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Abstract

This thesis proposes a novel approach to web service fuzzing that utilizes the OpenAPI Specifica-
tion. The proposed smart black-box generation-based fuzzer, named openapi-fuzzer, generates
and minimizes random payloads to detect vulnerabilities in web services. It is able to minimize
the bug-triggering payload to its canonical form. Thanks to this minimization, it is trivial to
detect the root cause of an underlying bug. To evaluate its performance, openapi-fuzzer was
tested on multiple relevant web services, including Kubernetes, Hashicorp Vault, and Gitea,
where it identified several bugs. The results demonstrate that openapi-fuzzer outperforms other
state-of-the-art web service fuzzers in terms of the number of bugs found and running time.

Furthermore, openapi-fuzzer conducts a performance analysis to identify endpoints that are
susceptible to Denial of Service attacks. By providing developers with detailed statistics, openapi-
fuzzer helps them identify and fix performance issues in their web services.

Keywords fuzzing, OpenAPI Specification, testing, web services, property-based testing

Abstrakt

V tejto práci predstavíme inteligentný generatívny black-box fuzzer, ktorý využíva OpenAPI
špecifikáciu na odhalenie zraniteľností webových služieb. Jedným z hlavných prínosov fuzzera je
podpora minimalizácie vstupov, ktoré spôsobujú chyby v programoch. Vďaka minimalizácií je
jednoduché naj́sť chybu, ktorá zapríčinila problémové správanie programu. Fuzzer bol testovaný
na niekoľkých relevantných webových službách, ako napríklad Kubernetes, Hashicorp Vault či
Gitea, v ktorých našiel mnoho chýb. Z porovnania s inými najmodernejšími fuzzermi sme zistili,
že openapi-fuzzer nájde viac chýb za kratší čas akoiné fuzzery.

Dalšou funkcionalitou openapi-fuzzera je analýza výkonu na detekciu endpointov náchylných
na útoky DOS.

Kľúčové slová fuzzovanie, OpenAPI špecifikácia, testovanie, webové služby
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Introduction

The increasing complexity of modern software systems and the ever-increasing number of con-
nected devices and systems make it difficult to identify and mitigate software vulnerabilities. Fuzz
testing is based on providing malformed or unexpected inputs to a program to detect software
defects and vulnerabilities.

It is essential to create test cases that not only trigger bugs but also enable developers or
security analysts to find the root cause of the bugs efficiently. This is particularly relevant for
fuzz testing, which is the process of generating and sending semi-random inputs to the API of a
given app. Thus, it may be challenging to understand the generated payload. By reducing to a
minimal payload that causes the system to fail, the debugging and exploitation of any discovered
vulnerabilities can be greatly improved and sped up. Therefore, generating minimal and efficient
payloads is a critical feature of any effective fuzzer.

The primary aim of this thesis is to create a smart fuzzer that takes advantage of the OpenAPI
Specification to generate a well-structured input and effectively detect bugs in web services. The
performance of the fuzzer will be evaluated by testing it on multiple relevant web services. In
addition to sending multiple requests to each endpoint, the fuzzer will also utilize this feature
to measure the round-trip times of the requests. Through this evaluation, our goal is to identify
endpoints that may be vulnerable to DOS attacks.

We provide an overview of fuzzing, particularly in the context of web services. We present
an overview of the fuzzer taxonomy. We thoroughly analyze existing solutions, identify their
limitations, and design and implement a fuzzer that overcomes these limitations.
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Chapter 1

Fuzz testing

Fuzzing is a software testing methodology that consists of subjecting a system to a large number of
inputs generated by a separate program. The goal is to identify potential security vulnerabilities,
functional bugs, or other flaws in the tested software.

Miller characterized this form of testing as a random traversal of a program’s state space,
represented as a state machine, in search of undefined states [1].

Fuzzing is often used to test complex and distributed systems that may have numerous input
sources and interactions, making traditional testing techniques less effective. By automating
the input generation process, fuzzing allows for efficient and thorough testing of a wide range
of input scenarios. Despite its simplicity, fuzzing has proven to be a powerful technique for
detecting software vulnerabilities and improving software quality; when Miller and his research
team were successful in destabilizing a significant part of Unix battle-tested utilities, ranging
from 24 to 33% of all utilities, by implementing a random input generation technique [1].

1.1 Why fuzzing

Nonetheless, fuzz testing is just one of many methods that can be used to improve software secu-
rity and reliability. Quality assurance can be achieved via multiple other methods, including unit
testing, integration testing, code review, or performance testing. Fuzzing offers some advantages
to all of these methods.

One of the main advantages of fuzz testing is its thoroughness. By generating a wide range
of inputs, including edge cases and other inputs that may be missed by other testing approaches,
fuzz testing can help uncover defects that might otherwise go undetected. It can identify potential
security issues, such as buffer overflows or other input-related issues that attackers could exploit,
and thus, it can improve security.

Another advantage of fuzz testing is its automation. Once the fuzzer has been set up, it can
generate a large number of inputs without human intervention. This can save time and resources,
allowing faster and more efficient testing. This also means that the testing can be repeated as
often as needed. Automation of the testing process reduces the need for specialized knowledge
or equipment, which can be cost-efficient [2].

3



4 Fuzz testing

Flexibility is an additional aspect that makes fuzz testing stand out. One fuzzer can test
multiple software with minimal or even no modification. Some types of fuzzers push it to the
limit and do not even require a source code.

1.2 Need for efficiency
Though, finding the security vulnerability, bug, or other faulty behavior is important, it is only
half the way to fixing or exploiting it. Both hackers and developers need to understand why the
bug occurred in order to make use of it. Nevertheless, data created by fuzzers are inherently
noisy due to the randomness of their generation process. It is much easier to find the root cause
of the faulty behavior if the input that triggers it is minimal. By minimal input, I mean that
the size of the input (in bytes) is the smallest possible and follows the lexicographical order.

The example in Code listing 1 is an input generated by the old version of openapi-fuzzer [3]
that causes a bug in Hashicorp Vault. The generated payloads vary in size from 500B to 10KB.
JSON in Code listing 1 has numerous fields; however, without manual intervention, it is unclear
which causes the bug. It may be a combination of fields or just a single one. Moreover, fields
may have different values. There is no way to detect which subset of values causes the faulty
behavior. The desired input would have all fields that do not contribute to causing the bug
empty, and the ones that do would shrink to the shortest possible size. A sample of this input
is given in Code listing 2.

{
"payload": {

"query_params": [],
"path_params": [],
"headers": [],
"body": {
"increment": -6585199501202910990,
"lease_id": "%F1%AD%8B%9D%F0%96%BA%AD%E0%BA%8D%F3%9D%B8%B5%F1%99%96%AC
%AC%83%99%F3%83%81%B9%F1%9E%9F%80%F1%B1%9B%AD%F1%AB%8F%86%F2%9A%.....",
"url_lease_id": "%F1%88%93%9D%F1%AC%A2%AA%F1%9C%93%84%F3%88%AF%82%F3%
8A%88%81%F0%B3%B8%A3%F2%A1%B8%96%F4%8C%B3%AF%F1%BF%BC%97%F1%89%....."

}
},
"path": "sys/leases/renew",
"method": "POST"

}

Code listing 1 Input generated by the old version of openapi-fuzzer(7.6KB in size)

1.3 Need for fuzzing web services
In recent years, web services have become increasingly complex and widely used, making them
a prime target for cyber attackers. Many services that were offered as standalone applications
are now available on the Web. The crucial difference is that everyone can interact with the
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{
"payload": {
"query_params": [],
"path_params": [],
"headers": [],
"body": {
"increment": 0,
"lease_id": ".�",
"url_lease_id": ""

}
},
"path": "sys/leases/renew",
"method": "POST"

}

Code listing 2 Desired minimal input

web service, which was not the case with standalone desktop GUI applications. Additionally,
by exploiting a web service, attackers can potentially access data of many users and put their
credentials and data in jeopardy. As a result, the need for effective security testing techniques,
such as fuzzing, has recently become more necessary.

Moreover, fuzzing can be used to test the interoperability of web services with other systems
or software components. This is particularly important in service-oriented architectures (SOAs),
where multiple web services may need to interact with each other. Fuzzing can help identify
compatibility issues, protocol violations, or other communication problems that could affect the
reliability and performance of web services.

1.3.1 HTTP essentials
HTTP, or Hypertext Transfer Protocol, is a protocol that governs most web communication.
It works in a client-server model, where the client sends a request to the server, which then
processes the request and sends back a response. HTTP requests typically consist of a request
method, a URI indicating the resource to be accessed, and an optional message body containing
additional data.

HTTP responses contain a status line with a version of the protocol, a status text, and a
status code. The status text and status code express the situation of the requests along with the
condition of the server. The status line is then followed by optional headers and a body [4].

HTTP status codes are particularly important for fuzzing. Fuzzers can employ them to
determine the state of the web service. HTTP status codes fall into following five categories.

Informational (1XX): These status codes indicate that the server has received the request and
is continuing to process it. For example, 101 (Switching Protocols) indicates that the server
received a request from a client to switch to the protocol specified in an Upgrade header and
will start using it. For example, switching from HTTP to WebSockets.

Successful (2XX): These status codes indicate that the request was received, understood, and
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CRUD operation HTTP method
CREATE POST

READ GET
UPDATE PUT
DELETE DELETE

Table 1.1 Mapping between CRUD operations and HTTP methods

accepted successfully. For example, 200 (OK) means that the request was successful and that
the server is returning the requested data.

Redirection (3XX): These status codes indicate that the client needs to take further action
to complete the request. For example, 301 (Moved Permanently) means that the requested
resource has been moved to a different location and the client should update its URL accord-
ingly.

Client error (4XX): These status codes indicate that there was an error with the client’s
request. For example, 404 (Not Found) means that the requested resource could not be
found on the server.

Server error (5XX): These status codes indicate that there was an error in the server processing
the request. For example, 500 (Internal Server Error) means that there was an unexpected
condition that prevented the server from fulfilling the request.

1.3.2 Representational state transfer
REST is a predominantly used set of architectural principles and constraints to design web
services [5]. Web services that meet these conditions are said to be RESTful. The following are
essential elements for fuzzing and understanding.

RESTful services should follow the client-server model. There should be a uniform inter-
face that separates clients from servers. Servers are not concerned with the user interface or user
state, so servers can be simpler and more scalable [6].

Another feature that helps with scaling RESTful applications is statelessness. In stateless
applications, the server should not store any client context between requests. This principle
makes caching and thus scaling easier [6].

The last one is universal interface, which Alex Rodriguez described and explicitly defined
in the article RESTful Web services: The basics [5].

Use HTTP methods to describe CRUD operations on server resources. There exists a one-
to-one mapping from HTTP methods to CRUD operations, also shown in Table 1.1. A
non-RESTful application may, for example, use the HTTP GET method and send data as
query parameters to update a resource. A RESTful application would properly use an HTTP
body with a PUT method.

Expose directory-structure-like URIs. Directory-structure-like URIs do not expose the un-
derlying technology through file extensions of scripting languages such as .php or .asp. This
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fact makes migration smooth. Moreover, directory-structure-like URIs have a natural self-
documenting feature and describe the resources that servers provide. For instance, to list
repositories of some organization via the GitHub API, one would send an HTTP GET re-
quest to the URL ending with /orgs/{org}/repos.

Use JSON or XML as a serialization format. JavaScript is a widely used language for front-
end web development. Its object notation has a simple specification, and therefore most
programming languages have a library for its serialization and deserialization.

Web services that adhere to the aforementioned requirements can be straightforwardly de-
scribed by the OAS.

1.3.3 OpenAPI Specification
The OpenAPI Specification (briefly OAS), formerly known as the Swagger Specification, is an
open standard for describing RESTful APIs. It is specified in YAML or JSON, which are
machine-readable. It can also be machine generated, which makes it more and more pop-
ular.

By describing the structure and behavior of an API in a machine-readable format, the OAS
enables tools to automatically generate client and server libraries, interactive documentation,
and other artifacts that can simplify the process of consuming and working with the API. An
example of interactive documentation is shown in Figure 1.1.

The combination of a machine-readable format and a detailed description of input and output
structures makes the OAS a vital resource for creating a smart fuzzer.

1.3.3.1 Fundamental parts of OAS for fuzzers

In the following paragraphs, I will use parts of the OAS from one of the official examples [7].
One of the top-level elements is the Servers Object, that defines connectivity information to

a target server; see example in Code listing 3. It has a required url field, which can also be
relative [7]. However, the Servers Object itself is not required. This makes it rather difficult to
process programmatically.

servers:
- url: https://petstore3.swagger.io/api/v3
- url: /api/v3

Code listing 3 An example of a Servers Object

One of the components that possess most of the useful information is the Path Object. It
consists of Path Item Objects which are the relative paths to the individual path endpoints and
their operations [7]. The Path Item Objects are appended to the URL from the Server Object
to construct the full URL.

The primary item in a Path Item Object is the Operation Object. There are multiple possible
Operation Objects, each equivalent to an HTTP method that can be used to query the endpoint.

https://petstore3.swagger.io
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Figure 1.1 An example of an interactive documentation generated from the OAS
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If a Path Item Object is templated, the Operation Object needs to contain a Parameter
Object field with the same name. The OAS also specifies the type of the parameter in a Schema
Object. However, a Parameter Object may contain besides path parameters also headers, queries,
or cookies. Parameters not located in the path may be optional. The optionality can be toggled
by the required field.

Another field in Operation Object is Request Body Object that maps media types of request
body to Media Type Objects. The Media Type Object then contains a Schema Object that
describes structure and types of the request body. An example of a Schema Object is shown
in Code listing 4. The request body may not be supplied depending on the required field in a
Request Body Object.

components:
schemas:
Pet:
required:

- name
type: object
properties:

id:
type: integer
format: int64
example: 10

name:
type: string
example: doggie

category:
$ref: '#/components/schemas/Category'

tags:
type: array # <- supports complex types
items: # ↓ possible to reference other objects
$ref: '#/components/schemas/Tag'

status:
type: string
description: pet status in the store
enum:
- available
- sold

Code listing 4 An example of a Schema Object in a Components Object

In addition to the Request Body Object, the Responses Object is another essential component
of the OAS. The Responses Object contains a list of HTTP status codes that the API can
respond to. Each of these status codes is then mapped to a corresponding Response Object,
which provides additional information about the response that the API will send. The Response
Object contains a mapping from media types to Media Type Objects which were described before.
Finally, it is possible to specify whether an operation on an endpoint is secured by listing the
names of Security Schemas.

The following top-level object in the OAS is the Components Object. In the Path Object
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paths: # <- path object
/pet/{petId}: # <- path item object

put: # <- HTTP method
tags:

- pet
summary: Update a pet
description: Update a pet by Id
operationId: updatePet
parameters:

- name: petId # <- matching id in path
in: path
description: ID of pet to update
required: true
schema:
type: integer
format: int64

requestBody:
description: Update pet in the store
content: # <- can send JSON or XML request
application/json: # <- media type objects
schema:

$ref: '#/components/schemas/Pet'
application/xml: # <- media type objects
schema:

$ref: '#/components/schemas/Pet'
required: true

responses:
'200':
description: Successful operation
content:
application/json: # <- media type objects

schema:
$ref: '#/components/schemas/Pet'

'400':
description: Invalid ID supplied

security: # <- list of security schemas
- api_key: []
- petstore_auth:

- write:pets
- read:pets

Code listing 5 An example of a Paths Object
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example in Code listing 5, certain objects are not explicitly specified in place, but instead, refer-
ence a definition that is stored elsewhere. All of these references are directed to the components
section of the OAS. By doing this, the object definitions can be reused, and the probability of
errors is reduced.

The Security Scheme Object can be included in the global Security Requirement Object
section of the OAS or the security property at the operation or path level. The Security Scheme
Object allows the definition of security schemes such as basic authentication, OAuth2, or API
key-based authentication.

However, in practice, only a few web services correctly use the Security Scheme Objects.
Many web services do not annotate all endpoints with the Security Requirement Object or use
different means of authentication and do not document it in the specification.

components:
securitySchemes:
petstore_auth:
type: oauth2
flows:

implicit:
authorizationUrl: https://petstore3.swagger.io/oauth/authorize
scopes:
write:pets: modify pets in your account
read:pets: read your pets

api_key:
type: apiKey
name: api_key
in: header

Code listing 6 An example of a Security Scheme Object
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Chapter 2

Fuzzer taxonomy

Before we dive into and explore the particular features of fuzzers, let us take a more holistic view
and describe different categories of fuzzers. This will provide us with an apparatus for comparing
them.

Firstly, we can categorize them according to the level of knowledge the fuzzer has about
the internal workings of the software being tested. While white-box fuzzers possess the most
knowledge, black-box fuzzers possess the least. Then we differentiate them according to the level
of knowledge about the input structure and finally characterize them according to the methods
used to generate testing inputs.

In the latter parts of this chapter, we introduce new categories specific to web service fuzzers.

2.1 Awareness of internal program structure

2.1.1 White-box
White-box fuzzing is a technique that is aware of the program’s internal structure and thus
requires access to the source code. It uses program analysis to increase the coverage of the
code [8], which can be defined as the degree to which the state space is traversed during a
random walk. When program specifications are available, the fuzzer can leverage model-based
testing techniques to generate test inputs and validate them using the specifications. This type
of testing involves creating test cases that target specific parts of the code or data structures,
enabling testers to identify and address vulnerabilities in those particular areas. White-box
fuzzing is often used for software that requires a high level of security. However, integrating
white-box fuzzers with the targeted program may require considerable time and knowledge of
the code base.

2.1.2 Black-box
Black-box fuzzing, also known as functional fuzzing or input-based fuzzing, is a technique that
requires no knowledge of the program’s internal structure being tested [9]. As a result, it can

13
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achieve higher performance and reusability compared to white-box fuzzing. Testers use black-box
fuzzing to generate random or semi-random input data to see how the software responds. This
approach can uncover unexpected and undocumented behavior that may be useful in offensive
security. The disadvantage of black-box fuzzers is their lower efficiency, which results from the
lack of information about the program.

2.1.3 Gray-box
Gray-box fuzzing is an approach that lies somewhere between white-box and black-box fuzzing.
Gray-box testing uses instrumentation techniques, such as profiling, to analyze the program
without requiring access to its source code. Gray-box fuzzing is more comprehensive than black-
box fuzzing and faster than white-box fuzzing.

2.2 Awareness of input data structure

As described above, the essence of fuzzing is to provide a system with semi-valid input. The
input must be sufficiently well-formed for the system to interpret it as valid but also contain
errors that cause the system to fail. Knowledge about the input structure splits the fuzzers into
two categories, smart and dumb.

2.2.1 Dumb
Dumb fuzzers do not assume any or little information about input structure. As we shall see in
further chapters, a dumb web service fuzzer can, for instance, generate random JSON structures
disregarding whether the web service accepts it. This will result in a simple implementation but
produce numerous false positive results.

2.2.2 Smart
On the other hand, smart fuzzers are aware of the input structure and thus follow some RFC,
specification, or protocol [10]. Therefore, they explore more state space and produce fewer false
positives. We can split smart fuzzers into two subcategories, smart-correct and smart-incorrect.

The smart-correct fuzzers fully respect the specification; on the other hand, smart-incorrect
fuzzers introduce a bit more randomness to the generation process. Sometimes, they ignore
parts of the specification that may cause undefined behavior in the system under test. Fuzzers
respecting the specification may achieve greater exploration of defined states.

2.3 Input generation techniques

2.3.1 Generation-based
Generation-based fuzzers are closely related to smart fuzzers. Not only are they aware of the
structure and specification, but they create input that mostly follows it. For example, if we
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were to fuzz a PNG decoder and decided to utilize a generation-based fuzzer, the fuzzer would
need to create new PNG images from scratch based on the specification. Although implementing
such a fuzzer requires significant work, Miller showed that it is worth it. According to Miller’s
tests, generation-based fuzzing performs up to 76% better in code coverage than mutation-based
fuzzing techniques [11].

2.3.2 Mutation-based
Mutation-based fuzzers, on the other hand, do not require similar work in advance. In mutation-
based fuzzing, the fuzzer takes an existing input, mutates it, and then tests the resulting input
against the program [11]. For example, the fuzzer might flip a single bit in the input, change
the order of bytes, or add or remove data. The goal is to generate many new inputs similar
to the original input but different enough to exercise new parts of the program’s logic. The
mutation-based approach is reusable and the fuzzer can be employed in different situations.

Following properties are specific mostly for fuzzers of web services.

2.4 Statefulness

2.4.1 Stateful
Stateful fuzzers rely on capturing the state of the web service to generate more effective test cases.
By using data received from previous responses, they can create request chains that build upon
each other, leading to more accurate and extensive testing. The idea behind this approach is
that the more valid a payload is, the more code coverage it will achieve. Valid payloads are more
likely to bypass error checks and trigger the business logic, which can lead to more exploration
of code coverage.

However, reaching more coverage does not imply finding more bugs. The contrary is often
true. The carefully crafted request chains might be too correct and fail to trigger bugs. This
may be because developers tend to focus on the so-called success path of the program, where
everything behaves as expected. Consequently, success paths are often thoroughly tested and
optimized. On the contrary, web APIs exhibit interesting behavior when presented with un-
expected input. My prior work demonstrated this when the openapi-fuzzer triggered bugs by
requesting objects not created before [12].

Furthermore, the construction of request chains inherently introduces a performance cost.
Concrete examples of this will be discussed in the next chapter. However, implementation issues
are even more significant. Inconsistency is one that arises. The specification does not require
objects to be referred to by the same name in different endpoints; it is just a developer convention.
For example, the GitLab API uses id and path to refer to the same object at different endpoints.
These inconsistencies can hinder the performance of the fuzzers, and the only way to remedy
them is through manual intervention or heuristics.

Another problem with using request chains is the fake producer problem, as described by
Lin et al. [13]. The results of the GET request are frequently seen as the root of the dependency
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tree, serving as natural producers for POST, PUT, and DELETE requests. As a result, calling
them first to obtain those dependencies is sensible. However, if no object was created previously,
they return an empty response, sabotaging the creation of the request chains. The problem is
that the information about who is a producer and who is a consumer is not encoded in the OAS.

A further problem encountered when constructing request chains is weak dependency. To
create a new project in the GitLab example, we must supply the project name. The stateful
fuzzers detect that the project name can be retrieved by listing all projects using GET requests,
resolving this dependency. However, creating a new project will fail since the project name must
be unique. The issue arises from the inability to encode in the specification which values need
to be provided by the user and which can be obtained from the API [13].

2.4.2 Stateless
Stateless fuzzers do not construct such request chains and thus do not have to deal with the
challenges mentioned above. As a result, they are likely to produce less code coverage. On the
other hand, stateless fuzzers can create requests that will not be entirely valid. This may lead
to exploring more corner cases and undefined behavior and thus causing more bugs.

2.5 Minimization support

Minimization or shrinking support is the ability of the fuzzer to produce the smallest possible
input for the system under test, which still triggers the bug. Naturally, fuzzers with support
for minimization allow developers to be more efficient and find the root cause of triggered bugs
easier. We have shown a motivation and example in Section 1.2.

2.6 Reproducibility support

Fuzzers that support reproducibility can send the same payload even after the fuzzing phase
has ended. This feature can be used in two ways, as replayable requests or as repeatable runs.
Although similar in their goal, their implementation and use cases differ. However, some fuzzers
may support only one of these reproducibility methods, not both.

2.6.1 Replayable requests
The replayability feature of some fuzzers allows them to save the exact payload generated during
the fuzzing phase to a file. This enables the same request to be sent later without requiring
the fuzzer to run again. This capability is instrumental in scenarios where the payload causes a
bug and needs to be shared with other developers for further analysis. Additionally, supporting
replayable requests saves developers time because they can send the request after the fuzzing is
complete and avoid having to sift through all of the logs generated during the fuzzing process,
instead focusing only on the relevant logs generated by the specific request.
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2.6.2 Repeatable runs
In repeatable runs, the fuzzer saves the seed used to generate the payload during the fuzzing
phase. With this seed, the fuzzer can generate the same payload again in a subsequent run. This
approach achieves repeatability and increases efficiency.

2.7 Buildin support for performance analysis
Web service fuzzers send a lot of requests to the APIs. During fuzzing, they obtain additional
information for free. For example, fuzzers can collect the round-trip times of each request and
calculate basic statistics from these data. These statistics provide an overview of the web service’s
performance and help find DOS-susceptible endpoints.

2.8 Authentication support
To prevent unwanted interaction from adversaries, most of the web services available on the
Internet use authentication and authorization mechanisms. Authenticated users are granted
varying privileges based on their authorization, allowing them to interact with the web service
with the given capabilities. However, unauthenticated fuzzing often fails to trigger any business
logic because requests are rejected at the application’s entry, rendering it ineffective.

However, unauthorized fuzzing is vital in security testing because it exposes bugs that unau-
thorized users could exploit.
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Chapter 3

Analysis of existing fuzzers

In this chapter, we will look at existing work in the field of fuzzing web services. We will explore
and categorize existing fuzzers based on the taxonomy described in the previous chapter.

In my bachelor thesis [12], I analyzed several state-of-the-art fuzzers of that time.
Among them apiFuzz [14], a simple dumb fuzzer that does not utilize the OAS to create a

new payload. Its weakness is that it performs testing on only one endpoint and has limited error
reporting. Another is TnT-Fuzzer [15], that used the OAS but only for simple fields (i.e., not
complex structures such as objects and arrays). Furthermore, it used a mutation technique for
payload generation, which violated the data schema and was a source of inefficiency.

Due to the progress in fuzz testing research and development, more sophisticated and effec-
tive solutions have emerged since then. There is a plethora of fuzzers for testing web services,
especially those that utilize the OAS. The selection of the following fuzzers was based on their
impact, documentation, research, and availability of source code.

3.1 Common characteristics

Due to its vast reusability, the technique of black-box fuzzing is often favored when fuzzing web
services through their APIs. It is especially useful in offensive security, as the attacker may not
have access to the source code, leaving black-box fuzzing as the only option. Additionally, if the
source code was available, it would be easier to hook up internal functions of the web service and
bypass the API entirely.

One common feature of all of the fuzzers discussed in this thesis is their awareness of the
input structure. They utilize the OAS to generate structured input for the system under test,
making them smart and significantly more effective than their predecessors because the payload
passes through the input parser of the web service. Otherwise, the parser would prevent the
payload from triggering any business logic.

19
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3.2 RESTler

RESTler is a fuzzer developed by a Microsoft Research team [16]. It was described in my bachelor
thesis [12]; however, its influence on other fuzzers is too significant not to mention it.

The following section contains parts from my bachelor thesis [12].

The main asset of RESTler is statefulness. It claims to be the first stateful REST API fuzzer.
Before we explore its numerous features, let us look into what statefulness means in the context
of API fuzzers.

Almost every service has some internal state, mainly in the form of a database. Making a
request to the API may change the state. For example, a POST request can be used to create
a new item, while a PUT request can be used to update an existing one. The query of an item
that has not been created yet through a request is useless, as it results in a response error code
of 404 - Not Found, indicating a user error. Such requests lead to the consumption of valuable
resources.

To minimize meaningless requests, RESTler infers producer-consumer dependencies among
request types. For example, sending request A makes sense only if request B was sent before.
RESTler is able to infer those dependencies by examining the OAS v2 of the fuzzed service.
Then it performs a breadth-first search (BFS) to create a valid sequence of requests with satisfied
dependencies.

At the start of the fuzzing, RESTler processes the OAS of the web service, it parses all requests
and finds which fields are fuzzable. Fuzzable fields are those that require a user input value. It
may be in headers, body, query, or path parameters. Subsequently, the RESTler fuzzer generates
request chains by iterating the following two steps. First, it tries to extend every request by
another request. This subsequent request is added to a chain only if all its dependencies are
satisfied by some preceding request in the request chain. Then it renders the request chains. In
the rendering phase, all fuzzable fields take concrete values from a small fuzzing dictionary. The
fuzzing dictionary consists of several values for each type. For example, for a string type, it may
consist of an empty string, some large string, and a string of small size. For an integer type, it can
hold values like 0, -1, 1, and some large number. Then, the request chain is executed sequentially.
RESTler collects responses from previous requests and uses them as input for fuzzable values
for subsequent requests. The request chain is valid only if all responses were successful (denoted
by the received status code 2XX). The 5XX status code represents a server error, and RESTler
logs the request chain. Other status codes mean that the request chain was not successful and,
therefore, the requests are not committed to the chain. This strategy is referred to as a BFS
strategy, as it traverses the dependency graph in breadth-first order.

RESTler uses a BFS strategy to test all possible values of fuzzing dictionary for each fuzzable
type. However, when the dictionary size is large, the number of combinations becomes astro-
nomical, making it impractical. To mitigate this, the size of the dictionary must be kept small,
which may lead to a lack of randomness.

To mitigate this, the Microsoft Research team also incorporated the random-walk strategy
into RESTler. In the extending phase it will not try to add every matching request to every
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sequence. It will rather create only one sequence and randomly add a new request to it which
satisfies all the dependencies. Therefore, it will explore the search space in greater depth.

The Microsoft Research team tested RESTler on several APIs. One of those was purposefully
made Blog Post Service with a subtle bug in checksum verification. The bug was triggered when
the user used the GET method to obtain a blog (and its checksum) and then supplied the
checksum (along with other parameters) via the PUT method to update the blog. Thanks to
the inspection of producer-consumer dependencies between those endpoints, RESTler was able
to trigger it. Moreover, thanks to the BFS strategy, RESTler was able to achieve larger code
coverage. If the correct checksum was not supplied, the code path would never have been run
when the blog was updated.

In addition to Blog Post Service, the Microsoft Research team also fuzzed GitLab. GitLab
is a git hosting platform for collaboration. The Microsoft Research team fuzzed several REST
resources, including commits, branches, issues, repos, groups, and projects, and compared the
BFS to the random walk strategy. The results of the comparison were quite interesting. The BFS
fuzzing strategy produced significantly fewer requests that signal user error, mainly error 404
- Not Found. However, when comparing the code coverage achieved over time, both strategies
yielded similar results. Surprisingly, the random walk strategy obtained better results in certain
REST resources.

3.3 foREST

Lin et al. identified that the main challenge in fuzzing RESTful APIs is an efficient resolution
of dependencies between requests [13]. Previous fuzzers created a graph from the dependencies
and then used BFS or topological sorting to traverse it. However, those graphs tend to become
dense, and thus the BFS and topological sort may have a quadratic time complexity.

The novelty of foREST consists in using a different data structure to store the dependency
graph. It captures the essential dependencies in a tree structure and thus decreases the time
complexity of traversing from quadratic to linear.

APIs usually have multiple endpoints consisting of pairs: an URL path and an HTTP method.
If we split the URL paths by the slash symbol into several tokens, they can be viewed as a tree.
Each token is a node, and they can be connected in such a way as to reconstruct the URL.
The empty token (/ URL) is considered the root. Nodes have attributes in the form of HTTP
methods. The URL of the endpoint is recreated by traversing the tree from the root and sending
an HTTP request with the appropriate method found in the node.

Lin et al. assume that the necessary parameters or resources for visiting a child node in the
tree are often already fulfilled when its parent node has been visited. Thus, they propose to
traverse the tree preorder to generate valid test cases, i.e., it is more probable that the node
depends on its parent rather than on its sibling.

The fuzzing algorithm uses DFS to traverse the tree, and if it reaches a node that contains
some HTTP method, it sends requests to the API. HTTP methods are executed in the following
order; first, it sends a GET request, followed by several POST requests, and finally, it sends PUT
and DELETE requests. This order is used because POST requests create resources necessary for
a subsequent update or deletion by the PUT and DELETE methods. The GET request is sent
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first, as it may resolve some subsequent dependencies.
To create valid requests, foREST records the responses from requests in a resource pool.

When creating a new request, it uses values from the resource pool. If it is unable to find
a match, it generates a random value of a primitive type. However, it is not clear from the
article [13] whether foREST can generate structured random types such as objects and arrays.

Error reporting is similar to RESTler. 2XX and 3XX status codes indicate success, while the
4XX are used for the modification of requests. The 5XX status codes denote errors in the web
service that are then logged. Nonetheless, does not mention payload minimization [13].

To prove the superiority of the tree-based approach, Lin et al. implemented a BFS and
topological sort strategy as well. They fuzzed a widely-used web service for building websites -
WordPress with foREST for six hours. Measurements show that the tree-based approach covered
most lines of code (18217), which was better than 16998 achieved by topological sort and 14649
achieved by BFS.

In a subsequent experiment, Lin et al. compared foREST with two other state-of-the-art
fuzzers, namely RESTler and EvoMaster, using GitLab as the system under test. The results
showed that foREST was able to detect three bugs, while RESTler and EvoMaster could not
identify any. In addition, foREST achieved higher code coverage than the other two fuzzers.

3.4 Schemathesis

One of the most advanced fuzzer for web services at present is Schemathesis [17]. It leverages
Hypothesis [18], a property-based testing library, to generate valid inputs that conform to the
OAS. Hypothesis offers generators for primitive types, which can be combined to form more
complex types. Schemathesis uses a library to create generators for the types specified in the
OAS.

Schemathesis also employs Hypothesis to generate request sequences. Previously, it used a
custom-made resolver to create request sequences, but the authors have now implemented a faster
and more efficient solution using Hypothesis’s RuleBasedStateMachine type that also produces
better error messages. In testing, the new approach proved to be faster and generated fewer
errors compared to the previous method [19].

Apart from these features, Schemathesis offers additional support for GraphQL web services
and extensive customization options. Users can implement custom serializers, generators for
custom types, and run commands via hooks.

In order to evaluate the effectiveness of Schemathesis, Hatfield-Dodds and Dygalo conducted
an experiment in which they compared it to seven other fuzzers. They tested three different
configurations of Schemathesis on sixteen open-source web services. The results showed that
Schemathesis was the most effective fuzzer in terms of the number of bugs found. Additionally, it
generated only one report per bug, which is uncommon among other fuzzing tools. Schemathesis
also minimizes the payload generated after triggering a bug for more efficient debugging. It
checks not only straightforward bugs denoted by the 5XX HTTP status codes but also semantic
bugs, such as incomplete or overly-permissive schemas, unexpected status codes, schema non-
conformance, or information disclosure. However, the web services tested were not well-known or
widely-used projects, so it remains to be seen how Schemathesis would perform on more popular
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services.

To conclude, many advanced fuzzers prioritize identifying dependencies among endpoints to
achieve extensive code coverage, often at the cost of randomness and performance. Schemathesis
stands out as the only fuzzer that utilizes payload minimization for more efficient debugging.
However, none of the explored fuzzers took advantage of the significant number of requests sent
to the web service to create basic statistics to identify endpoints vulnerable to DOS attacks,
possibly due to the complexity of multiple request runs. It would be interesting to see how these
fuzzers perform on real-world web services and compare their performance.

Table 3.1 provides a quick comparison between the described fuzzers.

RESTler foREST Schemathesis
awareness of internal program structure black-box black-box black-box
aware of input data structure smart smart smart
input generation technique fixed-set generation generation
statefulness stateful stateful simplified stateful
minimization support no no yes
replayable requests yes unknown yes
repeatable runs unknown unknown yes
buildin’ performance analysis no no no
authentication support yes yes yes
error reporting 5XX 5XX 5XX & semantic

Table 3.1 Comparison of web service fuzzers
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Chapter 4

Architectureof the new
openapi-fuzzer

My previous work reported in the bachelor thesis [12] on openapi-fuzzer was a success since it
successfully detected bugs in well-established web services such as Kubernetes, Hashicorp Vault,
and Gitea. As a result, the architecture of the new fuzzer is based to a large extent on the
previous version.

Let us now describe the architecture of the new openapi-fuzzer using the taxonomy introduced
in Chapter 2. All the design choices are based on the primary goals of the fuzzer: maximize the
fuzzer’s effectiveness and the developer’s efficiency.

4.1 Black-box

When it comes to fuzzing web services, choosing a black-box approach is a clear choice. It
provides high reusability across different web services and requires minimal configuration to run
on them. Sacrificing reusability for better introspection is possible; however, then it would make
more sense to bypass the API and integrate the fuzzer into the internal implementation of the web
service. The additional case for using a black-box design is to provide security researchers with a
tool to determine vulnerabilities without access to the source code. openapi-fuzzer requires only
an API URL and its OAS for efficient fuzzing.

4.2 Smart-incorrect

In general, whenever it is possible to create a efficient smart fuzzer, it is advisable to do so. These
types of fuzzers have an understanding of the input structure and can generate more valid test
cases, reducing the number of false positives. Due to its schema, openapi-fuzzer can determine
the structure and types of the individual fields, as well as the media type of the payload. However,
the goal of this fuzzer is to trigger as many bugs as possible, not to achieve the highest code
coverage. Thus, I decided to disregard parts of the OAS and introduce randomness instead.
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Although the OAS indicates which attributes and parameters are optional, openapi-fuzzer
ignores this information. Instead of using heuristics and brute force, as done by other fuzzers, to
determine the optimal parameter combination, openapi-fuzzer supplies all parameters and relies
on the shrinker to eliminate the redundant ones. Additionally, providing more parameters tests
the API more rigorously, enhancing code coverage.

openapi-fuzzer also ignores the specification regarding array limits and special formats for
various fields and introduces randomness instead. openapi-fuzzer generates arrays of random
sizes and allows the shrinker to determine the optimal size to trigger a bug. Additionally, not
using the specified formats may cause unexpected behavior as some APIs might specify the
format but not validate it.

4.3 Generation-based

The decision to use a generation-based approach follows from the fact that the grammar for the
inputs is already known, thanks to the OAS. Therefore, it is logical to use this information to
generate inputs. As explained in Section 2.3, research has shown that generation-based fuzzers
tend to outperform mutation-based fuzzers by a considerable margin.

4.4 Stateless

Previous solutions used multiple requests or request chains to trigger bugs. RESTler and foREST
use quite complex resolution algorithms, while Schemathesis uses a simpler one. The objective
of complex dependency resolution is to increase code coverage. Nonetheless, my goal is not to
cover the most lines of code but rather to thoroughly test the web service and uncover as many
bugs as possible.

Even though stateful fuzzers offer some advantages, for example, RESTler identified certain
bugs that would have gone undetected by openapi-fuzzer, I believe these bugs are relatively rare.
The drawbacks of stateful fuzzing outweigh its benefits in most cases.

4.5 Minimization support

One of the most significant challenges faced by previous versions of the fuzzers was the large
number of recorded results. Whenever a bug was discovered, it was logged, and the fuzzer
continued to operate until terminated manually. Consequently, a considerable number of results
were produced. This issue was further compounded by the fact that individual fields were
subjected to a wide range of random values, making it challenging for maintainers to pinpoint
the root cause of a bug. The primary goal of openapi-fuzzer is to improve the developers’
efficiency. openapi-fuzzer aims to achieve this by generating a single and minimal report for
each bug. By minimizing the input size as much as possible, openapi-fuzzer makes it easy to
identify the parameter responsible for triggering the bug.
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4.6 Replayable requests
Due to the benefits of replayable requests described in Subsection 2.6.1, I decided to implement
this feature in the openapi-fuzzer. The openapi-fuzzer provides a subcommand to resend the
stored payload after the fuzzing phase is finished.

4.7 Repeatable runs of openapi-fuzzer
The aim is to provide developers with a seamless experience. My goal is to enable the developers
to test the correctness of the software during development. The proposed workflow involves
the developer implementing a new feature, running the fuzzer (either locally or in a continuous
integration system), finding a bug, and fixing it. However, I also want to ensure that if the same
bug occurs in the future, the fuzzer can reproduce it.

To address this issue, the openapi-fuzzer saves the seeds that caused the erroneous behavior
and uses them to generate future payloads before employing new random ones.

4.8 Performance analysis
The openapi-fuzzer does performance analysis during each run. It can optionally save all of the
gathered information for future analysis, such as graph plotting. By examining these statistics,
developers can determine which endpoints may be the bottleneck of the web service and are
potentially vulnerable to a DOS attack.

4.9 Authentication support
As described in Section 2.8, authentication support helps increase the code coverage produced
by the fuzzer. Therefore, I also decided to enable authenticated and unauthenticated runs of
openapi-fuzzer.

RESTler foREST Schemathesis openapi-fuzzer
awareness of internal program structure black-box black-box black-box black-box
aware of input data structure smart smart smart smart
input generation technique fixed-set generation generation generation
statefulness stateful stateful simplified stateful stateless
minimization support no no yes yes
replayable requests yes unknown yes yes
repeatable runs unknown unknown yes yes
buildin’ performance analysis no no no yes
authentication support yes yes yes yes
error reporting 5XX 5XX 5XX & semantic 5XX & semantic

Table 4.1 Comparison of openapi-fuzzer with other web service fuzzers
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Chapter 5

Implementation

The architecture of openapi-fuzzer is mostly similar to its previous version, but the implemen-
tation details have undergone significant changes. The only things that have remained the same
are the implementation language and some of the underlying libraries.

5.1 Payload minimizaton

The primary objective and challenge was to implement payload minimization, which involves
iteratively decreasing the size of the generated payload that triggers a bug while minimizing the
individual fields that are not responsible for the bug. Minimizing primitive types, such as strings
and numbers, is straightforward, as the minimum value for a string is an empty string, and for
a number, it is zero. However, minimizing complex types, such as arrays and objects, is more
difficult. In the case of an array, all elements that do not trigger the bug should be removed, and
those that do should be minimized. There are also cases where an element triggers a bug only
when located in a particular position, in which case all preceding elements should be minimized,
and the minimized element should be placed after them. An empty array is the natural minimum
value for the array type. The object type follows a similar minimization process to that for arrays.

The earlier version of openapi-fuzzer utilized the Arbitrary library [20] to generate structured
data from unstructured input. Although this library initially supported shrinking, it was even-
tually removed in later versions. I came across a discussion about the removal of this feature,
where the maintainers referred to a paper by David R. MacIver and Alastair F. Donaldson, titled
”Test-Case Reduction via Test-Case Generation: Insights From the Hypothesis Reducer” [21] for
the minimization implementation.

The paper proposes a technique for generating smaller and smaller values using internal
reduction. The key concept of internal reduction involves reducing the input sequence to the
generators, rather than reducing the generated values. Generators are designed to produce
smaller values when presented with a smaller input sequence.

The internal reduction has an advantage over external reduction in mitigating the test-case
validity problem. For instance, when attempting to minimize an HTML document generated
using external reduction, it can be challenging to reduce the document size while also maintaining
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its validity. This is because it requires domain knowledge to shrink an HTML document correctly.
However, the internal reduction does not require such knowledge to minimize a document, since
it generates a smaller version of it based on the mutated input sequence. This feature makes
internal reduction more versatile since users do not have to write a specific reducer for every
test-case.

The Hypothesis library, mentioned in the previous text, is used mainly in unit testing [18]. In
unit tests, developers have the most knowledge about the code, such as the number and types of
function arguments and return values. Consequently, it is possible to leverage this information
to implement the most efficient test case generators. However, the API endpoint can be
seen as a function as well. An endpoint is defined as a pair of HTTP method and a URI. The
OAS provides information about the number and types of input arguments. Additionally, the
HTTP status code allows us to distinguish whether the request failed or not. Considering the
similarity between the function and the endpoint, it is possible to reuse existing libraries instead
of implementing custom reducers for the payload.

However, Hypothesis is implemented in Python, and integrating it into openapi-fuzzer would
introduce a significant runtime overhead and dependencies. I sought a Rust-based alternative
and discovered Proptest [22], which is a property-based testing library inspired by Hypothesis.

To integrate Proptest into openapi-fuzzer, the Strategy trait had to be implemented for the
types used in web services, including path parameters, query parameters, headers, and JSON
bodies. The Strategy trait in Proptest is analogous to the generator in Hypothesis. From now
on, I will use these terms interchangeably. Implementing the Strategy trait for primitive types
was a simple task since Proptest already provides implementations for them. However, the
implementation of strategies for compound types such as arrays and objects posed a significant
challenge.

Proptest supports deriving the Strategy trait for compound types. Deriving a trait is the
process of generating an implementation of the trait at compile time using a macro. However,
this approach would require us to compile the fuzzer with the OAS for each web service, making
it impractical. Alternatively, I could manually implement the Strategy trait for the compound
types.

Unfortunately, I was unable to find documentation on how to implement the Strategy trait
for object types. While there is a documented way to implement a Strategy for a hashmap
that could be subsequently transformed into a JSON object, the interface was not suitable. It
required that all keys and values be of a certain strategy. Nevertheless, I needed to specify a
different Strategy for every value based on its type in the OAS, while keeping keys unmutated.
I encountered similar issues when attempting to implement a Strategy for array types.

The Proptest library had some drawbacks that made me reconsider its use. It was not being
actively maintained, had a large codebase of around 30,000 lines of code, and relied heavily on
macros, making the code hard to read. Therefore, I reached out to the authors of Hypothesis
for advice, and one of the suggestions was to reimplement Hypothesis using their simplified
implementation of the library, called Minithesis [23], and the published article [21].

Implementing a property-based testing library is a challenging task, and understanding the
different naming conventions used in article [21] and Minithesis made it even more difficult.
I struggled to decide between implementing my own version of Minithesis or understanding
and using Proptest. During the examination of the Proptest source code, I found a comment
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describing that a vector of Strategies also implements the Strategy. This enabled me to create
a strategy for a JSON object by constructing a vector of pairs implementing the Strategy, and
mapping it to the JSON object type.

The implementation of Strategy for JSON objects is shown in Code listing 7. The function
takes a description of the JSON object type, which is detailed in Subsection 1.3.3.1. It iterates
through the properties of the object and creates a vector of pairs of Strategies. To preserve the
validity of the object, the keys are left intact using the Just Strategy, which does not mutate the
value. The values are then recursively generated by calling a function to create a Strategy for the
specified type. This vector of strategies also implements the Strategy trait. To be able to compose
it with other types, it must be transformed into a common JSON type, serde_json::Value, which
is achieved by using the prop_map and prop_map_into methods.

fn generate_json_object(
object: &ObjectType,

) -> BoxedStrategy<serde_json::Value> {
object

.properties

.iter()

.map(|(name, schema)| {
let schema_kind = &schema.to_item_ref().schema_kind;
(Just(name.clone()), schema_kind_to_json(schema_kind))

})
.collect::<Vec<_>>()
.prop_map(serde_json::Map::from_iter)
.prop_map_into()
.boxed()

}

Code listing 7 Implementation of the Strategy for a JSON object

5.2 Roundtrip time measurements

The timing of request roundtrips to detect DOS-prone endpoints is a secondary goal of this
work. This task is straightforward to implement: the time before sending the request and after
receiving the response is measured, and the difference is stored; as shown in Code listing 8.
After running a test for a single endpoint, basic statistics, such as mean, maximum, minimum,
and standard deviation, are calculated from the measured times. The output can be seen in
Figure 5.1. Additionally, there is an option to store the timings and a flag that indicates if the
request triggered a bug in a file. This information can be used to determine whether the bug-
triggering payload causes any difference in the response times and, thus, to identify endpoints
that are susceptible to DOS attacks.
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Figure 5.1 Output of the openapi-fuzzer
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for path in paths:
for method in methods:

result = TestRunner.run(config, any::<Payload>(spec), |payload| -> {
start_time = time::now()
response = send_request(payload)
elapsed = time::now() - start_time

if response is unexpected:
return Fail(response)

return Success
})

match result:
case Success => report_ok(),
case Fail(minimized_payload) =>

save(minimized_payload)
report_fail()

save_statistics()

Code listing 8 Pseudocode of the main fuzzing loop

5.3 Detailed run
Only two arguments are mandatory to run the openapi-fuzzer. A path to the OAS and a URL
of the API of the web service. The complete list of available options for a run subcommand
is shown in Code listing 9. After parsing the command line arguments, it parses the OAS.
As described in Subsection 1.3.3.1, the OAS can have references to objects implemented in the
component section. To use the objects, the fuzzer needs to resolve the references. We use the
openapi_utils [24] library to do it.

Then we instantiate the fuzzer with a configuration retrieved from the command line. The
fuzzer then iterates through all combinations of URI paths and HTTP methods specified in
the OAS, as shown in Code listing 8. During each iteration, a new TestRunner is instantiated
from the Proptest library. Since we implemented a Strategy trait for the types needed to fuzz
web service, Proptest TestRunner is able to create and subsequently shrink the payload. The
TestRunner takes a configuration and a closure in which a request is sent to the API. Before
sending the request, the fuzzer can override generated headers with headers specified from the
command line. After receiving the response, we determine whether the payload is interesting.
A payload is interesting if it caused a 5XX status code or a status code that is not among the
expected status codes defined in the OAS.

The TestRunner in the default configuration tries to send at most 256 requests to the API, and
if all of them pass, it declares the endpoint ok and continues to fuzz the next one. The number
of attempts can be specified on the command line. When an interesting payload is found, the
TestRunner switches to a shrinking phase and tries to minimize it. After the minimization phase
is over, the payload is saved in a file in JSON format for future use.
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openapi-fuzzer run --help
Usage: openapi-fuzzer run -s <spec> -u <url>

[-i <ignore-status-code...>]
[-H <header...>]
[--max-test-case-count <max-test-case-count>]
[-o <results-dir>]
[--stats-dir <stats-dir>]

run openapi-fuzzer

Options:
-s, --spec path to OAS file
-u, --url url of api to fuzz
-i, --ignore-status-code

status codes that will not be considered as finding
-H, --header additional header to send
--max-test-case-count

maximum number of test cases that will run for each
combination of endpoint and method (default: 256)

-o, --results-dir directory for results with minimal generated payload used
for resending requests (default: results).

--stats-dir directory for request times statistics. if no value is
supplied, statistics will not be saved

--help display usage information

Code listing 9 Help message of openapi-fuzzer run subcommand



Replayability 35

5.4 Replayability
To help with debugging, I implemented a resending functionality for openapi-fuzzer. It is run
by the resend subcommand and requires the path to the saved payload generated by the fuzzer.
During the fuzzing process, users can include additional headers, which are typically used for
authentication. However, these may have a short lifespan, and timed-out headers will cause
client errors and prevent the reproduction of the results. To address this, I also added support
for extra headers in the resend subcommand.

5.5 Repeatability
The repeatability is implemented by saving the seed of an interesting payload to a regressions file.
In the next run, openapi-fuzzer generates the new payload using the existing seed. If the payload
leads to a failure, openapi-fuzzer reports it and proceeds to the next endpoint. Otherwise, it
generates new payloads from random seeds. The Proptest library handles the saving and retrieval
of the seed from the regressions file, making this functionality straightforward to implement.
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Chapter 6

Testing and evaluation

To evaluate the effectiveness and efficiency of openapi-fuzzer, I conducted a series of extensive
testing and measurements. openapi-fuzzer was executed on three battle-tested web services:
Hashicorp Vault, Gitea, and Kubernetes; for exact versions of these web services, see Table 6.1.
These services were fuzzed both with and without authentication to determine the impact of
authentication on the results.

Web service Version
Vault v1.13.0 (a4cf0dc4437de35fce4860857b64569d092a9b5a), built 2023-03-01T14:58:13Z
Gitea 1.19.0-rc1 built with GNU Make 4.1, go1.20.1 : bindata, sqlite, sqlite_unlock_notify
Kubernetes v1.26.1 (8f94681cd294aa8cfd3407b8191f6c70214973a4), built 2023-01-18T15:51:25Z

Table 6.1 List of versions of fuzzed web services

6.1 What is a bug

As described in previous sections, openapi-fuzzer is able to report server errors (denoted by 5XX
status codes) as well as semantic errors (denoted by the remaining status codes). However,
the OAS [7] does not require that all possible status codes be specified in the OAS. Although
missing status codes may indicate missing documentation or potential underlying bugs, they do
not directly violate the OAS. The missing 4XX client errors are the most common. Therefore, I
decided to count only the 5XX server errors as a bug. When openapi-fuzzer encounters a status
code other than 5XX or 4XX, it will be noted separately.

The following tables have format N +M where N is the number of 5XX status codes, and
M is the number of status codes other than 5XX and 4XX.
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6.2 Evaluation
The main objective of the testing was to answer the following questions:

Did the new architecture of openapi-fuzzer hurt its effectiveness?

Is the new version of openapi-fuzzer able to minimize the payload?

How does openapi-fuzzer compare to other state-of-the-art fuzzers?

6.2.1 Sustained effectiveness
To find out whether the new version of openapi-fuzzer can find at least as many bugs as the
old one, I decided to fuzz all the aforementioned software. Both fuzzers completed two runs,
unauthenticated and authenticated. However, as mentioned in Chapter 4, the old version of
openapi-fuzzer does not support termination detection. Hence, I ran the new version of openapi-
fuzzer and measured the time required to finish. Then I ran the old version of openapi-fuzzer
and killed the process after it ran out of time.

As shown in Table 6.2, the new version of openapi-fuzzer triggered a higher number of bugs
in all cases. I attribute the higher effectiveness to better allocation of resources. When the new
fuzzer finds a bug, it logs it and no longer fuzzes the endpoint.

openapi-fuzzer old version
Vault 63 + 0 13 + 0
Vault authenticated 64 + 2 12 + 2
Gitea authenticated 4 + 2 4 + 0
Kubernetes authenticated 22 + 2 1 + 1

Table 6.2 The number of bugs found with the new and old version of the fuzzer

6.2.2 Payload minimization
The first benefit of openapi-fuzzer is evident at first sight. When it finds a bug, it minimizes
it, saves it, and continues to fuzz the next endpoint. This was not the case in the old version.
The old version saved the finding but continued with the fuzzing, too. As a result, when the bug
was easy to find, the old version of openapi-fuzzer produced many files. Moreover, all the files
were different since the payload was randomly generated. Therefore, when we compare the two
versions of the fuzzer, we will compare the sum of sizes of generated payload for each endpoint
by the openapi-fuzzer to the sum of sizes of one generated payload for each endpoint and to the
sum of all generated payloads for each endpoint by the old version of the fuzzer.

As we can see in Table 6.3, openapi-fuzzer significantly outperforms the old version in min-
imization. But it outperforms it in effectiveness as well, as shown in Subsection 6.2.1. All the
findings are in GitLab repository [25].



Evaluation 39

openapi-fuzzer old version (one payload per endpoint) old version (all payloads)
Vault 6’046 108’967 29’515’310
Vault authenticated 6’145 99’976 27’530’977
Gitea authenticated 417 34’166 6’119’932
Kubernetes authenticated 5’242 11’462 63’068

Table 6.3 Payload sizes (in bytes) between openapi-fuzzer and the old

Let us take a look at a specific example of a minimized payload, shown in Code listing 10.
There are 10 query parameters and one path parameter. All of the 10 query parameters are
minimized to their canonical form. The path parameter is the only fuzzable value that is not
completely minimized. After sending the request using openapi-fuzzer resend subcommand, we
can verify that the payload indeed still triggers the bug. Moreover, after manual inspection, I
found out that the path parameters are also in their minimal form. The web service does not
respond with a server error if we change or delete any of the ”..?” characters.

{
"payload": {

"query_params": [
["allowWatchBookmarks", ""],
["continue", ""],
["fieldSelector", ""],
["labelSelector", ""],
["limit", ""],
["pretty", ""],
["resourceVersion", ""],
["resourceVersionMatch", ""],
["timeoutSeconds", ""],
["watch", ""]

],
"path_params": [

["namespace", "..?"]
],
"headers": [],
"body": null

},
"path": "api/v1/watch/namespaces/{namespace}/podtemplates",
"method": "GET"

}

Code listing 10 A minimized payload from fuzzing Kubernetes

Unfortunately, the old version of openapi-fuzzer did not produce a payload similar to that
shown in Code listing 10. Therefore, let us look at examples of payloads where both fuzzers
triggered the same bug.

The payload in Code listing 11 produced by openapi-fuzzer shrunk all but one parameter
to the minimum. The only nonempty parameter contains a single Unicode character. Just
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from looking at the generated payload, we can guess the cause of the bug. The field is named
last_read_at, which probably was expecting some form of date. The implementation probably
tries to parse the date by slicing and indexing into it. However, slicing a Unicode string may not
produce a valid UTF-8 string. This conversion then likely fails and crashes the program.

{
"payload": {

"query_params": [
["last_read_at", "�"],
["all", ""],
["status-types", ""],
["to-status", ""]

],
"path_params": [],
"headers": [],
"body": null

},
"path": "notifications",
"method": "PUT"

}

Code listing 11 A minified payload produced by openapi-fuzzer v0.2 from fuzzing Gitea

On the other hand, the payload in Code listing 12 produced by the old version of the fuzzer
contains a Unicode string in every field, making it difficult to guess the cause of the bug. We
are not even able to determine what part of the Unicode string triggers the but. It may be its
length, some special character, or they might not be relevant at all.

From these measurements, we can conclude that the new version has excellent minimization
abilities compared to the old version, but also in general.

6.2.3 Comparison with other state-of-the-art fuzzers
I have chosen the Schemathesis fuzzer for comparison with openapi-fuzzer because foREST is
not open-sourced yet, and Schemathesis outperformed RESTler by a large margin [17]. I ran
Schemathesis using the following command: st run <path/to/oas.yaml> --base-url <url-of-

web-service>, with the optional -H flag to add an authentication header. From Table 6.4, we
see that openapi-fuzzer outperformed the Schemathesis fuzzer in all cases.

Furthermore, Schemathesis encountered internal errors when fuzzing most of the services. On
the other hand, openapi-fuzzer did not encounter any. Detailed numbers of internal errors are
given in Table 6.5.

I also measured the run-times of both fuzzers; results are shown in Table 6.6. The sources
used for this comparison are available in [25]. The table shows that, in general, openapi-fuzzer
fuzzes web services faster than Schemathesis. However, there were two cases where Schemathesis
seemingly outperformed openapi-fuzzer, but in fact, these runs are incomparable. The first
was during authenticated fuzzing of Gitea, where Schemathesis encountered an internal error
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{
"payload": {

"query_params": [
[

"last_read_at",
"%F2%88%99%AC%F1%AC%9F%B1%F4%88%98%AF%F3%9E%9D%B3...."

],
[

"all",
"%F0%A9%AC%8F%F2%84%83%99%F0%91%A4%B0%F2%A9%A1%9C...."

],
[

"status-types",
"%F0%A2%BC%84%F1%B6%B0%AF%F3%9B%9F%82%F0%AC%93%BC...."

],
[

"to-status",
"%F1%92%B6%9E%F2%9E%86%B6%F3%AE%9D%82%F2%A1%B2%BA...."

]
],

"path_params": [],
"headers": [],
"body": null

},
"path": "notifications",
"method": "PUT"

}

Code listing 12 A payload produced by old version from fuzzing Gitea

openapi-fuzzer Schemathesis
Vault 63 + 0 4
Vault authenticated 64 + 2 4
Gitea 0 0
Gitea authenticated 4 + 2 0
Kubernetes 0 0
Kubernetes authenticated 22 + 2 20

Table 6.4 The number of found bugs between openapi-fuzzer and Schemathesis

during fuzzing every endpoint and terminated fuzzing prematurely. The second was during
Vault fuzzing, where openapi-fuzzer discovered bugs that caused Vault to respond much slower,
resulting in longer fuzzing times. Wheres Schemathesis was not slowed down by Vault since it
did not discover these bugs, see Table 6.4
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openapi-fuzzer Schemathesis
Vault 0 0
Vault authenticated 0 0
Gitea 0 0
Gitea authenticated 0 325/325
Kubernetes 0 202/723
Kubernetes authenticated 0 213/723

Table 6.5 The number of internal errors between openapi-fuzzer and Schemathesis

openapi-fuzzer Schemathesis
Vault n/a 8.2
Vault authenticated n/a 7.8
Gitea 0.5 25.5
Gitea authenticated 22.5 0.5
Kubernetes 5.5 34
Kubernetes authenticated 6 110

Table 6.6 Approximate running times (in minutes) of openapi-fuzzer and Schemathesis

6.3 Types of bugs
After further analysis of the bugs discovered by openapi-fuzzer, we can conclude that the majority
of them were caused by several reasons. These include querying an object not created previously,
parsing errors such as problems with parsing dates or numbers, and errors when openapi-fuzzer
provided special characters as input to the web service.

6.4 Performance analysis
Besides bug-finding, openapi-fuzzer also conducts a performance analysis of individual endpoints.
Unless there are noticeable performance issues, performance analysis is useful mainly for the
developers of the web service. Considering that they know what response times are acceptable.
openapi-fuzzer displays a summary of the analysis for every endpoint and can be instrumented
to save further details. An example summary is shown in Figure 5.1. As we can see in the
figure, auth/token/create/role_name and auth/token/lookup-accessor are among the Vault
endpoints that require a significantly longer time to respond.

Figure 6.1 shows graphs from detailed statistics for the auth/token/create/role_name end-
point generated by openapi-fuzzer. As we can see from the first graph, the long round-trip times
can be attributed to the bug-triggering payload. Thus, this endpoint might be susceptible to
DOS attacks. In the second graph, we can see a relatively even distribution of round-trip times
around 30 seconds.
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Figure 6.1 Round-trip times of requests sent by openapi-fuzzer to single endpoint
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Chapter 7

Conclusion

Testing proved to be the most effective way to ensure the quality of the software. Numerous
testing techniques have emerged, but most require manual test writing. Nevertheless, these
techniques do not scale well with the increasing complexity of software systems. Thus, the area
of automated random testing, fuzzing, was researched.

The main objective of this thesis was to redesign the previous version of openapi-fuzzer devel-
oped within my bachelor thesis and to add support for payload minimization. After comprehen-
sively investigating available options, I implemented minimization using the Proptest library. To
evaluate minimization, I compared the payload sizes between the two versions of openapi-fuzzer.
Not only is the generated payload now much smaller, but most of the time, its size is also as
small as possible. Furthermore, a minimized payload makes identification of the bug trivial, as
was also demonstrated in Subsection 6.2.2.

Additionally, I compared the openapi-fuzzer’s ability to find bugs with the state-of-the-art
Schemathesis fuzzer. In the article by Schematheisis’ authors [17], they conducted an experi-
ment in which the Schemathesis fuzzer outperformed all other state-of-the-art fuzzers, including
RESTler [16]. I performed an authenticated and unauthenticated fuzzing of well-known battle-
tested web services, including Kubernetes, Hashicorp Vault, and Gitea. The results show that
openapi-fuzzer was able to find more bugs in a shorter time in every tested software. Moreover,
it did not experience any internal error, which was not the case with Schemathesis.

The secondary objective of this thesis was to add support for the simple detection of endpoints
susceptible to DOS attacks. The openapi-fuzzer records the round-trip times for every request
and creates simple statistics for each endpoint. It provides an option to save the round-trip
times alongside a flag (denoting whether the request caused a bug) for further processing. From
those measurements, I subsequently generated graphs to inspect the performance of the selected
endpoint in greater detail.

7.1 Future work

Although the openapi-fuzzer has yielded satisfactory results, there is still room for improvement.
The fuzzer could make better use of the OAS by extracting additional information to enhance its
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fuzzing effectiveness. Moreover, there is potential to improve the performance of openapi-fuzzer.

7.1.1 Removing attributes
An option to improve the effectiveness of openapi-fuzzer is to include support for removing
specific attributes. As explained in Section 4.2, openapi-fuzzer presently ignores that all required
attributes must be included in a payload and always includes them in a payload. It relies on the
shrinker to minimize the attributes. However, the web service may behave differently when given
a payload with a minimal attribute or without the attribute. Although the current strategy is
beneficial for exploring most states, as described in Subsection 2.2.2, the one suggested could
reveal more bugs since web services may display undefined behavior if they do not receive a
mandatory attribute. To implement this feature, Proptest’s UnionStrategy could be used.

7.1.2 Simple coverage
Another feature that could benefit the users of openapi-fuzzer is support for simple code coverage.
The OAS lists the possible responses for each endpoint. The fuzzer could record the status codes
and responses it received and thus determine whether it received all possible.

7.1.3 Strict mode
Support for the strict mode could be added to fuzz the web services more thoroughly. As for
now, openapi-fuzzer checks only the status code of the received request and reports an error if
the status code is 5XX or is not defined in the specification. We could take it one step further
and check if the received response conforms to the structure defined in the specification. This
would enable openapi-fuzzer to report bugs, such as missing or additional fields or a different
payload structure.

7.1.4 Parallelization
As mentioned in Chapter 4, openapi-fuzzer is a stateless fuzzer. Moreover, during the fuzz testing
of the web services, no bug was triggered by a combination of multiple requests. Thus, we can
deduce that the requests do not interfere with each other. This feature and observation might
enable openapi-fuzzer to send the requests in parallel, resulting in increased performance.
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Appendix

The source code of the openapi-fuzzer can be found on GitHub at the following URL: https:
//github.com/matusf/openapi-fuzzer. Version 0.2 is in branch 0.2.0 and soon will be merged
to the master branch. The README file contains instructions on building the fuzzer, as well as
on its usage.
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