
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Unsupersived Instance Selection for Malware Detection

Mehmet Efe Zorlutuna

Mgr. Martin Jureček, Ph.D.

Informatics

Computer Security 2021

Department of Information Security

until the end of summer semester 2023/2024

Instructions

Machine learning algorithms are widely used in the area of malware detection. With the

growth of sample amounts, training of classification algorithms becomes more and

more expensive. The problem to be solved is selecting representative unlabeled

samples from large training data sets without reducing the accuracy. This work aims to

solve this problem in an unsupervised learning fashion.

Instructions:

1) Study the state-of-the-art unsupervised instance selection algorithms.

2) Try to propose new or modify existing unsupervised instance selection algorithms.

3) Use existing libraries or implement at least two unsupervised instance selection

algorithms for malware detection.

4) Compare and discuss the experimental results in terms of the reduction rate, the

accuracy, and the computational time.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 9 February 2023 in Prague.

Master’s thesis

UNSUPERSIVED
INSTANCE SELECTION
FOR MALWARE
DETECTION

BS Mehmet Efe Zorlutuna

Faculty of Information Technology
Department of Information Security
Supervisor: Mgr. Martin Jureček Ph.D.
May 4, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 BS Mehmet Efe Zorlutuna. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Zorlutuna Mehmet Efe. Unsupersived Instance Selection for Malware Detection.
Master’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments viii

Declaration ix

Abstract x

Introduction 1

Motivation 3

1 Background Information 5
1.1 Artificial intelligence . 5

1.1.1 Definition of Artificial Intelligence . 5
1.1.2 Weak AI and Strong AI . 6

1.2 Machine Learning . 6
1.2.1 Definition of Machine Learning . 6
1.2.2 Types of Machine Learning . 6

1.3 Instance Selection . 7
1.3.1 Definition of Instance Selection . 7
1.3.2 Advantage of Instance Selection . 7
1.3.3 Methods of Instance Selection . 8
1.3.4 Supervised and Unsupervised Instance Selection 8
1.3.5 Filtering and Wrapper Methods of Instance Selection 8
1.3.6 State-of-Art Instance Selection Algorithms 9
1.3.7 Nimble Instance Selection Algorithm . 9
1.3.8 Deeper Definition of Unsupervised Learning 9

1.4 Malware . 10
1.4.1 Definition of Malware . 10
1.4.2 Motivation of Malware . 11

1.5 Malware Detection . 11
1.5.1 Definition of Malware Detection . 11
1.5.2 Challenges of Malware Detection . 12
1.5.3 Solution for Challenges . 12
1.5.4 Sum-Up . 12

1.6 Signature-Based Malware Detection . 13
1.6.1 Challenges of Malware Detection . 13

1.7 Behavioral Analysis Malware Detection . 14
1.7.1 Definition of Behavioral Analysis . 14
1.7.2 Definition of Behavioral Analysis . 15
1.7.3 Types of Behavioral Analysis . 15
1.7.4 Sum-Up . 15

1.8 Machine Learning-Based Malware Detection . 15
1.8.1 Variant Detection and Similarity Detection 15
1.8.2 Steps of Malware Detection . 16

iii

iv Contents

1.8.3 Principal Component Analysis . 17

2 Algorithm Description 19
2.1 Preprocessing and Feature Extraction . 20
2.2 Clustering . 21
2.3 Detection of Nearest Enemies . 22
2.4 Elimination . 23

3 Implementation notes 25
3.1 Instance PE Class . 25
3.2 Preprocessing and Clustering . 25

3.2.1 Principal Component Analysis . 25
3.2.2 Standard Scale . 25
3.2.3 Clustering . 26

3.3 Elimination . 26
3.3.1 Elimination Technique 1 . 27
3.3.2 Elimination Technique 2 . 27

4 Test Background Information 29
4.1 Evaluation . 29

4.1.1 Reduction Rate . 29
4.1.2 Accuracy . 30
4.1.3 Computational Time . 30

4.2 Endgame Malware BEnchmark for Research Dataset 30
4.2.1 Windows Portable Executable . 31
4.2.2 Library to Instrument Executable Formats 31
4.2.3 Format of EMBER Dataset . 31

4.3 Silhouette Method . 32
4.4 Clean Form . 33
4.5 Purity . 34
4.6 Hyperparameter . 34
4.7 Stratification . 34
4.8 Nimble Instance Selection . 35
4.9 K-Nearest Neighbors Classification . 36

5 Test Implementation Notes 37
5.1 Hyperparameters . 37
5.2 Training and Testing Data Sets . 37
5.3 Working With NIS Algorithm . 38
5.4 Silhouette Coefficient . 38
5.5 Purity . 38
5.6 K-Nearest Neighbors Classification . 39

6 Test Results 41
6.1 Purity and Silhouette Coefficient . 41

6.1.1 Silhouette Score Results . 42
6.1.2 Reduction Rate Results . 42
6.1.3 Purity Test Results . 43
6.1.4 Execution Time . 43

6.2 K-Nearest Neighbor Classification . 44
6.2.1 Set-Up . 44
6.2.2 K-Nearest Neighbor Classification Results 46

Contents v

7 The Conclusion 55

A Acronyms 59

List of Figures

2.1 Original Graph . 20
2.2 Clustering Result Graph . 21
2.3 Detection of Nearest Enemies Result Graph . 22
2.4 Elimination 1 Result Graph . 23
2.5 Elimination 2 Result Graph . 24

List of Tables

6.1 Silhouette Score Table . 42
6.2 Reduction Rate Table . 42
6.3 Purity Rate Table . 43
6.4 Execution Time Table . 43
6.5 Execution Time of Stratification Table . 44
6.6 Reduction Rate of Stratification Table . 44
6.7 Execution Time by Reduction Rate of NIS Table 45
6.8 KNN Classification Results of Original Data Set for K = 5 46
6.9 KNN Classification Results of NCE for K = 5 Table 46
6.10 KNN Classification Results of NIS for K = 5 Table 47
6.11 KNN Classification Results of NIS and NCE 1 for K = 5 Table 47
6.12 KNN Classification Results of NIS and NCE 2 for K = 5 Table 48
6.13 KNN Classification Results of Original Data Set for K = 9 48
6.14 KNN Classification Results of NCE for K = 9 Table 48
6.15 KNN Classification Results of NIS for K = 9 Table 49
6.16 KNN Classification Results of NIS and NCE 1 for K = 9 Table 49
6.17 KNN Classification Results of NIS and NCE 2 for K = 9 Table 50
6.18 KNN Classification Results of Original Data Set for K = 13 50
6.19 KNN Classification Results of NCE for K = 13 Table 50
6.20 KNN Classification Results of NIS for K = 13 Table 51
6.21 KNN Classification Results of NIS and NCE 1 for K = 13 Table 51
6.22 KNN Classification Results of NIS and NCE 2 for K = 13 Table 52
6.23 KNN Classification Results of Original Data Set for K = 17 52
6.24 KNN Classification Results of NCE for K = 17 Table 52
6.25 KNN Classification Results of NIS for K = 17 Table 53
6.26 KNN Classification Results of NIS and NCE 1 for K = 17 Table 53
6.27 KNN Classification Results of NIS and NCE 2 for K = 17 Table 54

vi

List of Algorithms vii

List of Algorithms

1 Eliminating Technique 1 . 27
2 Elimination Technique 2 . 28
3 NIS algorithm . 36

I thank my supervisor for introducing me to instance selection algo-
rithms and malware detection.
I am grateful to my family for their support.

viii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Technical
University in Prague has the right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act.

In Praze on May 4, 2023 .

ix

Abstract

This work proposes a new unsupervised instance selection algorithm for malware detection and
evaluates its effectiveness. The proposed algorithm selects informative instances from unlabelled
data to train a machine learning model, which is expected to improve its accuracy and efficiency.
Experiments show a performance comparison of the algorithm and an existing unsupervised
instance selection algorithm.

Keywords Malware Detection, Machine Learning, Unsupervised Instance Selection

Abstrakt

Tato práce navrhuje nový algoritmus výběru instance bez dozoru pro detekci malwaru a vyhod-
nocuje jeho efektivitu. Navržený algoritmus zvoĺı informativńı výběr z neoznačených dat, aby
natrénoval model strojového učeńı, od kterého se očekává zlepšeńı jeho přesnosti a účinnosti.
Experimenty ukazuj́ı srovnáńı výkonu algoritmu a existuj́ıćıho algoritmu výběru instance bez
dozoru.

Kĺıčová slova Detekce Malwaru, Strojové Učeńı, Výběr Instance Bez Dozoru

x

Introduction

Artificial intelligence and machine learning are becoming increasingly popular and are being used
in various areas, including malware detection. However, the performance of machine learning
algorithms is highly dependent on the quality of the training dataset. Creating a compact and
highly descriptive training dataset that yields high performance with machine learning algorithms
can be challenging. Instance selection algorithms can be used to create a more manageable and
accurate training dataset. However, the majority of state-of-the-art instance selection algorithms
require labeled data, which can be expensive and time-consuming to obtain.

This work aims to propose an unsupervised instance selection algorithm and compare it with
another unsupervised instance selection algorithm.

Chapter 1 provides an overview of the key concepts and technologies relevant to this study,
including malware detection, machine learning, and instance selection algorithms.

Chapter 2 presents our proposed instance selection algorithm and provides a description of
each step of the algorithm, including how it selects a representative subset of the original dataset.

Chapter 3 provides implementation notes that help readers understand the technical details
of how our proposed algorithm is implemented.

Chapter 4 describes the methods we used to evaluate the performance of our proposed al-
gorithm, including the evaluation metrics and the comparison to another unlabeled instance
selection algorithm.

Chapter 5 proposes implementation notes for setting up the tests..
Chapter 6 presents the results of our experiments, including a detailed analysis of the accu-

racy, runtime, and reduction rate of both the proposed algorithm and the compared algorithm,
offering insights into the strengths and weaknesses of each algorithm.

In the final chapter, we compare the proposed instance selection algorithm to the selected
unlabeled instance selection algorithm and discuss the results. We provide insights into the
strengths and weaknesses of our proposed algorithm and suggest areas for further research.

1

2 Introduction

Motivation

Machine learning algorithms are essential in the field of malware detection, as they rely on
training data sets during the training phase. The accuracy and size of the training data set are
critical factors that impact the performance and results of the algorithm. A training data set’s
accuracy is determined by how well it represents the patterns of similarly classified instances and
the differences between differently classified instances.

Additionally, the size of the training data set is also important because it affects the time
taken by the machine learning algorithm to yield results. With the increasing number of malware
instances detected every day, the algorithm’s yielding time becomes crucial. If the yielding time is
too long, it can significantly decrease the accuracy of the machine-learning algorithm. Therefore,
it is important to have a training data set that is accurately descriptive without being excessively
large.

One way to address the issue of the size of the training data set is by using instance selection
algorithms. These algorithms reduce the size of the training data set during the preprocessing
step of machine learning. The goal of instance selection is to reduce the original dataset to
a manageable size, which improves the performance of the machine learning algorithm while
maintaining the accuracy of the algorithm.

Labeling the data is another challenge in the field of malware detection. However, a proposed
algorithm inspired by Parallel Instance Filtering (PIF) [1] addresses this issue by using clustering
instead of labels to determine the enemies. This algorithm does not require labeled data and is
thus a valuable approach to addressing the labeling problem.

The PIF algorithm reduces the size of the training data set for malware detection by using
labeled data to determine the enemies for each instance and eliminate redundant data. In
contrast, the proposed algorithm clusters instances based on their features to determine the
enemies with respect to cluster and eliminate redundant data.

To sum up, machine-learning algorithms are important for malware detection, but the accu-
racy and size of training data sets are critical. The training data set’s accuracy and size affect
the algorithm’s performance and yielding time, which is crucial as new malware is detected daily.
Instance selection algorithms reduce the training data set’s size while maintaining accuracy, and
the proposed algorithm inspired by PIF addresses the labeling problem by using clustering to
determine enemies without labeled data.

3

4 Motivation

Chapter 1

Background Information

1.1 Artificial intelligence

1.1.1 Definition of Artificial Intelligence
Artificial Intelligence (AI) is a branch of computer science that deals with the creation of in-
telligent machines that can perform tasks that usually require human-like intelligence, such as
perception, reasoning, learning, and problem-solving. AI involves developing algorithms and
models that can make predictions, take actions, and adapt to new situations based on data and
feedback.

Intelligence is a complex concept that has different definitions depending on the context.
In general, intelligence can be described as the ability to acquire and apply knowledge and
skills to solve problems and achieve goals. In the case of machines, intelligence can refer to
various capabilities, such as pattern recognition, natural language processing, decision-making,
and creativity.

AI has numerous applications in various industries, including healthcare, finance, transporta-
tion, and entertainment. Some of the most popular implementations of AI are in image recog-
nition, speech recognition, playing games, driving cars, text generation, image generation, and
malware detection.

Image recognition, for example, involves using computer algorithms to identify and classify
objects within an image. Speech recognition involves converting spoken words into text or com-
mands that a computer can understand. Playing games involves developing AI algorithms that
can learn and improve their performance over time by playing against themselves or human play-
ers. Driving cars involves creating autonomous vehicles that can perceive their environment and
make decisions based on the data they receive. Text generation involves generating human-like
text based on a given prompt or topic, while image generation involves creating new images
based on input data.

AI algorithms can be trained to detect malware by analyzing patterns in the code and behavior
of the software. This involves creating models that can distinguish between benign and malicious
software based on features such as file size, file type, system calls, network activity, and code
structure. Machine learning techniques, such as deep learning and natural language processing,
can be used to automatically learn these patterns and improve the accuracy of malware detection.

One of the key features of AI is its ability to operate autonomously, without human interven-
tion. AI systems can learn from data and feedback, make decisions, and perform tasks without
requiring explicit instructions or guidance from humans. However, human intervention is still
necessary in the early stages of development, where programmers need to specify the task and
provide the necessary data for the machine to learn from.

5

6 Background Information

1.1.2 Weak AI and Strong AI
Currently, all existing AI is considered to be weak AI. Weak AI, also known as narrow AI, refers
to AI that is designed to perform specific tasks in a limited area. This type of AI is highly
specialized and can excel in performing tasks such as speech recognition, image classification,
game playing, and mawlware detection. Weak AI systems are programmed to follow specific rules
and algorithms, and they do not have the ability to think or reason beyond their programmed
tasks.

On the other hand, strong AI, also known as artificial general intelligence (AGI), is a hypo-
thetical form of AI that is capable of reasoning, planning, self-consciousness, and problem-solving
at the human level. Strong AI would be able to understand and learn from its environment, think
creatively, and perform any intellectual task that a human can do. This type of AI would be
able to adapt to new situations and solve problems beyond its initial programming.

Currently, strong AI is a theoretical concept, and no system has been developed that can
perform at this level. The development of strong AI is a challenging task that requires the inte-
gration of various AI disciplines, such as machine learning, natural language processing, computer
vision, and robotics, among others. Moreover, there are several ethical concerns regarding the
development of strong AI, including the possibility of superintelligence that could pose a threat
to humanity.

1.2 Machine Learning

1.2.1 Definition of Machine Learning
Machine learning (ML) is a subfield of artificial intelligence that focuses on developing algorithms
and models that enable computers to learn and improve their performance based on experience.
In machine learning, computers are trained on large datasets and are able to learn patterns and
relationships within the data, which they can then use to make predictions or decisions.

Machine learning has a wide range of applications, including image recognition, natural lan-
guage processing, fraud detection, recommendation systems, and autonomous vehicles, malware
detection among others. Machine learning algorithms are used to train models that can accu-
rately recognize objects within images, understand and generate natural language, and make
decisions based on complex data.

As the amount of data generated by individuals and organizations continues to grow, machine
learning is becoming increasingly important for making sense of this data and extracting useful
insights. The development of more advanced machine learning algorithms and techniques is
expected to drive further innovation and advancements in AI.

1.2.2 Types of Machine Learning
There are four different types of machine learning, supervised learning, unsupervised learning,
semi-supervised learning, and reinforced learning.

1.2.2.1 Supervised Machine Learning
In supervised learning during the learning phase, the machine learning algorithm uses a training
data set with classified instances, and the algorithm constructs the link between the pattern and
classification. Some popular techniques used in supervised learning are support-vector machines,
Naive Bayes, linear discriminant analysis, decision trees, k-nearest neighbors algorithm, neural
networks, and similarity learning.

Instance Selection 7

1.2.2.2 Unsupervised Machine Learning

Unsupervised learning does not use classifications, it uses unclassified data to analyze and cluster
or disclose the association of instances by patterns in the unlabeled training data set. Some
popular techniques used in unsupervised learning are k-means clustering, k-nearest neighbors
algorithm, hierarchal clustering, anomaly detection, and neural networks.

1.2.2.3 Semi-supervised Machine Learning

Semi-supervised learning uses a combination of supervised and unsupervised approaches, only a
limited chunk of the training data set is classified, and the algorithm explores links between the
classified and unclassified data. Some methods applied in semi-supervised learning are Generative
models low-density separation, and Laplacian regularization.

1.2.2.4 Reinforcement Machine Learning

Reinforcement machine learning is a training method performed by rewarding the desired be-
havior and punishing the undesired behavior, for instance, in a chess game picking a queen is
more desirable than picking a pawn, thus corresponding reward of picking a queen is more than
picking a pawn for a reinforcement learning algorithm. Some reinforcement learning algorithms
are direct utility estimation, adaptive dynamic programming, temporal-difference learning, and
exploration.

1.3 Instance Selection

1.3.1 Definition of Instance Selection
Instance selection is a technique in machine learning that involves selecting a subset of instances
from a dataset to use as training data for a machine learning model. The goal of instance
selection is to improve the performance of a machine learning algorithm by reducing the size of
the training set and removing irrelevant or redundant instances. This can lead to faster training
times, improved model accuracy, and more efficient use of computing resources.

Instance selection can be useful in a variety of settings. For example, in situations where the
dataset is very large, instance selection can be used to reduce the size of the dataset, making it
more manageable for a machine learning algorithm to process. In addition, instance selection can
be used to improve the performance of a machine learning algorithm when the dataset contains
a large number of irrelevant or redundant instances, which can negatively impact the accuracy
of the model.

1.3.2 Advantage of Instance Selection
There are several reasons why instance selection might be useful in machine learning. For ex-
ample, if a training dataset contains a large number of instances that are irrelevant to the task
at hand, using all of them as training data can result in poor model performance and longer
training times. By selecting a subset of instances that are most relevant to the task, instance
selection can help to improve model accuracy and reduce training time.

Overall, instance selection can be a useful technique for improving the performance of machine
learning models, particularly in situations where the original dataset is large or noisy.

8 Background Information

1.3.3 Methods of Instance Selection
There are different methods for instance selection, but they generally involve choosing a subset
of the training data that captures the important patterns and relationships in the data, while
discarding the less informative instances. This can be achieved through various criteria such as
diversity, density, or relevance. Instance selection techniques can be divided into two categories
supervised and unsupervised. Additionally, they can be divided into two categories as filtering
and wrapper methods.

1.3.4 Supervised and Unsupervised Instance Selection
Supervised instance selection methods use class labels to guide the selection process. The goal of
these methods is to select instances that are most informative for the learning algorithm in terms
of the classification task. The intuition behind supervised instance selection is that instances
that are close to the decision boundary of a classifier are more informative than those that are
far away. This is because the decision boundary is the area where the classifier is uncertain
about the correct class label, and instances in this region can help the classifier to make better
predictions.

There are several supervised instance selection methods. Instance-based learning is a popular
method that involves selecting instances that are close to the decision boundary of a classifier.
This method is based on the assumption that instances that are close to the boundary are more
informative than those that are far away. Selective sampling is another method that involves
selecting instances that are difficult to classify. This method is based on the intuition that
difficult instances are more informative than easy ones, as they are likely to contain information
that can help the classifier to make better predictions.

Unsupervised instance selection methods, on the other hand, do not rely on class labels to
guide the selection process. Instead, they use distance or similarity measures to identify relevant
instances. The goal of unsupervised instance selection is to group similar instances together and
remove redundant or irrelevant instances. This can help to reduce the size of the dataset and
improve the performance of the learning algorithm.

There are several unsupervised instance selection methods. K-means clustering is a popular
method that involves grouping similar instances together based on their distance to a set of
centroids. This method is based on the assumption that instances that are close together are more
similar than those that are far apart. Density-based clustering is another method that involves
selecting instances that are located in high-density regions of the data. This method is based on
the intuition that instances that are located in high-density regions are more representative of
the data than those that are located in low-density regions.

1.3.5 Filtering and Wrapper Methods of Instance Selection
Filtering methods, for instance, selection involve selecting a subset of instances from the original
dataset based on certain criteria, without using a specific learning algorithm. These methods
typically involve analyzing the statistical properties of the data or the performance of the learning
algorithm on the dataset. For example, a filtering method might involve removing instances that
are missing values or have high levels of noise.

Filtering methods are typically faster and less computationally expensive than wrapper meth-
ods, as they do not require running a specific learning algorithm. However, they may not always
lead to the best performance, as they do not take into account the specific characteristics of the
learning algorithm being used.

Wrapper methods for instance selection, on the other hand, involve using a specific learning
algorithm to evaluate the quality of a subset of instances. These methods typically involve
training a learning algorithm on different subsets of instances and selecting the subset that leads

Instance Selection 9

to the best performance. Wrapper methods can be more computationally expensive than filtering
methods, as they require training the learning algorithm multiple times.

Overall, both filtering and wrapper methods, for instance, selection have their advantages and
disadvantages, and the choice between them depends on the specific problem being addressed
and the resources available for computing. The goal of instance selection is to reduce the size
of the dataset without significantly affecting the performance of the learning algorithm, which
can lead to faster training times, improved model accuracy, and more efficient use of computing
resources.

1.3.6 State-of-Art Instance Selection Algorithms
Some examples of state-of-the-art instance selection algorithms include Condensed Nearest Neigh-
bor (CNN)[2], Edited Nearest Neighbor ENN)[3], Iterative Case Filtering algorithm (ICF)[4], and
Discriminative Random Over-Sampling Projection (DROP)[5].

CNN is an instance selection algorithm that starts with a small subset of instances and
iteratively adds new instances that are misclassified by the current model until no more
instances can be added.

ENN is an instance selection algorithm that removes instances that are misclassified by their
nearest neighbors.

ICF algorithm is a method for feature selection in machine learning that iteratively removes
the least informative features until a stopping criterion is met.

DROP generates a reduced dataset with higher discriminatory power to improve learning
algorithm performance while reducing the computational cost.

1.3.7 Nimble Instance Selection Algorithm
A more recent instance selection algorithm that has been compared to the proposed NCE al-
gorithm is NIS, which stands for Nimble Instance Selection. The NIS algorithm uses hyper-
rectangles to discard instances, but instead of finding hyper-rectangles directly, it leverages the
concept of data scaling in statistics to indirectly form hyper-rectangles. This approach avoids the
computational cost of calculating the positions of real hyper-rectangles, which can slow down the
instance selection process. By exploiting this concept, the algorithm can efficiently and effectively
select representative instances without sacrificing performance.

1.3.8 Deeper Definition of Unsupervised Learning
Unsupervised learning algorithms are a class of machine learning techniques that aim to find
patterns or relationships in data without the use of labeled examples. They have a number of
advantages over other machine learning techniques, including the fact that they depend less on
human intervention and can perform their analysis using completely unlabeled data.

1.3.8.1 Advantages of Unsupervised Learning
This can be particularly useful in cases where labeled data is scarce or expensive to obtain.
One of the main advantages of unsupervised learning algorithms is that they can discover hidden
structures and patterns in the data that may not be apparent to humans. For example, clustering
algorithms can group similar data points together, even if they do not have a pre-defined label or
category. This can be useful in a wide range of applications, from identifying customer segments
in marketing to detecting anomalous behavior in cyber security.

10 Background Information

1.3.8.2 Challanges of Unsupervised Learning
However, while unsupervised learning algorithms have many benefits, they also come with their
own set of challenges. One major challenge is the potential for computational complexity and
resource consumption due to the high volume of training data. This can lead to longer execution
times and higher resource consumption, which can be particularly challenging when working with
large datasets.

Additionally, due to the uncertainty of the training data, unsupervised learning algorithms
may produce inaccurate results more frequently than supervised learning algorithms. This is
because there is no ground truth against which the algorithm can be evaluated. As a result,
it is important to carefully evaluate the results of unsupervised learning algorithms and to use
additional methods to verify their accuracy.

Furthermore, while unsupervised learning algorithms can make analyses with unlabeled datasets,
the evaluation of results may still require labels from the training set. This is because, without
labels, it may be difficult to assess the accuracy and validity of the results. In some cases, labels
may need to be added manually, which can be time-consuming and expensive.

Another issue with unsupervised learning algorithms is transparency. Even if the quality of
clusters produced by the algorithm is high, the ground truth information about the instances
may be unclear. For example, a cluster with high quality may represent a malware type, but
further analysis is required to identify the specific type of malware. This can be particularly
challenging in cases where the data is sensitive or where the results of the analysis could have
significant real-world implications.

1.3.8.3 Sum-Up
While unsupervised learning algorithms have numerous benefits, they also present unique chal-
lenges. Researchers must carefully consider these challenges when deciding which machine-
learning techniques to use for their particular applications. It is also important to continue
developing new and improved algorithms that can overcome these challenges and to carefully
evaluate the accuracy and validity of the results produced by unsupervised learning techniques.

1.4 Malware

1.4.1 Definition of Malware
Malware, which is short for malicious software, is a type of software that has been created by
cyber threat actors to perform activities without the owner’s consent. Malware can take many
forms, including viruses, Trojans, worms, spyware, adware, and ransomware. These activities
can range from simply stealing information to taking full control of a victim’s device or network.
Malware can be used for a variety of purposes, including stealing sensitive information, disrupting
computer systems, and causing financial damage.

There are many types of cyber threat actors who create and distribute malware. These in-
clude nation-states, cybercriminals, hacktivists, terrorist groups, thrill-seekers, and even insiders.
Nation-states may create and use malware for espionage purposes, while cybercriminals may use
malware for financial gain by stealing sensitive information or holding it for ransom. Hacktivists
may use malware to disrupt the operations of a targeted organization or to promote a particular
cause. Terrorist groups may use malware as part of their efforts to carry out attacks, while thrill-
seekers may create and distribute malware simply for the challenge of doing so. Insiders, such as
disgruntled employees, may use malware to carry out acts of sabotage against their employers.

There are many techniques that cyber threat actors use to distribute malware, including
phishing emails, malicious websites, drive-by downloads, and infected software downloads. Once

Malware Detection 11

installed on a device or network, malware can be difficult to detect and remove, as it often has
the ability to evade detection by antivirus software and other security measures.

1.4.2 Motivation of Malware
Malware can be created and used for a variety of reasons depending on the actor’s intentions
ranging from financial gain to political motivations.

1.4.2.1 Intrusion
One of the primary uses of malware is an intrusion. This involves gaining unauthorized access
to a victim’s device or network and collecting sensitive information about them. Cybercriminals
may use this information to commit identity theft, financial fraud, or other types of cybercrime.
Nation-states may use this information for espionage purposes, to gain a strategic advantage in
global politics or business.

1.4.2.2 Disruption
Another use of malware is disruption. This involves making the victim’s device or network
unusable, usually through the use of ransomware or denial-of-service attacks. Ransomware is a
type of malware that encrypts the victim’s data and demands a ransom payment in exchange for
the decryption key. Denial-of-service attacks involve flooding the victim’s network with traffic,
effectively rendering it unusable.

1.4.2.3 Financial Gain
Financial gain is another common motivation for cyber threat actors. Malware can be used to
steal intellectual property, financial data, or other valuable information. This information can
then be sold on the dark web to other cybercriminals or nation-states for profit. Cybercriminals
may also use malware to conduct phishing scams, which involve tricking victims into giving away
their financial or personal information.

1.4.2.4 Vandalism
Vandalism is another use of malware. This involves the destruction of a victim’s device or
network, either for personal reasons or as part of a larger cyber attack. This type of attack can
be particularly devastating for small businesses or individuals who rely on their devices for work
or personal use.

1.4.2.5 Steal Hardware Resources
Finally, some cyber threat actors may use malware to steal hardware resources. This involves
using a victim’s device to mine cryptocurrencies or perform other resource-intensive tasks. This
can result in slow performance and increased energy consumption, as well as potential damage
to the device itself.

1.5 Malware Detection

1.5.1 Definition of Malware Detection
Malware detection is a crucial part of cybersecurity, as it helps to identify and remove malicious
software from devices before it can cause harm. The process of malware detection involves

12 Background Information

analyzing the behavior of software to determine whether it is behaving in a way that is consistent
with known malware. This can be done using a variety of techniques, including signature-based
detection, behavior-based detection, and machine learning-based detection.

1.5.2 Challenges of Malware Detection
1.5.2.1 What is Malware?
The issue of malware detection can also give rise to deeper discussions about ethics and consent.
For example, consider the act of mining cryptocurrency. While this activity is not inherently
malicious, using a device without the owner’s acknowledgment or consent is a clear violation of
their privacy and property rights. If the victim has not given consent to the use of their device
for cryptocurrency mining, then the act can be considered malicious. However, if the victim has
given their consent without fully understanding the implications of their actions (for instance,
by accepting the terms and conditions of an app without reading them), then the operation may
be undesirable but not necessarily a crime.

1.5.2.2 False Positives
Another challenge of malware detection is the risk of false positives. Malware detection software
relies on various heuristics and algorithms to identify malicious software. However, these algo-
rithms can sometimes classify benign software as malicious, which can lead to false accusations
and even lawsuits. For instance, antivirus software might flag a legitimate system file as a virus,
leading to the file being deleted and causing the system to malfunction. In some cases, this can
result in serious consequences, such as lost data or system downtime.

1.5.3 Solution for Challenges
To mitigate these challenges, it is essential to develop reliable and accurate malware detection
systems. This involves using a range of techniques such as signature-based detection, behavioral
analysis, and machine learning. Signature-based detection involves matching the code of a file
or program against a database of known malware signatures. The behavioral analysis involves
monitoring the behavior of a program to detect suspicious activity, such as attempts to modify
system files or connect to malicious servers. Machine learning involves training a model to
recognize patterns of behavior that are indicative of malware.

1.5.3.1 User Awareness
In addition to developing effective malware detection systems, it is also important to ensure
that users are informed about the risks and implications of malware detection. This includes
providing clear and concise information about the types of malware that may be detected, the
consequences of false positives, and the importance of obtaining consent before performing any
operations on a user’s device.

1.5.4 Sum-Up
To conclude, malware detection is a critical defensive measure used to protect against a wide
range of threats. However, the issue of malware detection can also give rise to deeper discussions
about ethics and consent. To develop reliable and accurate malware detection systems, it is
essential to use a range of techniques such as signature-based detection, behavioral analysis, and
machine learning.

Signature-Based Malware Detection 13

Additionally, it is important to ensure that users are informed about the risks and implications
of malware detection and that their consent is obtained before performing any operations on their
device.

1.6 Signature-Based Malware Detection
Signature-based malware detection works depending on the signature of the software. Those
signatures are created using a hashing algorithm, for instance, Secure Hash Algorithms (SHA) as
widely used. These signatures are kept in big databases for later use after creation. On encounter
of new software on a computer, signature-based detection software recreates the signature of the
new software and checks the signature in the database. However, this approach is not perfect,
and the hassle of maintenance of this technique becomes more difficult over time.

1.6.1 Challenges of Malware Detection
1.6.1.1 Database Ownership
For new implementations, if there is no database created, owned, or usable by the implementa-
tion, the implementation depends on third-party databases. Using third-party databases may
create conflicts because a signature might have a different classification in different databases,
because the definition of malware changes by the policy of the company or service provider, for
instance, advertisement software may be undesirable from one point of view but not harmful to
the computer, but they are still potentially unwanted applications.

1.6.1.2 Maintenence of Malware Database
Beyond that, the maintenance of an already going project is a growing problem. Every day
more than at least 450 thousand malware and potentially unwanted applications are created and
detected [6]. So, maintenance of the database is one of the problems since old signatures should
be kept, so every day these databases grow bigger, and every day the requirement for more
maintenance of data increases. Besides maintenance, an excessive amount of data is costly to
store and difficult to migrate, which causes restrictions not only on the information technology
side but also on the business side. Migration of data means the process of transferring the data
from one database to another one.

1.6.1.3 New Malware Signatures
Beyond maintenance, newly introduced software is useless for signature-based malware detection.
To be able to detect malware by signature, its signature should be stored, and a definition of
software corresponding to that signature in the database. Therefore, the data should be classified
before using signature-based malware detection. Moreover, the working principle of malware is
important information to classify them, for further analysis. There are mainly five different
malware families. Most of the newly introduced malware is a descendant of old malware.

Virlock is a family of Ransomware which means a malware type that typically encrypts the
main storage of the victim’s machine and requests ransom for decryption.

Virut is a family of viruses that creates botnets. A computer virus is a type of malware that
requires another software to be executed. Botnets are internet-connected network devices
that are orchestrated by attackers, typically used for DoS attacks.

Allaple is a family of polymorphic network worms and performs Denial-of-Service (DoS)
attacks. Worms are software that does not depend on other software to run them and

14 Background Information

have the ability to clone themselves in another node of networks. Polymorphic means, the
software changes itself on each generation, which makes it harder to detect. DoS attacks
characteristically block legitimate usage of service on target.

Dinwod is a family of malware that secretly downloads and installs other malware. They are
trojan horses which are malware that deceives users as it is benign software.

Vundo family refers to either trojan horses or worms to display pop-up advertisements on the
victim’s screen.

1.6.1.4 Obfuscation of Malware

Besides the working principle, malware authors do not need to change their malware to make it
undetectable by anti-malware software. Users of malware use obfuscation techniques to deceive
anti-malware software, and new versions of the same code can be created automatically. These
techniques mainly change the structure of code or change it in assembly language or byte level
and do not change the functionality.

Dead-code insertion is inserting codes that are never executed in code, for example, there can
be a jump to the end of the dead code at the beginning of the dead code.

An instruction substitution is changing the original code with instruction with the same
functionality, for example, a subroutine can be in-lined.

There are other techniques like Packing that prevent the malware to be analyzed until it is
loaded to memory.

These techniques and many more prevent signature-based detection of malware. With each
small-scale change, the malware should be classified again to use signature-based detection.
For classification, various techniques can be used, some of those techniques are static analysis,
dynamic analysis, and file entropy.

Static analysis is analyzing software without executing, safer compared to dynamic analysis
but occasionally it is useless, against code packing for example.

Dynamic analysis is analyzing the code while executing it, regularly both dynamic analysis
and static analysis are used together as hybrid analysis.

File entropy is a factor when detecting malware since commonly malware programs have
high entropy. Unfortunately, those techniques might increase the cost drastically and create
a bottleneck for malware detection operations.

1.7 Behavioral Analysis Malware Detection

1.7.1 Definition of Behavioral Analysis
Behavioral analysis is a technique used in malware detection to identify and analyze the behavior
of a program or file. It is a proactive approach to detecting malware that does not rely on
predefined signatures or known patterns of behavior. Instead, it monitors the behavior of a
program in real-time to detect any suspicious activity.

Machine Learning-Based Malware Detection 15

1.7.2 Definition of Behavioral Analysis
Behavioral analysis techniques are particularly useful for detecting new and unknown types of
malware, as well as malware that has been modified to evade signature-based detection. This is
because behavioral analysis focuses on the actions that a program takes, rather than the code it
contains. This means that it can detect malware that has been modified to avoid detection by
changing its code or signature.

1.7.3 Types of Behavioral Analysis
There are several types of behavioral analysis techniques used in malware detection.

1.7.3.1 Network Activity
One approach is to monitor the program’s network activity, looking for suspicious connections or
data transfers. For example, a malware program might attempt to connect to a known command
and control server or transmit sensitive data to a remote location.

1.7.3.2 System Activity
Another approach is to monitor the program’s system activity, looking for suspicious behavior
such as attempts to modify system files or registry keys. Malware often needs to modify system
files in order to operate, so this type of activity can be a strong indicator of malicious behavior.

1.7.3.3 Runtime Behavior
Finally, some behavioral analysis techniques involve monitoring the program’s runtime behavior,
looking for patterns of behavior that are characteristic of malware. For example, a malware
program might repeatedly attempt to access certain system resources or perform unusual oper-
ations.

1.7.4 Sum-Up
In order to perform effective behavioral analysis, it is necessary to have a good understanding of
the normal behavior of the system or program being analyzed. This can be achieved through var-
ious means, such as creating a baseline of normal behavior or using machine learning algorithms
to identify patterns of behavior that are indicative of malware.

1.8 Machine Learning-Based Malware Detection
Machine learning-based malware detection does not require signatures of malware. Unlike
signature-based malware detection, artificial intelligence can detect new malware. Beyond the
detection of malware, they can be categorized by behavior and objectives, categorization is po-
tentially beneficial information.

1.8.1 Variant Detection and Similarity Detection
Malware similarities analysis has slightly different versions. Variant detection is focused on
variants of already known malware. Families’ detection focuses on the likelihood of the sample,
behavioral, structural, or structural similarities are potentially significant. Similarity detection
focuses on similarities between the unclassified sample and already classified samples.

16 Background Information

1.8.2 Steps of Malware Detection
Machine-learning-based malware detections broadly have a workflow containing five consecutive
steps. The workflow steps could be designated as data extraction, preprocessing, feature selection,
machine learning algorithm, and evaluation.

1.8.2.1 Data Extraction
Data extraction is the process of collecting data either by static or dynamic analysis from various
sources. The scope of the analysis process depends on the objective features.

1.8.2.2 Preprocessing
Preprocessing is manipulating the extracted data before using it, commonly the manipulation
aims to shape the data to be a better fit for the operation or predictably increase the quality.

This manipulation may be data cleansing which is eliminating the logically impossible data,
for example, there is a set of instances of software with a count of three characters or longer
strings and the count of different bytes features if the count of different bytes is lesser than
the number of three characters or longer strings of an instance, there is a high probability of
false information since the standard size of a character is one byte.

Another manipulation technique is editing the features of instances, for example, features
standardized by standard scaling. Also, the elimination of noisy data instances is typically
performed during preprocessing.

1.8.2.3 Feature Selection
Feature selection also known as variable selection or attribute selection is the process of reducing
the dimension of instance data by selecting a relevant subset of features or transforming the
feature set to a lower dimension set. The feature selection aims to increase performance by
decreasing the dimension of features.

1.8.2.4 Machine Learning Algorithm
Machine learning algorithms aim to solve the classification of instances or clustering of data
problems. Machine learning algorithms are categorized into three groups by the data sets they
feed during the training phase. The training phase of machine learning algorithms is the pattern
matching, finding, and predicting phase by the input data set, this phase is essential to perform
the classification of instances or clustering of data tasks. Therefore, the training data set has a
huge impact on achieving the goal.

Machine learning algorithms perform the learning phase with supervised, unsupervised, or
semi-supervised training data sets.

Supervised machine learning algorithms use datasets with labeled instances. Labeled in-
stances definition refers to classified instances, for malware detection algorithms, the classi-
fication is essentially malware, benign, or unknown, for more comprehensive classification,
families of malware provide deeper knowledge.

Unsupervised machine learning algorithms use unlabeled training data sets to discover hidden
patterns or cluster the data set without human intervention.

Semi-supervised machine learning, also called weak supervision, combines supervised learning
and unsupervised learning. That approach aims to alleviate the problem of having limited
labeled data with larger unlabeled data.

Machine Learning-Based Malware Detection 17

1.8.2.5 Evaluation
The evaluation of machine learning depends on the success criteria, by the success metrics the
performance of machine learning with the input training data set has been criticized. To sum up,
the training data has a huge impact on the performance of machine learning algorithms, hence
the evaluation of the algorithm matched the training data set.

1.8.3 Principal Component Analysis
The principal component analysis starts with centering the data around the origin, evaluates the
center of data and relative positions of instances, then moves the instances to the relatively same
position centered around the origin.

After the centering, the best-fitting linear combination is discovered. The distance between
the origin and the reflection of the instance on the line of linear combination for each instance
is squared and summed to determine the best-fitting linear combination. The higher sum of
squared distances is the better.

After finding the best-fitting linear combination, new linear lines will be calculated for other
dimensions, those new linear lines are perpendicular to the best-fitting linear combination line
and like the best-fitting linear combination line, they also pass through the origin which is the
center of the data graph at that stage.

For each dimension (or features in feature vectors of the implementation), the square of the
distance between the reflections of data on the new linear line and the origin is calculated. The
dimensions with bigger calculated scores are better-fit and the best candidates are selected among
the scores. Only the selected dimensions are used during the rest of the execution.

18 Background Information

Chapter 2

Algorithm Description

In this chapter, we propose a new unsupervised instance selection algorithm. The complete codes
are provided in the GitHub repository [7]. The Nearest Cluster Enemy (NCE) instance selection
algorithm works in four steps.

1. The first step is preprocessing. Preprocessing reduces the number of features in the feature
vector of the instances from the data set and scales the data of the feature vector.

2. The second step is clustering. Clustering prepares the data set for the third step and further
to the fourth step. So the clustering parameters are parameters of NCE.

3. The third step is searching for the nearest enemy of each instance with respect to clusters.
The nearest enemy with respect to clusters is the nearest instance from a different cluster set
of the subject instance.

4. The last step is elimination. Two different elimination methods are proposed for the last step.
Both methods depend on the result of the second step, and the nearest enemy with respect
to clusters.

19

20 Algorithm Description

For each step of the algorithm, the result of the step is represented as a graph in relative sec-
tions. The graph of the original (non-reduced) data set used for the demonstration of particular
steps of NCE is presented in Figure 2.1.

Figure 2.1 Original Graph

2.1 Preprocessing and Feature Extraction
The first step is preprocessing, for all steps of the NCE algorithm work depending on the feature
vector of instances. The feature vector of instances is a numeric representation of numbers of
bytes as mentioned in the first chapter. There are over 2000 features in each instance of EMBER
[8] data set instances. To preprocess the data set, principal component analysis has been used.
The purpose of this analysis is to increase the accuracy of the model and decrease time complexity
by extracting the most significant features. Moreover, feature vectors are scaled by using the
StandardScaler [9] function of sklearn.preprocessing library because scaling the data makes it
easier to process and makes extreme data processable.

Clustering 21

2.2 Clustering
The Second step is clustering. Clustering is essential since the third and last step depends on
clustering labels. Clustering labels are the numeric representation of clusters, unique for each
cluster. Density-based clustering (DBSCAN) has been used during this step because the number
of clustering should not be restricted.

As depicted in Figure 2.2, certain instances are not displayed and, consequently, will not be
used in the rest of the steps since they are not clustered.

Figure 2.2 Clustering Result Graph

22 Algorithm Description

2.3 Detection of Nearest Enemies
The third step is the detection of the nearest enemy with respect to clustering. For each instance,
the nearest enemy with respect to clustering is found. The third step has been done by brute
force. Therefore, the time complexity of the third step is relatively high compared to the first,
second, and fourth steps. Suggestions to decrease expected execution time are presented in the
implementation notes section. The distance between two instances is Euclidean distance with
respect to feature vectors of instances.

Figure 2.3 shows the clustered data set and their nearest enemies with respect to clustering.
For each instance, the tip of the arrow points to its nearest enemy with respect to clustering.

Figure 2.3 Detection of Nearest Enemies Result Graph

Elimination 23

2.4 Elimination
The last step is elimination. Two eliminating techniques are proposed in this step. In the first
technique, the nearest enemy with respect to the clustering of each instance is detected and
consequently, the instances undetected as the nearest enemy are eliminated.

Figure 2.4 shows the result of the first elimination technique NCE 1.

Figure 2.4 Elimination 1 Result Graph

24 Algorithm Description

In the second technique, to determine if an individual instance X should be eliminated, the
algorithm calculates the distance between X and its nearest enemy NE and compares it to the
distances between the other members of the cluster and NE. If the number of cluster members
that are closer to NE than X exceeds the threshold, X is eliminated from consideration.

Figure 2.5 shows the result of the second elimination technique NCE 2.

Figure 2.5 Elimination 2 Result Graph

Chapter 3

Implementation notes

3.1 Instance PE Class
The data set is kept as an object array in the implementation. The class has 5 fields.

Two of the fields of the class contain just holding information from the data set, they are
the SHA256 and the feature vector of the instance. The SHA256 is the digital signature of
the software instance, created by the Secure Hash Algorithm SHA256. The feature vector is
numerically the representation of features of instances as mentioned in the Algorithm Description
section.

The three other fields are the cluster label of the instance and its position in the array, and
the SHA256 of the nearest enemy with respect to the clustering.

3.2 Preprocessing and Clustering

The sklearn [10] library of Python provides preprocessing and clustering functions. The sklearn
library has functionalities about supervised learning, unsupervised learning, model selection and
evaluation, inspection, dataset visualization, dataset transformation, and dataset loading utili-
ties, and it is widely used in the machine learning field.

3.2.1 Principal Component Analysis
Principal component analysis (PCA) can be imported from sklearn.decomposition and per-
form principal component analysis. PCA function of sklearn library has ten arguments n
components is the number of components to be kept (feature vector in PE object), the data to be
analyzed, copy, whiten, svd solver, tol, iterated power, n oversamples, power iteration normalizer,
and random state.

A more detailed description of arguments can be found in the documentation [11].
In the implementation, all the arguments kept default except n components and the data,

the n components argument is set as fifty. The reason for using fifty as the argument is to keep
the execution time small while not neglecting a high amount of data.

3.2.2 Standard Scale
StandardScaler can be imported from sklearn.preprocessing [10] and perform scaling. StandardScaler
[9] function has four arguments, one of which is compulsory and three are optional. The required

25

26 Implementation notes

argument is the data to be scaled. To perform the scale, the scale score z is calculated as:
z = x−u

s
, x is the data sample, u is the mean of the training samples, and s is the standard deviation

of training samples. The standard deviation is a measure of the amount of variation in a dataset.
The optional arguments of StandardScaler are copy, with mean, and with std. All of

these optional arguments have a default value of True. If the copy argument is set to False, the
function tries to avoid copying the data and operates scaling in place. The data set is centered
if the with mean argument is True. In other words, if with mean is False, then u is zero. If the
with std argument is True, the data is scaled to have unit standard deviation. Consequently,
if the with std argument is False, then s is one, and the standard deviation has no impact on
the calculation of the scale score z.

3.2.3 Clustering
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) can be imported from
sklearn.cluster and performs density-based clustering. Density-based clustering depends on two
parameters minimum sample number and epsilon. Epsilon is the maximum Euclidean distance
between instances in a cluster. The minimum sample number is the minimum number of instances
to form a cluster.

The algorithm works as, clustering starts with a random instance, every instance in the
epsilon range included in the group to create the cluster, then this is repeated for each new
group member recursively when there is no instance left in the epsilon range, group members
counted if the count is smaller than the minimum sample number, corresponding instances are
considered noise if the count is equal to or greater than the minimum sample number, a new
cluster is formed.

The search for the nearest enemy with respect to the clustering is done by brute force. For
each individual instance, the distance between the instance and all other instances is calculated.
Calculation of the distance is done by using the dist() function imported from the math library
in Python. math.dist() function requires 2 inputs, the array of positions of two points, and
returns Euclidean distance between the points.

3.3 Elimination

In the implementation, these points are feature vectors of PE objects, and these feature vectors
are 50-dimensional arrays. While calculating Euclidean distances between instances nearest
instance from different cluster sets is recorded. This process can be easily parallelized.

Therefore, in implementation, the Pool function from the multiprocessing library of Python
is used to create a pool of processes that later will execute a parallelized function. The Pool
function requires one input, to use the full available capacity of the machine number of all
available CPU cores can be detected by using cpu count(). Afterward, apply async() is called
to create parallel asynchronous tasks. Parallel tasks are executions by different CPUs at the
same time.

Asynchronous means those tasks do not block each other. If parallel tasks are not asyn-
chronous, they have a synchronization mechanism and CPU cores follow this synchronization
mechanism to start a new task. On the other hand, asynchronous parallel tasks start to execute
the new task immediately after they finish the current task until task pool is empty (no task left
to execute).

apply async() requires three arguments, the function to be executed, arguments of the
function, and the callback function. The callback function catches the results of each task and
processes it accordingly.

Elimination 27

In the implementation, the executed function does the brute-force search of the nearest en-
emy according to clustering and records the nearest enemies’ SHA256 and index number to the
corresponding fields of the instance object, arguments change correspondingly one by one for
each instance and the callback function builds an array collecting return of NE functions which
are instances with information of their nearest enemy with respect to clustering.

3.3.1 Elimination Technique 1
The first elimination technique is the elimination of all instances which are not the nearest enemy
of another instance from a different cluster, that process has the risk of taking an exhaustive
amount of time. Because iteratively searching for each instance to mark their nearest enemy has a
higher time complexity compared to the dynamic programming approach. To prevent exhaustive
search operations, time complexity can be transformed into space complexity in that elimination
technique. An array size equal to the object array m created filled with zeros as initial values, in
a loop, each nearest enemy’s index can be marked with one in m since the index number of each
enemy is recorded in the third step, then only the objects corresponding to marked indexes of m
are kept, unmarked objects are eliminated. The Pseudo code of this technique is represented in
Algorithm 1:

Algorithm 1 Eliminating Technique 1
1: m[length(Object list)] = {0} {m is an array with size of Object list, all elements initialized

as zero}
2: M {M is the array of all PE objects}
3: for m in M do
4: m[Object list.NE] = 1 {Object list.NE is the index number of the nearest enemy}
5: end for
6: for i in range(0, length(M)) do
7: if M [i] then
8: M is not eliminated
9: else

10: M is eliminated
11: end if
12: end for

3.3.2 Elimination Technique 2
The second elimination technique eliminates by comparison of the distance between an object
Obj and its nearest enemy against the distance between the objects from the same cluster and
object Obj’s nearest enemy. To shrink the search space per object, first, a two-dimensional object
array is created, and arrays of clusters are created. Arrays of clusters are object arrays that are
part of the same cluster. To decrease expected time complexity instead of searching for each
cluster’s elements, an empty two-dimensional array with the first dimension’s length equal to the
length of the object array and appended the list correspondingly in one loop with iteration equal
to the length of the object. After creating the two-dimensional array of clusters, the elimination
function is called in an asynchronous parallel loop. The arguments for the elimination function
are an object, the array of the cluster, and the list of objects. By the cluster label field of the
object Obj, the cluster of Obj is input for the function not the whole 2-dimensional array of
clusters is passed as argument. During each iteration, the first distance between the object Obj
and its enemy is computed for further comparisons, then, the distance between each object in
the cluster and the nearest enemy of object Obj is calculated and compared with the distance

28 Implementation notes

of the object Obj. Consequently, if the number of objects closer to the nearest enemy of the
object Obj compared to the object Obj is equal to or more than the threshold, the object Obj is
eliminated. The threshold for this function is equal to the minimum sample number described
in the clustering step. The Pseudo code of the function is represented in Algorithm 2:

Algorithm 2 Elimination Technique 2
1: cluster array {The 2D array of all clusters with instances of each cluster}
2: Obj array {Obj array is the array of all PE objects}
3: minimum samples {Minimum sample number that is used in clustering}
4: for Obj in Obj array do
5: counter ← 0
6: Obj distance← distance(Obj, Object list[Obj.NE])
7: for c obj in cluster array[Obj.cluster] do
8: if Obj distance > distance(c obj, Object list[Obj.NE]) then
9: counter ← counter + 1

10: end if
11: end for
12: if minimum samples > counter then
13: Obj is not eliminated
14: else
15: Obj is eliminated
16: end if
17: end for

Chapter 4

Test Background Information

4.1 Evaluation

Instance selection is a process of selecting a subset of instances from a large dataset that can
be used to train a machine learning model efficiently. It is often used to remove irrelevant
or redundant instances from the dataset, which can improve the performance of the learning
algorithm and reduce the computational cost. Instance selection is especially useful when dealing
with large and complex datasets that are time-consuming and resource-intensive to process.

The primary objective of instance selection is to select a representative subset of instances that
can maintain the predictive power of the learning algorithm while reducing the size of the dataset.
The selected instances should be informative enough to capture the essential characteristics of
the original dataset while eliminating noisy or redundant instances that may adversely affect the
performance of the algorithm.

The performance evaluation of instance selection algorithms is crucial in determining their
suitability for different applications. The evaluation is typically based on three metrics: reduction
rate, accuracy, and computational time.

4.1.1 Reduction Rate
Instance selection algorithms are widely used in machine learning to reduce the size of large
datasets, without compromising their predictive performance. The reduction rate is a crucial
metric that measures the effectiveness of an instance selection algorithm in reducing the size of
a dataset.

The reduction rate is defined as the ratio of the number of instances in the reduced dataset to
the number of instances in the original dataset. A low reduction rate implies that the algorithm
effectively removed redundant and irrelevant instances from the dataset, leading to a smaller and
more manageable dataset. This, in turn, can improve the efficiency of the learning algorithm, as
it reduces the number of instances that need to be processed.

However, it is important to note that a high reduction rate does not necessarily guarantee
good performance. The instance selection algorithm should also ensure that the selected instances
are representative of the original dataset and maintain its predictive power. Therefore, it is
necessary to evaluate the reduction rate in conjunction with other metrics such as accuracy and
computational time.

29

30 Test Background Information

4.1.2 Accuracy
In machine learning, the goal is to create models that can accurately predict outcomes based on
input data. The accuracy of the model is directly influenced by the quality of the dataset it is
trained on. Therefore, instance selection algorithms aim to select a subset of instances that are
representative of the original dataset and can maintain the accuracy of the model.

Internal methods assess the quality of the clusters formed by the instance selection algorithm.
These methods rely on measures such as intra-cluster similarity and inter-cluster dissimilarity
to evaluate the clustering results. The higher the intra-cluster similarity and the lower the
inter-cluster dissimilarity, the better the quality of the clusters.

External methods, on the other hand, compare the clustering results to the original labels
of the dataset. The quality of the clustering is evaluated by metrics such as precision. A good
instance selection algorithm should achieve high precision and recall values, indicating that it
correctly identifies instances that belong to the same class and removes instances that do not
belong to the class.

4.1.3 Computational Time
In practical applications, the computational time of an instance selection algorithm can be a
critical factor that determines its feasibility and usefulness. An algorithm that takes a long time
to process large datasets can be impractical and inefficient for real-world scenarios. Therefore, a
computationally efficient instance selection algorithm that can achieve a high reduction rate and
accuracy is desirable.

The computational time of the algorithm can be affected by various factors such as the size and
complexity of the dataset, the selection criteria used by the algorithm, and the implementation of
the algorithm itself. For example, an algorithm that employs computationally intensive selection
criteria, such as distance-based or clustering-based methods, may take longer to process than
simpler algorithms that use heuristics or random sampling. Similarly, even though high-level
languages such as Python have a wide range of libraries and community support, an algorithm
that is implemented using a high-level programming language may be slower than one that uses
lower-level languages or specialized libraries for optimized computations.

4.2 Endgame Malware BEnchmark for Research Dataset

The Endgame Malware BEnchmark for Research (EMBER) dataset is a publicly available dataset
that was created for the purpose of training and testing malware-detecting machine learning
models. It contains features extracted from 1.1 million binary files that were taken from Windows
portable executables. Out of these 1.1 million files, 900,000 instances were intended to be used
as training data, while the remaining instances were intended to be used as testing data.

The primary objective of the training data is to feed the artificial intelligence (AI) during
the learning process. In contrast, the testing data is used to evaluate the accuracy of the AI
after the learning process has been completed. The goal of the EMBER dataset is to provide
a comprehensive, diverse, and realistic dataset that can be used to evaluate the performance
of malware detection algorithms. It includes a wide range of malicious and benign files, with
varying levels of complexity and sophistication.

The EMBER dataset has several advantages. First, it is publicly available, making it accessi-
ble to researchers and practitioners worldwide. Second, it is large and diverse, which allows for a
comprehensive evaluation of different malware detection algorithms. Third, it includes features
that are extracted directly from the binary files, which allows for a more accurate representation
of the data and a better evaluation of the algorithms. Finally, it includes both training and

Endgame Malware BEnchmark for Research Dataset 31

testing data, which allows for a comprehensive evaluation of the performance of the algorithms
both during and after the learning process.

For more comprehensive details, you can take a look at the paper EMBER: An Open Dataset
for Training Static PE Malware Machine Learning Models. [8]

4.2.1 Windows Portable Executable
The Windows portable executable (PE) is a file format that was introduced by Microsoft for
executables in the Windows operating system. It is a common file format used for applications,
dynamic-link library (.dll) files, audio compression manager (.acm) files, DirectShow (.ax) files,
system files (.sys), Windows ActiveX Control files (.ocx), object, object code files, and many
more different types of Windows files.

PE files contain the necessary information for the Windows Operating System loader to
manage the wrapped executable code. This information includes the code and data sections
of the executable, as well as the metadata and resources associated with the executable. The
metadata includes information about the file, such as its version number and timestamp, while
the resources can include icons, dialogs, and other embedded files.

PE files are essential to the operation of Windows and are used by the operating system to load
and execute code. They also play a critical role in the security of the Windows operating system,
as they can be used to package malware and other malicious code. As a result, understanding the
format and contents of PE files is essential for developing and implementing effective malware
detection and prevention strategies.

4.2.2 Library to Instrument Executable Formats
The LIEF library is an open-source project that offers a library to parse, modify, and abstract
executable file formats such as Executable and Linkable Format (ELF), Portable Executable
(PE), and Mach Object (Mach-O). It provides a set of functionalities to read and analyze the
structure of the executable files, extract features, and manipulate the files in various ways. LIEF
is cross-platform and supports three different programming languages: Python, C, and C++.

The source code to extract features of PE files from the EMBER dataset is published on
GitHub together with the dataset, and it uses the LIEF library. The feature extraction process
involves parsing the PE file structure and extracting various properties such as file header, section
headers, imports, exports, resources, and strings. These features are then used as input to train
and test machine learning models for malware detection.

The availability of the source code for feature extraction enables researchers and practitioners
to replicate the feature extraction process and apply it to other datasets or use it for other
purposes. Additionally, the use of a widely available and well-documented library like LIEF
simplifies the implementation of feature extraction and allows for easier integration into existing
projects.

4.2.3 Format of EMBER Dataset
The EMBER dataset, which contains features of 1.1 million binary files extracted from Windows
portable executables, stores the extracted data in a JSONL file format. JSONL files differ from
JSON files in that each line in the file contains a single JSON object, with new line characters
separating each object. Therefore, each row in the EMBER dataset corresponds to a different
PE file, and contains various features of the file in JSON format. The features extracted from
the PE files are organized into different categories, including ”general”, ”header”, ”imports”,
”exports”, ”section”, ”histogram”, ”byteentropy”, and ”strings”

“sha-256” is hash of the PE file by sha-256 hashing algorithm.

32 Test Background Information

“appeared” is the year and month of appearing.

“label” is the classification of PE file as benign, malicious, or unlabeled.

“general” is set of general file information features includes size, virtual size, number of
imported functions, number of exported functions.

“header” consists of the timestamp, target machine and a list of image characteristics.

“imports” consists of imported functions and their libraries parsed from import address table.
The import address tables are part of Windows executables and DLLs which contain addresses
of imported functions.

“exports” is the list of exported functions.

“section” contains properties of each section.

“histogram” is the list of the count of each byte.

“byteentropy” is the approximate joint distribution of entropies and byte values. “strings” is
the list of strings at least five characters long and their characteristics.

During evaluation “sha-256” and “histogram” were used. Each step of the NCE algorithm
uses the “histogram” list as a feature array and the hash of the PE file is kept for backtracking the
instance since during the first step of the NCE algorithm, the original feature array is reduced
by PCA and scaled. “Histogram” has been used for instance selection because counting the
occurrence of each byte in a file can be used as a feature in machine learning models for malware
detection.

By analyzing the distribution of byte counts across a large number of files, machine-learning
models can learn to identify patterns that are indicative of malware. For example, some
malware may contain a large number of specific bytes, such as null bytes (0x00) or escape
characters (0x1B), that are not commonly found in legitimate files.

By detecting an unusually high frequency of these bytes in a file, machine learning models
can flag the file as potentially malicious. However, counting the occurrence of each byte
alone may not be sufficient for effective malware detection, as many legitimate files may also
contain uncommon byte values.

Therefore, byte counts are often used in conjunction with other features, such as byte n-grams,
or file metadata to create a more comprehensive malware detection system. [12][13]

4.3 Silhouette Method
The Silhouette method is an internal evaluation technique for clustering results. Internal evalu-
ation means the evaluation of results based on the data itself. The Silhouette method has been
used to evaluate the quality of instance selection by the clusters. The Silhouette is a method
to measure the quality of clusters, since the algorithm works with unlabeled data, using the
Silhouette method is consistent to judge the quality of the clustered data sets’ formation. That
method yields a floating point which is called the Silhouette distance or coefficient. The coeffi-
cient is between minus one and one. If the score is close to one, the method indicates clusters
are accurately formed, on the other hand near minus one means the opposite. Calculation of the
Silhouette coefficient depends on two characteristics of the clusters. Cohesion is characteristic of
the similarity of instances that share the same clustering set and separation is characteristic of
the dissimilarity of instances from different clustering sets.

Clean Form 33

1. To calculate the Silhouette coefficient, the first step is to calculate the mean of the intra-
cluster distance a. For each member of the cluster, the mean distance between the member
and all other instances that are sharing the same cluster is calculated.

2. In the second step, the mean nearest distinct cluster distance b is calculated. The mean
distance between the member and instances of a distinct cluster set is calculated for each
distinct cluster, and then the distinct cluster with minimum mean distance is selected as the
nearest distinct cluster and the mean distance as b. These a and b values are calculated for
each instance.

3. As the last step, the Silhouette coefficient for one instance is calculated with the formula (b -
a) / max(a, b). The result of the Silhouette method is the average of the Silhouette coefficient
of whole instances.

In Python, this method is named “silhouette score” and is publicly available to import from
the “sklearn.metrics” library. “silhouette score” function has 6 input arguments, two of which
are compulsory, the instance data and the cluster labels for each instance. The other three are
optional to fill because they have default values.

One of these three methods is the “metric” which is the metric to calculate the distance
between instances and is set Euclidean distance as default.

Another one is “sample size”, it is optional to determine the size of the sample while using a
random subset of the data, it is set as none in the default which means no sampling is used.

The other argument is “random state” and it is a seed for random number generation of the
subset of samples, if “sample size” is none “random state” is not used, the default is none.

The last argument is “kwds”. “kwds” does not have a default value, completely optional,
it stands for optional keyword parameters, and these parameters are directly passed to the
distance function. During the evaluation, only compulsory parameters are used.

4.4 Clean Form

In the case of instance selection, the goal is to select a subset of instances that are representative
of the original data and can maintain the predictive power of the learning algorithm. One issue
that may arise during the instance selection process is the presence of noisy data, which can
negatively impact the quality of the selected instances. To address this issue, a first step is taken
to purge the dataset of noisy data. The number of instances that do not involve a cluster are
identified as noise and removed from the dataset.

After the noisy data is purged, the remaining data is clustered using density-based clustering
techniques such as DBSCAN. The Silhouette coefficient is then calculated to evaluate the quality
of the clustering results. The Silhouette coefficient is a metric used to assess the quality of a
clustering solution. It measures how similar an instance is to its own cluster compared to other
clusters. A high Silhouette coefficient indicates that the instances are well-clustered and that
the clustering solution is of good quality.

The clean form refers to the dataset without the instances that are not part of a cluster. This
is because density-based clustering algorithms like DBSCAN require a minimum cluster size, and
instances that do not belong to any cluster are assigned a cluster label of -1. The clean form of
the dataset is the preprocessed training dataset where all instances are part of a cluster and can
be used for model training.

34 Test Background Information

4.5 Purity
The purity of the clustering set is a measure of how well the clusters represent the different
classes of data. It is an external evaluation technique, which means that it requires knowledge
of the ground truth or the actual class labels of the data. The purity of a cluster is defined as
the proportion of instances in the cluster that belongs to the most frequent class in that cluster.

To calculate the purity of a clustering set, the class labels of the instances in each cluster
are determined. For each cluster, the class label that appears most frequently in the cluster is
identified as the predominant class for that cluster. The number of instances in the cluster that
belongs to the predominant class is then counted, and the sum of these counts across all clusters
is calculated. Finally, this sum is divided by the total number of instances in the dataset to
obtain the purity of the clustering set.

A high purity score indicates that the clusters are well separated and contain instances be-
longing to a single class, while a low score suggests that the clusters are mixed and contain
instances from multiple classes. Purity is a useful evaluation metric for clustering algorithms,
especially in scenarios where the ground truth is known. However, it is important to note that
in many real-world applications, the ground truth may not be available, making it difficult to
use purity as an evaluation metric.

4.6 Hyperparameter
Hyperparameter optimization, also known as hyperparameter tuning, is an essential step in
machine learning. It involves selecting the optimal parameters for the machine learning algorithm
that will yield the best performance on the given dataset.

In the context of the NCE algorithm, hyperparameter optimization refers to tuning the
parameters of the density-based clustering algorithm used in the third and fourth steps of the
algorithm. The performance of these steps depends on the clustering labels of the input data, as
the nearest enemy of instances according to clustering changes by clustering labels.

The density-based clustering algorithm used in the NCE algorithm has two important pa-
rameters: the minimum number of instances in a cluster and the maximum distance between
cluster members. These parameters are explained in the implementation notes, and they are
tuned during hyperparameter optimization.

To evaluate the performance of the NCE algorithm with different parameters of density-
based clustering, the results are compared and analyzed on a test dataset. The goal is to find
the optimal hyperparameters that will result in the best performance of the NCE algorithm on
the given dataset. results.

4.7 Stratification
Stratification is a technique that is widely used in data science and machine learning to divide a
large dataset into distinct groups or layers, with the purpose of processing each group individually
and then combining the results to form the final result. The goal of this technique is to reduce
the analysis time, as the time complexity of many algorithms depends on the size of the dataset.

The stratification technique is particularly useful when analyzing large datasets that cannot
be processed by a single machine or in a single pass. By dividing the dataset into smaller, more
manageable subsets, it is possible to distribute the processing across multiple machines, or to
process the subsets sequentially on a single machine. This can result in significant reductions in
the time required to complete the analysis.

The stratification technique can be applied in various ways, depending on the nature of the
data and the requirements of the analysis. One common approach is to randomly partition
the dataset into subsets of equal size, with each subset containing a representative sample of the

Nimble Instance Selection 35

overall data. Another approach is to partition the data according to some relevant characteristic,
such as geographic region, time period, or demographic group.

One potential drawback of the stratification technique is that it may decrease the accuracy
or quality of the final result. This is because the subsets of the data may not be representative of
the whole dataset, and may not capture all of the relevant information. However, this drawback
can be mitigated by careful selection of the subsets, or by combining the results in a way that
takes into account the differences between the subsets.

For instance, let’s say we have a dataset with n size to be analyzed. A loop iterates for each
member of the array, and in each iteration, another loop iteration for each member of the array
takes one second. If the array size is 60, the total execution time will be 3600 seconds (1 hour).
On the other hand, if the stratification technique is used, and same-sized data sets are grouped
from the original data set, there will be two executions with halved-sized arrays each, resulting in
two executions lasting up to 900 seconds (15 minutes). In that brief example, the total execution
time is halved by using stratification.

4.8 Nimble Instance Selection

Nimble Instance Selection (NIS) [14] is an unsupervised instance selection algorithm. This algo-
rithm is based on hyper-rectangles, which are generalized parallelograms with higher dimensions.
Hyperrectangles are formed by a sequence of consecutive rectangles in two-dimensional space,
and NIS creates conjectural hyperrectangles indirectly, by forming consecutive rectangles and
keeping only one random instance in each rectangle.

The goal of NIS is to reduce the size of the dataset while retaining its representativeness so
that it can be used in downstream tasks such as clustering, classification, or intrusion detection.
The algorithm achieves this goal by selecting a subset of the most informative instances while
discarding the less informative ones. The resulting subset is smaller and more manageable, while
still retaining most of the relevant information.

One of the advantages of NIS is its speed and scalability. Since the algorithm does not
calculate the exact coordinates of the hyperrectangles, but instead forms them indirectly, it can
process large datasets efficiently. Additionally, the algorithm is unsupervised, which means that
it does not require labeled data, making it suitable for a wide range of applications.

However, a potential drawback of NIS is that it may discard some important instances, which
can result in a loss of information or accuracy. To mitigate this drawback, it is important to
carefully choose the parameters of the algorithm and to evaluate the quality of the resulting
subset using appropriate metrics. Nevertheless, NIS has shown promising results in a variety of
applications, such as image classification, text classification, and sensor data analysis.

A pseudo-code of the NIS algorithm is represented in Algorithm 3:

36 Test Background Information

Algorithm 3 NIS algorithm
Require: Data set X, scaling parameter α (default value is 1.0)
Ensure: Indices of the unique rows in the transformed data set

1: u← Minimum of each column of X
2: transformedX ← X − u
3: transformedX ← α ∗ transformedX
4: v ← Standard deviation of each column of X
5: for each column i in X do
6: transformedX[:, i]← transformedX[:, i]/v[i]
7: end for
8: transformedX ← Round each element of transformedX to the nearest whole number
9: transformedX ← Replace NaN values in transformedX with zero

10: transformedX, indices← Unique rows and their indices in transformedX
11:
12: return indices

4.9 K-Nearest Neighbors Classification
K-nearest neighbors (K-NN) classification is a supervised learning algorithm commonly used for
classification tasks. It is a simple and effective algorithm that can be applied to both binary and
multiclass classification problems.

In K-NN classification, each instance in the dataset is represented by a set of features or
attributes. The class of each instance is also known. When a new instance is presented to the
algorithm, its class is determined based on the class of its k-nearest neighbors.

The k value is a user-defined hyperparameter that specifies the number of neighbors to con-
sider. Typically, a larger k value will result in a smoother decision boundary, while a smaller k
value may lead to overfitting.

To classify a new instance, the distance between the new instance and every instance in the
dataset is calculated. The distance can be measured using various distance metrics, such as
Euclidean distance, Manhattan distance, or Minkowski distance. The k nearest neighbors are
then identified based on their distance to the new instance. The class of the new instance is
determined by taking the majority class of the k-nearest neighbors.

K-NN is a simple and intuitive algorithm, but it has some limitations. One of the main
challenges of K-NN is choosing the appropriate value of k. If k is too small, the algorithm may
be sensitive to noise in the data and may not capture the underlying structure of the data. On
the other hand, if k is too large, the algorithm may be too generalized and may not capture the
local structure of the data. Additionally, the algorithm can become computationally expensive
when the dataset is large, as the distance between every instance in the dataset needs to be
calculated for each new instance.

Chapter 5

Test Implementation Notes

5.1 Hyperparameters

During testing of the NCE algorithm, various argument pairs were used to evaluate the algo-
rithm’s performance with different hyperparameters. The argument pairs used in the tests were
combinations of minimum cluster size and maximum distance between instances, epsilon, with
values of 0.0005, 0.001, and 0.01 for epsilon, and 3 and 5 for minimum cluster size.

The reason for using these specific epsilon values was that larger values cover a larger area
for scaled instance coordinates, which increases the probability of the sizes of the clusters being
very large, resulting in decreased performance of NCE. On the other hand, smaller epsilon values
yield a result data set with a reduction rate of only 0.2%, which is an insufficient amount of data
for evaluation.

Minimum cluster sizes of 3 and 5 were used because higher values than 5 reduced the data
set excessively, resulting in an insufficient amount of data for evaluation, and smaller numbers
yielded a low reduction rate. However, there was one exceptional pair with a minimum cluster
size of 2 and epsilon of 0.0001, which was a trial of balancing the reduction rate by stretching
extremes of clustering. The results of this exceptional case are enclosed in the Testing Results
section.

It should be noted that experiments with different pair options than the proposed pairs have
a chance of incrementing the performance of the algorithm, but excessive trials have a chance
of resulting in over-fit results. Therefore, the proposed pairs were used to maintain a balance
between testing the algorithm’s performance with different hyperparameters and avoiding over-
fitting.

5.2 Training and Testing Data Sets

In the EMBER data set, there are six training data sets and one testing data set. However,
in the tests conducted for evaluating the NCE algorithm’s performance in terms of Silhouette
coefficient calculation and purity test, only one testing data set has been used.

This decision has been made due to the high computational cost of running the NCE algo-
rithm on the entire EMBER data set. With 900 thousand instances, it takes more than three
days (72 hours) to yield results, while using 170 thousand instances reduces the yielding time
to approximately between one and thirteen hours. Therefore, in order to meet deadlines and
optimize the testing process, only one training data set, specifically training data set number
one, has been used in the Silhouette coefficient calculation and the purity test.

37

38 Test Implementation Notes

Although this limitation may have some impact on the generalization ability of the results, it
is still a reasonable approach given the time constraints and computational resources available.
Overall, the decision to use only one testing data set and one training data set for Silhouette coef-
ficient calculation and purity test in the NCE algorithm testing has been made with consideration
of the trade-off between computational cost and time constraints.

5.3 Working With NIS Algorithm

The result of an unlabeled data set provides more capability for the evaluation techniques for
the result. Beyond the evaluation, the clustering of unlabeled data provides information on the
alignment of instances for pattern matching. Therefore, clustering of the unlabeled dataset is
desirable information, and the existence of that knowledge brings various options for evaluation.
The NIS algorithm selects the instances without grouping or clustering the data set, hence, to be
able to calculate the Silhouette coefficient and perform the purity test, two different approaches
are used clustering after the NIS algorithm NIS a, and clustering before the NIS algorithm NIS b.

NIS a is performed using the NIS instance selection algorithm and then using the clustering
algorithm with the same input argument pairs of the NCE instance selection algorithm. The
resulting clustered data is used for evaluation by the Silhouette coefficient and purity test.

NIS b is performed using the NIS instance selection algorithm to an already clustered instance
data set with the same input argument pairs of the NCE instance selection algorithm. And
the reduction rate of the NIS algorithm and clustering kept similar to the NCE algorithm to
compare the results of the tests by similar reduction rates.

5.4 Silhouette Coefficient

In Python, the function to calculate Silhouette coefficients exists within the Metrics class of the
Sklearn library. The labels and the PE objects’ positions (the feature arrays) are put in two
arrays, appended in order. The label array, the position array, and the Euclidean option for
metric are input arguments to the Silhouette coefficient function. The silhouette coefficient of
the input data set was returned as a result. For each input pair of epsilon and minimum cluster
size, the results of the NCE and the NIS algorithms are represented “Test Results” section.

5.5 Purity

A purity test of the result needs ground truth of the classification of instances. And original
classifications of instances are not kept during the execution of the algorithm. As a first step,
original classifications of instances are restored. To restore original classification labels, hash
strings of the result of the algorithm are formed into a string array.

For each instance, the hash string of instances of the original data set is checked if they
are in the string array. When an instance is detected by its hash string, it is appended into a
dictionary of the hash string of the instance and the original classification of the instance. In a
two-dimensional PE object array, the clusters are grouped into the index of their array, then for
each cluster group in the two-dimensional array, the number of benign and malicious classified
instances are counted, and the count of bigger classification is added to the total. And the result
of the test is the total divided by the size of the result of the tested algorithm.

K-Nearest Neighbors Classification 39

5.6 K-Nearest Neighbors Classification
In the implementation of the KNN classification test, the clustering label of instances is not
used. Instead, hash strings of instances in the result of the algorithm are used to recover the
ground truth classification labels. Once the labels are recovered, for each instance in the testing
dataset, the k-nearest instances are discovered based on their Euclidean distance. The value of k
is chosen to be odd to avoid even cases, and the instance is classified as the label of the majority
of its k nearest neighbors.

To perform KNN classification in Python, the Scikit-learn library provides a KNeighborsClas-
sifier class. The number of neighbors, denoted as ”n neighbors”, can be set to the desired value
to change the ”N”. The location of training data set instances (feature vector) and their labels
are passed to the class as arguments of the ”fit” method to train the KNN classifier. Then, the
”predict” method is executed with the testing data set as an argument to return the predicted
labels of the input testing data set.

To avoid overfitting, experiments of the KNN classifier were performed by using different
n values, such as 5, 9, 13, and 17. Smaller values were not used to avoid overly-fit results,
and larger values were avoided to prevent over-generalization. The Scikit-learn library provides
flexibility in the choice of distance metrics and other parameters that can be tuned to improve
the performance of the KNN algorithm. [15]

40 Test Implementation Notes

Chapter 6

Test Results

6.1 Purity and Silhouette Coefficient
Original: This refers to the results obtained by clustering the original training data set using
the density clustering algorithm.

NCE 1: This refers to the result of the NCE (Nearest Cluster Enemy) algorithm with the
first elimination technique. In this technique, only the nearest enemy of other instances is
kept.

NCE 2 is another variant of the Nearest Cluster Enemy algorithm that uses a second elimi-
nation technique. In this technique, the algorithm identifies the instance that has instances
from the same cluster that are closer to its nearest enemy than the size of minimum samples
of the clusters (the argument used in clustering). The instance is then eliminated from the
data set. The threshold value is determined based on the minimum cluster size.

NIS a refers to the result of the NIS algorithm clustered after performing the NIS algorithm.

NIS b algorithm refers to the result of the NIS algorithm performed on performing the already
clustered data set.

The size of the original training data set is the first training test of EMBER (170 thousand
instances), which means that all the clustering algorithms were applied to this data set. The
tables are used to compare the results of the different clustering algorithms and to determine
which algorithm produces the better clustering results.

41

42 Test Results

6.1.1 Silhouette Score Results
Table 6.1 displays the Silhouette score of the clustering results obtained from the different algo-
rithms with specific clustering arguments. However, it is important to note that the Silhouette
method is not applicable to the result of NIS a. This is since the NIS algorithm does not cluster
the data properly using density-based clustering, and only a small percentage of the data set
(less than one percent) is either clustered or not clustered at all. As a result, it is not possible
to compute the Silhouette score for the clusters obtained from NIS a. DBSCAN is a widely used
clustering algorithm. If the NIS result is not compatible with it, that is a disadvantage of NIS.

Table 6.1 Silhouette Score Table

original NCE 1 NCE 2 NIS a NIS b
0.0001, 2 0.798 0.566 0.810 — 0.683

0.01, 3 0.639 0.421 0.822 — 0.597
0.001, 3 0.810 0.652 0.859 — 0.663
0.01, 5 0.639 0.464 0.847 — 0.539

0.001, 5 0.639 0.449 0.830 — 0.527
0.0005, 3 0.819 0.663 0.847 — 0.703
0.0005, 5 0.845 0.682 0.848 — 0.736

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets.

The results indicate that NCE 2 achieves the highest Silhouette score among all tested meth-
ods, suggesting that it produces the most well-defined and separated clusters. Additionally, the
performance of NCE 2 exceeds that of the clustering based on the original, unmodified dataset.

6.1.2 Reduction Rate Results
Table 6.2 displays the reduction rate of the different clustering algorithms with specific clustering
arguments. However, it is important to note that the reduction rate is not applicable to the
original data set, as it includes the entire data set, and therefore has a 100% reduction rate. The
reduction rate measures the percentage of instances that are kept from the data set during the
instance selection process.

Table 6.2 Reduction Rate Table

original NCE 1 NCE 2 NIS a NIS b
0.0001, 2 — 1.0% 1.9% 1.9% 1.9%

0.01, 3 — 3.0% 6.8% 6.8% 6.8%
0.001, 3 — 2.1% 4.8% 4.8% 4.8%
0.01, 5 — 1.8% 5.7% 5.7% 5.7%

0.001, 5 — 1.8% 5.8% 5.8% 5.8%
0.0005, 3 — 1.7% 3.7% 3.7% 3.7%
0.0005, 5 — 1.0% 2.9% 2.9% 2.9%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets.

The results of the reduction rate demonstrate that each algorithm is capable of effectively
reducing the size of the dataset as intended, achieving the desired level of data reduction.

Purity and Silhouette Coefficient 43

6.1.3 Purity Test Results
Table 6.3 displays the purity test results of the different clustering algorithms with specific
clustering arguments. However, it is important to note that the Purity Test is not applicable to
the result of NIS a. This is because the NIS algorithm does not cluster the data properly using
density-based clustering, and only a small percentage of the data set (less than one percent) is
either clustered or not clustered at all. As a result, it is not possible to compute the Purity Test
for the clusters obtained from NIS a. DBSCAN is a widely used clustering algorithm. If the
NIS result is not compatible with it, that is a disadvantage of NIS.

Table 6.3 Purity Rate Table

original NCE 1 NCE 2 NIS a NIS b
0.0001, 2 67% 65% 62% — 62%

0.01, 3 62% 61% 59% — 62%
0.001, 3 65% 66% 62% — 65%
0.01, 5 62% 62% 60% — 63%

0.001, 5 62% 63% 60% — 63%
0.0005, 3 67% 66% 64% — 66%
0.0005, 5 67% 67% 65% — 66%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets.

The purity test results indicate that, on average, the clusters obtained by the original dataset
have the highest purity rate. However, NCE 1 and NIS b also achieve relatively high purity
rates, while NCE 2 yields the lowest purity rate among the tested methods.

6.1.4 Execution Time
Table 6.4 displays the execution time of the different instance selection algorithms with specific
clustering arguments. The execution time is measured in seconds, denoted by ”s” in the table.

Table 6.4 Execution Time Table

NCE 1 NCE 2 NIS a NIS b
0.0001, 2 651s 1,166s 174s 101s

0.01, 3 29,837s 48,940s 229s 108s
0.001, 3 9,498s 17,434s 198s 104s
0.01, 5 18,926s 32,926s 213s 107s

0.001, 5 7,128s 12,722s 231s 106s
0.0005, 3 4,586s 8,543s 205s 103s
0.0005, 5 2,880s 6,832s 180s 104s

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets.

The execution time table reveals that both NCE 1 and NCE 2 require more time to execute
compared to the NIS algorithm. Additionally, NIS a exhibits a longer execution time than NIS b,
as the input is a larger volume of data.

44 Test Results

6.2 K-Nearest Neighbor Classification
This section provides details on the setup and outcomes of the k-nearest neighbor (KNN) clas-
sification.

6.2.1 Set-Up
The following subsections describe the data used for all KNN classifications, including information
on the reduction rate and execution time.

6.2.1.1 Stratification of NCE
The KNN classifier results of the NCE algorithm are obtained by stratifying the EMBER training
data set. To achieve this, the NCE algorithm is performed on each training data set of EMBER,
and the results are combined.

The execution times of stratification are represented in Table 6.5.

Table 6.5 Execution Time of Stratification Table

NCE 1 NCE 2
0.0001, 2 9,504s 19,113s

0.01, 3 47,365s 71,625s
0.001, 3 14,819s 26,972s
0.01, 5 34,857s 54,555s

0.001, 5 18,379s 29,750s
0.0005, 3 12,661s 25,301s
0.0005, 5 4,952s 10,026s

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are different NCE
elimination techniques.

Table 6.5 demonstrates that NCE 2 exhibits a slower execution time compared to NCE 1.

The reduction rates of stratification are represented in Table 6.6.

Table 6.6 Reduction Rate of Stratification Table

NCE 1 NCE 2
0.0001, 2 1.0% 1.9%

0.01, 3 2.5% 5.8%
0.001, 3 1.8% 4.2%
0.01, 5 1.5% 4.9%

0.001, 5 1.0% 3.1%
0.0005, 3 1.3% 3.0%
0.0005, 5 0.6% 2.3%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are different NCE
elimination techniques.

Table 6.6 indicates that NCE 1 achieves a higher reduction rate compared to NCE 2.

K-Nearest Neighbor Classification 45

6.2.1.2 Preparation of NIS
Table 6.7 represents the reduction rate and execution time of the NIS algorithm applied to the
entire EMBER training data set. In the KNN classification test, clustering is not a requirement.
Therefore, the NIS algorithm is used in its raw form without any clustering. The algorithm takes
the entire preprocessed EMBER data set as input and performs instance selection based on the
feature vector of the data.

Table 6.7 Execution Time by Reduction Rate of NIS Table

NIS
0.6 253s
1.0 250s
1.3 254s
1.5 256s
1.8 259s
1.9 255s
2.3 258s
2.5 260s
3.0 264s
3.1 263s
4.2 263s
4.9 262s
5.8 265s

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets.

The execution time by reduction rate table demonstrates that the NIS algorithm is capable
of achieving the same reduction rate as NCE while executing in less time. In fact, the NIS
algorithm achieves the same reduction rate in a considerably shorter amount of time compared
to NCE.

46 Test Results

6.2.2 K-Nearest Neighbor Classification Results
Each section below represents the KNN classification results of the NCE algorithm, the NIS
algorithm, and the original unreduced EMBER training data set for different values of K.

6.2.2.1 KNN Classification Results of K = 5
The KNN classification results for the entire EMBER training set with a value of K equal to 5
are presented in Table 6.8.

Table 6.8 KNN Classification Results of Original Data Set for K = 5

95.37%

The KNN classification results for NCE 1 and NCE 2 with a value of K equal to 5 are
presented in Table 6.9, along with the corresponding clustering parameters.

Table 6.9 KNN Classification Results of NCE for K = 5 Table

NCE 1 NCE 2
0.0001, 2 76.02% 82.54%

0.01, 3 83.6% 79.13%
0.001, 3 80.93% 85.9%
0.01, 5 74.71% 81.82%

0.001, 5 75.53% 81.79%
0.0005, 3 79.23% 84.36%
0.0005, 5 76.12% 79.72%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are different NCE
elimination techniques.

On average, the KNN classification results presented in Table 6.9 indicate that the NCE 2
algorithm outperforms NCE 1.

K-Nearest Neighbor Classification 47

The KNN classification results for NIS with a value of K equal to 5 are presented in Table
6.10, along with the corresponding reduction rates.

Table 6.10 KNN Classification Results of NIS for K = 5 Table

NIS
0.6 73.97%
1.0 74.35%
1.3 73.05%
1.5 71.67%
1.8 70.61%
1.9 75.6%
2.3 71.33%
2.5 75.9%
3.0 74.93%
3.1 76.62%
4.2 76.88%
4.9 76.75%
5.8 77.41%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets

The results of the NIS algorithm will be discussed in the following tables.

The KNN classification results for NIS and NCE 1, both with a value of K equal to 5, are
presented in Table 6.11 along with the corresponding reduction rates. It is important to note
that there are two rows for a 1.0% reduction rate because there are two NCE 1 with a 1.0%
reduction rate.

Table 6.11 KNN Classification Results of NIS and NCE 1 for K = 5 Table

NIS NCE 1
0.6 73.97% 76.12%
1.0 74.35% 76.02%
1.0 — 75.52%
1.3 73.05% 79.23%
1.5 71.67% 74.41%
1.8 70.61% 80.93%
2.5 75.9% 83.6%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets

Based on the KNN classification results presented in Table 6.11, NCE 1 achieves better
performance than the NIS algorithm.

48 Test Results

The KNN classification results for NIS and NCE 2, both with a value of K equal to 5, are
presented in Table 6.12 along with the corresponding reduction rates.

Table 6.12 KNN Classification Results of NIS and NCE 2 for K = 5 Table

NIS NCE 2
1.9 75.6% 82.54%
2.3 71.33% 79.72%
3.0 74.93% 84.36%
3.1 76.62% 81.79%
4.2 76.88% 85.9%
4.9 76.75% 81.82%
5.8 77.41% 79.13%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets

Based on the KNN classification results presented in Table 6.12, NCE 2 achieves better
performance than the NIS algorithm.

6.2.2.2 KNN Classification Results of K = 9
The KNN classification results for the entire EMBER training set with a value of K equal to 9
are presented in Table 6.13.

Table 6.13 KNN Classification Results of Original Data Set for K = 9

95.15%

The KNN classification results for NCE 1 and NCE 2 with a value of K equal to 9 are
presented in Table 6.14, along with the corresponding clustering parameters.

Table 6.14 KNN Classification Results of NCE for K = 9 Table

NCE 1 NCE 2
0.0001, 2 72.45% 81.49%

0.01, 3 83.22% 78.56%
0.001, 3 79.02% 85.13%
0.01, 5 72.89% 81.8%

0.001, 5 74.52% 81.79%
0.0005, 3 77.65% 84.36%
0.0005, 5 73.92% 79.7%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are different NCE
elimination techniques.

On average, the KNN classification results presented in Table 6.14 indicate that the NCE 2
algorithm outperforms NCE 1.

K-Nearest Neighbor Classification 49

The KNN classification results for NIS with a value of K equal to 9 are presented in Table
6.15, along with the corresponding reduction rates.

Table 6.15 KNN Classification Results of NIS for K = 9 Table

NIS
0.6 72.44%
1.0 75.1%
1.3 74.49%
1.5 72.73%
1.8 73.79%
1.9 73.97%
2.3 73.73%
2.5 75.14%
3.0 74.46%
3.1 74.96%
4.2 77.23%
4.9 76.28%
5.8 77.33%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets

The results of the NIS algorithm will be discussed in the following tables.

The KNN classification results for NIS and NCE 1, both with a value of K equal to 9, are
presented in Table 6.16 along with the corresponding reduction rates. It is important to note
that there are two rows for a 1.0% reduction rate because there are two NCE 1 with a 1.0%
reduction rate.

Table 6.16 KNN Classification Results of NIS and NCE 1 for K = 9 Table

NIS NCE 1
0.6 72.44% 73.92%
1.0 75.1% 72.45%
1.0 — 74.52%
1.3 74.49% 77.65%
1.5 72.73% 72.89%
1.8 73.79% 79.02%
2.5 75.14% 83.22%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets

Based on the KNN classification results presented in Table 6.16, NCE 1 achieves better
performance than the NIS algorithm on average.

50 Test Results

The KNN classification results for NIS and NCE 2, both with a value of K equal to 9, are
presented in Table 6.17 along with the corresponding reduction rates.

Table 6.17 KNN Classification Results of NIS and NCE 2 for K = 9 Table

NIS NCE 2
1.9 73.97% 81.49%
2.3 73.73% 79.7%
3.0 74.46% 84.36%
3.1 74.96% 81.79%
4.2 77.23% 85.13%
4.9 76.28% 81.8%
5.8 77.33% 78.56%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets

Based on the KNN classification results presented in Table 6.17, NCE 2 achieves better
performance than the NIS algorithm.

6.2.2.3 KNN Classification Results of K = 13
The KNN classification results for the entire EMBER training set with a value of K equal to 13
are presented in Table 6.18.

Table 6.18 KNN Classification Results of Original Data Set for K = 13

94.87%

The KNN classification results for NCE 1 and NCE 2 with a value of K equal to 13 are
presented in Table 6.19, along with the corresponding clustering parameters.

Table 6.19 KNN Classification Results of NCE for K = 13 Table

NCE 1 NCE 2
0.0001, 2 69.68% 80.11%

0.01, 3 81.93% 77.43%
0.001, 3 78.7% 84.8%
0.01, 5 71.24% 81.97%

0.001, 5 73.35% 81.75%
0.0005, 3 76.86% 83.86%
0.0005, 5 72.44% 79.99%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are different NCE
elimination techniques.

On average, the KNN classification results presented in Table 6.19 indicate that the NCE 2
algorithm outperforms NCE 1.

K-Nearest Neighbor Classification 51

The KNN classification results for NIS with a value of K equal to 13 are presented in Table
6.20, along with the corresponding reduction rates.

Table 6.20 KNN Classification Results of NIS for K = 13 Table

NIS
0.6 72.04%
1.0 74.37%
1.3 74.3%
1.5 72.25%
1.8 73.81%
1.9 73.71%
2.3 74.84%
2.5 74.06%
3.0 75.8%
3.1 73.62%
4.2 76.81%
4.9 76.23%
5.8 76.39%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets

The results of the NIS algorithm will be discussed in the following tables.

The KNN classification results for NIS and NCE 1, both with a value of K equal to 13, are
presented in Table 6.21 along with the corresponding reduction rates. It is important to note
that there are two rows for a 1.0% reduction rate because there are two NCE 1 with a 1.0%
reduction rate.

Table 6.21 KNN Classification Results of NIS and NCE 1 for K = 13 Table

NIS NCE 1
0.6 72.04% 72.44%
1.0 74.37% 69.68%
1.0 — 73.35%
1.3 74.3% 76.86%
1.5 72.25% 71.24%
1.8 73.81% 78.7%
2.5 74.06% 81.93%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets

Based on the KNN classification results presented in Table 6.21, NCE 1 achieves better
performance than the NIS algorithm on average.

52 Test Results

The KNN classification results for NIS and NCE 2, both with a value of K equal to 13, are
presented in Table 6.22 along with the corresponding reduction rates.

Table 6.22 KNN Classification Results of NIS and NCE 2 for K = 13 Table

NIS NCE 2
1.9 73.71% 80.11%
2.3 74.84% 77.43%
3.0 75.8% 83.86%
3.1 73.62% 81.75%
4.2 76.81% 84.8%
4.9 76.23% 81.97%
5.8 76.39% 77.43%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets

Based on the KNN classification results presented in Table 6.22, NCE 2 achieves better
performance than the NIS algorithm.

6.2.2.4 KNN Classification Results of K = 17
The KNN classification results for the entire EMBER training set with a value of K equal to 17
are presented in Table 6.23.

Table 6.23 KNN Classification Results of Original Data Set for K = 17

94.68%

The KNN classification results for NCE 1 and NCE 2 with a value of K equal to 17 are
presented in Table 6.24, along with the corresponding clustering parameters.

Table 6.24 KNN Classification Results of NCE for K = 17 Table

NCE 1 NCE 2
0.0001, 2 67.82% 78.95%

0.01, 3 81.45% 77.25%
0.001, 3 78.57% 84.32%
0.01, 5 70.59% 80.87%

0.001, 5 72.01% 81.21%
0.0005, 3 75.65% 83.62%
0.0005, 5 72.32% 79.37%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are different NCE
elimination techniques.

On average, the KNN classification results presented in Table 6.24 indicate that the NCE 2
algorithm outperforms NCE 1.

K-Nearest Neighbor Classification 53

The KNN classification results for NIS with a value of K equal to 17 are presented in Table
6.25, along with the corresponding reduction rates.

Table 6.25 KNN Classification Results of NIS for K = 17 Table

NIS
0.6 72.66%
1.0 73.9%
1.3 80.02%
1.5 72.05%
1.8 73.66%
1.9 73.15%
2.3 72.74%
2.5 74.75%
3.0 75.41%
3.1 74.67%
4.2 75.88%
4.9 76.09%
5.8 76.6%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets

The results of the NIS algorithm will be discussed in the following tables.

The KNN classification results for NIS and NCE 1, both with a value of K equal to 17, are
presented in Table 6.26 along with the corresponding reduction rates. It is important to note
that there are two rows for a 1.0% reduction rate because there are two NCE 1 with a 1.0%
reduction rate.

Table 6.26 KNN Classification Results of NIS and NCE 1 for K = 17 Table

NIS NCE 1
0.6 72.66% 72.32%
1.0 73.9% 67.82%
1.0 — 72.01%
1.3 80.02% 75.65%
1.5 72.05% 70.59%
1.8 73.66% 78.57%
2.5 74.75% 81.45%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets

Based on the KNN classification results presented in Table 6.26, NIS achieves better perfor-
mance than the NCE 1 algorithm on average.

54 Test Results

The KNN classification results for NIS and NCE 2, both with a value of K equal to 17, are
presented in Table 6.27 along with the corresponding reduction rates.

Table 6.27 KNN Classification Results of NIS and NCE 2 for K = 17 Table

NIS NCE 2
1.9 73.15% 78.95%
2.3 72.74% 79.37%
3.0 75.41% 83.62%
3.1 74.67% 81.21%
4.2 75.88% 84.32%
4.9 76.09% 80.87%
5.8 76.6% 77.25%

The rows of the table are arguments of clustering, the left-hand side of the coma is the
maximum distance between instances in a cluster and the right-hand side of the coma is the
minimum number of instances in a cluster. The columns of the tables are the data sets

Based on the KNN classification results presented in Table 6.11, NCE 2 achieves better
performance than the NIS algorithm.

Chapter 7

The Conclusion

This study aimed to provide a comparative analysis of two unsupervised instance selection algo-
rithms, the Nearest Cluster Enemy (NCE) algorithm, and the Nimble Instance Selection (NIS)
algorithm. The primary objective was to propose an unsupervised instance selection algorithm
and offer valuable insights into the strengths and weaknesses of both algorithms. The ultimate
goal was to help researchers select the most appropriate algorithm for their specific application.

The results of this study showed that the NIS algorithm outperformed the NCE algorithm in
terms of computational efficiency, as it had lower execution times for both techniques. Moreover,
the purity of clustered results of NCE 1 and NIS was better than that of NCE 2 results, indicating
that NCE 2 may not be the optimal choice.

However, the Silhouette scores revealed that the quality of clusters created by the NCE 2
algorithm was better than those created by NCE 1 and NIS, suggesting that NCE 2 may be
more suitable for certain applications. Additionally, the KNN classification results of NCE 2
were consistently better than those of NIS with the same reduction rate. On the other hand,
NCE 1 results were better than NIS on average, although the difference was relatively small
compared to the difference between NIS and NCE 2.

It is worth noting that the NIS algorithm’s results are not compatible with density-based
clustering, which is a popular technique for clustering unlabeled data. This limitation may make
it unsuitable for certain applications. However, it is essential to consider the computational
efficiency, clustering quality, and compatibility with other techniques when choosing an algorithm
for a specific application.

In conclusion, this study provided valuable insights into the strengths and weaknesses of two
unsupervised instance selection algorithms and their elimination techniques. By highlighting the
performance of each algorithm, researchers can use these insights to choose the most appropriate
algorithm for their specific application, depending on the factors mentioned above. Ultimately,
this study contributes to the development of unsupervised instance selection algorithms and their
applications.

55

56 The Conclusion

Bibliography

1. JUREČEK, Martin; JUREČKOVÁ, Olha. Parallel Instance Filtering for Malware Detec-
tion. In: 2022 48th Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA). 2022, pp. 13–20. Available from doi: 10.1109/SEAA56994.2022.00012.

2. HART, P. The condensed nearest neighbor rule (Corresp.) IEEE Transactions on Informa-
tion Theory. 1968, vol. 14, no. 3, pp. 515–516. Available from doi: 10.1109/TIT.1968.
1054155.

3. WILSON, Dennis L. Asymptotic Properties of Nearest Neighbor Rules Using Edited Data.
IEEE Transactions on Systems, Man, and Cybernetics. 1972, vol. SMC-2, no. 3, pp. 408–
421. Available from doi: 10.1109/TSMC.1972.4309137.

4. BRIGHTON, Henry; MELLISH, Chris. Advances in Instance Selection for Instance-Based
Learning Algorithms. Data Mining and Knowledge Discovery. 2002, vol. 6, no. 2, pp. 153–
172. Available from doi: 10.1023/A:1014043630878.

5. WILSON, D. Randall; MARTINEZ, Tony R. Reduction Techniques for Instance-Based
Learning Algorithms. Machine Learning. 2000, vol. 38, no. 3, pp. 257–286. Available from
doi: 10.1023/A:1007626913721.

6. AV-TEST GMBH. AV-TEST Statistics [https://www.av-test.org/en/statistics/
malware/]. Accessed on May 1, 2023.

7. MEFEZ. Unlabeled Ins Selection [https://github.com/Mefez/Unlabeled_Ins_Selection].
2021. Accessed: [Insert Date].

8. ANDERSON, Hyrum S; ROTH, Philip; KLIGER, Max; STORLIE, Curtis B. EMBER: An
Open Dataset for Training Static PE Malware Machine Learning Models. In: 2018 17th
IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE,
2018, pp. 1–9.

9. DEVELOPERS, scikit-learn. StandardScaler. scikit-learn: Machine Learning in Python.
2021. Available also from: https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.StandardScaler.html.

10. PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.;
GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V.; VAN-
DERPLAS, J.; PASSOS, A.; COURNAPEAU, D.; BRUCHER, M.; PERROT, M.; DUCH-
ESNAY, ’E. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Re-
search. 2011, vol. 12, pp. 2825–2830.

11. SCIKIT-LEARN CONTRIBUTORS. sklearn.decomposition.PCA [https://scikit-learn.
org/stable/modules/generated/sklearn.decomposition.PCA.html]. Accessed on May
1, 2023.

57

https://doi.org/10.1109/SEAA56994.2022.00012
https://doi.org/10.1109/TIT.1968.1054155
https://doi.org/10.1109/TIT.1968.1054155
https://doi.org/10.1109/TSMC.1972.4309137
https://doi.org/10.1023/A:1014043630878
https://doi.org/10.1023/A:1007626913721
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://github.com/Mefez/Unlabeled_Ins_Selection
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

58 Bibliography

12. YU, Sheng; ZHOU, Shijie; LIU, Leyuan; YANG, Rui; LUO, Jiaqing. Detecting Malware
Variants by Byte Frequency. JNW. 2011, vol. 6, pp. 638–645. Available from doi: 10.4304/
jnw.6.4.638-645.

13. TABISH, S. Momina; SHAFIQ, M. Zubair; FAROOQ, Muddassar. Malware Detection using
Statistical Analysis of Byte-Level File Content. In: 2013 5th International Conference on
Next Generation Mobile Apps, Services and Technologies. IEEE, 2013, pp. 139–144.

14. AYDIN, Fatih. Unsupervised instance selection via conjectural hyperrectangles. Neural
Computing and Applications. 2023, vol. 35, no. 7, pp. 5335–5349. issn 1433-3058. Avail-
able from doi: 10.1007/s00521-022-07974-z.

15. SCIKIT-LEARN CONTRIBUTORS. sklearn.neighbors.KNeighborsClassifier [https : / /
scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.
html]. Accessed on May 1, 2023.

https://doi.org/10.4304/jnw.6.4.638-645
https://doi.org/10.4304/jnw.6.4.638-645
https://doi.org/10.1007/s00521-022-07974-z
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Appendix A

Acronyms

PIF = Parallel Instance Filtering
AI = Artificial Intelligence
ML = Machine Learning
CNN = Condensed Nearest Neighbor
ENN = Edited Nearest Neighbor
ICF = Iterative Case Filtering
DROP = Discriminative Random Over-Sampling Projection
NIS = Nimble Instance Selection
NCE = Nearest Cluster Enemy
NE = Nearest Enemy
PCA = Principal component analysis
EMBER = Endgame Malware BEnchmark for Research
ELF = Executable and Linkable Format
PE = Portable Executable
Mach-O = Mach Object
DBSCAN = Density-Based Spatial Clustering of Applications with Noise
K-NN = K-Nearest Neighbors

59

60 Acronyms

	Acknowledgments
	Declaration
	Abstract
	Introduction
	Motivation
	Background Information
	Artificial intelligence
	Definition of Artificial Intelligence
	Weak AI and Strong AI

	Machine Learning
	Definition of Machine Learning
	Types of Machine Learning

	Instance Selection
	Definition of Instance Selection
	Advantage of Instance Selection
	Methods of Instance Selection
	Supervised and Unsupervised Instance Selection
	Filtering and Wrapper Methods of Instance Selection
	State-of-Art Instance Selection Algorithms
	Nimble Instance Selection Algorithm
	Deeper Definition of Unsupervised Learning

	Malware
	Definition of Malware
	Motivation of Malware

	Malware Detection
	Definition of Malware Detection
	Challenges of Malware Detection
	Solution for Challenges
	Sum-Up

	Signature-Based Malware Detection
	Challenges of Malware Detection

	Behavioral Analysis Malware Detection
	Definition of Behavioral Analysis
	Definition of Behavioral Analysis
	Types of Behavioral Analysis
	Sum-Up

	Machine Learning-Based Malware Detection
	Variant Detection and Similarity Detection
	Steps of Malware Detection
	Principal Component Analysis

	Algorithm Description
	Preprocessing and Feature Extraction
	Clustering
	Detection of Nearest Enemies
	Elimination

	Implementation notes
	Instance PE Class
	Preprocessing and Clustering
	Principal Component Analysis
	Standard Scale
	Clustering

	Elimination
	Elimination Technique 1
	Elimination Technique 2

	Test Background Information
	Evaluation
	Reduction Rate
	Accuracy
	Computational Time

	Endgame Malware BEnchmark for Research Dataset
	 Windows Portable Executable
	Library to Instrument Executable Formats
	Format of EMBER Dataset

	Silhouette Method
	Clean Form
	Purity
	Hyperparameter
	Stratification
	Nimble Instance Selection
	K-Nearest Neighbors Classification

	Test Implementation Notes
	Hyperparameters
	Training and Testing Data Sets
	Working With NIS Algorithm
	Silhouette Coefficient
	Purity
	K-Nearest Neighbors Classification

	Test Results
	Purity and Silhouette Coefficient
	Silhouette Score Results
	Reduction Rate Results
	Purity Test Results
	Execution Time

	K-Nearest Neighbor Classification
	Set-Up
	K-Nearest Neighbor Classification Results

	The Conclusion
	Acronyms

