
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Real-Time Assistance for Visually Impaired Individuals

Ernesto Iván Ochoa Hidalgo

Ing. Erik Derner, Ph.D.

Informatics

Software Engineering 2021

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

Mobile applications can assist visually impaired people in performing a wide range of

daily tasks, including navigation in unknown environments. One category of these

applications is based on establishing a connection with a fully sighted user to provide

assistance. While a few applications offering real-time support by transferring

information from the visually impaired user's smartphone to a fully sighted user are

available, they have certain drawbacks that complicate their use for the target group.

Existing applications are missing useful features such as high-resolution static image

sharing, they do not allow for efficient control, or they are marketed at a high price.

This thesis aims to survey existing applications for sharing audiovisual and location

information from the visually impaired user's smartphone with a fully sighted user,

identify the drawbacks of such applications, and propose a solution that overcomes

these limitations. In particular, the thesis is expected to address the following objectives:

1. Survey existing mobile applications offering the assistance of fully sighted users to

visually impaired users and analyze their advantages and disadvantages.

2. Identify the most critical missing features among the available solutions.

3. Design, implement, and evaluate a prototype of an application offering the assistance

of fully sighted users to visually impaired users, addressing the identified drawbacks of

the existing applications.

Electronically approved by Ing. Michal Valenta, Ph.D. on 11 December 2022 in Prague.

Master’s thesis

REAL-TIME
ASSISTANCE FOR
VISUALLY IMPAIRED
INDIVIDUALS

Bc. Ernesto Iván Ochoa Hidalgo

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Erik Derner, Ph.D.
May 4, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Bc. Ernesto Iván Ochoa Hidalgo. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted
at Czech Technical University in Prague, Faculty of Information Technology. The thesis is
protected by the Copyright Act and its usage without author’s permission is prohibited (with
exceptions defined by the Copyright Act).

Citation of this thesis: Ochoa Hidalgo Ernesto Iván. Real-Time Assistance for Visually Impaired
Individuals. Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2023.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of Abbreviations x

1 Introduction 1
1.1 Visual Impairment in the Czech Republic, Figures, Types and Observations 1
1.2 Meetings at SONS . 2

2 Review of Existing Applications 5
2.1 Native Mobile Accessibility Options . 5

2.1.1 Android Native Accessibility Options 6
2.1.2 iOS Native Accessibility Options 8

2.2 Remote Assistance Applications . 8
2.3 Applications for Navigation . 10

3 Analysis and Requirements 11
3.1 Identifying Drawbacks . 11
3.2 Functional Requirements . 13
3.3 Non-Functional Requirements . 13

4 Exploring Potential Solutions 15
4.1 Ionic Framework . 15
4.2 React Native . 16
4.3 Apache Cordova . 16
4.4 PeerJS . 16

5 Final Solution 19
5.1 Dart . 19
5.2 Flutter . 20

5.2.1 History . 20
5.2.2 Support . 21
5.2.3 The Widget Component . 21
5.2.4 State Management . 24
5.2.5 PeerDart . 26

5.3 Architecture Overview . 27
5.4 Implementation . 27
5.5 The Requester . 28

iii

iv Contents

5.5.1 Starting Resources . 31
5.5.2 Resources Started . 32
5.5.3 Ongoing Call . 32
5.5.4 Call Ended . 34

5.6 The Assistant . 34
5.6.1 Starting Resources . 37
5.6.2 Connecting to the Requester . 37
5.6.3 Ongoing Call . 38
5.6.4 Call Finished . 39

5.7 Message Transmission . 41
5.8 TURN Server . 42
5.9 Evaluation of the Implementation . 44
5.10 Deployment . 45

6 Feedback and Interviews 47
6.1 Meeting #1, January 16th, 2023 . 47
6.2 Meeting #2, February 1st 2023 . 48
6.3 Meeting #3, March 3rd 2023 . 49
6.4 Successive Meetings March 22nd – April 12th 2023 49

7 Conclusion 51
7.1 Future Work . 52

List of Figures

1.1 Crude prevalence of vision loss, Czech Republic, 1990–2020. Sourced from
data from the VLEG/GBD 2020 model, accessed via the IAPB Vision Atlas
[1]. 2

2.1 An example of an on-screen Braille keyboard, obtained from [7]. 7
2.2 Be My Eyes main page for visually impaired users, obtained from [10]. . . 9

5.1 Stateful widget life cycle methods [25]. 22
5.2 Stateful widget example. 24
5.3 Architecture of the application. 27
5.4 Main page of the application. 28
5.5 Settings page. 29
5.6 Sequence diagram of the connection process. 31
5.7 Starting resources page. 32
5.8 Resources started page and share code menu. 33
5.9 Ongoing call page. 33
5.10 Call ended page for the requester. 36
5.11 Waiting for partner id page. 38
5.12 Establishing connection page. 39
5.13 Ongoing call on the assistant side. 40
5.14 Call ended on the assistant side. 40
5.15 Drawer for received images, viewed on a desktop computer. 41
5.16 Drawer for received images with multiple pictures on a mobile device. . . . 42

List of Tables

5.1 Platforms supported by Flutter. 21

List of code listings

4.1 Example of the accessible attribute. 16

v

vi List of code listings

5.1 An example to showcase type mismatch handling in Dart. 20
5.2 A type mismatch error message in Dart. 20
5.3 A stateless text widget in Flutter. 22
5.4 A stateful counter widget in Flutter . 23
5.5 Example with notifyListeners() on a ChangeNotifier. 25
5.6 Scoping components inside a ChangeNotifierProvider element. 25
5.7 Accessing functions from ChangeNotifierProvider in a different widget. . . 26
5.8 Initializing a peer. 26
5.9 Resources of RequesterProvider. 30
5.10 ResourceState class. 30
5.11 Call status enum. 31
5.12 Code for taking a picture without opening the camera app. 34
5.13 Take a picture code. 35
5.14 Resources of the HelperProvider class. 37
5.15 Requester call status enum. 37
5.16 Code for rendering an embedded map in Flutter. 41
5.17 Enums representing the message types. 43
5.18 Class for a geolocation message. 43
5.19 Class for a speed information message. 43
5.20 Class for a picture message. 43
5.21 Class for an action message. 44

I would like express my deepest gratitude to my thesis supervi-
sor, Ing. Erik Derner, Ph.D., whose guidance and support have
been invaluable throught my academic life and the development
of this project. I would also like to thank the faculty and staff
of the Czech Technical University in Prague who provided me
with an exceptional learning environment and access to end-
less opportunities for personal and professional growth. Special
thanks go to the International Student Club whose members
have aided me throught my studies and have provided me with
so many unforgettable memories. I would like to extend my ap-
preciation to my friends and family, in particular my parents
Ernesto and Teresa whose unwavering support has allowed me
to embark on the study program that culminates with this work.
I would also like to acknowledge the time and support provided
by the admirable members of Czech Blind United which was an
invaluable source for guidance and feedback during the develop-
ment of this thesis.
A huge thank you to everyone who contributed to this project
in one way or another, your support and encouragement have
made this achievement possible.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources
of information in accordance with the Guideline for adhering to ethical principles when
elaborating an academic final thesis. I acknowledge that my thesis is subject to the rights
and obligations stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as a school work under the provisions of
Article 60 (1) of the Act.

In Prague on May 4, 2023 .

viii

Abstract

This thesis presents the results of research on the tools and accessibility features currently
available for visually impaired people. We have identified key points for improving ex-
isting solutions and produced a web application as a result of four prototype iterations.
This project was developed closely with the input of the Czech Blind United association
members. The application has been tested on various platforms and refined based on the
feedback from visually impaired users. The result of this work is a publicly available ap-
plication accessible via a web browser whose features were requested by visually impaired
users. This thesis describes the technical structure of this application and the technologies
used in its implementation. By means of this work, we hope to promote awareness of the
experiences and needs of visually impaired people and showcase that their lives can be
improved through the use of technology.

Keywords Visually impaired users, video calls, real-time assistance, Flutter, Czech
Blind United.

Abstrakt

Tato práce prezentuje výsledky výzkumu nástroj̊u a funkćı dostupných pro zrakově postižené
osoby. Identifikovali jsme kĺıčové body pro zlepšeńı existuj́ıćıch řešeńı a vytvořili we-
bovou aplikaci, která je výsledkem čtyř iteraćı prototyp̊u. Tento projekt byl vyvinut ve
spolupráci se členy Sjednocené organizace nevidomých a slabozrakých ČR (SONS). Ap-
likace byla testována na r̊uzných platformách a upravována na základě zpětné vazby od
zrakově postižených uživatel̊u. Výsledkem této práce je veřejně dostupná aplikace, která
je př́ıstupná prostřednictv́ım webového prohĺıžeče a jej́ıž funkce byly požadovány zrakově
postiženými uživateli. Tato diplomová práce popisuje technickou strukturu této aplikace a
technologie použité při jej́ı implementaci. Prostřednictv́ım této práce bychom rádi přispěli
ke zvýšeńı povědomı́ o zkušenostech a potřebách zrakově postižených osob a ukázali, že
jejich život mohou usnadnit technologie.

Kĺıčová slova Zrakově postižeńı uživatelé, videohovory, asistence v reálném čase, Flut-
ter, Sjednocená organizace nevidomých a slabozrakých ČR.

ix

List of Abbreviations

DOM Document object model
PWA Progressive web application
SDK Software development kit

SONS Sjednocená organizace nevidomých a slabozrakých (Czech Blind United)
TURN Traversal Using Relays around NAT

VPN Virtual Private Network
W3C World Wide Web Consortium

x

Chapter 1

Introduction

What is the situation for visually impaired people in the Czech Republic? How is sight
affected by different conditions and what are their consequences? We will explore these
questions and explain our work with the Czech Blind United association.

The number of visually impaired people in the Czech Republic has a positive growth
tendency. In this chapter, we will explore how different types of sight conditions can have
different consequences for the person that has them and how their treatments can range
from simple non-invasive solutions such as wearing lenses to the requirement of corrective
surgery. We will also explain the invaluable collaboration with the members of SONS
as well as key insights collected through discussion of their experiences, needs and the
limitations they have encountered while using the applications which are available today.

1.1 Visual Impairment in the Czech Republic, Fig-
ures, Types and Observations

Visually impaired people in the Czech Republic were at an estimated number of 1.8
million in 2020 of which 28,000 were classified as completely blind [1]. The crude rate
of prevalence, obtained by dividing the number of visually impaired individuals by the
population total, of people with vision loss in the Czech Republic has risen by 4.4 % since
1990, see Figure 1.1.

Not all visual impairments are the same, the treatments and consequences of each type
of visual deficiency are varied. Refractive errors are a visual condition in which it is not
possible to properly focus the eyes producing a blurry image, which can be caused when
the shape of the eye prevents light from focusing correctly on the retina [2]. This is the
largest cause of vision loss being responsible for an estimated 161 million people living
with long distance vision impairment and 510 million people with near vision impairment
worldwide [3]. In most cases, the refractive error can be treated by wearing glasses, contact
lenses or by performing refractive surgery.

Another type of visual impairment is cataracts which cause a cloudy area in the lens
of the eye which causes blurry vision, faded colors, difficulty seeing on low light conditions
and making lamps or other sources of light to appear extremely bright [4]. Cataracts can
only be fully treated with the use of surgery.

Sight is affected in different ways depending on the type of condition that each person

1

2 Introduction

has, for this reason there is no single technological solution that can cover all the different
needs of visually impaired users. Some users with a sight impairment can read text on a
screen without making any adjustments while others may need to increase the font size
or contrast of the colors displayed, others may make use of additional tools for aid, some
of them may be particularly oriented towards use by people with sight conditions such as
magnifying glasses or refreshable braille displays while others may be of more general use,
such as portable Bluetooth keyboards, to properly operate their devices.

Figure 1.1 Crude prevalence of vision loss, Czech Republic, 1990–2020. Sourced from data
from the VLEG/GBD 2020 model, accessed via the IAPB Vision Atlas [1].

The challenges that visually impaired users face in order to remain as active, creative
and productive as their sighted peers are numerous and the tools that have been developed
for this specific user group are currently not sufficient due to the limited number of
accessible solutions both in financial and usability terms. In this project, I have combined
years of software development experience with my drive to provide solutions that are both
usable in the real world and that empower the people that use them.

1.2 Meetings at SONS

Established in 1996, SONS (Sjednocená organizace nevidomých a slabozrakých ČR in
Czech; Czech Blind United) is a nationwide registered association in the Czech Republic
with the objective of assisting individuals who are partially sighted or fully blind. The or-
ganization offers a wide range of services, including orientation, support, advice, training,
employment assistance, club activities, and guide dog training [5].

To ensure that this project is successful, we worked closely with them and incorporated
their feedback throughout the development process. We participated in periodic meetings
with SONS members during which they provided us with valuable insights into their needs,

Meetings at SONS 3

habits and limitations of existing solutions. In this section, we summarize some of these
observations.

Applications that read text using the camera are constantly used to accomplish daily
tasks such as reading letters and checking the expiry date of grocery products.

Existing applications sometimes charge prices that do not justify their continued use.
While some of the offered functionalities are extremely useful, the frequency at which
they are needed is too low to justify a subscription for a prolonged amount of time.

Use of both applications designed for local transport systems such as Můj vlak and
applications designed for worldwide use such as Google Maps is common. Accessibility
features in some mainstream applications are sufficient to allow their use with relatively
few inconveniences.

It is not uncommon for applications to have significant drawbacks, for example there
is an application used for telling the state of a traffic light that sometimes will register
a traffic light located further back or in another crossing which could easily result in
an accident when crossing the street relying purely on the application.

Some sophisticated mainstream applications are accessible but the user experience is
quite poor, frequently a simple action takes too long due to the integrated voice reader
going over too many elements in the screen at once or requiring too many interactions
to progress.

Navigation aids are plentiful, but the more useful ones have been discontinued or are
quickly becoming obsolete due to the lack of support for blind users or the reliance on
outdated information about transport lines. Some applications offer textual descrip-
tions of the route the user wishes to follow but these are not sufficient to navigate
cities like Prague where the layout of the streets very often does not follow a grid-like
pattern.

Peripherals designed to work with the city infrastructure such as remote control devices
that alert the user when a specific tram or bus is arriving often do not work due to a
technical malfunction or the drivers themselves turning off the receiver for such devices.

Certain technical limitations are usually not taken into account during the user expe-
rience, for example mobile data can be consumed very quickly if streaming video to a
fully sighted assistant without a way to regulate the quality of the video or the GPS
location can often be inaccurate in urban environments.

During our meetings, we discussed the drawbacks of current applications, desirable
features and characteristics, and gathered feedback from users with different levels of
visual impairments and habits. Their different perspectives and experiences based on
their individual preferences when selecting and making use of accessibility solutions have
provided a broad pool of anecdotal experiences that allowed us to think about how a
solution should be designed, not only for the fully blind but also for the partially sighted,
the people assisting them and for the developers who are considering making an application
with accessibility as the primary goal.

4 Introduction

Chapter 2

Review of Existing
Applications

What software solutions are currently available for people with sight problems? How
can these be categorized and what are their advantages and disadvantages?

In this chapter, we have researched technological solutions that help improve the experi-
ence of the visually impaired user when using an application or surfing a web page. Our
research covers both the accessibility features built into devices and third-party applica-
tions explicitly designed for visually impaired users. In addition, we incorporate feedback
from members of SONS who shared their personal experiences and observations.

2.1 Native Mobile Accessibility Options
Visually impaired users take advantage of features that are already present in mobile
devices in order to navigate applications and perform daily tasks on their devices. While
these features are sufficient for most popular applications, their effectiveness is constrained
by the level of support implemented by individual applications. This frequently results in
a user experience that is accessible but not efficient or intuitive.

During our meetings with SONS we observed how visually impaired users interact with
these features. We have condensed some of the observations gathered during this process.

Two modes are used for navigating, the ‘manual’ mode which cycles through inter-
actable elements on the screen sequentially and the ‘explore’ mode which works by
dragging a finger through the screen while the phone describes what is currently being
selected. Both modes can be active at the same time. This can have, as a conse-
quence, added difficulty when navigating through items displayed on the screen due to
the fact that one wrong tap can make the navigation selector skip multiple elements
and potentially disrupt the experience of the user.

There exists an option that will list all of the available controls on the screen and
present them in order. The user can then select the element they wish to interact with
from this list. Unfortunately, it is not uncommon to encounter elements that do not
possess a description or are completely inaccessible by this option.

5

6 Review of Existing Applications

Consistent layouts are helpful for users when learning new applications since they can
quickly locate elements such as drop-down menus and text boxes if they are located in
similar positions across multiple applications.

Extra hardware such as Bluetooth keyboards are sometimes used in tandem with these
accessibility features.

Typing using the standard on-screen keyboard is very slow due to the voice-over nar-
rator not pronouncing the highlighted key clearly and having to wait for a second
narration of a word that starts with the selected character. The user experience with
this feature is largely dependent on the quality and type of the voice selected. Some
of them enunciate certain letters in a similar way, such as with the letters ’V’ and ’B’,
which results in the user having to spend time learning to discern the difference between
the two or wait for the narrator to use the letter in an example before continuing.

Changing the font size is inconsistent, some websites and applications are unusable due
to the layout being changed and elements being hidden when the font size is expanded
beyond a certain percentage. Some applications handle text elements in such a way that
they behave differently from the device settings resulting in them being incompatible
with this feature. Ideally, users would like to decide on the font size increment on an
application-to-application basis instead of having a global setting.

When navigating through the elements one by one, there is a possibility that the
navigator will enter a cycle where the same elements are described circularly. For
applications with a lot of interactable elements, a simplification of the elements that
the navigator will describe would be helpful. In this way, the user can quickly navi-
gate through the most important controls while skipping over elements that are not
frequently needed.

2.1.1 Android Native Accessibility Options
Android devices come with a set of accessibility options ready to be activated from the
moment the user begins to interact with the device. The following are the features offered
by this operating system [6]:

Talkback: Provides an audio description of the element that is currently highlighted
or is being touched, describes the actions the user is performing and alerts about
upcoming notifications.

Braille keyboard: Enables a braille keyboard on the screen that allows the user to
input text using a 6-dot braille interface. An example of such a keyboard can be seen
in Figure 2.1.

Display and font: The size of items on the screen, the size of the window used for
displaying items on the screen and the font size can be changed.

Magnification: Specific sections of the screen can be temporarily enlarged.

Select to speak: The user can select specific items on the screen or point the camera
at objects to hear them read or described aloud. Supports reading items in an appli-
cation while the user switches to a different application, after which Select to speak
will continue reading items in the background.

Native Mobile Accessibility Options 7

Lookout: Uses the camera and sensors of the device to get details about the en-
vironment around the user, can be used to read printed text aloud, provide a basic
description of the environment, scan food labels and recognize packaged food products,
scan printed or handwritten documents and detect the value of bills. This feature must
be downloaded from Google Play and is only supported on devices running Android
6.0 or higher.

Voice access: Allows the device to be controlled with voice commands. The com-
mands can be used to open applications, navigate them and edit text.

Switch access: Interaction with the device can be carried out with external devices
such as switches or keyboards instead of the touchscreen.

Action blocks: Assigns routine actions to buttons on the device’s home screen.

Time to take action: Changes the time that messages requiring an action from the
user are displayed. Affects items such as pop ups or push notifications that are on
screen for a few seconds at a time. This option is not supported by all applications
and is only available on devices running Android 10.0 or later.

Captions: Speech on the device can be translated into captions in real-time, allows
speech and sound to be captured and displayed as text on the screen, and enables text
as a communication channel on phone calls. This feature is intended to be used by
deaf users.

Audio: Adds support for wired or Bluetooth headphones to filter, augment and am-
plify sounds in the environment or the device.

Figure 2.1 An example of an on-screen Braille keyboard, obtained from [7].

8 Review of Existing Applications

2.1.2 iOS Native Accessibility Options
Devices that run the iOS operating system such as iPhones or iPads have the following
accessibility features available [8]:

VoiceOver: Screen reader that describes the task being currently performed on the
device, enables gestures for navigation. The speaking rate and pitch of the voice can
be adjusted. The language of the voice reader can also be configured.

Typing feedback: When typing on the device, letters and words will be spoken,
auto-corrections and capitalizations are also announced. The user can touch and hold
on a word to hear text predictions.

Audio descriptions: When watching movies on the device, scenes can be described
using this feature. Can appear by default.

Magnifier: Allows the device to be used as a magnifying glass so the user can zoom
in on objects near them. Useful for reading small text, applying filters to increase
visibility and saving magnified screenshots to the device.

Display and text size: Color inversion is provided, the layout of content, font size,
color, intensity and tint can be changed. Certain devices allow for frame rate cus-
tomization.

Zoom: A permanent zoom can be configured, the entire screen can be zoomed or
certain parts can be highlighted with a resizable lens. Compatible with VoiceOver.

Reduce motion: Allows motion effects to be disabled on the device.

2.2 Remote Assistance Applications
In order to receive real-time assistance, a variety of applications are used. Some common
ones are mainstream video and audio call applications that are not primarily targeted
towards users with visual impairments, such as WhatsApp, Skype and Messenger. There
are also applications that are designed specifically towards this type of users. One of the
most popular examples of such applications is Be My Eyes, a mobile application that
connects blind or partially sighted users with fully sighted users through a live video call.
This application is free to use and allows users to choose their languages of preference.
In order to provide assistance, the application does not require a formal registration and
there is no option to see calls that are on hold. The phone will automatically start ringing
when there is a user requesting assistance. When an user registers as a visually impaired
person they will get the options to call a volunteer or receive specialized help as seen
in Figure 2.2. Since its launch in January 2015, over 6 million volunteers have signed
up for the service[9], the vast majority being people who are willing to help others with
simple tasks and have no formal training in doing so. This application is available for
both Android and iOS.

Be My Eyes and similar solutions were discussed during the meetings with SONS. The
following are observations extracted from their experiences using these applications:

These applications are preferred for performing simple tasks such as reading the expi-
ration date of medicine or food items and for finding objects in a room.

Remote Assistance Applications 9

Figure 2.2 Be My Eyes main page for visually impaired users, obtained from [10].

Their use on the street as an aid for navigation is not preferred since the instructions
from the volunteer can be confusing and the latency of the call often makes it difficult
for the user to react to navigation instructions promptly.

For applications similar to Be My Eyes, the user experience can be inconsistent. Some-
times, the user requesting aid is willing to have a social element to the call, while other
times, they require help quickly and the volunteer is more interested in establishing
rapport first.

For tasks where sensitive information is involved, such as making an online payment
or reading statements on a bank bill, these applications are not preferred unless the
person providing assistance is a close friend or a relative.

A video call through a mainstream application such as Skype or WhatsApp is the
preferred option for visually impaired users when they require help. Be My Eyes and
similar applications are the second option in case they do not count on any acquaintance
who can assist them at that particular moment or they do not wish to bother them
with very simple tasks.

The lack of a video resolution setting can result in quick consumption of mobile data.
A user from SONS reported that even though a WiFi network was available and their
device was connected to it the application consumed their mobile data for an unknown
reason.

10 Review of Existing Applications

2.3 Applications for Navigation
Visually impaired users are able to navigate using applications such as Google Maps and
Můj vlak with the help of the screen reading features of their device. They are able
to create a schedule for the public transport routes that they will use in advance and
efficiently navigate in an urban environment. They are also frequently used for finding
their way across short distances in an environment that is new to them by switching to
the pedestrian mode of these types of applications. During our meetings, we were able to
capture the following insights:

A sequence of navigation steps is usually created at the start of the day with the arrival
times and locations of public transport services.

Any disruption of arrival times such as delays or emergency maintenance on tram
lines severely affects the user’s ability to navigate since these changes are often posted
in written form physically on the public transport stop but they are not broadcast
proactively in most applications.

In spaces where multiple public transport vehicles are coming at the same time, the
probability of boarding a different one than what was planned is very high; this is some-
thing that most current applications cannot prevent. An application called Tramoji
does provide the option to announce the order in which public transports are arriving;
however, this application is no longer usable.

In most cases, the layout of the application is not optimized for accessibility features
resulting in the user having to go through many elements that are visually hidden
while using features such as Talkback.

Some applications use dynamic layouts that are very eye-catching but prove to be very
difficult when trying to navigate properly using accessibility features, this is caused by
the interactable elements being reordered in the screen after some user input.

While a pedestrian mode is included in most navigation apps, important landmarks or
obstacles on the street are not marked, which causes problems when users are trying
to navigate an unfamiliar environment.

Some applications have layouts that are very easy to navigate with accessibility features
but the information they have about public transport routes is outdated or they are
missing several features. There is simply no single application that combines a full set of
functionalities, navigational layout and up-to-date information about public transport.

When moving through a completely new environment, a navigation application is a
must-have for a visually impaired user. If for any reason it is not possible to use such
an application, the user more often than not will avoid approaching and exploring new
environments.

The features of the same application across different platforms can be different, which
results in some devices being superior to others in terms of accessibility when executing
the same application across different operating systems.

The level of self-sufficiency when navigating varies depending on the person and the
type of visual impairment is not an indicator of their ability to traverse their environ-
ment. Some people with partial sight are very reliant on navigation assistance and
some fully blind individuals can navigate independently without substantial problems.

Chapter 3

Analysis and Requirements

We have researched different technologies available to visually impaired people and have
gathered insights from their users. We will identify and summarize the shortcomings
of the currently available solutions and present them in a clear and concise manner.
We will also list the functional and non-functional requirements.

As discussed in the previous chapter, visually impaired users can make use of multiple
tools and features when interacting with mobile and web applications. These options can
be sufficient for the proper use of some applications, but they do not guarantee that the
user experience will be positive or that in a situation where they need to get information
about their environment, they will be able to get it in a reasonable amount of time.

3.1 Identifying Drawbacks
From this research, we have identified common drawbacks in the available applications.
We have compiled them into a list of problems and we proposed possible solutions.

Problem 1: List of components displayed on the screen can be hard to navigate using
accessibility features or dynamic rendering may force the user to explore the entire
component tree repeatedly after every action.
Solution 1: Minimize the number of layout elements present in the application at any
given time and avoid changing large portions of the layout frequently.

Problem 2: Mobile data consumption is a limiting factor for the user of some appli-
cations when navigating without being connected to a WiFi network.
Solution 2: Provide the user control over the data consumption of the application
through settings such as being able to set the video stream quality without compro-
mising the functionality of the application.

Problem 3: Some applications only partially provide the features needed to complete
certain tasks, forcing the user to switch between multiple applications on the same
device.
Solution 3: Include the most frequently used features into a single application, such
as video calling, location sharing and image sharing.

11

12 Analysis and Requirements

Problem 4: There is a discrepancy in the features offered by the same applications
across multiple platforms, causing those users who own devices running a certain op-
erating system to miss out on certain features.
Solution 4: Develop using a single code base making use of technologies that can
compile to different mobile operating systems and web applications, test the features
on multiple devices and distribution channels.

Problem 5: Application layouts break when increasing the font size, rendering some
elements outside of the screen without enabling the option to scroll to see them.
Solution 5: Create a responsive design that takes into account the changes to text
font size and colors made by accessibility features and take special care not to include
elements that can overlap each other or include text that becomes unreadable due to
low contrast under these conditions.

Problem 6: Timed actions are very difficult to respond to for a visually impaired
user, as some text bubbles or push notifications may only appear for a few seconds
at a time and the Talkback functionality of the device will not alert the user of their
existence, or if they manage to find them, they may disappear by the time the screen
reader finishes describing them.
Solution 6: Do not include elements that require an action from the user and are
only present for a few seconds at a time. Design the user experience in such a way
that every step is sequential and there is little to no deviation in the flow of the user
performing any action.

Problem 7: Inputting text into an application can be a time-consuming process if
no third-party devices are available since the current accessibility options are not very
cooperative in terms of typing speed. Typing sensitive information can be problematic
since a spelling mistake can be easily missed by a visually impaired user.
Solution 7: Minimize the number of times the user needs to input text into the
application. For cases in which a certain character string needs to be shared this
process should be as automated as possible, either with the implementation of a request
to the device’s sharing functionality or by copying such string into the clipboard.

Problem 8: Some accessibility features take control away from the user. For example,
if the user is wearing headphones and the TalkBack feature detects that a call has
been initiated, it may change the audio input source for the device. This behavior is
frustrating for the user and severely hinders their ability to operate certain applications
properly.
Solution 8: Allow the user to select the video and audio sources that they want the
application to use at any time. Store this configuration locally so they do not need to
go into the settings every time.

Problem 9: GPS coordinates in the pedestrian mode for navigation apps can be
very imprecise in urban environments, especially when the user is surrounded by large
structures such as tall buildings or is underground. If the requester is sharing their
location in real time the assistant may provide an erroneous description of the route
the requester must take due to these inaccuracies.
Solution 9: When sharing the location of the requester include also the estimated
precision of the GPS device, this would allow the helping party to make a better

Functional Requirements 13

description of the route that needs to be followed. Include also information from the
device’s accelerometer and compass. When the location is changing rapidly due to
the device trying to calibrate these changes would allow the assistant to differentiate
between real movements from the user and changes that happen due to the device’s
own inaccuracy.

3.2 Functional Requirements
During the meetings with SONS, the idea of a real-time assistance application for visually
impaired users was brought up and through discussion about their needs and previous
experiences we were able to write a requirement list. For defining the requirements, we
selected the most commonly used features from different applications and proceeded to
focus on those that were feasible to implement within the scope of this work.

Video and audio call: The ability to establish an audio call for both parties and to
stream video from the device of the visually impaired user to the fully sighted user.

Geographical information: Sharing the location of the visually impaired user in
real time, displaying their location in a map on the fully sighted user’s side along with
the estimated precision of the GPS coordinates.

Sensor information: Streaming the acceleration and orientation of the visually im-
paired user’s device in real time. This information is displayed to the fully sighted user
to aid in the navigation assistance.

High definition picture capturing: The ability for a high definition picture to be
taken from the visually impaired user’s device without compromising the integrity of
the audio call. This picture is then sent to the fully sighted user.

Video quality control: Selecting the quality of the video stream originating from
the visually impaired user’s device.

Camera switching: Changing the input camera for the video stream.

Remote device control: Allowing the fully sighted user to take pictures, change the
quality of the video and switch the input camera on the visually impaired user’s side.

3.3 Non-Functional Requirements
This list was extracted by discussing the shortcomings of currently available solutions as
well as the resources that are currently allocated to SONS.

Low operational cost: A common complaint from visually impaired users is that
current solutions have a very high price point which is not sustainable for most users in
this group. Similar solutions have been proposed previously to SONS, but the cost of
hosting and development has rendered them prohibitively expensive. For this reason,
keeping the infrastructural costs as low as possible is a top priority for this project.

Multi-platform support: Visually impaired users make use of multiple devices to
navigate the web and receive assistance. For this reason, supporting both Android and
iOS is a must. Web browser support is also a requirement since the fully sighted user
can better provide assistance through the use of a personal computer.

14 Analysis and Requirements

VoiceOver support: The graphical elements of the application must be able to
be discovered and interacted with while the VoiceOver functionality is active on any
mobile device.

Cross-platform connectivity: A visually impaired user may request help on a mo-
bile device running the Android operating system while the fully sighted user provides
help using a device running iOS. For this reason, the call functionality must be able
to connect users on any combination of the supported devices.

Low latency audio call: A visually impaired user navigating an urban environment
needs instructions transmitted with very little delay in order to safely move through
their environment. For this reason, keeping the latency on calls as low as possible is
crucial.

In order to satisfy these requirements, a peer-to-peer architecture was considered since
the beginning. This would ensure that a back-end service would not need to route the
heavy audio and video call traffic, reducing the operational cost and the latency of the
calls.

Chapter 4

Exploring Potential Solutions

Multiple potential solutions were researched and tested in order to select the most ad-
equate framework and language for this task. We will explore potential solutions and
report findings gathered through experimentation and fast prototyping.

We will describe the frameworks and tools explored during the iterative development of
this solution. Different technologies were tested by coding a fast prototype that would
initiate a video stream from one device to another. During this exploration we encountered
problems that would render each possibility unusable, an overview or these solutions and
a brief description of such problems is provided in this chapter. Thanks to the lessons
learned during this experimentation phase we were able to make an informed decision
about the technology with which we would implement the final solution.

4.1 Ionic Framework

Ionic is an open source user interface toolkit for building high quality cross-platform
mobile apps writing a single code base using the React framework [11]. This framework
was the first candidate for development and a partially working prototype was developed
using it. The reasons for this were cross-platform support, familiarity with the technology,
offering of pre-built UI components with accessibility features included and the existence
of libraries that interact with the hardware of the device.

Ionic has support for both JavaScript and TypeScript programming languages. It has
been used to build applications for many large companies including Panda Express, CAT
and Cisco [12]. Support for compiling to PWAs (Progressive Web Applications) is also
included, which would be useful if the helping party prefers them over traditional web
browser pages.

This tool was ultimately dropped due to the lack of support for camera streaming
across the supported platforms. Ionic exposes a Camera API for taking pictures and
recording video but does not provide the ability to stream from this video source. The
lack of documentation and frequently outdated plugins were reasons for abandoning this
approach.

15

16 Exploring Potential Solutions

Code listing 4.1 Example of the accessible attribute.

<View accessible ={ true}>
<Text >This is some text </Text >
<Text >And this is more text </Text >

</View >

4.2 React Native
React native is an open-source JavaScript framework for building native mobile applica-
tions on both Android and iOS. It has an ongoing effort to support compilation to a web
environment through a community-led plugin [13]. This framework was considered due to
the multi-platform support, large community backing and familiarity with the technology.

React native has tools that provide support for accessibility features such as the ac-
cessible property, see Code listing 4.1. The inclusion of this feature will result in both
Text elements being recognized as a singular element by the voice-over functionality of the
device by grouping into a single node using the View element. This behavior is desired
when the user interface contains multiple separate elements that combine to form a single
cohesive section but which do not need to be explored individually by the accessibility
features.

A proof-of-concept application was built using this framework, but its use was scrapped
due to the inconsistencies between functionality in native and web environments. The
documentation was also a factor in this decision. Since most of the plugins are written
by community members, the documentation is frequently fragmented and incomplete for
several components.

4.3 Apache Cordova
Apache Cordova is an open-source mobile development framework [14]. This framework
was considered due to the support of multiple community-created plugins with centralized
documentation pages and the comprehensive list of supported features across different
platforms.

These are the plugins that the Ionic framework uses to access the device’s hardware
[15]. Many of the plugins written in Cordova are not supported in Ionic, which is another
reason why developing the solution using this framework was considered.

A single-page application meant to test the core functionalities was written using this
framework. Unfortunately, this exploratory development did not yield the expected results
due to problems with the main camera plugin and the lack of support and documentation
on it. Setting up the development environment for this framework also proved to be a
largely difficult process with many features such as hot reload not being supported by
default and most of the plugins that offer these functionalities are incompatible with the
latest version of the framework.

4.4 PeerJS
PeerJS is a library that wraps the browser’s WebRTC implementation to provide a com-
plete, configurable, and easy-to-use peer-to-peer connection API [16]. It provides func-

PeerJS 17

tionality to make video and audio calls, it also creates media connections through which
information can be exchanged between peers.

This library is at the core of the application. It was selected early on in development
due to it being supported by any framework that runs on JavaScript and providing the
basic functionalities needed to satisfy the requirements.

By establishing a peer-to-peer connection, a low delay between both parties can be
ensured since the exchanged data do not need to go through a third-party server. The
only extra setup needed is an instance of the PeerJS server if more control over availability
and peer id generation is desired. This is however not a strict requirement since a free
public server is provided by the developers.

Another library that mirrors the implementation of this library and provides the same
features was used for the final solution.

18 Exploring Potential Solutions

Chapter 5

Final Solution

What set of technologies provides the support and development tools necessary for this
application? After multiple iterations we decided to settle on the Flutter framework, the
reasons why this technology was considered appropriate are described in this chapter.

In this chapter, we will describe the technology chosen for the final implementation of the
application, its advantages and disadvantages, and elaborate a description of the function-
ality with code examples. Describe shortcomings and unexpected behaviors encountered
during the development process and for which there is little documentation available. We
will also illustrate the architecture for the components of the final solution and describe
the tools used to deploy it into production. The source code for this solution is available
in the attachment to this thesis.

5.1 Dart
Dart is a programming language designed by Lars Bak, the Danish computer programmer
responsible for the development of the V8 JavaScript engine which is used in Chromium-
based web browsers and independent projects such as Electron [17].

Dart is an object- and class-oriented language with integrated garbage collection and
syntax of the style of C. It is able to compile to both machine code and JavaScript. It
supports the usual features of an object-oriented language such as interfaces, abstract
classes and mixins while also providing integration for generics and type inference [18].
The example in Code listing 5.1 showcases how Dart is able to support dynamic types
without compromising the soundness of the program due to a type mismatch that can be
caught during compile time. This feature of the programming language is relevant due to
my own personal experience using programming languages that are not strictly typed, by
supporting dynamic typing and also checking for errors in compile time Dart offers the
flexibility of typing that I am used to while also providing soundness in the code.

The function printList has defined as a single parameter an object of type List<String>
while the variable names has been assigned an implicit type of List<Dynamic> by the
compiler due to the lack of information provided to the analyzer to assign a more specific
type. This results in the error shown in Code listing 5.2.

This error occurs due to an unsound implicit cast from the implicit type List<Dynamic>
of names to the explicit type List<String> of the parameter in printList. This example

19

20 Final Solution

void printList (List <String > list) => print(list);

void buildList () {
List names = [];
names.add(’Ivan ’);
names.add(’Erik ’);

printList (names);
}

Code listing 5.1 An example to showcase type mismatch handling in Dart.

The argument type ’List <dynamic >’ can ’t be assigned to the
parameter type ’List <String >’.

Code listing 5.2 A type mismatch error message in Dart.

showcases how Dart is able to support dynamic types without compromising the soundness
of the program due to a type mismatch that can be caught during compile time.

Dart was first unveiled in 2011 during the GOTO conference in Aarhaus, Denmark
[19]. It originally had a mixed reception, being frequently criticized by some developers
for fragmenting the web due to the introduction of yet another tool for building web-
sites. This sentiment resulted from to the planned inclusion of a Dart virtual machine
in Chrome. These plans were eventually canceled in 2015 and instead, Dart switched
focus to supporting compilation to JavaScript [20]. This change was brought about due
to the feedback of multiple developers stating that they loved working with Dart and its
libraries and tools but still opted for tools that compile to JavaScript when they deploy
to the web. The European Computer Manufacturers Association formed the technical
committee TC52, which seeks to perform standardization work for the Dart programming
language [21]. Thanks in part to the standardization efforts the usage of the language
grew significantly. The ability to compile to standard JavaScript as also included which
ensures that it can work in any modern browser with JavaScript support.

5.2 Flutter
Flutter is an open-source framework by Google used to develop natively compiled cross-
platform applications for iOS, Android, macOS, Linux, Windows, Google Fuchsia and the
web making use of a single codebase. It consists of a thin layer of C and C++ code and
implements the majority of its components in Dart [22].

5.2.1 History
Flutter was first mentioned in 2015 during the Dart developer summit. It was originally
called “Sky” and was showcased on a real Android device. It was compiled into a native
Android application without any Java code and it supported animations, multi-touch,
network connectivity and user interface elements such as lists, text inputs and drawers
[23]. It started development with the following goals: Performance, to provide a responsive
user experience ideally running at a refresh rate of 120Hz. Platform agnosticism, being

Flutter 21

able to be ported into Android, iOS and more platforms. Full access, do not restrict
any device permission from the user, build the necessary implementations so that the
developer can access any tool and sensor that the device has. Continuous deployment,
streamline the process needed to update previous versions of the application taking as a
guideline the typical web development pipeline. Rich & Flexible Layout & Painting, do
not constrict the developer to predefined layouts, add the support for the developer to
extend or build their own layouts as it is needed to achieve any configuration.

5.2.2 Support
During the following years Flutter grew in popularity and it is currently on version 3.7
with the support for the platforms listed in Table 5.1.

Table 5.1 Supported platforms for Flutter deployment. Supported: Platforms tested by
Google automatically by continuous integration testing tools. Best effort: Platforms supported
only by coding practices tested on an ad-hoc basis. Unsupported: Platforms that are neither
tested nor supported. [24]

Platform version Supported Best effort Unsupported
Android SDK 21-30 19-20 ≤ 18
iOS 14-15 11-13 ≤ 10, arm7v 32-bit
Linux Debian 10-11 ≤ 9
Linux Ubuntu 18.04 LTS 20.04 any 32-bit
macOS Monterey (12+) Mojave (10.14) to Big Sur (11) High Sierra (≤ 10.13)
Chrome (web) latest 2 releases ≥ 96
Firefox (web) latest 2 releases ≥ 99
Safari (web) latest 2 releases
Edge (web) ≥ 96
Windows 10 7 & 8 ≤ Vista, any 32-bit

Flutter offers both ad-hoc and tool-tested support for multiple platforms. For the
purposes of this project, we will focus only on the web, Android SDK and iOS platforms.
Flutter implements Dart’s package manager and software repository, this resource func-
tions as a centralized repository for user-created packages and plugins that are specific to
Flutter. There are over 17,000 packages that support the Android, iOS and Web platforms
available for development.

5.2.3 The Widget Component
The user interface in Flutter is built upon a basic component called a widget. These
widgets take inspiration from React’s components. Each widget describes how its own
view should look like with its current configuration and state. Upon a state change, each
widget will rebuild its own portion of the view. The framework compares the current
description of a widget with the previous description in order to determine the minimal
amount of changes needed in the render tree to reflect the state change.

Widgets in Flutter are handled internally using a tree structure analogous to the DOM
implementation of web pages. With every new widget added to the application, a new
insertion to the tree will be created. These widgets are divided into two categories:

Stateless widgets: These widgets do not contain an internal state, their render
method is only run once upon creation. Data inside this widget is immutable and will

22 Final Solution

// This widget will render a simple text component
class TitleText extends StatelessWidget {

@override
Widget build(BuildContext context) {

return const Text(’This is the title !’);
}

}

Code listing 5.3 A stateless text widget in Flutter.

only change when a new instance of the widget is created with a different configuration.
They are commonly used for elements of the user interface that will not change during
the life cycle of the application. An example is shown in Code listing 5.3.

Stateful widgets: These widgets are dynamic and contain a mutable internal state
that will affect how the widget is presented. They can be modified without the need to be
initialized and inserted into the widget tree again, the different stages and methods that
a stateful widget has can be observed in Figure 5.1.

Figure 5.1 Stateful widget life cycle methods [25].

Code listing 5.4 contains the code for a minimal stateful widget that counts the number
of items the user has pressed a button and displays the total amount of presses.

The Code listing 5.4 will render the page shown in Figure 5.2.
In this example, the state contains the counter variable. The late keyword of this

variable indicates to flutter that it will not have a value assigned during the declaration
and a value will be assigned to it later. It is the responsibility of the developer to make
sure that any late variable has a value before being used.

The initState function will be executed only once after the widget has been inserted
into the widget tree and it will initialize the counter value of the state to zero. Since we
know that initState will always execute before build, then we can assure that the variable
has a value assigned before its usage and no error will be thrown. When the button is
pressed, the setState function is called and the framework performs the necessary checks
to render the component again with the minimal amount of changes needed to reflect the
new state. In this case, it will be an increment to the number in our text widget.

Flutter 23

import ’package : flutter / material .dart ’;

class CounterWidget extends StatefulWidget {
const CounterWidget ({ super.key });

@override
State < CounterWidget > createState () => _CounterWidgetState ();

}

class _CounterWidgetState extends State < CounterWidget > {
late int _counter ;
@override
void initState () {

super. initState ();
_counter = 0;

}

@override
Widget build(BuildContext context) {

return Column (
mainAxisAlignment : MainAxisAlignment .center ,
children : [

Text(’Times clicked : $_counter ’),
ElevatedButton (

onPressed : () => setState (() {
_counter ++;

}),
child: const Text(’Click me!’))

],
);

}
}

Code listing 5.4 A stateful counter widget in Flutter

24 Final Solution

Figure 5.2 Stateful widget example.

5.2.4 State Management
Flutter supports multiple state management approaches starting with the widget-specific
setState function which will manipulate the internal state of the widget. For more com-
plicated cases where a widget needs to affect a different widget due to internal changes,
a more elaborate approach is required. The tree structure of widgets makes it difficult
for two components that are on a similar level to communicate with each other if the
common ancestor they share is very high up in the tree structure. In order to deal with
this problem, Flutter supports a variety of options for handling state management.

For this solution, the ChangeNotifier approach was chosen. ChangeNotifier is a class
included in the Flutter SDK, which provides the ability to broadcast change notifications
to listener classes. This behavior is an implementation of the observable approach in which
changes are triggered every time a modification or instantiating of a certain element occurs.
Code listing 5.5 contains the code for a simple ChangeNotifier implementation.

The CountModel class extends ChangeNotifier and contains the representation of the
state for the application, in this case a counter of a button press. The functionality
obtained from the ChangeNotifier class is the notifyListeners function. When called, it
will notify all registered observers of any resource listed in the CountModel class that
a state change has happened and a change in the user interface may be needed. For a
widget to be able to access this notifier, it must be within the scope of a parent widget
that contains a ChangeNotifierProvider element as exemplified in Code listing 5.6.

ChangeNotifierProvider provides an instance of a class that extends ChangeNotifier

Flutter 25

class CountModel extends ChangeNotifier {
int _pressCount = 0;

int get pressCount => _pressCount ;

void increasePressCount () {
_pressCount ++;
notifyListeners ();

}
}

Code listing 5.5 Example with notifyListeners() on a ChangeNotifier.

class AppContainer extends StatelessWidget {
const AppContainer ({ super.key });

@override
Widget build(BuildContext context) {

return ChangeNotifierProvider (
create : (context) => CountModel (),
child: const CounterWidget (),

);
}

}

Code listing 5.6 Scoping components inside a ChangeNotifierProvider element.

to the widgets that are its descendants in the widget tree. Finally the pressCount value
and increasePressCount functions can be accessed from the widget context by using the
code from Code listing 5.7.

The function context.watch will obtain a value from the nearest ancestor provider of
the specified type and subscribe to it. It will make the widget rebuild every time there is
a change in the value of pressCount.

The function context.read will also obtain the value from the nearest ancestor provider
of the specified type but it will not trigger a rebuild when the value changes, in this
case it will enable the CounterWidgetState component to access the increasePressCount
function to change the pressCount value.

In this example there is only one widget observing the state of CountModel but the
method for exposing that resource to more widgets is the same as long as they are also an
ancestor of the AppContainer widget in order to be able to access the CountModel from
the context.

One important observation is that context.watch will listen for changes on the entire
object leading to potentially unnecessary rebuild cycles for widgets. This is usually not
a problem for small applications that require only a single ChangeNotifier but for more
complicated implementations, we can make use of the context.select function:
int pressCount = context . select ((CountModel m) => m. pressCount);

The function context.select will trigger the build function in similar conditions to
context.watch with the exemption that it will only listen to a certain attribute of the
ChangeNotifier state, ignoring changes on attributes that are not relevant for the widget.

26 Final Solution

class _CounterWidgetState extends State < CounterWidget > {
@override
Widget build(BuildContext context) {

int pressCount = context .watch <CountModel >(). pressCount ;

return Column (
mainAxisAlignment : MainAxisAlignment .center ,
children : [

Text(’Times clicked : $pressCount ’),
ElevatedButton (

onPressed : () {
context .read <CountModel >(). increasePressCount ();

},
child: const Text(’Click me!’))

],
);

}
}

Code listing 5.7 Accessing functions from ChangeNotifierProvider in a different widget.

String preferredId = ’my -name ’;
Peer peer = Peer(id: preferredId);

peer.on(’open ’). listen ((peerId) {
print(’The id I got from the server is $peerId ’);
peer.call(otherPeerId , mediaStream);

});

Code listing 5.8 Initializing a peer.

5.2.5 PeerDart
The application relies on PeerDart to provide the core functionality. PeerDart is a plugin
that provides a peer-to-peer API implemented using WebRTC with support for data and
media streams [26].

The plugin mirrors the implementation of PeerJS, a library written in JavaScript
that encapsulates the browser’s WebRTC implementation and provides a peer-to-peer
connection API [16].

The connection is made on the basis of a unique peer id. This id will be used to
identify the device running the library and needs to be shared in order to start a call. The
basic code to start a call is listed in Code listing 5.8.

The preferredId is the peer id that the peer will request from the server. If no id is
specified, the server will generate a random string as an id. Once the peer triggers the
open callback, it is ready to start a call with a String that corresponds to the id of the
other party and a MediaStream containing at least one audio or video track.

PeerJS exposes a public cloud service that the peer will connect to if no host and key
options are provided during instantiating. For the purposes of this implementation, the
public server is being used. For extra control, it is also possible to host a custom server
by cloning and modifying the peerjs-server repository [27].

Architecture Overview 27

5.3 Architecture Overview
Making use of the features the chosen technology offers, we have been able to imple-
ment a solution that covers all of the basic features discussed during our meetings with
SONS. With the current implementation, we have been able to avoid paid services and
the application is currently publicly accessible with zero operational cost.

The architecture of the solution is described in Figure 5.3. The Peer Server is respon-
sible for handling the initial connection between peers. After the connection has been
established, the server stops hosting data about the peer objects and all future traffic
will be done directly between devices without passing through the server. Currently, the
only data persistence occurs locally in the device of the user and is used to store setting
preferences.

Figure 5.3 Architecture of the application.

5.4 Implementation
The final implementation was developed using Flutter with support for web, Android and
iOS deployment. The application makes use of multiple community-created plugins and a
peer-to-peer library for handling video calls and data transfer between devices. Through
testing and developing we were able to discover discrepancies in behaviour between em-
ulators and real devices. Multiple drawbacks for solving this problems arose because of
the lack of documentation for different platforms. Nonetheless the development yielded a
product that satisfactory covers the majority of requirements and was tested with visually
impaired users during our meetings with SONS.

The application is divided into two different flows differentiated by the functionality
present in each of them and being encompassed by one of two implemented ChangeNotifier

28 Final Solution

providers. On the homepage, the application presents the user with buttons to initiate
either flow or adjust the application settings, as shown in Figure 5.4.

Figure 5.4 Main page of the application.

In the settings section, the user can input a preferred call id; this will be explained
later on. It is also possible to select the default camera that the device will use when
starting a video call, as shown in Figure 5.5.

When the save button is pressed or a default camera is selected, a message on the
bottom of the page appears and a text-to-speech voice alerts the user of the change. The
settings are persisted using the LocalStorage plugin [28].With this plugin a JSON file-
based storage is created and the settings can be persisted between use sessions in the
same device.

5.5 The Requester
The requester side of the application is composed of the widgets that are nested inside
the scope of the RequesterProvider ChangeNotifier. This class handles business logic and
encapsulates the resources present in Code listing 5.9.

Now we will provide a description for all the resources included in this class.
localVideoStream: A MediaStream obtained from the camera of the device. This

resource will be streamed on a one-way call to the assistant party.
localAudioStream: A MediaStream obtained from the audio input of the device.

It will be used for the bi-directional audio call.

The Requester 29

Figure 5.5 Settings page.

remoteAudioStream: A MediaStream obtained via streaming from the device of
the assistant party. It contains only audio tracks.

geoStream: A StreamSubscription generated by the geolocator plugin [29]. It will
be used to obtain the coordinates of the device and send them to the assistant party after
a movement threshold has been reached.

speedStream: A StreamSubscription generated by the sensors plus plugin [30]. This
resource will periodically access the device accelerometer to calculate the current speed
and stream it to the assistant party.

localStorage: A resource provided by the localstorage plugin [28]. It is used to
persist information in JSON format locally in the device.

dataConnection: A DataConnection object provided by the peerdart plugin [26].
It is used to send JSON messages between both parties.

videoConnection: A MediaConnection provided by the peerdart plugin. It will be
the connection used to stream the localVideoStream resource to the assistant party.

audioConnection: A MediaConnection provided by the peerdart plugin. It will
handle the bi-directional audio connection between the requester and the assistant party.

Every resource implements the ResourceState class shown in Code listing 5.10.
This ensures that every resource exposes an usable Boolean indicator for usability and

implements internal logic to dispose of the resource since some of the resources need to
be stopped and disposed while others can be disposed without stopping or canceling.

The basic flow of the connection process for a call is represented in Figure 5.6.
The user interface for the requester is generated according to the status of the call.

30 Final Solution

// Media and data streams
final MediaStreamResource _localVideoStream =

MediaStreamResource (false , null);
final MediaStreamResource _localAudioStream =

MediaStreamResource (false , null);
final MediaStreamResource _remoteAudioStream =

MediaStreamResource (false , null);
final StreamSubscriptionResource _geoStream =

StreamSubscriptionResource (false , null);
final StreamSubscriptionResource _speedStream =

StreamSubscriptionResource (false , null);
final LocalStorageResource _localStorage =

LocalStorageResource (false , null);

// Data connections
final DataConnectionResource _dataConnection =

DataConnectionResource (false , null);
final MediaConnectionResource _videoConnection =

MediaConnectionResource (false , null);
final MediaConnectionResource _audioConnection =

MediaConnectionResource (false , null);

Code listing 5.9 Resources of RequesterProvider.

abstract class ResourceState {
bool usable = false;
Future disposeResource ();

}

Code listing 5.10 ResourceState class.

The Requester 31

Figure 5.6 Sequence diagram of the connection process.

enum RequesterCallStatus {
startingResources ,
resourcesStarted ,
ongoingCall ,
callEnded

}

Code listing 5.11 Call status enum.

This status is represented at a code level by the enum in Code listing 5.11.

5.5.1 Starting Resources
When the RequesterCallStatus value in RequesterProvider is startingResources, the appli-
cation will render the view of Figure 5.7.

While on this page the application will make a text-to-speech announcement and ini-
tialize the localStorage, localVideoStream, localAudioStream, geoStream, speedStream,
peerResource resources using the local sources in the device. After the resources are

initialized and the peer has connected to the server and is in an open state the Requester-
CallStatus will be changed to resourcesStarted.

32 Final Solution

Figure 5.7 Starting resources page.

5.5.2 Resources Started
Figure 5.8 will be rendered if the RequesterCallStatus value in RequesterProvider is re-
sourcesStarted.

Here, the local peer id is displayed and the options to copy the code to clipboard
and share the code are presented. When pressing Share code, a call will be made to the
Share plugin[31] which will open the system share dialog on the corresponding platform.
On a mobile device, the code can be shared via any messaging app such as Messenger,
WhatsApp, Telegram or SMS from this menu.

When a data connection has been established, the RequesterCallStatus will be changed
to ongoingCall.

5.5.3 Ongoing Call
Figure 5.9 will be rendered if the RequesterCallStatus value in RequesterProvider is on-
goingCall.

On this page, four actions are available for the requester:
Switch camera: This option cycles through the available cameras of the device.

When clicked it will stop and dispose the current local video stream and start a new video
stream with the next camera using the logic in Code listing 5.12. Using text-to-speech,
the change will be notified to the requester and the label of the button will be changed to
display the label of the newly active camera.

The Requester 33

Figure 5.8 Resources started page and share code menu.

Figure 5.9 Ongoing call page.

Change video quality: When pressed, the local video stream will be stopped and a
new video stream will be started with a different resolution. The two currently supported

34 Final Solution

void changeCamera () async {
if (_cameras . length <= 1) {

TextSpeak (). speak(’Only one camera available ’);
return ;

}

MediaDeviceInfo activeCamera =
_cameras . firstWhere ((MediaDeviceInfo deviceInfo) {

return deviceInfo .label == _activeCameraLabel ;
});

_activeCameraIndex = (_cameras . indexOf (activeCamera) + 1)
% _cameras . length ;

_activeCameraLabel = _cameras [_activeCameraIndex]. label;
TextSpeak (). speak(’ Switched camera to $_activeCameraLabel ’);
_restartCameraFeed ();

}

Code listing 5.12 Code for taking a picture without opening the camera app.

resolutions are 426x240 and 1280x720 pixels. After the change is complete, the application
will use text-to-speech to notify the user if the device is currently streaming in high or
low resolution. Allowing control for this stream aids in addressing the data consumption
of the requester user as mentioned in Chapter 3.

Take a picture: This button will pause the video stream and initiate a call to the
camera plugin [32] to take a picture from the back camera of the device. The picture will
be taken in medium resolution without opening the camera application or stopping the
audio call. This picture is stored in memory and converted to a base-64 string which will
be sent to the assistant party. After this picture is sent text-to-speech will be used to
notify the requester user. The function to achieve this is in Code listing 5.13.

End call: This button will end the audio, video and data connection to the requester
party and set the RequesterCallStatus value in RequesterProvider to callEnded.

5.5.4 Call Ended
When the status has been set to callEnded, the view in Figure 5.10 will be rendered. All
of the resources in RequesterProvider will be disposed of when this page is rendered. If
another call is started, the application will render the view in Figure 5.7 and the process
for starting a call will be repeated.

5.6 The Assistant
The assistant side of the application is accessible by selecting the Answer a call button,
see Figure 5.4. It is defined by the widgets that are within the scope of the HelperProvider
class which extends ChangeNotifier. This class contains the resources mentioned in Code
listing 5.14.

We will now provide a description about the resources included in the HelperProvider
class.

The Assistant 35

void takePicture () async {
try {

TextSpeak (). speak(’ Taking a picture ’);
await _videoConnection . disposeResource ();
await _localVideoStream . disposeResource ();
notifyListeners ();
await Future . delayed (const Duration (milliseconds : 100));

final cameras = await availableCameras ();
final backFacingCamera = cameras . firstWhere (

(camera) =>
camera . lensDirection == CameraLensDirection .back ,

orElse : () => cameras .first ,
);

CameraController controller =
CameraController (backFacingCamera ,
ResolutionPreset . medium);

await controller . initialize ();
await Future . delayed (const Duration (milliseconds : 300));
final XFile picture = await controller . takePicture ();
String base64Image = base64Encode (

await picture . readAsBytes ());
await controller . dispose ();

await _dataConnection . connection
?. send(getEncodablePictureMessage (base64Image));

await _restartCameraFeed ();
await controller . dispose ();
TextSpeak (). speak(’ Picture taken ’);

} catch (err) {
TextSpeak (). speak(’Could not take a picture ’);

}
}

Code listing 5.13 Take a picture code.

36 Final Solution

Figure 5.10 Call ended page for the requester.

localAudioStream: The MediaStream obtained from the device’s audio input. It
will be used to answer a call started by the requester side.

remoteVideoStream: A MediaStream obtained remotely from the requester’s de-
vice. It will be displayed when a call is ongoing, this object can be set many times during
the course of the call since a change in camera or resolution of the video in the requester
side will produce a new MediaStream.

remoteAudioStream: A MediaStream obtained remotely from the requester’s de-
vice. It contains only one audio track and no video tracks, this object is immutable during
the duration of the call.

dataConnection: The DataConnection object used to send and receive messages
between the requester and assistant devices during the call.

videoConnection: The MediaConnection object that provides the localAudioStream
MediaStream. This connection may be disposed and started again multiple times in a sin-
gle call.

audioConnection: The MediaConnection object that provides the audioConnection
MediaStream. This connection will remain active throughout the duration of the call, if
at any point this connection stops the call will be considered closed.

peerResource: A Peer that will be used to connect the assistant device with the
requester device. The internal id for this peer is provided by the server and remains
unknown for both parties for the duration of the call.

The user interface for the provider is generated according to the status of the call
which is represented by the enum in Code listing 5.15.

The Assistant 37

HelperProvider () {
_resources = [

_remoteVideoStream ,
_remoteAudioStream ,
_videoConnection ,
_dataConnection ,
_audioConnection ,
_localAudioStream ,
_peerResource ,

];
}

Code listing 5.14 Resources of the HelperProvider class.

enum HelperCallStatus {
startingResources ,
waitingPartnerId ,
connectingToPartner ,
ongoingCall ,
callEnded

}

Code listing 5.15 Requester call status enum.

5.6.1 Starting Resources
When HelperCallStatus is set to startingResources, the application will request access to
the user’s audio input device and the HelperProvider class will initialize the resources in
Code listing 5.14. The rendered view will be the same as in Figure 5.7.

After the resources are initialized and the peerResource in Code listing 5.14 has been
connected to the server and is in an active state, the HelperCallStatus will be set to
waitingPartnerId.

5.6.2 Connecting to the Requester
This part of the flow starts when the HelperCallStatus is set to waitingPartnerId, the
page in Figure 5.11. After the assistant has received the code from the requester party
and it has been submitted on this page, a transitional state will be triggered by setting
HelperCallStatus to connectingToPartner, during which Figure 5.12 will be rendered.

While Figure 5.12 is displayed, the assistant peer is establishing a data connection to
the requester peer using the code that was previously shared. After a data connection
has been established, audio and video connections will be started from the requester side
and after they have been started, HelperCallStatus will be set to ongoingCall. The audio
connection is separate from the video connection in order to achieve a constant stream of
audio regardless of the state of the camera on the requester side, this behavior is useful
since it allows both parties to communicate during the picture taking process.

38 Final Solution

Figure 5.11 Waiting for partner id page.

5.6.3 Ongoing Call
When HelperCallStatus is set to ongoingCall, the view from Figure 5.13 will be rendered.

When this page is reached, a live audio, video and data connection is ongoing. The
screen will be divided into two sections, the first section will stick to the left side of the
screen, if the device used by the assistant is wider than its height. And it will otherwise
be positioned on the top half of the screen. The first section constantly displays a video
feed from the requester side with the following controls:

Rotate video: Rotates the video feed in Figure 5.13 by 90 degrees clockwise. This is
useful since it allows the assistant to orient the video without the need for the requester
to adjust their device.

Switch camera: Sends a message via the data connection that will initiate the logic
from Code listing 5.12 on the requester side. This results in the source camera being
cycled and the video stream restarted.

Change quality: Sends a message via the data connection that will toggle the video
quality on the requester’s device.

Take a picture: Sends a message via the data connection that will initiate the picture
taking process as documented in Code listing 5.13.

End call: Disposes of the local audio stream and set the HelperCallStatus to callEnded
which will render the page Figure 5.14.

The second section of the assistant user interface will display information streamed
from the requester’s device. The information includes the accuracy of the GPS service, the

The Assistant 39

Figure 5.12 Establishing connection page.

speed of the device based on the accelerometer of the device and the location of the device
presented via a static Google map embedded element. The map element is obtained from
the Google Maps by the use of the requester’s latitude and longitude. It is then rendered
on the page using an iframe obtained from the webviewx [33] plugin, as detailed in Code
listing 5.16.

This approach does not require a Google Maps API key, resulting in no cost for
obtaining the map element.

During the video call, the assistant is able to receive pictures from the requester side.
These pictures can be viewed by accessing a drawer by clicking on the menu icon on the
top left part of the screen, which will result in the page shown in Figure 5.15. Subsequent
pictures will be displayed here and stacked in a vertical layout with the most recent picture
being placed at the top, this allows the assistant to quickly scroll through the received
pictures even when using a mobile device as seen in Figure 5.16. Closing the drawer will
make the application render the page in Figure 5.13. Neither the video nor the audio call
is interrupted when viewing or receiving pictures.

5.6.4 Call Finished
When HelperCallStatus is set to callEnded, the view from Figure 5.14 will be rendered.
Upon rendering, the resources of HelperRequester will be disposed of.

If the user clicks on the Answer another call button, the HelperCallStatus value will
be set to waitingPartnerId, resulting in the call cycle being started once again.

40 Final Solution

Figure 5.13 Ongoing call on the assistant side.

Figure 5.14 Call ended on the assistant side.

Message Transmission 41

final String mapQuery =
’https :// maps. google .com/maps? \
q=$latitude , $longitude &t=&z=20& ie=UTF8&iwloc =& output =embed ’;

return WebViewX (
key: const ValueKey (’webviewx ’),
initialContent : initialContent ,
initialSourceType : SourceType .html ,
height : screenSize . height / 2.5,
width: screenSize .width * 0.8,
onWebViewCreated : (controller) {

webviewController = controller ;
webviewController . loadContent (mapQuery , SourceType .url);

},
mobileSpecificParams : const MobileSpecificParams (

androidEnableHybridComposition : true ,
),
navigationDelegate : (navigation) {

debugPrint (navigation . content . sourceType . toString ());
return NavigationDecision . navigate ;

},
);

Code listing 5.16 Code for rendering an embedded map in Flutter.

Figure 5.15 Drawer for received images, viewed on a desktop computer.

5.7 Message Transmission
Certain events on both flows generate messages that need to be transmitted between both
parties. In order to ensure the transmission of the messages, a DataConnection object
exists on both sides. Messages are classified in PeerMessageType and ActionMessageType.

42 Final Solution

Figure 5.16 Drawer for received images with multiple pictures on a mobile device.

The different types of messages are shown in Code listing 5.17.
Messages sent through a DataConnection object need to be in the form of a Map with

String keys and values. If a value is of a different type, such as an object, number or
boolean, an error will occur when transmitting the message.

A geoLocation message will be generated using the lines from Code listing 5.18. The
position object will be obtained from a callback generated by the geolocator plugin [29].

A speed message is generated using the lines from Code listing 5.19. The UserAc-
celerometerEvent object is obtained from the sensors plus plugin [30], which contains
absolute values corresponding to the current speed of the device in the x, y and z axis.

A picture message will be generated using the lines from Code listing 5.20. The
base64Image is a String representing an image taken by the requester’s device.

An action message will be composed of a dictionary containing a single key-value pair,
as listed in Code listing 5.21. This type of message will only originate from the assistant
and will be sent to the requester.

Once the requester receives an action message, it will be decoded and an action will
be taken, depending on the data value with each possible value corresponding to one of
the four actions available to the requester.

5.8 TURN Server
During development, the application had problems initiating the video call under certain
conditions such as when using an Android device with mobile data and a VPN service.
This problem was temporarily solved by the configuration of a TURN (Traversal Using
Relays around NAT) server. The TURN server will be used to relay information between
devices in case that the network used masks the IP address and the information provided

TURN Server 43

enum PeerMessageType {
geoLocation ,
speed ,
picture ,
action

}

enum ActionMessageType {
changeCamera ,
changeQuality ,
takePicture ,
endCall

}

Code listing 5.17 Enums representing the message types.

Map <String , String > getEncodableLocationMessage (Position
position) {

return {
typeKey : PeerMessageType . geoLocation .name ,
" latitude ": position . latitude . toString (),
" longitude ": position . longitude . toString (),
" accuracy ": position . accuracy . toString ()

};
}

Code listing 5.18 Class for a geolocation message.

Map <String , String > getEncodableAccelerationMessage (
UserAccelerometerEvent event) {

return {
typeKey : PeerMessageType .speed.name ,
"x": event.x. toString (),
"y": event.y. toString (),
"z": event.z. toString (),

};
}

Code listing 5.19 Class for a speed information message.

Map <String , String > getEncodablePictureMessage (String
base64Image) {

return {
typeKey : PeerMessageType . picture .name ,
"data ": base64Image ,

};
}

Code listing 5.20 Class for a picture message.

44 Final Solution

Map <String , String > getEncodableActionMessage (ActionMessageType
action) {

return { typeKey : PeerMessageType . action .name , "data ":
action .name };

}

Code listing 5.21 Class for an action message.

is not sufficient to start a peer-to-peer session [34]. This, of course, has the drawback of
added latency to the call and incurring extra costs to run the server. For this reason, a free
WebRTC TURN server was configured using Open Relay, a TURN service that provides
enterprise-grade reliability and support For both TCP and UDP connections [35]. This
addition fixed the communication problems for certain edge cases but it would disable all
peer-to-peer capabilities when accessing the application via a Safari web browser on an
iOS device. For this reason, this configuration was discarded during development.

5.9 Evaluation of the Implementation
After describing the implementation of the application we can synthesize how the problems
discussed in Section 3.1 have been addressed by the solution:

1. The maximum number of interactable elements present at a single moment on the
requester side has been limited to four, which allows the accessibility features to cycle
through them efficiently.

2. The selection of a lower resolution for the outgoing video stream on the requester side
provides some control over the data consumption while using the application.

3. The features needed for video and audio streaming, picture sending and location shar-
ing have been included in a single application preventing the need for the user to switch
between multiple applications when receiving remote help.

4. During the development, the technologies that provided official support for mobile and
web platforms were selected, this includes the framework and Flutter libraries. Exten-
sive testing was made with the use of both emulated and physical devices. This ensured
that support for the offered features across multiple platforms has been achieved.

5. The low number of displayed elements on the requester side combined with the re-
sponsive nature of the framework ensures that elements will not overlap or become
inaccessible on most mobile devices.

6. The flow of the application on the requester side was designed to be sequential and
does not include timed action to which the user has to react swiftly.

7. The only text input on the requester side is located on the settings page (Figure 5.5).
The value of this input is persisted locally, so the user does not spend an extended
amount of time typing into the application. The support for quickly sharing the call
id, as shown in Figure 5.8, also saves time since the user does not need to type the
name of the person they wish to share the code with or the name of the application
they want to share it with.

Deployment 45

8. The option to select the preferred camera for video streaming is provided and is per-
sisted. In the case of selecting an audio source, this is an option that can be set globally
for the web browser via accessibility options.

9. The GPS location is shared as well as its accuracy and the current speed of the device.
This provides the assistant with more tools to properly aid the requester in navigation.

5.10 Deployment
The current implementation is able to be compiled into Android and iOS application
packages as well as a web application. Currently, the only publicly available version of
the application is the web version. This version is hosted using GitHub pages 1, a static
web hosting service that serves the content of a website which can be updated by modifying
the source which will trigger a Jekyll pipeline and update the web page [36]. This service
is free with the limitations of repository sizes of up to 1 GB, a bandwidth limit of 100
GB per month after which the speed will be throttled, a build limit of 10 build events per
hour and rate limiting [37]. This is enough to cover the usage for testing and production.

1https://hidalgoivan.github.io/#/

https://hidalgoivan.github.io/#/

46 Final Solution

Chapter 6

Feedback and Interviews

How do different users with visual impairments navigate the world and what insights
can we gather from their unique experiences? What feedback do they have for existing
solutions and what would their ideal application offer? In this chapter, we will write
about personal experiences from visually impaired users and the feedback they have for
the accomplished work.

During the development of this project, multiple meetings and interviews were conducted
with fully blind and partially sighted users in SONS. The following text is a chronological
synthesis of insights and feedback we received from them.

6.1 Meeting #1, January 16th, 2023
For the first meeting, we prepared exploratory questions in order to collect information
about which applications are used most frequently and what changes they would appreci-
ate having for them. For each response, a condensed version combining the feedback from
all attendants is provided.

Which applications do you use on a day-to-day basis?

Day-to-day activities are aided by a variety of applications. Some of them are Seznam
Mapy, a mobile application for maps and navigation that supports downloading regional
maps for use without an internet connection [38]. Zuzanka, an iOS-only application
that is able to read the expiration date of physical products by scanning them with
the camera of the device and provides such features as saving the expiration date on
a calendar application and guidance for common places where expiry dates are printed
based on a cumulative database of expiration date pictures [39]. OKO, an iOS and Android
application designed to help partially sighted users navigate street crossings by using AI to
detect the color of a traffic light using the camera of the device and producing an auditory
queue to alert the user about the state of the traffic light. Google Maps is frequently used
to check if the desired location has been reached and for navigating the city with the
description provided by the application while it is in pedestrian mode.

What would you change about these applications?

The user experience is very inefficient for some applications since it requires multiple

47

48 Feedback and Interviews

inputs from the user to get the desired task done. This problem is compounded when the
user is using some accessibility feature, which results in a simple task taking a relatively
long amount of time to complete and it becomes even worse when the user is stressed
or needs to act quickly. A navigation application designed for pedestrian use is sorely
needed since most current applications support a pedestrian mode but do not provide the
same features as in the mode used for vehicles. Certain applications provide a navigation
description for getting from one point to another, but this is frequently not in enough
detail to navigate an urban setting efficiently. Since most cities are not organized in
grids, the complexity of the movements needed is not expressed appropriately. OKO will
sometimes incorrectly announce the color of traffic lights or will pick up a different traffic
light which is also in view of the camera, which can lead to very dangerous situations
when crossing streets. This inaccuracy is something that would really be appreciated to
be corrected. For most navigation applications, GPS accuracy is a big hindrance, since
in urban environments, the precision of location services can be very low. It limits the
usability of such applications.

What would your perfect application be like?

A perfect application for assisting visually impaired users would read the house num-
bers in real-time when traversing the street, promptly notify users of errors in route
navigation such as taking the wrong route or waiting on the wrong side of the street for
public transport, communicate to public transport conductors that a visually impaired
person is waiting on the next stop so they may provide assistance, and be able to read
text on any type of display since modern devices have problems detecting numbers, for ex-
ample on washing machine displays. A solution involving augmented reality lenses would
be really useful if it could detect obstacles on the way and sort them by importance. This
would function similarly to a white cane, which can only provide tactile feedback about
obstacles but not identify them or take affirmative action to inform the user about danger
or if an action from their side is required.

6.2 Meeting #2, February 1st 2023
For this meeting, we asked users with different visual impairments to send a text message
or search for the weather in a web browser on their mobile devices. The following is a
condensed report of the observations we were able to capture and the feedback provided
by the users.

Voice-over functionality can be enabled by performing a gesture on iPhone devices or it
can also be configured to start by default. After an update, the voice quality of the screen
reader decreased notably, which negatively impacted the usability of this feature. The
voice-over functionality sometimes replaces certain character combinations by different
words, which is especially frequent when reading abbreviations, and seriously hinders
usability. It does not announce when it interprets the text in this way and it takes time
to learn which abbreviations or combinations are picked up by this feature.

Some applications display a menu with quick actions when interacting with voice-over
enabled. This allows the user to skip large portions of the user flow to get tasks done
quicker. An example of this is the ability to write emails from this menu without opening
the email application. Sorting the icons of the applications helps users quickly access the
application that they want to use. For this reason, they frequently have multiple folders
with similar applications inside. For starting an application, some users prefer to use

Meeting #3, March 3rd 2023 49

voice dictation instead of tapping on the application icon. This is not very reliable, since
the voice dictation functionality is frequently only supported for English, which makes
applications that are named in a different language such as Czech unrecognizable by the
device by name.

Memorization is a large part of the application usage. After a user has gone through
some task enough times, they can memorize where the location of the important elements
are, and in future uses, they can quickly tap directly on such elements instead of scrolling
through the available user interface components with accessibility options. When reading
text, a bold font is preferred by partially sighted users since it is easier to read when using
features such as zoom on the screen and using extra tools such as magnifying glasses. Set-
ting the font size is inconsistent since some applications ignore the default size imposed by
the system. When inputting text, different methods are used. A straightforward strategy
is the use of a Bluetooth keyboard with Braille keys. This allows the user to quickly input
large amounts of text and operate the device with efficiency with the drawback of needing
to carry the keyboard around and charging it from time to time. When using the screen
keyboard provided by the device, the voice-over will read every letter when the user hovers
over it. This results in a very inefficient user experience, since some letters sound very
similar. The solution provided is that the voice-over will use the selected letter in a word
such as ’Emil’ when the user hovers over the letter ’E’. This word pronunciation takes a
lot of time to complete and renders this strategy relatively slow and difficult to follow.
An on-screen Braille keyboard is also supported, for which the user holds the phone hor-
izontally with both thumbs on the back side of the device and the other fingers are used
to tap on the edges of the screen, corresponding to a single dot in Braille notation. This
method takes some training and time to learnbut is a very viable alternative for inputting
large quantities of text.

After this demonstration, we presented our ideas for the prototype that would later
become the solution described in this thesis. After hearing about our proposal, the follow-
ing features were requested: adding the option to adjust the quality of the video during
the call, sharing the GPS location of the user with estimated accuracy, ability to send a
picture from the requester side in high definition, allow the assistant to adjust the qual-
ity of the video stream from their device, and also start the process for taking a picture
without any input from the requester.

6.3 Meeting #3, March 3rd 2023
Before this meeting, the functional requirements were defined and different technologies
were tested for the development of the application. For this meeting, the fourth iteration
of the prototype was presented and a video and audio call was achieved with the requester
side using an Android phone and the assistant side using a computer running Windows
and using Google Chrome as a web browser. The feedback from this meeting was positive
and the ability of the application to function via a web page accessible by the hardware
in the navigation center at SONS was a very welcomed aspect of this project.

6.4 Successive Meetings March 22nd – April 12th
2023

During the following meetings, multiple iterations of the final solution were presented and
tested on multiple devices. Several bugs and faulty features were identified and corrected

50 Feedback and Interviews

thanks to the testing performed. Here is a condensed list of important observations made
during these meetings:

When starting a call, the phone would sometimes switch the audio input device. This
can make it difficult for requester users to communicate since they frequently make
use of headphones with integrated microphones.

The SelectableText widget provides the option for the user to select and copy text
displayed on the screen [40]. This widget is described as a disabled text input on
certain mobile web browsers, which can be confusing for a user going to the call flow
for the first time.

The use of a VPN service can interfere with the peer-to-peer connection, preventing
the requester and the assistant user to establish a communication channel.

Some users may experience difficulty connecting to the application due to firewall
restrictions placed on the network they are currently using; extra testing is necessary
to come up with solutions to this problem.

The navigation center at SONS is very much pleased with the achieved progress and
expects to start using the application to help visually impaired people in the near
future.

When comparing the audio delay in this solution to the delay present in dedicated
audio call options, this solution frequently has a lower latency resulting in reduced
audio transmission delay.

Chapter 7

Conclusion

What can we learn from this work? How did we manage the input from volunteers from
SONS and what is the future of the project moving forward?

The conducted research has given a comprehensive overview of the current state of so-
lutions available for users who are fully blind or partially sighted. There are multiple
ways visually impaired users operate their mobile devices and technological advances
have greatly improved the tools they can make use of to help them become the most
independent, creative and self-reliant version of themselves possible. While these tools
allow partially sighted users to operate most of applications available for mobile devices
and navigate many websites, the current implementation is frequently not sufficient to
guarantee a usable experience or even expose all of the features a solution may offer.

Through interviews, observations and experiences gathered from cumulative years of
living with a sight condition, we have been able to identify frequently requested features
and changes that would greatly improve the ability of visually impaired users to navigate
the world and help developers better understand their needs and make changes that can
have a major positive impact on the experience of their visually impaired users. In close
cooperation with the SONS members, we have designed an easy-to-use, free and reliable
application that is being used by the navigation centre at SONS to aid in providing support
to users who need it. Frequent complaints about current solutions have been addressed
and kept in mind when implementing the features for the final solution. After much
experimentation, research and prototype iterations, the final solution has been deployed
and has been accepted by the target audience.

The list of problems in Chapter 3 has been addressed by limiting the maximum number
of interactable elements, providing the option for a lower resolution of the video stream,
including multiple requested features into a single application and selecting a technology
that is able to be deployed to multiple platforms, among other strategies.

The implementation does not outright solve all of the problems in their entirety, but it
does provide some level of support that attempts to minimize the impact of the problems
on the user experience. One example is the GPS coordinates: while the application cannot
always provide a perfect GPS location, it at least provides extra information that allows
the assistant to form a better idea of the real location of the requester. Each one of these
problems has been kept in mind when developing the application and the solutions have
been reached via a combination of technical research and brainstorming with users at
SONS.

51

52 Conclusion

This application covers the requested functionality in at least a usable manner; how-
ever, there are still several limitations. Selecting a camera for taking pictures is not
supported. Testing is a lengthy process since inconsistencies between emulators and real
devices have been found multiple times during the development process. Implementation
of new features is a particularly tedious process since although the added plugins officially
support multiple platforms, in practice, the behavior of certain plugins is inconsistent
and sometimes problems with the technologies arise for which there is very little to no
documentation. The application is heavily dependent on the public PeerJS server, which
means that if the server is down or there are too many concurrent users trying to make a
connection, the performance of the application could be negatively impacted. Accessing
and sharing the orientation of the device’s compass is currently not supported. Certain
mobile web browsers will not allow the editing of the text input on the settings page.

7.1 Future Work
The current implementation is usable for the visually impaired users and the navigation
center, however the meetings and continued collaboration with SONS has provided a list
of features that would be desirable to have in future implementations. Some of these
observations have been labeled as future work:

Deploying a private peer-to-peer server: The application currently uses the pub-
lic server provided by the PeerJS library [16] to initiate the connection between devices.
This is serviceable for the purpose of the application. However SONS has access to
a virtual server which is capable to run its own version of the server, by doing this
more control could be provided for the availability of the application and generation
of server-side peer ids.

Publishing mobile application: The application has been successfully compiled to
both Android and iOS packages. Publishing to Google Play and App Store would
significantly increase the reach of the solution and would fix problems that are unique
to the web version of the application.

Adding extra settings: The addition of extra settings such as selecting the pitch,
speed and volume of the text-to-speech voice, selecting whether to adjust the font size
to that of the system default or having a custom size and being able to toggle location
sharing.

Extra assistant controls: The ability to let the assistant party switch the layout to
present video only, location only or received pictures only.

Proactive calls: The ability to actively call a contact without having the second
party open the application and start a session.

Call recovery: Automatically try to recover a call in case the connection is briefly
lost or there has been a network change.

Received image controls: Adding controls to the received images on the assistant
side. These controls would allow the assistant to resize, rotate and zoom into specific
sections of the pictures.

Bibliography

1. Country Map & Estimates of Vision Loss - Czech Republic [The International Agency
for the Prevention of Blindness (IAPB)]. Accessed on 2023-04-18. Available also from:
https://www.iapb.org/learn/vision-atlas/magnitude-and-projections/
countries/czech-republic/.

2. Refractive Errors [National Eye Institute]. Accessed on 2023-04-18. Available also
from: https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-
and-diseases/refractive-errors.

3. Causes of Vision Loss [The International Agency for the Prevention of Blindness
(IAPB)]. Accessed on 2023-04-18. Available also from: https://www.iapb.org/
learn/vision-atlas/causes-of-vision-loss/.

4. Cataracts [National Eye Institute]. Accessed on 2023-04-18. Available also from:
https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-
diseases/cataracts.

5. About us [SONS ČR]. Accessed on 2023-03-03. Available also from: https://www.
metered.ca/tools/openrelay/.

6. Android accessibility overview [Google]. Accessed on 2023-02-01. Available also from:
https://support.google.com/accessibility/android/answer/6006564?hl=
en&ref_topic=6007234.

7. Advanced Braille Keyboard Tutorial Part 4 : Different types of Braille Screen Input
[Nalin]. Accessed on 2023-05-03. Available also from: https://www.youtube.com/
watch?v=EPRdsR78mOk.

8. About the vision accessibility features on your iPhone or iPad [Apple]. Accessed on
2023-02-01. Available also from: https://support.apple.com/en-us/HT210076.

9. About section [Be My Eyes]. Accessed on 2023-02-06. Available also from: https:
//www.bemyeyes.com/about.

10. Be My Eyes [Be My Eyes]. Accessed on 2023-05-03. Available also from: https:
//play.google.com/store/apps/details?id=com.bemyeyes.bemyeyes.

11. Ionic Framework [Ionic]. Accessed on 2023-02-09. Available also from: https://
ionicframework.com/.

12. We help companies build world-class apps. [Ionic]. Accessed on 2023-04-21. Available
also from: https://ionic.io/customers.

53

https://www.iapb.org/learn/vision-atlas/magnitude-and-projections/countries/czech-republic/
https://www.iapb.org/learn/vision-atlas/magnitude-and-projections/countries/czech-republic/
https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/refractive-errors
https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/refractive-errors
https://www.iapb.org/learn/vision-atlas/causes-of-vision-loss/
https://www.iapb.org/learn/vision-atlas/causes-of-vision-loss/
https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/cataracts
https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/cataracts
https://www.metered.ca/tools/openrelay/
https://www.metered.ca/tools/openrelay/
https://support.google.com/accessibility/android/answer/6006564?hl=en&ref_topic=6007234
https://support.google.com/accessibility/android/answer/6006564?hl=en&ref_topic=6007234
https://www.youtube.com/watch?v=EPRdsR78mOk
https://www.youtube.com/watch?v=EPRdsR78mOk
https://support.apple.com/en-us/HT210076
https://www.bemyeyes.com/about
https://www.bemyeyes.com/about
https://play.google.com/store/apps/details?id=com.bemyeyes.bemyeyes
https://play.google.com/store/apps/details?id=com.bemyeyes.bemyeyes
https://ionicframework.com/
https://ionicframework.com/
https://ionic.io/customers

54 Bibliography

13. ANCHETA, Wern. React Native Web vs. Flutter web. Accessed on 2023-03-14. Avail-
able also from: https://blog.logrocket.com/react-native-web-vs-flutter-
web/.

14. Apache Cordova, overview [Cordova]. Accessed on 2023-03-14. Available also from:
https://cordova.apache.org/docs/en/latest/guide/overview/index.html.

15. The Good and the Bad of Ionic Mobile Development. [AltexSoft]. Accessed on 2023-
04-21. Available also from: https://www.altexsoft.com/blog/engineering/the-
good-and-the-bad-of-ionic-mobile-development/.

16. The PeerJS library [PeerJS]. Accessed on 2023-02-28. Available also from: https:
//peerjs.com/.

17. MINTO, Rob. The genius behind Google’s browser. Accessed on 2023-04-22. Available
also from: https://web.archive.org/web/20111201001419/http://www.ft.com:
80/cms/s/2/03775904-177c-11de-8c9d-0000779fd2ac.html#axzz1fEmNkUnB.

18. The Dart type system [Dart]. Accessed on 2023-04-22. Available also from: https:
//dart.dev/language/type-system.

19. BRACHA, Gilad; BARK, Lars. Presentation: ”Opening Keynote: Dart, a new pro-
gramming language for structured web programming”. Accessed on 2023-04-23. Avail-
able also from: http://gotocon.com/aarhus- 2011/presentation/Opening%
20Keynote:%20Dart,%20a%20new%20programming%20language%20for%20structured%
20web%20programming.

20. BAK, Lars; LUND, Kasper. Dart for the Entire Web. Accessed on 2023-04-22. Avail-
able also from: https : / / news . dartlang . org / 2015 / 03 / dart - for - entire -
web.html.

21. TC52 - Dart [European Computer Manufacturers Association]. Accessed on 2023-04-
22. Available also from: https://web.archive.org/web/20160802100651/http:
//www.ecma-international.org/memento/TC52.htm.

22. FAQ [Flutter]. Accessed on 2023-04-22. Available also from: https://docs.flutter.
dev/resources/faq.

23. Sky: An Experiment Writing Dart for Mobile [Google Developers]. Accessed on 2023-
04-22. Available also from: https://www.youtube.com/watch?v=PnIWl33YMwA.

24. Supported deployment platforms [Flutter]. Accessed on 2023-04-22. Available also
from: https://docs.flutter.dev/reference/supported-platforms.

25. KARMACHARYA, Samriddhi. LifeCycle Methods Of Flutter Widgets. Accessed on
2023-04-22. Available also from: https://flutterguide.com/lifecycle-methods-
of-flutter-widgets/.

26. KAPLAN, Muhammed. peerdart 0.5.0. Accessed on 2023-03-01. Available also from:
https://pub.dev/packages/peerdart.

27. peerjs-server [PeerJS]. Accessed on 2023-02-09. Available also from: https://github.
com/peers/peerjs-server.

28. LESNITSKY, Andrei. localstorage 4.0.1+2. Accessed on 2023-04-09. Available also
from: https://pub.dev/packages/localstorage.

29. geolocator 9.0.2 [Baseflow]. Accessed on 2023-03-01. Available also from: https :
//pub.dev/packages/geolocator.

https://blog.logrocket.com/react-native-web-vs-flutter-web/
https://blog.logrocket.com/react-native-web-vs-flutter-web/
https://cordova.apache.org/docs/en/latest/guide/overview/index.html
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-ionic-mobile-development/
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-ionic-mobile-development/
https://peerjs.com/
https://peerjs.com/
https://web.archive.org/web/20111201001419/http://www.ft.com:80/cms/s/2/03775904-177c-11de-8c9d-0000779fd2ac.html#axzz1fEmNkUnB
https://web.archive.org/web/20111201001419/http://www.ft.com:80/cms/s/2/03775904-177c-11de-8c9d-0000779fd2ac.html#axzz1fEmNkUnB
https://dart.dev/language/type-system
https://dart.dev/language/type-system
http://gotocon.com/aarhus-2011/presentation/Opening%20Keynote:%20Dart,%20a%20new%20programming%20language%20for%20structured%20web%20programming
http://gotocon.com/aarhus-2011/presentation/Opening%20Keynote:%20Dart,%20a%20new%20programming%20language%20for%20structured%20web%20programming
http://gotocon.com/aarhus-2011/presentation/Opening%20Keynote:%20Dart,%20a%20new%20programming%20language%20for%20structured%20web%20programming
https://news.dartlang.org/2015/03/dart-for-entire-web.html
https://news.dartlang.org/2015/03/dart-for-entire-web.html
https://web.archive.org/web/20160802100651/http://www.ecma-international.org/memento/TC52.htm
https://web.archive.org/web/20160802100651/http://www.ecma-international.org/memento/TC52.htm
https://docs.flutter.dev/resources/faq
https://docs.flutter.dev/resources/faq
https://www.youtube.com/watch?v=PnIWl33YMwA
https://docs.flutter.dev/reference/supported-platforms
https://flutterguide.com/lifecycle-methods-of-flutter-widgets/
https://flutterguide.com/lifecycle-methods-of-flutter-widgets/
https://pub.dev/packages/peerdart
https://github.com/peers/peerjs-server
https://github.com/peers/peerjs-server
https://pub.dev/packages/localstorage
https://pub.dev/packages/geolocator
https://pub.dev/packages/geolocator

Bibliography 55

30. sensors plus 2.0.2 [Flutter community]. Accessed on 2023-03-18. Available also from:
https://pub.dev/packages/sensors_plus.

31. Share plugin 6.3.1 [Flutter community]. Accessed on 2023-03-01. Available also from:
https://pub.dev/packages/share_plus.

32. camera 0.10.3+2 [Flutter.dev]. Accessed on 2023-03-20. Available also from: https:
//pub.dev/packages/camera.

33. FLUTUR, Adrian. webviewx 0.2.2. Accessed on 2023-03-02. Available also from:
https://pub.dev/packages/webviewx.

34. What are STUN and TURN Servers? (WebRTC Tips from WebRTC.ventures) [We-
bRTC.ventures]. Accessed on 2023-03-06. Available also from: https://www.youtube.
com/watch?v=4dLJmZOcWFc.

35. Open Relay: Free WebRTC TURN Server [Next Path Software Consulting Inc.].
Accessed on 2023-03-03. Available also from: https://www.metered.ca/tools/
openrelay/.

36. CLARK, Barry. Build A Blog With Jekyll And GitHub Page. Accessed on 2023-04-
30. Available also from: https://www.smashingmagazine.com/2014/08/build-
blog-jekyll-github-pages/.

37. About GitHub Pages [GitHub]. Accessed on 2023-04-30. Available also from: https:
//docs.github.com/en/pages/getting-started-with-github-pages/about-
github-pages#basics-of-github-pages.

38. Mapy.cz navigation & maps [Seznam.cz a.s.]. Accessed on 2023-04-28. Available
also from: https : / / apps . apple . com / us / app / mapy - cz - navigation - maps /
id411411020.

39. Zuzanka [Zatoichi Sp. z o.o.]. Accessed on 2023-04-28. Available also from: https:
//apps.apple.com/az/app/zuzanka/id6444279925.

40. SelectableText class [Flutter]. Accessed on 2023-03-01. Available also from: https:
//api.flutter.dev/flutter/material/SelectableText-class.html.

https://pub.dev/packages/sensors_plus
https://pub.dev/packages/share_plus
https://pub.dev/packages/camera
https://pub.dev/packages/camera
https://pub.dev/packages/webviewx
https://www.youtube.com/watch?v=4dLJmZOcWFc
https://www.youtube.com/watch?v=4dLJmZOcWFc
https://www.metered.ca/tools/openrelay/
https://www.metered.ca/tools/openrelay/
https://www.smashingmagazine.com/2014/08/build-blog-jekyll-github-pages/
https://www.smashingmagazine.com/2014/08/build-blog-jekyll-github-pages/
https://docs.github.com/en/pages/getting-started-with-github-pages/about-github-pages#basics-of-github-pages
https://docs.github.com/en/pages/getting-started-with-github-pages/about-github-pages#basics-of-github-pages
https://docs.github.com/en/pages/getting-started-with-github-pages/about-github-pages#basics-of-github-pages
https://apps.apple.com/us/app/mapy-cz-navigation-maps/id411411020
https://apps.apple.com/us/app/mapy-cz-navigation-maps/id411411020
https://apps.apple.com/az/app/zuzanka/id6444279925
https://apps.apple.com/az/app/zuzanka/id6444279925
https://api.flutter.dev/flutter/material/SelectableText-class.html
https://api.flutter.dev/flutter/material/SelectableText-class.html

	Acknowledgments
	Declaration
	Abstract
	List of Abbreviations
	Introduction
	Visual Impairment in the Czech Republic, Figures, Types and Observations
	Meetings at SONS

	Review of Existing Applications
	Native Mobile Accessibility Options
	Android Native Accessibility Options
	iOS Native Accessibility Options

	Remote Assistance Applications
	Applications for Navigation

	Analysis and Requirements
	Identifying Drawbacks
	Functional Requirements
	Non-Functional Requirements

	Exploring Potential Solutions
	Ionic Framework
	React Native
	Apache Cordova
	PeerJS

	Final Solution
	Dart
	Flutter
	History
	Support
	The Widget Component
	State Management
	PeerDart

	Architecture Overview
	Implementation
	The Requester
	Starting Resources
	Resources Started
	Ongoing Call
	Call Ended

	The Assistant
	Starting Resources
	Connecting to the Requester
	Ongoing Call
	Call Finished

	Message Transmission
	TURN Server
	Evaluation of the Implementation
	Deployment

	Feedback and Interviews
	Meeting #1, January 16th, 2023
	Meeting #2, February 1st 2023
	Meeting #3, March 3rd 2023
	Successive Meetings March 22nd – April 12th 2023

	Conclusion
	Future Work

