PSLs, every work uses its own dataset, which are mostly not publicly available.

The works that focus on detection, do not continue the classification of the detected
skin lesions. The works that created a system for self-examination of PSLs are focusing
only on the classification of the PSLs. The user needs to take a picture of a single lesion
or crop the image to select the lesion, which he wants to classify.

Another problem is that freely available self-examination systems are stale, they are
not updated for several years, or they are taken down from the app stores. Although
this is not the case of the commercial systems, their performance is mostly not reported.

Therefore, a fully automated system is needed for the detection and classification of
PSLs. With the least amount of user interaction. The system needs to be able to detect
whether the image is of sufficient quality for detection and classification. Then be able
to detect and classify PSLs in the images provided by the user.

1 https://b2017.modelderm.com/
2 https://ai-derm.com/
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Chapter 5
Data

This chapter discusses available datasets for the classification and detection of PSLs.
We also, introduce our own dataset of wide-area skin lesion images called DermaNude
dataset.

5.1 Datasets
The datasets for the classification can be split into two subcategories: the datasets
using clinical images and dermoscopic images. The clinical images are taken by a
normal camera such as one in the smartphone. These types of images are usually of
low quality, different lighting, angle, etc. The dermoscopic images are more useful for
CAD systems, because of the better quality, more information can be extracted. These
images are taken with dermoscope, which is an instrument used by dermatologists to
examine the skin. The dermoscope creates uniform lighting and magnification of the
skin lesion, which allows to see the details of the skin lesion.

Although there are many datasets available for the classification of PSLs, the situa-
tion is different for the detection of PSLs. This is caused mainly by ISIC challenges1,
which were focused on the classification of PSLs. Each year, the ISIC challenge pro-
vided a dataset of PSLs for the classification. However, the dataset for detection of
PSLs was not provided. While the images of datasets for the classification of PSLs con-
tain only one skin lesion, the images of datasets for detection of PSLs contain multiple
skin lesions.

The dataset called Dermofit Image Library2 is a collection of 1300 dermoscopic im-
ages of pigmented skin lesions. It contains 10 different types of skin lesions includ-
ing Actinic Keratosis, Basal Cell Carcinoma, Melanocytic Nevus (mole), Seborrhoeic
Keratosis, Squamous Cell Carcinoma, Intraepithelial Carcinoma, Pyogenic Granuloma,
Haemangioma, Dermatofibroma, Malignant Melanoma.

Dataset PH23 consists of 200 dermoscopic images of pigmented skin lesions. It con-
tains 3 different types of skin lesions: common nevi, atypical nevi, and melanoma.

Dataset HAM100004 contains 10015 dermoscopic images of pigmented skin lesions.
It contains 7 different types of skin lesions: Actinic Keratosis, Basal Cell Carcinoma,
Benign Keratosis, Dermatofibroma, Melanocytic Nevus, Melanoma, Vascular Lesion.

Challenge ISIC20195 was focused on skin lesion classification. They provide a dataset
made out of 3 different datasets: HAM10000 [71], MSK [72], and BCN20000[73]. The
dataset contains 25 331 dermoscopic JPEG images from 8 different classes, same as in
the HAM10000 but one more class—Squamous cell carcinoma.

Challenge ISIC2020 features a dataset of 33 126 images of pigmented skin lesions[74].
It features 5 classes—nevus, melanoma, seborrheic keratosis, lentigo, and also unknown
1 https://challenge.isic-archive.com/
2 https://licensing.edinburgh-innovations.ed.ac.uk/product/dermofit-image-library
3 https://www.fc.up.pt/addi/ph2%20database.html
4 https://challenge2018.isic-archive.com/
5 https://challenge2019.isic-archive.com/
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class. This dataset contains fewer classes than the previous ISIC challenges as the
ISIC2020 challenge focused on the melanoma classification: the goal was to classify the
images into benign or malignant type of lesions.

DermNet image library1 is a collection of clinical images of various lesions. Although
the dataset consists of text description of the lesions, it is not suitable for computerized
diagnosis of PSLs as is, because the images are not labeled. Further preprocessing
is required to label the images. However, this dataset consists a wide range of skin
diseases and is a good source of clinical images for PSL classification, as well as for PSL
detection.

Interactive atlas of dermoscopy2 [75] contains more than 2000 dermoscopic images of
various skin lesions. This dataset is not free of charge.

Another notable dataset that contains clinical images of PSLs is the MED-NODE
dataset3. This dataset has 100 images of naevus and 70 images of melanoma.

3dBodyTex.v1 is a dataset [76] which consists of 400 scans of 200 people (100 males,
100 females) in close-fitting clothing in various positions. Moreover, each scan is accom-
panied by texture. The dataset does not contain any annotations of the skin lesions.
The annotations, called Skin3D, were later created by the authors Mengliu Zhao, Jeremy
Kawahara et al. [42] and are available on GitHub4. Their work provides over 25 000
manually annotated skin lesions which are visible on textures of 3dBodyTex.v1 dataset.
Their work divided the 3dBodyTex.v1 dataset into 3 groups - train set, validation set,
and test set. The test set has been simultaneously annotated by 3 different annotators
and is divided into 3 subsets accordingly. The newest addition to the 3DBodyTex.v1
dataset is the 3DBodyTex.v2 dataset5. It contains 3000 static 3D human scans of 500
subjects. The dataset lacks annotations of the skin lesions. The 3DBodyTex datasets
are publicly available after signing the license agreement.

Renderpeople6 is a company that provides 3D models of people. They also provide
3D scans of people in swimsuits. These scans may be used for the detection of PSLs.
However, these scans are not free of charge.

5.2 DermaNude dataset
In this section, we will discuss the creation of the DermaNude dataset. This dataset has
been created to reflect the real-world conditions of skin lesion detection. Another reason,
for the creation of this dataset, is that the skin is more complex (the skin pores, hair,
etc.), and our dataset captures this complexity better than the 3DBodyTex.v1 dataset
where the quality of the skin images is lower. Better quality of images means that more
information can be extracted from the images, which can lead to better performance
of the models, trained on this dataset. Lastly, the only publicly available annotated
dataset for the detection of PSLs is 3DBodyTex.v1, therefore a new publicly available
dataset is needed. We have collected 102 images of skin from 10 persons or subjects as
reffered later. We have annotated the images in the form of bounding boxes. There are
a total of 2120 bounding boxes. The annotation tool we have used is called Makesense7,
which is a free online tool licensed under GPL-3.0 License. We also collect the age of
1 https://dermnetnz.org/image-library
2 https://dermoscopy.org/
3 https://www.cs.rug.nl/˜imaging/databases/melanoma_naevi/
4 https://github.com/jeremykawahara/skin3d
5 https://cvi2.uni.lu/3dbodytexv2/
6 https://www.renderpeople.com/
7 https://www.makesense.ai/
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the subjects and their gender. The dataset is divided into 2 parts: images taken by a
DSLR camera and images taken by a smartphone. The specifications of the dataset can
be seen in “Tab. 5.1”. It is important to note, that all subjects have given their consent
for the use of their images in this dataset, and the dataset follows the EU General
Data Protection Regulation 2016/679 of 27 April 2016. As the dataset includes the
images of people, but the faces are not visible, the images are not considered personal
data according to the GDPR. However, age and gender of the subjects are considered
personal data according the Article 4 of the GDPR. The consent form can be seen in
“App. A”. It is also important to note, that not all subjects have given their consent
to share their information in the dataset to the third parties, therefore only a subset
of the dataset is publicly available. To get access to the dataset, one needs to fill the
license form in “App. B” and send it to the author of this thesis. The license form, as
well as contact information is available on the official website we have created for the
dataset1. This website also features the consent form in case one wants to contribute to
the dataset. The desktop and smartphone version of the website is shown in “Fig. 5.1”.

camera smartphone
number of subjects 8 10
number of images 47 55
males 7 8
females 1 2
camera type NIKON D3400 Realme 8, Iphone 12
number of skin lesions 898 1222
image type .jpg .jpg

Table 5.1. Specifications of the DermaNude dataset.

This dataset has been created for the purpose of skin lesion detection and classifica-
tion. The example of the dataset is shown in “Fig. 5.2” and in “Fig. 5.3”. It can also
be seen, that images contain backgrounds. We have decided to keep the backgrounds
in the dataset.

a) b)

Figure 5.2. Image taken by NIKON D3400 camera (24MP) and its close-up (1MP) +
annotations.

1 https://samuelsur.xyz/dermanude
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Figure 5.1. The official website of the DermaNude dataset. TOP: desktop layout. BOT-
TOM: smartphone layout.
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a) b)
Figure 5.3. Image taken by Realme 8 smartphone (16MP) and its close-up (1MP) + an-

notations.
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Chapter 6
PSL detection implementation

In this section, we discuss our approach to the PSL detection. As the goal of this thesis
is to build an automated system for the detection and classification of the PSLs, the
first step is to build the detection part. The goal of this chapter is to train and evaluate
the performance of the deep learning model, which will locate the PSLs in the image.
Firstly, we discuss the datasets and their preprocessing.

6.1 Our approach
We acquired the 3dBodyTex.v1 dataset discussed in “Sec. 5.1”. We used the Skin3D
annotations also discussed in “Sec. 5.1”. The Skin3D annotations divide the 3dBody-
Tex.v1 into 3 groups: train set, validation set and, test set. Each image in the test set
has been simultaneously annotated by 3 different annotators. Therefore, the test set is
divided into 3 subsets accordingly. Each subset can be used to evaluate the performance
of the model independently.

The dataset preprocessing is the first step in our approach. Each texture image has
4096x4096 pixels. As you can see in “Fig. 6.2”, the quality of individual skin lesions
is already low, therefore rather than resizing the image, we have chosen an approach
to divide each texture image into 49 overlapping patches of size 800x800 pixels. An
example of the overlapping patches can be seen in “Fig. 6.1”.

a) b)

Figure 6.2. Texture images from 3dBodyTex.v1 dataset with bounding boxes from Skin3D
dataset. (left: original image, right: close-up image)

The method of overlapping patches is a commonly used technique in neural networks
for processing large images or datasets, and it offers several advantages over alternative
methods. One major advantage is that it allows for better utilization of available com-
putational resources by breaking down the input data into smaller, overlapping patches,
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Figure 6.1. Original image (bottom) and its first 15 overlapping patches (top).

which reduces the memory and computation requirements of the network. Using over-
lapping patches rather than just slicing the image into non-overlapping patches can also
help reduce the impact of boundaries that can arise when processing large images. This
can lead to more accurate and reliable results.
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For training of neural network on the dataset, we use the YOLOv7 with official
pretrained weights. In this work, we rely on the implementation of the YOLOv7 by
Chris Hughes1. His implementation is far more adjustable for custom datasets than
the original version2. It is easier to use with custom datasets. To optimize the training
process, we utilized Adam optimizer with a base learning rate of 0.001 and a weight
decay of 0.0005. We tried different learning rates, both above and below 0.001, but
we found that a learning rate ∼ 0.001 works best for our dataset. We implemented a
method of Non-maximum suppression with a Intersection over union (IoU) threshold of
0.01 to filter out overlapping bounding boxes. We evaluated the model’s performance
using mean Average Precision (mAP) or Average Precision (AP), as we are detecting
only one class, with an IoU threshold of 0.5, as described in the COCO competition3.
We applied early stopping with a patience of 5 epochs, and the training would stop if the
mAP on the validation dataset did not improve at least by 0.0001 for five consecutive
epochs. Lastly, we utilized a cosine annealing learning rate scheduler, as described
in this paper [77], but without restarts and with a warm-up period of 2 epochs. We
tried to use also stable learning rate, as well as a cosine learning rate without warm-up
period, but the results were better with a warm-up period in a cosine learning rate. The
preset learning rate as defined by our learning rate scheduler for 30 epochs is shown in
“Fig. 6.3”.
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Figure 6.3. Preset learning rate for 30 epochs.

6.1.1 Centroid metric

For the purpose of evaluation of the model’s performance, we have implemented a
centroid metric. The centroid metric is a metric, which checks whether the predicted
bounding box contains the centroid of the ground truth bounding box and whether the
ground truth bounding box contains the centroid of the predicted bounding box. If both
conditions are met, the prediction is considered as true positive. If more bounding boxes
meet the conditions, the bounding box with the highest confidence score is considered
as true positive. After all ground truth bounding boxes were checked for match with
1 https://github.com/Chris-hughes10/Yolov7-training
2 https://github.com/WongKinYiu/yolov7
3 https://cocodataset.org/#detection-eval
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prediction boxes, the ones without a match are considered as false negatives. The
predictions without a match are considered as false positives. The average precision
is then calculated, similarly to the Pascal VOC 2012 metric, as the area under the
precision x recall curve. The “Fig. 6.4” demonstrates the centroid metric.

0.8
0.6

a) b) c)
Figure 6.4. Centroid metric. For the purpose of this figure, we assume that the yellow box
is the ground truth bounding box. The rhomboids represent the centroids of the bounding
boxes. a) Both boxes contain the centroid of the other box. The pink box is therefore
considered as TP. b) The pink box has the same IoU with ground truth bounding box
as in a), but does not contain the centroid of the ground truth bounding box. c) Both
green and blue bounding boxes contain the centroid of the ground truth bounding box
and ground truth bounding box contains the centroid of both green and blue bounding
boxes. However the blue box, although the IoU is worse than in the green box, has higher
confidence score. Therefore the blue box is considered as TP and the green box as FP.

boxes contain the centroid of the yellow box and yellow.

6.2 Results
After the model was trained using the parameters described in “Sec. 6.1”, we evaluated
its performance on the test dataset. The model stopped training in epoch 10 after 5
epochs with no improvement in mAP. The evaluation metrics used on the test dataset
are different from the ones used during training. We used Non-maximum suppression
with IoU threshold of 0.01 to filter out overlapping predictions. On “Fig. 6.5”, “Fig.6.6”,
“Fig.6.7” we can see the Precision x Recall curves of skin lesions predicted by our model
for test datasets by each annotator. The Precision x Recall curves are calculated in
Pascal VOC 2012 manner, which means that the Precision x Recall curve is calculated
for each confidence threshold with IoU threhsold of 0.5.
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Figure 6.5. Precision x Recall curve for annotations A1. VOC 2012 metric (a) and centroid

metric (b).
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Figure 6.6. Precision x Recall curve for annotations A2. VOC 2012 metric (a) and centroid

metric (b).
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Figure 6.7. Precision x Recall curve for annotations A3. VOC 2012 metric (a) and centroid

metric (b).

We provide the results computed using Pascal VOC 2012 metric—AP (IoU = 0.5)
through all confidence thresholds “Tab. 6.3’. The Average Precision (AP) in Pascal
VOC 2012 manner is computed as the area under the Precision x Recall curve [78][79].
We must note, that AP and mAP are in our case the same metric, as we are detecting
only one class (PSL or not). It may be seen that the model does not perform well
on the test dataset annotated by A1, with AP only 0.65%. The same is shown on
Precision x Recall curve “Fig. 6.5”. The performance on the test dataset annotated by
A2 “Fig. 6.6” and A3 “Fig. 6.7” is significantly better. Therefore we evaluate model
performance also using AP and AR (average recall) using COCO metric. We calculate
it using 2 different confidence thresholds c, which removes low confidence predictions.
The results may be seen in “Tab. 6.2”. These results prove that the model does not
perform well on the test dataset annotated by A1, similarly to the results in “Tab. 6.3”.
Therefore, we study the annotations of A1 and compare them with the annotations
of A2 and A3. The average size of the test set bounding boxes (through all image
patches): 215 pixels for A1, 667 pixels for A2 and 372 pixels for A3. From this we can
see that the bounding boxes in A1 are significantly smaller than in A2 and A3. These
differencies in bounding box sizes in test dataset may be seen in “Fig. 6.8”. Therefore,
we compute results using the centroid metric, which we have introduced in “Sec 6.1.1”.
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The results show, that the model performs significantly better on the annotations of
A1—mAP 67.94%. The results for annotations A1 are even better than A3, while for
VOC 2012 metric it was the opposite. The Precision x Recall curves for centroid metric
may be seen in “Fig. 6.5”, “Fig. 6.6”, “Fig. 6.7”.

Figure 6.8. Bounding box sizes in test dataset (two different patches). Blue: A1, green:
A2, red: A3.

6.3 PSL Detection on the DermaNude dataset
The next step is to evaluate the model’s performance on our DermaNude dataset. We
used the same model as in the previous section, but we changed the input image size
to 1600 pixels for the longer side of the image.
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The problem with the evaluation of the model on the DermaNude dataset is that, the
annotations for the 3dBodyTexv1 dataset, on which the model has been trained, are
not tight around the skin lesion. The annotations for the DermaNude dataset are much
closer to the skin lesion. As a consequence, the IoU threshold of 0.5, which is generally
used for computing the mAP, is too high for the DermaNude dataset. The predictions
and ground truth bounding boxes can be seen in an example from the DermaNude
dataset in “Fig. 6.11”. For this reason, we evaluated our model on the DermaNude
dataset with various IoU thresholds. Then we applied non-maximum suppression to
filter out overlapping predictions. The results for camera and phone images are shown
in “Tab. 6.1”. From this table, we can see that the model performs better on images
made with smartphone than on images made with a DSLR camera. However, a similar
problem arises as in the previous section. The predicted boxes may not be tight around
the skin lesion. Therefore we compute the results using the centroid metric, which we
have introduced in “Sec 6.1.1”. The results for camera and phone images are shown in
“Tab. 6.5”. The results show, that the model performs similarly on the images made
with smartphone and DSLR camera. This is expected as the smartphone cameras are
of a good quality nowadays, however, the DSLR cameras are still better (less noise,
better lighting, etc.).

The Precision x Recall curves for centroid metric, as well as Pascal VOC 2012 metric,
may be seen in “Fig. 6.10” for smartphone images and in “Fig. 6.9” for camera images.
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Figure 6.9. Precision x Recall curve—DermaNude camera. VOC 2012 metric (a) and

centroid metric (b).

If the background is well lit and the color of the background is similar to skin color
and contains dark spots similar to PSLs, the model tends to predict these black spots
in the background (although with low confidence). This is shown in “Fig. 6.12”.

IoU threshold mAPphone mAPcamera

0.5 21.62% 8.03%
0.4 35.36% 17.92%
0.3 47.39% 34.42%
0.2 56.51% 50.15%
0.15 58.15% 59.31%

Table 6.1. Results of the YOLOv7 model on the DermaNude dataset.
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Figure 6.10. Precision x Recall curve—DermaNude smartphone. VOC 2012 metric (a)

and centroid metric (b).

Figure 6.11. Comparison of ground truth (green) and predicted (blue) bounding boxes on
the DermaNude dataset. The numbers above the bounding boxes are the confidence scores.

6.4 Conclusion

The most similar work to ours is the work of J. Kawahara et al [42]. Their work uses
the 3DBodyTex.v1. For detecting skin lesions, they use Faster RCNN. They do not use
overlapping patches, but they use a sliding window approach. We must note that we
use overlapping patches but then we do not consider the overlapping regions as one,
but as two different regions. Average Precisions, as stated in the paper by J. Kawahara
et al. are compared with our results in “Tab. 6.3”. The table also includes our results
on the DermaNude dataset, but as stated before, the IoU threshold of 0.5 is too high
for both, 3DBodyTex.v1 and DermaNude dataset. The centroid metric is much more
suitable for the evaluation of the model’s performance on PSL detection as the PSL
boundaries are not always clear.
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Figure 6.12. False positives on the DermaNude dataset. The model predicts the black
spots in the background as PSLs, however, their confidence is low. Blue predictions, green

ground truth.

Their work uses the same metric for evaluation on test dataset as ours. We can see
that our work reaches a better score in the case of annotator A2, but worse in the case
of annotator A3 and A1. Their work also proposes a metric of overlapping centroid.

On the “Fig. 6.13” we can see the predictions of the model and ground truth bounding
boxes of annotator A2.

Annotator AP50 AR
c = 0.25 c = 0.5 c = 0.25 c = 0.5

A1 0.26% 0.14% 12.65% 4.34%
A2 47.07% 17.94% 45.78% 16.19%
A3 26.68% 16.02% 43.27% 21.10%

Table 6.2. Results of the model on test dataset using COCO metrics (AP and AR (Average
Precision and Average Recall)).

Another work similar to ours is the paper by Ahmed-Aristizabal et al. [45]. As
mentioned earlier, they use similar model to ours—Scaled YOLOv4. They also use
3dBodyTex.v1 dataset among others with custom made ground-truth data. They split
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Figure 6.13. Prediction (red) and ground truth (blue) bounding boxes for annotations A2,
with confidence scores (red text).

Annotator mAPOur model mAPJ.Kawahara mAPour model,DermaNude dataset

A1 0.65% 8%
camera: 8.03%A2 63.10% 59%
phone: 21.62%A3 33.32% 56%

Table 6.3. Comparison of Average Precision (mAP) (Pascal VOC 2012) of our model and
model by J. Kawahara et al.

Annotator mAPOur model mAPJ.Kawahara

A1 67.94% 75%
A2 72.73% 84%
A3 58.37% 77%

Table 6.4. Comparison of Average Precision (mAP) ,using the centroid metric, of our model
and model by J. Kawahara et al.

mAP camera phone
61.35% 58.49%

Table 6.5. Comparison of Average Precision (mAP) using centroid metric on the Der-
maNude dataset.

the dataset images into overlapping patches of a size 680x680. They use Soft-NMS (a
novel type of NMS filter) to suppress bounding boxes [80]. The use of confidence score
to filter out bounding boxes is mentioned, but not specified in the paper. Their results
are AP50 ≈ 92% (the type of mAP used is not reported in the work, therefore we do
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not include it in the tables). Although this method differs from our approach in terms
of ground-truth data, it introduces high precision results.
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Chapter 7
PSL classification implementation

In this section, we will discuss our approach to the PSL classification. This is the second
part of the fully automated system for PSL diagnosis. The classification program needs
a single lesion image as an input and outputs the probability of the classes: Actinic
Keratosis, Basal Cell Carcinoma, Benign Keratosis, Dermatofibroma, Melanocytic Ne-
vus, Melanoma, Vascular Lesion, Squamous Cell Carcinoma. These classes are common
in the available datasets. However, in practice, PSLs can be from different classes or
not present at all. Therefore the “Unknown” class is also included in the classification
program.

7.1 Our approach
We train three state-of-the-art CNN models for image classification. Two models are
trained from scratch—Efficientnet-B0 and ResNet50 and one model using pretrained
weights—EfficientNet-B7. We do not use layer freezing, we train all layers of the mod-
els. We use train, validation, test split in the ratio 60:20:20 using the preprocessed ISIC
2019 dataset1. It features the same images as in the ISIC 2019 dataset, but they are
preprocessed and resized to 512x512 pixels (the center crop of the original image). The
dataset includes 8 classes, we present their names and abbreviations, which we use in
the rest of the report: Actinic Keratosis (AK), Basal Cell Carcinoma (BCC), Benign
Keratosis (BK), Dermatofibroma (DF), Melanocytic Nevus, Melanoma (MEL), Vascu-
lar Lesion (VASC), Squamous Cell Carcinoma (SCC). All of the models are trained on
the train set. We use the validation set for checking the performance and overfitting of
the models. Then we form different ensembles of the models and evaluated them with
the individual models on the test set.

We use a number of augmentations during training to simulate real world data and
therefore improve the generalization of the model. These augmentations include image
transposition, flip, shift, scale, rotation, brightness change, contrast change, hue change,
saturation change, cutout, etc. Although we use 512x512 images, we eventually resize
them to 256x256. The training dataloader uses the weighted random sampler to balance
the classes. We use different batch sizes for each model, to use the GPU efficiently. We
use the Adam optimizer with learning rate of ≈ 0.001. We discovered that the learning
rate of ≈ 0.001 works well, therefore we did not use other learning rates. We follow the
balanced accuracy metric on a validation set during training. If the model does not
improve its balanced accuracy for 10 epochs, we stop the training. We save the model
based on the best balanced accuracy on the validation dataset.

In practice, the input PSL can be of a different class than the classes in the dataset
we use for training. It is also possible to get an image which does not contain a PSL.
Therefore we add the “Unknown” class. We add it in postprocessing. If the maximum
of the predicted probabilities is less than 0.5, we classify the PSL as “Unknown”.

1 https://www.kaggle.com/datasets/cdeotte/jpeg-isic2019-512x512
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7.1.1 Ensemble models
Our ensemble strategy is to average the predicted probabilities of the individual models.

Y ∗(x) = 1
N

N∑
i=1

y∗
i (x)

Their combinations and names are shown in “Tab. 7.1”.

Model combination Model name
ResNet50 + EfficientNet-B0 Res50-Effb0
ResNet50 + EfficientNet-B7 Res50-Effb7
EfficientNet-B0 + EfficientNet-B7 Effb0-Effb7
ResNet50 + EfficientNet-B0 + EfficientNet-B7 Res50-Effb0-Effb7

Table 7.1. Ensemble models.

7.2 Results
In this section, we are presenting the performance of the models on the test set. The
results in this section are computed for 8 classes, without the “Unknown” class.

When referring to sensitivity, we use a macro average of recall, which is the average
of recall obtained per each class.

7.2.1 Individual models
The training progress of the EfficientNet-B0 model is shown in “Fig. 7.1”. The training
progress of the ResNet-50 model is shown in “Fig. 7.2”. The training of EfficientNet-B7
can be seen in “Fig. 7.3”.
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Figure 7.1. Training progress of the EfficientNet-B0 model, model evaluated on train set
and validation set.
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Figure 7.2. Training progress of the ResNet-50 model, model evaluated on train set and
validation set.
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Figure 7.3. Training progress of the EfficientNet-B7 model, model evaluated on train set
and validation set.
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We can see, that the training of all models is relatively stable and the models do not
overfit. Next, we shall present the performance on the test set.

In “Tab. 7.2” we can see the performance of the ResNet50 model on the test set
without augmentations. The model achieved an accuracy of 0.63 and balanced accuracy
of 0.64.

Class Precision Recall F1-score Support
AK 0.27 0.45 0.33 167
BCC 0.69 0.56 0.62 673
BKL 0.35 0.63 0.45 516
DF 0.23 0.89 0.37 45
MEL 0.66 0.40 0.50 910
NV 0.87 0.74 0.80 2568
SCC 0.23 0.57 0.33 128
VASC 0.54 0.90 0.68 60
accuracy 0.63 5067
macro avg 0.48 0.64 0.51 5067
weighted avg 0.71 0.63 0.65 5067

Table 7.2. Performance of ResNet50 on test set.

In “Tab. 7.3” we can see the performance of the EfficientNet-B0 model on the test set
without augmentations. The model achieved an accuracy of 0.68 and balanced accuracy
of 0.71.

Class Precision Recall F1-score Support
AK 0.42 0.59 0.49 167
BCC 0.71 0.72 0.71 673
BKL 0.51 0.60 0.55 516
DF 0.56 0.80 0.66 45
MEL 0.49 0.73 0.59 910
NV 0.92 0.66 0.77 2568
SCC 0.39 0.68 0.49 128
VASC 0.90 0.88 0.89 60
accuracy 0.68 5067
macro avg 0.61 0.71 0.64 5067
weighted avg 0.74 0.68 0.69 5067

Table 7.3. Performance of EfficientNet-B0 on test set.

In “Tab. 7.4” we can see the performance of the EfficientNet-B7 model on the test set
without augmentations. The model achieved an accuracy of 0.73 and balanced accuracy
of 0.74.

7.2.2 Ensemble models

In “Tab. 7.5” we can see the performance of the Res50-Effb0 model on the test set
without augmentations. The model achieved an accuracy of 0.70 and balanced accuracy
of 0.72.
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Class Precision Recall F1-score Support
AK 0.36 0.71 0.48 167
BCC 0.79 0.70 0.74 673
BKL 0.64 0.57 0.60 516
DF 0.33 0.84 0.47 45
MEL 0.61 0.67 0.64 910
NV 0.88 0.79 0.84 2568
SCC 0.55 0.65 0.59 128
VASC 0.49 0.98 0.65 60
accuracy 0.73 5067
macro avg 0.58 0.74 0.63 5067
weighted avg 0.76 0.73 0.74 5067

Table 7.4. Performance of EfficientNet-B7 on test set.

Class Precision Recall F1-score Support
AK 0.40 0.57 0.47 167
BCC 0.73 0.71 0.72 673
BKL 0.47 0.64 0.54 516
DF 0.50 0.87 0.63 45
MEL 0.60 0.61 0.61 910
NV 0.89 0.75 0.82 2568
SCC 0.37 0.72 0.49 128
VASC 0.79 0.90 0.84 60
accuracy 0.70 5067
macro avg 0.60 0.72 0.64 5067
weighted avg 0.74 0.70 0.72 5067

Table 7.5. Performance of Res50-EffB0 on test set.

Class Precision Recall F1-score Support
AK 0.40 0.72 0.51 167
BCC 0.79 0.74 0.77 673
BKL 0.57 0.64 0.60 516
DF 0.39 0.93 0.55 45
MEL 0.66 0.61 0.63 910
NV 0.89 0.81 0.85 2568
SCC 0.53 0.70 0.60 128
VASC 0.64 0.97 0.77 60
accuracy 0.74 5067
macro avg 0.61 0.77 0.66 5067
weighted avg 0.77 0.74 0.75 5067

Table 7.6. Performance of Res50-EffB7 on test set.

In “Tab. 7.6” we can see the performance of the Res50-Effb7 model on the test set
without augmentations. The model achieved an accuracy of 0.74 and balanced accuracy
of 0.77.
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Class Precision Recall F1-score Support
AK 0.49 0.69 0.57 167
BCC 0.78 0.79 0.79 673
BKL 0.64 0.63 0.63 516
DF 0.55 0.91 0.68 45
MEL 0.59 0.73 0.65 910
NV 0.90 0.77 0.83 2568
SCC 0.59 0.75 0.66 128
VASC 0.75 0.97 0.85 60
accuracy 0.75 5067
macro avg 0.66 0.78 0.71 5067
weighted avg 0.77 0.75 0.76 5067

Table 7.7. Performance of Effb0-Effb7 on test set.

In “Tab. 7.7” we can see the performance of the Effb0-Effb7 model on the test set.
The model achieved an accuracy of 0.75 and balanced accuracy of 0.78.

Lastly, we made an ensemble from all individual models. The performance can be
seen in “Tab. 7.8”. This model achieved an accuracy of 0.75 and balanced accuracy of
0.77.

Class Precision Recall F1-score Support
AK 0.46 0.68 0.55 167
BCC 0.77 0.78 0.78 673
BKL 0.57 0.64 0.61 516
DF 0.53 0.91 0.67 45
MEL 0.62 0.66 0.64 910
NV 0.89 0.79 0.84 2568
SCC 0.54 0.76 0.63 128
VASC 0.78 0.95 0.86 60
accuracy 0.75 5067
macro avg 0.65 0.77 0.70 5067
weighted avg 0.77 0.75 0.75 5067

Table 7.8. Performance of ensemble of all models on test set.

7.3 Conclusion on the performance of the models
From the previous, we can form “Tab. 7.9” which ranks the models based on their
performance and compares them with state-of-the-art models.

The best solution in the ISIC 2019 challenge by N. Gessert et al. [59] trained various
models and formed an ensemble from them. They report a sensitivity of 72.5% and
AUC 95.4%. However, they trained their models also on “Unknown” class which is not
present in our dataset. Only model that is comparable to our models from this work is
EfficientNetB0, which achieves a sensitivity of 66.7% and AUC 94.0%. This is the only
model trained on 8 classes from their work. Our EfficientNetB0 achieves a sensitivity
of 70.7% and AUC 93.7.

Second place in the ISIC 2019 by S. Zhou et al. [81] trained multiple models and
formed an ensemble from them. This work presents results for 8 classes. Their best-
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Model Balanced accuracy
Effb0-Effb7 0.78
Res50-Effb0-Effb7 0.77
Res50-Effb7 0.77
EfficientNetB7 0.74
Res50-Effb0 0.72
EfficientNetB0 0.71
ResNet 0.64
Gessert et al. [59] ( 8 classes) 0.68
Zhou et al. [81] 0.74

Table 7.9. Performance of the models.

performing individual model—SeResNeXt101 achieves a sensitivity of 73.9 %. Our best-
performing individual model, EfficientNetB7 achieves the same sensitivity of 73.9%.
Their best-performing ensemble formed from models EfficientNet-B2, EfficientNet-B4
and DenseNet121 achieves a sensitivity of 75.3%. Our best-performing ensemble Effb0-
Effb7 is better with a sensitivity of 77.9%.

7.4 Experiments to study robustness of the models
While performance on the test set is important, it is also important to see how the
model behaves to changes of the image parameters, which simulates the real world
data. We study the impact of resolution, brightness, contrast, blur and color change on
the performance of the models. Therefore we run the models on whole test dataset with
particular change applied to it, then we evaluate the performance and increase/decrease
the particular change and evaluate the performance again. We describe the results of
the experiments and discuss them.

7.4.1 Resolution

In this section we study the impact of resolution change. This is important, as the
image from the camera may have a different resolution than the images in the dataset.
We accomplished this by applying downscaling followed by upscaling of the particular
images in the test dataset.

The results of the resolution change may be seen in figure “Fig. 7.4”. The results
show that the models are robust to the resolution change, and the ensemble models
tend to perform better than the individual models.

7.4.2 Brightness

In this section, we study the impact of the brightness of the images on the model
performance. We simulated the change of brightness of the images by applying the
brightness change to the test dataset through the range of [-1, 1], where -1 is the
smallest brightness, and 1 is the maximum brightness, with step 0.05. The results in
the form of balanced accuracy on the test dataset are shown in figure “Fig. 7.5”.

7.4.3 Contrast

In this section, we study the impact of the change in contrast in the images by applying
the contrast change to the test dataset. We specified different values at which the

38



. . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Experiments to study robustness of the models

0.0 0.2 0.4 0.6 0.8 1.0
Resolution value

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ba
la

nc
ed

 a
cc

ur
ac

y

ResNet50
Efficientnet-b0
Efficientnet-b7
Res50-Effb0
Res50-Effb7
Effb0-Effb7
Res50-Effb0-Effb7

Figure 7.4. Impact of the resolution change on the balanced accuracy of the models.
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Figure 7.5. Impact of the brightness change on the balanced accuracy of the models.

contrast change is applied, in a range [-1, 1] (-1 minimum, 1 maximum) with a step of
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0.05. The results in the form of balanced accuracy on the test dataset are shown in
“Fig. 7.6”.

The results show that, while the images with low contrast are harder to classify, the
slight increase in contrast may improve the balanced accuracy.
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Figure 7.6. Impact of the contrast change on the balanced accuracy of the models.

7.4.4 Blur
We simulated the impact of blur, by changing the blur parameter of images in the test
dataset. We specified different values at which the blur is applied, in a range [1, 25]
with a step of 1.

The results in the form of balanced accuracy on the test dataset are shown in figure
“Fig. 7.7”. It may be seen, that the blur has a significant impact on the performance
of the models. The worst performance is achieved by the EfficientNetB7 model, which
has the best performance on test set, but the worst performance on the blurred test set
after the value of 5.

7.4.5 Color
We simulated the change of color of the images by applying the RGB shift to the test
dataset. We tested with shift of 0 or ±50 applied to various channels. We tested all
combinations of the shifts. The results in the form of balanced accuracy on the test
dataset are shown in figure “Fig. 7.8”.

We can see, that the EfficientNetB7 model’s response to the color change is signifi-
cantly better than the response of the other models. In some cases, it is better than the
response of the ensemble models. The highest balanced accuracy is achieved when we
shift all channels the same amount in the same direction. It is expected, as changing all
channels the same amount in the same direction is equivalent to changing the brightness
of the image. The worst performance is achieved when 2 channels are shifted in the
same direction, and the third channel is shifted in the opposite direction.
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Figure 7.7. Impact of the blur change on the balanced accuracy of the models.

7.4.6 Experiments with unknown class

While 8 classes are supported by our classification models, we add one more class, during
postprocessing, which is called “Unknown”. Here we study how the models behave to
the “Unknown” class. The percentage of PSLs the models classified as “Unknown”
is shown in table “Tab. 7.10”. We can see, that EfficientNetB7 model has the lowest
percentage of PSLs classified as “Unknown”. While the ResNet50 model has the highest
percentage of PSLs classified as “Unknown”.

Model Percentage of Unknowns
EfficientNetB7 10.18%
Effb0-Effb7 11.88%
EfficientNetB0 14.01%
Res50-Effb0-Effb7 15.59%
Res50-Effb7 16.12%
Res50-Effb0 19.32%
ResNet50 24.22%

Table 7.10. Percentage of PSLs classified as “Unknown” from test set.

The next step is to study how the models behave when the image does not contain
any of the 8 classes, on which the models were trained. Therefore we use images of
plain skin, hair, background and other cropped images from the 3DBodyTex.v1 dataset
and DermaNude dataset. Then we run the models on the images and count the number
of images classified as “Unknown”.

41



7. PSL classification implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[0,
 0,

 0]

[0,
 0,

 50
]

[0,
 0,

 -5
0]

[0,
 50

, 0
]

[0,
 50

, 5
0]

[0,
 50

, -5
0]

[0,
 -5

0, 
0]

[0,
 -5

0, 
50

]
[0,

 -5
0, 

-50
]

[50
, 0

, 0
]

[50
, 0

, 5
0]

[50
, 0

, -5
0]

[50
, 5

0, 
0]

[50
, 5

0, 
50

]
[50

, 5
0, 

-50
]

[50
, -5

0, 
0]

[50
, -5

0, 
50

]
[50

, -5
0, 

-50
]

[-5
0, 

0, 
0]

[-5
0, 

0, 
50

]
[-5

0, 
0, 

-50
]

[-5
0, 

50
, 0

]
[-5

0, 
50

, 5
0]

[-5
0, 

50
, -5

0]
[-5

0, 
-50

, 0
]

[-5
0, 

-50
, 5

0]
[-5

0, 
-50

, -5
0]

RG
B 

sh
ift

 v
al

ue

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Balanced Accuracy

Re
sN

et
50

Ef
fic

ie
nt

ne
t-b

0
Ef

fic
ie

nt
ne

t-b
7

Re
s5

0-
Ef

fb
0

Re
s5

0-
Ef

fb
7

Ef
fb

0-
Ef

fb
7

Re
s5

0-
Ef

fb
0-

Ef
fb

7

Fi
gu

re
7.

8.
Im

pa
ct

of
th

e
co

lo
r

ch
an

ge
on

th
e

ba
la

nc
ed

ac
cu

ra
cy

of
th

e
m

od
el

s.

42



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Conclusion of experiments

We crop 37589 of bounding boxes from 3dBodyTex.v1, which do not overlap with the
ground truth bounding boxes. Then we run the classification models on the cropped
bounding boxes. The results are shown in table “Tab. 7.11”.

We do the same for the DermaNude dataset (phone and camera). The results are
shown in table “Tab. 7.12”. The example of the cropped images is shown in figure
“Fig. 7.9”.

The best ensemble model is Res50-Effb7, which achieves 91.48% of PSLs classified as
“Unknown” on the 3dBodyTex.v1 dataset. The best individual model is EfficientNetB7,
which achieves 86.37% of PSLs classified as “Unknown” on the 3dBodyTex.v1 dataset.
In case of images by DermaNude camera, the best ensemble model is Res50-Effb0 with
85.08% of PSLs classified as “Unknown” and best individual model is EfficientNetB7
with 63.48% of PSLs classified as “Unknown”. In case of images by DermaNude phone,
the best individual model is Resnet50 with 64.19% of PSLs classified as “Unknown”
and best ensemble model is Res50-Effb7 with 56.49% of PSLs classified as “Unknown”.

Figure 7.9. Example of the cropped images from DermaNude camera (top), DermaNude
phone (middle) and 3dBodyTex.v1 (bottom).

7.5 Conclusion of experiments
We trained various models on the ISIC 2019 dataset and formed an ensemble from
them. Then we evaluated the performance of the models on the test set containing
8 classes (without the “Unknown” class). The best performing individual model, in
terms of sensitivity is EfficientNetB7, which achieves a sensitivity of 73.9%. The best
performing ensemble is EffB0-EffB7 and achieves a sensitivity of 77.9%. These re-
sults are better than the results of the best two solutions in the ISIC 2019 challenge.
Although, ISIC2019 challenge includes classification of Unknown class, which is not
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dataset 3dBodyTex.v1

model unknowns percentage
Resnet50 28442 75.67%
EfficientNetB0 8569 22.80%
EfficientNetB7 32467 86.37%
Res50-Effb0 18502 49.22%
Res50-Effb7 34385 91.48%
EffB0-EffB7 8851 23.55%
Res50-Effb0-Effb7 15311 40.73%
total 37589

Table 7.11. Unknown classification on images not containing any of the 8 classes—
3dBodyTex.v1 dataset.

dataset DermaNude—phone DermaNude—camera

model unknowns percentage unknowns percentage
Resnet50 2787 64.19% 3246 58.72%
EfficientNetB0 2125 48.94% 3735 67.57%
EfficientNetB7 1665 38.35% 3509 63.48%
Res50-Effb0 1862 42.88% 4703 85.08%
Res50-Effb7 2453 56.49% 4355 78.78%
EffB0-EffB7 1310 30.17% 2956 53.47%
Res50-Effb0-Effb7 1862 42.88% 4102 74.20%
total 4342 5528

Table 7.12. Unknown classification on images not containing any of the 8 classes—
DermaNude dataset.

present in their dataset, the best performing models report scores also without the
Unknown class. In case of macro-averaged precision, the best performing individual
model is EfficientNetB0 with 61%. The best performing ensemble is EffB0-EffB7 and
achieves a macro-averaged precision of 66%. We have also studied the robustness of the
models to various parameter changes of the images in the dataset. Examples of these
changes are shown in figure “Fig. 7.10”. We found that the models are robust to the
resolution change. A slight increase in contrast may improve the balanced accuracy of
some models. The brightness change has significant impact on the performance of the
models, when the brightness is ±50% the balanced accuracy drops below 50% for all
models. The models’ response to blur change results in drop of the balanced accuracy
for all models, starting from low values of blur. During the experiments with color, we
found, that models are connecting the colors with the classes, it is expected as the color
of the lesions is one of the most important features also used in the medical diagnosis.

We found that ensemble models are generally more robust to the changes in image
parameters than the individual models. We also studied the the impact of the unknown
class. The results show, that ResNet50 (individually or in ensemble) tends to classify
more PSLs as “Unknown” than the other models, when the unknown class is not present
in the dataset. In case of images not containing PSLs, it is similar—ResNet50 indi-
vidually or in ensemble tends to classify more images as “Unknown” than the other
models.
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Figure 7.10. Examples of augmentations applied to the test dataset. From left to right;
Upper row: original image, resolution change(0.4, equivalent to ∼ 100x100), brightness

(+20%), Lower row: contrast (+20%), blur (10), color shift (+50, 0, +50)
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Chapter 8
System for self-examination of skin lesions

We developed a system for self-examination of skin lesions in the form of CLI (Com-
mand Line Interface) application. The user inputs an image where he wants to check
for the type of the lesion. The system controls the quality of the image using the
BRISQUE algorithm. We rely on implementation by S. Kastryulin et al. [82], which is
freely available1. The BRISQUE algorithm is a no-reference image quality assessment
algorithm, which outputs a score in a range [0, 100] (0 best, 100 worst). The mean
average BRISQUE score on the DermaNude dataset shot by DSLR camera is ∼ 10
with the worst value of ∼ 24. The mean average BRISQUE score on theDermaNude
dataset shot on a smartphone camera is 42. The highest value is 54. Therefore we
require the BRISQUE score to be at most 60. Another quality control is the size of
the image. We require the image to be at least 24MP, which is easily achievable with
modern smartphones. If the image passes the quality control, it is resized, so that the
longer side has 1600 pixels, while preserving the aspect ratio. The image is then passed
to the object detection model, which outputs the bounding boxes of the lesions. The
output boxes are rescaled to the original input image size accordingly, the proposed
bounding boxes are cropped and are passed to the classification model, which outputs
the type of the lesions. The user can also specify the confidence threshold, which is
used to filter out the detections with low confidence.

user@server:∼/cli_app\$ python3 main.py -i test.jpg -c 0.2

The results folder is not empty. Do you want to delete the files in the results folder? (y/n) y

checking image quality...

image size: 24 MP...ok

brisque score 17...ok

Image quality is good.

100%| | 4/4 [00:01<00:00, 2.97it/s]

image_name detection_scores NV MEL BCC BKL AK SCC DF VASC probs unknown preds

0 box_0 0.545997 0.973160 0.009893 0.001308 0.011684 0.000068 0.000265 0.001613 0.002008 03160 False NV

1 box_1 0.511678 0.844758 0.057237 0.010067 0.015781 0.000700 0.001359 0.009953 0.060146 0.844758 False NV

2 box_2 0.481734 0.884654 0.024471 0.005835 0.007909 0.000153 0.000620 0.063905 0.012453 0.884654 False NV

3 box_3 0.400107 0.878126 0.015961 0.015796 0.011822 0.000379 0.000397 0.056616 0.020904 0.878126 False NV

Listing 8.1. Example of the user-CLI interaction.
The output of the CLI application is shown in “Lis. 8.1”. The program outputs

the results to the terminal and saves the results to the results folder, including image
with bounding boxes, index, detection score, classification score and classified type of
lesion. The results folder contains also the cropped bounding boxes, which are used for
classification. The output dataframe consists of the image name, which is in form of
“box i”, where i is the index of the bounding box. The detection score is the confidence
of the detection model, which is used to filter out the detections with low confidence.
The next 8 columns are the classification scores of the 8 classes. The last column is the
predicted class. The “unknown” column is used to indicate whether the model classified
lesion as “Unknown”. The “probs” column is the maximum of the classification scores,
which is used to determine the predicted class.
1 https://github.com/photosynthesis-team/piq
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The CLI application features loading animation, which is shown while the image is

being processed or brisque score is being calculated. This feature is for better user
experience, as these processes can take longer time.

We run couple of experiments, with different images. The first experiment is with
the image taken by camera “Fig. 8.1”, where we can see the output of the CLI App.
The model has found 4 PSLs.

a) b)
Figure 8.1. Output of the CLI App. a) Output of the CLI App. b) Close-up of the output
image. The black text is the index and detection score of the bounding box. The blue text

is the classification score and the predicted class.

Figure 8.2. Collage from cropped bounding boxes by CLI app.

The application predicted, that there is one Dermatofibroma and 3 occurrences of
Melanocytic Nevus. We run another experiment, with similar image.

This time with a smartphone, from different angle, different lighting conditions and
background. The output of the CLI application is shown in “Fig. 8.3”. We can see,
that although we have used low confidence for detection, the application successfully
filtered/set to “Unknown” the detection of the background.

Same PSLs, which were predicted on both photos, are shown in “Fig. 8.4”. Although,
the angle is different, the classificator classified the top-row PSLs as the same class (with
different probabilities).

The bottom-row PSLs were predicted as completely different. The difference may
be due to the better quality of the photo from the phone (in this case). Also the
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lighting conditions seem to be better in the photo from the phone. The angle is also
different, but is similar for the lesions in bottom row. We can conclude, that if we had
correspondences between PSLs by using the earlier discussed methods, we could use
the corespondences to improve the classification. The corespondences could be used to
improve the classification by using multiple PSL images as input to the classification
model. Then the output would be averaged or weighted according to image quality
score by BRISQUE algorithm.

a) b)
Figure 8.4. Same PSLs predicted by both photos. a) Photo taken by DSLR camera. b)
Photo taken by smartphone. Although, the classificator detected the same lesions, the

predicted classes by the classificator are different in case of bottom images.

Another example of the output of the CLI application is shown in “Fig. 8.5”. The
number of lesions is much greater than in “Fig. 8.1” and “Fig. 8.3”. The application
found mostly Melanocytic Nevus, but also a Vascular Lesion.
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Figure 8.3. Output of the CLI App with changed conditions. Top: Output of the CLI
App. Bottom: Collage from the cropped bounding boxes with the predicted classes and

scores.
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Figure 8.5. Output of the CLI App. Top: Output of the CLI App. Bottom: Collage from
the cropped bounding boxes with the predicted classes and scores.
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Chapter 9
Conclusion

We trained and evaluated the performance of the image classification and object de-
tection state-of-the-art models on skin lesion images. We also created our own dataset
of wide-area skin lesion images and tested the performance of the object detection
YOLOv7 model on this dataset. Lastly, we combined the image classification and
object detection models into a pipeline, which can be used to classify skin lesions in
wide-area images. The advantage of this approach is that the user does not need to per-
form any manual cropping of the images, which is required by the image classification
models.

9.1 Comparison of the original assignment and the
final result

We have achieved all the main goals of the thesis. We studied available datasets and
state-of-the-art in the diagnosis of PSLs. Using the existing state-of-the-art methods for
object detection we trained and evaluated the performance of the YOLOv7 model on
the 2D images from the Skin3D dataset. Using the existing state-of-the-art for object
detection, we trained 3 individual models and created 4 ensemble models. Evaluated
their performance as a function of image quality - resolution, blur, color changes. We
also studied the contrast and brightness changes. The original assignment also mentions
2 optional goals. We have achieved one of them. We acquired a dataset using a mobile
phone and DSLR camera and evaluated the developed methods on this data. The
second optional goal is to find correspondences between objects of interest in different
images using existing methods such as (SIFT, SURF, RANSAC, Coherent Point Drift)
for object matching. We did not achieve this goal.

We have achieved one more goal, which was not mentioned in the original assignment:
the creation of the fully automated system, which combines PSL detection and PSL
classification.

9.2 Future work
In the future, the performance of the object detection model could be improved by
introducing our own dataset into the training process and training more state-of-the-
art models for object detection. The PSL classification can be done by introducing the
“Unknown” class during training. We have the “Unknown” class, but we introduce it in
the postprocessing. Another improvement could be to use SIFT/SURF and RANSAC
to find correspondences between skin lesions on various images. These correspondences
can help to classify the images in fully automated application more accurately. These
correspondences could also be used later to track the skin lesions over time. Lastly, a
new updated dataset of wide-area skin lesion images could be created using the photos
of the same people as in our dataset, to create a dataset that could be used for tracking
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lesions across time. Finally, a smartphone app could be created, which would make the
whole process of taking the photos and diagnosing the skin lesions much easier for the
user.
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Appendix A
Consent form - DermaNude dataset

CONSENT FORM FOR INCLUDING PHOTOS IN DermaNude DATASET

I, [insert name], hereby give my consent for including photos of me in the DermaNude
dataset. I understand that my photos will be used to create a proprietary dataset (the
"Dataset") for the purposes of performing non-commercial scientific and/or academic
research or education (teaching).

The terms "Personal Data" and "Processing of Personal Data" in this section refer to the
definitions provided in Article 4 of the EU General Data Protection Regulation 2016/679 of 27
April 2016. Please note that age and gender information is considered personally identifiable
information (PII) under the GDPR, and the processing of such data is subject to its
requirements. However, if the faces of the participants have been blurred or are not present,
the processing of PII will be minimized. Furthermore, only the necessary minimum of
personal data, such as age and gender, will be included in the dataset.

I understand that the Dataset will be owned, produced, and maintained by the Licensor, and
that I am not entitled to any ownership or compensation for my photos.

I agree that the Dataset may be used for non-profit research only, and that any use of the
Dataset in the development of a commercial product, or the distribution or sharing of the
data with a third party without prior written authorization of the Licensor, is strictly prohibited.
However, I may optionally allow the sharing of my information (age, sex, photos without
faces) with third parties for non-commercial research purposes by checking the box below:

I agree to allow my data, such as age, sex and photos, to be shared with third
parties for non-commercial research purposes.

I understand that my photos will be accessed by full-time or part-time employees (including
staff, researchers, or members of a research project(s) maintained or made at the Licensee),
independent contractors retained for the research project(s) or Licensee's students
(collectively, "Authorized Persons"), and I agree to bear responsibility for such use of the
Dataset by its authorized users.

I have read and understand the terms and conditions of this consent form and hereby agree
to its contents.

Date:

Signature:

61



Appendix B
DermaNude Dataset License Form

Data License Agreement
for DermaNude Dataset

Between: Samuel Šúr, hereinafter referred to as "Licensor".

And:

________________________________________________________________________,
(ORGANIZATION NAME, ADDRESS), SIGNATORY NAME AND TITLE
hereinafter referred to as "Licensee".

This Dataset License Agreement (« Agreement ») becomes effective upon the date of the
last signature below (“Effective Date”).

1. DEFINITIONS

1.1 “Dataset” means the proprietary Dataset specified above which is owned, has been
produced and maintained by the Licensor.

1.2 “Permitted Uses” means a non-exclusive, non-transferable, non-assignable, free of
charge right to use the Dataset solely for the purposes of performing non-commercial scientific and/or
academic research by the Licensee or education (teaching).

1.3 “Updates” means any revisions of, additions to, or deletions from the Dataset.

2. LICENSE

2.1 Subject to the terms and conditions of this Agreement, Licensor hereby grant to Licensee
a non-exclusive, royalty-free, non-transferable license right (the “License”) for the term of this
Agreement to use the Dataset for the Permitted Uses, but only as long as the Licensee complies with
the terms and conditions of this Agreement. The Dataset is licensed to the Licensee, not sold.

2.2 The Dataset may be used for non-for-profit research only. Any use of the Dataset in the
development of a commercial product, or the distribution or sharing of the data with a third party
without is strictly prohibited.

2.3 Licensee shall agree to inform the Licensor in written form about academic research
projects for which Dataset is being used.

2.4 Licensee shall ensure that no persons other than full-time or part-time employees
(including staff, researchers or members of a research project(s) maintained or made at the Licensee,
independent contractors retained for the research project(s)) of Licensee, regardless of their physical
location; or Licensee’s students (“Authorized Persons”), will get access to the Dataset. Use of the
Dataset by the Authorized Persons of the Licensee mentioned in this Section 2.4. shall be deemed
use of the Dataset by the Licensee, and Licensee agrees to bear responsibility for such use of the
Dataset by its authorized users. Licensee shall inform its authorized users about the terms and
conditions of this license and on Permitted Uses of the Dataset. In the event of any unauthorized use
of the Dataset happen, the Licensor may (i) terminate such authorized user access to the Dataset , or
(ii) terminate this Agreement for cause as specified in clause 6.2 below.
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2.5 Any publication or work using this dataset, in whole or in part, should cite the following
Bachelor’s thesis:

“Šúr, S. (2023). Detection, classification and matching of skin lesions. Czech Technical University in
Prague.”

2.6 For the purpose of this section, the term “Personal Data” and “Processing of Personal
Data” shall have the meaning as described in article 4 of the EU General Data Protection Regulation
2016/679 of 27 April 2016. Licensee acknowledges that the Dataset provided under this Agreement
contains Personal Data, including age and gender information. Licensee agrees to comply with all
applicable laws and regulations related to the Processing of Personal Data, including the GDPR.
Licensee shall take all necessary technical and organizational measures to ensure the security and
confidentiality of Personal Data contained in the Dataset, and to prevent unauthorized access,
disclosure, alteration of such data.

3. DELIVERY

As soon as practicable after the Effective Date, Licensors will provide to Licensee one (1) copy of the
Dataset by electronic means to an email of Licensee.

4. UPDATING

During the term of this Agreement, Licensor may provide Licensee with Updates to the Dataset as
they become available and as reasonably practicable. Unless otherwise expressly indicated herein, all
references in this Agreement to Dataset shall include all Updates thereto.

5. ARCHIVE

During the term of the Agreement specified in the following clause 6.1, Licensor grant the Licensee
the right to archive one (1) complete copy of the Dataset . Licensee shall use such copy of the
Dataset strictly in accordance with the provisions of this Agreement.

6. TERM AND TERMINATION

6.1 This Agreement shall have an initial term of three (3) years commencing on the Effective
Date. During this period, this Agreement may be terminated by Licensor, by registered letter with
acknowledgment of receipt, at any time and automatically, in consideration of thirty (30) days’ notice.
Licensee shall have the option to prolong the effective date of this Agreement by submitting a written
request to Licensor prior to the expiration of the initial term. If the Licensor approves such request, this
Agreement shall be extended for an additional term to be agreed upon by the parties in writing. If the
Licensor does not approve such a request, this Agreement shall expire at the end of the initial term as
specified above.

6.2 This Agreement may be terminated by Licensor if the following event shall occur:
Licensee has materially breached any term or covenants of this Agreement, or if Licensor believe that
Licensee or its authorized users have used the Dataset beyond the scope of this license and such
material breach shall continue uncured for 30 days after written notice thereof from Licensor detailing
such material breach.

7. POST TERMINATION PROVISIONS

.
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Except as provided below, as soon as practicable after termination of this Agreement for any reason

whatsoever, without regard to the fault, but no later than 30 days after such termination, Licensee

shall:

(a) Destroy or deliver to Licensor, at Licensor’s option, any and all copies of the Dataset and all

Updates hereto, and other machine-readable or human-readable material delivered to Licensee

pursuant to this Agreement and then in Licensee’s possession or under Licensee’s control,

containing all or any part of the Dataset provided to Licensee pursuant to this Agreement.

(b) Expunge from any data storage facility owned by or under control of the Licensee any data

contained in or derived from the Dataset delivered to the Licensee pursuant to this Agreement

(c) Certify to Licensor in writing that Licensee has complied with the requirement of this section.

8. LIMITED WARRANTY

8.1 Licensor promises that it has the right to give Licensee permission to use the Dataset

described in this Agreement, and that the Dataset will not violate any third party's copyright,

trademark, trade secret, or other intellectual property rights. If there are any infringement claims,

Licensor will either remove the infringing information from the Dataset, modify the Dataset so it's not

infringing, or terminate this Agreement.

8.2 Except for what's stated in Section 8.1, Licensor does not give any other warranties,

including warranties of merchantability or fitness for a particular purpose. Licensor doesn't guarantee

that the information in the Dataset is accurate, adequate, or complete, or that the Dataset will meet

Licensee's requirements. No one is allowed to make any statements that change or add to the

warranties or limitations in this Agreement, and Licensee can't rely on any such statements.

9. LIMITATION OF LIABILITY

Licensor is not responsible for any special, indirect, incidental, or consequential damages that happen

because of this Agreement or because of anything related to it. This includes damages from contract,

warranty, negligence, tort, strict liability, or any other reason.

10. PROPRIETARY RIGHTS

10.1 Licensor owns all the intellectual property rights to the Dataset and all its parts, including

the copyright. Licensee acknowledges this fact and agrees that Licensor will remain the owner of the

Dataset and all its property rights. This Agreement does not give Licensee any ownership rights to the

Dataset.

10.2 Licensees shall not alter, remove, obscure or obstruct the display of any copyright,

trademark or other proprietary notice placed upon Dataset by Licensor.

10.3 Licensee shall execute and deliver to Licensor from time to time, at Licensor’s request

any further instruments or documents that may reasonably be required by Licensor to vest and

confirm such proprietary rights to Licensor.

10.4 LLicensee is only permitted to use the Dataset in accordance with the terms outlined in

this Agreement. Licensee is strictly prohibited from (a) copying, downloading or otherwise reproducing

the Dataset in any medium, in whole or in part, except for limited portions resulting from discrete

searches that may be printed or downloaded; (b) modifying, adapting, or altering the Dataset,

including decompiling, disassembling, or creating derivative works, without prior written approval from

Licensor, or (c) selling, licensing, or distributing the Dataset or any parts thereof to third parties,

including Licensee’s subsidiaries and affiliates.
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10.5 Licensee acknowledge that the Dataset is the product of Licensor’s extensive gathering
and coordination of information, selection therefrom of information considered by Licensor to be
relevant and useful, and original arrangement of selected information.

10.6 Licensee acknowledges that any use of the Dataset by Licensee which is not in
accordance with the terms of this Agreement or any violation of the restrictions imposed on Licensee’s
use of the Dataset would cause irreparable harm to Licensor.

Date: ___ / ___ /___
As Licensor:

.........................................................
Samuel Šúr

For Licensee:
Signed by:

........................................................

Name of the signatory:____________

Title:_____________
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Appendix C
Technical details

All of the code for this thesis can be found in the GitLab repository1 The structure of
the repository is shown in “Lis. C.1”.

|--- classification/
| |--- classification_code
| |--- main.py
| |--- stats/
| |--- requirements.txt
| |--- model_efficientnet-b0.pth
| |--- model_efficientnet-b7.pth
| |--- model_resnet50.pth
| |--- trained_models
| |--- model_efficientnet-b0.pth
| |--- model_efficientnet-b7.pth
| |--- model_resnet50.pth
| |--- ...
|--- detection/
| |--- eval_dermanude/
| |--- utils/
| |--- ...
| |--- main.py
| |--- models/
| |--- best_model.pt
| |--- yolov7/
| |--- main.py
| |--- dataset_wrapper.py
| |--- generate_txt_for_eval.py
| |--- preprocess.py
| |--- json_to_csv.py
| |--- my_nms.py
| |--- requirements.txt
|--- cli_app/
| |--- main.py
| |--- models/
| |--- ...
| |--- results/
| |--- utils/
| |--- custom_loader.py
| |--- Readme.md
|--- Readme.md

Listing C.1. Structure of the repository.

1 https://gitlab.fel.cvut.cz/sursamue/bakalarska_praca.
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The 3 main parts of the code are classification, detection, and CLI application. They
are described in the following sections. We also summarize the location of the datasets
used in this thesis.

C.1 Classification
The code for classification is located in the classification/classification/ folder. The
code is in the main.py file.

The required packages are listed in the requirements.txt file. The Read.me file con-
tains all the information about the code and how to run it.

C.2 PSL detection
The code for PSLs detection in the 3DBodyTex.v1 is located in the detection/yolov7
folder. The code is in the main.py file. The Read.me file contains all the information
about the code and how to run it. The code for PSLs detection in the DermaNude
dataset is located in the detection/eval dermanude folder. The code is in the main.py
file.

C.3 Self-examination of skin lesions
The code for self-examination of skin lesions is located in the cli app folder. The code
is in the main.py file located in the cli app folder. The read.me file contains all the
information about the code and how to run it.

C.4 Datasets
3DBodyTex.v1 dataset can be obtained after signing the license form1. The PSL an-
notations for 3DBodyTex.v1 are available on GitHub2. The ISIC 2019 dataset can be
obtained from Kaggle3. The DermaNude dataset can be obtained after signing the
license form and sending it to the author of this thesis. The license form, as well as
contact information, is available on the official website4.

1 https://cvi2.uni.lu/3dbodytexv1/
2 https://github.com/jeremykawahara/skin3d
3 https://www.kaggle.com/datasets/cdeotte/jpeg-isic2019-512x512
4 https://samuelsur.xyz/dermanude
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