
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

System for monetization of carsharing data

Bc. Ondřej Cihlář

Ing. Václav Jirovský, Ph.D.

Informatics

Managerial Informatics

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

The Uniqway system collects various anonymised data on vehicle movements. Today,

many other services and systems are based on knowledge of the behaviour of

individuals or groups in society. The aim of the thesis is:

1. to enrich vehicle provided data with data acquired from mobile phones of users

riding in a road vehicle (use the existing work of transport mode detection as a basis);

2. to create a public interface exposing relevant anonymised floating car/user data;

3. to propose how could be external entities charged for data.

Collaborate with the Uniqway student team to implement the work.

Electronically approved by Ing. David Buchtela, Ph.D. on 6 November 2022 in Prague.

Master’s thesis

SYSTEM FOR
MONETIZATION OF
CARSHARING DATA

Bc. Ondřej Cihlář

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Václav Jirovský, Ph.D.
May 4, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Bc. Ondřej Cihlář. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Cihlář Ondřej. System for monetization of carsharing data. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

Abbreviations ix

Introduction 1

1 Theoretical part 3
1.1 Application programming interface . 3

1.1.1 API endpoint . 4
1.1.2 API types . 4

1.2 REST API . 5
1.2.1 Resource identification . 5
1.2.2 HTTP protocol . 7

1.3 API security . 9
1.3.1 Authentication . 9
1.3.2 Access control . 9
1.3.3 API keys . 10

1.4 The Uniqway system technologies . 11
1.4.1 Java Technology . 11
1.4.2 Play framework . 11
1.4.3 PostgreSQL . 12
1.4.4 PostGIS . 12
1.4.5 Python . 12
1.4.6 Elasticsearch . 13

2 Requirements analysis and solution design 17
2.1 The Uniqway system architecture . 17
2.2 The Uniqway data analysis . 18

2.2.1 PostgreSQL database data . 18
2.2.2 Elasticsearch data . 19
2.2.3 User transport mode data . 19

2.3 Requirement analysis . 20
2.3.1 Functional requirements . 20
2.3.2 Non-functional requirements . 20

2.4 Use case model . 21
2.4.1 List of actors . 21
2.4.2 List of use cases . 22
2.4.3 Use case diagram . 24

2.5 Solution design . 25
2.5.1 API users and API keys . 25

iii

iv Contents

2.5.2 User transport data . 26
2.5.3 Exposure of data for public API . 27

3 Implementation 29
3.1 API users and API keys . 30

3.1.1 Persistence layer . 30
3.1.2 Generation of API key . 30
3.1.3 Services . 32
3.1.4 API key authentication . 32
3.1.5 Controllers and admin API . 33

3.2 User transport data . 35
3.2.1 Persistence layer . 35
3.2.2 Services . 36
3.2.3 Controllers and admin API . 36

3.3 Public API . 38
3.3.1 Request factory . 38
3.3.2 Pagination . 39
3.3.3 Filters . 40
3.3.4 Search services . 42
3.3.5 Controllers and API . 44

3.4 Testing . 47
3.4.1 Unit test . 47
3.4.2 Python API tests . 49

4 API monetization 51
4.1 Free model . 51

4.1.1 Freemium model . 51
4.2 Fee-based model . 52
4.3 Revenue-sharing model . 52
4.4 Monetization model for the Uniqway public API 52

5 Conclusion 53

Obsah přiloženého média 57

List of Figures

1.1 Communication of client and server through the API[3] 3
1.2 Types of APIs [5] . 4
1.3 API key usage [17] . 10
1.4 The Java platform [18] . 11

2.1 The Uniqway system architecture . 18
2.2 Use case diagram . 24
2.3 API users model . 25
2.4 User transport data model . 26
2.5 Data retrieval . 27

List of Tables

List of code listings

3.1 API user entity class . 30
3.2 RandomHexStringFactory class . 31
3.3 generateRandomApiKey method . 31
3.4 API key is generated in a synchronized block of code 32
3.5 ApiKeyAuthenticatorAction call method . 33
3.6 UserTransportDao findUserTransportsInGeoDistance method 36
3.7 Creation of basic search query . 38
3.8 Creation of match query . 38
3.9 Creation of range query . 39
3.10 Creation of geo query . 39
3.11 UserTransport getFilters method . 41
3.12 ElasticFilterSortApplyService applyFiltersForSearchRequest method 41
3.13 ElasticFilterSortApplyService applyDateRangeFilterForSearchRequest method . 42
3.14 ElasticSearchRequestFactory buildSearchRequest method 42
3.15 CarRideStopService . 43
3.16 ApiKeyGenerateService unit test . 48

v

I want to thank my tutor, Ing. Václav Jirovský, Ph.D., and the
Uniqway student team for guiding my work and helping me in the
search for a solution. I also want to thank my family and friends
for their support during my studies.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Czech Technical
University in Prague has the right to conclude a licence agreement on the utilization of this thesis
as a school work pursuant of Section 60 (1) of the Act.

In Prague on May 4, 2023 .

vii

Abstract

This thesis deals with the analysis of data collected by the carsharing startup Uniqway. The
anonymized data on vehicle and user movements is exposed within a public API. An API key is
used to authenticate the users of Uniqway’s public data. For future monetization of the exposed
data, models based on the volume of data provided and the number of transactions performed
are analyzed and proposed.

Keywords public API, Uniqway, API design, data monetization, carsharing service, API key
authentication, REST API, Java, Play framework

Abstrakt

Tato práce se zabývá analýzou dat, které sb́ırá carsharingový startup Uniqway. Anonymizo-
vaná data o pohybu vozidel a uživatel̊u jsou vystavena v rámci veřejného API. Pro autentizaci
uživatel̊u veřejných dat Uniqway je použit API kĺıč. Pro budoućı monetizaci vystavených dat
jsou analyzovány a navrženy modely založené na objemu poskytnutých dat a počtu provedených
transakćı.

Kĺıčová slova veřejné API, Uniqway, návrh API, monetizace dat, carsharing služba, API key
autentizace, REST API, Java, Play framework

viii

Abbreviations

API Application Programming Interface
B2B Business-To-Business

CRUD Create, Read, Update, Delete
DAO Data Access Object
DSL Domain Specific Language

DTO Data Transfer Object
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
JDBC Java Database Connectivity

JPA Java Persistence API
JSON JavaScript Object Notation
JVM Java Virtual Machine
MVC Model-View-Controller

REST Representational State Transfer
SQL Structured Query Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
XML Extensible Markup Language

ix

x Abbreviations

Introduction

Sharing economics is an economic model that is based on the sharing of resources, goods, and
services among individuals and organizations. The core idea of sharing economics is to increase
the utilization of underutilized resources, which helps to reduce waste, increase efficiency, and
promote sustainability. People can use the sharing economy in different areas, such as traveling,
finances, employment, transport and many others, usually with the help of a related digital
platform.

One of the areas of the sharing economy in transport, are carsharing services. These services
are mainly used by occasional drivers or by people who simply cannot afford a car.

Uniqway is the first Czech student carsharing. This service is intended for students and
employees of Czech universities. This project is created by students of the Czech Technical Uni-
versity in Prague, Czech University of Life Sciences Prague and Prague University of Economics
and Business. The service is delivered to the customer by a mobile app, where any registered
customer can create a reservation of any available car and rent it for a ride.

The Uniqway system collects various anonymised data on vehicle movements. Today, many
other services and systems are based on knowledge of the behaviour of individuals or groups
in society. This data can bring valuable information for some companies or can be used by
application developers to create new innovative services, which can make the life of a customer
easier.

This thesis marginally follows up to the thesis Experimental application for verifying the
reliability of automatic transport mode identification of the student Filip Musal from the Faculty
of Electrical Engineering, Czech Technical University in Prague. In his thesis he is dealing with
implementation of an application for automatic detection of user transport mode. One of the
outputs of his thesis is an android library for transport mode detection. This library will be
implemented in the future into the Uniqway mobile application which will allow the system to
acquire anonymised transport mode data from mobile phones of users.

The aim of the work is to prepare the Uniqway system for collecting data from users’ mobile
applications, then to analyze the relevant data that the system collects about the movement
of users and vehicles, and to design a public interface within which this data will be exposed.
Another goal of this thesis is to propose how the exposed data could be monetized in the future.
The implementation part of this work is solved only within the backend part of the Uniqway
system.

This thesis is divided into four chapters. In the first chapter I deal with the theory, which
is necessary for the practical part of the thesis. The next chapter contains the requirements
analysis and solution design which is implemented in the following implementation chapter. The
last chapter deals with data monetization.

1

2 Introduction

Chapter 1

Theoretical part

In this chapter I cover necessary theory which I will use in the following chapters, mostly during
analysis and solution design.

In the first section, I write about application programming interface – what it is and what it
is used for, the second section is focused on principles of REST API. The next section is focused
on the basics of API security, which is an integral part of any API implementation. The last
section describes technologies the Uniqway system uses.

1.1 Application programming interface
An application programming interface (API) “is a set of defined rules that enable different ap-
plications to communicate with each other”. [1]

The interface can be also imagined as some kind of a contract of service between two software
systems. Two subjects communicating to each other through some API are usually called a client
and a server. The communication takes place in the form of sending requests and responses.
Requests are sent by a client to a server and the server sends a response back to the client. The
communication between client and server is illustrated in the figure 1.1.

An integral part of an API is API documentation, which specifies how all the requests and
responses are exactly structured. The documentation is important for software developers in
order to correctly design and implement requests and responses into applications. [2]

Figure 1.1 Communication of client and server through the API[3]

3

4 Theoretical part

1.1.1 API endpoint
Another term that is used in connection with API is endpoint. “API endpoints are the final
touchpoints in the API communication system. These include server URLs, services, and other
specific digital locations from where information is sent and received between systems.” [2]

In other words, the endpoint is an entrypoint into the system where a client sends a request
asking for some data, to thereafter receive a response containing requested data from the server.

API documentation usually contains a list of endpoints and information which data a client
can request on which endpoint.

1.1.2 API types
In general, APIs can be divided into two main types – public APIs and private APIs.

Public APIs are intended to be used by a wide community of users, mostly software developers.
Developers can bring new ideas of how the data of the organization can be used and build
interesting and useful applications using those interfaces. Public API can help the organization as
well – it can “increase the use of company assets and add business value without direct investment
in app development. Public APIs can help generate new business ideas and decrease development
costs.” On the other hand, using a public API by a lot of users can bring problems as well. Any
upgrade of the API can impact all applications that are using it. Public interfaces also expose
endpoints of the organization systems to the outer world, which can result in security threats.
[4]

Private APIs are usually used by a restricted group of developers. It can be used by an
organization’s own developers for internal integration of applications or by contracted partners
for business-to-business (B2B) integration. APIs for internal purposes are known internal APIs
and those for B2B integration are referred to as partner APIs. [4]

Types of APIs according to the visibility are shown in the figure 1.2.

Figure 1.2 Types of APIs [5]

REST API 5

1.2 REST API
There are various protocols that can be used for API implementation. In this thesis, I will
primarily work with REST API interfaces.

REST (Representational State Transfer) is an architectural style which sets certain guidelines
and constraints to be followed during design of an API. Since an interface that follows principles
of REST should be intuitive and easy to understand, it makes development of client applications
simple. Implementation of REST API is usually bound to the HTTP protocol which is used for
request/response sending. [6]

Main constraints for building a REST application are [7]:

Uniform Interface

Client-Server

Stateless

Cache

Layered System

Code-On-Demand

REST emphasizes on a Uniform interface between components. It simplifies the overall
system architecture and improves the visibility of interactions. Since the data are sent in a
standardized way, it also helps to decouple the individual components. Another constraint is
a Client-Server architectural style. This style follows the separation of concerns principle. It
allows separate development of server and client applications. Therefore, the client applications
can use different technologies, programming languages and run on different platforms. Stateless
constraint states that the communication between client and server must be stateless. Each
request sent to the server by a client should contain all necessary information so the server un-
derstands it and returns expected response. Hence, the state of the session is completely handled
by the client application and the server does not have to keep any context of the communica-
tion. Cache constraint improves network efficiency. Request and response data are labeled as
cacheable or non-cacheable. “If a response is cacheable, then a client cache is given the right
to reuse that response data for later, equivalent requests.” Main advantage of this constraint is
that it can reduce latency by partially or completely eliminating some of the interactions. The
Layered system constraint states that the architecture of the system is composed of layers. A
component belonging to one layer should not know about components beyond the immediate
layer it interacts with. The layer constraint reduces the overall system complexity. “Layers can
be used to encapsulate legacy services and to protect new services from legacy clients, simplifying
components by moving infrequently used functionality to a shared intermediary.” Intermediaries
can be also used for example for load balancing which improves scalability of the system. Code-
on-demand is an optional constraint. It allows extension of client functionality by downloading
code from the server in the form of applets or scripts. It can simplify client applications by
reducing a number of pre-implemented features. [7]

1.2.1 Resource identification
In the context of a uniform interface, web services primarily work with resources. “A resource
is any web-based concept that can be referenced by a unique identifier and manipulated via the
uniform interface.” Single resource usually represents an entity or collection of entities from our
problem domain. Any information the server is able to provide may be considered as a resource.
[8]

6 Theoretical part

In the context of the Uniqway system, a resource can be a car, a collection of cars, user,
reservation, invoice, payment, ride and so on.

Resources are identified by a URI (Uniform Resource Identifier). The definition of a URI
according to the RFC 3986 specification is: “A Uniform Resource Identifier (URI) is a compact
sequence of characters that identifies an abstract or physical resource.” [9]

The structure of URI looks the following [9]:

scheme ":" ["//" authority] ["/"] path ["?" query] ["#" fragment]

Scheme – “Each URI begins with a scheme name that refers to a specification for assigning
identifiers within that scheme,. . . scheme’s specification may further restrict the syntax and
semantics of identifiers using that scheme”

Authority – “URI schemes include a hierarchical element for a naming authority so that
governance of the name space defined by the remainder of the URI is delegated to that au-
thority”, in our case, the authority is the hostname of the server application

Path – “The path component contains data, usually organized in hierarchical form, that,
along with data in the non-hierarchical query component, serves to identify a resource within
the scope of the URI’s scheme and naming authority”

Query – The query component contains additional, non-hierarchical data to identify a re-
source, often in the form of key-value pairs

Fragment – “ The fragment identifier component of a URI allows indirect identification of a
secondary resource by reference to a primary resource and additional identifying information”

Here in an example of the URI which identifies a resource users:

https://www.uniqway.cz/api/users

Let’s say that this resource contains a collection of users. The client connects to the
www.uniqway.cz address and requests the users resource which is stored in the location specified
by the /api/users path. The server thereafter responds with the requested collection of users or
an error in case the request could not be processed correctly.

Individual resources can also be related to each other. [8] The example below shows an URI,
which identifies a collection of rides of the user with id equal to the value of 1:

https://www.uniqway.cz/api/users/1/rides

A resource is usually stored in some database. In the response, the server does not return the
database record that corresponds to the requested resource. Instead, it returns its representation.
A representation of a resource is completely separated from the resource itself. A single resource
can have different representations. A UI client might require representation of the resource in
an HTML format but for application clients, it would probably fit better to represent it in XML
or JSON format. [8]

REST API 7

In this thesis, I will work with the JSON format representation of resources. The following
example shows JSON representation of the user resource:

{
"email": "user@example.com",
"firstName": "John",
"lastName": "Smith",
"id": 1,
"address": {

"street": "Street",
"city": "City",
"state": "State"

},
"university": "FIT CTU in Prague"

}

1.2.2 HTTP protocol
Requests and responses are usually sent via an HTTP protocol. In this work, I consider only the
HTTP/1.1 version.

HTTP is a textual protocol for fetching resources. It is a client-server stateless protocol which
forms the foundation of data exchange on the web. There are two types of HTTP messages –
HTTP request and HTTP response.[10]

HTTP requests are composed of [11]:

A start-line followed by an optional set of HTTP headers, collectively referred to as the head
of the request

A blank line

An optional body of the request

A start-line is a single line which contains an HTTP method (for example GET, PUT or
POST, I describe the individual methods later in the text), the request target which is usually
the path to the requested resource and the HTTP version. HTTP headers specify the request or
describe the included body. The body of the request contains data attached to the request. Not
all HTTP methods have a body, thus it is an optional part of the request. [11]

The following example shows an HTTP request that posts a new user entity to the server:

POST /api/users HTTP/1.1
Host: localhost:9000
Content-Type: application/json
Content-Length: 100

{
"email": "user@example.com",
"firstName": "John",
"lastName": "Smith"

}

The Host header specifies the host and the port of the service, the Content-type header
specifies the format of the data stored in the body and the Content-Length header indicates the
size of the body in bytes.

8 Theoretical part

HTTP responses are composed of [11]:

A status-line followed by a set of headers

A blank line

A body of the response

The status line contains an HTTP version, a status code that indicates success or failure of
the request and a status text which is a brief description of the status code. [11]

Simplified response for the previous request may look the following:

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 117

{
"id" : 1,
"email": "user@example.com",
"firstName": "John",
"lastName": "Smith"

}

The status code of the response indicates that the request was processed correctly and the
server created the requested user. Headers indicate that the server returned the data in JSON
format and the length of the content of the body is 117 bytes. The payload of the body contains
the created user (we can see the server assigned the id value equal to 1 to the user).

There are five classes of HTTP status codes. Its values are within the range of 100 to 599,
inclusive. The class is determined by the first digit of the status code. The classes are following
[12]:

1xx Informational – interim response about the communication status, indicates the request
was received and the server is processing it

2xx Successful – indicates the request was successfully received, understood and accepted

3xx Redirection – indicates that in order to fulfill the request, a further action needs to be
performed by the client

4xx Client error – indicates error in the side of the client

5xx Server error – indicates the server failed to process the request

In this work, I will work with the most commonly used HTTP methods – GET, POST, PUT
and DELETE. There are other methods (HEAD, OPTIONS, TRACE and CONNECT) that I
will not use during the implementation part so I will not describe them further.

These verbs indicate what the client wants to do with the particular resource. They allow us
to perform CRUD (create, read, update and delete) operations on the resource [13]:

GET – used to retrieve information about the requested resource which is defined by the
request URI, it is a read-only method hence it should never modify the data, in case of
successful execution the server responds with status code of 200 OK, in case of error, it
usually responds with the 404 Not Found or 400 Bad request status code

API security 9

POST – usually used to create a new resource in the location determined by the request
URI, the resource is specified in the body of the request and the response body should contain
details of the created resource, in case of success the server should respond with 201 Created
status code, in case the resource could not be created, the server may respond with status
code of 204 No content

PUT – usually used to update an already existing resource specified by the request URI,
the updated version of the resource is stored in the request body, in case the resource was
successfully updated, the server responds with the status code of 200 OK

DELETE – used to delete the resource specified by the request URI, in case of successful
execution the server usually respond with the status code of 204 No content

1.3 API security

Using a public (or partner) API is a service-to-service matter. The API is usually not used by a
particular user, instead, it is mostly used by services of business organizations. The public API
should contain security mechanisms to authenticate the calling service and manage access control
so the service is able to use only the endpoints it is allowed to – in my case, public endpoints.

1.3.1 Authentication
“Authentication is the process of verifying whether a user is who they say they are.” In practice
the user authentication is usually done by authenticating claims about their identity. It is
achieved by a user providing some credentials to prove that the claims are correct (for example
a username is provided along with the password that is known only to the particular user). [14]

The ways of authenticating a user, also known as authentication factors, are the following
[14]:

Something you know (a secret password)

Something you have (physical device)

Something you are (biometric factors)

1.3.2 Access control
Access control or authorization is a process of control which users have access to which resources
and what actions are they allowed to perform. [15]

For example, only an authenticated user is allowed to see his own detailed profile and change
its attributes such as username or email address.

There are two primary approaches to access control [15]:

Identity-based access control – “first identifies the user and then determines what they
can do based on who they are. A user can try to access any resource but may be denied access
based on access control rules”

Capability-based access control – “uses special tokens or keys known as capabilities to
access an API. The capability itself says what operations the bearer can perform rather than
who the user is. A capability both names a resource and describes the permissions on it, so a
user is not able to access any resource that they do not have a capability for”

10 Theoretical part

1.3.3 API keys
As stated before, in the context of service-to-service APIs, the client is authenticated rather than
end user. A service-to-service API call may occur for example between microservices within one
organisation or between different organisation when a public API is exposed to access resources
that have some business value. The service authentication is needed for example for billing
purposes or to apply service contract limits. [16]

One of the most common forms of authentication of a service is an API key. “An API key is a
token that identifies a service client rather than a user.” API keys often have set an expiry time
(usually months or years). To obtain access to the API, the user usually logs into a developer
portal, which is operated by the organization exposing the API, and requests for an API key.
The portal generates a new key and returns it to the user. The generated API key is thereafter
added by the client to each request as a request parameter or a request header. [16]

The process of using an API key is also illustrated by the figure 1.3.

Figure 1.3 API key usage [17]

The Uniqway system technologies 11

1.4 The Uniqway system technologies
In this section, I describe technologies the Uniqway system uses and which I will work with
during the implementation part of my work.

1.4.1 Java Technology
Most Uniqway systems are based on a Java Technology.

The “Java technology is both a programming language and a platform.” A platform is “the
hardware or software environment in which a program runs.” The Java platform is a “software-
only platform that runs on top of other hardware-based platforms.” The platform is illustrated
by the figure 1.4. It has two components – the Java Virtual Machine (JVM), which is a base of
java platform that is available on different hardware-based platforms, and the Java Application
Programming Interface (API), which is a collection of ready-made capabilities grouped into
packages of related classes and interfaces. [18]

The Java programming language is a high-level language. The source code is stored in text
files with .java extension. These files are then compiled into .class files by the javac compiler.
A .class file then contains a bytecode which is a code that is not native to a particular processor,
instead, it is the machine language of the Java Virtual Machine. The application is launched by
the java launcher tool with an instance of the JVM. The Java Virtual Machine is available on
many different operating systems so the same application can run on different platforms. [18]

Figure 1.4 The Java platform [18]

The basic characteristics of the Java language is simplicity. The syntax is based on the
C++ programming language, but the complexities of C++ are removed. It is an object oriented
language which allows to build secure and portable applications. The java bytecode is interpreted
and the interpreter is able to execute a program on any machine with java run-time system
ported. It also provides automatic memory management – garbage collector, and supports
multithreading. [19]

1.4.2 Play framework
The Uniqway backend system is written in Java programming language and a Play framework.

“Play is a high-productivity Java and Scala web application framework that integrates com-
ponents and APIs for modern web application development.” It is a full-stack framework which
provides components to build web applications and REST services – an integrated HTTP server,
form handling, routing mechanism, database schema evolution and others. The Play framework
allows building web applications fulfilling a Model-View-Controller (MVC) architectural pattern.
[20]

MVC is an architectural pattern that follows a separation of concern principle. The business
logic and display of an application is separated which provides better labor division and improves
maintenance. The MVC pattern consists of three parts - Model, View and Controller. The model
defines data the application works with. In case the data are changed in some way, the model

12 Theoretical part

usually notifies the view in order to change the display. The view handles layout and how the
data are displayed. The controller processes input from users and updates the model and views
in response. [21]

In the context of the Uniqway system, the model is represented by entity classes which are
implemented in the Uniqway backend system and mapped to the data stored in the database.
The controller is mainly represented by the service logic implemented in the backend system.
The view logic is handled by client applications.

1.4.3 PostgreSQL
The Uniqway system uses PostgreSQL database for data storage.

PostgreSQL is an open source object-relational database system. It uses features required by
the SQL standard and combines it with other features that allow us to store and scale complicated
data workloads. PostgreSQL runs on all major operating systems and is highly extensible – for
example allows us to define our own data types or build out custom functions. PostgreSQL also
has some useful add-ons, such as PostGIS, which is described in the next section. [22]

1.4.4 PostGIS
The Uniqway system allows users to park the car only in designated parking places. These
parking places must be somehow represented in the Uniqway PostgreSQL database. For this
reason the PostGIS extension comes into play.

“PostGIS is a spatial database extender for PostgreSQL object-relational database. It adds
support for geographic objects allowing location queries to be run in SQL.” [23]

PostGIS provides the geometry abstract data type and its concrete subtypes which represents
different geometric shapes. There are atomic subtypes of the geometry type, such as Point,
LineString, LinearRing, Polygon and collection subtypes, such as MultiPoint, MultiLineString
and MultiPolygon. [24]

For example, a parking place in the Uniqway system is represented by the Polygon data type.
In this thesis, I will only work with the atomic data types [24]:

Point – 0-dimensional geometry, represent single location in a coordinate space, example:
POINT (1 2)

LineString – 1-dimensional line, formed by sequence of contiguous line segments, each seg-
ment is defined by start point and end point, example: LINESTRING (1 2, 3 4, 5 6, 7
8)

LinearRing – LineString which does not self intersect and the start point is equal to the
end point, example: LINEARRING (1 1, 2 1, 2 2, 1 2, 1 1)

Polygon – 2-dimensional planar region, delimited by exterior boundary, may contain zero or
more interior boundaries, boundary is represented by the LinearRing, example: POLYGON
((1 1, 2 1, 2 2, 1 2, 1 1))

1.4.5 Python
The Uniqway backend system uses Python programming language for the backend REST API
testing. Thanks to its simplicity, Python is ideal for this API testing.

Python is an interpreted, object oriented, dynamic typed programming language. It has
elegant and simple syntax and effective high-level data structures which allows it to be used for
fast software development and scripting. [25]

The Uniqway system technologies 13

1.4.6 Elasticsearch
“Elasticsearch is the distributed search and analytics engine.” It is primarily used for data
indexing, searching and analysing. Elasticsearch can effectively store and index various types of
data such as structured or unstructured text, numerical data and geospatial data. Thereafter the
data can be searched and analyzed in near real time. The Elasticsearch can be used for various
use cases, for example [26]:

website searchbox

store and analyze logs, metrics and security event data

manage, analyze and integrate spatial and geographic data

store and process genetic data

The Uniqway system uses Elasticsearch mainly for storage of analytical data, event logs of
the system and car telemetry data.

“Elasticsearch is a distributed document store.” It does not store data as rows of database
tables, like it is done in relational databases. Instead, it stores complex data structures as
documents. For representation of documents, the Elasticsearch uses JSON format. Every stored
document is indexed. An index is an optimized collection of documents. A document contains
individual fields – key-value pairs – which store concrete data. Elasticsearch has the capability
to be schema-less which means that fields of a document do not have to have specified concrete
data type. The Elasticsearch will automatically detect and map the datatype of the concrete
field during indexing of the document. However, it is sometimes convenient to explicitly map
individual fields to specific data types which for example enables to distinguish between full-text
string fields and exact value string fields, use custom date format or use geographical data types,
such as geopoint that cannot be automatically detected. [27]

Once the documents are indexed, there is only one thing left to do – search for data and
analyze it.

Elasticsearch provides a REST API for indexing and searching the data. Within the API, the
searching and indexing is performed by using the Query DSL. It is a JSON-style query language
of the Elasticsearch which has support for creating structured queries, full text queries or its
combination – complex queries. There is also the Elasticsearch client which allows to use the
Query DSL capabilities from applications. The client is available for various languages such as
Java, Python, JavaScript, .NET and others. [28]

14 Theoretical part

I will present a few examples of search queries using the Elasticsearch Query DSL. Basics of
these queries will be later used in the implementation part.

The following example shows a basic search query. In my case, this query retrieves all rides
of cars with the model name of Scala, the search is performed over the uniqway index:

GET /uniqway/_search
{

"query": {
"match": {

"car.model_name": "Scala"
}

}
}

Users often need to create a query which retrieves documents matching multiple criteria. For
example, I want a query that retrieves all non-zero length rides of Scalas within the time interval
of 2023-01-01 and 2023-01-01. In order to do that, I have to add the bool clause which allows
to combine different queries – in my case, it combines match and range queries. The resulting
query looks the following:

GET /uniqway/_search
{

"query": {
"bool": {

"must": [
{

"match": {
"car.model_name": "Scala"

}
},
{

"range": {
"ride.start_date": {

"gte": "2023-01-01",
"lte": "2023-02-01"

}
}

},
{

"range": {
"ride.length_km": {

"gte": 0
}

}
}

]
}

}
}

The Uniqway system technologies 15

The Elasticsearch also supports geo queries. The final example shows a geo distance query.
This query retrieves all data of the Scala model which was collected within the distance of 1000
meters from the point with the latitude of 50.1 and longitude of 14.395. The query looks the
following:

GET /uniqway_car_data/_search
{

"query": {
"bool": {

"must": [
{

"match": {
"car.model_name": "Scala"

}
}

],
"filter": {

"geo_distance": {
"distance": "1000m",
"location": {

"lat": 50.1,
"lon": 14.395

}
}

}
}

}
}

16 Theoretical part

Chapter 2

Requirements analysis and
solution design

This chapter deals with analysis of requirements and solution design for the creation of the public
API for the Uniqway system. First, I analyze the Uniqway system architecture and the data the
Uniqway system collects. Then, I create an analysis in the form of functional and non-functional
requirements and build a use-case model. And finally, I state the solution design. This chapter
forms the main input into the implementation part of this work.

2.1 The Uniqway system architecture
The Uniqway backend system is written in Java Play framework, as a main data storage, it
uses the PostgreSQL database. Communication between the backend system and the database
is internally handled by the PostgreSQL JDBC driver. The next part of the system is a storage
for historical data – Elasticsearch. The backend system sends these data into Elasticsearch by
using the Elasticsearch client that handles requests and responses for the Elasticsearch REST
API. There is also a web application and admin application, both written in a JavaScript Nuxt.js
framework. The web application is where customers can view services the Uniqway offers and
register themselves. Admin application is used for the system administration. The web and
admin application communicate to the system through the backend REST API.

The components I described above all run on Amazon Web Services cloud infrastructure.
There are other components of AWS the system uses (for example a load balancer), but in the
scope of this work I can get along only with this simplified architecture so I will not describe
them.

Other Uniqway components do not run on AWS cloud. A module, which is installed into
cars of the Uniqway fleet, handles car locking/unlocking and sends car telemetry data to the
backend system through the REST API. Mobile applications for Android and iOS operating
systems are used by end users for car reservation/ride and other services the Uniwqway offers.
These applications also communicate via the REST API of the backend system.

The figure 2.1 shows a UML diagram of the Uniqway system architecture.

17

18 Requirements analysis and solution design

Uniqway system architecture

AWS cloud

Backend:
Play Framework

Database:
PostgreSQL

ElasticsearchJDBC REST API

REST API

Web application:
Nuxt.js

Admin application:
Nuxt.js

Car module Android
application

iOS
application

Figure 2.1 The Uniqway system architecture

2.2 The Uniqway data analysis

One of the main aims of this thesis is to create a public API which exposes relevant Uniqway
data. Before I start to compile specific requirements, I perform an analysis of data the system
collects and indicate which could be suitable to be exposed within the public API.

2.2.1 PostgreSQL database data
The main storage, the Uniqway backend system uses for storing production data, is the Post-
greSQL database. This database stores registered users, information about the Uniqway car
fleet, reservations, rides, invoices, payments and other important data for the operation of the
service.

The car module collects information about the car status and sends it to the backend system
which stores it into the database. These data include information about the position of the car,
speed, whether it is locked/unlocked, fuel level, battery status and others. These data are sent
every ten seconds to the backend which stores them into the latest car data database table. This
table holds only the latest received car data, it means that once the module sends new car data,
the system overwrites the old data with just received.

The data stored in the latest car data table may be relevant for the public API, it keeps
current information about car status – primarily the position and speed.

The Uniqway data analysis 19

2.2.2 Elasticsearch data
Elasticsearch stores mainly historical data collected from the Uniqway system for later processing
by data analysts. It also stores logs from different components of the system, information about
mobile application downloads, or analytical data from the mobile application. In short, data
from all uniqway system components are periodically indexed into the Elasticsearch.

Data that are indexed in the Elasticsearch and could be relevant for this work are:

Information about rides – contains relevant information about finished rides such as a car
used for the ride, start/end location, start/end date and average speed

Car data – similar data as in the before mentioned latest car data database table, but
Elasticsearch does not store only the latest received data but it collects all car data a car
module sends, car position data are explicitly mapped to the geopoint data type to perform
geospatial queries, these queries may be useful for the public API

Points of interest – information about car stops during the ongoing ride – where the car
stopped and start/end date of the stop

Events analytics – analytical data collected from mobile applications, these data are stored
when a user uses the application to find nearest available cars for reservation, it contains
location of the user at the time he sent the request, date and information about reservable
cars

2.2.3 User transport mode data
As mentioned in the introduction, this thesis partially follows up on the master thesis Experi-
mental application for verifying the reliability of automatic transport mode identification of the
student Filip Musal from the Faculty of Electrical Engineering, Czech Technical University in
Prague. In his thesis, he created a library for Uniqway android application which allows to
detect a transport mode of the user – whether he goes on foot, rides a bike, travels by a vehicle
or travels by a Uniqway car (as a driver or as a passenger).

This library was not implemented yet into the Uniqway android application. However, these
data will be collected in the future so it is necessary to take them into account and prepare the
backend system and the database for their collection. This is one of the aims of this thesis, so I
am dealing with these data further in the thesis.

20 Requirements analysis and solution design

2.3 Requirement analysis

In this section, I state concrete requirements on the implementation of the public API. These
requirements are formulated on the basis of consultation with the Uniqway student team. They
are divided into functional and non-functional requirements.

This work is focused only on the backend part of the system so the requirements are created
in the context of the backend implementation.

2.3.1 Functional requirements
F1 – API users

For users of public API, the system registers a new type of user – API user

These users will be registered by assigning a profile of API user to already existing user

API users will be registered manually by administrators, the system will not provide a
possibility to register profile of API user from the perspective of a common user

F2 – API key authentication

In order to use public API, API users are authenticated by API keys attached to the
request

System provides interface for API key generation and management, API keys are generated
for concrete API users manually by administrators, database of API keys must not contain
duplicate values

API keys may have set a validity period

System enables to authenticate by the API key exclusively on public endpoints, nowhere
else

F3 – User transport mode data collection

System provides interface for creation and management of different transport modes, trans-
port modes the system stores are managed by administrators

System provides interface for collection of user transport mode data

System stores start and end date, start and end location and concrete types of collected
user transport modes

F4 – Exposure of relevant data for the public interface

System exposes relevant data the Uniqway system collects, for the public API

The exposed data includes information about car movement, finished rides, car stops during
an ongoing ride and user transport mode

User is able to filter requested data by the individual attributes

2.3.2 Non-functional requirements
N1 – REST API interface

Public API is available via REST API interface

Use case model 21

2.4 Use case model
Use case model is a detailed specification of analyzed requirements. In this section, I state use
cases derived from functional requirements from the previous section. Since this work is focused
only on the backend part of the system, use cases specify concrete interactions between users
(clients) and the backend. Use cases are specified on the basis of consultations with the Uniqway
student team. The use case model consists of a list of actors, a list of specific use cases and a
use case diagram.

2.4.1 List of actors
Administrator

Takes care of creation and management of API users
Generates and manages API keys for API users
Creates and manages user transport mode types

API user

Users of public API
Retrieves data from public API for own use
Authenticates by API key

Uniqway mobile application

Uniqway mobile application used by casual users
Sends analytical data to the backend system

22 Requirements analysis and solution design

2.4.2 List of use cases
UC1 – Register API user

Allows administrator to register new API user.
Administrator registers an API user manually by creating a profile of API user to an
already existing user, administrator also fills in profile information
Profile information an administrator must fill contain information about the user it belongs
to, name of a project the public API will be used for and timestamp of profile creation

UC2 – API users administration

Allows administrator to manage API users
Administrator is able to view one concrete or all API users, update their profile information
and delete them

UC3 – API key generation

Allows administrator to generate new API key for a specific API user
To generate a new API key, administrator must enter API key information to the system
API key information an administrator must enter contain a specific user the API key
belongs to and timestamp until which the key is valid, if the key does not have a limited
validity period, the administrator does not fill it

UC4 – API key administration

Allows administrator to manage API keys stored in the system
Administrator is able to view all valid API keys or one particular API key, to regenerate
the value of already existing API key and to invalidate an API key

UC5 – API key authentication

Allows client applications, using a public API, to authenticate by API key attached to the
request
API key authentication is allowed only for public endpoints
If the provided API key has expired validity, the system does not authenticate the appli-
cation and denies the request

UC6 – Transport mode data administration

Allows administrator to view, store, update and delete different transport modes of users
To store a new transport mode, the administrator must enter the name of the mode
These transport modes are attached to specific data collected from mobile applications
For now, the system supports the following transport modes: bike riding, travelling by
foot, driving a motor vehicle and carpooling within a uniqway ride

UC7 – User transport data insertion

Uniqway mobile apps, which collect anonymised user transport data, are able to insert
these data into the system
System is able to receive user transport data and store it, the information about these
data, the system is able to store, is transport mode the particular data record belongs to,
start date and end date of the transport, start location and end location of the transport

Use case model 23

UC8 – View car movement data

API user is able to view data of car movement
These data include current movement of cars on the road and historical data about car
movement collected over time
System provides information about car identifier, car brand and model, speed, location
and timestamp of when the data was received
API user is able to filter these data by car identifier, timestamp and is able to view the
data within specified time range
API user is able to perform a geodistance query to retrieve data in a specific location

UC9 – View finished rides data

API user is able to view data of finished rides collected over time
Information about rides, the system provides, include start and end date, start location
and end location, length in kilometers, duration in minutes, car brand and model, and car
fuel type
API user is able to filter these data by start date, end date, car brand, car model, car fuel
type and is able to view the data within specified time range

UC10 – View car ride stops data

API user is able to view data about car stops during an ongoing ride collected over time
Information about car stops, the system provides, include location of a stop and timestamp
of locking and unlocking the car
API user is able to filter these data by locking timestamp and unlocking timestamp and
is able to view the data within specified time range

UC11 – View user transport data

API user is able to view user transport data collected from mobile applicatons
Information about user transport data, the system provides, include transport mode, start
location, end location, start date and end date
API user is able to filter these data by start date, end date and transport mode
API user is able to perform a geodistance query to retrieve data in a specific location

24 Requirements analysis and solution design

2.4.3 Use case diagram
The use case diagram in the figure 2.2 summarizes use cases formulated in the previous section.

Use case diagram

Uniqway backend

Register API user

API users
administration

API key generation

API key administration

API key authentication

Transport mode data
administration

User transport data
insertion

View car movement
data

View finished rides
data

View car ride stops
data

Administrator API user

Uniqway mobile
application

View user transport
data

Figure 2.2 Use case diagram

Solution design 25

2.5 Solution design
Now, I have all necessary requirements specified and I can start with the solution design. In
this section I design the basic architecture of the solution. This architecture design includes a
database schema design and basic design of communication between individual components of
the system. The design is based on the use cases from the previous section.

2.5.1 API users and API keys
As stated in the UC1, an administrator is able to register a new API user by creating a API
profile to already existing user. This profile holds a user it belongs to, name of the project and
timestamp of profile creation. So the system must hold api users database table which is related
to the user table that already exists in the system.

The UC3 states that the administrator generates API keys for API users, so the system also
needs to hold data of generated API keys. These keys are stored in the api keys database table.
This table holds the API key value, timestamp of when the key was generated, timestamp until
which the key is valid and whether it was deactivated (UC4). The table is related to the api users
table, each API user can have zero or more keys generated.

The figure 2.3 shows UML diagram of what the solution looks like at database level.

users

api_users

<<column>>

id: bigserial

project_name: varchar

created_at: timestamptz

user_id: bigint

*PK

*FK

api_key

<<column>>

id: bigserial

key: varchar

created_at: timestamptz

api_user_id: bigint

*PK

*FK

valid_to: timestamptz

deactivated: boolean

user_id=id

api_user_id=id

API users data model

1 0..*

1

0..1

Figure 2.3 API users model

26 Requirements analysis and solution design

2.5.2 User transport data
Administrator is able to manage different transport modes the Uniqway system collects from
mobile applications (UC6). In order to support different transport modes, the system should
contain a user transport modes database table, which holds a name of the particular transport
mode.

As stated in UC7, Uniqway mobile applications, that collect data about user movement, send
this analytical data to the Uniqway system which must be able to store it. The user transport data
is stored in the user transports database table. This table is related to the user transport modes
table that determines concrete transport mode. The table holds start date, end date, start
location and end location of the transport mode.

The figure 2.4 shows UML diagram of what the solution looks like at database level.

User transport data model

user_transport_modes

<<column>>

id: bigserial

mode: varchar

PK 1 0..

user_transports

<<column>>

id: bigserial

start_date: timestamptz

user_transport_modes_id: bigint

*PK

*FK

end_date: timestamptz

start_point: geometry

end_point: geometry

Figure 2.4 User transport data model

Solution design 27

2.5.3 Exposure of data for public API
The data exposure itself does not require changes to the database layer. It is needed to create
public REST API endpoints and implement logic that retrieves data from the Uniqway system
data storage – the PostgreSQL database and Elasticsearch. I decided to divide the data into two
main groups – data retrieved from the PostgreSQL database, and historical data retrieved from
Elasticsearch. These groups contain the following data:

Data from PostgreSQL:

Current movement of cars on the road (UC8)
User transport (UC11)

Data from Elasticsearch:

Car movement – historical, collected over time (UC8)
Finished rides (UC9)
Car ride stops (UC10)

In case of data from the PostgreSQL, the retrieval is simple, it is only necessary to implement
services that retrieve data from the database by using already implemented DAO objects and then
map them to DTO objects. Methods of these services are thereafter invoked by corresponding
controllers that return concrete data to the client. The retrieval of data from Elasticsearch is a
little complicated. To retrieve documents from the Elasticsearch, it is necessary to implement a
service that uses the Elasticsearch Java client, which is a logic that is not implemented yet in the
backend. Thereafter, the service must also map the received documents to corresponding DTO
objects, because they contain some data that are not intended for the public API. The service
returns these DTO objects to the invoking controller. There is a high-level communication model
of individual objects to retrieve data suggested in the figure 2.5.

PostgreSQL data retrieval

Client application

:REST API

1: request data

:Controller

2: requestData()

:Service

3: findData()

:DAO

4a [fromPostgreSQL]: findData()

PostgreSQL

5a: retrieveData()

7a: returnData()6a: returnData()

8: mapToDTO()

9: returnData()

11: return data 10: returnData()

:Elasticsearch
Java Client

4b [fromElastic]: findData()

Elasticsearch

5b: retrieveData()

7b: returnData()6b: returnData()

Figure 2.5 Data retrieval

28 Requirements analysis and solution design

Chapter 3

Implementation

In this chapter, I describe the implementation part of this thesis. The aim of this chapter is to
implement use cases described in the previous chapter into the Uniqway backend system. Im-
plementation is divided into three main parts – implementation of API users and API keys, user
transport data and public API. In the end, I also describe the process of testing of implemented
features.

First, I describe basic components of the Uniqway backend software project. The backend
system has a three layer architecture:

Persistent layer – entity classes mapped to PostgreSQL database tables (located in the ap-
p/models/main package), DTO classes (app/models/dto package) and DAO classes (app/dao
package)

Controllers – controller classes (package app/controllers), handles requests by client appli-
cations and returns responses

Service layer – service classes (package app/services), main business logic of the system

There are other packages that contain additional logic, during the implementation I will work
with the following:

app/security – authentication, authorization classes

app/utils – annotations, exceptions and other helper classes

app/actions – Play framework action classes, these classes apply additional logic to incoming
requests before they are passed further to the system, for example authentication of a user

The project also contains database evolution scripts located in the conf/evolutions directory.
These scripts contain sql scripts of database schema evolution during the whole process of de-
velopment. If a developer implements a new feature that for example includes addition of new
database tables, he must write an sql script of database changes into a new evolution file. The
system automatically applies newly added evolution scripts during start.

The Play framework also handles HTTP routing, it delegates an incoming request to the
corresponding controller method. These routes, that determine the whole REST API of the
backend system, are defined in the conf/routes and conf/*.routes files. In case of our system, route
files are named according to the user type – admin.routes file defines admin routes, client.routes
file defines routes for common logged-in users.

29

30 Implementation

3.1 API users and API keys
This section describes implementation of API users, API keys, its administration and also prin-
ciples and implementation of API key authentication.

3.1.1 Persistence layer
Implementation of persistence layer for API users and API keys consists of creating evolution sql
scripts that create database tables and implementing entity and DAO classes. Sql scripts that
create api users and api keys tables, according to the specification from the previous chapter, are
stored in the evolutions/134.sql evolution file. The backend already provides base generic DAO
class, so I created the dao/main/user/ApiUserDao and dao/main/apikey/ApiKeyDao classes
which only extend the generic BaseDao class. I also implemented corresponding entity classes –
models/main/user/ApiUser and models/main/apikey/ApiKey. These classes contain attributes
that match columns of corresponding database tables. Attributes are mapped to columns by
JPA annotations. Code 3.1 shows implementation of ApiUser class, ApiKey class is implemented
similarly.

Code listing 3.1 API user entity class
@Entity
@Table (name = " api_users ")
public class ApiUser extends Model {

@Column (nullable = false)
private String projectName ;

@Column (nullable = false)
private OffsetDateTime createdAt ;

@OneToOne (fetch = FetchType .LAZY , optional = false)
@JoinColumn (name = " user_id ")
private User user;

@OneToMany (mappedBy = " apiUser ")
private List <ApiKey > apiKeys ;

// getters and setters
}

3.1.2 Generation of API key
During consultations with the Uniqway team, we decided that the API key would be represented
by a random 16 byte hexstring. This hexstring is generated by the utils/RandomHexString-
Factory class. For generation of random bytes, it uses the SecureRandom class from the Java
standard library. This class provides a cryptographically strong random number generator and
the nextBytes method that uses this generator to populate a byte array, passed as a parameter,
by randomly generated bytes. Therefore, the RandomHexStringFactory class contains gener-
ateRandomHexString method, this method calls the generateRandomBytes method that gener-
ates random bytes by using the SecureRandom class. After the receival of random bytes array,
the generateRandomHexString method converts this array to hexstring by using a convertRan-
domBytesToHexstring method and returns it. The implementation is shown in the code 3.2.

API users and API keys 31

Code listing 3.2 RandomHexStringFactory class
@Singleton
public class RandomHexStringFactory {

private final SecureRandom random ;

// constructor

public String generateRandomHexString (int bytesCount) {
byte [] randomBytes = generateRandomBytes (bytesCount);
return convertRandomBytesToHexString (randomBytes);

}

private byte [] generateRandomBytes (int bytesCount) {
byte [] bytes = new byte[bytesCount];
random . nextBytes (bytes);
return bytes;

}

private String convertRandomBytesToHexString (byte [] bytes) {
StringBuilder stringBuilder = new StringBuilder ();
for (byte b : bytes) {

stringBuilder . append (String . format ("%02x", b));
}
return stringBuilder . toString ();

}
}

The RandomHexStringFactory is thereafter used in the services/security/apikey/ApiKeyGen-
erateService class which provides the generateRandomApiKey method (see code 3.3). This
method generates an API key string, the length is defined by the APIKEY BYTES COUNT
constant, in this case the constant is equal to the value of 16. Then, it checks whether this par-
ticular key already exists in the database, if not, it returns an Optional object containing the key,
otherwise it repeats the key generation. Total number of tries is determined by the MAX TRIES
constant which is equal to the value of 10 in this case. If the generation is unsuccessful after a
maximum number of tries, it returns an empty Optional object and the administrator must try
it later.

Code listing 3.3 generateRandomApiKey method
public Optional <String > generateRandomApiKey () {

for (int i = 0; i < MAX_TRIES ; i++) {
String key = randomHexStringFactory

. generateRandomHexString (APIKEY_BYTES_COUNT);
if (! alreadyExists (key)) {

return Optional .of(key);
}

}
return Optional .empty ();

}

32 Implementation

3.1.3 Services
I implemented services/security/apikey/ApiKeyService class that provides getValidApiKeys me-
thod that finds all valid API keys, getByKey and getById methods for searching of one concrete
API key and get method that maps an ApiKey entity class to DTO class – GetApiKeyDto.
This service also contains resetApiKey method which resets the key value of already existing
API key, delete method which deactivates API key (sets the deactivated attribute to true) and
generateApiKey method that uses ApiKeyGenerateService to generate a new key for particular
user. Part of this method is shown by the code 3.4 – the key must be generated in a synchronized
block of code to ensure that only one thread is generating the key, so there is no key duplicity
conflict caused by concurrent access to the database.

Administration of API users is handled by the services/admin/user/ApiUserService class.
This class provides create, read, update and delete methods for ApiUser entities and also provides
the generateApiKeyForApiUser method that allows administrators to generate API keys for a
particular user.

Code listing 3.4 API key is generated in a synchronized block of code
...
ApiKey apiKey = new ApiKey ();
synchronized (this) {

Optional <String > key = apiKeyGenerateService . generateRandomApiKey ();

if (key. isEmpty ()) {
throw new UnableToGenerateApiKeyException ();

}

apiKey . setKey (key.get ());
apiKey . setCreatedAt (dateTimeProvider . offsetDateTimeNow ());
apiKey . setValidTo (validTo);
apiKey . setApiUser (apiUser);
persist (apiKey);
return get(apiKey);

}

3.1.4 API key authentication
Authentication is handled by the actions/ApiKeyAuthenticatorAction class. This class extends
the Play framework abstract class Action that handles incoming requests to the server (as stated
in the introduction of this chapter). A class which extends Action must override a call method
that executes the action with HTTP request passed as a parameter. The code 3.5 shows imple-
mentation of the call method by the ApiKeyAuthenticatorAction class. This method handles
the authentication; first it checks whether the key is present in the request header, if not, it
returns a response indicating that the API key is missing. Then, it finds the provided key in the
database and checks whether it is valid, if the key is not found in the database or is not valid,
it returns a response indicating that the API key is invalid, otherwise it delegates the request to
the wrapped action.

During the authentication, the call method uses the security/ApiKeyAuthenticator class.
This class provides helper methods for the authentication such as getApiKeyFromRequest that
retrieves the key from the request header, findApiKey that finds API key by a key string value
in the database by using the ApiKeyService, and methods that build responses in case of failure.

This Action class is used by annotating corresponding controllers with the
@With(ApiKeyAuthenticatorAction.class) annotation, provided by the Play framework, which
wraps controller actions by the action class passed as a parameter.

API users and API keys 33

Code listing 3.5 ApiKeyAuthenticatorAction call method
@Override
public CompletionStage <Result > call(Http. Request req) {

Optional <String > key = apiKeyAuthenticator . getApiKeyFromRequest (req);
if (key. isEmpty ()) {

return CompletableFuture
. supplyAsync (

apiKeyAuthenticator :: missingApiKeyResponse);
}

Optional <ApiKey > apiKey = apiKeyAuthenticator . findApiKey (key.get ());
if (apiKey . isEmpty ()) {

return CompletableFuture
. supplyAsync (

apiKeyAuthenticator :: invalidApiKeyResponse);
}

if (! apiKeyAuthenticator . apiKeyValid (apiKey .get ())) {
return CompletableFuture

. supplyAsync (
apiKeyAuthenticator :: invalidApiKeyResponse);

}

return delegate .call(req);
}

3.1.5 Controllers and admin API
Controller classes controllers/admin/ApiUserController and controllers/security/ApiKeyController
handle requests for administration of API users and API keys. ApiUsersController class con-
tains methods for handling find, create, update and delete requests and also generateApiKey-
ForApiUser method for handling requests for generating a new API key for a particular user.
ApiKeyController class provides methods for handling find requests and also requests for deac-
tivating an API key and reset an existing key.

All implemented logic of managing API users and API keys is wrapped by the administrator
REST API created for the admin application. Simplified description of the API is the following:

GET /api-user

Description: Finds all API users
Response:
∗ 200 OK
∗ List of GetApiUserDto JSON objects

GET /api-user/{id}

Description: Finds API user by id provided by the id path variable
Response:
∗ 200 OK
∗ GetApiUserDto JSON object

34 Implementation

POST /api-user

Description: Creates new API user
Request:
∗ StoreApiUserDto JSON object
Response:
∗ 201 Created
∗ GetApiUserDto JSON object

POST /api-user/apikey/generate

Description: Generates new API key for API user
Request:
∗ GenerateApiKeyDto JSON object
Response:
∗ 201 Created
∗ GetApiKeyDto JSON object

PUT /api-user/{id}

Description: Updates API user determined by the id path variable
Request:
∗ UpdateApiUserDto JSON object
Response:
∗ 200 OK
∗ GetApiUserDto JSON object

DELETE /api-user/{id}

Description: Deletes API user determined by the id path variable
Response:
∗ 204 No Content

GET /apikey

Description: Finds all valid API keys
Response:
∗ 200 OK
∗ List of GetApiKeyDto JSON objects

GET /apikey/{id}

Description: Finds API key by id provided by the id path variable
Response:
∗ 200 OK
∗ GetApiKeyDto JSON object

User transport data 35

PUT /apikey/{id}/reset

Description: Resets key value of API key determined by the id path variable
Response:
∗ 200 OK
∗ GetApiKeyDto JSON object

DELETE /apikey/{id}/deactivate

Description: Deactivates API key determined by the id path variable
Response:
∗ 200 OK

3.2 User transport data
In this section I describe implementation of User transport modes, its collection from mobile
application and administration.

3.2.1 Persistence layer
Database tables user transport modes and user transports, defined in the previous chapter, are
created by the evolutions/135.sql evolution script. This script also inserts rows into the
user transport modes table to create basic transport modes: bike, walk, motor vehicle and carpool.
Entity classes models/main/public /UserTransportMode and models/main/public /UserTransport
represent these database tables in the backend.

I also implemented the dao/main/transport/UserTransportDao data access object class. This
class provides method findUserTransportsInGeoDistance which returns user transports that start
or end in the given distance from the given point. This method is shown in the code 3.6. It
first creates a point string from parameters lat and lon that define coordination of the point.
Thereafter, this point is passed into the SQL query stored in the sql variable. This variable
represents SQL query that is used to find all records in the database from the given point in a
distance determined by the distance parameter. To retrieve such records, the SQL query uses
a PostGIS function st dwithin. Because there may occur a big amount of responses, the result
is paginated – the method returns a PagedList type. Paging parameters such as number of
pages and page size are stored in the request parameter. This method will be used later for
implementation of public API.

36 Implementation

Code listing 3.6 UserTransportDao findUserTransportsInGeoDistance method
public PagedList < UserTransport > findUserTransportsInGeoDistance (

double lat , double lon , int distance ,
Request < UserTransport > request) {

String pointParameter = "POINT(" + lat + " " + lon + ")";

String sql = " select id from user_transports where
st_dwithin (st_geogfromtext (: pointParameter), start_point , : distance)
or st_dwithin (st_geogfromtext (: pointParameter),
end_point , : distance)";

RawSql rawSql = RawSqlBuilder
.parse(sql)
. create ();

Query < UserTransport > query = createQueryFromRequest (request);

return query. setRawSql (rawSql)
. setParameter (" pointParameter ", pointParameter)
. setParameter (" distance ", distance)
. findPagedList ();

}

3.2.2 Services
Service classes UserTransportModeService and UserTransportService are stored in the services/pub-
lic /transport package. These services provide create, read, update and delete methods for User-
TransportMode entities and create and read methods UserTransport entities. The UserTrans-
portService also provides getAllInGeoDistance method, which returns records that correspond to
specified area – it uses the above described method.

3.2.3 Controllers and admin API
Controller controllers/admin/UserTransportModeController handles administration of user trans-
ports, it contains methods for handling find, create, update and delete requests. The controller-
s/public /UserTransportController controller class contains getAll method for finding all trans-
port records and getAllInGeoDistance method for finding all transport method in specified area.
These methods will be used later during implementation of public API.

User transport data 37

Simplified description of administrator REST API for managing user transport modes is the
following:

GET /user-transport-modes

Description: Finds all user transport modes
Response:
∗ 200 OK
∗ List of GetUserTransportModeDto JSON objects

GET /user-transport-modes/{id}

Description: Finds user transport mode by id provided by the id path variable
Response:
∗ 200 OK
∗ GetUserTransportModeDto JSON object

POST /user-transport-modes

Description: Creates new user transport mode
Request:
∗ UserTransportModeDto JSON object
Response:
∗ 201 Created
∗ GetUserTransportModeDto JSON object

PUT /user-transport-modes/{id}

Description: Updates user transport mode determined by the id path variable
Request:
∗ UserTransportModeDto JSON object
Response:
∗ 200 OK
∗ GetUserTransportModeDto JSON object

DELETE /user-transport-modes/{id}

Description: Deletes user transport mode determined by the id path variable
Response:
∗ 204 No Content

38 Implementation

3.3 Public API
Implementation of public API does not require implementation of persistent layer because it
mostly consists of data transfer from Elasticsearch, and their providing via REST API together
with user transport data. Data transfer is handled by the Elasticsearch java client which is used
by services/admin/ElasticService. This service already had an implemented logic for sending
documents into Elasticsearch. I implemented the sendSearchQueryToElastic method into this
service, which sends search query provided as a parameter into the Elasticsearch and returns
results in a JSON object. JSON objects are represented by the ObjectNode class from java
Jackson library which provides functionalities for working with JSON objects.

3.3.1 Request factory
Elasticsearch accepts queries in JSON format. In order to create custom queries, it is needed to
implement functions that create these JSON queries according to the user’s needs. Creation of
JSON search queries is handled by the services/public /elastic/ElasticJsonRequestFactory class.

This class provides methods for creating queries similar to those listed in section 1.4.6. The
createBasicJsonQueryWithFilters method (code 3.7) creates basic query with list of filters pro-
vided as a parameter, the base of the query is as follows:

{
"query" : {

"bool" : {
"must" : []

}
}

}

Filters are created by the following methods:

createJsonMatch – creates match query that looks for an exact match to the given value (code
3.8)

createJsonRange – creates range query 3.9, in the context of this work mostly date range
queries, the RangeRelation parameter states, whether the attribute must be less or greater
than the given value

Code listing 3.7 Creation of basic search query
public ObjectNode createBasicJsonQueryWithFilters (List <JsonNode > filters)
{

return objectMapper . createObjectNode (). set("query",
objectMapper . createObjectNode (). set("bool",

objectMapper . createObjectNode (). set(
"must", objectMapper . createArrayNode ()

. addAll (filters))));
}

Code listing 3.8 Creation of match query
public <T> ObjectNode createJsonMatch (String attribute , T value) {

ObjectNode matchNode = objectMapper . createObjectNode ()
. putPOJO (attribute , value);

return objectMapper . createObjectNode (). set("match", matchNode);
}

Public API 39

Code listing 3.9 Creation of range query
public <T> ObjectNode createJsonRange (String attribute , T value ,

RangeRelation rangeRelation) {

ObjectNode rangeNode = objectMapper . createObjectNode ()
. putPOJO (rangeRelation .value , value);

return objectMapper . createObjectNode (). set("range",
objectMapper . createObjectNode ()

.set(attribute , rangeNode));
}

The request factory class also provides createGeoDistanceJsonFilter method (code 3.10). This
method creates geodistance query node, to retrieve data in the given distance from the given
point.

Code listing 3.10 Creation of geo query
public ObjectNode createGeoDistanceJsonFilter (

String attribute , String distance , Double pointLat , Double pointLon){

ObjectNode pointNode = objectMapper . createObjectNode ()
.put("lat", pointLat)
.put("lon", pointLon);

ObjectNode geoDistanceNode = objectMapper . createObjectNode ()
.put(" distance ", distance)
.set(attribute , pointNode);

return objectMapper . createObjectNode ()
.set(" geo_distance ", geoDistanceNode);

}

3.3.2 Pagination
Data returned in a response may contain thousands of records and such a volume of data may
not fit in the memory. This problem is solved by applying a pagination, it means that the data
are divided pages, where each page contains a certain number of records. The number of records
on each page is usually provided by a user in a URL query parameter. The user is able to
iterate through individual pages by providing a number of page he wants to retrieve (usually also
provided by a query parameter). The following example shows a URL, where a user requests the
system to provide the first ten records.

https://www.example.com/data/pageLimit=10&page=1

The Uniqway backend already supports pagination for data retrieved from the PostgreSQL
database. It is managed by pageLimit and page query parameters. The pagination is processed
by the models/request/Request class that provides parsing of pagination query parameters and
thereafter it is applied by the dao/base/BaseDao class. Because this pagination is implemented
for data retrieved from the database, it is also used for user transport data.

40 Implementation

The backend system returns paginated data in a PaginatedDataDto structure containing
requested data, indicator whether there exists another page, total number of pages and total
number of records. The structure looks the following:

{
"data": [],
"meta": {

"hasNextPage": boolean,
"totalPageCount": number,
"totalCount": number

}
}

It is needed to implement the same logic of pagination for data retrieved from the Elastic-
search. To implement pagination, the Query DSL of the Elasticsearch provides parameters from
and size that can be attached to the search query. The from parameter determines the number
of records to be skipped from the first record, the size parameter specifies the page size. The
following example shows a search query where a user requests first ten records of Scala car model
from the uniqway index:

GET /uniqway/_search
{

"query": {
"match": {

"car.model_name": "Scala"
}

},
"from": 1,
"size": 10

}

I implemented the pagination of data from the Elasticsearch into the services/public /elastic-
/ElasticPaginationService. This service provides the following methods:

applyPaginationForSearchRequest – attaches the from and size parameters to the request so
the Elasticsearch returns paginated data

getPaginatedData – maps already returned paginated data to the above metioned Paginated-
DataDto structure

3.3.3 Filters
The Uniqway backend system also provides client applications with the ability to filter data by
custom filters. These filters can be defined in a URL query parameter filters. Each filter has a
name corresponding to the name of the attribute the entity is filtered by, followed by a colon
symbol, and a value. Individual filters are separated by a comma symbol. The following URL
example shows a request for list of users filtered by a value of the first name and the last name
of a user.

https://wwww.uniqway.cz/api/admin/users/filters=profile.firstName:John,
profile.lastName:Smith

Public API 41

Requested entity, to which the client wants to apply custom filters, must implement the
models/request/Filterable interface. This interface contains a getFilters method the entity to
filter must implement that should return a map of all available filters. Filters are applied by the
dao/base/BaseDao class. The logic of filters is used to filter UserTransport entities. The code
3.11 shows getFilters method of UserTransport class.

Code listing 3.11 UserTransport getFilters method
@Override
public Map <String , Pair <Filter , Class >> getFilters () {

Map <String , Pair <Filter , Class >> filters = new HashMap < >();
filters .put(" startDate ", new Pair <>(Filter .LIKE_DATE , String .class));
filters .put(" endDate ", new Pair <>(Filter .LIKE_DATE , String .class));
filters .put(" userTransportMode .name", new Pair <>(Filter .EQUALS ,

String .class));
return filters ;

}

As it was in case of pagination, the filters also work only for data requested from the Post-
greSQL database, thus it is needed to implement the logic of processing of filters also for data
retrieved from the Elasticsearch. The Filterable interface is implemented by DTO classes stored
in the models/dto/public package that are used for returning data from the Elasticsearch. I
implemented the ElasticFilterSortApplyService class that handles the logic of creating list of
custom query filters. It uses methods for creating match queries and range queries from the
ElasticJsonRequestFactory class (see the section 3.3.1). The code 3.12 shows implementation
of applyFiltersForSearchRequest that creates list of filters according to filters provided by the
client. This method iterates through all the filter provided by the client, creates JSON query
filter according to the type of the provided filter and adds it into the list of filters to be applied
during the processing of a request.

Code listing 3.12 ElasticFilterSortApplyService applyFiltersForSearchRequest method
public void applyFiltersForSearchRequest (List <JsonNode > filters ,

Request <?> request) {

for (Map.Entry <String , Pair <Filter , Object >> entry :
request . getFilters (). entrySet ()) {

String property = entry. getKey ();
Object value = entry. getValue (). getValue ();
filters .add(requestFactory . createJsonMatch (property , value));

}
applyDateRangeFilterForSearchRequest (filters , request);

}

I also implemented the ability to filter data by date range, such a filter is defined by dateFrom
and dateTo URL query parameters. These parameters should contain a name of a date field the
client wants to apply the date range filter to, followed by a colon symbol, and a value the client
wants to filter by. The following URL example shows a request for rides data in a date range
from 2022-01-01 to 2022-02-01

https://www.uniqway.cz/api/public/rides?dateFrom=2022-01-01&dateTo=2022-02-01

As you can see in the code 3.12, custom date range filters are created by the applyDateRange-
FilterForSearchRequest, the code 3.13 shows implementation of this method. This method checks
whether a date range filter is present, if so, adds it into the list of filters.

42 Implementation

Code listing 3.13 ElasticFilterSortApplyService applyDateRangeFilterForSearchRequest method
public void applyDateRangeFilterForSearchRequest (List <JsonNode > filters ,

Request <?> request) {

if (request . getDateFrom () != null) {
filters .add(requestFactory . createJsonRange (

request . getDateFrom (). getKey (), request . getDateFrom (). getValue (),
ElasticJsonRequestFactory . RangeRelation .GTE));

}

if (request . getDateTo () != null) {
filters .add(requestFactory . createJsonRange (

request . getDateTo (). getKey (), request . getDateTo (). getValue (),
ElasticJsonRequestFactory . RangeRelation .LTE));

}
}

3.3.4 Search services
The previously mentioned services for creation of requests, pagination and filters are used by
services/public /elastic/ElasticSearchRequestFactory class. This factory class provides a build-
SearchRequest method that builds a SearchRequest object from the created JSON search query.
The SearchRequest class is provided by the Elasticsearch Java library that represents a search
request; an object of this class is passed into the Elasticsearch Java client that uses it to request
data. The code 3.14 shows the implementation of the buildSearchRequest method that creates
filters, applies pagination and creates JSON query, then, if present, it adds a qeo query, and in
the end it builds the SearchRequest object.

Code listing 3.14 ElasticSearchRequestFactory buildSearchRequest method
public SearchRequest buildSearchRequest (Request request) {

elasticFilterSortApplyService
. applyFiltersForSearchRequest (filters , request);

elasticPaginationService
. applyPaginationForSearchRequest (builder , request);

ObjectNode query = elasticJsonRequestFactory
. createBasicJsonQueryWithFilters (filters);

if (geoQuery != null) {
elasticJsonRequestFactory

. addGeoDistanceFilterIntoJsonQuery (query , geoQuery);
}

String queryJson = query. toString ();
return builder . withJson (new StringReader (queryJson)). build ();

}

Public API 43

The whole logic of data retrieval from the Elasticsearch are covered by services located in the
services/public package, where each service handles data according to use cases 8-10:

RideService:

Retrieves non-zero length finished rides

CarService:

Retrieves historic car movement data
Supports geo query to retrieve data in specific area
Retrieves current movement data of cars on the road

CarRideStopService:

Retrieves historic data of car stops during an ongoing ride

The code 3.15 shows implementation of the CarRideStopService. The data are searched by the
findCarRideStopsFromElastic method, within this method, data are retrieved into a DTO list.
Mapping of list of hits from the response to the DTO list is handled by overloaded get methods
that map a list of documents from Elasticsearch to a list of GetCarRideStopDto objects. Other
search services are implemented similarly.

Code listing 3.15 CarRideStopService
public class CarRideStopService {

private final String carRideStopIndexName ;
private final ElasticService elasticService ;
private final ElasticSearchRequestFactory elasticSearchRequestFactory ;
private final ElasticPaginationService elasticPaginationService ;
// constructor

public PaginatedDataDto findCarRideStopsFromElastic (Request request) {
elasticSearchRequestFactory

. initSearchRequestBuilderForIndex (carRideStopIndexName);

SearchRequest searchRequest = elasticSearchRequestFactory
. buildSearchRequest (request);

SearchResponse <ObjectNode > response =
elasticService . sendSearchQueryToElastic (searchRequest);

List < GetCarRideStopDto > dtoList = get(response);

return elasticPaginationService
. getPaginatedData (dtoList , response , request);

}

private GetCarRideStopDto get(ObjectNode json) {
GetCarRideStopDto getCarRideStopDto = new GetCarRideStopDto ();
getCarRideStopDto . setLocationLat (json.get(" location_lat "). asDouble ());
getCarRideStopDto . setLocationLon (json.get(" location_lon "). asDouble ());
getCarRideStopDto . setLockedDate (LocalDateTime .parse(

json.get(" locked_date "). asText ()). atOffset (ZoneOffset .UTC));
getCarRideStopDto . setUnlockedDate (LocalDateTime .parse(

json.get(" unlocked_date "). asText ()). atOffset (ZoneOffset .UTC));
return getCarRideStopDto ;

}

44 Implementation

private List < GetCarRideStopDto > get(
SearchResponse <ObjectNode > searchResponse) {

return searchResponse .hits (). hits (). stream ()
.map(Hit :: source)
. filter (Objects :: nonNull)
.map(this :: get)
. collect (Collectors . toList ());

}
}

3.3.5 Controllers and API
Controllers that handle client requests for public API are stored in the controllers/public pack-
age. The controller classes are UserTransportController, CarController, RideController and Car-
RideStopController. They are all annotated by the @With(ApiKeyAuthenticatorAction.class) to
require an API key authentication.

A detailed documentation of public API was implemented into the Swagger documentation
framework, simplified description of the final public REST API is the following:

GET /user-transport

Description: Finds all user transport data
Response:
∗ 200 OK
∗ List of GetUserTransportDto JSON objects
∗ Paginated
Filters:
∗ startDate
∗ endDate
∗ userTransportMode.name

GET /user-transport/geo-distance

Description: Finds all user transport data in the given distance from the given point
Response:
∗ 200 OK
∗ List of GetUserTransportDto JSON objects
∗ Paginated
Mandatory query parameters:
∗ lat – point latitude
∗ lon – point longitude
∗ distance – distance in meters
Filters:
∗ startDate
∗ endDate
∗ userTransportMode.name

Public API 45

GET /car-ride-stops

Description: Finds all car stops during an ongoing ride
Response:
∗ 200 OK
∗ List of GetCarRideStopDto JSON objects
∗ Paginated
Filters:
∗ Date range (dateFrom; dateTo)
∗ locked date
∗ unlocked date

GET /car-data/on the road

Description: Finds all location data of current cars on the road
Response:
∗ 200 OK
∗ List of GetCarLocationSpeedDto JSON objects

GET /car-data

Description: Finds all car location data
Response:
∗ 200 OK
∗ List of GetCarLocationSpeedDto JSON objects
∗ Paginated
Filters:
∗ Date range (dateFrom; dateTo)
∗ car id
∗ received date

GET /car-data/geo-distance

Description: Finds all car location data in the given distance from the given point
Response:
∗ 200 OK
∗ List of GetCarLocationSpeedDto JSON objects
∗ Paginated
Mandatory query parameters:
∗ lat – point latitude
∗ lon – point longitude
∗ distance – distance in meters
Filters:
∗ Date range (dateFrom; dateTo)
∗ car id
∗ received date

46 Implementation

GET /rides

Description: Finds all Uniqway rides
Response:
∗ 200 OK
∗ List of GetRideDto JSON objects
∗ Paginated
Filters:
∗ Date range (dateFrom; dateTo)
∗ ride start date
∗ ride end date
∗ car.brand name
∗ car.model name
∗ car.fuel type

GET /rides/brand/name

Description: Finds all Uniqway rides for the given car brand name
Response:
∗ 200 OK
∗ List of GetRideDto JSON objects
∗ Paginated
Filters:
∗ Date range (dateFrom; dateTo)
∗ ride start date
∗ ride end date
∗ car.brand name
∗ car.model name
∗ car.fuel type

Testing 47

3.4 Testing
The Uniqway backend system is tested by unit tests by using a JUnit framework and API tests
by using Python programming language.

3.4.1 Unit test
Unit tests are aimed at testing individual functionalities (units) separately. Components are
usually tested within one software layer, if a tested unit depends on components from the lower
layer, it uses mocked variants of these components. For mocking, the system uses the Mockito
framework. Unit tests are located in the test/unit package.

I implemented unit tests that are focused on testing of correct work with API keys and correct
generation of JSON queries for the Elasticsearch. Tests of individual services and their scenarios
are described below:

ApiKeyGenerateService tests

Test of correct API key generation
∗ The key was successfully generated and matches a 32 characters long hexstring (shown

as an example in the code 3.16)
Test of generating an already existing API key
∗ The service returns an empty Optional object in case of duplicate keys

ApiKeyService tests

Successful API key generation
∗ An API key was successfully generated and stored into the database
Unsuccessful API key generation
∗ Unsuccessfull generation due to duplicate key values, an UnableToGenerateAPiKey ex-

ception is thrown
∗ Unsuccessfull generation due to a wrong validTo attibute, an InvalidFieldValueInJ-

sonException exception is thrown
Successful API key reset
∗ An API key was successfully reset and updated in the database
Unsuccessful API key reset
∗ Unsuccessfull reset due to duplicate key values, an UnableToGenerateAPiKey exception

is thrown
Successful API key generation
∗ An API key was successfully deactivated, deactivated attribute was set to true and is

updated in the database

48 Implementation

ElasticJsonRequestFactory tests

Correct match query
∗ Builds correct match query according to given parameters
Correct range query
∗ Builds correct range query according to given parameters
Correct geo distance query
∗ Builds correct geo distance query according to given parameters
Correct complex query
∗ Correctly builds a complex query that combines match, range and geo distance queries

Code listing 3.16 ApiKeyGenerateService unit test
@RunWith (MockitoJUnitRunner . class)
public class ApiKeyGenerateServiceTest {

@Mock
private ApiKeyDao apiKeyDaoMock ;
private ApiKeyGenerateService apiKeyGenerateService ;

@Before
public void setUp () {

RandomHexStringFactory randomHexStringFactory =
new RandomHexStringFactory (new SecureRandom ());

apiKeyGenerateService =
new ApiKeyGenerateService (randomHexStringFactory ,

apiKeyDaoMock);
}

@Test
public void generateRandomApiKey_shouldGenerate () {

when(apiKeyDaoMock . findByKey (any(String .class)))
. thenReturn (Optional .empty ());

Optional <String > key = apiKeyGenerateService
. generateRandomApiKey ();

assertTrue (key. isPresent ());
assertTrue (key.get (). matches ("[0-9A-Fa -f]{32}"));

}
...
}

Testing 49

3.4.2 Python API tests
API tests are aimed at complex testing of backend functionalities by sending REST API re-
quests against a running instance of the system. Practically, these test scripts simulate client
applications. Python API tests are located in the quality-assurance package.

I implemented API tests that are focused on testing of API key life cycle. The scenarios of
these tests are the following:

The whole API key life cycle test:

Admin created a new API user
Admin successfully generated a new API key to the user
Client is able to authenticate with the key
Admin successfully reset the value of the generated API key
Client is able to authenticate by the new value of the API key
Client is not able to authenticate by the old value of the API key
Admin successfully deactivated the API key
Client is not able to authenticate by the deactivated API key

Expired API key test:

Client is not able to authenticate by an expired API key

50 Implementation

Chapter 4

API monetization

The use of APIs has become increasingly popular in recent years. API monetization models
refer to the different ways in which companies can generate revenue by providing access to their
Application Programming Interfaces. The public API can be used by partners to create new
interesting projects. Since the exposure of an API may bring business value to its consumers,
the Uniqway public API will be monetized in the future.

One of the aims of this thesis is to propose a monetization model for the Uniqway public
API. In this chapter I analyze different API monetization models, their principles and propose
a suitable model for the Uniqway.

4.1 Free model
Free model is used in case a company has low-value assets and wants it to spread through different
channels. Such assets may be for example a catalog of services the company provides. The free
model allows consumers to use a public API without charging a fee. This model is used when
an API provider wants to grow in popularity and expand to new channels to increase customer
reach. [29]

4.1.1 Freemium model
The freemium model is based on the free model, but is limited in some way. This model allows
consumers to use the API for free but only for a certain duration or for a certain volume of data.
[29]

Concrete subtypes of such model are [29]:

Duration-based free model – allows consumers to use the API for a certain duration (for
example a week, month, year. . .)

Quantity-based free model – allows consumers to use the API for a certain number of
calls (for example the API owner provides 1000 API calls for free to each consumer)

Hybrid free model – combination of duration and quality based models (for example the
API owner provides a free access for a certain duration or until a certain number of API calls
reached)

51

52 API monetization

4.2 Fee-based model
Fee-based model may be used in case a company has high-value assets and consumers are willing
to pay for it. This model is for example used for analytical data or payment services (the service
takes a fee from each payment transaction). [29]

Variations or fee based model are [29]:

One-time fee – to get an unlimited access to API, consumer pays a one-time fee for sub-
scribing

Subscription fee – consumer pays periodically (weekly, monthly. . .), the volume of API
calls within the period may be limited

Pay-per-API transaction – consumer pays for number of API transactions made

Pay by transaction volume – consumer pays for volume of API calls or volume of data
returned in response

Tiered pricing – different bands of number of API calls are charged differently, usually, the
more API calls made the less the price is (for example a price per transaction for 1 to 1000
calls monthly is higher than price per transaction for 1001 to 2000 calls)

4.3 Revenue-sharing model
In this model, the API provider shares a part of the revenue with a partner that consumes the
provider’s data and exposes it further. This model is used to extend reach through various digital
channels. Typical example is an advertising API. [29]

4.4 Monetization model for the Uniqway public API
In the context of the Uniqway public API, I think that there can be different variations of fee-
based models for different endpoints. Endpoints providing historical data should be charged
by using the pay by transaction volume model, as clients are likely to request larger volumes
of data (e.g. vehicle movement data over a period of time) on a one-off basis. For endpoints
providing in time data (movement of current cars on the road) it is better to use the pay-per-API
transaction model because clients are likely to periodically request smaller amounts of data from
such endpoints.

To implement the monetization model, a frontend interface for API users (developer portal)
will need to be developed into the Uniqway system. API keys also allow to track the number of
requests by a concrete project, based on this the API user can be charged.

Chapter 5

Conclusion

In this thesis, I introduced the Uniqway system and analyzed the data that the Uniqway system
collects. Then, I selected relevant data that can be used to implement a public interface. Further-
more, I prepared the backend of the Uniqway system to collect data from the mobile applications
of the users. The selected data was exposed in the public interface which was implemented in
the form of REST API.

The backend system now also supports the creation of API users that can use the public API.
For these users, an authentication mechanism using API keys has been implemented as a part
of this work.

Finally, I have analyzed the monetization models for the exposed data. It turns out that
models based on the number of transactions and the volume of data provided are the best fit for
the Uniqway system.

During this work, I collaborated with the Uniqway student team. This thesis successfully met
all the objectives set out in the assignment. I have implemented an extensible basis for exposing
data to the Uniqway system, which can be built upon in future work that will, for example,
deal with a frontend application for API users. Extending this work depends on the data that
the system collects. In the future, for example, cars might collect additional data that could be
included in the public API. This data may include, for example, weather data or road events
data.

I see possible improvements to this work in the management of API keys, it would be prefer-
able in the future to implement a more secure way of storing and sending them over the network.

53

54 Conclusion

Bibliography

1. What is an API (application programming interface)? [online]. IBM [visited on 2023-04-17].
Available from: https://www.ibm.com/topics/api.

2. What is an API (application programming interface)? [online]. Amazon Web Services [vis-
ited on 2023-04-17]. Available from: https://aws.amazon.com/what-is/api/.

3. What is an API endpoint? In: HubSpot [online]. Jamie Juviler, 2022 [visited on 2023-04-17].
Available from: https://blog.hubspot.com/website/api-endpoint.

4. DE, Brajesh. Introduction to APIs. In: API Management: An Architect’s Guide to Develop-
ing and Managing APIs for Your Organization. First edition. Bangalore, Karnataka, India:
Apress, 2017, pp. 6–8. isbn 978-1-4842-1306-3.

5. DE, Brajesh. Types of APIs. In: API Management: An Architect’s Guide to Developing and
Managing APIs for Your Organization. First edition. Bangalore, Karnataka, India: Apress,
2017, p. 7. isbn 978-1-4842-1306-3.

6. DE, Brajesh. Designing a RESTful API Interface. In: API Management: An Architect’s
Guide to Developing and Managing APIs for Your Organization. First edition. Bangalore,
Karnataka, India: Apress, 2017, pp. 29–30. isbn 978-1-4842-1306-3.

7. FIELDING, Roy Thomas. Architectural Styles and the Design of Network-based Software
Architectures [online]. 2000. [visited on 2023-04-18]. Available from: https://www.ics.
uci.edu/˜fielding/pubs/dissertation/top.htm. Dissertation. University of California,
Irvine.

8. DE, Brajesh. Designing a RESTful API Interface. In: API Management: An Architect’s
Guide to Developing and Managing APIs for Your Organization. First edition. Bangalore,
Karnataka, India: Apress, 2017, pp. 31–33. isbn 978-1-4842-1306-3.

9. RFC 3986: Uniform Resource Identifier (URI): Generic Syntax [online]. RFC Editor [visited
on 2023-04-19]. Available from: https://www.rfc-editor.org/rfc/rfc3986.html.

10. An overview of HTTP [online]. MDN Web Docs [visited on 2023-04-20]. Available from:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview.

11. HTTP Messages [online]. MDN Web Docs [visited on 2023-04-20]. Available from: https:
//developer.mozilla.org/en-US/docs/Web/HTTP/Messages.

12. RFC 9110: HTTP Semantics [online]. RFC Editor [visited on 2023-04-23]. Available from:
https://www.rfc-editor.org/rfc/rfc9110.html#name-status-codes.

13. DE, Brajesh. Designing a RESTful API Interface. In: API Management: An Architect’s
Guide to Developing and Managing APIs for Your Organization. First edition. Bangalore,
Karnataka, India: Apress, 2017, pp. 37–40. isbn 978-1-4842-1306-3.

55

https://www.ibm.com/topics/api
https://aws.amazon.com/what-is/api/
https://blog.hubspot.com/website/api-endpoint
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.rfc-editor.org/rfc/rfc3986.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages
https://www.rfc-editor.org/rfc/rfc9110.html#name-status-codes

56 Bibliography

14. MADDEN, Neil. What is API security? In: API Security in Action. Shelter Island, NY:
Manning Publications, 2020, p. 21. isbn 9781617296024.

15. MADDEN, Neil. What is API security? In: API Security in Action. Shelter Island, NY:
Manning Publications, 2020, p. 22. isbn 9781617296024.

16. MADDEN, Neil. Securing service-to-service APIs. In: API Security in Action. Shelter Is-
land, NY: Manning Publications, 2020, pp. 383–385. isbn 9781617296024.

17. MADDEN, Neil. API keys and JWT bearer authentication. In: API Security in Action.
Shelter Island, NY: Manning Publications, 2020, p. 384. isbn 9781617296024.

18. About the Java Technology [online]. Oracle [visited on 2023-04-25]. Available from: https:
//docs.oracle.com/javase/tutorial/getStarted/intro/definition.html.

19. GOSLING, James; MCGILTON, Henry. Introduction to Java Technology. In: The Java
Language Environment [online]. Oracle, 1996 [visited on 2023-04-25]. Available from: https:
//www.oracle.com/java/technologies/introduction-to-java.html#318.

20. What is Play? [online]. Play Framework [visited on 2023-04-25]. Available from: https:
//www.playframework.com/documentation/2.8.x/Introduction.

21. MVC [online]. MDN Web Docs [visited on 2023-04-25]. Available from: https://developer.
mozilla.org/en-US/docs/Glossary/MVC.

22. PostgreSQL: About [online]. The PostgreSQL Global Development Group [visited on 2023-
04-25]. Available from: https://www.postgresql.org/about/.

23. About PostGIS [online]. POSTGIS [visited on 2023-04-25]. Available from: https://postgis.
net/.

24. Chapter 4. Data Management [online]. POSTGIS [visited on 2023-04-25]. Available from:
https://postgis.net/docs/manual-3.3/using_postgis_dbmanagement.html.

25. The Python Tutorial [online]. Python Software Foundation [visited on 2023-04-25]. Available
from: https://docs.python.org/3/tutorial/index.html.

26. What is Elasticsearch? [online]. Elasticsearch [visited on 2023-04-25]. Available from: https:
//www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-
intro.html.

27. Data in: documents and indices [online]. Elasticsearch [visited on 2023-04-25]. Available
from: https : / / www . elastic . co / guide / en / elasticsearch / reference / current /
documents-indices.html.

28. Information out: search and analyze [online]. Elasticsearch [visited on 2023-04-25]. Available
from: https : / / www . elastic . co / guide / en / elasticsearch / reference / current /
documents-indices.html.

29. DE, Brajesh. API Monetization. In: API Management: An Architect’s Guide to Developing
and Managing APIs for Your Organization. First edition. Bangalore, Karnataka, India:
Apress, 2017, pp. 143–152. isbn 978-1-4842-1306-3.

https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html
https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html
https://www.oracle.com/java/technologies/introduction-to-java.html#318
https://www.oracle.com/java/technologies/introduction-to-java.html#318
https://www.playframework.com/documentation/2.8.x/Introduction
https://www.playframework.com/documentation/2.8.x/Introduction
https://developer.mozilla.org/en-US/docs/Glossary/MVC
https://developer.mozilla.org/en-US/docs/Glossary/MVC
https://www.postgresql.org/about/
https://postgis.net/
https://postgis.net/
https://postgis.net/docs/manual-3.3/using_postgis_dbmanagement.html
https://docs.python.org/3/tutorial/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/documents-indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/documents-indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/documents-indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/documents-indices.html

Obsah přiloženého média

readme.txt..stručný popis obsahu média
src

thesis..zdrojová forma práce ve formátu LATEX
text...text práce

thesis.pdf...text práce ve formátu PDF

57

	Acknowledgments
	Declaration
	Abstract
	Abbreviations
	Introduction
	Theoretical part
	Application programming interface
	API endpoint
	API types

	REST API
	Resource identification
	HTTP protocol

	API security
	Authentication
	Access control
	API keys

	The Uniqway system technologies
	Java Technology
	Play framework
	PostgreSQL
	PostGIS
	Python
	Elasticsearch

	Requirements analysis and solution design
	The Uniqway system architecture
	The Uniqway data analysis
	PostgreSQL database data
	Elasticsearch data
	User transport mode data

	Requirement analysis
	Functional requirements
	Non-functional requirements

	Use case model
	List of actors
	List of use cases
	Use case diagram

	Solution design
	API users and API keys
	User transport data
	Exposure of data for public API

	Implementation
	API users and API keys
	Persistence layer
	Generation of API key
	Services
	API key authentication
	Controllers and admin API

	User transport data
	Persistence layer
	Services
	Controllers and admin API

	Public API
	Request factory
	Pagination
	Filters
	Search services
	Controllers and API

	Testing
	Unit test
	Python API tests

	API monetization
	Free model
	Freemium model

	Fee-based model
	Revenue-sharing model
	Monetization model for the Uniqway public API

	Conclusion
	Obsah přiloženého média

