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Abstrakt
Tato práce se věnuje matematickému modelování nestlačitelné tekutiny v izotermálním systému
pomocí mřížkové Boltzmannovy metody (LBM). Hlavním cílem je zkoumání použití této numer-
ické metody pro simulace volného proudění a implementace v rámci kódu vyvíjeného na KM,
FJFI, ČVUT v Praze.

Nejprve je formulován matematický model popisující nestlačitelné vazké proudění. Dále je
uveden popis nenewtonovských kapalin, teorie mezní vrstvy a úvod do kinetické teorie látek. Pro
numerické řešení uvedených problémů je použita LBM, která je detailně popsána včetně různých
typů kolizních operátorů a okrajových podmínek.

S použitím numerických testů a asymptotických metod je LBM analyzována. Výsledky
asymptotické analýzy ukazují, že dané numerické řešení aproximuje nestlačitelné Navierovy-
Stokesovy rovnice. Dále jsou odvozeny lokální vztahy pro výpočet parciálních derivací rychlosti,
které jsou použity pro interpolaci s druhým řádem přesnosti. V rámci numerické analýzy jsou
otestovány mezoskopické okrajové podmínky a ukazuje se, že námi navržené okrajové podmínky
produkují řešení s nejmenší chybou.

Cílem druhé části je validace LBM pomocí řešení třech reálných problémů. Nejprve je
testováno její použití na problému turbulentního proudění v mezní vrstvě nad hrubým povrchem.
Získané výsledky ukazují, že tato metoda poskytuje dobré výsledky ve srovnání s experimentem
či numerickou metodou konečných diferencí. V rámci druhého problému je zkoumáno numerické
řešení tlakového pole ve fluidním kotli. Dobrá shoda je opět pozorována mezi výsledky LBM,
experimentem a metodou konečných objemů. Poslední úloha zkoumá použitelnost LBM pro
simulace nenewtonovského proudění v oblasti okolo stenotického zúžení cév. LBM výsledky
jsou srovnány s experimentálními daty měřenými pomoci magnetické rezonance. Výsledky
simulací ukazují dobrou shodu s většinou experimentálních dat a dále poukazují na nedostatky
měření pomocí magnetické rezonance, tj. převážně na podhodnocení zpětného toku v oblastech
turbulentního proudění.
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Abstract
This thesis deals with the mathematical modeling of an incompressible fluid in an isothermal
system using the lattice Boltzmann method (LBM). The main objective is to investigate the
applicability of this numerical method to free-flow simulations and its implementation within the
code developed at the Department of Mathematics, FNSPE, CTU in Prague.

First, a mathematical model is formulated that describes the incompressible viscous flow.
Then, a description of non-Newtonian fluids models, boundary layer theory, and an introduction
to kinetic theory are given. The LBM is used for the numerical solution of these problems and is
extensively described including various types of collision operators and boundary conditions.

The LBM is analyzed using numerical tests and asymptotic methods. The results of the
asymptotic analysis show that the given numerical solution approximates the incompressible
Navier-Stokes equations. Furthermore, local relations are derived to calculate the partial
derivatives of the velocity, which are used for the interpolation with the second-order accuracy.
Mesoscopic boundary conditions are tested by the numerical analysis and it is shown that our
proposed boundary conditions produce a numerical solution with the smallest error.

The aim of the second part is to validate the LBM in the context of three real-world problems.
First, its application to the problem of a turbulent boundary layer flow above a rough surface
is tested. The results obtained show that this method gives good results compared to the
experimental data or numerical finite difference method. In the second problem, the numerical
solution of the pressure field in a fluidized bed boiler is investigated. Good agreement is again
observed between the results of the LBM, experiment, and finite volume method. The last
problem investigates the applicability of the LBM for simulations of a non-Newtonian flow in the
vicinity of stenotic valves. LBM results are compared with experimental data measured using
magnetic resonance imaging. The simulation results show a good agreement with most of the
experimental data and further highlight the imperfections of the MRI measurements, that is,
mainly the underestimation of the backflow in regions of turbulent flow.
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ε1 Non-dimensional asymptotic parameter, page 64 [−]

ε2 Non-dimensional asymptotic parameter, page 64 [−]

φ Arbitrary function, page 20

φ′ Fluctuation from the time average φ of arbitrary function, page 21

ϱX,Y Correlation between data X and Y , page 141

ςX Mean absolute deviation of X, page 141

ϑ Parameter of Carreau-Yasuda model, page 17 [s]

ξ Microscopic velocity, page 22 [m s−1]

ξi Non-dimensional discrete microscopic velocity, page 27 [−]

ν̃ℓ Non-dimensional kinematic viscosity on grid with level ℓ, page 54 [−]

Ω̃ Discrete lattice, page 26

ϕ̃ Non-dimensional quantity ϕ, page 26

κ̃ Vector of combinations of non-dimensional central moments, page 31 [−]



Nomenclature xxi

κ̃(eq) Non-dimensional attractro of κ̃, page 31 [−]

Latin letters

ℓK Kolmogorov length, page 21 [m]

ℓm Mean free path, page 11 [m]

Kn Knudsen number, page 11 [−]

Ma Mach number, page 10 [−]

Af , Am Matrices for expressing unknown DDFs using known DDFs and raw moments,
page 45 [−]

D Deformation-rate tensor, page 12 [s−1]

F Diagonal matrix with relaxation frequencies, page 31 [−]

K Transformation matrix to central moments, page 31 [−]

M Transformation matrix to raw moments, page 31 [−]

S Strain-rate tensor, page 12 [s−1]

T Stress tensor, page 12 [kg m−1 s−2]

T′ Stress tensor of the turbulent apparent friction, page 21 [kg m−1 s−2]

T ν Viscous stress tensor, page 12 [kg m−1 s−2]

A Subset of R3 × R3, page 139

C Collision operator, page 24 [kg m−6 s2]

Ci Non-dimensional discrete collision operator, page 27 [−]

CBGK BGK approximation of collision operator, page 24 [kg m−6 s2]

CFP Fokker-Planck approximation of collision operator, page 24 [kg m−6 s2]

D Diffusion tensor in Fokker-Planck collision operator, page 24 [m2 s−2]

P Probability, page 139 [−]

Q Discrete set of microscopic velocities, page 27

T Time interval, page 12

V Volume in R3, page 22

q Hit rate metric, page 142

u Time average of velocity vector, page 21 [m s−1]

p Time average of pressure, page 21 [kg m−1 s−2]

Pr Prandtl number, page 10 [−]
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Re Reynolds number, page 10 [−]

Re(k)
c Critical Reynolds number, k ∈ N, page 10 [−]

Rex Reynolds number of flat plate, page 20 [−]

dp Pressure drop, page 15 [kg m−1 s−2]

G Source term with non-Newtonian effects, page 114 [kg m−2 s−2]

g Volume force acceleration, page 12 [m s−2]

i Multi-index, page 27

n Normal vector, page 13

P Offset vector, page 25 [m]

q Heat flux, page 24 [kg s−3]

Sc Center of cylinder, page 113 [m]

u Fluid velocity, page 12 [m s−1]

u′ Fluctuation from the time average u of velocity vector, page 21 [m s−1]

u(k) Non-dimensional member of asymptotic expansion of u, page 64 [−]

ua Non-dimensional velocity calculated from DDFs right after performing interpolated
outflow BC, page 42 [−]

uan Analytical velocity solution, page 15 [m s−1]

uini Initial velocity value, page 14 [m s−1]

uin Inflow velocity value, page 14 [m s−1]

X, Y Data sets, page 140

Zavg Average of data X and Y , page 142

Zdiff Difference between experimental and simulated data, page 117

(

∂ui
∂xj

Approximation of non-dimensional ∂ui
∂xj

used in CuLBM2, page 35 [−]

m̃ Vector of combinations of non-dimensional raw moments, page 31 [−]

m̃(eq) Non-dimensional attractor of m̃, page 31 [−]

T̃ Discretization of time interval T , page 26

M̃ Central moment generating function, page 140

c Non-dimensional lattice velocity, page 27 [−]

C⋆
j Non-dimensional post collision cumulant, page 34 [−]

C
(k)
(α,β,γ) Non-dimensional coefficient of asymptotic expansion of C(α,β,γ), page 67 [−]
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Cϵ Constant of proportionality, page 62 [m2 s−1]

Cj Non-dimensional cumulant, page 32 [−]

cj Non-dimensional cumulant, page 31 [−]

CP Heat capacity at constant pressure, page 10 [J kg−1 K−1]

Cp Empirical coefficient of power law model, page 17 [kg m−1 s−1]

cp Specific heat at constant pressure, page 12 [m2 s−2 K−1]

cs Speed of sound, page 10 [m s−1]

cv Specific heat at constant volume, page 12 [m2 s−2 K−1]

C99 Non-dimensional constant parameter, page 19 [−]

D Continuous Dirac delta function, page 32

e Specific energy, page 24 [m2 s−2]

f Density function, page 22 [kg m−6 s3]

f
(0)
i Non-dimensional constant part of DDF, page 59 [−]

f (eq) Equilibrium density function, page 24 [kg m−6 s3]

f
(eq)
i Non-dimensional discrete equilibrium density function, page 29 [−]

f
(neq),ℓ
i Non-equilibrium part of DDF on grid with level ℓ, page 57 [−]

Fi Non-dimensional forcing term, page 37 [−]

fi Non-dimensional discrete density function, page 27 [−]

f⋆
i Non-dimensional post-collision discrete density function, page 28 [−]

f
(neq)
i Non-equilibrium part of non-dimensional discrete density function, page 38 [−]

fp Probability density function, page 139 [−]

GN Number of grid levels, page 55 [−]

h(t) Non-dimensional time-dependent scaling function, page 115 [−]

Ii Time interval, page 117

K Cumulant generating function, page 140

k Turbulent kinetic energy, page 21 [m2 s−2]

k0 Parameter of Casson model, page 17 [kg2 m−2]

k1 Parameter of Casson model, page 17 [kg2 m−2]

kc Thermal conductivity, page 10 [J m−1 s−1 K−1]

L Characteristic length, page 10 [m]
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l Length of plate, page 19 [m]

Li Dimension of Ω in xi direction, i ∈ {1, 2, 3}, page 14 [m]

M Raw moment generating function, page 139

m
(eq)
j Non-dimensional equilibrium raw moment of discrete density function, page 30[−]

m
(k) (eq)
(α,β,γ) Non-dimensional member of asymptotic expansion of m

(eq)
(α,β,γ), page 64 [−]

m
(k)
(α,β,γ) Non-dimensional member of asymptotic expansion of m(α,β,γ), page 63 [−]

m
⋆ (k)
(α,β,γ) Non-dimensional member of asymptotic expansion of m⋆

(α,β,γ), page 63 [−]

m⋆ Selected non-dimensional raw moment in moment-based BC, page 44 [−]

mj Non-dimensional raw moment of discrete density function, page 30 [−]

N1, N2, N3 Number of grid nodes, page 25 [−]

Nt Number of time steps, page 26 [−]

Nti Number of time steps used for time integration, page 116 [−]

P Rescaled pressure, page 18 [m2 s−2]

p Fluid pressure, page 12 [kg m−1 s−2]

p′ Fluctuation from the time average p of pressure, page 21 [kg m−1 s−2]

p0 Non-dimensional reference pressure, page 28 [−]

pan Analytical pressure solution, page 15 [kg m−1 s−2]

pini Initial pressure value, page 14 [kg m−1 s−2]

pout Outflow pressure value, page 14 [kg m−1 s−2]

q+ Positive flux, page 116 [m3 s−1]

q− Negative flux, page 116 [m3 s−1]

Rs Specific gas constant, page 12 [m2 s−2 K−1]

rin Radius of cylinder at inflow, page 113 [m]

rout Radius of cylinder at outflow, page 113 [m]

S(x1) Cross section of Ω at x1, page 70

T Final time, page 12 [s]

t Time, page 12 [s]

tI Time unit, page 17 [s]

tK Kolmogorov time, page 21 [s]



Nomenclature xxv

ts Student’s distribution, page 142

tavg Non-dimensional length of integrated time interval, page 84 [−]

tini Non-dimensional initial time step, page 84 [−]

uτ Wall friction velocity, page 22 [m s−1]

Uavg Average velocity, page 114 [m s−1]

Uhigh High velocity, page 114 [m s−1]

Ulow Low velocity, page 114 [m s−1]

Umax Maximal velocity, page 15 [m s−1]

Uref Reference velocity, page 93 [m s−1]

V Characteristic velocity, page 10 [m s−1]

wi Non-dimensional discrete weight, page 30 [−]





System of Notation

This chapter summarizes the used notation in this thesis. All vector quantities are printed using
bold symbols. Matrices and tensors are printed using the blackboard bold style in math mode
in LATEX. Let φ ⊂ R, v ⊂ R3 and C ⊂ R3 × R3 be an arbitrary scalar, vector, and tensor
quantity, respectively. The i-th component of vector v is labeled by vi, i ∈ {1, 2, 3}. Similarly,
the i, j-th component of tensor C is labeled by Ci,j , i, j ∈ {1, 2, 3}. The differential operator ∇
is represented by a vector of spatial partial derivatives

(
∂

∂x1
, ∂

∂x2
, ∂

∂x3

)T
.

In this thesis, the following notation for scalar, vector, and tensor quantities is used:

• Gradient of scalar:
(∇φ)i = ∂φ

∂xi
, i ∈ {1, 2, 3},

• Laplacian of scalar:

∆φ =
3∑

i=1

∂2φ

∂x2
i

,

• Vector norm:

∥v∥ =

√√√√ 3∑
i=1

(vi)2,

• Scalar product between vectors:

v ·w =
3∏

i=1
viwi, w ⊂ R3,

• Gradient of vector:
(∇v)i,j = ∂vi

∂xj
i, j ∈ {1, 2, 3},

• Divergence of vector:

∇ · v =
3∑

i=1

∂vi

∂xi
,

• Laplacian of vector:

(∆v)i =
3∑

j=1

∂2vi

∂x2
j

, i ∈ {1, 2, 3},
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• Outer product:
(v ⊗w)i,j = viwj , w ⊂ R3, i, j ∈ {1, 2, 3}

• Divergence of tensor:

(∇ · C)i =
3∑

j=1

∂Cj,i

∂xj
, i ∈ {1, 2, 3},

• Double-dot product:

C : D =
3∑

i,j=1
Ci,jDi,j , D ⊂ R3 × R3.

Next, the following operators are used in this thesis:

• Derivative with respect to vector v:

∂

∂v
= v · ∇,

• Material derivative:
D

Dt
= ∂

∂t
+ u · ∇,

where u is the fluid velocity.

Finally, several types of norms are used in this thesis. Let φ = φ(x) and v = v(x) are scalar
and vector fields, respectively, defined in a discrete set Ω̂ and let Γ ⊂ R3. Then, the following
norms are used:

• L1 norm over Ω̂:

∥φ∥L1 =
∑
x∈Ω̂

|φ(x)| , ∥v∥L1 =
∑
x∈Ω̂

( 3∑
i=1
|vi(x)|

)
.

• L1 norm over Γ ⊂ R3:

∥φ∥L1,Γ =
∑

x∈Γ∩Ω̂

|φ(x)| , ∥v∥L1,Γ =
∑

x∈Γ∩Ω̂

( 3∑
i=1
|vi(x)|

)
,

• L2 norm over Ω̂:

∥φ∥L2 =

∑
x∈Ω̂

(φ(x))2

 1
2

, ∥v∥L2 =

∑
x∈Ω̂

( 3∑
i=1

(vi(x))2
) 1

2

,

• L2 norm over Γ ⊂ R3:

∥φ∥L2,Γ =

 ∑
x∈Γ∩Ω̂

(φ(x))2

 1
2

, ∥v∥L2,Γ =

 ∑
x∈Γ∩Ω̂

( 3∑
i=1

(vi(x))2
) 1

2

.



Introduction 1
The main topic of this thesis are the numerical simulations of fluid dynamics (referred to
as computational fluid dynamics (CFD)), which are one of the most intensively investigated
problems of numerical mathematics. Problems of fluid dynamics are often encountered in practice,
for example, in the automotive or aerospace industry when determining aerodynamics, in the
energy industry, in medicine when investigating the hemodynamics in vessels, and in many
other fields. The advantages of numerical simulations include lower financial costs compared
to physical experiments, time savings, and adaptability to particular problems. CFD includes
several numerical methods to simulate fluid dynamics. To the conventional CFD methods belong,
for example, the finite difference method (FDM) [128], the finite volume method (FVM) [182],
and the finite element method (FEM) [21].

The FDM approximates continuous partial differential equation (PDE) using finite differences
on a discrete grid. The advantage of the FDM is its simplicity. The main drawbacks include
the additional numerical diffusion caused by the approximation of the advection term [118].
Contrary to the FDM, the FVM is based on the volume approach. It divides the investigated
domain into volumes of different shapes and sizes. The structure of the final discrete PDEs is
often similar to the structure of discretized equations of the FDM. However, the FVM is easily
adapted to irregular grids. In contrast to the FDM and FVM, the FEM method works with the
weak form of the given PDEs. The whole investigated domain is discretized using small parts
that are called finite elements. The main advantage of the FEM is the developed mathematical
theory of existence and uniqueness of discrete solutions. Next, it is suitable for unstructured
grids, which discretize complex geometries. The main disadvantage of the FEM is its complexity
and computational demands.

Contrary to these numerical methods, the CFD includes additional methods such as boundary-
element method [151], spectral methods [24], or particle based mesoscopic methods [118]. The
main objective of this work is the numerical lattice Boltzmann method (LBM) that uses mesoscopic
description of the fluid. In contrast to the FDM, FVM, and FEM, the LBM usually uses a uniform
grid for numerical simulations and the discrete scheme is usually constructed in a "down-to-top"
manner. That is, a discrete scheme is designed first and the target PDEs with numerical errors
are found using a backward analysis.

In this thesis, the LBM is studied using two approaches. First, the theoretical analysis of the
LBM is performed. Using the asymptotic analysis, the LBM is investigated and the associated
PDEs are recovered. Moreover, the asymptotic analysis allows to express useful approximations
of velocity derivatives that can be calculated locally, that is, unlike the FDM, no information
from neighboring lattice sites is needed. Furthermore, numerical experiments are performed to
investigate the quality of the numerical solution obtained by the LBM. In these experiments, the
effect of boundary condition (BC) approximations on the numerical solution is investigated and

1



2 1. Introduction

two novel BCs are proposed.
Three real-world application problems are used for the validation of the LBM. The first

problem studies a turbulent air flow in the boundary layer above a rough surface and is motivated
by the collaboration with the Institute of Thermomechanics of the Czech Academy of Sciences.
The second problem is inspired by the research project investigating biomass combustion in
a fluidized bed boiler. Within this problem, the air flow through a perforated plate in the
combustion chamber is studied and the numerical solution of the pressure drop across the plate
is compared with the experimental data measured at the Faculty of Mechanical Engineering,
CTU in Prague. For the last problem, the inspiration comes from the collaboration with the
Institute for Clinical and Experimental Medicine in Prague and the problem deals with the
non-Newtonian fluid flow through arterial valves with different degree of stenosis . The fluid flow
simulations are compared with experimental data acquired using magnetic resonance imaging
(MRI). The experimental data are used for the validation of several viscosity models and the
simulations are then used to point out the imperfections of MRI.

1.1 State of the art
In this thesis, we focus on the numerical simulations of an incompressible, viscous fluid flow in
an isothermal domain using the LBM. The LBM was proposed for numerical simulations of fluid
dynamics in 1988 by McNamara and Zanetti in [137]. Since the first approach in 1988, the LBM
has evolved rapidly, as illustrated in Figure 1.1. In the last five years, more than 5000 articles
were published with the keyword "lattice Boltzmann method". The reason for this development
is its ability to simulate various fluid flow problems and still huge amount of open problems. Up
to now, the LBM has been used, for example, for the numerical solution of the Navier-Stokes
equations [88, 118], heat transport equation [162, 189], advection-diffusion equation [72, 101],
phase-field equation [39, 56, 73], shallow water equation [38, 133, 180], multiphase flow equations
[27, 100, 183, 192], Poisson equation [28, 138], etc.
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Figure 1.1: Number of publications with the keyword "lattice Boltzmann method" based on the
Scopus database [160].

The LBM is well suited for the parallel implementation, especially on GPUs [145], and
therefore, the interest in the LBM has increased with the development of hardware performance.
So far, several LBM-based software for fluid flow simulations enabling parallel run emerged
[57, 97, 116, 126]. In this work, we use a custom, in-house LBM implementation that is being
developed at the Department of Mathematics, FNSPE CTU in Prague, which enables parallel
execution on distributed systems equipped with GPUs. The author of this thesis is one of the
founders and main developers of the in-house code.



1.2. Research goals 3

1.2 Research goals

The main objective of this work is to investigate the capabilities of the LBM for fluid flow
simulations. Due to the extensiveness of the investigation, this main topic is divided into several
tasks comprising various aspects of the problem. The following objectives of this work are
pursued:

• To formulate the mathematical model describing the evolution of the incompressible,
single-phase, viscous fluid in an isothermal domain.

• To propose a variant of the LBM suitable for particular CFD problems.

• To suggest and implement mesoscopic BCs. The newly derived BCs can be assessed using
a comparison with commonly used mesoscopic BCs.

• To investigate the ability of the LBM to directly numerically simulate the turbulent fluid
flow in the boundary layer above rough surface.

• To improve and implement a parallel variant of the LBM with a grid refinement technique.
The LBM with a grid refinement can be tested on the turbulent boundary layer problem.

• To choose and implement an appropriate non-Newtonian model of viscosity to the existing
numerical LBM code and validate it using a comparison with experimental data acquired
by MRI measurement.

1.3 Content of this thesis

The thesis is organized as follows.

• In Chapter 1, an introduction to the theory and the state of the art are summarized.

• In Chapter 2, the theoretical background is presented. It comprises a formulation of the
mathematical model of incompressible, viscous fluid flow, a summary of viscosity models
for non-Newtonian fluids, and an introduction to the kinetic and boundary layer theory.

• In Chapter 3, the LBM is described. It consists of basics of the LBM and the overview of
collision operators, BCs, and grid refinement techniques used in this thesis.

• In Chapter 4, asymptotic analysis of the LBM with cumulant collision operator is performed.
The output of the analysis is the incompressible Navier-Stokes equations actually solved by
the LBM and formulas for the local approximation of the velocity derivatives.

• In Chapter 5, the mesoscopic BCs are assessed within the laminar fluid flow problem.

• In Chapter 6, the ability of the LBM to numerically solve the turbulent boundary layer flow
is investigated. First, the LBM and FDM numerical solutions are compared. Next, the grid
refinement technique for the LBM is tested. Finally, the LBM solution of a turbulent street
canyon flow is compared with the experimental measurement and results of the FDM.

• In Chapter 7, the turbulent fluid flow in the combustion chamber of the fluidized bed boiler
is numerically solved using the LBM. The LBM solution is compared with experimental
data and numerical results obtained by the FVM.
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• In Chapter 8, the non-Newtonian fluid flow simulations in an aortic vessel are presented.
The LBM results are compared with experimental MRI measurements and the necessity of
using a non-Newtonian model for sufficiently accurate numerical simulations is assessed.

• In Chapter 9, the thesis is concluded, achieved results are summarized, and the future work
is devised.

1.4 Achieved results

• We derived moment-based BCs for the D3Q27 velocity model used in the LBM. Next, we
modified the interpolated BCs to achieve better numerical accuracy of the pressure at
the outflow boundary. These newly derived BCs were tested by comparison with other
commonly used BCs. We found that the suggested BCs provided the smallest numerical
error compared to the other BCs tested. These findings are summarized in [51].

• We validated the LBM for direct numerical simulations of turbulent boundary layer
flow above a rough surface. The computed results were in a good agreement with the
experimental data and the numerical simulations using the FDM. This validation is
summarized in [50].

• We investigated possible techniques for the interpolation of discrete density functions
between numerical grids with different resolutions. A simplified model of the LBM with
a grid refinement technique has been implemented in parallel using MPI and CUDA and
tested on the problem of turbulent boundary layer flow above rough surface. The results
show a good agreement with the LBM results using a uniform grid.

• On the basis of the experimental pressure measurement in the combustion chamber, we
compared the numerical LBM pressure solution with experimental data. Moreover, the LBM
was compared with the FVM implemented in the ANSYS Fluent software package [3]. We
found that the LBM produces results comparable to the experimental data. Furthermore,
LBM simulations are less computationally expensive than FVM simulations. These findings
are collected in [9].

• Motivated by the collaboration with the Institute of Clinical and Experimental Medicine
in Prague, we implemented a model for non-Newtonian fluids into the code developed at
the Department of Mathematics, FNSPE CTU in Prague. Next, a series of numerical
simulations were performed in the approximate geometry of the arterial vessel with stenotic
valve. Numerical results were compared with experimental data and the influence of the
non-Newtonian model used was assessed. The results of Newtonian models with constant
kinematic viscosity are comparable to experiments and can be regarded as suitable for
further use. These findings are summarized in [52].

1.5 Author’s contribution in journal papers

The author’s contribution to the aforementioned publications in impacted journals and books
related to this thesis is listed below:
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Related to doctoral thesis

• Eichler, P., Fuka, V., and Fučík, R. (2021). Cumulant lattice Boltzmann simulations of
turbulent flow above rough surfaces. Computers & Mathematics with Applications (IF
3.218), 92:37-47, [50].

▷ Pavel Eichler was the leading author, he prepared and performed all LBM simulations.
He wrote the main body of the paper and processed the results.

• Beneš, M., Eichler, P., Fučík, R., Hrdlička, J., Klinkovský, J., Kolář, M., Smejkal, T.,
Skopec, P., Solovský, J., Strachota, P., Straka, R., Žák, A. (2022). Experimental and
numerical investigation of air flow through the distributor plate in a laboratory-scale model
of a bubbling fluidized bed boiler. Japan Journal of Industrial and Applied Mathematics
(IF 0.681), 1-16, [9].

▷ Pavel Eichler was the co-author, he prepared and performed all LBM and FVM
simulations. He processed the results and collaborated on the preparation of the main
body of the paper.

• Fučík, R., Galabov, R., Pauš, P., Eichler, P., Klinkovský, J., Straka, R., Tintěra, J., Chabin-
iok, R. (2020). Investigation of phase-contrast magnetic resonance imaging underestimation
of turbulent flow through the aortic valve phantom: Experimental and computational study
using lattice Boltzmann method. Magnetic Resonance Materials in Physics, Biology and
Medicine (IF 2.671). 33.5: 649-662, [71].

▷ Pavel Eichler was the co-author. He contributed to the preparation of the article by
running simulations on a local HPC cluster and collaborated on the preparation of
the main body of the paper.

• Eichler, P., Fučík, R., Straka, R. (2021). Computational study of immersed boundary -
lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical
Systems-S (IF 1.622), 14.3: 819, [49].

▷ Pavel Eichler was the leading author, he prepared and performed all simulations. He
wrote the main body of the paper and processed the results.

• Fučík, R., Eichler, P., Straka, R., Pauš, P., Klinkovský, J., Oberhuber, T. (2019). On
optimal node spacing for immersed boundary–lattice Boltzmann method in 2D and 3D.
Computers & Mathematics with Applications (IF 3.218), 77.4: 1144-1162, [68].

▷ Pavel Eichler was the co-author. He contributed to the preparation of the article by
running simulations and collaborated on the preparation of the main body of the
paper.

• Fučík, R., Eichler, P., Klinkovský, J., Straka, R., Oberhuber, T. (2022). Lattice Boltzmann
Method Analysis Tool (LBMAT). Numerical algorithms (IF 2.502), 1-17, [67]

▷ Pavel Eichler was the co-author. He contributed to the preparation of simulations
and collaborated on the preparation of the main body of the paper.

• Eichler, P., Galabov, R., Fučík, R., Škardová, K., Oberhuber, T., Pauš, P., Tintěra, J.,
Chabiniok, R. Non-Newtonian turbulent flow through aortic phantom: Experimental and
computational study using magnetic resonance imaging and lattice Boltzmann method.
Under review in Computers & Mathematics with Applications (IF 3.218), [52].
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▷ Pavel Eichler was the leading author, he prepared and performed all LBM simulations.
He wrote the main body of the paper and processed the results.

• Eichler, P., Fučík, R., Strachota, P. Investigation of mesoscopic boundary conditions
for lattice Boltzmann method in laminar flow problems. Under review in Computers &
Mathematics with Applications (IF 3.218), [51].

▷ Pavel Eichler was the leading author, he prepared and performed all LBM simulations.
He wrote the main body of the paper and processed the results.

• Chabiniok, R., Škardová, K., Galabov, R., Eichler, P., Gusseva, M., Janoušek, J., Fučík, R.,
Tintěra, J., Oberhuber, T., Hussain, T. Translational Cardiovascular Modeling: Tetralogy
of Fallot and Modeling of Diseases. In: Modeling Biomaterials. Birkhäuser, Cham, 2021.
p. 241-276, [26].

▷ Pavel Eichler was the co-author. He wrote a part of this book chapter summarizing
the large-vessel flow modeling.

Other papers

• Beneš, M., Eichler, P., Klinkovský, J., Kolář, M., Solovský, J., Strachota, P., Žák, A. (2021).
Numerical simulation of fluidization for application in oxyfuel combustion. Discrete and
Continuous Dynamical Systems-S (IF 1.622), 14(3), 769-783, [10].

▷ Pavel Eichler was the co-author. He contributed to the preparation of the article by
running simulations and collaborated on the preparation of the main body of the
paper.

• Beneš, M., Eichler, P., Hrdlička, J., Klinkovský, J., Kolář, M., Smejkal, T., Skopec, P.,
Solovský, J., Strachota, P., Žák, A. (2022). Experimental Validation of Multiphase Particle-
in-Cell Simulations of Fluidization in a Bubbling Fluidized Bed Combustor. Powder
Technology (IF 5.165), 416, 118204, [9].

▷ Pavel Eichler was the co-author. He contributed to the preparation of the main body
of the paper.

1.6 Future work
Beyond the presented thesis and the achieved results, there remain several challenging tasks that
need to be further explored. These include:

• To investigate the proposed moment-based BCs on the problems of the turbulent flow.
Currently, the moments are defined by their equilibrium. Thus, a better, physically
consistent interpretation of higher-order moments needs to be derived and analyzed.
Furthermore, the current implementation of these BCs in the in-house code is not efficient.
Thus, the efficiency of the implementation also needs to be improved.

• To further investigate the numerical errors of the LBM pressure solution by comparing
it with the numerical solution of the Poisson’s equation. For the comparison, real-world
application problem, such as the fluid flow in a combustion chamber of a fluidized bed
boiler, can be used. Next, the influence of the compressibility on the LBM solution should
be analyzed.
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• To improve the efficiency of the parallel code of the LBM with the grid refinement tech-
nique. Next, a more general configuration of the refinement will be implemented using a
sophisticated grid structure and optimized for the parallel execution on GPUs.





Theoretical Background 2
This chapter summarizes basic concepts and phenomena studied in this thesis. First, the basic
physical concepts are introduced and the Navier-Stokes equations are discussed. It is followed by
an introduction to laminar and turbulent boundary layer theory. Finally, an introduction to the
kinetic theory is presented.

2.1 Basic concepts

The main objective of this thesis is the fluid flow. Fluid can be characterized as a material that
continuously deforms under applied shear stress. The deformation process is then called flow.
Since the fluid flow is one of the most prominent physical phenomena in the world, it has always
been studied intensively. The fluid flow can be seen at different scales. We can start with the
atmospheric jet stream (airflow at an altitude of 9-16 km above the surface with a typical speed
of 100 km/h) and end with the capillary flow in the subsurface.

The modern description of the fluid flow began in the 18th century in connection with
the development of mathematics. Among the founders of modern descriptions of the fluid
flow are Isaac Newton (1642–1727), Leonhard Euler (1707-1783), Gabriel Stokes (1819-1903),
Jean-Baptiste Joseph Fourier (1768-1830), Claude-Louis Navier (1785-1836), Osborne Reynolds
(1842-1912), Ludwig Prandtl (1875-1953), and others [157, 188].

L. Euler introduced the theory of inviscid fluids, which is now called the Euler theory after
him. This theory is applicable to an ideal fluid, i.e., inviscid, incompressible fluid (labeled as the
Euler fluid). The advantage of such Euler fluid is that the theory was mathematically highly
developed and the agreement with experimental results was observed for low viscosity fluids such
as air or water. On the other hand, this theory has several weaknesses. One of them is called
the d’Alembert’s paradox stating that the drag force acting on the body moving with constant
velocity in the Euler fluid is zero. This is contrary to actual observations and is consistent with
the fact that Euler’s equations assume only normal forces acting on the body [157].

To improve this disagreement, the concept of a real fluid was introduced, which adds the effect
of tangential forces, i.e. shear stress, to the governing equations. The shear stress is proportional
to the change in velocity components parallel to the surface in the normal direction (Newton’s
law of friction). The constant of proportionality is called the fluid viscosity. Thus, these fluids
are called viscous fluids. On the basis of viscosity, fluids are called Newtonian, i.e., the viscosity
is constant in space and time, and non-Newtonian, i.e., the relationship between shear stress and
change in velocity is nonlinear.

Next, the concept of mechanical similarity was introduced to classify the fluid flow. The
fluid flow is called mechanically similar, if and only if the obstacles have geometrically similar
boundaries and the flow has similar streamline portraits [157]. Two fluids will be mechanically

9
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similar if the forces acting on the body are in a similar ratio. These forces are the friction forces
and inertial forces, and their ratio inertial forces/friction forces is proportional to the Reynolds number.

Definition 2.1 (Reynolds number)
Reynolds number Re [−] expresses the mechanical similarity and is defined by

Re = V L

ν
, (2.1)

where V [m s−1] is the characteristic velocity, L [m] is the characteristic length, and ν [m2 s−1] is
the kinematic viscosity of the fluid [188].

The flow field can be further characterized, for example, by the following numbers:

Definition 2.2 (Mach number)
Mach number Ma [−] expresses the velocity flow regime (subsonic vs. supersonic flow) and is
defined by

Ma = V

cs
, (2.2)

where cs [m s−1] is the speed of sound [188].

Definition 2.3 (Prandtl number)
Prandtl number Pr [−] expresses the relation between momentum and thermal diffusion and is
defined by

Pr = CP µ

kc
, (2.3)

where CP [J kg−1 K−1] is the heat capacity at constant pressure, µ [kg m−1 s−1] is the dynamic
viscosity, and kc [J m−1 s−1 K−1] is the thermal conductivity [188].

Based on the value of Re, the flow can be categorized into three groups: laminar flow,
transitional flow, and turbulent flow. The laminar flow occurs at small Re. The laminar flow can
be characterized as a layered flow, that is, a flow perpendicular to the flow direction is negligible.
A typical example of a laminar flow can be the slow flow of water from a tap. As Re increases,
more complicated flow structures emerge. This can be illustrated using the problem of the fluid
flow around a circular cylinder, see Figure 2.1. Figure 2.1a represents the laminar flow around
the circular cylinder. The streamlines are represented by straight lines without vortices. Then,
Figures 2.1b, 2.1c represent two regimes of the transition flow. Finally, Figure 2.1d represents a
fully developed turbulent flow consisting of a chaotic fluctuating motion [157].

The turbulent flow occurs for high Re. Such flow consists of a highly irregular random
fluctuating motion and can often be found in complex devices, such as combustion chambers or
engines. Next, the air flow behind vehicles is also often highly turbulent. Since the turbulent
flow is more complex than the laminar flow, its description remains a big challenge in the science
dealing with the fluid flow.

The transition from a simple laminar flow to a more complex flow is characterized by critical
Reynolds numbers Re(k)

c , k ∈ N. Values can be found by experimental investigation or using the
mathematical method called stability analysis, which adds perturbation to the laminar solution.
The solution is called unstable, if and only if the added perturbations disappear in time. The
results of stability theory are illustrated in Figure 2.2, where the black line represents the stable
solution (stable in the sense of time evolution) and the red lines represent the "disappearing
perturbations" [157].
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(a) Creeping flow, i.e., laminar flow around cylin-
der, Re ≈ 0.

(b) Onset of Kármán vortex flow. Flow field is
laminar, small vortexes occur, Re < 100.

(c) Full Kármán vortex flow. The velocity and
pressure field creates Kármán vortex street,
Re < 300.

(d) Supercritical regime. Full turbulent flow,
Re > 106.

Figure 2.1: Streamlines of the fluid flow around cylinder for different values of Re.
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Figure 2.2: Schematic illustration of the fluid flow solution based on the value of Re. Critical
Reynolds numbers Re(·)

c characterize changes in the complexity of the solution. On the basis of
experimental observations, the real fluid flow follows the black line. The red lines represent the
results of the stability theory, where the perturbations do not occur in the time evolution.

2.2 Navier-Stokes equations

The fluid flow is considered in the isothermal domain Ω ⊂ R3 without heat sources. To describe
the evolution of the fluid by macroscopic equations, the fluid is treated as a continuum, that is,
there are no gaps in Ω without fluid. However, not all fluids satisfy this assumption. Restrictions
on fluids can be expressed using the Knudsen number Kn [−].

Definition 2.4 (Knudsen number)
Knudsen number Kn expresses the ratio between the mean free path ℓm [m] (of molecules or
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atoms that make up the fluid) and the representative physical length scale L by

Kn = ℓm

L
. (2.4)

If Kn≪ 1, the system can be considered as a continuum [118].
The evolution of fluids with Kn≪ 1 in Ω and within time interval T = (0, T ), T [s], can be

described by the Navier-Stokes equations as

∂ρ

∂t
+∇ · (ρ u) = 0, (2.5a)

∂(ρ u)
∂t

+∇ · (ρ u⊗ u) = ∇ · T + ρ g, (2.5b)

where t [s] is time, ρ [kg m−3] is the fluid density, u [m s−1] is the macroscopic velocity
(with components ui, i ∈ {1, 2, 3}), T [kg m−1 s−2] is the stress tensor (with components Ti,j ,
i, j ∈ {1, 2, 3}), g [m s−2] is the volume force acceleration vector (with components gi, i ∈ {1, 2, 3}).
The stress tensor satisfies

T = −pI + T ν , (2.6)

where I is the unit tensor, p [kg m−1 s−2] is the fluid pressure, and, under the assumption of
Newtonian fluid, the entries of viscous stress tensor T ν reads

T ν
i,i = λ∇ · u + 2µ

∂ui

∂xi
, i ∈ {1, 2, 3}, (2.7a)

T ν
i,j = T ν

j,i = µ

(
∂ui

∂xj
+ ∂uj

∂xi

)
, i ̸= j, i, j ∈ {1, 2, 3}, (2.7b)

where µ [kg m−1 s−1] is the dynamic viscosity and λ [kg m−1 s−1] is the second viscous coefficient
[118]. The viscous stress tensor can be equivalently formulated as

T ν = 2µS + λ(∇ · u)I = 2µD +
(

λ + 2
3µ

)
(∇ · u)I, (2.8)

where S is the strain-rate tensor and D (called the deformation-rate tensor) is S without its
diagonal, i.e.,

D = 1
2
[
∇u + (∇u)T

]
. (2.9)

The system of Eqs. (2.5) is closed by an equation of state [118]. For the ideal gas, the equation
of state is considered in the form

p = RsΘρ, (2.10)

where Θ [K] is the thermodynamic temperature, Rs [m2 s−2 K−1] is the specific gas constant, and

Rs = cp − cv, (2.11)

where cp [m2 s−2 K−1] is the specific heat at constant pressure and cv [m2 s−2 K−1] is the specific
heat at constant volume [118]. It should be noted that Eqs. (2.5) hold under the following
assumptions:

1. The fluid is a continuum.

2. The stress tensor is symmetric.
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3. The fluid is isotropic.

4. The fluid can be described by the equation of state for ideal gases.

Next, Eqs. (2.5) must be supplemented by proper initial and boundary conditions (BCs).
The aforementioned equations are further simplified using the assumption of fluid incom-

pressibility, that is, the material derivative of the fluid density ρ is zero [157]

Dρ

Dt
= ∂ρ

∂t
+ u · ∇ρ = 0. (2.12)

Using Eq. (2.5a), the assumption of incompressibility in Eq. (2.12) can be expressed as

∇ · u = 0, (2.13)

i.e., the fluid is divergence-free (also called solenoidal). Using condition (2.13), Eq. (2.5b) can be
written as

ρ
Du

Dt
= −∇p + µ∆u + ρg, (2.14)

where
Du

Dt
= ∂u

∂t
+ u · ∇u.

Finally, the equation of state for the incompressible, Newtonian fluid in the isothermal domain Ω
is considered in the form of

p = c2
sρ, (2.15)

[118].

2.2.1 Boundary and initial conditions

The equations for the incompressible fluid hold in Ω. Thus, the conditions on the boundary ∂Ω
must be specified based on the physical type of the boundary.

Wall:
The walls represent the interface between the fluid domain and the solid object. In this thesis,
only solid objects with impermeable boundaries are considered. The solid boundary is labeled
by ∂Ωwall. The BC considered for the wall is the "no-slip" BC, which prescribes zero velocity at
∂Ωwall. The BC for pressure p can be derived as follows. Let us assume the normal vector of the
wall n = (0, 1, 0)T . Eq.(2.14) multiplied by the normal vector n is

∂u2
∂t

+ (u · ∇) u2 = −1
ρ

∂p

∂x2
+ ν∆u2.

Since u = 0, the left-hand side is zero, thus

1
ρ

∂p

∂x2
= ν

∂2u2
∂x2

2
.

Because the fluid flow in the normal direction to the wall is often negligible, the pressure condition
is usually considered as [157]

∂p

∂n
≈ 0, (2.16)

where ∂
∂n = n · ∇.
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Inlet:
The inlet condition is prescribed at the boundary where the fluid enters Ω. The boundary
with the prescribed inlet condition is labeled by ∂Ωin. It is common to specify the inlet veloc-
ity uin. The BC for the pressure can be derived as above, i.e., Eq. (2.14) is multiplied by the
normal vector to the boundary and the particular values of uin are used to derive the pressure BC.

Outlet:
The outlet condition is prescribed at the boundary where the fluid leaves Ω and is labeled by
∂Ωout. Contrary to the inlet condition, the Dirichlet BC for pressure pout is used. There are
several ways of solving the velocity at the outlet. One possible option is the transparent boundary
condition that, for the boundary ∂Ωout with inward normal vector n = (1, 0, 0)T , is given by [130]

∂u1
∂t

+ u1
∂u1
∂x1

= 0, u2 = u3 = 0. (2.17)

Initial condition:
At the initial time t = 0 s, the initial velocity uini [m s−1] and pressure pini [kg m−1 s−2] are
prescribed in Ω.

2.2.2 Summary

The equations describing the evolution of Newtonian, incompressible fluid in isothermal domain
Ω can be summarized as:

∇ · u = 0 in Ω× T , (2.18a)

ρ
Du

Dt
= −∇p + µ∆u + ρg in Ω× T , (2.18b)

u = uini, p = pini in Ω× {0}, (2.18c)

u = uin,
∂p

∂n
= ν∆(n · u) on ∂Ωin × T , (2.18d)

u = 0,
∂p

∂n
= 0 on ∂Ωwall × T , (2.18e)

∂u1
∂t

+ u1
∂u1
∂x1

= 0, u2 = u3 = 0, p = pout on ∂Ωout × T . (2.18f)

2.2.3 Analytical solution of Navier-Stokes equations

For some particular formulations, Eqs. (2.18) have analytical solution. In this thesis, the following
two problems with analytical solution in a cuboidal domain Ω = (0, L1)× (0, L2)× (0, L3) are
considered, where Li [m], i = 1, 2, 3 are the dimensions of Ω.

Hagen-Poiseuille flow

The Hagen-Poiseuille flow problem [6] solves the laminar fluid flow between two parallel plates as
illustrated in Figure 2.3. In the x3-direction, the periodic boundary conditions are prescribed.
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The flow is induced by the constant pressure drop across the domain in the x1-direction and the
analytical solution of velocity is in the form uan = (u1,an, 0, 0)T , where

u1,an(x) = Umax

(
1−

(2x2 − L2
L2

)2
)

, (2.19)

where Umax [m s−1] is the maximal velocity. The inflow velocity condition uin = uan.
Accordingly, the analytical solution for pressure pan [kg m−1 s−2] is a linear function in the

x1-direction (and constant in the x2- and x3-directions) in the form

pan(x) = pout − ρνUmax
8

L2
2
(x1 − L1), (2.20)

where pout is the pressure value set at the outflow.

Figure 2.3: Computational domain Ω of the Hagen-Poiseuille flow. The gray planes represent
impermeable walls.

Rectangular duct flow
Another fluid flow problem with the analytical solution is the rectangular duct flow. The flow
is assumed in the domain Ω illustrated in Figure 2.4 and is induced by the pressure drop
dp [kg m−1 s−2] across the domain in the x1-direction. Based on [191], the analytical solution
uan of Eqs.(2.18) is in the form uan = (u1,an, 0, 0)T , where

u1,an(x) = −
1

ρν
dp

16L2
2

4π3

+∞∑
i=0

(−1)i

(2i + 1)3

(
1 −

cosh
[

(2i+1)π
L2

(
x3 − L3

2

)]
cosh

[
(2i + 1)π

L3
2L2

] )
cos

(
(2i + 1)π

(
x2 − L2

2

)
L2

)
. (2.21)

The maximal velocity, attained for x2 = L2
2 and x3 = L3

2 , is given by

Umax = − 1
ρν

dp
16L2

2
4π3

+∞∑
i=0

(−1)i

(2i + 1)3

1− 1
cosh

[
(2i + 1)π L3

2L2

]
. (2.22)

At the inflow ∂Ωin, the velocity boundary condition satisfies uin = uan.
The analytical solution for pressure pan is a linear function in the x1-direction (and constant

in the x2- and x3-directions) in the form

pan(x) = pout − dp(x1 − L1), (2.23)

where pout is the pressure value set at the outflow.
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Figure 2.4: Computational domain Ω of the rectangular duct flow. The gray planes represent
impermeable walls.

2.3 Non-Newtonian fluids
In the previous section, Newtonian fluids were considered, that is, fluids with a linear relation
between the shear stress and the velocity gradient. Fluids with a non-linear relation between
shear stress and the velocity gradient are called non-Newtonian fluids. The non-Newtonian fluids
can be classified according to several properties, for example, as follows:

Classification

• Generalized Newtonian Fluid:
The fluid dynamic viscosity depends on the shear rate γ̇ [s−1] defined by [113]

γ̇ =
√

2D : D. (2.24)

These fluids have neither memory nor elasticity. On the basis of the relation between shear
rate and viscosity, generalized Newtonian fluids can be further classified as

– Pseudoplastic fluid:
The dynamic viscosity decreases as the shear rate increases.

– Dilatant fluid:
The dynamic viscosity increases with applied shear stress.

Typical examples are drilling fluids, sand in water, granular materials, margarine, toothpaste,
some paints, some polymer melts, or fresh concrete.

• Viscoelastic Fluid:
The stress in the fluid depends on both the strain and strain rate. It is typical that stress
depends on the history of deformation [102]. A typical example of such fluid is, for instance,
vulcanized rubber.

• Time dependent viscosity:
The shear stress depends on temperature and shear rate γ̇. Based on the dependence of
shear stress on time, these fluids are further classified as

– Thixotropic fluid:
The shear stress decreases at constant shear rate. Typical examples are grease, printing
ink, margarine, etc.
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– Rheopectic fluid:
The shear stress increases at a constant shear rate. These fluids are also called
antithixotropic fluids. A typical example is gypsum paste.

Hemodynamics

In this thesis, the motivation for the non-Newtonian fluid flow modeling is the blood dynamics in
vessels. Since blood behaves as a generalized Newtonian fluid [175], only models for these fluids
are introduced. The most commonly used constitutive models for fluid viscosity are as follows.

1. Power Law Model: [113]

µPL (γ̇) = Cp (tI γ̇)n−1, (2.25a)

where Cp [kg m−1 s−1] ∈ R and n [−] ∈ R are empirical parameters and tI = 1 s is the time
unit.

2. Spriggs Model: [164]

µSP (γ̇) = µ0 for γ̇ ≤ γ̇0, else µ (γ̇) = µ0

(
γ̇

γ̇0

)n−1
, (2.25b)

where µ0 [kg m−1 s−1] is the dynamic viscosity at the reference shear rate γ̇0 [s−1].

3. Carreau-Yasuda Model: [20]

µCY (γ̇) = µ∞ + (µ0 − µ∞) [1− (ϑ γ̇)a]
n−1

a , (2.25c)

where µ0 [kg m−1 s−1] is the dynamic viscosity at zero shear rate, µ∞ [kg m−1 s−1] is the
dynamic viscosity at infinite shear rate, and ϑ [s] ∈ R, a [−] ∈ R, n [−] ∈ R are empirical
parameters.

4. Cross Model: [91]

µCR (γ̇) = µ0 − µ∞
1 + (kγ̇)n + µ∞, (2.25d)

where µ0 [kg m−1 s−1] is the dynamic viscosity at zero shear rate, µ∞ [kg m−1 s−1] is the
dynamic viscosity at infinite shear rate, and n [−] ∈ R and k [s] are empirical parameters.

5. Casson Model: [20]

µCA (γ̇) = 1
γ̇

[
k0 + k1

√
tI γ̇
]2

, (2.25e)

where k0 [kg2 m−2] and k1 [kg2 m−2] are empirical parameters. tI = 1 s is the time unit.

All models listed in this section have several applicability restrictions and are often valid only
for finite intervals of γ̇. The usage of these non-Newtonian models will be further discussed in
Chapter 8.
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2.4 Boundary layer theory
In this section, the concept of the Boundary layer theory is introduced. Eq. (2.18b) can be
rewritten as

Du

Dt
= −∇P + ν∆u + g, (2.26)

where P = p/ρ [m2 s−2] is the rescaled pressure. Scaling by the characteristic length L and
characteristic velocity V , Eq. (2.26) is given in a non-dimensional form as

L

V 2
Du

Dt
= − L

V 2∇P + 1
Re

L2

V
∆u + L

V 2 g. (2.27)

In Eq. (2.27), the term before L2

V ∆u is 1/Re. As Re increases, the influence of the term L2

V ∆u
decreases and, therefore, it is common to neglect this term for high Reynolds number flows.
Thus, Eq. (2.27) can be reduced to

Du

Dt
= −∇P + g. (2.28)

Eqs. (2.18a) and (2.28) are called the Euler equations for an incompressible fluid.
Due to the absence of ∆u, the mathematical theory of Euler equations has a firm background

contrary to the incompressible Navier-Stokes equations [157]. In many situations, the solution
of the Euler equations agrees well with experimental observations, since ideal fluids such as air
or water have very small kinematic viscosity (on the order of 10−5 m2 s−1). However, since no
tangential forces exist in the Euler equations (only normal forces are included), the no-slip BC
cannot be satisfied at the wall. This causes a problem in many engineering applications, such as
those investigating the applied drag force on the body by the fluid.

The fluid flow near the solid body is investigated by the Boundary layer theory introduced in
1904 by L. Prandtl. It is an asymptotic method and investigates situations when Re→ +∞, that
is, when the friction forces can be neglected. The main concept of the Boundary layer theory is
that the fluid domain can be distinguished into two unequally large regions:

• Bulk flow:
A region far from solid boundaries where the friction forces (viscosity of the fluid) can be
neglected. The fluid can be described by the Euler equations.

• Boundary layer:
A region close to the wall where the friction forces play a dominant role. This region is
characterized by its height δ [m], which describes the distance from the wall.

Next, based on Re, the Boundary layer theory can be divided into laminar and turbulent boundary
layer theory.

2.4.1 Laminar boundary layer

The laminar boundary layer investigates the near-wall fluid flow for a low Reynolds number flow.
A typical example of laminar boundary layer is the fluid flow around the plate at zero incidence
illustrated in Figure 2.5. Figure 2.5 shows that with an increasing distance x [m] from the plate
edge, the height of the boundary layer δ also increases. The value of δ can be approximated as
[157]

δ ≈
√

νx

U∞
, (2.29)
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where U∞ [m s−1] is the maximal velocity in the bulk flow region. Since the transition between the
boundary layer and the outer flow region is not sharp, the parameter δ99 is used to characterize
the height of the boundary layer. δ99 is defined by the height above the wall, where the fluid
velocity reaches 99% of U∞ and can estimated by

δ99 = C99

√
νx

U∞
, (2.30)

where C99 [−] is the constant determined experimentally. For the flat plat at zero incidence
C99 = 5 [157].

boundary layer height δ

U∞

Figure 2.5: Illustration of the laminar boundary layer structure above plate.

Let us now define the Reynolds number for the flat plate by

Re = U∞l

ν
,

where l [m] is the length of the flat plate. The definition of δ99 in Eq. (2.30) can be written as

δ99 = C99√
Re
√

x l. (2.31)

Thus, as Re increases, δ decreases, that is, the region, where the solution of the Euler equations
is applicable, increases.

For a flat plate with normal vector (0, 1, 0)T , the wall shear stress τw [kg m−1 s−1] is given by
[157]

τw = µ
∂u1
∂x2

. (2.32)

Thus, τw can be approximated using the FDM as

τw ≈ µ
U∞
δ

(2.33)

and as δ increases, τw (and the drag coefficient of the body) decreases. An interesting point
at the flat plate is the point, where the wall shear stress vanishes, that is, where τw = 0. This
point is called the separation point. Beyond this point, backflow occurs, and the boundary layer
disconnects from the surface boundary [157].

2.4.2 Turbulent boundary layer

In the turbulent fluid flow, more complex flow structures are created in contrast to the laminar
flow. Pressure and velocity are not constant in space and time due to irregular fluctuations.

The evolution of the turbulent boundary layer is illustrated in Figure 2.6 on the problem of
the fluid flow over a flat plate at zero incidence. At the beginning, a laminar boundary layer
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starts to evolve. The flow between the laminar and turbulent regions consists of transition
phenomena.

Contrary to the laminar boundary layer, the turbulent boundary layer has a four-layer
character as illustrated in Figure 2.6. The outer layer, called the turbulent layer, covers the flow
where the apparent friction caused by the turbulence dominates the friction forces. The region
close to the wall is called the viscous sublayer, where the viscous forces play a dominant role
and the velocity profile of the mean velocity is almost laminar. The last two layers are called
the buffer layer and the overlap layer, where the viscous forces still play a significant role. The
difference between these two layers is mainly in the logarithmic profile of the averaged velocity.

U∞

Overlap layer

Buffer layer

Viscous sublayer

Turbulent boundary
layer

boundary layer height δ

Laminar region Transient
region Turbulent region

Figure 2.6: Illustration of the turbulent boundary layer structure above the plate.

In contrast to the laminar boundary layer, the height δν [m] of the viscous sublayer is also
investigated in the turbulent boundary layer. If we denote the plate Reynolds number by

Rex = xU∞
ν

, (2.34)

then the relation between δ and δν can be approximated as

δν

δ
≈ 680ln2 Rex

Rex
, (2.35)

which implies that δν ≪ δ for Rex > 105 . This behaviour is crucial for numerical simulations
because a very fine computational mesh is needed to capture the processes in the viscous sublayer
for highly turbulent flow regimes.

2.5 Reynolds decomposition and turbulent scales

The turbulent fluid flow is composed of unsteady motion and vortex structures called eddies.
Since there is no steady-state in the velocity and pressure fields, Reynolds decomposition is
introduced to study the flow.

Denoting the time average over the time interval (t1, t2) for the quantity φ by

φ (x) = 1
t2 − t1

t2∫
t1

φ (x, t) dt, (2.36)

the Reynolds decomposition is introduced as

φ = φ + φ′, (2.37)
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where φ′ represents the fluctuation from the time average φ. In the case of the incompressible
fluid flow, the aforementioned decomposition is used for all velocity components and pressure,
i.e.,

ui = ui + u′
i, i ∈ {1, 2, 3}, (2.38a)

p = p + p′. (2.38b)

Substituting Eqs. (2.38) into the governing equations for the incompressible fluid flow (2.18),
we obtain [157]

∇ · u = 0, (2.39a)

∇ · u′ = 0, (2.39b)

ρ
3∑

j=1
uj

∂ui

∂xj
= − ∂p

∂xi
+ µ∆ui − ρ

3∑
j=1

∂u′
iu

′
j

∂xj
+ ρgi, i ∈ {1, 2, 3}. (2.39c)

Thus, Eqs. (2.39) are in a similar form as the incompressible equations in (2.18). However, an
extra term emerges in the right-hand-side of Eq. (2.39c). This term represents partial derivatives
of components of T′ [kg m−1 s−2] called the stress tensor of the turbulent apparent friction.
From the boundary layer theory, the viscosity plays a role in the viscous sublayer only. As a
result, apparent stresses −ρu′

iu
′
j dominate above the viscous stresses, and represents another

characteristic quantity in the turbulent boundary layer flow.
To further quantify the turbulent fluid flow, the turbulent kinetic energy k [m2 s−2] [157] is

introduced by
k = 1

2
(
(u′

1)2 + (u′
2)2 + (u′

3)2
)
. (2.40)

From the balance equation for the turbulent kinetic energy k, the turbulent dissipation Ẽ [m2 s−3]
[157] is introduced by

Ẽ = ν
3∑

i=1

3∑
j=1

(
∂u′

i

∂xj
+

∂u′
j

∂xi

)2

(2.41)

and represents the energy loss due to turbulent motion.
According to [114], the locally isotropic turbulence is determined by the kinematic viscosity ν

and turbulent dissipation Ẽ . Based on the these parameters, Kolmogorov length scale ℓK [m] and
Kolmogorov time scale tK [s] are defined by

ℓK =
(

ν3

Ẽ

) 1
4

, (2.42a)

tK =
(

ν

Ẽ

) 1
2

. (2.42b)

These scales (2.42) represent the smallest scales of the fine turbulent structures in the flow [157].
The solution of the fluid flow in the boundary layer is often based on the boundary layer

equations. These equations are a simplified version of the Navier-Stokes equations (2.18) under
special assumptions. For the turbulent fluid flow, the system of the boundary layer equations is
often not closed and some turbulence models must be added, such as the k-ϵ or k-ω turbulence
model [157]. In this thesis, the flow field in the boundary layer is solved without any simplification
used, i.e., the original Navier-Stokes equations given by Eqs. (2.18) are solved directly.

To solve the Navier-Stokes equations directly, however, the computational resolution of
the mesh must be below the Kolmogorov length scale ℓK . These simulations are called direct
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numerical simulations (DNS). Since ℓK ≪ 1, DNS are very memory- and time-consuming
numerical methods. Thus, there are several methods that can reduce the restriction on the mesh
dimension. One of such methods is the large-eddy simulation method (LES) which is based on
the spatial filtering of the governing equations [157].

Remark 2.5 (Steady and unsteady turbulent flow)
The introduced Reynolds decomposition is based on the assumption that the time average does
not depend on the time, that is, there exists a sufficiently large time interval (t1, t2) over which
the time average is constant in time. Then, the flow is called the steady turbulent flow. The flow
for which the time average is not constant for any time interval is called unsteady turbulent flow.
For this flow, a similar decomposition can be introduced as described in [157]. In this thesis,
only steady turbulent flow is considered.

Remark 2.6 (Wall friction velocity)
Another quantity used for the characterization of the turbulent flow is the wall friction velocity
uτ [m s−1] defined by

uτ =
√

τw

ρ
, (2.43)

where τw [kg m−1 s−2] is the time-averaged wall shear stress [157].

2.6 Kinetic theory of fluids
The fluid description can be based on several scales. The Navier-Stokes equations mentioned
in Section 2.2 are based on the macroscopic scale. On this scale, the fluid is described as a
continuum, and macroscopic quantities, such as the fluid density, fluid velocity, pressure, etc.,
are used for the description of the current state.

Another possible description of the fluid is based on the microscopic scale [172], where the
dynamics of individual atoms or molecules is based on Newton’s law of motion. The advantage of
this description is the simplicity of the motion law. On the other hand, the biggest disadvantage
lies in the number of particles for which the dynamics must be solved. Since the number of
particles forming the fluid is proportional to the Avogadro’s constant (approx. 1023), it is beyond
the current computational abilities to simulate the entire dynamics of 1023 atoms.

Between macroscopic and microscopic, there is an intermediate scale called the mesoscopic
scale illustrated in Figure 2.7. This scale is based on the Kinetic theory [8] developed by Ludwig
Eduard Boltzmann (1844-1906). The fluid is described by an one-particle density function (PDF)
f [kg m−6 s3], which describes the system in the phase space, i.e., the space of the positions x
and microscopic velocities ξ of individual particles. PDF gives us the density of particles with
position (x, ξ) in the phase space at time t. Next, if we take the volume V ⊂ R3 as illustrated in
Figure 2.8, then the integral ∫

V

dx

∫
R3

dξ f(x, ξ, t) (2.44)

gives us the total mass at time t of all particles contained in volume V with all possible velocities
[131].

One of the advantages of the mesoscopic description is that it works with microscopic velocity
ξ that does not depend on position x and time t, contrary to macroscopic velocity u. Thus, the
particle with the position (x, ξ) in the phase space moves to position x + dt ξ over time dt. On
the other hand, the material point in the macroscopic description with position x and velocity
u(x, t) moves to position x + dt u(x, t). Thus, the advection on the mesoscopic scale is linear,
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Microscopic scale

Microscopic paricles

Mesoscopic scale

Density distribution function

Macroscopic scale

Contours of macroscopic velocity magnitude

Figure 2.7: Illustration of the fluid description with respect to different scales.

Figure 2.8: Schematic illustration of the volume with particles in the phase space. The dashed
vectors represent the velocities of the particles.

but on the macroscopic scale, it is generally nonlinear as the velocity u (x, t) can be a highly
non-linear function, especially in the turbulent flow regime.

Next, in the macroscopic description, the diffusion is represented by the term ν∆u that is
obviously non-local. On the mesoscale, the diffusion is the result of particle collisions. Particle
collisions are processes that shift the particles to the local equilibrium defined by the equilibrium
PDF. Since the interactions between particles occur within short distances of colliding particles, it
is possible to consider this process as a local process. Macroscopic diffusion appears to be caused
by particle collisions [167]. Thus, the "diffusion" on the mesoscopic scale (collision) is a local
process. These two observations represent the biggest advantages of the mesoscopic approach.

The changes of the PDF f in the phase space can be described by the Boltzmann transport
equation

∂f

∂t
+

3∑
i=1

ξi
∂f

∂xi
+

3∑
i=1

gi
∂f

∂ξi
= C (f) , (2.45)

where ξ = (ξ1, ξ2, ξ3)T is the microscopic velocity, g = (g1, g2, g3)T is the acceleration of the



24 2. Theoretical Background

volume forces, and C [kg m−6 s2] is the collision operator. Eq. (2.45) is an integro-differential
equation, since the collision operator C is given in an integral form [117].

Based on PDF, some macroscopic quantities can be calculated as statistical moments:

ρ(x, t) =
∫
R3

dξ f (x, ξ, t) , (2.46)

ρ(x, t)u(x, t) =
∫
R3

dξ ξ f (x, ξ, t) , (2.47)

ρ(x, t) e(x, t) = 1
2

∫
R3

dξ ∥ξ − u(x, t)∥2 f(x, ξ, t), (2.48)

Tν
i,j(x, t) =

∫
R3

dξ (ξ − u(x, t))i (ξ − u(x, t))j f(x, ξ, t), (2.49)

Ti,j(x, t) =
∫
R3

dξ ξi ξj f(x, ξ, t) = ρ(x, t) ui(x, t) uj(x, t) + Tν
i,j(x, t), (2.50)

q(x, t) = 1
2

∫
R3

dξ ∥ξ − u(x, t)∥2 (ξ − u(x, t)) f(x, ξ, t), (2.51)

where i, j ∈ {1, 2, 3}, e [m2 s−2] is the specific energy, and q [kg s−3] is the heat flux [88]. These
formulas have their analogical form in the discrete description as shown later in Chapter 3.

Next, the collisions of particles shift the mesoscopic system towards the local equilibrium
given by the equilibrium PDF. This function can be derived from the PDF using the H-theorem
[131]. The Maxwell-Boltzmann equilibrium PDF reads

f (eq)(ρ, u, Θ, ξ) = ρ

(2πRs Θ)
3
2

exp
(
−∥ξ − u ∥2

2Rs Θ

)
,

= ρ

(2πc2
s)

3
2

exp
(
−∥ξ − u ∥2

2c2
s

)
, (2.52)

where Rs Θ = c2
s [131].

Since the collision operator is in general a non-trivial expression, some approximations
have been suggested. The simplest approximation is C = 0, that is, there are no collisions
considered between particles. Another possible approximation is the Bhatnagar-Gross-Krook
(BGK) approximation CBGK suggested in [14]. The BGK collision operator can be expressed as

CBGK = − 1
τBGK

(
f − f (eq)

)
(2.53)

and can be interpreted as the change in PDF due to the collision during time τBGK , where τBGK [s]
is called the BGK collision time.

A more sophisticated approximation is the Fokker-Planck (FP) approximation CFP proposed
in [127] as

CFP = 1
τFP

3∑
i=1

 ∂

∂ξi
(ξi − ui) f +

3∑
j=1
Di,j

∂2f

∂ξi∂ξj

 , (2.54)

where τFP [s] is the FP collision time and D [m2 s−2] is the FP diffusion tensor (with entries Di,j ,
i, j ∈ {1, 2, 3}).
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The lattice Boltzmann method (LBM) is a relatively new numerical method that was originally
developed for fluid flow simulations in the late 1980s and early 1990s from cellular automata [88].
In later years, this method was derived from kinetic theory, more precisely from the Boltzmann
transport equation, showing its independence of cellular automata theory. Although the LBM is
commonly used in practical applications and is now part of many commercial software, it is still
a rapidly developing numerical method. The biggest advantage of the LBM is that it is a time
explicit method and no large system of linear algebraic equations needs to be solved, which is a
typical FDM or FVM problem where one needs to iteratively solve a large system of equations
for the numerical solution of the Navier-Stokes equations. On the other hand, the drawback of
the LBM is its mesoscopic nature, that is, a complicated backward analysis usually needs to be
performed to find the PDEs that are actually solved.

This chapter describes the concept of the LBM. First, the discretizations of space and time
are defined. This is followed by a summary of the basics of the LBM. Next, the collision operators,
forcing terms, initial conditions, and mesoscopic boundary conditions (BCs) used in this thesis
are introduced. The last two sections of this chapter are composed of the description of the grid
refinement technique and implementation remarks.

3.1 Discretization of space and time
Finding analytical solutions to the continuous macroscopic equations introduced in Chapter 2
is often complicated or even impossible. Thus, the continuous solution is approximated by a
discrete solution defined on a discrete grid that covers the investigated domain Ω. With the
increasing number of discrete grid nodes, the approximation provides more detailed pieces of
information about the continuous solution.

In all considered cases in this thesis, the computational domain Ω is a cuboid with dimensions
L1, L2, L3 [m], i.e., Ω = (0, L1)× (0, L2)× (0, L3). The domain is discretized using a uniform
grid

Ω̂ = {xijk ∈ Ω | i ∈ {1, 2, · · · , N1 − 2}, j ∈ {1, 2, · · · , N2 − 2}, k ∈ {1, 2, · · · , N3 − 2}} , (3.1)

where N1, N2, N3 [−] determine the number of grid nodes in the x1-, x2-, and x3-direction,
respectively. The discretization of Ω is illustrated in Figure 3.1. The nodes are defined by
xijk = (iδx + P1, jδx + P2, kδx + P3)T , where δx [m] is the grid spacing parameter and
P = (P1, P2, P3)T is the offset vector, Pi [m], i ∈ {1, 2, 3}. The definitions of P and δx depend
on the particular problem studied.

The closure Ω is discretized by the set Ω̂ = Ω̂ ∪ ∂Ω̂, where ∂Ω̂ discretizes the boundary ∂Ω.
Contrary to the discretization of Ω, nodes of ∂Ω̂ do not have to be from ∂Ω. This is a consequence
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Figure 3.1: Discretization of Ω using uniform grid Ω̂. The discrete points (marked as gray circles)
discretize the continuous domain. The points are not drawn at the boundary since the exact
location of boundary points depends on the particular choice of the mesoscopic BC used.

of the specific implementation of some mesoscopic BCs (later discussed in Section 3.7). Boundary
nodes xijk ∈ ∂Ω̂ that exactly belong to the boundary ∂Ω̂ are called wet-nodes. The other nodes
xijk ∈ ∂Ω̂ on which the BCs are applied can be in ∂Ω (for example, the equilibrium BC uses
this type of nodes defined in Section 3.7.3) or can be from the exterior of Ω (for example, the
full-way bounce-back BC uses this type of nodes defined in Section 3.7.4).

In the LBM, the uniform grid Ω̂ is replaced by the discrete lattice Ω̃ defined by

Ω̃ = {x̃ijk | i ∈ {1, 2, · · · , N1 − 2}, j ∈ {1, 2, · · · , N2 − 2}, k ∈ {1, 2, · · · , N3 − 2}} . (3.2)

Each lattice site x̃ijk = (i, j, k)T corresponds to the grid point xijk = (iδx, jδx, kδx)T + P .
Similarly, the boundary discretization ∂Ω̂ is replaced by the set of lattice sites ∂Ω̃.

The time interval T = (0, T ) is discretized uniformly by the set

T̃ = {ℓ | ℓδt ∈ (0, T ), ℓ ∈ {1, 2, · · · , Nt − 1}} , (3.3)

where Nt [−] defines the number of discrete time steps and δt [s] is the time step that satisfies
δt = T

Nt
.

It is common to work with non-dimensional quantities instead of the original ones. There are
several reasons discussed in [118]. One of them is that the computer only stores numbers without
their units and, therefore, it is more convenient to transform all variables into a non-dimensional
form defined by the user. To perform the non-dimensionalization, scaling factors are needed for
all physical units used in the problem. Usually, the scaling parameters for the length and time
scales are the grid spacing parameter δx and time step δt, respectively. The scaling parameter
for the mass is ρ0δ3

x, where ρ0 [kg m−3] is the reference density. Thus, to transfer the quantity ϕ
with dimensions [kgi mj sk], i, j, k ∈ Z to its non-dimensional form, the scaling factor ρi

0δ3i+j
x δk

t is
used. If the dimensional and non-dimensional quantities are used together, the non-dimensional
quantity of ϕ is labeled by ϕ̃.

The parameters δx and δt are not used arbitrarily, but a certain relationship is used between
them. This relation influences the resulting PDEs numerically solved by the LBM [118]. In this
thesis, the following two relations are used:

• Acoustic scaling: δx
δt

= const.
Using this scaling, the velocities have the same magnitude for different discretizations of
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space and time.

• Diffusive scaling: δ2
x

δt
= const.

Using this scaling, the diffusion (kinematic viscosity) has the same magnitude for different
discretizations of space and time.

For most problems in this work, the diffusive scaling is used. The acoustic scaling is used only in
problems in Chapter 6 that use the grid refinement technique to discretize Ω.

3.2 Basics of LBM
In this section, the basic concepts of the LBM are summarized. All quantities are assumed to
be in the non-dimensional form. Since the LBM is based on the mesoscopic description, the
velocity space of the microscopic particle velocity is discretized by a set {ξi}i∈Q. In this thesis,

we use the D3Q27 velocity model illustrated in Figure 3.2. Thus, Q =
3
×
i=1
{−1, 0, 1}, where

ξi = c(i1, i2, id)T is the discrete microscopic velocity defined by the multi-index i = (i1, i2, i3),
c = ∆x/∆t is the non-dimensional lattice velocity, and ∆x and ∆t are the non-dimensional space
and time steps, respectively. For simplicity, ∆x = ∆t = 1 are used, and thus c = 1.

Figure 3.2: Illustration of 27 discrete directions in which the information is propagated within
the lattice.

Based on the discretization of the velocity space, the discrete one-particle density function
(DDF) can be defined by

fi(x, t) = Λif(x, ξi, t), (3.4)
where x ∈ Ω̂, t ∈ T̂ , Λi is the scaling factor [118], and multi-index i ∈ Q. The evolution of
discrete density functions fi is described by the discrete Boltzmann transport equation

fi(x + ∆tξi, t + ∆t)− fi(x, t) = ∆t Ci(x, t), (3.5)

where x ∈ Ω̃, t ∈ T̃ , and Ci is the discrete collision operator. Eq. (3.5) can be derived from
the Boltzmann transport equation (2.45) using the method of characteristics, Hermite series
expansion, and Gauss-Hermite quadrature.

Remark 3.1
It should be noted that during the discretization of Eq. (2.45), the DDF fi are redefined by [118]

fi := Λi

(
fi −

∆
2 Ci

)
, ∀i ∈ Q. (3.6)

Since the former DDFs are not used in this thesis, the newly defined DDFs are referred to as the
former.
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On the basis of the set of discrete microscopic velocities, some statistical moments can be
calculated from DDFs. The approximation is based on the quadrature rules [118] and, for
example, the discrete form of Eqs. (2.47) and (2.48) in the case of the velocity model D3Q27 is

ρ =
∑
i∈Q

fi, (3.7a)

ρu =
∑
i∈Q

fiξi + ρ
∆t

2 g, (3.7b)

respectively. Finally, the pressure p is related to the density trough the equation of state as

p = p0 + c2
s(ρ− ρ0), (3.8)

where p0 [−] is the non-dimensional reference pressure and ρ0 = 1 is the non-dimensional reference
density [118].

3.3 Algorithm

In this part, a single time step of the LBM algorithm is described. First, Eq. (3.5) can be
decomposed into its local part

f⋆
i (x, t) = fi(x, t) + ∆tCi(x, t), ∀i ∈ Q, (3.9a)

and streaming part
fi(x + ∆tξi, t + ∆t) = f⋆

i (x, t), ∀i ∈ Q, (3.9b)

where f⋆
i is the post-collision DDF. Eq. (3.9a) is called the collision step and Eq. (3.9b) is called

the streaming step.
A scheme in which post-collision DDFs are computed before the streaming step defined by

Eq. (3.9b) is called the push-scheme. The reason why this scheme is called a push-scheme is
that the post-collision DDFs are streamed to neighboring lattice sites in the direction of discrete
velocities ξi.

Another option is to write Eq.(3.9b) as

fi(x, t) = f⋆
i (x−∆tξi, t−∆t), ∀i ∈ Q. (3.10)

A scheme in which post-collision DDFs are computed after the streaming step defined by Eq. (3.10)
is called the pull-scheme, since the DDFs are pulled from the neighboring lattice sites. In this
thesis, the pull-scheme is used.

The algorithm of a single time step can be decomposed into several steps:

1. Streaming of density functions from the neighboring lattice sites according to Eq.(3.10)

2. Treatment of boundary sites

3. Computation of macroscopic quantities (Eqs. (3.7a), (3.7b))

4. Collision step according to Eq.(3.9a)

These steps are repeated until the end criterion is satisfied. The entire algorithm, including
initialization, is illustrated in Figure 3.3.
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Figure 3.3: Illustration of the algorithm for a one-time step in the lattice Boltzmann method.

3.4 Collision operators

The right-hand side of Eq. (3.5) contains the discrete collision operator Ci. The discrete collision
operator takes current DDFs and relaxes them to the attractor. The form of the attractor
depends on the current problem studied. In the case of fluid flow simulations, the attractor is
considered to be defined by the Maxwell-Boltzmann density function. To adapt the LBM to a
particular problem, the attractor is usually one of the modified parts. Thus, the discrete collision
operator is one of the most investigated parts of the LBM.

3.4.1 Single relaxation time

A straightforward way of designing a discrete collision operator is based directly on the BGK
approximation (2.53) and is referred to as the Single Relaxation Time (SRT) collision operator
[88]. The form of the collision operator for all i ∈ Q is

Ci = −1
τ

(
fi − f

(eq)
i

)
, (3.11)

where f
(eq)
i is the discrete equilibrium density function (i.e., the attractor), τ is the non-

dimensional relaxation time. In the case of the Navier-Stokes equations, the discrete attractor
has the form [118]

f
(eq)
i = wiρ

(
1 + u · ξi

c2
s

+ (u · ξi)
2

2c4
s

− u · u
2c2

s

)
, (3.12)
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where wi are the weights defined for D3Q27 by

wi =



8
27 for |i| = 0,

2
27 for |i| = 1,

1
54 for |i| = 2,

1
216 for |i| = 3,

(3.13)

where |i| =
3∑

k=1
|ik|.

The relaxation time τ defines the attraction rate and is connected to the non-dimensional
kinematic viscosity as [88]

ν = c2
s

(
τ − ∆t

2

)
= c2

s

( 1
ω
− ∆t

2

)
, (3.14)

where cs is the non-dimensional sound speed for isothermal fluid and ω = τ−1 is the relaxation
frequency. For D3Q27, cs = 1√

3 [118]. Since the kinematic viscosity is a non-negative quantity,
the relaxation time must satisfy τ ≥ 1

2 , see Eq. (3.14). If τ < 1 or τ > 1, the collision is called
over-relaxation or under-relaxation, respectively, and these choices lead to different relaxation to
the given attractor [118]. A special choice of the relaxation time is τ = 1, where the DDFs are
set directly to their attractor.

3.4.2 Multiple relaxation time

Despite its simplicity, the SRT collision operator has several, mainly numerical drawbacks
[118]. One of them is the relaxation of all DDFs at a single rate. Thus, more relaxation times
(frequencies) were introduced. Based on the number of relaxation times, the collision operators
are called Two Relaxation Time (TRT) [84] or Multiple Relaxation Time (MRT) [41, 42]. Since
the relaxation times for particular DDFs cannot be changed, raw moments of DDFs are relaxed
to their attractors. The raw moments are defined by

mj =
∑
i∈Q

fiξ
j
i , (3.15)

where ξj
i =

3∏
k=1

ijk
k , i = (i1, i2, i3) ∈ Q and j = (j1, j2, j3), j1, j2, j3 ∈ {0, 1, 2}, are the multi-

indexes. Definitions of continuous raw moments are given in Appendix A. Next, mj is called a

raw moment of order r, if and only if
d∑

k=1
|jk| = r.

During the collision, the moments are relaxed to their equilibriums m
(eq)
j . For D3Q27, the

DDFs have 27 independent raw moments, respectively. The first moments that are related to the
investigated quantities (density and momentum in the case of the Navier-Stokes equations) are
the so-called collision invariants, i.e., they are not changed during the collision since mj = m

(eq)
j .

The rest of the moments are relaxed to their equilibriums as

− 1
τj

(
mj −m

(eq)
j

)
, (3.16)

where τj is the relaxation time of the particular moment mj .
Instead of relaxing moments independently, moments are grouped together. For example,

moments that have hydrodynamic sense are relaxed together with the same relaxation rate. After
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the collision, the moments are transformed back to the DDFs. Particularly, the collision operator
can be written as

C = −M−1F
(
m̃− m̃(eq)

)
, (3.17)

where C is the vector with components CΨ(i), i ∈ {1, 2, · · · , 27}, where the mapping
Ψ : {1, 2, · · · , 27} → Q introduces the ordering of Q and is defined in Appendix B.
F = diag(ω1, ω2, · · · , ω27) is the diagonal matrix of relaxation frequencies, m̃(eq) is the vector of
discrete attractors, and m̃ is the vector of combined raw moments defined by the transformation
matrix M as m̃ = Mf , where f is the vector of DDFs with components fΨ(i), i ∈ {1, 2, · · · , 27}.
The particular form of the transformation matrix M and attractors m̃(eq) can be found, for
instance, in [67, 80].

3.4.3 Central moment-based collision operator

Another possible option is to transform DDFs to the space of central moments and carry out the
collision there. For the definition of continuous central moments, see Appendix A. The discrete
central moments are defined by

κj =
∑
i∈Q

fi(ξi − u)j . (3.18)

The central moment is of order r ∈ N, if and only if
d∑

k=1
|jk| = r. Obviously, the zeroth-order

central moment is identical to the zeroth-order raw moment. Next, thanks to Eq. (3.7b), the
first-order central moments satisfies

κ(1,0,0) = −ρ
∆t

2 g1, (3.19a)

κ(0,1,0) = −ρ
∆t

2 g2, (3.19b)

κ(0,0,1) = −ρ
∆t

2 g3. (3.19c)

Thus, contrary to the first-order moments, they are velocity-independent.
The LBM with the collision operator that performs the collision in the space of the central

moments is called the Central Moment-based LBM (CLBM). Similar to the MRT collision
operator, it is numerically advantageous to relax a particular combination of central moments.
For the D3Q27 velocity model, the CLBM collision operator can be expressed as

C = −K−1F
(
κ̃− κ̃(eq)

)
, (3.20)

where K is the transformation matrix, κ̃ is the vector of combined central moments defined by
κ̃ = Kf , and κ̃(eq) is the vector of discrete attractors. Particular form of transformation matrix
K and discrete attractors κ̃(eq) can be found, for instance, in [67, 80].

3.4.4 Cumulant collision operator

Cumulants are alternative statistical quantities to statistical moments. For the continuous density
distribution function, the cumulant cj , j = (j1, j2, j3), j1, j2, j3 ∈ {0, 1, 2}, is defined using the
cumulant generating function as summarized in Appendix A. For the definition in the discrete
space, the DDFs need to be made continuous, for example, as [80]

f(ξ) =
∑
i∈Q

fi

3∏
k=1

D(ikc− ξk), (3.21)
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where ξ = (ξ1, ξ2, ξ3)T and D is the Dirac delta function [184]. Then, the raw moment generating
function defined in Appendix A satisfies

M(Ξ) =
∫
R3

exp (Ξ · ξ)f(ξ)dξ =
∑
i∈Q

fi exp (Ξ · ξi), (3.22)

where Ξ = (Ξ1, Ξ2, Ξ3)T ⊂ R3. Next, the cumulant generating function is defined by

K(Ξ) = ln (M(Ξ)) (3.23)

and the discrete cumulant cj is defined (see Appendix A) by

cj = ∂|j|

∂Ξj1
1 ∂Ξj2

2 ∂Ξj3
3

K(Ξ)
∣∣∣∣
Ξ=0

, (3.24)

where |j| =
3∑

k=1
|jk| is the order of the cumulant cj . The zeroth-order cumulant satisfies

c(0,0,0) = ln (ρ). Additionally, the first- and second-order cumulants are proportional to the first-
and second-order central moments, respectively. Contrary to the raw and central moments, the
transformation between DDFs and cumulants is non-linear. Hence, it cannot be written in a
matrix form.

The advantage of cumulants is their attractor. Let the attractor be the Maxwell-Boltzmann
density function in the form of Eq. (2.52)

f (eq)(ξ) = ρ

(2πc2
s)

3
2

exp
(
−∥ξ − u∥2

2c2
s

)
. (3.25)

Then the raw moment-generating function is

M(Ξ) = ρ exp
(

Ξ · u + 1
2c2

sΞ ·Ξ
)

. (3.26)

Based on Eq. (3.23), the cumulant generating function is

K(Ξ) = ln (M(Ξ)) = ln (ρ) + Ξ · u + 1
2c2

sΞ ·Ξ. (3.27)

Consequently, the third- and higher-order cumulant attractors are zero since K(Ξ) is the second-
order polynomial in Ξ.

As in [80], Cj = ρcj (called also cumulant) is used in the collision because Cj can be easily
calculated from the central moments. Moreover, as in the case of the MRT and CLBM, it is
convenient to relax the cumulants in some linear combination. In this thesis, the LBM with
cumulant collision operator introduced in [80] is used. Cj can be constructed using the central
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moments as:

ρ =κ(0,0,0), (3.28a)
Cj =κj , ∀1 ≤ |j| ≤ 3, (3.28b)

C(2,1,1) =κ(2,1,1) −
(
κ(2,0,0)κ(0,1,1) + 2κ(1,1,0)κ(1,0,1)

)
/ρ, (3.28c)

C(2,2,0) =κ(2,2,0) −
(
κ(2,0,0)κ(0,2,0) + 2κ2

(1,1,0)

)
/ρ, (3.28d)

C(1,2,2) =κ(1,2,2) −
(
κ(0,0,2)κ(1,2,0) + κ(0,2,0)κ(1,0,2) + 4κ(0,1,1)κ(1,1,1) + 2

(
κ(1,0,1)κ(0,2,1) (3.28e)

+κ(1,1,0)κ(0,1,2)
))

/ρ, (3.28f)

C(2,2,2) =κ(2,2,2) −
(
4κ2

(1,1,1) + κ(2,0,0)κ(0,2,2) + κ(0,2,0)κ(2,0,2) + κ(0,0,2)κ(2,2,0) (3.28g)

+4
(
κ(0,1,1)κ(2,1,1) + κ(1,0,1)κ(1,2,1) + κ(1,1,0)κ(1,1,2)

)
+ 2

(
κ(1,2,0)κ(1,0,2) (3.28h)

+κ(2,1,0)κ(0,1,2) + κ(2,0,1)κ(0,2,1)
))

/ρ +
(
16κ(1,1,0)κ(1,0,1)κ(0,1,1) (3.28i)

+4
(
κ2

(1,0,1)κ(0,2,0) + κ2
(0,1,1)κ(2,0,0) + κ2

(1,1,0)κ(0,0,2)
)

+ 2κ(2,0,0)κ(0,2,0)κ(0,0,2)
)

/ρ2.

(3.28j)

The rest of the cumulants are obtained by the index permutations [80]. Similarly, the transfor-
mation from cumulants to central moments is performed using

κ(0,0,0) =ρ, (3.29a)
κj =Cj , ∀1 ≤ |j| ≤ 3, (3.29b)

κ(2,1,1) =C(2,1,1) −
(
C(2,0,0)C(0,1,1) + 2C(1,1,0)C(1,0,1)

)
/ρ, (3.29c)

κ(2,2,0) =C(2,2,0) −
(
C(2,0,0)C(0,2,0) + 2C2

(1,1,0)

)
/ρ, (3.29d)

κ(1,2,2) =C(1,2,2) −
(
C(0,0,2)C(1,2,0) + C(0,2,0)C(1,0,2) + 4C(0,1,1)C(1,1,1) (3.29e)

+ 2
(
C(1,0,1)C(0,2,1) + C(1,1,0)C(0,1,2)

))
/ρ, (3.29f)

κ(2,2,2) =C(2,2,2) −
(
4C2

(1,1,1) + C(2,0,0)C(0,2,2) + C(0,2,0)C(2,0,2) + C(0,0,2)C(2,2,0) (3.29g)

+4
(
C(0,1,1)C(2,1,1) + C(1,0,1)C(1,2,1) + C(1,1,0)C(1,1,2)

)
+ 2

(
C(1,2,0)C(1,0,2) (3.29h)

+C(2,1,0)C(0,1,2) + C(2,0,1)C(0,2,1)
))

/ρ +
(
16C(1,1,0)C(1,0,1)C(0,1,1) (3.29i)

+4
(
C2

(1,0,1)C(0,2,0) + C2
(0,1,1)C(2,0,0) + C2

(1,1,0)C(0,0,2)
)

(3.29j)

+ 2C(2,0,0)C(0,2,0)C(0,0,2)
)

/ρ2, (3.29k)

and again the rest of the central moments are obtained by the index permutations analogously.
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Finally, the collision of cumulants is performed as [80]

C⋆
(1,1,0) = (1− ω1)C(1,1,0), (3.30a)

C⋆
(1,0,1) = (1− ω1)C(1,0,1), (3.30b)

C⋆
(0,1,1) = (1− ω1)C(0,1,1), (3.30c)

C⋆
(2,0,0) − C⋆

(0,2,0) = (1− ω1)
(
C(2,0,0) − C(0,2,0)

)
, (3.30d)

C⋆
(2,0,0) − C⋆

(0,0,2) = (1− ω1)
(
C(2,0,0) − C(0,0,2)

)
, (3.30e)

C⋆
(2,0,0) + C⋆

(0,2,0) + C⋆
(0,0,2) = ω2κ(0,0,0) + (1− ω2)

(
C(2,0,0) + C(0,2,0) + C(0,0,2)

)
, (3.30f)

C⋆
(1,2,0) + C⋆

(1,0,2) = (1− ω3)
(
C(1,2,0) + C(1,0,2)

)
, (3.30g)

C⋆
(2,1,0) + C⋆

(0,1,2) = (1− ω3)
(
C(2,1,0) + C(0,1,2)

)
, (3.30h)

C⋆
(2,0,1) + C⋆

(0,2,1) = (1− ω3)
(
C(2,0,1) + C(0,2,1)

)
, (3.30i)

C⋆
(1,2,0) − C⋆

(1,0,2) = (1− ω4)
(
C(1,2,0) − C(1,0,2)

)
, (3.30j)

C⋆
(2,1,0) − C⋆

(0,1,2) = (1− ω4)
(
C(2,1,0) − C(0,1,2)

)
, (3.30k)

C⋆
(2,0,1) − C⋆

(0,2,1) = (1− ω4)
(
C(2,0,1) − C(0,2,1)

)
, (3.30l)

C⋆
(1,1,1) = (1− ω5)C(1,1,1), (3.30m)

C⋆
(2,2,0) − 2C⋆

(2,0,2) + C⋆
(0,2,2) = (1− ω6)

(
C(2,2,0) − 2C(2,0,2) + C(0,2,2)

)
, (3.30n)

C⋆
(2,2,0) + C⋆

(2,0,2) − 2C⋆
(0,2,2) = (1− ω6)

(
C(2,2,0) + C(2,0,2) − 2C(0,2,2)

)
, (3.30o)

C⋆
(2,2,0) + C⋆

(2,0,2) + C⋆
(0,2,2) = (1− ω7)

(
C(2,2,0) + C(2,0,2) + C(0,2,2)

)
, (3.30p)

C⋆
(2,1,1) = (1− ω8)C(2,1,1), (3.30q)

C⋆
(1,2,1) = (1− ω8)C(1,2,1), (3.30r)

C⋆
(1,1,2) = (1− ω8)C(1,1,2), (3.30s)

C⋆
(2,2,1) = (1− ω9)C(2,2,1), (3.30t)

C⋆
(2,1,2) = (1− ω9)C(2,1,2), (3.30u)

C⋆
(1,2,2) = (1− ω9)C(1,2,2), (3.30v)

C⋆
(2,2,2) = (1− ω10)C(2,2,2), (3.30w)

where C⋆
j is the post-collision cumulant.

The post-collision DDFs f⋆
i are reconstructed from the post-collision cumulants C⋆

i using
Eq. (3.29) and the transformation from the central moments [80]. The relaxation frequency ω1 is
related to the kinematic viscosity as

ν = c2
s

( 1
ω1
− ∆t

2

)
. (3.31)

Other relaxation frequencies can be set, for example, to 1. The LBM with the collision operator
described using Eq. (3.30) is referred to as CuLBM.

To minimize the artifacts originating from the absence of higher order cumulants, the



3.4. Collision operators 35

modification of the collision in Eqs. (3.30d), (3.30e), (3.30f) is suggested in [80] as

C⋆
(2,0,0) − C⋆

(0,2,0) = (1− ω1)
(
C(2,0,0) − C(0,2,0)

)
− 3ρ

(
1− ω1

2

)(
u2

1

(

∂u1
∂x1
−u2

2

(

∂u2
∂x2

)
, (3.32a)

C⋆
(2,0,0) − C⋆

(0,0,2) = (1− ω1)
(
C(2,0,0) − C(0,0,2)

)
− 3ρ

(
1− ω1

2

)(
u2

1

(

∂u1
∂x1
−u2

3

(

∂u3
∂x3

)
, (3.32b)

C⋆
(2,0,0) + C⋆

(0,2,0) + C⋆
(0,0,2) = ω2κ(0,0,0) + (1− ω2)

(
C(2,0,0) + C(0,2,0) + C(0,0,2)

)
− 3ρ

(
1− ω1

2

)(
u2

1

(

∂u1
∂x1

+u2
2

(

∂u2
∂x2

+u2
3

(

∂u3
∂x3

)
, (3.32c)

(3.32d)

where

(

∂u1
∂x1

= −ω1
2ρ

(
2C(2,0,0) − C(0,2,0) − C(0,0,2)

)
− ω2

2ρ

(
C(2,0,0) + C(0,2,0) + C(0,0,2) − κ(0,0,0)

)
, (3.33a)

(

∂u2
∂x2

=

(

∂u1
∂x1

+3ω1
2ρ

(
C(2,0,0) − C(0,2,0)

)
, (3.33b)

(

∂u3
∂x3

=

(

∂u1
∂x1

+3ω1
2ρ

(
C(2,0,0) − C(0,0,2)

)
, (3.33c)

(

∂u1
∂x2

+

(

∂u2
∂x1

= −3ω1
ρ

C(1,1,0), (3.33d)

(

∂u1
∂x3

+

(

∂u3
∂x1

= −3ω1
ρ

C(1,0,1), (3.33e)

(

∂u3
∂x2

+

(

∂u2
∂x3

= −3ω1
ρ

C(0,1,1), (3.33f)

are the approximations of the partial derivatives using cumulants.
The choice of relaxation frequencies ωk, k ∈ {2, 3, · · · , 10} can be further improved. To

increase the numerical accuracy of the CuLBM, the collisions of the four-order cumulants are
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proposed in the form [78]

C⋆
(2,2,0) − 2C⋆

(2,0,2) + C⋆
(0,2,2) = (1− ω6)

(
C(2,2,0) − 2C(2,0,2) + C(0,2,2)

)
+ 2

3

( 1
ω1
− 1

2

)
ω6Aρ

( (

∂u1
∂x1
−2

(

∂u2
∂x2

+

(

∂u3
∂x3

)
, (3.34a)

C⋆
(2,2,0) + C⋆

(2,0,2) − 2C⋆
(0,2,2) = (1− ω6)

(
C(2,2,0) + C(2,0,2) − 2C(0,2,2)

)
+ 2

3

( 1
ω1
− 1

2

)
ω6Aρ

( (

∂u1
∂x1

+

(

∂u2
∂x2
−2

(

∂u3
∂x3

)
, (3.34b)

C⋆
(2,2,0) + C⋆

(2,0,2) + C⋆
(0,2,2) = (1− ω7)

(
C(2,2,0) + C(2,0,2) + C(0,2,2)

)
− 4

3

( 1
ω1
− 1

2

)
ω7Aρ

( (

∂u1
∂x1

+

(

∂u2
∂x2

+

(

∂u3
∂x3

)
, (3.34c)

C⋆
(2,1,1) = (1− ω8)C(2,1,1)

− 1
3

( 1
ω1
− 1

2

)
ω8Bρ

( (

∂u3
∂x2

+

(

∂u2
∂x3

)
, (3.34d)

C⋆
(1,2,1) = (1− ω8)C(1,2,1)

− 1
3

( 1
ω1
− 1

2

)
ω8Bρ

( (
∂u3
∂x1

+
(

∂u1
∂x3

)
, (3.34e)

C⋆
(1,1,2) = (1− ω8)C(1,1,2)

− 1
3

( 1
ω1
− 1

2

)
ω8Bρ

( (

∂u2
∂x1

+

(

∂u1
∂x2

)
, (3.34f)

(3.34g)

where parameters A, B are defined by

A = 4ω2
1 + 2ω1ω2(ω1 − 6) + ω2

2(ω1(10− 3ω1)− 4)
(ω1 − ω2)(ω2(2 + 3ω1)− 8ω1) , (3.35a)

B = 4ω1ω2(9ω1 − 16)− 4ω2
1 − 2ω2

2(2 + 9ω1(ω1 − 2))
3(ω1 − ω2)(ω2(2 + 3ω1)− 8ω1) . (3.35b)

In Eqs.(3.35), however, A and B are undefined for ω1 = ω2 and ω1 = 2ω2
8−3ω2

. In this thesis ω2 = 1,
thus ω1 ≠ 1 and ω1 ̸= 2

5 . Since ω1 = 2
6ν+1 and ν ≪ 1, the problematic point is not attained. Next,

based on [78], the relaxation frequencies for the third-order moments are modified as follows

ω3 = 8(ω1 − 2)(ω2(3ω1 − 1)− 5ω1)
8(5− 2ω1)ω1 + ω2(8 + ω1(9ω1 − 26)) , (3.36a)

ω4 = 8(ω1 − 2)(ω1 + ω2(3ω1 − 7))
ω2
(
56− 42ω1 + 9ω2

1
)
− 8ω1

, (3.36b)

ω5 = 24(ω1 − 2)
(
4ω2

1 + ω1ω2(18− 13ω1) + ω2
2(2 + ω1(6ω1 − 11))

)
16ω2

1(ω1 − 6)− 2ω1ω2(216 + 5ω1(9ω1 − 46)) + ω2
2(ω1(3ω1 − 10)(15ω1 − 28)− 48)

.

(3.36c)
If ω2 = 1 and ω1 < 7

4 , then the frequency ω4 defined by Eq. (3.36b) is negative and thus not
acceptable. Since Eqs. (3.36a) and (3.36c) have no requirements for ω1 selection within the
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interval (0, 2), ω1 ∈
(

7
4 , 2
)
. Thus, the non-dimensional kinematic viscosity can be chosen in(

0, 1
42

)
.

If ω2 tends to 2, the relaxation frequencies ω3, ω4, and ω5 defined in Eq. (3.36) tend to 0.
Thus, the relaxation is slow. To improve this behavior, a limiter for the relaxation frequencies of
particular cumulants was proposed in [78] as

ω120+102 = ω3 +
(1− ω3)

∣∣∣C(1,2,0) + C(1,0,2)

∣∣∣
ρλ3 +

∣∣∣C(1,2,0) + C(1,0,2)

∣∣∣ , (3.37a)

ω120−102 = ω3 +
(1− ω4)

∣∣∣C(1,2,0) − C(1,0,2)

∣∣∣
ρλ4 +

∣∣∣C(1,2,0) − C(1,0,2)

∣∣∣ , (3.37b)

ω111 = ω3 +
(1− ω5)

∣∣∣C(1,1,1)

∣∣∣
ρλ5 +

∣∣∣C(1,1,1)

∣∣∣ , (3.37c)

where λ3, λ4, and λ5 are constants set, for instance, to 0.01 [78]. The relaxation frequencies
ω120+102, ω120−102, and ω111 with the permutations of the subscripts are used in Eqs.(3.30g)-
(3.30m) as

C⋆
(1,2,0) + C⋆

(1,0,2) = (1− ω120+102)
(
C(1,2,0) + C(1,0,2)

)
, (3.38a)

C⋆
(2,1,0) + C⋆

(0,1,2) = (1− ω210+012)
(
C(2,1,0) + C(0,1,2)

)
, (3.38b)

C⋆
(2,0,1) + C⋆

(0,2,1) = (1− ω201+021)
(
C(2,0,1) + C(0,2,1)

)
, (3.38c)

C⋆
(1,2,0) − C⋆

(1,0,2) = (1− ω120−102)
(
C(1,2,0) − C(1,0,2)

)
, (3.38d)

C⋆
(2,1,0) − C⋆

(0,1,2) = (1− ω210−012)
(
C(2,1,0) − C(0,1,2)

)
, (3.38e)

C⋆
(2,0,1) − C⋆

(0,2,1) = (1− ω201−021)
(
C(2,0,1) − C(0,2,1)

)
, (3.38f)

C⋆
(1,1,1) = (1− ω111)C(1,1,1). (3.38g)

The LBM with such improved collision operator is further referred to as CuLBM2.

In addition to the collision operators mentioned above, there are other collision operators
in literature. For example, the cascaded collision operator [76], the factorized central moment
collision operator [74], the entropic multi-relaxation time collision operator [111], the central
moment collision operator based on Fokker-Plank approximation [159], the hybrid recursive
regularized collision operator [59], etc.

3.5 Forcing term

The commonly used strategy in the derivation of the LBM is to first set the action of volume
forces to zero. After the derivation, the discrete forcing term is derived separately. Thus, for
each collision operator, the incorporation of the forcing term can be different. To incorporate
the force, the term Fi is added to the right-hand side of Eq. (3.5). The forms of forcing terms
for particular collision operators can be found in [92, 118, 153]. In this thesis, we follow [80].
Hence, Fi = 0 and the volume force is added to Eq. (3.7b) only. However, first-order cumulants
are multiplied by −1 within the transformation to DDFs to include the effect of volume forces.
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3.6 Initial conditions
The initialization of unknown variables is fundamental for simulating proper time evolution
from the very beginning. In the case of real-world application problems, such as problems
based on the observation of physical experiments, the initial condition is given in the form
of macroscopic variables, such as the pressure and velocity. This initial condition is suitable
for numerical methods that directly solve the macroscopic governing equations, such as the
FEM, FVM, or FDM. However, the LBM works with DDFs. Thus, to initialize the unknown
DDFs, additional information are needed. In general, to initialize unknown DDFs properly, all
macroscopic moments need to be known. Since all macroscopic moments are usually not known,
some approximations of unknown DDFs need to be employed at the initial step.

One of the commonly used approximations is based on setting unknown DDFs to their
equilibrium (attractor) based on the initial value of pressure (density) and momentum [118].
Schematically, the initial condition can be written as

fi(x, 0) = f
(eq)
i (ρini(x), uini(x)), ∀x ∈ Ω̃, ∀i ∈ Q, (3.39)

where ρini and uini are the initial macroscopic conditions. This initial approximation suggests
that the non-equilibrium part of the DDF can be neglected, that is, fi− f

(eq)
i = f

(neq)
i ≈ 0. Since

the non-equilibrium part is related to the partial derivatives of u, it works well for a constant
initial velocity field [118].

A more sophisticated initial condition is the iterative initial condition proposed in [138]. It is
based on the solution of the Poisson’s equation for the initial velocity field using the LBM. The
initial velocity field is fixed in the algorithm, and therefore only the zeroth-order moment is the
collision invariant. There are two outputs of the algorithm. First, it produces a pressure field
that satisfies the Poisson’s equation. The second output of the algorithm are the DDFs from
the final step of the iterative algorithm. These DDFs approximate the solution of the Poisson’s
equation and can be used as the initial approximation for the DDFs in the LBM algorithm for
the main problem solved.

In this thesis, the first strategy described by Eq. (3.39) is used for simplicity since the iterative
initial condition can prolong the simulation. Furthermore, in all cases, the simulation results are
collected after several thousand iterations to minimize the effect of initial errors.

3.7 Boundary conditions
In Chapter 2, macroscopic BCs for the Navier-Stokes equations were introduced. In the mesoscopic
description, BCs are a challenging problem and can not be generally classified into groups, such
as the Dirichlet BC, Neumann BC, etc. Thus, we describe some macroscopic BC approximations
suitable for the LBM that are used in this work. Without loss of generality, most BCs are
described for the boundary face with the outward normal vector n = (1, 0, 0)T .

3.7.1 Periodic boundary condition

The periodic BCs are often chosen to approximate a large (infinite) domain by using only a small
part of it.

A simple case of this type of BCs for a discrete domain in 2D is illustrated in Figure 3.4. In
3D, the topological interpretation is analogous.

In the LBM, the periodic BC is the condition for the streaming step, i.e., it extends the
neighborhood for the boundary nodes according to the periodic rules. Thanks to the interpretation
of this BC in the sense of DDFs, it causes no additional errors.
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Figure 3.4: Schematic representation of periodic BCs in 2D.

3.7.2 Symmetric boundary condition

This BC assumes that the domain is symmetric with respect to a given mirror plane. In DDFs,
the condition can be expressed as

fi(x, t) = f⋆

ĩ
(x, t−∆t), (3.40)

where x ∈ ∂Ω̃, ĩ is the mirrored direction with respect to the plane of the symmetry. In the
case illustrated in Figure 3.5, the mirrored direction satisfies ĩ = ˜(1, i2, i3) = (−1, i2, i3) for
i2, i3 ∈ {−1, 0, 1}. For the remaining boundary faces of ∂Ω, the mirrored direction can be
calculated analogously.

(a) The DDFs in fluid sites before the plane
of symmetry. DDFs labeled by green dot-
ted arrows are unknown.

(b) The known DDFs were mirrored to
obtain unknown green DDFs. njinin ijnjini
buhbuhb ijuibb

Figure 3.5: Schematic representation of the symmetric BC in 3D for D3Q27 velocity model. Blue
points represent fluid sites. Gray plane represents the plane of symmetry. The unknown DDFs
(green dotted arrows) in Figure (a) are obtained by the mirroring of known DDFs (solid red
arrows) according to Eq. (3.40).

This BC modifies the streaming step only, i.e., other steps of the LBM algorithm are performed
in the usual way.
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3.7.3 Equilibrium boundary condition

One possibility is to approximate the unknown DDFs at the boundary nodes by equilibrium
DDFs evaluated from the macroscopic density and velocity. Density ρ and velocity u are obtained
from the prescribed macroscopic BC at the boundary sites x ∈ ∂Ω̃ and all DDFs are set as [118]

fi(x, t) = f
(eq)
i (ρ(x, t), u(x, t)),∀i ∈ Q, ∀t ∈ T̃ . (3.41)

This type of BC is called the wet-node approach, since the site x ∈ ∂Ω̃ is located at the boundary
∂Ω. The disadvantage of this BC is that it neglects the non-equilibrium part.

3.7.4 Fullway bounce-back boundary condition

The fullway bounce-back BC reflects mesoscopic particle interaction with solid wall [168]. The
particle with velocity ξi bounces off the wall with velocity ξi = −ξi. It implies that there is
no flux through the boundary. Next, because of the final reverse motion of the particle, the
fluid does not slip on the wall. As illustrated in Figure 3.6, two time steps are needed for the
reflection. First, the known densities are streamed to the ghost sites in Figure 3.6b. Then, the
DDFs in the ghost sites are reflected, and no collision is performed in these ghost sites. Finally,
the reflected densities are streamed back to the domain Ω̃.

The boundary (wall) is located in the middle between the fluid site and the ghost site (blue
and black points in Figure 3.6, respectively). Thus, the part of the boundary ∂Ω̃ represented by
the fullway bounce-back BC is not a subset of ∂Ω.

The time step from t−∆t to t is illustrated by Figures 3.6a and 3.6b. The step at time t of
the fullway bounce-back BC in a ghost site x ∈ ∂Ω̃ can be written as

fi(x, t) = fi(x, t), ∀i ∈ Q, (3.42)

where i = (−i1,−i2,−i3), see Figures. 3.6b, 3.6c. Finally, the step from t to t + ∆t is illustrated
by Figures 3.6c and 3.6d.

The advantages of the fullway bounce-back BC are its mass conservation and simple imple-
mentation, because no information about the wall location needs to be stored. The disadvantages
are the accuracy (only second-order accurate in space [118]) and the staircase shape of the
boundary. Thus, the curved boundaries are not resolved accurately [118].

Remark 3.2
An alternative to the fullway bounce-back BC is the halfway bounce-back BC. The halfway
bounce-back BC reflects only the unknown DDFs and needs only one time step for the reflection.
The disadvantage of the halfway bounce-back BC is that it is necessary to store information
about which functions should be reflected [118].

3.7.5 Free outflow boundary condition

This BC is inspired by the outflow Neumann BC for the velocity. If the outward normal outflow
boundary vector is n = (1, 0, 0)T , then the free outflow BC can be expressed as

f(−1,i2,i3)(x, t) = f⋆
(−1,i2,i3)(x−∆xn, t−∆t), (3.43)

∀i2, i3 ∈ {−1, 0, 1} and for all x from the outflow part of ∂Ω̃. The drawback of this BC is the
unphysical behavior of the velocity and pressure field near the outflow, which is investigated
later in Chapter 5. The advantage of this BC is its good numerical stability.

The free outflow BC modifies the streaming step only, i.e., the other steps of the LBM
algorithm are performed in the usual way.
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(a) Step before the streaming at time
t−∆t.bu bubuh bbuhbuh bhbhub ibhbhb
bhubuhb uibuhbu

(b) Step after streaming at time t. The
known DDFs were shifted to the sites be-
hind the wall.

(c) Step of bounce-back. The red DDFs in
the Fig 3.6b were reversed.

(d) Step after streaming at time t + ∆t.
hbuhb bubuhb ubuhbu buhbuh

Figure 3.6: Schematic representation of the fullway bounce-back BC in 3D for the velocity model
D3Q27. Blue points represent fluid sites. Black points represent ghost sites behind the wall
presented as a grey plane. The unknown and known DDFs are labeled by dashed and solid
arrows, respectively.
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3.7.6 Interpolated outflow boundary condition

Application of the free outflow BC (Section 3.7.5) or the equilibrium BC (Section 3.7.3) based
on the macroscopic outflow BC often causes inconsistency between the prescribed macroscopic
values and the obtained values at the outflow. Next, these outflow BCs often cause a reflection
of acoustic waves in the pressure field. To improve these drawbacks, the BC with a reduced
acoustic reflection was introduced in [80] as

f(−1,i2,i3)(x, t) = (cs − u1) ∆t

∆x
f⋆

(−1,i2,i3)(x−∆xn, t−∆t)

+
(

1− (cs − u1) ∆t

∆x

)
f⋆

(−1,i2,i3)(x, t−∆t), (3.44)

where i2, i3 ∈ {−1, 0, 1} and x ∈ ∂Ω̃ is the outflow boundary with the outward normal vector
n = (1, 0, 0)T node, and u = (u1, u2, u3)T . If u1 ≪ cs, then Eq. (3.44) can be simplified into

f(−1,i2,i3)(x, t) = f⋆
(−1,i2,i3)(x−∆xn, t−∆t)cs

∆t

∆x
+
(

1− cs
∆t

∆x

)
f⋆

(−1,i2,i3)(x, t−∆t). (3.45)

Such BC is referred to as the interpolated outflow BC without decomposition.
Using the described interpolation, the outflow density (pressure) often does not correspond

to the prescribed macroscopic value. To improve this drawback, we propose a modification of
densities after the interpolation as

fi =
(
fi − f

(eq)
i (ρa, ua)

)
+ f

(eq)
i (ρout, ua), (3.46)

where ρout is the prescribed outflow density and ρa and ua are the density and velocity, respectively,
calculated from the DDFs right after the interpolation. The resulting BC is further referred to
as the interpolated outflow BC with decomposition.

The interpolated outflow BC modifies the streaming step only, i.e., the other steps of the
LBM algorithm are performed in the usual way.

3.7.7 Anti-bounce-back boundary condition

This BC is used for open boundaries with prescribed pressure. It is similar to the halfway
bounce-back BC and the derivation can be found in [83, 84]. For the boundary with the outward
normal vector n = (1, 0, 0)T , the anti-bounce-back BC can be expressed as

f(−1,i2,i3)(x, t + ∆t) = −f⋆
(1,i2,i3)(x, t) + 2w(−1,i2,i3)ρout

1 +

(
ξ(−1,i2,i3) · uout

)2

2c4
s

− uout · uout
2c2

s

,

(3.47)
where i2, i3 ∈ {−1, 0, 1}, ρout is the specified boundary value of density (pressure), uout is the
outflow condition for velocity, and x is the boundary site. Regarding the bounce-back method,
the boundary is placed at ∆x

2 away in the normal direction n from the boundary site x. Since
the value of uout is often not known, there are two options for its approximation. First, the
corresponding macroscopic BC can be used or the value can be extrapolated as in [103] as

uout

(
x + 1

2n, t

)
≈ u(x, t) + 1

2 [u(x, t)− u(x− n, t)] . (3.48)

The anti-bounce-back BC modifies the streaming step only, i.e., the other steps of the LBM
algorithm are performed in the usual way.
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3.7.8 Moment-based boundary condition

An alternative approach to the previous BCs is the moment-based BC, which reconstructs the
unknown DDFs from the known DDFs and known macroscopic moments. This BC was introduced
for the D3Q19 velocity model in [115]. In this thesis, the moment-based BCs are extended for
the velocity model D3Q27 [51].

The moment-based BCs are not as general as the fullway bounce-back BC. For every specific
set of unknown DDFs, the moment-based BC must be separately derived. In this thesis, the
moment-based BCs are applied only for parts of the boundary of the cuboidal domain.

The assumption of moment-based BCs is that all discrete macroscopic moments mj defined
by Eq. (3.15) are known. Since the transformation matrix between DDFs and raw moments
is non-singular, arbitrary number of unknown DDFs can be expressed using raw moments and
known DDFs. As will be illustrated later, in some cases, different combinations of raw moments
can be used in the expression of unknown DDFs. It is recommended to use the raw moments
with the lowest possible order since these moments usually have a better physical interpretation.
If the velocity is given, the density is expressed using the velocity and the known DDFs, and vice
versa.

The boundary of the cuboidal domain Ω is composed of 6 faces, 12 edges, and 8 corners, see
Figure 3.7. For each of these parts, the moment-based BC has a different form. For brevity,
moment-based BCs are derived for one representative of a face, edge, and corner.

Figure 3.7: Illustration of the computational domain Ω with labels of faces.
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Face

Here we explore the derivation of the moment-based BC for the face labeled as West-boundary
with the inner normal vector n = (1, 0, 0)T .

Using combinations of Eqs. (3.7a) and (3.7b), the known DDFs can be expressed as

ρ(1− u1) =
(
f(0,1,−1) + 2f(−1,1,−1) + f(0,−1,0) + f(0,1,0) + 2f(−1,0,−1) + f(0,−1,1)

+ 2f(−1,−1,1) + f(0,0,−1) + f(0,0,1) + f(0,0,0) + 2f(−1,1,0) + f(0,−1,−1) + 2f(−1,−1,−1)

+ f(0,1,1) + 2f(−1,1,1) + 2f(−1,0,0) + 2f(−1,0,1) + 2f(−1,−1,0)
)

. (3.49)

In all considered cases, the low Mach number condition is assumed, thus u1 ≪ cs = 1√
3 , Eq. (3.49)

can be used to express the unknown density ρ or velocity u1.
The nine unknown DDFs are f(1,0,−1), f(1,1,−1), f(1,0,0), f(1,1,0), f(1,−1,1), f(1,−1,0), f(1,0,1),

f(1,−1,−1), and f(1,1,1). In Table 3.1, the raw moments are categorized into groups according to
the combination of unknown DDFs. In each group, a moment is selected for the expression of
unknown DDFs. The selection of the moment m⋆ in the first group depends on the boundary
type. We set m⋆ = m(0,0,0) or m⋆ = m(1,0,0), if the Dirichlet BC is specified for pressure or
velocity, respectively.

# Moments Unknown fi combinations Selected

1 m(0,0,0), m(1,0,0), m(2,0,0)
f(1,−1,1) + f(1,−1,0) + f(1,0,1) + f(1,−1,−1) + f(1,1,1) + f(1,0,−1)

m⋆

+f(1,1,−1) + f(1,0,0) + f(1,1,0)

2 m(0,1,0), m(1,1,0), m(2,1,0) −f(1,−1,1) − f(1,−1,0) − f(1,−1,−1) + f(1,1,1) + f(1,1,−1) + f(1,1,0) m(0,1,0)

3 m(0,0,1), m(1,0,1), m(2,0,1) f(1,−1,1) + f(1,0,1) − f(1,−1,−1) + f(1,1,1) − f(1,0,−1) − f(1,1,−1) m(0,0,1)

4 m(0,1,1) −f(1,−1,1) + f(1,−1,−1) + f(1,1,1) − f(1,1,−1) m(0,1,1)

5 m(0,2,0), m(1,2,0), m(2,2,0) f(1,−1,1) + f(1,−1,0) + f(1,−1,−1) + f(1,1,1) + f(1,1,−1) + f(1,1,0) m(0,2,0)

6 m(0,0,2), m(1,0,2), m(2,0,2) f(1,−1,1) + f(1,0,1) + f(1,−1,−1) + f(1,1,1) + f(1,0,−1) + f(1,1,−1) m(0,0,2)

7 m(0,2,1) f(1,−1,1) − f(1,−1,−1) + f(1,1,1) − f(1,1,−1) m(0,2,1)

8 m(0,1,2) −f(1,−1,1) − f(1,−1,−1) + f(1,1,1) + f(1,1,−1) m(0,1,2)

9 m(0,2,2) f(1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(1,1,−1) m(0,2,2)

Table 3.1: Raw moment categorization based on the combination of unknown DDFs. The selected
moments are used for the expression of unknown DDFs with m⋆ = m(0,0,0) or m⋆ = m(1,0,0) for
unknown velocity or pressure, respectively.
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Based on the selection in Table 3.1, the unknown density functions are expressed as



f(1,0,0)

f(1,1,0)

f(1,−1,0)

f(1,0,1)

f(1,0,−1)

f(1,1,1)

f(1,1,−1)

f(1,−1,1)

f(1,−1,−1)



= Af



f(0,0,0)

f(0,1,0)

f(0,0,1)

f(−1,0,0)

f(0,−1,0)

f(0,0,−1)

f(0,1,1)

f(0,1,−1)

f(0,−1,1)

f(0,−1,−1)

f(−1,1,0)

f(−1,−1,0)

f(−1,0,1)

f(−1,0,−1)

f(−1,1,1)

f(−1,1,−1)

f(−1,−1,1)

f(−1,−1,−1)



+ Am



m(1,0,0)

m(0,1,0)

m(0,0,1)

m(0,1,1)

m(0,2,0)

m(0,0,2)

m(0,2,1)

m(0,1,2)

m(0,2,2)



, (3.50a)

where

Af =



0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1


, (3.50b)

and

Am =



1 0 0 0 −1 −1 0 0 1
0 1

2 0 0 1
2 0 0 − 1

2 − 1
2

0 − 1
2 0 0 1

2 0 0 1
2 − 1

2

0 0 1
2 0 0 1

2 − 1
2 0 − 1

2

0 0 − 1
2 0 0 1

2
1
2 0 − 1

2

0 0 0 1
4 0 0 1

4
1
4

1
4

0 0 0 − 1
4 0 0 − 1

4
1
4

1
4

0 0 0 − 1
4 0 0 1

4 − 1
4

1
4

0 0 0 1
4 0 0 − 1

4 − 1
4

1
4


. (3.50c)
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The selected raw moments in Table 3.1 are set as

m(1,0,0) =ρu1,

m(0,1,0) =ρu2,

m(0,0,1) =ρu3,

m(0,1,1) =ρu2u3,

m(0,2,0) =1
3ρ + ρu2u2,

m(0,0,2) =1
3ρ + ρu3u3,

m(0,2,1) =1
3ρu3 + ρu2u2u3,

m(0,1,2) =1
3ρu2 + ρu2u3u3,

m(0,2,2) =1
9ρ + 1

3ρu2u2 + 1
3ρu3u3 + ρu2u2u3u3. (3.50d)

The moments are set to their Maxwell-Boltzmann equilibrium. The first order moments are
set accurately. Nevertheless, the higher-order moments are only approximated since the non-
equilibrium part is neglected.

Next, the moment-based BCs for an edge and a corner are derived for boundary with the
Dirichlet BC for velocity only. The moment-based BCs for specified pressure Dirichlet BC can
be derived analogously.

Edge

The edge between faces with inner normal vectors n = (1, 0, 0)T and n = (0,−1, 0)T is labeled
as West-North edge, see Figure 3.7. For this part of the boundary, fifteen DDFs are unknown. If
the velocity is given, the unknown density can be computed as

ρ = − 1
−1 + u1(1 + u2)− u2

(
2f(−1,0,1) + 2f(0,1,−1) + 4f(−1,1,−1) + 2f(0,1,0) + 2f(−1,0,−1)

+ f(0,0,−1) + f(0,0,1) + f(0,0,0) + 4f(−1,1,0) + 2f(0,1,1)

+4f(−1,1,1) + 2f(−1,0,0)
)

. (3.51)

The raw moments are classified into groups given in Table 3.2. The moments in Table 3.2 are
selected of the lowest order to maintaining non-singularity of the linear system for unknown
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# Moments Unknown fi combinations Selected

1 m(0,0,0)
f(1,1,−1) + f(1,0,0) + f(1,1,0) + f(−1,−1,0) + f(0,−1,0) + f(1,−1,1) + f(1,−1,0) + f(1,0,1) + f(0,−1,1) –+f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(1,0,−1) + f(0,−1,−1) + f(−1,−1,−1)

2 m(1,0,0)
f(1,1,−1) + f(1,0,0) + f(1,1,0) − f(−1,−1,0) + f(1,−1,1) + f(1,−1,0) + f(1,0,1) − f(−1,−1,1) + f(1,−1,−1) m(1,0,0)+f(1,1,1) + f(1,0,−1) − f(−1,−1,−1)

3 m(0,1,0)
f(1,1,−1) + f(1,1,0) − f(−1,−1,0) − f(0,−1,0) − f(1,−1,1) − f(1,−1,0) − f(0,−1,1) − f(−1,−1,1) − f(1,−1,−1) m(0,1,0)+f(1,1,1) − f(0,−1,−1) − f(−1,−1,−1)

4 m(0,0,1)
−f(1,1,−1) + f(1,−1,1) + f(1,0,1) + f(0,−1,1) + f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) − f(1,0,−1) − f(0,−1,−1) m(0,0,1)−f(−1,−1,−1)

5 m(1,1,0) f(1,1,−1) + f(1,1,0) + f(−1,−1,0) − f(1,−1,1) − f(1,−1,0) + f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) + f(−1,−1,−1) m(1,1,0)

6 m(1,0,1) −f(1,1,−1) + f(1,−1,1) + f(1,0,1) − f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) − f(1,0,−1) + f(−1,−1,−1) m(1,0,1)

7 m(0,1,1) −f(1,1,−1) − f(1,−1,1) − f(0,−1,1) − f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(0,−1,−1) + f(−1,−1,−1) m(0,1,1)

8 m(2,0,0)
f(1,1,−1) + f(1,0,0) + f(1,1,0) + f(−1,−1,0) + f(1,−1,1) + f(1,−1,0) + f(1,0,1) + f(−1,−1,1) + f(1,−1,−1) m(2,0,0)+f(1,1,1) + f(1,0,−1) + f(−1,−1,−1)

9 m(0,2,0)
f(1,1,−1) + f(1,1,0) + f(−1,−1,0) + f(0,−1,0) + f(1,−1,1) + f(1,−1,0) + f(0,−1,1) + f(−1,−1,1) + f(1,−1,−1) m(0,2,0)+f(1,1,1) + f(0,−1,−1) + f(−1,−1,−1)

10 m(0,0,2)
f(1,1,−1) + f(1,−1,1) + f(1,0,1) + f(0,−1,1) + f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(1,0,−1) + f(0,−1,−1) m(0,0,2)+f(−1,−1,−1)

11 m(2,1,0) f(1,1,−1) + f(1,1,0) − f(−1,−1,0) − f(1,−1,1) − f(1,−1,0) − f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) − f(−1,−1,−1) –

12 m(2,0,1) −f(1,1,−1) + f(1,−1,1) + f(1,0,1) + f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) − f(1,0,−1) − f(−1,−1,−1) m(2,0,1)

13 m(1,2,0) f(1,1,−1) + f(1,1,0) − f(−1,−1,0) + f(1,−1,1) + f(1,−1,0) − f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) − f(−1,−1,−1) –

14 m(0,2,1) −f(1,1,−1) + f(1,−1,1) + f(0,−1,1) + f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) − f(0,−1,−1) − f(−1,−1,−1) m(0,2,1)

15 m(1,0,2) f(1,1,−1) + f(1,−1,1) + f(1,0,1) − f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(1,0,−1) − f(−1,−1,−1) m(1,0,2)

16 m(0,1,2) f(1,1,−1) − f(1,−1,1) − f(0,−1,1) − f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) − f(0,−1,−1) − f(−1,−1,−1) m(0,1,2)

17 m(2,2,0) f(1,1,−1) + f(1,1,0) + f(−1,−1,0) + f(1,−1,1) + f(1,−1,0) + f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(−1,−1,−1) –

18 m(2,0,2) f(1,1,−1) + f(1,−1,1) + f(1,0,1) + f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(1,0,−1) + f(−1,−1,−1) m(2,0,2)

19 m(0,2,2) f(1,1,−1) + f(1,−1,1) + f(0,−1,1) + f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(0,−1,−1) + f(−1,−1,−1) m(0,2,2)

Table 3.2: Raw moment categorization based on the combination of unknown DDFs for edge
West-North. The selected moments are used for the expression of the unknown DDFs. Since the
Dirichlet BC for velocity is considered, the first moment is not chosen.

DDFs. Based on the selection of raw moments in Table 3.2, the unknown DDFs are expressed as



f(1,0,0)

f(0,−1,0)

f(0,−1,1)

f(0,−1,−1)

f(1,1,0)

f(1,−1,0)

f(−1,−1,0)

f(1,0,1)

f(1,0,−1)

f(1,1,1)

f(1,1,−1)

f(1,−1,1)

f(1,−1,−1)

f(−1,−1,1)

f(−1,−1,−1)



= Af



f(0,0,0)

f(0,1,0)

f(0,0,1)

f(−1,0,0)

f(0,0,−1)

f(0,1,1)

f(0,1,−1)

f(−1,1,0)

f(−1,0,1)

f(−1,0,−1)

f(−1,1,1)

f(−1,1,−1)



+ Am



m(1,0,0)

m(0,1,0)

m(0,0,1)

m(1,1,0)

m(1,0,1)

m(0,1,1)

m(2,0,0)

m(0,2,0)

m(0,0,2)

m(2,0,1)

m(0,2,1)

m(1,0,2)

m(0,1,2)

m(2,0,2)

m(0,2,2)



, (3.52a)
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where

Af =



0 2 1 1 1 2 2 4 2 2 4 4
0 1 1 2 1 2 2 4 2 2 4 4
0 0 −1 0 0 −1 0 0 0 0 0 0
0 0 0 0 −1 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 −1 0 0 0 0
0 −1 −1 −1 −1 −2 −2 −3 −2 −2 −4 −4
0 0 0 −1 0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0 −1 0 0 0
0 0 0 0 −1 0 0 0 0 −1 0 0
0 0 0 0 0 −1 0 0 0 0 −1 0
0 0 0 0 0 0 −1 0 0 0 0 −1
0 0 1 0 0 1 0 0 1 0 1 0
0 0 0 0 1 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 −1 0 −1 0
0 0 0 0 0 0 0 0 0 −1 0 −1



, (3.52b)

and

Am =



1 −1 0 1 0 0 0 −1 −1 0 0 0 0 0 1
1 −1 0 1 0 0 −1 0 −1 0 0 0 0 1 0
0 0 1

2 0 0 0 0 0 1
2 − 1

2 0 0 0 − 1
2 0

0 0 − 1
2 0 0 0 0 0 1

2
1
2 0 0 0 − 1

2 0
0 1

2 0 0 0 0 0 1
2 0 0 0 0 − 1

2 0 − 1
2

− 1
2

1
2 0 −1 0 0 1

2
1
2 1 0 0 − 1

2
1
2 − 1

2 − 1
2

− 1
2 0 0 0 0 0 1

2 0 0 0 0 1
2 0 − 1

2 0
0 0 1

2 0 0 0 0 0 1
2 0 − 1

2 0 0 0 − 1
2

0 0 − 1
2 0 0 0 0 0 1

2 0 1
2 0 0 0 − 1

2

0 0 0 0 0 1
4 0 0 0 0 1

4 0 1
4 0 1

4

0 0 0 0 0 − 1
4 0 0 0 0 − 1

4 0 1
4 0 1

4

0 0 − 1
2 0 1

4 − 1
4 0 0 − 1

2
1
4

1
4

1
4 − 1

4
1
4

1
4

0 0 1
2 0 − 1

4
1
4 0 0 − 1

2 − 1
4 − 1

4
1
4 − 1

4
1
4

1
4

0 0 0 0 − 1
4 0 0 0 0 1

4 0 − 1
4 0 1

4 0
0 0 0 0 1

4 0 0 0 0 − 1
4 0 − 1

4 0 1
4 0



. (3.52c)
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The selected raw moments in Table 3.2 are set as

m(1,0,0) =ρu1,

m(0,1,0) =ρu2,

m(0,0,1) =ρu3,

m(1,1,0) =ρu1u2,

m(1,0,1) =ρu1u3,

m(0,1,1) =ρu2u3,

m(2,0,0) =1
3ρ + ρu1u1,

m(0,2,0) =1
3ρ + ρu2u2,

m(0,0,2) =1
3ρ + ρu3u3,

m(2,0,1) =1
3ρu3 + ρu1u1u3,

m(0,2,1) =1
3ρu3 + ρu2u2u3,

m(1,0,2) =1
3ρu1 + ρu1u3u3,

m(0,1,2) =1
3ρu2 + ρu2u3u3,

m(2,0,2) =1
9ρ + 1

3ρu1u1 + 1
3ρu3u3 + ρu1u1u3u3,

m(0,2,2) =1
9ρ + 1

3ρu2u2 + 1
3ρu3u3 + ρu2u2u3u3. (3.52d)

Corner

The moment-based BC with the given velocity vector for the corner between faces with inner
normal vectors n = (1, 0, 0)T , n = (0,−1, 0)T , and n = (0, 0, 1)T , labeled as West-North-Front
edge, see Figure 3.7, can be derived similarly. The unknown density can be computed as

ρ =− 1
−1 + u3 + (−1 + u3)u2 − (−1 + u3 − u2)u1 − u3u1u2

(
2f(0,1,0) + 4f(−1,0,−1)

+2f(0,0,−1) + f(0,0,0) + 4f(−1,1,0) + 2f(−1,0,0) + 4f(0,1,−1) + 8f(−1,1,−1)
)

(3.53)

The raw moments are divided into groups as shown in the Table 3.3.
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# Moments Unknown fi combinations Selected

1 m(0,0,0)
f(1,−1,1) + f(1,−1,0) + f(1,0,1) + f(0,−1,1) + f(−1,−1,1) + f(1,−1,−1) + f(0,0,1) + f(1,1,1) + f(1,0,−1) + f(0,−1,−1) –+f(−1,−1,−1) + f(0,1,1) + f(−1,1,1) + f(1,1,−1) + f(1,0,0) + f(−1,0,1) + f(1,1,0) + f(−1,−1,0) + f(0,−1,0)

2 m(1,0,0)
f(1,−1,1) + f(1,−1,0) + f(1,0,1) − f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(1,0,−1) − f(−1,−1,−1) − f(−1,1,1) m(1,0,0)+f(1,1,−1) + f(1,0,0) − f(−1,0,1) + f(1,1,0) − f(−1,−1,0)

3 m(0,1,0)
−f(1,−1,1) − f(1,−1,0) − f(0,−1,1) − f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) − f(0,−1,−1) − f(−1,−1,−1) + f(0,1,1) m(0,1,0)+f(−1,1,1) + f(1,1,−1) + f(1,1,0) − f(−1,−1,0) − f(0,−1,0)

4 m(0,0,1)
f(1,−1,1) + f(1,0,1) + f(0,−1,1) + f(−1,−1,1) − f(1,−1,−1) + f(0,0,1) + f(1,1,1) − f(1,0,−1) − f(0,−1,−1) m(0,0,1)−f(−1,−1,−1) + f(0,1,1) + f(−1,1,1) − f(1,1,−1) + f(−1,0,1)

5 m(1,1,0) −f(1,−1,1) − f(1,−1,0) + f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) + f(−1,−1,−1) − f(−1,1,1) + f(1,1,−1) + f(1,1,0) + f(−1,−1,0) m(1,1,0)

6 m(1,0,1) f(1,−1,1) + f(1,0,1) − f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) − f(1,0,−1) + f(−1,−1,−1) − f(−1,1,1) − f(1,1,−1) − f(−1,0,1) m(1,0,1)

7 m(0,1,1) −f(1,−1,1) − f(0,−1,1) − f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(0,−1,−1) + f(−1,−1,−1) + f(0,1,1) + f(−1,1,1) − f(1,1,−1) m(0,1,1)

8 m(2,0,0)
f(1,−1,1) + f(1,−1,0) + f(1,0,1) + f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(1,0,−1) + f(−1,−1,−1) + f(−1,1,1) m(2,0,0)+f(1,1,−1) + f(1,0,0) + f(−1,0,1) + f(1,1,0) + f(−1,−1,0)

9 m(0,2,0)
f(1,−1,1) + f(1,−1,0) + f(0,−1,1) + f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(0,−1,−1) + f(−1,−1,−1) + f(0,1,1) m(0,2,0)+f(−1,1,1) + f(1,1,−1) + f(1,1,0) + f(−1,−1,0) + f(0,−1,0)

10 m(0,0,2)
f(1,−1,1) + f(1,0,1) + f(0,−1,1) + f(−1,−1,1) + f(1,−1,−1) + f(0,0,1) + f(1,1,1) + f(1,0,−1) + f(0,−1,−1) m(0,0,2)+f(−1,−1,−1) + f(0,1,1) + f(−1,1,1) + f(1,1,−1) + f(−1,0,1)

11 m(2,1,0) −f(1,−1,1) − f(1,−1,0) − f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) − f(−1,−1,−1) + f(−1,1,1) + f(1,1,−1) + f(1,1,0) − f(−1,−1,0) m(2,1,0)

12 m(2,0,1) f(1,−1,1) + f(1,0,1) + f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) − f(1,0,−1) − f(−1,−1,−1) + f(−1,1,1) − f(1,1,−1) + f(−1,0,1) m(2,0,1)

13 m(1,2,0) f(1,−1,1) + f(1,−1,0) − f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) − f(−1,−1,−1) − f(−1,1,1) + f(1,1,−1) + f(1,1,0) − f(−1,−1,0) m(1,2,0)

14 m(0,2,1) f(1,−1,1) + f(0,−1,1) + f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) − f(0,−1,−1) − f(−1,−1,−1) + f(0,1,1) + f(−1,1,1) − f(1,1,−1) m(0,2,1)

15 m(1,0,2) f(1,−1,1) + f(1,0,1) − f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(1,0,−1) − f(−1,−1,−1) − f(−1,1,1) + f(1,1,−1) − f(−1,0,1) m(1,0,2)

16 m(0,1,2) −f(1,−1,1) − f(0,−1,1) − f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) − f(0,−1,−1) − f(−1,−1,−1) + f(0,1,1) + f(−1,1,1) + f(1,1,−1) m(0,1,2)

17 m(1,1,1) −f(1,−1,1) + f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) − f(−1,−1,−1) − f(−1,1,1) − f(1,1,−1) m(1,1,1)

18 m(2,2,0) f(1,−1,1) + f(1,−1,0) + f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(−1,−1,−1) + f(−1,1,1) + f(1,1,−1) + f(1,1,0) + f(−1,−1,0) m(2,2,0)

19 m(2,0,2) f(1,−1,1) + f(1,0,1) + f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(1,0,−1) + f(−1,−1,−1) + f(−1,1,1) + f(1,1,−1) + f(−1,0,1) m(2,0,2)

20 m(0,2,2) f(1,−1,1) + f(0,−1,1) + f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(0,−1,−1) + f(−1,−1,−1) + f(0,1,1) + f(−1,1,1) + f(1,1,−1) m(0,2,2)

21 m(2,1,1) −f(1,−1,1) − f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(−1,−1,−1) + f(−1,1,1) − f(1,1,−1) –

22 m(1,2,1) f(1,−1,1) − f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) + f(−1,−1,−1) − f(−1,1,1) − f(1,1,−1) –

23 m(1,1,2) −f(1,−1,1) + f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) + f(−1,−1,−1) − f(−1,1,1) + f(1,1,−1) –

24 m(2,2,1) f(1,−1,1) + f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) − f(−1,−1,−1) + f(−1,1,1) − f(1,1,−1) –

25 m(2,1,2) −f(1,−1,1) − f(−1,−1,1) − f(1,−1,−1) + f(1,1,1) − f(−1,−1,−1) + f(−1,1,1) + f(1,1,−1) –

26 m(1,2,2) f(1,−1,1) − f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) − f(−1,−1,−1) − f(−1,1,1) + f(1,1,−1) –

27 m(2,2,2) f(1,−1,1) + f(−1,−1,1) + f(1,−1,−1) + f(1,1,1) + f(−1,−1,−1) + f(−1,1,1) + f(1,1,−1) –

Table 3.3: Raw moment categorization based on the combination of unknown density functions
for corner West-North-Front. The selected moments are used for the expression of the unknown
density functions. Since the Dirichlet BC for velocity is considered, the first moment is not
chosen.
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Based on the selection of raw moments in Table 3.3, the unknown density functions are
expressed as 

f(1,0,0)

f(0,0,1)

f(0,−1,0)

f(0,1,1)

f(0,−1,1)

f(0,−1,−1)

f(1,1,0)

f(1,−1,0)

f(−1,−1,0)

f(1,0,1)

f(1,0,−1)

f(−1,0,1)

f(1,1,1)

f(1,1,−1)

f(1,−1,1)

f(1,−1,−1)

f(−1,1,1)

f(−1,−1,1)

f(−1,−1,−1)



= Af



f(0,0,0)

f(0,1,0)

f(−1,0,0)

f(0,0,−1)

f(0,1,−1)

f(−1,1,0)

f(−1,0,−1)

f(−1,1,−1)



+ Am



m(1,0,0)

m(0,1,0)

m(0,0,1)

m(1,1,0)

m(1,0,1)

m(0,1,1)

m(2,0,0)

m(0,2,0)

m(0,0,2)

m(2,1,0)

m(2,0,1)

m(1,2,0)

m(0,2,1)

m(1,0,2)

m(0,1,2)

m(1,1,1)

m(2,2,0)

m(2,0,2)

m(0,2,2)



, (3.54a)

where
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Af =



0 2 1 2 4 4 4 8
0 2 2 1 4 4 4 8
0 1 2 2 4 4 4 8
0 −1 0 0 −1 0 0 0
0 −1 −2 −1 −3 −4 −4 −8
0 0 0 −1 −1 0 0 0
0 −1 0 0 0 −1 0 0
0 −1 −1 −2 −4 −3 −4 −8
0 0 −1 0 0 −1 0 0
0 −2 −1 −1 −4 −4 −3 −8
0 0 0 −1 0 0 −1 0
0 0 −1 0 0 0 −1 0
0 1 0 0 1 1 0 1
0 0 0 0 −1 0 0 −1
0 1 1 1 3 3 3 7
0 0 0 1 1 0 1 1
0 0 0 0 0 −1 0 −1
0 0 1 0 0 1 1 1
0 0 0 0 0 0 −1 −1



, (3.54b)

and

Am =



1 −1 1 1 −1 1 0 −1 −1 0 0 0 0 0 0 −1 0 0 1
1 −1 1 1 −1 1 −1 −1 0 0 0 0 0 0 0 −1 1 0 0
1 −1 1 1 −1 1 −1 0 −1 0 0 0 0 0 0 −1 0 1 0
0 1

2 0 0 0 0 0 1
2 0 − 1

2 0 0 0 0 0 0 − 1
2 0 0

−1 1
2 − 1

2 −1 1 −1 1 1
2

1
2

1
2 − 1

2 0 0 0 0 1 − 1
2 − 1

2 0
0 0 − 1

2 0 0 0 0 0 1
2 0 1

2 0 0 0 0 0 0 − 1
2 0

0 1
2 0 0 0 0 0 1

2 0 0 0 0 0 0 − 1
2 0 0 0 − 1

2

− 1
2

1
2 −1 −1 1 −1 1

2
1
2 1 0 0 0 0 − 1

2
1
2 1 0 − 1

2 − 1
2

− 1
2 0 0 0 0 0 1

2 0 0 0 0 0 0 1
2 0 0 0 − 1

2 0
− 1

2 1 − 1
2 −1 1 −1 1

2 1 1
2 0 0 − 1

2 − 1
2 0 0 1 − 1

2 0 − 1
2

0 0 − 1
2 0 0 0 0 0 1

2 0 0 0 1
2 0 0 0 0 0 − 1

2

− 1
2 0 0 0 0 0 1

2 0 0 0 0 1
2 0 0 0 0 − 1

2 0 0
0 − 1

2 0 1
4 0 1

4 0 − 1
2 0 1

4 0 1
4

1
4 0 1

4 0 1
4 0 1

4

0 0 0 0 0 − 1
4 0 0 0 0 0 0 − 1

4 0 1
4 0 0 0 1

4
1
2 − 1

2
1
2

3
4 − 3

4
3
4 − 1

2 − 1
2 − 1

2 − 1
4

1
4

1
4

1
4

1
4 − 1

4 −1 1
4

1
4

1
4

0 0 1
2 0 − 1

4
1
4 0 0 − 1

2 0 − 1
4 0 − 1

4
1
4 − 1

4 0 0 1
4

1
4

0 0 0 − 1
4 0 0 0 0 0 1

4 0 − 1
4 0 0 0 0 1

4 0 0
1
2 0 0 1

4 − 1
4 0 − 1

2 0 0 − 1
4

1
4 − 1

4 0 − 1
4 0 0 1

4
1
4 0

0 0 0 0 1
4 0 0 0 0 0 − 1

4 0 0 − 1
4 0 0 0 1

4 0



.

(3.54c)
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The selected raw moments in Table 3.3 are set as

m(1,0,0) =ρu1,

m(0,1,0) =ρu2,

m(0,0,1) =ρu3,

m(1,1,0) =ρu1u2,

m(1,0,1) =ρu1u3,

m(0,1,1) =ρu2u3,

m(2,0,0) =1
3ρ + ρu1u1,

m(0,2,0) =1
3ρ + ρu2u2,

m(0,0,2) =1
3ρ + ρu3u3,

m(2,1,0) =1
3ρu2 + ρu1u1u2,

m(2,0,1) =1
3ρu3 + ρu1u1u3,

m(1,2,0) =1
3ρu1 + ρu1u2u2,

m(0,2,1) =1
3ρu3 + ρu2u2u3,

m(1,0,2) =1
3ρu1 + ρu1u3u3,

m(0,1,2) =1
3ρu2 + ρu2u3u3,

m(1,1,1) =ρu1u2u3,

m(2,2,0) =1
9ρ + 1

3ρu1u1 + 1
3ρu2u2 + ρu1u1u2u2,

m(2,0,2) =1
9ρ + 1

3ρu1u1 + 1
3ρu3u3 + ρu1u1u3u3,

m(0,2,2) =1
9ρ + 1

3ρu2u2 + 1
3ρu3u3 + ρu2u2u3u3. (3.54d)

For the remaining faces, edges, and corners with the prescribed velocity or pressure Dirichlet
BC, the moment-based BCs are given in [51].

Automatic generation of moment-based BC

Manual derivation of moment BCs is a tedious procedure, thus we have implemented a gen-
erator of these BCs in C++ using GiNaC, which allows symbolic operations. The code is
available upon request on the web site https://mmg-gitlab.fjfi.cvut.cz/gitlab/eichler/
moment-based-bc-for-lbm.

3.8 Grid refinement
The LBM uses a lattice (corresponding to the regular grid) to discretize the computational
domain. Thus, the lattice does not need to be stored in the computer memory. However, this
causes many drawbacks. First, the discretization of complex domains can contain many lattice

https://mmg-gitlab.fjfi.cvut.cz/gitlab/eichler/moment-based-bc-for-lbm
https://mmg-gitlab.fjfi.cvut.cz/gitlab/eichler/moment-based-bc-for-lbm
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sites outside the domain, which causes unnecessary allocation of computer memory. Next, since
the Kolmogorov scale is not constant in the whole flow field, the requirements on the grid
resolution depend on the position in the computational domain. Typically, the grid needs to
be finer near body surfaces or in turbulent flow field regions. In this section, the topic of grid
refinement technique is addressed.

There are several options for the grid refinement in the LBM. One of the strategies is based
on the mesh-less approach, where the discrete points discretizing the computational domain are
not arranged in a lattice [132, 166]. The basic problem of this mesh-less approach is the necessity
of storing coordinates of each discrete point in the computer memory. Next, the streaming step
is not accurate, and some interpolation is needed. Finally, in the mesh-less approach, the space
step for the unit conversion must be chosen carefully.

Figure 3.8: Illustration of the octree mesh structure.

3.8.1 Grid structure and scaling

Another approach uses a grid composed of blocks with uniform parts. The ratio of grid spacing
parameters between adjacent blocks can be an arbitrary natural number [194]. A special approach,
with the ration 2 [89], used in this thesis, is based on the octree grid structure [55, 89, 196],
illustrated in Figure 3.8. The octree grid is composed of blocks with a different grid spacing
parameter δℓ

x [m] , where the upper index ℓ ∈ N0 defines the level of the block. The block
with the coarsest grid has the level ℓ = 0. The grid spacing parameters of other blocks satisfy
δℓ

x = 1
2δℓ−1

x for ℓ ∈ N.
The ratio between grid spacing parameter δℓ

x and time step δℓ
t [t] is commonly set in two ways.

The first option is to use the diffusive scaling, that is, δℓ
t ∼

(
δℓ

x

)2
[189]. The main disadvantage

of this approach is the reflection of pressure waves at the mesh interfaces, as a consequence of the
Snell-Descartes law [19]. The second option uses the acoustic scaling, that is, δℓ

t ∼ δℓ
x. Therefore,

the time step at level ℓ satisfies δℓ+1
t = 1

2δℓ
t and 2ℓ iterations of the LBM algorithm must be

performed in a block on level ℓ to update the state at time t + δ0
t .

In the case of the acoustic scaling, the relaxation parameters related to kinematic viscosity
are not constant. If we denote the non-dimensional kinematic viscosity in the block on level ℓ as
ν̃ℓ [−], then with the acoustic scaling, the non-dimensional viscosity ν̃ℓ+1 satisfies

ν̃ℓ+1

(
δℓ+1

x

)2

δℓ+1
t

= ν̃ℓ

(
δℓ

x

)2

δℓ
t

=⇒ ν̃ℓ+1 = 2ν̃ℓ. (3.55)
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Thanks to Eq. (3.14), the relaxation frequencies ωℓ [−] and ωℓ+1 related to kinematic viscosity
ν̃ℓ and ν̃ℓ+1, respectively, satisfy

ωℓ+1 = 2ωℓ

4− ωℓ
. (3.56)

Since the applicability of the acoustic scaling was successfully tested in [122, 158], it is also used
in this thesis.

Next, the distribution of grid blocks can be static or dynamic [53, 190]. The dynamic
distribution is mainly used for problems with moving obstacles or for problems such as Kármán
vortex street, where the blocks follow the vortexes. In this thesis, the static distribution is
considered, since the dynamic distribution requires additional computational cost.

3.8.2 LBM algorithm with grid refinement

The algorithm of the grid refinement depends on the data layout on the grid. Data can be
vertex-centered or cell-centered, see Figure 3.9. The advantage of the vertex-centered layout is
the overlap of the fine and coarse grid nodes. Thus, no interpolation is needed in these nodes.
However, the interpolation between other vertices can disrupt mass conservation [30]. The
vertex-centered approach in the LBM was used, for example, in [44, 61]. On the other hand,
the cell-centered approach ensures mass conservation [30] and was applied in the context of the
LBM in [54, 158]. In this thesis, the cell-centered approach is used, since this approach is more
appropriate for some BCs, such as the bounce-back BC.

(a) Cell-centered. (b) Vertex-centered.

Figure 3.9: Illustration of the representation of the data in the numerical grid with a cell-centered
and a vertex-centered representation. The data in coarse and fine grids are represented by the
yellow and blue circles, respectively.

The generation of the grid blocks can be performed by coarsening the initial fine mesh. After
generation, the blocks are disjoint and extrapolation is needed for the communication between
neighboring blocks, see Figure 3.9a. To improve this drawback, the overlap region is additionally
generated on each blocks interface as illustrated in Figure 3.10a. The interpolation from fine
cells to coarse cells is performed first (light blue arrows in Figure 3.10b), since the overlap cells of
the coarse block are needed for the interpolation from coarse cells to fine cells, see Figure 3.10b.
Next, the interpolation from the block with level ℓ to the block with level ℓ + 1 is performed
twice, since the LBM algorithm is performed twice on the block with level ℓ + 1 to reach the
time level t + δℓ

t . To minimize such extra communication, an extra layer of overlap cells is added
to the block with level ℓ + 1 at the block interface with level ℓ, see Figure 3.10c. Finally, to
communicate between neighboring blocks simultaneously, the fine block is immersed in the coarse
block with one level of grid nodes, as illustrated by the colored regions in Figure 3.10d.

The LBM algorithm for one time step of the block with level 0 is modified. Let the number
of different grid levels be GN ∈ N. The LBM algorithm with grid refinement is described in
Algorithm 1.
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(a) Grid blocks with additionally generated overlap
region for the interpolation.

(b) Illustration of the interpolation between grid
blocks with one-layer overlap on each side. The
direction of the interpolation is depicted by arrows.

(c) Grid blocks with an additional overlap layer on
the fine block side.

(d) Grid blocks with illustrated regions of interpola-
tion.

Figure 3.10: Illustration of different strategies for the overlap construction between blocks of
different levels. The overlap region is drawn with the dashed lines. Coarse and fine cells are
represented by yellow and light blue points, respectively.

Algorithm 1: Algorithm for LBM with grid refinement
ℓ← GN − 1;
while ℓ ≥ 0 do

label all grid blocks with level ≥ ℓ as active;
perform one time step of classical LBM algorithm for all active blocks;
communication for active blocks
(active blocks update their overlap regions);
ℓ← ℓ− 1;

end

3.8.3 Interpolation of DDFs

With the cell-centered approach, the interpolation from fine cells to coarse cells and vice versa
is performed inside a cell with known values in its vertices, see Figure 3.10d. To perform the
interpolation inside a cell, different interpolations are used. The basic interpolation technique
is based on the trilinear interpolation [37] of DDFs fi. An arbitrary variable ϕ can be linearly
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interpolated in the unit cube as

ϕ(x1, x2, x3) =
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, (3.57)

where ϕ(x1, x2, x3), xi ∈ {−1
2 , 1

2}, i ∈ {1, 2, 3} are values at the vertices of the unit cube with
the origin (0, 0, 0)T in its center.

Direct linear interpolation of fi causes oscillations at the block interface. To improve this
drawback, the DDF is decomposed into the equilibrium part and the non-equilibrium part as

fi = f
(eq)
i + f

(neq)
i . (3.58)

The equilibrium part f
(eq)
i is proportional to the velocity and thus is not scaled within the

interpolation. The non-equilibrium part f
(neq)
i is proportional to the spatial velocity derivatives

[122] and, therefore, it should be scaled as

f
(neq),ℓ
i = 2ωℓ+1

ωℓ
f

(neq),ℓ+1
i , (3.59)

where f
(neq),ℓ
i [−] is the non-equilibrium part in block nodes with level ℓ and ωℓ is the relaxation

frequency related to the kinematic viscosity of the block with level ℓ. Next, instead of the
equilibrium part f

(eq)
i , the density and the velocity are interpolated. To obtain an interpolated

DDFs fi, the equilibrium parts are reconstructed from the interpolated density and velocity and
added to the interpolated non-equilibrium parts. The interpolation of density and velocity is
performed according to Eq. (3.57).

The interpolation of density ρ can be further improved. The density can be written as
ρ = ρ0 + δρ, where ρ0 = 1 is the non-dimensional initial reference density (see page 26) and δρ
are temporal fluctuations of ρ around ρ0. Thus, the numerical precision of the interpolation can
be improved by interpolating δρ instead of ρ.

If the linear velocity interpolation is used, the second derivative of the interpolated velocity is
zero. It means that in the context of the Navier-Stokes equations, the viscous forces are neglected.
This inconsistency can cause errors in the solution. To improve it, a second-order interpolation
of velocity is used. However, for the second-order interpolation, more information is needed. In
order to use only the information from the vertices of the unit cube, the second derivatives of
the velocity are used in the interpolation [75, 121]. The second-order interpolation used in this
thesis is inspired by [121] and can be written as

u1(x) =a0 + a1x1 + a2x2 + a3x3 + a12x1x2 + a13x1x3 + a23x2x3 + a11x2
1 + a22x2

2

+ a33x2
3 + a123x1x2x3, (3.60a)

u2(x) =b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3 + b11x2
1 + b22x2

2

+ b33x2
3 + b123x1x2x3, (3.60b)

u3(x) =c0 + c1x1 + c2x2 + c3x3 + c12x1x2 + c13x1x3 + c23x2x3 + c11x2
1 + c22x2

2

+ c33x2
3 + c123x1x2x3, (3.60c)
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where x = (x1, x2, x3)T , x1, x2, x3 ∈
[
−1

2 , 1
2

]
. To find 33 unknown coefficients a{·}, b{·}, c{·},

3× 8 = 24 vertex values of velocity are used. As in [121], the rest of equations for the unknown
coefficients are obtained from the spatial second-order velocity derivatives in the cube center (i.e.
x = 0)

∂

∂x1

(
∂

∂x1
u2 + ∂

∂x2
u1

)
= 2b11 + a12, (3.61a)

∂

∂x1

(
∂

∂x1
u3 + ∂

∂x3
u1

)
= 2c11 + a13, (3.61b)

∂2

∂x2
1
(u1) = 2a11, (3.61c)

∂

∂x2

(
∂

∂x2
u1 + ∂

∂x1
u2

)
= 2a22 + b12, (3.61d)

∂

∂x2

(
∂

∂x2
u3 + ∂

∂x3
u2

)
= 2c22 + b23, (3.61e)

∂2

∂x2
2
(u2) = 2b22, (3.61f)

∂

∂x3

(
∂

∂x3
u1 + ∂

∂x1
u3

)
= 2a33 + c13, (3.61g)

∂

∂x3

(
∂

∂x3
u2 + ∂

∂x2
u3

)
= 2b33 + c23, (3.61h)

∂2

∂x2
3
(u3) = 2c33. (3.61i)

To obtain the second-order derivatives, the first order derivatives at cube vertices are used. The
first-order derivatives can be locally obtained from the cumulants, see Chapter 4. To obtain the
second order derivative ∂

∂x1

(
∂

∂x1
u2 + ∂

∂x2
u1
)
, the values ∂

∂x1
u2 + ∂

∂x2
u1 in the cube vertices are

averaged within faces perpendicular to the x1 axis and, then, the central second-order differences
are used, that is,

∂

∂x1

(
∂

∂x1
u2 + ∂

∂x2
u1

)
(0) ≈ 1

4

1∑
j,k=0

[(
∂

∂x1
u2 + ∂

∂x2
u1

)((1
2 , j − 1

2 , k − 1
2

)T
)

−
(

∂

∂x1
u2 + ∂

∂x2
u1

)((
−1

2 , j − 1
2 , k − 1

2

)T
)]

. (3.62)

The remaining second-order derivatives are computed similarly. The list of interpolation coeffi-
cients can be found in Appendix C.

Finally, the following two interpolation strategies are used:

S.I Linear interpolation

• DDFs are decomposed as in Eq. (3.58).
• The linear interpolation defined by Eq. (3.57) is used for the velocity, density, and

non-equilibrium parts of DDFs.
• The interpolated non-equilibrium parts of DDFs is scaled as in Eq. (3.59).
• The equilibrium parts of interpolated DDFs are computed from the interpolated

density and velocity and added to the scaled non-equilibrium parts.
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S.II Quadratic interpolation

• DDFs are decomposed as in Eq. (3.58).
• The quadratic interpolation defined by Eq. (3.60) is used for the velocity, the linear

interpolation defined by Eq. (3.57) is used for the density, and the non-equilibrium
parts of DDFs.

• The interpolated non-equilibrium parts of DDFs are scaled as in Eq. (3.59).
• The equilibrium parts of interpolated DDFs are computed from the interpolated

density and velocity and added to the scaled non-equilibrium parts.

3.9 Implementation remarks
Remark 3.3
For all numerical simulations, a in-house LBM software developed at the Department of Mathe-
matics, FNSPE CTU in Prague since 2015 is used. This software is implemented in C++ and
enables parallel executions on clusters with distributed nodes equipped with GPUs (Graphics
Processing Unit) using libraries MPI (Message Passing Interface) and CUDA (Compute Unified
Device Architecture). The author of this thesis is one of the main developers of this in-house
code.

Remark 3.4
The LBM algorithm introduced in Section 3.3 stores two sets of DDFs in the computer memory.
One set for the previous and one for the current time level. Some techniques [79, 120, 142],
however, allow to store only one set of DDFs by modifying the LBM algorithm.

3.9.1 Well conditioning

In the computer code, the variables are stored using different computer data formats. The most
commonly used representations for real numbers in C++ are floats (single-precision arithmetic)
and doubles (double-precision arithmetic). The limitation of these computer data formats is
their finite precision.

In the LBM, the DDFs can be written as

fi = f
(0)
i + δfi, i ∈ Q, (3.63)

where f
(0)
i = feq

i (ρ0, 0) with the reference density ρ0 = 1. From the equilibrium DDF f
(eq)
i

defined by Eq. (3.12), the constant part satisfies

f
(0)
i = ρ0wi, i ∈ Q, (3.64)

where wi are the weights defined by Eq. (3.13). Thus, it is convenient to store δfi in the computer
memory instead of fi and modify the LBM algorithm accordingly. This technique is referred to
as the well conditioning in the LBM community [80]. With the decomposition introduced by
Eq. (3.63), the density ρ is computed as

ρ =
∑
i∈Q

fi =
∑
i∈Q

ρ0wi +
∑
i∈Q

δfi = ρ0 + δρ, (3.65)

where
∑

i∈Q
wi = 1 is used. It should be noted that it is recommended to store the fluctuations δρ

in the computer memory instead of ρ since δρ≪ ρ0. Next, there is no difference in the first-order
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moment computation using fi and δfi since

ρu =
∑
i∈Q

fiξi =
∑
i∈Q

wiξi +
∑
i∈Q

δfiξi = 0 +
∑
i∈Q

δfiξi =
∑
i∈Q

δfiξi, (3.66)

where
∑

i∈Q
wiξ = 0 follows from the symmetric definition of Q and weights wi. Thus, the formula

for the velocity can be written as

u = 1
1 + δρ

∑
i∈Q

δfiξi. (3.67)

The collision step is not affected by the well conditioning approach. Only the transformations
from DDFs to raw moments, central moments, and cumulants are affected. The details can be
found in [80]. In this thesis, the well conditioning technique is used only in connection with the
grid refinement technique in Chapter 6.



Analysis of Lattice
Boltzmann Method 4

In general, numerical methods produce an approximate solution of a given PDE with some error.
Quantification of the error is essential, since it provides pieces of information about the numerical
scheme. The analysis of the error can be theoretical or based on numerical experiments.

The error is often proportional to the space and the time step δx and δt, respectively. The
numerical method is called convergent, if the error decreases as the space and time step decrease.
The rate of convergence can be expressed using the order of convergence. Let the solution of
PDE be function Φ : Ω→ R and let the numerical solution of an arbitrary numerical scheme be
denoted by Φ̃ : Ω̂→ R. Then, the error term can be written as

Φ̃(x) = Φ(x) +O(δα
x )O

(
δβ

t

)
, ∀x ∈ Ω̂, (4.1)

where α, β ∈ R and O is the Bachmann–Landau notation [140]. Then, the order of convergence
of the numerical method is α in space and β in time.

To investigate the order of convergence of the numerical method, numerical experiments or a
backward analysis [36] need to be performed. The order of convergence determined based on the
numerical simulations is called the experimental order of convergence (EOC). The EOC provides
only approximation of the exact convergence order and does not provide explicit knowledge
about the error. On the other hand, the backward analysis produces both the convergence orders
and the explicit form of the error. Furthermore, the backward analysis is crucial for numerical
methods, since it provides information about the PDEs that are numerically solved.

There are several techniques of backward analysis for the LBM. The commonly used techniques
are the Chapman-Enskog asymptotic expansion [29, 31], analysis based on Maxwell iterations
[197], equivalent partial differential equation analysis [43, 69, 96], recurrence equation analysis [82],
Taylor expansion method [67], and asymptotic expansion analysis [106]. The Chapman-Enskog
expansion is widely used for the analysis of the LBM [88, 118, 129, 141, 152, 156] and was
originally derived for the analysis of the continuous Boltzmann equations, where the kinetic
scale (i.e., the mean free path) and the hydrodynamic scale (given by the Knudsen number) are
independent. However, in numerical simulations of the fluid flow, no such independence exists
[123]. Thus, the use of the Chapman-Enskog analysis is omitted in this thesis.

Here, the asymptotic expansion described in [108] is used to investigate the equivalent partial
differential equations of the CuLBM collision operator. Next, some relations are derived for the
approximations of the spatial velocity derivatives.

61
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4.1 Asymptotic expansion

The backward analysis based on the asymptotic expansion of unknown functions is a well
established method in the analysis of ordinary differential equations and partial differential
equations [17, 90]. Contrary to the Taylor expansion method, the asymptotic expansion method
can provide more information about the error terms which can be used to improve the numerical
method [108].

As in [108], the asymptotic analysis is performed only formally. The asymptotic expansion
method works with a regular expansion with a "small" parameter ϵ ∈ R \ {0}. The parameter
ϵ is proportional to the space step δx and the time step δt. In this thesis, the diffusive scaling
is mainly used, thus, it is considered that ϵ = δx and ϵ2 = Cϵδt, Cϵ ∈ R+ is a constant of
proportionality.

The position of point xijk(ϵ) ∈ Ω̂ for given indexes i, j, k depends on the parameter ϵ. The
asymptotic expansion for a function Φ̃ is assumed to take the form of a regular expansion as
follows:

Φ̃(xijk(ϵ)) =
∞∑

ℓ=0
ϵℓΦ(ℓ)(xijk(ϵ)), (4.2)

where Φ(k)(xijk(ϵ)) are smooth coefficients of the expansion that do not explicitly depend on
ϵ. The asymptotic analysis investigates the case where ϵ → 0. For a given point x ∈ Ω, we
will find a sequence of points xinjnkn(ϵn) for a sequence {ϵn}∞n=1 such that lim

n→∞
ϵn = 0 and

lim
n→∞

xinjnkn(ϵn) = x. Thus, after substituting the regular expansion (4.2) into a given numerical
scheme, the limiting case lim

n→∞
ϵn = 0 is investigated.

The output of the analysis is a set of equations that are solved by the first non-zero coefficient
Φ(ℓ1), ℓ1 ∈ N0. If the coefficient Φ(ℓ1+ℓ2) ≠ 0 is the second non-zero coefficient, then the numerical
solution Φ̃ is the approximation of Φ(ℓ1) of order ℓ2 ∈ N.

In the context of the LBM, the asymptotic analysis can be performed for the DDFs [106] or
for the macroscopic moments [80]. In this thesis, the second option is explored. The analysis
assumes Ω = R3, so no boundary treatment is investigated.

4.2 Analysis of cumulant LBM

In this section, an asymptotic analysis of the CuLBM is performed. It follows the steps of the
asymptotic analysis in [80]. The reason for the analysis being presented here is to verify the
correctness of the formulas derived in [80] that are used for the second-order interpolation of the
velocity in Section 3.8.

In the LBM, non-dimensional quantities are used instead of dimensional quantities. Thus the
regular expansion (4.2) is assumed in the non-dimensional form. Since ϵ = δx, its non-dimensional
form satisfies ϵ̃ = 1

δx
ϵ = 1. The non-dimensionalization causes that the coefficients of the regular

expansion in the non-dimensional form Φ̃(k) depend on ϵ. Thus, with decreasing ϵ, coefficients
Φ̃(k) behave as ϵk, k ∈ N0. This allows to separate the coefficients of the same power of ϵ in each
equation. In the following, all quantities are assumed to be non-dimensional, the tilde is omitted
above all non-dimensional quantities for better readability, and the non-dimensional parameter ϵ̃
is labeled by ε.

For the purpose of the analysis, Eq. (3.9b) is rewritten as

fi(x, t + ∆t) = f⋆
i (x−∆tξi, t). (4.3)
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Next, the Taylor expansion of Eq. (4.3) is used. The left-hand side is expanded in time, and the
right-hand side is expanded in space. This results in the equation

∞∑
r=0

(∆t)r

r! ∂tr fi(x, t) =
∞∑

m,n,l=0

im
1 in

2 il
3(−c∆t)m+n+l

m!n!l! ∂xm
1

∂xn
2
∂xl

3
f⋆

i (x, t), (4.4)

where c = ∆x/∆t is the lattice velocity, ∂tk = ∂k

∂tk , ∂xk
i

= ∂k

∂xk
i

, i = 1, 2, 3, k ∈ N. Since position
x and time t are constant in this procedure, the dependence on them will be omitted in the
following steps.

For all α, β, γ ∈ {0, 1, 2}, the post-collision raw moment m⋆
(α,β,γ) is defined by

m⋆
(α,β,γ) =

∑
i∈Q

iα
1 iβ

2 iγ
3 f⋆

i . (4.5)

If Eq. (4.4) is multiplied by iα
1 , iβ

2 , iγ
3 , where α, β, γ ∈ {0, 1, 2}, and summed over the indices

i1, i2, i3 ∈ {−1, 0, 1}, we get
∞∑

r=0

(∆t)r

r! ∂tr m(α,β,γ) =
∞∑

m,n,l=0

(−c∆t)m+n+l

m!n!l! ∂xm∂yn∂zl m⋆
(α+m,β+n,γ+l). (4.6)

Next, the diffusive scaling is chosen such that ∆x = ε, ∆t = ε2. Then, Eq. (4.6) becomes
∞∑

r=0

(ε)2r

r! ∂tr m(α,β,γ) =
∞∑

m,n,l=0

(−ε)m+n+l

m!n!l! ∂xm∂yn∂zl m⋆
(α+m,β+n,γ+l). (4.7)

Now, we have Eq. (4.7) with the perturbation parameter ε and the unknowns m(α,β,γ) and
m⋆

(α,β,γ). Using the regular perturbation expansion of mα,β,γ and m⋆
α,β,γ with respect to ε, we

obtain [80] ∀α, β, γ ∈ {0, 1, 2}

m(α,β,γ) =
∞∑

k=0
εkm

(k)
(α,β,γ), (4.8a)

m⋆
(α,β,γ) =

∞∑
k=0

εkm
⋆ (k)
(α,β,γ), (4.8b)

where m
(k)
(α,β,γ) and m

⋆ (k)
(α,β,γ) are coefficients of the proposed regular expansions. Combining the

expansions (4.8) together with Eq. (4.7), we can write
∞∑

r=0

(ε)2r

r! ∂tr

∞∑
k=0

εkm
(k)
(α,β,γ) =

∞∑
m,n,l=0

(−ε)m+n+l

m!n!l! ∂xm∂yn∂zl

∞∑
k=0

εkm
⋆ (k)
(α+m,β+n,γ+l). (4.9)

Since ϵ = δx is arbitrary, Eq. (4.9) implies that the coefficients on the left- and right-hand side
corresponding to the same power of ε must be equal [140].

As the raw moments, the fundamental unknowns, such as the density and velocity for the
incompressible fluid, are expanded too, i.e.,

ρ =
∞∑

k=0
εkρ(k), (4.10a)

u =
∞∑

k=0
εku(k). (4.10b)
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The regular expansion of the vector quantity (4.10b) is defined as the regular expansion
of individual components. Within the asymptotic analysis, the coefficients m

(k) (eq)
(α,β,γ) must be

expressed using the density and velocity. For example, the raw moment m
(eq)
(1,0,0) = m(1,0,0) = ρu1

is expanded as

ρu1 = m(1,0,0),
∞∑

k=0
εkρ(k)

∞∑
k=0

εku
(k)
1 =

∞∑
k=0

εkm
(k)
(1,0,0). (4.11)

Based on the coefficients comparison in Eq. (4.11), the following relation is satisfied:

m
(k)
(1,0,0) =

k∑
i=0

ρ(i)u
(k−i)
1 . (4.12)

The density is not scaled by ∆x and ∆t, thus the first non-zero coefficient is ρ(0). On the
other hand, the velocity vector is scaled as ∆x

∆t ũ = εũ and, thus, the zeroth-order coefficient in
the velocity expansion is zero. Next, due to the assumption Ω = R3, the discrete domain Ω̂ does
not change if we multiply δx by the factor −1, that is, if the orientation of the axes is changed
[80]. It influences only the regular expansion, since the new "small" parameter has the opposite
sign. We denote the original parameter ε by ε1 and the negative parameter by ε2. Thus, it holds
ε1 = −ε2. The scalar quantities, such as the density, do not depend on the orientation of the
axes. Thus ∞∑

k=0
εk

1ρ(k) = ρ =
∞∑

k=0
εk

2ρ(k) =
∞∑

k=0
(−ε1)kρ(k). (4.13)

Since ϵ1 = ε1δx is arbitrary, the odd coefficients must be zero, that is, ρ(2k+1) = 0, k ∈ N. Thus,
the regular expansion of the density can be written as

ρ =
∞∑

k=0
ε2kρ(2k). (4.14)

In contrast to scalar quantities, vector quantities, such as u, depend on the orientation of the
axes. Thus, if we compare the regular expansions for parameters ε1 and ε2 = −ε1, we get the
following

∞∑
k=0

εk
1u(k) = u = −

∞∑
k=0

εk
2u(k) = −

∞∑
k=0

(−ε1)ku(k). (4.15)

Thus, the even-order coefficients must be zero, i.e., u(2k) = 0, k ∈ N. Finally, since ρ and u are
collision invariants, we have ∀α, β, γ ∈ {0, 1, 2}, α + β + γ ≤ 1

m(α,β,γ) = m⋆
(α,β,γ). (4.16)

In the following, the coefficients of the same order of ε in Eq. (4.9) are compared.

Zeroth-order

m
(0)
(α,β,γ) = m

⋆ (0)
(α,β,γ), ∀α, β, γ ∈ {0, 1, 2}. (4.17)

It follows from Eq. (4.17) that all zero orders of m(α,β,γ) are collision invariants. From the
properties of the LBM collision operators results

m
(0)
α,β,γ = m

⋆ (0)
α,β,γ = m

(0) (eq)
α,β,γ , ∀α, β, γ ∈ {0, 1, 2}. (4.18)
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Thanks to Eq. (4.18), the explicit form of the zeroth-order moment is known, since all equilibrium
raw moments are equal to the combination of density and velocity. Since the zeroth-order
coefficient of u is zero, the zeroth-order coefficients of raw moments are proportional to the
zeroth-order density coefficient. Since ρ(0) = ρ0 = 1, all coefficients m

(0)
α,β,γ are constant with

respect to space and time.

First-order

m
(1)
(α,β,γ) = m

⋆ (1)
(α,β,γ) − ∂x1m

(0)
(α+1,β,γ) − ∂x2m

(0)
(α,β+1,γ) − ∂x3m

(0)
(α,β,γ+1). (4.19)

Because all zeroth-order coefficients of raw moments are constant,

m
(1)
α,β,γ = m

⋆ (1)
α,β,γ , ∀α, β, γ ∈ {0, 1, 2}. (4.20)

Thus, coefficients m
(1)
α,β,γ are collision invariants, too. The properties of the LBM imply

m
(1)
α,β,γ = m

⋆ (1)
α,β,γ = m

(1) (eq)
α,β,γ , ∀α, β, γ ∈ {0, 1, 2}. (4.21)

Second-order

m
(2)
(α,β,γ) + ∂tm

(0)
(α,β,γ) = 1

2
(
∂x1x1m

⋆ (0)
(α+2,β,γ) + ∂x2x2m

⋆ (0)
(α,β+2,γ) + ∂x3x3m

⋆ (0)
(α,β,γ+2)

)
+ ∂x1x2m

⋆ (0)
(α+1,β+1,γ) + ∂x1x3m

⋆ (0)
(α+1,β,γ+1) + ∂x2x3m

⋆ (0)
(α,β+1,γ+1) − ∂x1m

⋆ (1)
(α+1,β,γ) − ∂x2m

⋆ (1)
(α,β+1,γ)

− ∂x3m
⋆ (1)
(α,β,γ+1) + m

⋆ (2)
α,β,γ . (4.22)

Since the zeroth-order coefficients are constant, we get

m
(2)
(α,β,γ) −m

⋆ (2)
α,β,γ = −∂x1m

⋆ (1)
(α+1,β,γ) − ∂x2m

⋆ (1)
(α,β+1,γ) − ∂x3m

⋆ (1)
(α,β,γ+1). (4.23)

With the choice of α = β = γ = 0, we obtain

∂x1m
⋆ (1)
(1,0,0) + ∂x2m

⋆ (1)
(0,1,0) + ∂x3m

⋆ (1)
(0,0,1) = m

⋆ (2)
(0,0,0) −m

(2)
(0,0,0) = 0, (4.24)

since m(0,0,0) = ρ is the collision invariant. Eq. (4.24) can be written as

∇ ·
(
ρ(0)u(1)

)
= ρ(0)∇ ·

(
u(1)

)
= 0. (4.25)

Thus the velocity vector u(1) satisfies the incompressible condition (2.18a) since ρ(0) ̸= 0.

Third-order

m
(3)
(α,β,γ) + ∂tm

(1)
(α,β,γ) = m

⋆ (3)
(α,β,γ) + Q−

(
∂x1m

⋆ (2)
(α+1,β,γ) + ∂x2m

⋆ (2)
(α,β+1,γ) + ∂x3m

⋆ (2)
(α,β,γ+1)

)
+ 1

2
(
∂x1x1m

⋆ (1)
(α+2,β,γ) + ∂x2x2m

⋆ (1)
(α,β+2,γ) + ∂x3x3m

⋆ (1)
(α,β,γ+2)

)
+ ∂x1x2m

⋆ (1)
(α+1,β+1,γ)

+ ∂x1x3m
⋆ (1)
(α+1,β,γ+1) + ∂x2x3m

⋆ (1)
(α,β+1,γ+1), (4.26)

where Q comprises all partial derivatives with respect to spatial coordinates of the zeroth-order
raw moments. Since all zeroth-order raw moments are constant, Q = 0. To derive the conservation
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of the momentum for the incompressible fluid from Eq. (4.26), α = 1, β = 0, and γ = 0 are
substituted into Eq. (4.26), that is,

∂tm
(1)
(1,0,0) = m

⋆ (3)
(1,0,0) −m

(3)
(1,0,0) −

(
∂x1m

⋆ (2)
(2,0,0) + ∂x2m

⋆ (2)
(1,1,0) + ∂x3m

⋆ (2)
(1,0,1)

)
− 1

2
(
∂x1x1m

(1)
(3,0,0)

+∂x2x2m
(1)
(1,2,0) + ∂x3x3m

(1)
(1,0,2)

)
+ ∂x1x2m

(1)
(2,1,0) + ∂x1x3m

(1)
(2,0,1) + ∂x2x3m

(1)
(1,1,1), (4.27)

where it takes advantage of the fact that the first-order moments are collision invariants and the
zeroth-order moments are constant in space. Next, according to the definition of raw moments
in Eq. (3.15), m(3,0,0) = m(1,0,0), which follows from the finite dimension of the velocity space
considered. Hence, Eq. (4.27) can be written as

∂tm
(1)
(1,0,0) = m

⋆ (3)
(1,0,0) −m

(3)
(1,0,0) −

(
∂x1m

⋆ (2)
(2,0,0) + ∂x2m

⋆ (2)
(1,1,0) + ∂x3m

⋆ (2)
(1,0,1)

)
+ 1

2
(
∂x1x1m

(1)
(1,0,0)

+∂x2x2m
(1)
(1,2,0) + ∂x3x3m

(1)
(1,0,2)

)
+ ∂x1x2m

(1)
(2,1,0) + ∂x1x3m

(1)
(2,0,1) + ∂x2x3m

(1)
(1,1,1). (4.28)

To derive the momentum conservation law from Eq. (4.28), the second-order coefficients need to
be removed. The complete procedure is summarized in [46]. It uses the features of the collision
operator and contains many technical steps. The final equation of this procedure is

∂tu
(1)
1 =F

(3)
1 − ∂x1c2

s

ρ(2)

ρ(0) −
(
u

(1)
1 ∂x1u

(1)
1 + u

(1)
2 ∂x2u(1)

x1 + u(1)
x3 ∂x3u(1)

x1

)
+ ν

(
∂2

x1u
(1)
1 + ∂2

x2u
(1)
1 + ∂2

x3u
(1)
1

)
. (4.29)

The term F
(3)
1 represents the volume forces and c2

s
ρ(2)

ρ(0) is the pressure. Hence, the pressure p in
the LBM is approximated as

p = p0 + c2
s

δρ

ρ(0) = p0c2
s

ρ− ρ(0)

ρ(0) = c2
s

ρ(2)

ρ(0) +O
(
ε4
)
, (4.30)

where ρ(0) = 1 and p0 is the reference pressure [118]. It is consistent with Eq. (3.8).

4.2.1 Local computation of spatial partial derivatives of fluid velocity

In the grid refinement technique (see Section 3.8), the local computation of the partial derivatives
of the fluid velocity is used. These formulae are derived using asymptotic analysis. The starting
equation for the derivation is the second-order equation (4.23) with α = 2, β = 0, γ = 0, and we
obtain the following equation.

m
(2)
(2,0,0) = m

⋆ (2)
(2,0,0) −

(
∂x1m

(1)
(1,0,0) + ∂x2m

(1)
(2,1,0) + ∂x3m

(1)
(2,0,1)

)
, (4.31)

and with α = 0, β = 2, γ = 0

m
(2)
(0,2,0) = m

⋆ (2)
(0,2,0) −

(
∂x1m

(1)
(1,2,0) + ∂x2m

(1)
(0,1,0) + ∂x3m

(1)
(0,2,1)

)
. (4.32)

Eqs. (4.31), (4.32) are modified according to several steps described in detail in the technical
report [46]. The resulting equations are

∂x1u
(1)
1 = ω1

2ρ(0)

(
−2C

(2)
(2,0,0) + C

(2)
(0,2,0) + C

(2)
(0,0,2)

)
+ ω2

2ρ(0)

(
ρ(2) − C

(2)
(2,0,0) − C

(2)
(0,2,0) − C

(2)
(0,0,2)

)
,

(4.33a)

∂x2u
(1)
2 =∂x1u

(1)
1 + 3ω1

2ρ(0)

(
C

(2)
(2,0,0) − C

(2)
(0,2,0)

)
, (4.33b)

∂x3u
(1)
3 =∂x1u

(1)
1 + 3ω1

2ρ(0)

(
C

(2)
(2,0,0) − C

(2)
(0,0,2)

)
, (4.33c)
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where C
(k)
(α,β,γ) is the coefficient of the asymptotic expansion of C(α,β,γ), k ∈ N0, α, β, γ ∈ {0, 1, 2}.

The zeroth-order coefficient of the density can be replaced by ρ(0) = 1 or by ρ with the error
term proportional to O

(
ε2). The velocity coefficient u

(1)
1 approximates the velocity component

u1 with the error proportional to O
(
ε3). The zeroth-order cumulants satisfy C

(0)
(2,0,0) = C

(0)
(0,2,0) =

C
(0)
(0,0,2) = c2

sρ(0). Thus, the term
(
ρ(2) − C

(2)
(2,0,0) − C

(2)
(0,2,0) − C

(2)
(0,0,2)

)
can be replaced by the term(

ρ− C(2,0,0) − C(0,2,0) − C(0,0,2)
)

with an error proportional O
(
ε2). Thus, Eq. (4.33a) approxi-

mates the ∂x1u1 with an error proportional to O
(
ε2). Similarly, the terms

(
C

(2)
(2,0,0) − C

(2)
(0,2,0)

)
,(

C
(2)
(2,0,0) − C

(2)
(0,0,2)

)
can be replaced by

(
C(2,0,0) − C(0,2,0)

)
,
(
C(2,0,0) − C(0,0,2)

)
with an error

proportional to O
(
ε2).

The remaining space partial derivatives of the velocity vector u can be approximated as

∂x2u
(1)
1 =− 3ω1

ρ(0) C
(2)
(1,1,0) − ∂x1u

(1)
2 , (4.34a)

∂x2u
(1)
3 =− 3ω1

ρ(0) C
(2)
(0,1,1) − ∂x3u

(1)
2 , (4.34b)

∂x1u
(1)
3 =− 3ω1

ρ(0) C
(2)
(1,0,1) − ∂x3u

(1)
1 . (4.34c)

Eqs. (4.34) produce only approximations for particular combinations of the partial derivatives
of u. Thus, to compute individual partial derivatives, the approximations (4.34) need to be
combined with other methods such as the finite difference method. However, Eqs. (4.34) can be
used for the approximation of the stress tensor components. The second-order coefficients of
cumulants C

(2)
(1,1,0), C

(2)
(0,1,1), and C

(2)
(1,0,1) can be approximated by cumulants C(1,1,0), C(0,1,1), and

C(1,0,1) with an error proportional to O
(
ε2), respectively. Finally, the complete derivation of the

formulae (4.34) can be found in [46].

4.3 Chapter summary
In this chapter, the asymptotic analysis of the CuLBM was performed. We have found that
the CuLBM numerical solution approximates the solution of the incompressible Navier-Stokes
equations. Next, the local approximations of spatial partial velocity derivatives were derived,
which coincide with approximations in [121]. These approximations are further used in the grid
refinement technique in Chapter 6.





Investigation of Boundary
Conditions 5

Boundary conditions (BCs) are one of the most investigated problems related to the LBM.
In real-world application problems, BCs specify the behavior at the boundary by prescribing
pressure or velocity profiles. The accuracy of BCs treatment influences the accuracy of the whole
numerical method, and therefore a correct treatment is desirable in various applications, such as
simulations of processes in fluidized bed reactors, where the numerical solution is affected by
small changes at the boundaries [9].

The accuracy of BCs in the LBM began to be investigated in the 90s of the twentieth century
[32, 199]. Due to the lattice structure used by the LBM, BC modifications for curved geometries
such as interpolated [181, 185] and extrapolated [198] BCs were introduced. Alternatively,
the immersed boundary method was used in connection with the LBM [49, 68, 148]. Since
improved BCs often disturb the locality of the LBM algorithm [198], locality-preserving BCs
were suggested even for curved boundaries [93, 136, 171]. Furthermore, numerical stability has
been improved by adjustment of BCs to particular collision operators [2, 60], flow regimes [33,
99, 125], compressible fluids [63], and non-Newtonian fluids [169]. Another problem of BCs is
the reflection of acoustic waves at the boundaries, thus BCs with reduced reflection have been
derived [103]. The investigation of BCs is usually conducted numerically [7, 58, 186] or by the
use of asymptotic analysis [107, 109].

In this chapter, the BCs given in Chapter 3 are investigated numerically using two benchmark
problems with analytical solution to demonstrate their accuracy and influence on the numerical
solution.

5.1 Methods

The mesoscopic boundary conditions given in Section 3.7 are investigated in the time interval
T = (0, T ) and in the cuboidal domain Ω = (0, L1)× (0, L2)× (0, L3) with dimensions L1 = 3 m
and L2 = L3 = 1 m. The final time is T = 100 s. The boundary ∂Ω consists of the inflow ∂Ωin,
outflow ∂Ωout, and wall ∂Ωwall. The Dirichlet and Neumann BC for velocity and pressure are
prescribed at ∂Ωin, respectively. At ∂Ωwall, the no-slip BC is assumed. Finally, zero Neumann and
Dirichlet BC (pout = 0 kg m−1 s−2) are prescribed at ∂Ωout for velocity and pressure, respectively.
Initially, zero velocity and pressure are considered in Ω. For the purpose of the investigation,
the Newtonian fluid with constant kinematic viscosity ν = 0.01 m2 s−1 and constant density
ρ0 = 1 kg m−3 is considered. The cumulant collision operator CuLBM with the non-dimensional
kinematic viscosity ν̃ = 0.01 is used for all simulations.

69
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5.2 Benchmark problems

In Figures 5.1a, 5.1b, the configurations of the domain and BCs for two benchmark problems
(BP1 and BP2) are illustrated. At ∂Ωin, the analytical velocity profile described in Section 2.2.3
is prescribed with the corresponding Neumann BC for pressure given by Eq. (2.18d). At Ωwall
(gray planes in Figures 5.1a, 5.1b), the no-slip boundary condition is prescribed. Finally, in BP1,
the periodic boundary conditions are assumed in the x3-direction.

To assess the boundary conditions used, the relative errors in terms of the L1 and L2 norms
computed in the entire domain Ω are evaluated for both benchmark problems. Furthermore, to
see the distribution of errors in the x1-direction, the L1 norms ∥ · ∥L1,S(x1) (for the definition see
page xxvii) of numerical and analytical solutions are computed within the cross section

S(x1) =
{

(x1, x2, x3)T
∣∣∣0 < x2 < L2, 0 < x3 < L3

}
. (5.1)

For the investigation, four grids with parameters in Table 5.2 and six BCs listed in Table 5.1
are used.

BC id. BC at ∂Ωout Section

I Free outflow BC 3.7.5

II Equilibrium BC 3.7.3

III Anti-bounce-back 3.7.7

IV Interpolated outflow BC without decomposition 3.7.6

V Interpolated outflow BC with decomposition 3.7.6

VI Moment-based outflow BC 3.7.8

Table 5.1: List of the used outflow boundary conditions (BCs) for the investigation of their
influence on the numerical solution.

Gridid N1 N2 N3 δx δt

Grid1 189 64 64 1.59 · 10−2 2.52 · 10−4

Grid2 381 128 128 7.87 · 10−3 6.20 · 10−5

Grid3 573 192 192 5.23 · 10−3 2.74 · 10−5

Grid4 765 256 256 3.92 · 10−3 1.54 · 10−5

Table 5.2: Parameters of the numerical grid used for the investigation of the outflow boundary
conditions.
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(a) Computational domain Ω for BP1. (b) Computational domain Ω for BP2.

Figure 5.1: Computational domains for BP1 and BP2. The blue plane in Figure 5.1a represents
a slice through Ω used for investigation and demonstration of the results in Section 5.3.1 . The
gray planes represent the wall. Periodic boundary conditions are used in the x3-direction in
Figure 5.1a.

5.2.1 BP1: Hagen-Poiseuille flow

The first benchmark problem BP1 describes fluid flow between two parallel plates with the
analytical solution given in Section 2.2.3. The maximal velocity in Ω is Umax = 0.6 m s−1. The
purpose of this benchmark problem is to investigate the effect of inflow and outflow BCs on the
numerical solution. First, the influence of two inflow BCs given in Section 3.7 is investigated.
Subsequently, the outflow BCs listed in Table 5.1 are assessed.

Setup for inflow boundary investigation

First, the equilibrium BC is used at ∂Ωin to prescribe the given velocity profile (2.19) and the
Neumann BC for pressure. At ∂Ωout and ∂Ωwall, equilibrium outflow BC and fullway bounce-back
BC are used, respectively. Due to the fullway bounce-back BC applied at walls, the offset vector
(defined in Section 3.1) is P = (0, δx/2, 0)T , therefore, δx = L2/(N2−2) to correctly approximate
the vertical dimension of Ω.

The second BC used at ∂Ωin is the moment-based BC. It is combined with moment-based
BC and equilibrium BC applied at ∂Ωwall and ∂Ωout, respectively. Due to BCs applied on the
walls, the offset vector is P = 0 and δx = L2/(N2−1).

The inflow BCs are investigated using one grid only. In the case of moment-based BC applied
at ∂Ωin, the grid with the Grid id.(k = 2) in Table 5.2 is used. On the other hand, in the case of
the fullway bounce-back BC applied at ∂Ωwall, the grid needs to be adjusted in the horizontal
direction to correctly preserve the vertical and horizontal dimensions of computational domain Ω,
i.e., N1 = 378, N2 = N3 = 128 points are used with the grid spacing parameter δx = 7.94 · 10−3 m
and the time step δt = 6.3 · 10−5 s.

To demonstrate the behavior of the flow near the interface between different BC types, the
results are plotted in the plane given by the (physical) point (0, 0, 0.5)T (in meters) and the
normal unit vector (0, 0, 1)T , as illustrated in Figure 5.1a.

Setup for outflow boundary investigation

The outflow BCs given in Table 5.1 are investigated with the moment-based BCs applied at ∂Ωin
and ∂Ωwall. Thus, the offset vector is P = 0 and all the grids given in Table 5.2 are used.
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5.2.2 BP2: Rectangular duct flow

In the second benchmark problem BP2, fluid flow in a rectangular duct is considered with
the analytical solution given in Section 2.2.3. The infinite sums in Eqs. (2.21) and (2.22) are
truncated at i = 50 terms. The (constant) pressure drop dp is set to obtain maximal velocity
Umax = 0.6 m s−1 (i.e., the same values are used as in BP1).

In contrast to BP1, only the outflow BCs given in Table 5.1 are investigated together with
the moment-based BCs applied at ∂Ωin and ∂Ωwall. Since periodic BCs in the x3-direction
were used in BP1, moment-based BCs were applied only for faces of ∂Ω. To show the effect of
moment-based BCs on the edges and corners of the boundary ∂Ω̃, no-slip BCs are applied in the
x3-direction. Based on the results of BP1, moment-based BCs are applied at the inflow and solid
walls to minimize the error caused by the inflow BC and the offset vector is P = 0.

5.3 Results and Discussion

5.3.1 BP1: Hagen-Poiseuille flow

The discrepancies between the numerical and analytical solutions are illustrated using Figures 5.2,
5.3, and 5.4 in the planar cut through Ω (see Figure 5.1a). The differences of u1 − u1,an and
u2 − u2,an in Figure 5.2 show that the equilibrium BC causes spurious oscillations near the
corners of the inflow boundary with a magnitude of 0.02 m s−1. We hypothesize that the source
of these oscillations is the interface between different types of BCs, i.e., between the equilibrium
BC at the inflow and the fullway bounce-back BC at the walls. This hypothesis is supported
by the results in Figure 5.3, where moment-based BCs were used both at the inflow and at
the walls and nonphysical artifacts were significantly reduced. The degree of improvement
is further illustrated in Figure 5.4, which shows that the differences are orders of magnitude
smaller. Finally, in Figure 5.5, a profile of the velocity component u1 along the vertical line{(

L1
2 , y, L3

2

)T
|0 < y < L2

}
is given for both inflow boundary configurations.
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Figure 5.2: BP1: 2D profile of velocity differences for the problem with the equilibrium BC at
the inflow and at the outflow, and the bounce-back BC at the walls.

The persisting oscillations at the outflow shown in Figure 5.3 are the starting point for the
following investigation of the outflow BCs. The outflow BCs are further evaluated using the
plots of relative errors in terms of ∥ · ∥L1,S(x1) along the x1 coordinate shown in Figures 5.6
and 5.7, respectively. The largest discrepancy between numerical and analytical solutions is
observed for outflow BCs I and IV. For the remaining BCs considered, more significant differences
are observed in the pressure error plots and our proposed outflow conditions V (Interpolated
boundary condition with decomposition) and VI (Moment-based outflow) produce the best
results.
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Figure 5.3: BP1: 2D profile of velocity differences for the problem with the moment-based BC at
the inflow and at walls, and the equilibrium BC at the outflow.
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Figure 5.4: BP1: Details of the velocity fields near the inflow boundary for different BCs at
the inflow and walls. Note that the scale of the differences is an order of magnitude smaller
compared to Figures 5.2 and 5.3.
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Table 5.3 lists the relative errors L1 and L2 of the pressure and velocity calculated in the
entire domain Ω. In agreement with the graphs in Figure 5.7, the boundary configurations I and
IV produced large pressure errors. The remaining errors for the boundary conditions were within
units of percent, except for configuration II. For both pressure and velocity, the lowest L1 and L2
errors are achieved with boundary configuration VI. The second-lowest error corresponds to the
boundary configuration V.
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(d) BC id. IV.
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(e) BC id. V.
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Figure 5.6: BP1: L1 realtive error plots ∥u−uan∥L1,S(x1)/∥uan∥L1,S(x1) [−] for different BC configura-
tions defined in Table 5.1.

Finally, the 2D plots of u1 − u1,an and u2 − u2,an are given for boundary configuration VI
in Figure 5.8. Although oscillations at the corners of the outflow boundary still persist, their
magnitude does not exceed 0.002 m s−1 which is an order of magnitude less than in the original
case shown in Figure 5.3.
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(d) BC id. IV.
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Figure 5.7: BP1: L1 relative error plots ∥p−pan∥L1,S(x1)/∥pan∥L1,S(x1) [−] for different BC configura-
tions defined in Table 5.1.
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BC id: I II III IV V VI

∥p− pan∥L1/∥pan∥L1

Grid1 1.45 · 104 2.93 · 10−1 1.43 · 10−2 1.10 · 104 3.14 · 10−2 2.44 · 10−3

Grid2 2.54 · 104 1.90 · 10−1 2.14 · 10−2 1.99 · 104 1.47 · 10−2 3.05 · 10−3

Grid3 3.66 · 104 1.50 · 10−1 2.34 · 10−2 2.90 · 104 9.47 · 10−3 2.48 · 10−3

Grid4 4.78 · 104 1.28 · 10−1 2.43 · 10−2 3.80 · 104 6.96 · 10−3 2.04 · 10−3

∥p− pan∥L2/∥pan∥L2

Grid1 1.26 · 104 2.55 · 10−1 1.46 · 10−2 9.56 · 103 2.74 · 10−2 3.93 · 10−3

Grid2 2.21 · 104 1.66 · 10−1 1.98 · 10−2 1.73 · 104 1.28 · 10−2 3.08 · 10−3

Grid3 3.17 · 104 1.32 · 10−1 2.14 · 10−2 2.51 · 104 8.26 · 10−3 2.40 · 10−3

Grid4 4.14 · 104 1.12 · 10−1 2.21 · 10−2 3.30 · 104 6.07 · 10−3 1.94 · 10−3

∥u− uan∥L1/∥uan∥L1

Grid1 2.21 · 10−2 3.89 · 10−3 1.09 · 10−3 1.79 · 10−2 4.45 · 10−4 4.72 · 10−4

Grid2 1.11 · 10−2 3.82 · 10−3 9.21 · 10−4 8.96 · 10−3 1.65 · 10−4 1.25 · 10−4

Grid3 7.42 · 10−3 3.86 · 10−3 9.11 · 10−4 5.98 · 10−3 9.76 · 10−5 5.67 · 10−5

Grid4 5.57 · 10−3 3.89 · 10−3 9.16 · 10−4 4.49 · 10−3 6.84 · 10−5 3.22 · 10−5

∥u− uan∥L2/∥uan∥L2

Grid1 2.38 · 10−2 8.36 · 10−3 2.46 · 10−3 1.92 · 10−2 6.61 · 10−4 7.96 · 10−4

Grid2 1.20 · 10−2 8.60 · 10−3 3.05 · 10−3 9.66 · 10−3 2.95 · 10−4 2.33 · 10−4

Grid3 8.01 · 10−3 8.75 · 10−3 3.43 · 10−3 6.45 · 10−3 1.90 · 10−4 1.11 · 10−4

Grid4 6.01 · 10−3 8.85 · 10−3 3.66 · 10−3 4.84 · 10−3 1.40 · 10−4 6.52 · 10−5

Table 5.3: BP1: L1 and L2 relative errors of pressure and velocity for different BC configurations
(Table 5.1) and grid resolutions (Table 5.2). The values typeset in bold highlight the lowest error
for the given grid resolution.
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Figure 5.8: BP1: 2D plots of the difference between numerical and analytical velocity components
for the problem with boundary configuration VI, see Table 5.1.

5.3.2 BP2: Rectangular duct flow

Similar to BP1, BP2 studies the numerical solution with the particular outflow BC. First, the
graphs consisting of relative L1 errors in the cross section S(x1) are presented for four grids given
in Table 5.2 and six outflow BCs given in Table 5.1. A significant disagreement between the
analytical (given by Eq. (2.23)) and numerical solutions of pressure is observed in Figure 5.10 for
boundary configurations I and IV. The velocity results in Figure 5.9 are similar to the results
in BP1. However, the shape of the curves is different, and the smallest differences between
numerical and analytical velocity are observed near the middle of the domain Ω. Boundary
configurations V and VI have a similar error distribution along the x1 axis.

Finally, the L1 and L2 relative errors of velocity and pressure calculated in the entire domain
are given in Table 5.4. As in BP1, the smallest errors are obtained with boundary configuration
VI. The outflow boundary configuration V shows very close results to those for the outflow
condition VI. Since the lowest errors are within hundredths of percent points, the results can be
considered satisfactory. Contrary to BP1 results, the results in Table 5.3 indicate the convergence
(in terms of pressure and velocity errors) of our proposed BCs V and VI.
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(d) BC id. IV.
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Figure 5.9: BP2: L1 relative error plots ∥u−uan∥L1,S(x1)/∥uan∥L1,S(x1) [−] for different BC configura-
tions defined in Table 5.1.



5.3. Results and Discussion 79

103

105

‖p
−
p
a
n
‖ L

1
,S

(
x
1
)/
‖p

a
n
‖ L

1
,S

(
x
1
)

0 1 2 3
x1 [m]

(a) BC id. I.

10−1

101

‖p
−
p
a
n
‖ L

1
,S

(
x
1
)/
‖p

a
n
‖ L

1
,S

(
x
1
)

0 1 2 3
x1 [m]

Grid1
Grid2
Grid3
Grid4

(b) BC id. II.

10−2

100

‖p
−
p
a
n
‖ L

1
,S

(
x
1
)/
‖p

a
n
‖ L

1
,S

(
x
1
)

0 1 2 3
x1 [m]

(c) BC id. III.

104

106

‖p
−
p
a
n
‖ L

1
,S

(
x
1
)/
‖p

a
n
‖ L

1
,S

(
x
1
)

0 1 2 3
x1 [m]

Grid1
Grid2
Grid3
Grid4

(d) BC id. IV.
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Figure 5.10: BP2: L1 relative error plots ∥p−pan∥L1,S(x1)/∥pan∥L1,S(x1) [−] for different BC configura-
tion defined in Table 5.1.
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BC id: I II III IV V VI

∥p− pan∥L1/∥pan∥L1

Grid1 6.91 · 102 2.98 · 10−1 1.43 · 10−2 1.20 · 104 3.01 · 10−2 4.45 · 10−3

Grid2 3.00 · 103 2.00 · 10−1 1.86 · 10−2 2.07 · 104 1.39 · 10−2 3.60 · 10−3

Grid3 6.37 · 103 1.62 · 10−1 1.97 · 10−2 2.96 · 104 8.98 · 10−3 2.74 · 10−3

Grid4 9.21 · 103 1.40 · 10−1 2.02 · 10−2 3.86 · 104 6.59 · 10−3 2.19 · 10−3

∥p− pan∥L2/∥pan∥L2

Grid1 6.01 · 102 2.59 · 10−1 1.35 · 10−2 1.04 · 104 2.62 · 10−2 4.53 · 10−3

Grid2 2.61 · 103 1.74 · 10−1 1.68 · 10−2 1.80 · 104 1.21 · 10−2 3.33 · 10−3

Grid3 5.53 · 103 1.41 · 10−1 1.77 · 10−2 2.57 · 104 7.81 · 10−3 2.50 · 10−3

Grid4 7.98 · 103 1.22 · 10−1 1.81 · 10−2 3.34 · 104 5.74 · 10−3 1.98 · 10−3

∥u− uan∥L1/∥uan∥L1

Grid1 7.83 · 10−3 6.50 · 10−3 2.20 · 10−3 4.12 · 10−2 8.69 · 10−4 9.23 · 10−4

Grid2 8.78 · 10−3 6.21 · 10−3 1.93 · 10−3 2.12 · 10−2 2.90 · 10−4 2.41 · 10−4

Grid3 8.55 · 10−3 6.22 · 10−3 1.94 · 10−3 1.43 · 10−2 1.63 · 10−4 1.10 · 10−4

Grid4 7.92 · 10−3 6.25 · 10−3 1.96 · 10−3 1.08 · 10−2 1.11 · 10−4 6.30 · 10−5

∥u− uan∥L2/∥uan∥L2

Grid1 1.10 · 10−2 1.16 · 10−2 3.81 · 10−3 4.25 · 10−2 9.53 · 10−4 1.21 · 10−3

Grid2 1.22 · 10−2 1.18 · 10−2 4.66 · 10−3 2.19 · 10−2 3.91 · 10−4 3.56 · 10−4

Grid3 1.21 · 10−2 1.20 · 10−2 5.19 · 10−3 1.48 · 10−2 2.46 · 10−4 1.71 · 10−4

Grid4 1.18 · 10−2 1.21 · 10−2 5.50 · 10−3 1.11 · 10−2 1.80 · 10−4 1.01 · 10−4

Table 5.4: BP2: L1 and L2 relative errors of pressure and velocity for different BC configurations
(Table 5.1) and grid resolutions (Table 5.2). The values typeset in bold highlight the lowest error
for the given grid resolution.
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5.4 Chapter summary
In this chapter, the accuracy of seven different BCs was analyzed using two laminar flow problems.

First, two mesoscopic boundary conditions applied at the inflow were investigated. Based on
the results, we hypothesize that the interface between the equilibrium BC and fullway bounce-
back BC produces non-physical oscillations in the numerical solutions. Further investigation of
these non-physical phenomena is required in a future study. However, these oscillations can be
reduced by applying moment-based BCs at the inflow and at walls. Then, the outflow boundary
conditions were investigated using two benchmark problems. All results indicate that the
newly proposed interpolated boundary condition with decomposition and moment-based outflow
boundary condition produces the results with the smallest error compared to the analytical
solution.

The obtained results are important from several points of view. First, more accurate results
are obtained using the proposed boundary conditions. Next, the proposed boundary conditions
show convergence in both pressure and velocity compared to other boundary conditions. These
findings are important for further investigation of LBM numerical simulations, especially for
numerical simulations of almost all computational flow dynamics problems where the accuracy of
boundary conditions can significantly affect the numerical solution.





Turbulent Boundary Layer
Flow Above Rough Surfaces 6

Mathematical modeling of the turbulent fluid flow above rough surfaces belongs to the most
challenging problems of computational fluid dynamics (CFD). Although the dynamic of wall-
bounded flows in multi-scale processes has been investigated for many years, there are still open
problems in the turbulence theory [104, 105]. A typical example of the boundary layer flow is the
flow above a rough surface. The roughness of the surface affects the flow through the drag and
sink of the fluid momentum. Next, the response of the surface to the flow, such as the particle
entrainment, is also affected by the roughness [40]. Based on these observations, accurate and
efficient numerical simulations of the boundary layer flow are essential for various applications,
from kinetic energy loss [1], plant evaporation [177, 178], calculation of the friction drag of bodies
in a flow [157], to wind erosion [161].

The crucial aspect of turbulent flow simulations is a high-resolution grid that can resolve
turbulent structures of different size scales [85, 150]. To moderate the restrictions of DNS
simulations, wall function methods, large eddy simulation methods, etc. have been developed
[150]. Recent progress in LBM simulations showed that coupling of the LBM with the Wall-
Adapting Local Eddy-viscosity model [77, 187] or a different subgrid Large Eddy simulation
model [110, 119] produces satisfactory results of the turbulent fluid flow. In [64, 124, 146, 147,
163], the LBM was successfully used as a DNS solver for various problems, such as turbulent
pipe flow or turbulent channel flow. Next, the active challenge in LBM-based DNS simulations is
the comparison with experimental data [121]. In [50], DNS simulations using the CuLBM were
performed and the results are summarized in this chapter.

In [50], the ability of the LBM to simulate turbulent fluid flow in the boundary layer region
above rough surfaces is investigated using two benchmark problems. The first benchmark problem
(BP1) studies fluid flow above the surface with regularly distributed protrusions. The results
of LBM simulations are compared with the FDM results obtained using Extended Large-eddy
Microscale Model (ELMM) [70]. The other benchmark problem (BP2) is inspired by the street-
canyon flow experiment reported in [112]. LBM simulations are evaluated by comparing with
simulations based on the FDM and with data sets from the wind tunnel experiment reported by
[112].

The chapter is organized as follows. First, the numerical methods used for the simulations
and processing of the results are introduced in Section 6.1. Next, the problem of the boundary
layer flow above the surface with regularly distributed protrusions is solved in Section 6.2. The
same problem is solved in Section 6.3 by the LBM with the grid refinement technique. The last
benchmark problem of street-canyon flow is solved and discussed in Section 6.4. Finally, the last
Section 6.5 summarizes the findings of this chapter.

83
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6.1 Methodology

6.1.1 Numerical methods

Both the LBM and ELMM simulate the flow of incompressible fluid described by the Navier-Stokes
equations (2.18). The considered fluid represents air with kinematic viscosity ν = 1/70000 m2 s−2.
LBM simulations use the cumulant collision operator CuLBM to obtain better stability [35]. All
relaxation rates except for the one related to the kinematic viscosity are set to 1. The fullway
bounce-back BC is used for solid boundaries in the whole computational domain.

The setup of the ELMM code is described in [50] as:
ELMM uses the fourth order central differences in space and the fractional-step method with
the explicit third order Runge-Kutta method in time. The pressure Poisson equation is solved
directly using the fast Fourier transform. Solid obstacles’ boundary conditions are treated using
the immersed boundary method. The numerical scheme is described in [70]. ELMM simulations
of the street canyon flow used the σ-model [144] for subgrid stresses for compatibility with older
simulations in [112]. The subgrid fluxes are almost negligible. No subgrid model was used for the
flow simulations above the surface with regularly spaced protrusions.

6.1.2 Time- and space-averaged quantities

The quantities are space- and time-averaged over the surface parallel to the (x1, x3)-plane. The
space-averaged quantity φ over a surface parallel to (x1, x3)-plane is denoted by ⟨φ⟩(x2, t) and
computed as

⟨φ⟩(x2, t) = 1
N1

1
N3

N1−1∑
x1=1

N3−1∑
x3=1

φ(x1, x2, x3, t). (6.1)

The time-averaged quantity φ(x, t) is denoted by φ(x) and the integral over time is approxi-
mated for all x ∈ Ω̃ as

φ(x) = 1
tavg

tini+tavg∑
t=tini

φ(x, t), (6.2)

where tini ∈ Î denotes the initial time step and tavg, tini + tavg ∈ Î, denotes the length of the
integrated time interval. Since the initial condition can affect the results at the beginning of the
simulation and to have the fully developed turbulent flow, the initial time for the averaging tini

is chosen sufficiently large (tini ≥ 20 s) in all cases.

6.2 Rough plate

6.2.1 Problem setup

First, the fluid flow above a rough plate is investigated. Two different configurations of the
computational domain (marked by Ω1a (BP1a) and Ω1b (BP1b) and illustrated in Figures 6.1a,
6.1b) are considered in the first benchmark problem. The differences between BP1a and BP1b
are summarized in Table 6.1.

The roughness of the bottom wall is defined by the regularly distributed protrusions of
dimensions 1 × 4 × 4 (in millimeters) in the x1-, x2-, and x3-direction, respectively. The
distribution of the protrusions is illustrated in Figure 6.1c. On the face perpendicular to the x2
axis and with coordinate x2 = L2, the symmetric boundary condition is prescribed. Next, at the
boundary faces perpendicular to the x1 and x3 axis, periodic boundary conditions are applied.
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(a) Computational domain Ω1a.

(b) Computational domain Ω1b.
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(c) Detail of the protrusions placed periodically in the (x1, x3)-plane at the bottom wall of Ω1a and Ω1b.

Figure 6.1: Geometry of the computational domains for the benchmark problems BP1a and
BP1b.

Initially, the perturbed initial velocity field generated by the ELMM code was used in all LBM
simulations.

The wall friction velocity uτ defined by Eq. (2.43) and the friction Reynolds number Reτ are
defined by [50, 146]

uτ =
√

gL2, (6.3a)

Reτ = uτ L2
ν

. (6.3b)

The friction velocity is uτ = 0.1 m s−1 and the friction Reynolds number is Reτ = 350 for BP1a
and Reτ = 700 for BP1b. The spaced averaged Kolmogorov scales ⟨ℓK⟩ given in Table 6.1
indicate that the simulations resolve all turbulent scales. Thus, simulations can be considered as
well-resolved DNS. Finally, time averaging was performed over a time interval of tavg = 20 s.
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Benchmark BP1a BP1b

Domain geometry Ω1a, Fig. 6.1a Ω1b, Fig. 6.1b

Dimensions L1 = 207, L2 = 50 L1 = 414, L2 = 100,

[mm] L3 = 84 L3 = 168

LBM grid
0.25 0.2

parameter δx [mm]

ELMM grid
0.25 0.25

parameter δx [mm]

Volume force
(0.2, 0, 0)T (0.1, 0, 0)T

g [m s−2]

LBM time
4.375 · 10−6 2.8 · 10−6

step δt [s]

Kolmogorov length
0.48 0.56

scale ⟨ℓK⟩ [mm]

tini [s] 357 73

Table 6.1: Parameters for LBM simulations of benchmark problem BP1a and BP1b. The time
steps of ELMM simulations were variable with Courant number CFL = 0.6.

6.2.2 Results and discussion

In Figures 6.2 and 6.3 space and time averaged results are presented for the benchmark problem
BP1 and BP2, respectively. The results in Figure 6.2a show small differences in the velocity
magnitude near the bottom wall. Good agreement is observed between the LBM and ELMM
in the Reynolds stress tensor components in Figures 6.2b, 6.2c, 6.2d, and 6.2e. The results of
the turbulent kinetic energy presented in Figure 6.2f are similar too and the biggest differences
are observed near the top wall (coordinate x2 = L2). It can be addressed to the influence of the
symmetric boundary condition.

Figure 6.3a shows small differences in the velocity magnitude. The differences in Figures 6.3b,
6.3c, 6.3d, and 6.3e that present the numerical results of the Reynolds stress tensor component
are similar to the BP1a results. Finally, a satisfactory agreement between the LBM and ELMM
results is observed in Figure 6.3f.

Furthermore, differences between the numerical results of the LBM and ELMM may result
from differences in the discretization of the Navier-Stokes equations and LBM compressibility
artifacts.
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Figure 6.2: The results of BP1a. The time- and space-averaged horizontal velocity component
⟨u1⟩, approximations of the Reynolds stress tensor components ⟨u′

1u′
1⟩, ⟨u′

1u′
2⟩, ⟨u′

2u′
2⟩, ⟨u′

3u′
3⟩,

and turbulent kinetic energy ⟨k⟩ are compared.
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Figure 6.3: The results of BP2a. The time- and space-averaged horizontal velocity component
⟨u1⟩, approximations of the Reynolds stress tensor components ⟨u′
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1⟩, ⟨u′
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2⟩, ⟨u′

2u′
2⟩, ⟨u′

3u′
3⟩,

and turbulent kinetic energy ⟨k⟩ are compared.
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6.3 Rough plate with mesh refinement

The previous results were obtained using a regular grid with fine resolution. The restriction
on resolution depends on the position in the computational domain. Near the rough wall, the
grid must be fine enough to resolve all turbulence scales. However, the restrictions on the grid
resolution decrease as the distance from the rough wall increases. Thus, the grid refinement
technique described in Section 3.8 is tested using the benchmark problem BP1a. As in BP1a, the
integration time is tavg = 20 s and the initial time for the time integration is set to tini = 20 s.

The interpolation of variables between grids with different levels produces additional numerical
errors, especially if the single-precision arithmetic is used. Thus, the well-conditioning technique
introduced in Section 3.9 is used. Next, both interpolation strategies (i.e. linear vs. quadratic
interpolation of velocity) are tested to see their influence on the numerical solution. Finally, two
collision operators are used: CuLBM and CuLBM2.

The computational domain Ω1a is discretized with a two- and three-level grid. All grids are
uniform in the x1- and x3-direction. Thus, the interface between grids of different levels lies in
the plane perpendicular to the x2 axis. The block with the finest grid is located near the rough
wall. The height of the grids in the x2-direction and the resolution of the particular grid levels
are given in Table 6.2.

Grid level Number of grid Height of the Grid resolution

ℓ levels GN grid block δℓ
x

0
2 45 mm 0.25 mm

3 40 mm 0.5 mm

1
2 5 mm 0.125 mm

3 5 mm 0.25 mm

2
2 – –

3 5 mm 0.125 mm

Table 6.2: Height and resolution of the grid blocks with level ℓ used in Section 6.3.

Finally, two interpolation strategies were introduced in Section 3.8 (S.I and S.II) and both
are used in this section. The specific combination of interpolation strategies with the number of
grid levels and the chosen collision operator is denoted as follows: Interpolation_strategy-GN -
Collision_operator.

6.3.1 Results and discussion

In Figures 6.4 and 6.5, the results of the benchmark problem BP1a with the grid refinement
technique are presented for interpolation strategies S.I and S.II, respectively.

In Figure 6.4a, the results of the horizontal velocity component averaged in time and space
u1 for the interpolation strategy S.I are presented. The results of the LBM with grid refinement
overestimate the original results of the ELMM and LBM with a uniform grid. There are only small



90 6. Turbulent Boundary Layer Flow Above Rough Surfaces

0

0.2

0.4

0.6

0.8

1

〈u
1
〉[

m
s−

1
]

0 0.01 0.02 0.03 0.04 0.05
x2 [m]

(a)

0

0.01

0.02

0.03

0.04

〈u
′ 1
u
′ 1
〉[

m
2
s−

2
]

0 0.01 0.02 0.03 0.04 0.05
x2 [m]

(b)

−0.01

−0.008

−0.006

−0.004

−0.002

0

〈u
′ 1
u
′ 2
〉[

m
2
s−

2
]

0 0.01 0.02 0.03 0.04 0.05
x2 [m]

(c)

0

0.002

0.004

0.006

0.008

0.01

〈u
′ 2
u
′ 2
〉[

m
2
s−

2
]

0 0.01 0.02 0.03 0.04 0.05
x2 [m]

(d)

0

0.005

0.01

0.015

〈u
′ 3
u
′ 3
〉[

m
2
s−

2
]

0 0.01 0.02 0.03 0.04 0.05
x2 [m]

(e)

0

0.01

0.02

0.03

〈k
〉[

m
2
s−

2
]

0 0.01 0.02 0.03 0.04 0.05
x2 [m]

(f)

Figure 6.4: The results of BP1a with grid refinement. The parameters of grids are defined in
Table 6.2. Interpolation strategy S.I with linear interpolation of velocity is used.

differences near the wall, but as the distance from the wall increases, the differences increase, too.
The differences between the chosen number GN and the collision operator are small. A similar
trend is observed in Figures 6.4b, 6.4e, and 6.4f. In Figure 6.4c, the results of S.I-3-CuLBM and
S.I-3-CuLBM2 are closer to the results of ELMM than S.I-2-CuLBM, S.I-2-CuLBM2, and LBM
on a uniform grid. However, in Figure 6.4d, the results of S.I-3-CuLBM and S.I-3-CuLBM2 for
⟨u′

2u′
2⟩ show a significant drop that is not observed in other results. The source of the differences

can be the computational time. Another source of the differences can be the linear interpolation,
which is not sufficiently accurate. This is confirmed by Figure 6.5.

In Figure 6.5a, good agreement between all results of the velocity component u1 is observed,
especially near the wall. The closest results to the ELMM simulations and LBM simulations
with the uniform grid are obtained by the S.II-2-CULBM2 method. A similar trend is observed
for the results in Figures 6.5c, 6.5e, and 6.5f. In Figure 6.5b, the results of the S.II-3-CuLBM
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Figure 6.5: The results of BP1a with grid refinement. The parameters of grids are defined in
Table 6.2. Interpolation strategy S.II with linear interpolation of velocity is used.

approximate the results of the ELMM best. In Figure 6.5d, the non-physical drop in LBM results
with a three-level grid is observed as in Figure 6.4d, however, the drop is much smaller than in
the results with linear interpolation. Since this drop occurs near the interface between grids with
different levels, we hypothesize that it is caused by the interpolation errors.

Another aspect of the grid refinement technique is the computational time needed for the
simulations. CuLBM on the uniform grid needed 2907 s to simulate 1 s. On the other hand,
simulations with S.II-3-CuLBM needed 12267 s to perform 1 s simulation using the same hardware
as the CuLBM on the uniform grid. In the future work, it is desirable to optimize the grid
refinement implementation.
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6.4 Street canyon flow

6.4.1 Problem setup

The second benchmark problem BP2 is based on the street-canyon flow experiment in a wind
tunnel reported by [112]. LBM simulations are compared within this benchmark problem with
experimental results and ELMM simulations. The experimental measurements were performed
using the Particle Image Velocimetry (PIV) method and the CTA(Constant Temperature
Anemometer) hot wire anemometry (HWA) technique [112]. The HWA only measures the
velocity component u1. PIV produces two-dimensional data in the plane perpendicular to the x3
axis. As in BP1, the computational domain Ω2 illustrated in Figure 6.6 represents a part of the
wind tunnel. The dimensions in millimeters of the computational domain are L1 = 800, L2 = 250,
and L3 = 250.

On the bottom wall, buildings are placed periodically. The dimensions of the buildings
(height and length) are H = 50 mm as illustrated in Figure 6.7. In the x1-direction, the fluid is
accelerated by the volume force g = (0.5, 0, 0)T m s−2. Thus, the periodic boundary conditions
are used in this direction. In the x2- and x3-directions, the no-slip boundary conditions are used
at the domain boundary ∂Ω2. The perturbed initial velocity field computed using the ELMM
code was prescribed at the initial time.

Figure 6.6: Illustration of the computational domain Ω2 for the benchmark problem BP2.

Flow direction

Laser

PIV

H

3
5H

H

25
0
=
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800 = 16H

Figure 6.7: The cross section of the computational domain Ω2. The dimensions are in mm. The
green triangle represents the measurement area of the PIV method. The red hatched rectangle
represents the test section for the computations of validation metrics.

The grid parameters for the LBM and ELMM simulations are δx = 0.625 mm and
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δx = 0.417 mm, respectively. The spatially-averaged Kolmogorov length scale is ⟨ℓK⟩ = 0.28 mm.
Both numerical methods do not resolve all turbulent scales. In [34], good agreement was observed
between simulations with grid resolutions close to 2⟨ℓK⟩ and an experiment of flow around
buildings. These simulations therefore represent a coarse-resolution DNS. Fixed time step
δt = 2.59 · 10−5 s was used in LBM simulations. The ELMMM time step was variable with
Courant number CFL = 0.6.

Based on the measurement area, the simulated data are compared with the experiment in
a rectangular section, as shown in Fig. 6.7. The dimensions of the rectangular section are
2H and 1.5H in the x1- and x2-directions, respectively. The BP2 results are presented in a
non-dimensional form, where the scaling factor for the velocity is the time averaged reference
velocity Uref at 1.5H above the bottom wall. The data are integrated over a time interval of 10 s
and spatial integration over 8 canyons is used for better convergence within the street canyon.
Finally, to validate the LBM, several statistical metrics defined in the appendix A.2 are used.
The parameters for the hit rate metric are given in [50].

6.4.2 Results and discussion

First, the contours of the simulated and experimental data are compared in Figure 6.8. Nice
visual agreement is observed between the corresponding results, and only small differences occur.
Figures 6.9 and 6.10 are composed of mean profiles scaled by the reference velocity Uref . Excellent
agreement is observed between the simulated and measured results of ⟨u1⟩/Uref . More significant
differences occur in the ⟨u2⟩/Uref results, especially in the canyon. Subsequently, the profiles
of ⟨u′

1u′
2⟩/U2

ref and 1
2⟨u

′
1u′

1⟩+ ⟨u′
2u′

2⟩/U2
ref in Figures 6.10 show satisfactory agreement between

the experimental and LBM results.
The statistical comparison presented in Table 6.3 shows that the ELMM better approximates

the velocity component u1 and the Reynolds stress tensor component u′
1u′

2. On the other hand,
according to the metrics, the velocity component u2 is better approximated by the LBM. However,
the differences between the metrics considered are small. Thus, both numerical methods give
acceptable results.

Model FB NMSE L2 r FAC2 q

u1/Uref

LBM 0.025478 0.003370 0.040390 0.998691 0.931538 0.840733

ELMM 0.017437 0.001254 0.014579 0.999540 0.958465 0.883987

u2/Uref

LBM 0.308255 1.614179 0.193975 0.981573 0.854769 0.769121

ELMM 0.247244 2.177708 0.017558 0.977090 0.679175 0.492123

u′
1 u′

2/U2
ref

LBM 0.062781 0.013515 0.088780 0.992628 0.827557 0.918934

ELMM -0.057229 0.016011 0.001987 0.993779 0.871097 0.959610

Table 6.3: Statistical comparison of u1/Uref , u2/Uref , and u′
1 u′

2/U2
ref between the experimental

and numerical results using different estimation metrics defined in Appendix A.2. The bold
values represent the best results between the ELMM and LBM.

Eventually, the scatter plots with the accepted intervals of the hit rate metric are used to
classify the numerical results. The results in Figure 6.11a show a small underestimation of
the LBM data for the velocity component u1. On the other hand, the results in Figure 6.11b
indicate that the LBM results overestimate the value of the u2 velocity component. The results of
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(a) Experimental data [112].

(b) Simulated data with fourth order ELMM.

(c) Simulated data with LBM.

Figure 6.8: Results of u1/Uref , u2/Uref , and u′
1u′

2/U2
ref .

u′
1u′

2/U2
ref and 1

2u′
1u′

1 + u′
2u′

2/U2
ref in scatter plots 6.11c and 6.11d show good agreement between

simulated and experimental data.
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Figure 6.9: Results of numerical simulations and experiment for ⟨u1⟩/Uref and ⟨u2⟩/Uref . The
data in Figures 6.9b and 6.9d are zoomed in the rectangle defined by the dotted lines in the
corresponding Figures 6.9a and 6.9c, respectively. The error of the PIV is illustrated by the solid
vertical gray lines.
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Figure 6.10: Results of numerical simulations and experiment for ⟨u′
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defined by the dotted lines in the corresponding Figures 6.10a and 6.10c, respectively.
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Figure 6.11: Scatter plot for experimental PIV data and simulated data using ELMM and LBM.
Accepted intervals of the hit rate metric are illustrated by the dashed and dash-dotted lines.
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6.5 Chapter summary
Fluid flow simulations above rough surfaces were the main objective of this chapter. The LBM
was validated against the experimental data and compared with the FDM within two benchmark
problems.

The first results in the first benchmark problems showed a good agreement between LBM
and FDM results. Next, the Kolmogorov length scale was fully resolved. The LBM can therefore
be considered as a DNS solver for this type of problem.

Next, the results of the LBM with the grid refinement technique were presented. BP1a was
used for the first step of the investigation. The results indicate that the linear interpolation of
the velocity field significantly influences the numerical solution. Therefore, it is not recommended
to use it in further studies. On the other hand, LBM results with quadratic interpolation of the
velocity show better agreement with the ELMM results and the LBM results on a uniform grid.
Only small differences were observed between used grids and collision operators. All setups with
quadratic interpolation of velocity can be recommended for further simulations of the turbulent
flow in the boundary layer above a rough plate.

The validation of the LBM against the experimental data was performed in the second
benchmark problem. The results were compared using 2D contours, 1D graphs, and statistical
metrics. Although all turbulent scales were not sufficiently resolved, satisfactory agreement was
observed between numerical and experimental results.

Based on the results presented by both numerical methods, the LBM can be regarded as a
reliable numerical method for turbulent fluid flow simulations in the boundary layer above the
rough surface.

The planned future work is to optimize the grid refinement technique implementation to
achieve comparable computation time to the LBM on a uniform grid.



Turbulent Fluid Flow
Through Distributor Plate 7

Energy production is a problem that is being investigated extensively. Fluidized bed (FB)
combustion [5, 193] belongs to the technology that is commonly used for energy generation. It is
efficient in heat transfer and elimination of sulfur oxide production. Since the entire FB geometry
is very complex, several processes are studied separately, for example using complex numerical
CFD simulations [11, 12]. These simulations can help to optimize the cost and efficiency of
the energy production. In addition, simpler experimental models are created to study bubbling
processes in the combustion chamber. One of these simpler experimental devices is a plastic model
of the fluidization chamber and a windbox located at the Faculty of Mechanical Engineering of
the CTU in Prague.

The plastic model is used to study the bubbling processes of different materials in the
combustion chamber of FB. The combustion chamber is separated from the windbox by the
distributor plate. It evenly distributes the air in the combustion chamber and prevents the
granular material from falling into the windbox.

The main aim of this chapter is to study the properties of distributor plates. First, the
numerical results of the pressure drop on the distributor plate are compared with the results
of the experiment for different air flow rates. Next, the flow field near the distributor plate
is investigated using two numerical methods: the lattice Boltzmann method and the FVM
implemented in ANSYS Fluent. The results presented here are summarized in [9].

The chapter is organized as follows. First, the experiment is described in Section 7.1.1. Next,
the details of the numerical methods are summarized in Section 7.1.2. Section 7.2 is composed of
results and their discussions. The last Section 7.3 summarizes the presented findings.

7.1 Methodology

7.1.1 Mathematical model and experiment

The experiment is performed in a plastic model of the fluidized bed boiler and all experimental
data were measured and collected by J. Hrdlička and P. Skopec from FME CTU in Prague. The
main part of the plastic model is a column with a rectangular cross section. The column is
divided into two parts: windbox and fluidized chamber, as illustrated in Figure 7.1. The walls of
the column are made of polymethyl methacrylate.

The windbox is separated from the fluidized chamber by the distributor plate. This 2 mm
thick metal plate contains 201 holes with a diameter of 3 mm. One of the holes is blocked by
the attachment flange; see Figure 7.2. The pressure drop on the distributor plate is measured
using pressure gauges above and below the distributor plate. The inflow rate is measured by the

99
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Figure 7.1: Schematic representation of the computational domain that represents a part of
the plastic fluidization device. On the bottom wall (x1 = 0 m), there is an inflow hole with a
diameter of 60 mm labeled as ∂Ωin. The outflow boundary condition is prescribed at the top
face ∂Ωout.

orifice plate flow meter. The fluid used in the experiment was air with density ρ = 1.295 kg m−3

and dynamic viscosity µ = 1.71 · 10−5 kg m−1 s−1. At ∂Ωin and ∂Ωout, parabolic velocity profile
and the constant pressure pout = 0 kg m−1 s−2 are prescribed. The influence of the gravitational
field is neglected. The final time is set to T = 5 s. At the initial time t = 0 s, zero velocity and
pressure are established in the entire domain Ω.

x2

x3

Figure 7.2: Geometry of the distributor plate. All dimensions are in millimeters. The circles
represent the holes in the distributor with a diameter of 3 mm. One hole (black filled circle) is
blocked by the attachment flange. The red arrows define the positions of the sections used in
Figures 7.6, 7.7 and 7.9.
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Air flow [m3 h−1] 3.7 4.3 17.4 29.1 38.9 47.6 56.5 65.6

U∞ [m s−1] 0.7 0.8 3.4 5.7 7.6 9.3 11.1 12.8

Re 3303 3839 15534 25980 34730 42497 50443 58568

Air flow [m3 h−1] 74.3 82.9 91.6 99.9 108.4 116.9 124.2 133.3

U∞ [m s−1] 14.5 16.2 17.9 19.6 21.3 22.9 24.4 26.2

Re 66335 74014 81781 89191 96780 104369 110887 119011

Air flow [m3 h−1] 140.8 – – – – – – –

U∞ [m s−1] 27.6 – – – – – – –

Re 125707 – – – – – – –

Table 7.1: Flow rates, maximal velocity, and Reynolds numbers used for the experiment.

The details of the experiment are described in [9] as:
The air flow was controlled by setting the rotation speed of the fan motor, which was given in
the number of revolutions per second (Hz). During the experiment, the fan speed increased from
7 Hz to 37 Hz in 2 Hz steps. Between each two successive steps, the speed was kept constant for
a period of 30 s. The pressure drop on the orifice plate and the pressure drop on the fluidized bed
were recorded at 1s intervals. Both pressure drop measurements (at the orifice plate and at the
distributor plate) suffered from intermittent but significant slumps of unknown origin, which were
efficiently filtered out by a median filter with window size 5. The air flow rates and superficial
velocities in the fluidization chamber were calculated from the filtered data and averaged over
each 30 s period of constant fan speed.

Seventeen different flow rates given in Table 7.1 have been prescribed at the inflow. Table 7.1
is further composed of maximal velocities U∞ [m s−1] of the parabolic profile prescribed at the
inflow and Reynolds numbers computed as Re = ρ R∂Ωin U∞

µ , where R∂Ωin = 0.06 m is the diameter
of ∂Ωin.

7.1.2 Numerical methods

To analyze the numerical results, simulated data are space and time averaged. The time averaging
for any scalar quantity φ is defined by a discrete equivalent (defined below) of the formula

φ(x) = 1
T

T∫
0

φ(x, t)dt, (7.1)

where x ∈ Ω. Temporal averaging of a vector quantity is performed as temporal averaging of
individual scalar components.

Next, the time-averaged distribution along the x1 axis is obtained by spatial averaging φ(x)
over the horizontal cross section S(x1) as

⟨φ⟩(x1) = 1
|S(x1)|

∫
S(x1)

φ(x)dx2dx3, (7.2)
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where |S(x1)| represents the size of the cross section. Both numerical methods use the discrete
equivalent of Eq. (7.2) which are defined later.

The pressure drop dp [kg m−1 s−2] is the first quantity investigated. In the numerical
simulations, it is computed as

dp = 1
Ldp

xF +Ldp∫
xF

⟨p⟩(x1)dx1 −
1

Ldp

xB+Ldp∫
xB

⟨p⟩(x1)dx1, (7.3)

i.e., the pressure drop is computed from the space averaged pressure in front of (xF = 0.2 m)
and behind (xB = 0.8 m) the distributor plate using intervals of length Ldp = 0.2 m. The limits
in the integrals (given in meters) are chosen to minimize the influence of the pressure oscillations
near the distributor plate.

Lattice Boltzmann method

The first numerical method used is the lattice Boltzmann method. Two collision operators are
used: CuLBM and CuLBM2. Most simulations use a uniform reference lattice composed of
3260× 320× 452 .= 4.72 · 108 sites. The grid spacing parameter is δx = 0.5 mm. At the inflow
and outflow boundaries, the equilibrium boundary condition is used. At the walls, the full-way
bounce-back boundary condition is applied. Thus, the offset vector (defined in Section 3.1) of
the computational grid is P =

(
0, δx

2 , δx
2

)T
. Diffusive scaling is used between the time step and

the grid spacing parameters with non-dimensional kinematic viscosity ν̃ = 10−4. Finally, for the
highest inflow rate, a finer grid with the gird spacing parameter δx = 0.33 mm is used to show
the effect of the grid resolution.

For the space averaging of LBM results, the formula in Eq. (7.1) is approximated by

φ(x) ≈ 1
Nt

Nt∑
ℓ=1

φ(x, ℓδt), (7.4)

where x ∈ Ω̂. Next, the formula in Eq. (7.2) is approximated by

⟨φ⟩(x1) ≈ 1
|S(x1) ∩ Ω̂|

∑
x∈S(x1)∩Ω̂

φ(x), (7.5)

where |S(x1)∩ Ω̂| represents the number of grid points in S(x1)∩ Ω̂. Finally, integrals in Eq. (7.3)
are approximated by

b∫
a

⟨p⟩(x1)dx1 ≈
∑

x1∈A
⟨p⟩(x1)δx, (7.6)

where a, b ∈ (0, L1), a < b, A = {iδx ∈ ⟨a, b⟩| i ∈ {1, 2, · · · , N1 − 2}}.
The LBM simulations on the reference lattice were run on two nodes of Helios cluster located

at the the Department of Mathematics FNSPE CTU in Prage with the following configuration: 4x
NVIDIA TESLA V100 (Volta) w. 16GB HBM2 RAM, 2x16-core Intel XEON Gold 6130@2.1GHz
CPU (hyper-threading disabled), 384 GB RAM, 360 GB local SSD storage. 4 NVIDIA TESLA
V100 with 8 CPU cores were utilized on each node. Next, the simulations on the finest lattice
were run on two nodes of the RCI cluster located at FEE CTU in Prague with configuration:
128 cores/256 threads 3.1GHz (2 x AMD EPYC 7763), 1TB RAM, 8 x Tesla A100 40GB with
NVLink. 4 NVIDIA TESLA A100 with 8 CPU cores were utilized on each node.
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Finite volume method

The second numerical method used is the finite volume method (FVM) implemented in the
ANSYS 19.1 multiphysics software package. Fluid flow simulations were performed using the
ANSYS Fluent. The governing equations for Fluent simulations are Eqs. (2.18). Fluent uses a
pressure-based solver for viscous fluids with the k− ϵ turbulence model (with the default setting).
The mass-flow inlet BC and the pressure-outlet BC are applied at the inflow and at the outflow
boundary, respectively. At the walls, the no-slip boundary condition is considered. Finally, the
initialization is performed using the hybrid initialization method. The complete setting of the
Fluent solver is given in [9].

The advantage of the FVM is that it can use non-uniform unstructured mesh, which is locally
refined around the distributor plate. The computational domain in Figure 7.1 is discretized
using the unstructured mesh illustrated in Figure 7.3. The reference mesh is composed of 1 223
725 cells, 2 498 815 faces, and 230 271 nodes. The smallest diameter of the mesh cell inside
the distributor holes is approximately. δ

(F V M)
x = 0.5 mm. To observe the influence of the

mesh resolution, especially in the distributor holes, finer unstructured meshes were used. The
unstructured meshes are generated using ANSYS Meshing software with constraints on the mesh
resolution of the distributor holes. The time step δ

(F V M)
t = 10−4 s was constant within all FVM

simulations.

Figure 7.3: Schematic illustration of the non-uniform unstructured mesh with refinement on the
distributor plate generated by ANSYS Meshing software.

ParaView software [4] is used to calculate spatial and temporal averages defined by Eqs. (7.1),
(7.2), and (7.3) on the unstructured mesh.

The FVM simulations were run on a single node of Helios cluster located at the Department
of Mathematics FNSPE CTU in Prage with the following configuration: node: 2x16-core AMD
EPYC 7281@2.1GHz CPU (SMT mode disabled), 128 GB RAM, 360 GB local SSD storage. 16
cores were utilized for individual simulations. Since the academic ANSYS license is limited, it
was not possible to use a higher number of processor cores.

7.2 Results and discussion
The pressure drop results (evaluated using Eq. (7.3)) of the experiment and the simulations are
plotted in Figure 7.4. It can be seen in Figure 7.4 that the CuLBM method with the reference
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mesh significantly overestimates the experimental pressure drop results for higher air flow rates.
However, the ANSYS Fluent produces better results than the CuLBM method on the reference
mesh. The best results are obtained by the CuLBM2 method for all air flow rates with the
reference mesh. The discrepancy between the CuLBM and the experiment is probably caused by
coarse resolution of the reference mesh. This is illustrated by simulations of ANSYS Fluent on a
coarse mesh (labeled ANSYS Fluent (δ(F V M)

x = 2 mm) in Figure 7.4). The problem of the mesh
resolution is further investigated in Figure 7.5 for the highest air flow rate. The results of LBM
simulations on the reference mesh and the finer mesh indicate that the LBM results tend to the
experimental results. Similar behavior is observed for the ANSYS Fluent simulations on meshes
with different resolutions of distributor holes.
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Figure 7.4: Results of the pressure drop dp simulations and experiment for different air flow
rates.

The purpose of the distributor plate is to evenly distribute the air flow. To investigate
uniformity, two sections are presented in the fluidization chamber at different elevations above
the distributor plate in Figures 7.6, 7.7, and 7.9 for CuLBM, CuLBM2, and ANSYS Fluent,
respectively. The velocity magnitudes in the cross sections obtained by the CuLBM are higher
than the magnitudes obtained by ANSYS Fluent. This is in natural agreement, since the higher
pressure drop in CuLBM simulations produces higher velocities. The CuLBM results in Figure 7.6
indicate that the flow field is non-uniform even 6 cm above the distributor plate. Similar results,
but with a smaller magnitude, are obtained by the CuLBM2, as illustrated in Figure 7.7. On
the other hand, the results obtained by ANSYS Fluent in Figure 7.9 show that the flow field is
almost uniform 3 cm above the plate. Although the pressure drop simulated by the CuLBM2
is smaller than the pressure drop simulated by ANSYS Fluet, the velocity magnitudes behind
the distributor plates simulated by the CuLBM2 are higher than those simulated by ANSYS
Fluent. This disagreement can be addressed to the presence of the k − ϵ model turbulence
model in ANSYS Fluent and to the coarsening of the volume mesh in the direction away from
the distributor plate. Since the CuLBM2 uses a sufficiently fine uniform mesh in the whole
computational domain, it can predict the turbulent field more accurately. This is demonstrated
in Figures 7.8 and 7.10, where the instantaneous and time-averaged velocity field is presented in
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Figure 7.5: Dependence of the simulated pressure drop dp on the mesh resolution for the highest
air flow rate 141 m3 h−1.

the vicinity of the distributor plate for CuLBM2 and ANSYS Fluent and air flow rate 100 m3 h−1,
respectively. Figure 7.8 indicates that the velocity field in the windbox is approximated by the
CuLBM2 more accurately than by ANSYS Fluent.
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Figure 7.6: Time-averaged velocity magnitude distribution at different elevations over the
distributor plate for the highest flow rate 141 m3h−1. Slices through the center of the domain
parallel to the x3 and x2 axes at positions indicated in Figure 7.2. CuLBM simulations on the
reference lattice.
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Figure 7.7: Time-averaged velocity magnitude distribution at different elevations over the
distributor plate for the highest flow rate 141 m3h−1. Slices through the center of the domain
parallel to the x3 and x2 axes at positions indicated in Figure 7.2. CuLBM2 simulations on the
reference lattice.

(a) Instantaneous velocity field. (b) Time averaged velocity field.
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Figure 7.8: Velocity fields obtained by the CuLBM2 simulations for the flow rate 100 m3 h−1.
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Figure 7.9: Time-averaged velocity magnitude distribution at different elevations over the
distributor plate for the highest flow rate 141 m3h−1. Slices through the center of the domain
parallel to the x3 and x2 axes at positions indicated in Figure 7.2. Fluent simulations on the
reference lattice.

(a) Instantaneous velocity field. (b) Time averaged velocity field.
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Figure 7.10: Velocity fields obtained by the ANSYS Fluent simulations for the flow rate
100 m3 h−1.
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A comparison of the computational times is given in Table 7.2. The LBM simulations on the
finest mesh were obtained within 2 days. The ANSYS Fluent simulations on the mesh with the
same resolution of the distributor holes were obtained in a shorter time since the unstructured
mesh with less degrees of freedom was used. Nevertheless, the ANSYS Fluent simulations on the
finest mesh took more than 19 days.

Method δx [mm] Computational time HW resources used

CuLBM2 0.5 23h 36min 8×NVIDIA V100

CuLBM2 0.33 38h 23min 8×NVIDIA A100

ANSYS Fluent 2 4h 27min 16 CPU cores

ANSYS Fluent 0.5 7h 22min 16 CPU cores

ANSYS Fluent 0.07 465h 24min 16 CPU cores

Table 7.2: Comparison of the computational cost between CuLBM2 and ANSYS Fluent on
meshes with different spacing δx. The problem with the highest air flow rate 141 m3 h−1 is used.

7.3 Chapter summary
The objective of this chapter was the investigation of the distributor properties in the fluidized
bed reactor. Experimental measurements and two different numerical methods were used for
the investigation. The first numerical method was the FVM implemented in the ANSYS Fluent
software package. Next, the lattice Boltzmann method implemented in the in-house code with
the support for parallel run on the system equipped with multiple GPUs is used. Two different
collision operators were used for the lattice Boltzmann method: CuLBM and CuLBM2.

First, the pressure drop at the distributor plate was investigated. It was observed that the
differences between numerical simulations and experimental measurement increase with increasing
air flow rate. The biggest disagreements between simulated and experimental data was observed
by the CuLBM method. However, the CuLBM2 produced the closest results to the experimental
measurement. Furthermore, it was confirmed that more accurate results can be obtained with a
finer mesh.

Next, the velocity distribution in the vicinity of the distributor plate was investigated. The
ANSYS Fluent simulations used unstructured mesh with fine resolution around the distributor
holes and coarse resolution of other parts of the computational domain. Therefore, the numerical
results obtained using the CuLBM2 on the uniform mesh provided more detailed information
about the velocity field, especially in the windbox. Next, simulations showed that the velocity
is not evenly distributed right behind the distributor plate. CuLBM2 results showed that the
velocity starts to be uniform 6 cm above the distributor plate. On the other hand, the ANSYS
Fluent simulations predict the uniformity 3 cm above the distributor plate. We hypothesize that
it can be addressed to the unstructured mesh and turbulence models used in ANSYS Fluent.

Additionally, the computational cost was compared. Although the CuLBM2 has higher
memory demands than the FVM, the CuLBM2 computational time was substantially lower than
the ANSYS Fluent computational time. The results obtained provided valuable insights for the
further development of complex models for the simulations of the processes in the whole fluidized
bed boilers.





Non-Newtonian Fluid Flow
Simulations 8

In recent years, the interpretation and post-processing of clinical data have been enhanced with
numerical simulations of CFD [13, 25, 62, 81, 135, 170, 173]. Typical examples of measurements
that are accompanied with CFD are medical non-invasive measurements. 4D phase-contrast
magnetic resonance imaging (PC-MRI) is an example of non-invasive measurements providing
pieces of information about three-dimensional and three-directional in vivo blood flow [165].
This method has some limitations, e.g., low spatio-temporal resolution, signal-to-noise ratio, and
partial volume effects. These limitations can be reduced by applying appropriate CFD models.
Furthermore, in [71], the uncertainty in the PC-MRI measurement was observed in areas with
high turbulent flow. Hence, CFD can be used to improve the accuracy of the measurement in
these regions.

4D PC-MRI measurement is often used in clinical practice to assess blood flow in vessels.
Blood is a typical non-Newtonian fluid. In vessels with diameter close to the dimensions of
the blood components (erythrocytes, leucocytes, thrombocytes), the non-Newtonian properties
of blood play a dominant role [176]. The non-Newtonian property mainly influences physical
quantities such as wall shear stress or relative residence time [65, 66, 87, 95]. At high velocities
and in large vessels, blood is only considered a Newtonian fluid [143]. Large vessels sometimes
contain some pathological regions with constrictions that affect the flow. On the basis of the level
of narrowing, non-Newtonian affects can be negligible [134, 139, 154]. To assess the influence
of non-Newtonian properties on the blood flow, an artificial experiment with three types of
narrowing was used in the presented study. The experiment uses PC-MRI fluid flow measurements
in a phantom device composed of acrylic tubes that approximate arterial vessels with valves.
The valves have different shapes representing different severity of stenosis. To investigate the
effect of the non-Newtonian properties, three different fluids are used.

One of the key features of CFD is the computational time, which should be comparable to
the time of a clinical examination. Therefore, efficient CFD methods are needed to complete
the final assessment. One of such CFD methods is the lattice Boltzmann method as shown in
Chapter 7. However, the addition of non-Newtonian affects to the numerical models increases
computational costs. To see the necessity of non-Newtonian models, an in-depth investigation
conducted in [52] is summarized in this chapter.

The chapter is organized as follows. First, experiments, mathematical models, and numerical
methods are introduced in Sections 8.1.1, 8.1.2, and 8.1.3, respectively. Then, the methods used
for the data processing are described in Section 8.1.7. The results with their discussion are given
in Section 8.2. This chapter is concluded by Section 8.3.

111
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8.1 Methods

8.1.1 Experimental method

The experiment uses an artificial model of human vessels called phantom and has been conducted
by R. Galabov and J. Tintěra from Institute for Clinical and Experimental Medicine in Prague.
As shown in Figure 8.1, the phantom is composed of a acrylic box with inserted acrylic tubes.
The tubes are connected by rubber rings, as illustrated in Figure 8.2. This connection allows
for insertion of the acrylic plate with an orifice. Three different orifices are used that mimic
mild (MiS), moderate (MoS), and severe (SeS) stenosis, see Table 8.1. The complete setup of the
experiment is described in detail in [71].

Figure 8.1: Phantom device for in vivo investigation of the fluid flow through stenotic vessels.
Photo: J. Ryszawy.
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Figure 8.2: Geometry of the phantom with dimensions in millimeters. The red rectangle defines
the position of the domain for the numerical simulations. The gray thick lines represent rubber
holes. The blue regions illustrated the area of the fluid flow.

The fluid flow in the phantom was measured using Avanto Fit 1.5T MRI scanner by Siemens
Healthineers, Erlangen, Germany. The flow was constantly induced by the aquarium pump
inserted in the reservoir of fluid. To evaluate MRI measurement, three different fluids are
considered: (1) clear water (typical Newtonian fluid), (2) glycerine water solution with xanthan
gum (ρ = 1088 kg m−3), and (3) sucrose water solution with xanthan gum (ρ = 1151 kg m−3).
Fluids (2) and (3) represent non-Newtonian fluids with properties closed to human blood and are
referred to as GX and SX, respectively. The complete details of the GX and SX are given in [52].
Next, two different flow regimes are considered for each level of stenosis. Flow and velocity were
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Mild stenosis (MiS ) Moderate stenosis (MoS ) Sever stenosis (SeS )

Table 8.1: Photos of the acrylic plates mimicking different level of the valvular stenosis in the
experimental phantom device. Photo: R. Galabov.

measured using a mechanical flow meter and MRI. The results of the measurement are given in
Table 8.2. For further details, the reader is referred to [52].

Vessel Fluid Flow [ml s−1] Velocity [cm s−1]

Flow regime Ulow Uhigh Ulow Uhigh

SeS Water 107.1 283.21 25.45 80.58

GX 104.6 244.33 37.35 95.22

SX 97.63 255.95 36.35 83.47

MoS Water 103.97 320.81 24.80 80.36

GX 106.86 173.82 35.31 57.78

SX 102.85 296.2 47.48 124.02

MiS Water 105.78 211.34 25.31 54.81

GX 107.12 260.95 36.95 93.01

SX 98.32 165.7 38.09 62.64

Table 8.2: Input flow and maximal velocity condition measured using PC-MRI for different level
of stenosis and different flow regime.

8.1.2 Mathematical model

The experimental setup is modeled in a cuboidal domain Ω illustrated in Figure 8.3. In Ω, there is
a tube with the center Sc =

(
0, L2

2 , L3
2

)T
, and radius of rin = 13.25 mm and rout = 13 mm before

and behind the acrylic plate, respectively. It corresponds to the part of the phantom experiment
defined by the red rectangle in Figure 8.2. The dimensions of the computational domain are
L1 = 203.9 mm, L2 = L3 = 26.1 mm. The governing equations for the fluid flow problem are
incompressible Navier-Stokes equations. Mass conservation is expressed using Eq. (2.18a). For
non-Newtonian fluids, the dynamic viscosity is not constant. Under the assumption of generalized
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Newtonian fluids, see Chapter 2, and ∇ · µ ≈ 0, the momentum conservation equation can be
written as

ρ
Du

Dt
= −∇p + 2µ(γ̇)∇ · D. (8.1)

The generalized Newtonian viscosity µ depends on the shear rate γ̇ defined by Eq. (2.24) and will
be approximated using non-Newtonian models given in Section 2.3. Eq. (8.1) can be written as

ρ
Du

Dt
= −∇p + 2µ∞∇ · D + G, (8.2)

where µ∞ is the dynamic viscosity at an infinite shear rate and G [kg m−2 s−2] reflects the
non-Newtonian affects as

G = 2(µ(γ̇)− µ∞)∇ · D. (8.3)

Figure 8.3: Schematic representation of the computational domain Ω with inserted acrylic plate.
The dimensions are in millimeters and the flow is assumed in the cylinder defined by the gray
wall only. The colored arrows illustrate the flow direction.

At the walls (represented by the gray color in Figure 8.3), the no-slip BC is prescribed. At
the outflow, the free outflow BC is assumed. At the inflow, the velocity profile is prescribed as
uin = (u1,in, 0, 0)T ,

u1,in(x2, x3) = U

1−
(

(x2 − Sc,2)2 + (x3 − Sc,3)2

r2
in

) Uavg
U−Uavg

, ∀x ∈ ∂Ωin, (8.4)

where U [m s−1] is the maximal velocity. It is set to Uhigh or Ulow (cf. Table 8.2), according to
the measurement). The formula in Eq. (8.4) is inspired by the velocity profile measured by MRI.
Uavg [m s−1] is the average velocity calculated using the cross-sectional area and measured flux
given in Table 8.2. Initially, uini(x) = (u1,in(x2, x3), 0, 0)T and pini(x) = 0, ∀x ∈ Ω̂, and the final
time for the simulations is T = 10 s.

Next, blood flow in human arteries is not constant in time. Thus, a more realistic inflow
condition is considered. The time-dependent inflow velocity BC is defined by

uini(x, t) = (h(t)u1,in(x2, x3), 0, 0)T , ∀x ∈ ∂Ωin, (8.5)
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where h(t) is the time-dependent function defined by [52]

h(t) = max
{

0, 11.8549504359 sin
(
20 (t− ⌊t⌋)2

)
exp (−11 (t− ⌊t⌋))

}
. (8.6)

The scaling function h(t) is periodic with a period of 1 s, non-negative, and normalized to the
interval [0, 1], see Figure 8.4. The shape of the scaling function h(t) is inspired by the measured
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Figure 8.4: Values of the scaling function h(t) in time.

profile of human pulses in arterial vessels.

8.1.3 Numerical method

The CuLBM is used for all numerical simulations in this chapter. At the inflow and outflow
boundary, the equilibrium BC is prescribed. The no-slip BC at the wall is approximated using
the fullway bounce-back BC. At the initial time, all DDFs are set to the equilibrium computed
from the initial velocity and density (pressure).

The computational grid with spacing parameter δx = 9.125874 · 10−5 m was used for all
simulations in this chapter. The fixed time step δt = 4 ·10−6 s was considered. Due to the fullway
bounce-back BCs used on the walls, the offset vector (defined in Section 3.1) is P =

(
0, δx

2 , δx
2

)T
.

The lattice Ω̃ was composed of N1 = 2249, N2 = 288, N3 = 288 sites in the x1-, x2- and
x3-direction, respectively.

The term G is added to the force term of the LBM and discretized using the finite difference
method. Both components of D and divergence of D are approximated using central or one-sided
finite differences. Let φ = ui, or φ = Dij , i, j = 1, 2, 3, then the following finite difference scheme
is used:

∂φ

∂xj
(x) ≈ φ(x + δxej)− φ(x− δxej)

2δx
, (8.7)

where i, j ∈ {1, 2, 3}, x ∈ Ω̂. Eq. (8.7) is used for all x that satisfies (x− δxej) /∈ ∂Ω̂ and
(x + δxej) /∈ ∂Ω̂, that is, both nodes in the direction ±ek do not belong to the boundary ∂Ω̂. If
(x− δxej) /∈ ∂Ω̂ and (x + δxej) ∈ ∂Ω̂ one-sided finite differences are used, that is,

∂φ

∂xj
(x) ≈ φ(x + δxej)− φ(x)

δx
, (8.8)

or
∂φ

∂xj
(x) ≈ φ(x)− φ(x− δxej)

δx
(8.9)

if (x− δxej) ∈ ∂Ω̂ and (x + δxej) /∈ ∂Ω̂.
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In Chapter 5, the non-physical behavior was observed near the domain boundary. Thus,
Eqs. (8.8) and (8.9) are used to minimize the influence of such non-physical effects on the
approximation of the spatial derivatives of the velocity components.

All LBM simulations were run on HPC cluster HELIOS located at FNSPE, CTU in Prague
and RCI cluster located at FEL, CTU in Prague. Both clusters contain nodes equipped with
multiple GPU cards (NVIDIA V100 or NVIDIA A100).

8.1.4 Data processing

The simulated and experimental data are time-averaged before comparison. The quantity
averaged in time φ(x, t) is denoted by φ(x) and the integral over time is approximated for all
x ∈ Ω̃ as

φ(x) = 1
Nti

Nti−1∑
k=0

ϕ

(
x, tini + k

ωt

)
, (8.10)

where tini ∈ Î denotes the initial time step, ωt [s−1] is the integration frequency, and Nti is the
number of data used for the integration. All presented results are integrated with frequency
ωt = 1

500 . To minimize the influence of the initial condition, all data are averaged within the
time interval (5, 10) s. The averaging of the experimental data is described in [52].

Data are compared in cross-sectional areas S(x1) of the computational domain perpendicular
to the axis x1 defined by

S(x1) =
{

x ∈ Ω̂
∣∣∣∣∣∥x− Sc∥ ≤ r, r = r(x1) =

{
rin for x1 < 0.05
rout otherwise

}
. (8.11)

The corresponding projection of S(x1) on the lattice Ω̃ is labeled by S̃(x1).
Furthermore, data are space-averaged over S̃(x1). The space-averaged quantity φ in a cross

section S̃(x1) is denoted by ⟨φ⟩(x1, t) and defined by

⟨φ⟩(x1, t) = 1∣∣∣S̃(x1)
∣∣∣

∑
(x2,x3)∈S̃(x1)

φ(x1, x2, x3, t), (8.12)

where
∣∣∣S̃(x1)

∣∣∣ represents the number of lattice sites in S̃(x1).
Based on the investigation in [71], the positive flux q+ [m3 s−1] and the negative flux

q− [m3 s−1] are defined by
q+(x1) =

〈
max (ρu1, 0)

〉
(x1) (8.13a)

q−(x1) =
〈
min (ρu1, 0)

〉
(x1). (8.13b)

8.1.5 Comparison of viscosity models

As already mentioned, the inclusion of a non-Newtonian model to the numerical method increases
the computational time. Therefore, the effect of the non-Newtonian model is investigated by
comparing it with two Newtonian models. The first Newtonian model uses viscosity µ0 = lim

γ̇→0
µ(γ̇),

that is, dynamic viscosity at zero shear rate. The second Newtonian model uses the viscosity
µ∞ = lim

γ̇→+∞
µ(γ̇), i.e., the dynamic viscosity at an infinite shear rate. Newtonian models are

further referred to as µ∞-model and µ0-model.
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8.1.6 Selection of non-Newtonian model

In Section 2.3, there are five different constitutive models that approximate the dynamic viscosity
dependence on the shear rate. All these models have parameters that must be adjusted to a
given fluid. Based on the data sets for GX [22] and SX [23], the parameters are estimated using
the NonlinearFit function in a symbolic and numeric software Maple 2015. The output of
this function is the approximation of parameters and final residual. Based on the values of the
residuals in Section 8.2.1, the non-Newtonian model is selected.

8.1.7 Presentation of results

First, the experimental and numerical results are visually compared using 2D cross-sectional
areas of the domain Ω. 2D velocity magnitude distribution and profiles of spatio-temporal means
of the positive q+ and negative q− flux along the x1 axis are presented. The results in the cross
sections of non-Newtonian fluids are then subjected to the following statistical analyses:

Histogram and Correlation analysis

A histogram analysis was performed based on the pixel-wise comparison of differences Zdiff
defined in the Appendix A.2. Next, correlation and linear fit analyses were performed. As these
complete analyses are extensive, they are not presented here and can be found in [52].

Bland-Altman analysis

One of the well-known disadvantages of the correlation analysis is the dependence on the range
of input data. Thus, the Bland-Altman analysis is used to overcome this disadvantage. The
complete Bland-Altman analysis is described in the Appendix A.2. A typical output of the
Bland-Altmann analysis are scatter plots, which can be found in [52]. To present the results of
the Bland-Altman analysis in compressed format, violin plots of ⟨Z⟩diff are used. Each violin plot
represents one set of slices related to one LBM-MRI pair. The violin plots contain the following
information: the median value of the studied quantity (white dot); values of the first and third
quartile (lower and upper limit of the gray rectangle); upper and lower adjacent values (upper
and lower end of the solid vertical line); and density distribution of the values (colored region).

8.1.8 Averaging of pulsating flow

To detect the evolution of the pulsating flow, the period is repeated ten times, resulting in a
simulation with the duration of 10 s. Within this study, the non-Newtonian numerical model is
compared with Newtonian models only. To minimize the influence of the initial setup, the last
five periods are averaged. To detect the flow evolution in particular phases of the profile (8.5),
the one-second period is divided into 25 equally large subintervals. The flow is then averaged
five times at these subintervals. Thus, the resulting sets for time integration are denoted Ii and
defined by

Ii =
⋃

p∈{5,6,7,8,9}
(S (i− 1) + p, S i + p) , (8.14)

where S = 0.04 s, i ∈ {1, 2, · · · , 25}.

8.2 Results and discussion
In this section, the results of the numerical simulations and experimental measurement using
MRI are presented and discussed. First, the non-Newtonian models are fitted to the reference
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data, and the non-Newtonian model used for the simulations is selected. Next, the simulated
and experimental data are compared using several criteria given in Section 8.1.7. Finally, the
results of the pulsating flow are presented.

8.2.1 Approximation of non-Newtonian models

The parameters of non-Newtonian models given in Section 2.3 are estimated and the results for
particular models are given in Tables 8.3 and 8.4. Based on these parameters, non-Newtonian
models are plotted in Figures 8.5 and 8.6.

Based on the results, the Carreau-Yasuda non-Newtonian model produces the closest results
to the reference data and is illustrated for both fluids in Figure 8.7. Moreover, data of the human
blood viscosity [200] are shown in Figure 8.7 for the comparison with investigated non-Newtonian
fluids. Thus, the Carreau-Yasuda model is used in the following numerical simulations and is
referred to as µCY-model.

Non-Newtonian
Parameters residual

model

µPL Cp n

1.905 · 10−2 0.869 7.394 · 10−3

µSP µ0 γ̇0 n

2.461 · 10−2 0.115 0.874 7.394 · 10−3

µCY µ0 µ∞ ϑ a n

1.585 · 10−2 4.856 · 10−3 2.805 · 10−2 2.341 0.463 (⋆) 8.689 · 10−4

µCR µ0 µ∞ k n

1.599 · 10−2 6.511 · 10−3 9.989 · 10−3 1.383 1.148 · 10−3

µCA k0 k1

5.066 · 10−2 9.548 · 10−2 1.280 · 10−2

Table 8.3: Parameters and residuals of non-Newtonian models approximated by the NonlinearFit
function for non-Newtonian fluid GX. The residual in bold is the lowest residual between all
non-Newtonian models. The value labeled by (⋆) was fixed according to [98]. All variables are
given in SI units introduced in Section 2.3.
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Non-Newtonian
Parameters residual

model

µPL Cp n

2.043 · 10−2 0.771 4.030 · 10−3

µSP µ0 γ̇0 n

3.282 · 10−2 0.155 0.758 4.030 · 10−3

µCY µ0 µ∞ ϑ a n

4.481 · 10−2 3.323 · 10−3 1.193 0.486 0.463 (⋆) 1.587 · 10−3

µCR µ0 µ∞ k n

4.320 · 10−2 3.336 · 10−3 1.335 0.524 1.609 · 10−3

µCA k0 k1

3.502 · 10−2 8.736 · 10−2 1.628 · 10−2

Table 8.4: Parameters and residuals of non-Newtonian models approximated by the NonlinearFit
function for non-Newtonian fluid SX. The residual in bold is the lowest residual between all
non-Newtonian models. The value labeled by (⋆) was fixed according to [98]. All variables are
given in SI units introduced in Section 2.3.
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Figure 8.5: Illustration of the non-Newtonian models for fluid GX with parameters given in
Table 8.3. The reference data are from [22].
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Figure 8.6: Illustration of the non-Newtonian models for fluid SX with parameters given in
Table 8.4. The reference data are from [23].
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Figure 8.7: Comparison of µCY(γ̇) with estimated values given in Tables 8.3 and 8.4 with reference
data [22] for GX and [23] for SX. Viscosity of human blood [200] is included for the comparison
with investigated non-Newtonian fluids.
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8.2.2 Visual comparison of 2D velocity distribution

Based on the good visual agreement between the LBM and MRI results in each cross-sectional
area S(x1), the LBM can be considered a capable and accurate flow simulator for various
geometries and fluid properties, see Table 8.5.

The numerical results for the valves MiS and MoS are in good visual agreement with the
experimental data. The complete set of these results can be found in [52]. The results for the
SeS valve show a consistent velocity profile in sections before stenosis. However, more significant
differences occurred between the LBM and MRI results in the slices behind the stenosis. The
measured velocity profile is rotated clockwise or counterclockwise between individual cross
sections. We hypothesize that the source of rotation is the curved geometry of the holes behind
the phantom, which is not currently considered in the numerical model and will be investigated
in the future work. A sample of the discrepancy between the LBM and MRI results for valve
SeS is presented in Table 8.6 for water and fluid SX, velocity regimes Uhigh. Since a statistical
comparison of the results for the problems with valve SeS will be unwarranted, valve SeS is
omitted in the next statistical investigation.

In Table 8.7, only negative velocity regions for SeS–SX–Uhigh and SeS–Water–Uhigh are
illustrated for the cross sections 3 mm before the stenosis. The results in this figure show the
areas of negative flow that are located mainly near the wall. This discrepancy between the
numerical and experimental data is probably due to the MRI measurement being affected by
poor resolution and noise caused by the acrylic walls. In addition, the total flux of the MRI
measurement is not conserved between individual slices, as indicated in Figure 8.11, indicating
another problem with the experiment.

In general, the numerical simulations suggest an underestimation of the negative fluxes q− by
MRI measurements, as reported in [71].
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−43.11 4.891 52.9 116.9

u1 [cm s−1]

Table 8.5: Comparison of 2D velocity profiles for MoS–GX–Uhigh and MoS–Water–Uhigh with
different positions behind the valve for all simulated and measured data.
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−146.8 −5.873 135.1 323

u1 [cm s−1]

Table 8.6: Comparison of 2D velocity profiles for SeS–SX–Uhigh and SeS–Water–Uhigh with
different positions behind the valve for all simulated and measured data.
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SeS–SX–Uhigh

µ0-model µ∞-model µCY-model MRI

SeS–Water–Uhigh

LBM MRI

−40 −28 −16 0

u1 [cm s−1]

Table 8.7: Visualization of the negative flow regions for different viscosity models and fluids for
stenosis SeS and velocity Uhigh. The slices are at position -3mm. The gray color represents the
area with positive velocity.

8.2.3 Comparison of 1D flow profiles

To further illustrate the differences between the LBM viscosity models and MRI measurements,
graphs with time- and space-averaged positive q+ and negative q− fluxes are presented for water
and non-Newtonian fluids, see Figures 8.8, 8.9, and 8.10. A similar study was conducted for
water in [71] and the discrepancy between the LBM and MRI was observed for high-velocity flow
and valve SeS with severe stenosis. This contradiction is also observed in this study.

On the basis of the 2D velocity profiles and 1D flux plots, the most general non-Newtonian
µCY-model matches the experimental data best. According to the level of stenosis, the fluid
considered, and the velocity regime, one of the Newtonian models approaches the non-Newtonian
model. Thus, no specific criterion can be derived for the selection of a Newtonian model. However,
in most cases, the Newtonian µ∞-model is the closest model to the µCY-model.

The possible source of disagreements between LBM and MRI results is the accuracy of the
MRI measurement. In Figure 8.11 the total flow is plotted for all experimental data and each
cross section. The experimental data, especially in Figure 8.11a, show that the total flow in MRI
measurement is not conserved along the x1 axis.
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Figure 8.8: Positive (right) and negative (left) horizontal flux for narrowing SeS and all
considered models. The PC-MRI data consists of mean values (filled circles) and standard
deviation intervals (sd) illustrated by the filled region.
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Figure 8.9: Positive (right) and negative (left) horizontal flux for narrowing MoS and all
considered models. The PC-MRI data consists of mean values (filled circles) and standard
deviation intervals (sd) illustrated by the filled region.
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Figure 8.10: Positive (right) and negative (left) horizontal flux for narrowing MiS and all
considered models. The PC-MRI data consists of mean values (filled circles) and standard
deviation intervals (sd) illustrated by the filled region.
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fluids and flow regimes.
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8.2.4 Statistical comparison

The statistical results follow the results of the visual inspection. In this section, only examples of
Bland-Altman statistical analysis are presented. The complete set of results can be found in
[52]. Figure 8.12 is composed of violin plots of mean difference ⟨Z⟩diff between the measured
and simulated data. The measurement in slices in the vicinity of the valve was affected by the
limitation of the MRI measurement. Therefore, these slices were not used for the statistical
assessment. As in the previous sections, the non-Newtonian µCY-model is the best fit to the
simulated data, and the Newtonian µ∞-model gives results closest to the non-Newtonian model
in most cases.

The mean difference Zdiff in velocities shows the discrepancy between the time-averaged
velocities in the individual cross sections. The mild negative difference indicates that the velocities
simulated by the LBM are underestimated relative to the MRI data. The absolute and relative
discrepancy between LBM and MRI data is illustrated in Figure 8.12.

In the cases MoS–GX–Ulow and MiS–SX–Ulow, the normalized median of the mean difference
⟨Z⟩diff is less than 10%, which is acceptable in clinical practice. In other cases, the normalized
median is less than 5%.

The results summarized in [52] show that the limits of agreement are one order of magnitude
greater than ⟨Z⟩diff . The limits of agreement indicate the deviation of a single velocity mea-
surement, and in all cases the relative deviation exceeds 25 %. The Bland-Altman plots show a
relatively low discrepancy for velocities close to zero and velocities close to the maximal velocity,
whereas it is elevated for intermediate velocities. We assume that this is due to the calculation of
the differences of the velocity data, which are small for regions with low and maximal velocities
and higher for regions with averaged velocities. Therefore, the small spatial mismatch of the
profiles explains the higher absolute velocity difference in the mid-range velocities. Fortunately,
it does not influence the mean differences obtained by the Bland-Altman analysis, which are the
basis for the flow rate error. For this reason, the correlation coefficient is relatively low for slices
where the velocities are high (slices in the vicinity of the valve).

8.2.5 Time dependent inflow velocity profile

For the sake of brevity, only results for the case SeS with velocity Ulow are presented. The full
set of results can be found in [52]. In contrast to previous results, no experimental data are
available for this problem.

The results in Figure 8.13 illustrate the averaged negative fluxes in particular time intervals.
In most time intervals, the µ∞-model gives the same results as the µCY-model. The largest
relative differences were observed at the beginning of the pulse, where the µ∞-model responds
faster to temporal velocity changes. However, these differences at the beginning of the time
period are smaller compared to the differences in the later period.

Differences between the non-Newtonian model and Newtonian models normalized by the
temporal maximum of the µCY-model results (using the L2 norm) are demonstrated using
Figure 8.14 consisting of colored bars for each time interval. Based on these results, the
µ∞-model provides results similar to the µCY-model.

The µCY-model behaves as the µ0-model for low velocities at the beginning of the periodic
profile and low shear rate, and thus the results of the µCY-model are closer to the results of
the µ0-model. On the other hand, the µCY-model approaches the µ∞-model as the velocity
magnitude and shear rate increase. At the end of the period, the differences between µCY- and
both Newtonian are similar.
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Figure 8.13: Space and time averaged negative flux for time dependent inflow velocity condition
for SeS–SX–Ulow. The phase of the inflow condition is represented by the light blue column in
the small graph.
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8.2.6 Computational performance of Newtonian and non-Newtonian model

Since the non-Newtonian model has mainly more complex implementation and higher memory
requirements(i.e., more variables need to be stored and accessed in the global GPU memory),
the applicability of a simpler Newtonian model is investigated. Table 8.8 demonstrates higher
computational times of the µCY-model compared to the µ∞-model. In addition, non-Newtonian
models contain more parameters for adjustment to the particular fluid compared to the Newtonian
model and have some limits of applications [134, 155].

Based on the results presented, the µ∞-model (Newtonian) can be recommended as an
appropriate, less computationally expensive model for the blood flow simulations in large arterial
vessels.

LBM model Computational time [min]

µ∞-model 182

µCY-model 229

Table 8.8: Comparison of computational times for µ∞-model and µCY-model. Both simulations
used the setting SeS–GX–Uhigh. The simulated time was 1 s. The simulations were performed
using four NVidia V100 GPU cards with 16GB of RAM memory on each GPU.

8.3 Chapter summary
This chapter was inspired by the fluid flow problem of the blood flow in large vessels. Three
different valves, three experimental fluids, two different flow rates, and three variants of numerical
models were used for the study. First, a good visual agreement was observed between experimental
MRI measurement and LBM simulations. In all cases considered, the more general non-Newtonian
model proved to be the most accurate. Newtonian models µ∞ and µ0 provided satisfactory
results for all flow rates and fluid GX. Moreover, the µ∞-model gave satisfactory results for
all flow rates and the fluid SX, which has rheological properties closer to real blood than the
fluid GX. Hence, the Newtonian µ∞-model and non-Newtonian µCY-model are recommended
for further simulations of non-Newtonian fluids. In addition, the Newtonian µ∞-model is more
computationally favorable. The obtained results further question the reliability of the MRI
measurements near the narrowing.

The results of the pulsating flow problem showed that the Newtonian µ∞-model is the closest
to the non-Newtonian model considered in this study.

Based on the observations of this study, the less demanding Newtonian model is sufficient for
further simulations of hemodynamics in large vessels.





Conclusion 9
The main objective of this work was the numerical lattice Boltzmann method (LBM) for
incompressible fluid simulations. The study of this method follows on from previous Bachelor’s
degree project and Master’s thesis [47, 48]. This thesis consists of two main parts: theoretical
and practical.

The theoretical part starts with Chapter 2 consisting of the introduction to the theory
used in this work, i.e., the theory of Navier-Stokes equations, boundary layer theory, theory
of non-Newtonian fluids, and kinetic theory of fluids. It is followed by Chapter 3 composed of
the introduction to the LBM. In this chapter, two boundary conditions and two interpolation
strategies for the LBM with the grid refinement technique have been proposed.

The practical part is composed of five chapters. In the first of them, Chapter 4, the asymptotic
analysis of the LBM with the cumulant collision operator has been conducted. The results of
the asymptotic analysis showed that the LBM approximates the solution of the incompressible
Navier-Stokes equations. Next, local approximations of velocity partial derivatives that are used
by the interpolation of discrete density functions have been derived.

In the second chapter, Chapter 5, mesoscopic boundary conditions have been investigated
using two benchmark problems. The obtained results show that our proposed boundary conditions
provide numerical results with the smallest error compared to the other boundary conditions
tested. It was further found that the non-physical artifacts occurring at the corners of the
computational domain are minimized by the proposed boundary conditions. These observations
are crucial for accurate simulations of problems inspired by the experiments.

The following three Chapters 6, 7, and 8 studied the applicability of the LBM to problems
inspired by experiments. The first problem inspired by an experiment carried out in a wind
tunnel with a rough surface has been studied. LBM simulations were compared with the finite
difference method simulations and with the experimental results. Both comparisons showed
that the LBM produces satisfactory results and can be regarded as a reliable method for direct
numerical simulations of the turbulent fluid flow. Next, the LBM with the grid refinement
technique has been tested. The results showed that the interpolation strategy significantly affects
the numerical results. Thus, the quadratic interpolation of the velocity is recommended for the
further use.

The second real-world application problem was inspired by the problem of biomass combus-
tion in a fluidized bed reactor. The fluid flow in a part of the combustion chamber through
the distributor (perforated plate) was investigated by simulations using the LBM and FVM.
Particularly, the pressure drop at the distributor and velocity distribution behind the distributor
were analyzed. The obtained results confirmed that the accuracy of the numerical results depends
on the grid resolution. In the case of the LBM, the restrictions on the grid resolution were
reduced by the use of the improved cumulant collision operator (CuLBM2). In addition, the
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LBM provided more detailed results in less time than the FVM implemented in ANSYS Fluent
software package, which used unstructured mesh for the computations. Furthermore, differences
in the velocity distribution behind the distributor were observed between used numerical methods.
The obtained results show the applicability of the LBM to these problems.

The last Chapter 8 is inspired by the collaboration with the Institute for Clinical and
Experimental Medicine in Prague. It dealt with the numerical simulations of non-Newtonian
fluids in geometries mimicking those of human vessels with stenosed valves. Numerical LBM
model used three types of viscosity models, two Newtonian and one non-Newtonian. The results
of all these models were compared with the experimental MRI measurement. Finally, two flow
regimes, time-constant and periodically induced, were used. The results showed that the cheaper
Newtonian model with constant kinematic viscosity can be used to obtain sufficiently accurate
results. In addition, the numerical results showed imperfections in the MRI measurements,
especially in regions of turbulent fluid flow. The results obtained are the first step toward
accurate and efficient simulations of human arterial blood flow.

This work also involved the development of a computational code for numerical simulations
using the LBM. It is implemented in C++ with the support of CUDA and MPI for parallel run
on distributed nodes equipped with multiple GPUs. All simulations using the LBM used this
in-house code.

Future work
Although we have accomplished many goals in this doctoral thesis, many unanswered questions
remain for further research. For instance, the proposed boundary conditions need to be tested
using turbulent fluid flow problems with more accurate approximations of the raw moments.
Next, the implementation of the LBM with the grid-refinement technique will be optimized and
tested using problems with more complex geometries. Consequently, the numerical pressure
solution obtained by the LBM will be investigated. Finally, the LBM for the non-Newtonian
fluid flow simulations will be further tested for possible future use in the clinical practice.
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Remarks from Probability
and Statistics A

The lattice Boltzmann method is based on the kinetic theory, which uses a statistical description
of the fluid. Thus, some terms from the probability theory are summarized in this chapter. In
addition, some statistical methods, which are used to quantify the numerical results, are also
included.

A.1 Continuous case
To describe the state of the phase space at time t, the probability density function fp [−] is used.
It is a real positive function that can be used to calculate the probability P of finding a particle
in the subset A ⊂ R3 × R3 of the phase space at time t as [94]

P [A] =
∫
A

fp (x, ξ, t) dxdξ. (A.1)

Since fp (x, ξ, t) ≥ 0 and P ≤ 1, the PDF satisfies fp ∈ [0, 1].

Raw moment

Using the probability density function, the raw moment at point (x, t) of order |α| can be defined
by [86]

mα (x, t) =
∫
R3

ξα1
1 ξα2

2 ξα3
3 fp (x, ξ, t) dξ, (A.2)

where α = (α1, α2, α3) ⊂ N3
0 is the multi-index and |α| = α1 + α2 + α3.

The raw moments can be defined using the raw moment generating function that is defined
by

M (Ξ, x, t) =
∫
R3

exp (Ξ · ξ) fp (x, ξ, t) dξ. (A.3)

Then, the raw moment of order |α| is calculated as

mα (x, t) = ∂|α|

∂Ξα1
1 ∂Ξα2

2 ∂Ξα3
3

M (Ξ, x, t)
∣∣∣∣
Ξ=0

, (A.4)

i.e., the raw moments are coefficients of the Taylor expansion at the point Ξ = 0 of the moment
generating function M .
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Central moment

Another statistical moment is the central moment that expresses the deviation of the observed
quantity from its mean value. Central moments are raw moments of the observed quantity shifted
by the first moment, i.e., by the mean values. Thus, the central moment at point (x, t) of order
|α| can be defined by [86]

κα (x, t) =
∫
R3

(
ξ1 −m(1,0,0)

)α1 (
ξ2 −m(0,1,0)

)α2 (
ξ3 −m(0,0,1)

)α3
fp (x, ξ, t) dξ. (A.5)

Similarly, the central moment generating function can be defined by

M̃ (Ξ, x, t) =
∫
R3

exp
((

ξ −
(
m(1,0,0), m(0,1,0), m(0,0,1)

)T
)
·Ξ
)

fp (x, ξ, t) dξ. (A.6)

The central moments can be calculated as

mα (x, t) = ∂|α|

∂Ξα1
1 ∂Ξα2

2 ∂Ξα3
3

M̃ (Ξ, x, t)
∣∣∣∣
Ξ=0

. (A.7)

Cumulant

The alternative quantity to the moments is cumulant. Contrary to the moments, the cumulant
cannot be defined using the mean value, but the cumulant generating function needs to be used.
It is defined by [174]

K (Ξ, x, t) = ln (M (Ξ, x, t)) . (A.8)
The cumulant at point (x, t) of order |α| is defined by

cα = ∂|α|

∂Ξα1
1 ∂Ξα2

2 ∂Ξα3
3

K (Ξ, x, t)
∣∣∣∣
Ξ=0

. (A.9)

The zeroth-order cumulant is the logarithm of the mean value. The first- and second-order
cumulants are proportional to the first- and second-order central moments, respectively. But the
higher-order cumulants are not identical to the central moments. The advantage of cumulant
is the logarithm. For the equilibrium density function, the generating function is polynomial.
Thus, only few cumulants are non-zero contrary to the central moments.

A.2 Discrete case
To quantify the measured or simulated data, some statistical metrics described in this section
are used.
Let X = (X1, X2, · · · , Xn) and Y = (Y1, Y2, · · · , Yn) be two sets of simulated and experimental
data, respectively. Then the following metrics and analysis techniques can be introduced.

Mean value

The mean value of data X is defined by [94]

⟨X⟩ = 1
n

n∑
i=1

Xi (A.10)

and represents the average value of the data set X. The mean value is also called the expected
value in statistics.
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Standard deviation

The standard deviation of data X is defined by [174]

σX =

√√√√ 1
n− 1

n∑
i=1

(Xi − ⟨X⟩)2 (A.11)

and represents the degree of deviation of the data from the mean ⟨X⟩.

Mean absolute deviation

The mean absolute deviation of data X is defined by [94]

ςX = 1
n

n∑
i=1
|Xi − ⟨X⟩| . (A.12)

Correlation

The correlation expresses the measure of the linear relation between two data sets X and Y .
The most familiar measure of the data dependence is the Pearson linear correlation coefficient ϱ
defined by [18]

ϱX,Y =

n∑
i=1

(Xi − ⟨X⟩) (Yi − ⟨Y ⟩)√
n∑

i=1
(Xi − ⟨X⟩)2 n∑

i=1
(Yi − ⟨Y ⟩)2

. (A.13)

It is clear that |ϱX,Y | ≤ 1. If |ϱX,Y | ≈ 1, then the data are correlated, that is, dependent. On
the other hand, if |ϱX,Y | ≈ 0, then the data are independent.

Fractional bias

Fractional bias is a metric for the comparison of experimental Y and simulated X data defined
by [195]

FB = 2⟨Y ⟩ − ⟨X⟩
⟨Y ⟩+ ⟨X⟩ . (A.14)

The values of FB are in (−2, 2) and the optimal value is 0.

Normalized mean square error

The normalized mean square error NMSE is defined by [149]

NMSE =

〈
(Y −X)2

〉
⟨Y ⟩⟨X⟩

. (A.15)

This statistic emphasizes the scatter in the entire data set and the optimal value is 0.
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Relative L1 error

The relative error L1 of the simulated data X with reference(experimental) data Y is defined by
[16]

L1 =

n∑
i=1
|Yi −Xi|
n∑

i=1
|Yi|

.

The optimal value is 0.

Relative L2 error

The relative error L2 of the simulated data X with reference (experimental) data Y is defined
by [16]

L2 =

√
n∑

i=1
(Yi −Xi)2

√
n∑

i=1
Y 2

i

.

The optimal value is 0.

Factor 2 metric

This metric FAC2 [45] represents the fraction of predictions within a factor of two of observations,
that is,

FAC2 = 1
n

n∑
i=1

qi with qi =
{

1 for 1
2 ≤

Xi
Yi
≤ 2

0 else.
(A.16)

Hit rate metric

To validate the predicted mean velocity field, a hit rate metric q, defined by [179]

q = 1
n

n∑
i=1

qi with qi =

1 for
∣∣∣Xi−Yi

Yi

∣∣∣ ≤ σY or |Xi − Yi| ≤ ςY ,

0 else,
(A.17)

is used, where X and Y represent simulated and experimental data, respectively.

Bland-Altman analysis

Another statistic used to assess the obtained data is the Bland-Altman analysis. It works with
the difference Zdiff = X − Y and with the average Zavg = 1

2(X + Y ). The output of the
Bland-Altman analysis is the scatter plot of Zdiff depending on Zavg with mean difference ⟨Zdiff⟩
and limits of agreement computed according to [15].

The average Zavg represents the best estimate of the true velocity value. Therefore, the
differences Zdiff are assessed across the range of incident velocity values. Ideally, the plotted
data are scattered in the neighborhood of zero velocity difference across the whole velocity range.
The spread around zero is expressed by the standard deviation σZdiff of the set of differences
Zdiff estimated by the student’s ts-test with the level of significance equal to 0.05 [94].
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The inconsistency between the simulated and experimental data is demonstrated by the mean
difference ⟨Z⟩diff . The limits of agreement(

⟨Z⟩diff − t

(
1− 0.05

2 , n− 1
)

σZdiff , ⟨Z⟩diff + t

(
1− 0.05

2 , n− 1
)

σZdiff

)
bound 95 % of the data.





Ordering of DDFs B
To accurately define the transformation matrix of the collision operators, the ordering of the set
Q is introduced. The ordering is defined by the function Ψ : {1, 2, · · · , 27} → Q as

Ψ(1) = (0, 0, 0),
Ψ(2) = (1, 0, 0),
Ψ(3) = (0, 1, 0),
Ψ(4) = (0, 0, 1),
Ψ(5) = (−1, 0, 0),
Ψ(6) = (0,−1, 0),
Ψ(7) = (0, 0,−1),
Ψ(8) = (0, 1, 1),
Ψ(9) = (0, 1,−1),

Ψ(10) = (0,−1, 1),
Ψ(11) = (0,−1,−1),
Ψ(12) = (1, 1, 0),
Ψ(13) = (1,−1, 0),
Ψ(14) = (−1, 1, 0),
Ψ(15) = (−1,−1, 0),
Ψ(16) = (1, 0, 1),
Ψ(17) = (1, 0,−1),
Ψ(18) = (−1, 0, 1),
Ψ(19) = (−1, 0,−1),
Ψ(20) = (1, 1, 1),
Ψ(21) = (1, 1,−1),
Ψ(22) = (1,−1, 1),
Ψ(23) = (1,−1,−1),
Ψ(24) = (−1, 1, 1),
Ψ(25) = (−1, 1,−1),
Ψ(26) = (−1,−1, 1),
Ψ(27) = (−1,−1,−1).
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Coefficients for Second
Order Interpolation of

Velocity C
Based on the interpolation defined in Eq. (3.60), the interpolation coefficients a{·}, b{·}, c{·} need
to be expressed using the velocity in the vertices of the unit cube and spatial second-order
derivatives of the velocity in the center of the unit cube. For better readability, the second-order
derivatives are labeled by

A12 = ∂

∂x1

(
∂

∂x1
u2 + ∂

∂x2
u1

)
, (C.1a)

A13 = ∂

∂x1

(
∂

∂x1
u3 + ∂

∂x3
u1

)
, (C.1b)

A11 = ∂2

∂x2
1
(u1), (C.1c)

B12 = ∂

∂x2

(
∂

∂x2
u1 + ∂

∂x1
u2

)
, (C.1d)

B23 = ∂

∂x2

(
∂

∂x2
u3 + ∂

∂x3
u2

)
, (C.1e)

B22 = ∂2

∂x2
2
(u2), (C.1f)

C13 = ∂

∂x3

(
∂

∂x3
u1 + ∂

∂x1
u3

)
, (C.1g)

C23 = ∂

∂x3

(
∂

∂x3
u2 + ∂

∂x2
u3

)
, (C.1h)

C33 = ∂2

∂x2
3
(u3). (C.1i)
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Next, the vertices of the unit cube are labeled as

x1 =
(
−1

2 ,−1
2 ,−1

2

)T

, x2 =
(1

2 ,−1
2 ,−1

2

)T

,

x3 =
(1

2 ,−1
2 ,

1
2

)T

, x4 =
(
−1

2 ,−1
2 ,

1
2

)T

,

x5 =
(
−1

2 ,
1
2 ,−1

2

)T

, x6 =
(1

2 ,
1
2 ,−1

2

)T

,

x7 =
(1

2 ,
1
2 ,

1
2

)T

, x8 =
(
−1

2 ,
1
2 ,

1
2

)T

. (C.2)

Using notation defined in Eqs. (C.1i), (C.2), the unknown interpolation coefficients can be
expressed as

a0 = 1
16 [2u1(x5) + 2u1(x4) + 2u1(x7) + 2u1(x1)− u3(x8)− 2A11 + u3(x5) + u3(x7)

+ 2u1(x6)− 2C13 − u3(x4) + u3(x1) + u2(x7)− 2B12 − u3(x6) + u3(x3)− u3(x2)
+ 2u1(x3)− u2(x2)− u2(x8)− u2(x5) + u2(x4) + u2(x1) + u2(x6)− u2(x3)
+2u1(x8) + 2u1(x2)] , (C.3a)

a1 =1
4 [−u1(x5)− u1(x4) + u1(x7)− u1(x1) + u1(x6) + u1(x3)− u1(x8) + u1(x2)] , (C.3b)

a2 =1
4 [u1(x5)− u1(x4) + u1(x7)− u1(x1) + u1(x6)− u1(x3) + u1(x8)− u1(x2)] , (C.3c)

a3 =1
4 [−u1(x6)− u1(x5) + u1(x4) + u1(x7)− u1(x1) + u1(x3) + u1(x8)− u1(x2)] (C.3d)

a12 =1
2 [−u1(x5) + u1(x4) + u1(x7) + u1(x1) + u1(x6)− u1(x3)− u1(x8)− u1(x2)] , (C.3e)

a13 =1
2 [u1(x5)− u1(x4) + u1(x7) + u1(x1)− u1(x6) + u1(x3)− u1(x8)− u1(x2)] , (C.3f)

a23 =1
2 [−u1(x5)− u1(x4) + u1(x7) + u1(x1)− u1(x6)− u1(x3) + u1(x8) + u1(x2)] , (C.3g)

a11 =1
2 [A11] , (C.3h)

a22 =1
4 [−u2(x7) + 2B12 + u2(x2) + u2(x8) + u2(x5)− u2(x4)− u2(x1)− u2(x6)

+u2(x3)] , (C.3i)

a33 =1
4 [u3(x8)− u3(x5)− u3(x7) + 2C13 + u3(x4)− u3(x1) + u3(x6)− u3(x3)

+u3(x2)] , (C.3j)
a123 = [u1(x5) + u1(x4) + u1(x7)− u1(x1)− u1(x6)− u1(x3)− u1(x8) + u1(x2)] . (C.3k)
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b0 = 1
16 [−u1(x5) + u1(x4) + u1(x7) + u1(x1)− 2B33 + u3(x8)− u3(x5) + u3(x7)

− 2C23 + u1(x6)− u3(x4) + u3(x1) + 2u2(x7)− u3(x6)− u3(x3) + u3(x2)
− 2A12 − u1(x3) + 2u2(x2) + 2u2(x8) + 2u2(x5) + 2u2(x4) + 2u2(x1)
+2u2(x6) + 2u2(x3)− u1(x8)− u1(x2)] , (C.4a)

b1 =1
4 [−u2(x5) + u2(x6) + u2(x7)− u2(x8)− u2(x4) + u2(x3) + u2(x2)− u2(x1)] , (C.4b)

b2 =1
4 [−u2(x4) + u2(x5) + u2(x6) + u2(x7) + u2(x8)− u2(x3)− u2(x2)− u2(x1)] , (C.4c)

b3 =1
4 [u2(x4)− u2(x5)− u2(x6) + u2(x7) + u2(x8) + u2(x3)− u2(x2)− u2(x1)] (C.4d)

b12 =1
2 [u2(x7)− u2(x2)− u2(x8)− u2(x5) + u2(x4) + u2(x1) + u2(x6)− u2(x3)] , (C.4e)

b13 =1
2 [u2(x7)− u2(x2)− u2(x8) + u2(x5)− u2(x4) + u2(x1)− u2(x6) + u2(x3)] , (C.4f)

b23 =1
2 [−u2(x5)− u2(x6) + u2(x7) + u2(x8)− u2(x4)− u2(x3) + u2(x2) + u2(x1)] , (C.4g)

b11 =1
4 [u1(x5)− u1(x4)− u1(x7)− u1(x1)− u1(x6) + 2A12 + u1(x3) + u1(x8)

+u1(x2)] , (C.4h)

b22 =1
2 [B33] , (C.4i)

b33 =1
4 [u3(x5) + u3(x3) + u3(x4) + u3(x6)− u3(x8)− u3(x7)− u3(x1)− u3(x2)

+2C23] , (C.4j)
b123 = [u2(x7) + u2(x2)− u2(x8) + u2(x5) + u2(x4)− u2(x1)− u2(x6)− u2(x3)] . (C.4k)



150 C. Coefficients for Second Order Interpolation of Velocity

c0 = 1
16 [u1(x5)− u1(x4)− 2C33 + u1(x7) + u1(x1) + 2u3(x8) + 2u3(x5) + 2u3(x7)

− 2B23 − u1(x6) + 2u3(x4) + 2u3(x1) + u2(x7)− 2A13 + 2u3(x6) + 2u3(x3)
+ 2u3(x2) + u1(x3) + u2(x2) + u2(x8)− u2(x5)− u2(x4) + u2(x1)− u2(x6)
−u2(x3)− u1(x8)− u1(x2)] , (C.5a)

c1 =1
4 [−u3(x5) + u3(x3)− u3(x4) + u3(x6)− u3(x8) + u3(x7)− u3(x1) + u3(x2)] , (C.5b)

c2 =1
4 [u3(x5)− u3(x3)− u3(x4) + u3(x6) + u3(x8) + u3(x7)− u3(x1)− u3(x2)] , (C.5c)

c3 =1
4 [−u3(x5) + u3(x3) + u3(x4)− u3(x6) + u3(x8) + u3(x7)− u3(x1)− u3(x2)] (C.5d)

c12 =1
2 [−u3(x8)− u3(x5) + u3(x7) + u3(x4) + u3(x1) + u3(x6)− u3(x3)− u3(x2)] , (C.5e)

c13 =1
2 [−u3(x8) + u3(x5) + u3(x7)− u3(x4) + u3(x1)− u3(x6) + u3(x3)− u3(x2)] , (C.5f)

c23 =1
2 [−u3(x5)− u3(x3)− u3(x4)− u3(x6) + u3(x8) + u3(x7) + u3(x1) + u3(x2)] , (C.5g)

c11 =1
4 [−u1(x5) + u1(x4)− u1(x7)− u1(x1) + u1(x6) + 2A13 − u1(x3) + u1(x8)

+u1(x2)] , (C.5h)

c22 =1
4 [u2(x5) + 2B23 + u2(x6)− u2(x7)− u2(x8) + u2(x4) + u2(x3)− u2(x2)

−u2(x1)] , (C.5i)

c33 =1
2 [C33] , (C.5j)

c123 = [−u3(x8) + u3(x5) + u3(x7) + u3(x4)− u3(x1)− u3(x6)− u3(x3) + u3(x2)] . (C.5k)
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