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Abstrakt

Technologie sč́ıtáńı dav̊u lid́ı má potenciál být pro společnost cenným nástrojem
v mnoha ohledech, např́ıklad pro optimalizaci ř́ızeńı dav̊u a zvýšeńı veřejné
bezpečnosti. Automatizované metody sč́ıtáńı davu jsou nezbytné vzhledem
k rozsahu tohoto úkolu a skutečnosti, že ručńı sč́ıtáńı osob v přeplněných ob-
lastech může být neproveditelné nebo náchylné k chybám. Automatizované
sč́ıtáńı dav̊u nav́ıc umožňuje sledovat pohyb a hustotu davu v reálném čase,
což může být zásadńı při mimořádných událostech nebo rozsáhlých akćıch.

Navzdory pokroku v metodách automatického sč́ıtáńı dav̊u však jejich ro-
bustnost z̊ustává problémem, protože chybovost neńı konzistentně úměrná
skutečnému počtu osob na sńımku, a často se vyskytuj́ı př́ıpady výrazného
nadhodnoceńı i podhodnoceńı. Tato nekonzistence je v současnosti čińı ne-
spolehlivými pro praktické aplikace. Vzhledem k potenciálńımu využit́ı tech-
nologie automatického sč́ıtáńı dav̊u a možným výhodám pro společnost je tato
oblast výzkumu a vývoje však velmi slibná.

V této práci vyhodnocujeme přesnost a spolehlivost současných nejmo-
derněǰśıch metod v náročných podmı́nkách, které testujeme na našich speci-
alizovaných souborech dat, a navrhujeme metodiku trénováńı pro vytvořeńı
robustněǰśıch model̊u. Zjistili jsme, že hlubš́ı enkodéry silně zvyšuj́ı robust-
nost těchto model̊u. Zjistili jsme také, že globálńı self-attention mechanismus
zvyšuje přesnost sč́ıtáńı, zejména ve zhoršených světelných podmı́nkách, což
jsme vypozorovali na základě 72 r̊uzných moderńıch metod. Navrhli jsme také
upravený inferenčńı postup, který umožňuje sč́ıtáńı dav̊u na sńımćıch s vy-
sokým rozlǐseńım s běžným hardwarem a výrazně zlepšuje přesnost s omezenou
pamět́ı.

Kĺıčová slova analýza chyb, detekce objekt̊u, hluboké učeńı, neuronové śıtě,
poč́ıtačové viděńı, robustnost, sč́ıtáńı dav̊u, sč́ıtáńı lid́ı
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Abstract

Crowd counting technology has the potential to be a valuable tool for society
in a variety of ways, such as optimizing crowd management and improving
public safety. Automated crowd-counting methods are essential due to the
sheer scale of the task and the fact that manually counting individuals in
crowded areas can be unfeasible or error-prone. Moreover, automated crowd
counting can enable real-time crowd movement and density monitoring, which
can be crucial in emergencies or large-scale events.

However, despite advances in crowd-counting methods, their robustness
remains a challenge as the error rate is not consistently proportional to the
actual count of people in an image, with instances of both significant over- and
underestimation occurring frequently. This inconsistency renders them unre-
liable for practical applications. Nevertheless, with further development and
refinement, crowd-counting technology has the potential to provide essential
benefits to society, making it a promising area of research and development.

In this work, we evaluate the current state-of-the-art methods’ accuracy
and reliability in challenging conditions, which we test on our specialized
datasets, and devise a training methodology to produce more robust models.
We have found that deeper encoders are critical for improving the model’s
robustness. We also found the global self-attention mechanism to benefit
counting accuracy, particularly in low-light scenarios, which we have observed
in a corpus of 72 different state-of-the-art methods. We also devise a patched
inference pipeline that enables crowd counting in high-resolution images with
conventional hardware and drastically improves accuracy with limited mem-
ory.

Keywords computer vision, crowd counting, deep learning, error analysis,
neural networks, object detection, people counting, robustness
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Introduction

Crowd counting is a task in computer vision that seeks to accurately predict
the number of people in crowd pictures. Such technology has many potential
applications, such as traffic management, identifying congestion-prone loca-
tions, re-routing traffic, and managing traffic flows in space-restricted areas,
such as subways and stadiums, to ensure public safety and prevent overcrowd-
ing [1]. When combined with crowd localization techniques, these methods
can be used in retail analytics to monitor foot traffic and track customer be-
havior to optimize store layouts and improve customer experience. Only with
automated methods can accurate crowd counting be feasible in real-time, en-
abling the authorities to utilize this knowledge to enhance public safety and
quickly respond to potential overcrowding in the event of an emergency. Deep
learning approaches and neural networks currently dominate this field, as they
have shown superior performance and generalization when learning from large
datasets compared to traditional computer vision methods [2, 3].

However, the reliability and robustness currently hinder the real-world us-
ability of automated methods. Many factors are challenging to overcome, such
as significant viewpoint variance, varying crowd appearance, occlusions, crowd
sparsity, and different illumination and weather conditions. Considering the
abovementioned challenges, designing a universally applicable, reliable, and
robust method is challenging. It needs to be discussed more in crowd-counting
literature, which rarely mentions potential problems for real-life applications
where occlusions, crowd sparsity, and poor illumination are common.

Currently, state-of-the-art methods are often benchmarked on dense crowd
datasets with little to no sparsity and good illumination. However, minimiz-
ing count errors in pictures taken in close to ideal conditions rarely results in
reliable and robust detectors. They either fail to detect in poor illumination
conditions or hallucinate in areas with high-frequency noise. One possible
cause could be the lack of sparse crowds in training data, resulting in insuffi-
cient penalization for the crowd under or overestimation.
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Introduction

Furthermore, current datasets do not account for crowd occlusions caused
by foliage, umbrellas, or picket signs, which are often present in real-world con-
ditions and impede the resulting accuracy and reliability of the system. De-
signing a system to detect occlusions and count crowds simultaneously could
prove more reliable in real-world scenarios [4].

This work aims to evaluate state-of-the-art approaches to crowd counting
on both commonly used datasets and our specialized datasets. We design the
latter to evaluate poor weather and illumination conditions and minimize the
number of false positives. We aim to improve robustness by devising ways to
utilize hard negative mining and improve the training data. The contribution
of this work shall provide readers with insights into designing robust crowd
counters for real-life applications.
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Chapter 1
Machine Learning

1.1 Introduction

Machine learning is a field in artificial intelligence focusing on developing algo-
rithms designed to tackle challenging problems by automatically recognizing
patterns, understanding data, and making predictions for new, unseen data.
They do so almost universally, without the need for explicit programming and
the development of specialized algorithms. They often adapt to many different
domains well, making machine learning algorithms a powerful tool for solving
problems unfeasible to solve otherwise [5, 6].

Several notable breakthroughs have been achieved in machine learning in
recent years. For example, the AlphaFold 2 algorithm successfully tackled the
problem of protein folding [7], the GPT-3 model demonstrated significant ad-
vancements in natural language processing [8], and the EfficientZero algorithm
achieved super-human performance in mastering Atari games [9].

All those feats are not short of impressive, but all the achievements of
machine learning models depend heavily on the availability of high-quality
training data in sufficiently large quantities. Often, machine learning algo-
rithms fail to deliver expected results or behave unpredictably if significant
biases are present in the training data or if the collecting methodology is
flawed [10, 11]. Widely discussed topics were human-like racist biases when
using machine learning algorithms for criminal risk assessment [12], mistaking
images of black people for gorillas [13], or a chatbot that picked up the sexist
language and neo-nazi ideologies [14].

When collecting a training set for such an algorithm, special care must
be taken to ensure it works as expected, with as few biases or imbalances as
possible. Applying this thought to our crowd counting problem, if we only
teach our neural network to count in images of dense crowds, it might not
count accurately in images of sparse crowds or even hallucinate crowds that
it always expects in images with no crowds.
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1. Machine Learning

1.2 Machine Learning Fundamentals

Machine learning aims to learn from experience to improve performance in
specific tasks. We define a machine learning model as a single instance of a
machine learning algorithm that undergoes the process of training in a partic-
ular task and, after doing so, can be used for predictions or decisions on new
data inputs [15].

Three main machine learning paradigms define the nature of the inputs
and outputs of the model. Unsupervised learning presents the model with
unlabeled data, and it has to find a structure in them on its own. Supervised
learning adds annotations or labels to the data, and the goal is to learn the
mapping of the inputs to the desired outputs. Reinforcement learning puts
the model in a dynamic environment, behaving as an agent, getting constant
feedback for its actions, and trying to maximize some reward [16].

1.2.1 Data Splitting

Data splitting aims to repeatedly evaluate the model’s performance on new,
unforeseen data. Different sets are used in model training, selection, and
performance evaluation to ensure that new data are used in every step for an
unbiased evaluation [15].

Firstly, the machine learning model is fitted1 on the training data. For
supervised learning methods, the training data consists of pairs of input vec-
tors xi and their corresponding target variables yi. During the model training
process, the model predicts target values ŷi for different input vectors, and
the difference between the actual target value yi and the predicted value ŷi

is known as the residual. The model training process aims to minimize the
differences between predicted and actual target values. To measure these
differences, an error function, also known as a loss function, is defined, quan-
tifying how well the model performs. The choice of loss function and method
of adjusting the model parameters depends on the ML algorithm used.

Secondly, the model is evaluated on the validation set, predicting the target
values. We calculate the total loss, representing the model’s performance on
unforeseen data, but we do not update the model’s parameters on validation
data. However, the validation loss is still used to tune the hyperparameters2

of the model, during the model selection process, and to detect over-fitting3.
Lastly, the final selected model is evaluated on the test set, which never

had any impact during the model training and selection, and provides an
1fitting = The process of adjusting the model parameters to fit the training data best.
2hyperparameters = Parameters set prior to model fitting, defining the architecture of

the model itself, specifying how the model learns, regularization, and more.
3over-fitting = Common problem in machine learning, when the model starts to remember

training data, instead of understanding the problem, leading to high accuracy on training
data, but low accuracy on validation data, and resulting in poor generalization performance.
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1.2. Machine Learning Fundamentals

unbiased evaluation of the model, which should be representative of actual
application performance. In the world of ML, the test data is often not shared
with whoever is designing the model to ensure it never impacts the decision
process for model creation. Withholding the test set is common in machine
learning competitions, research, and business practice.

Validation and test sets are sometimes used ambiguously and can be used
differently based on used literature. Sometimes, when we are only presented
with some data to develop a model, we might use the names train and test
data, but the actual test data is inaccessible to us [17].

1.2.1.1 Data Split Ratio

In machine learning, we often have to deal with a limited amount of data,
as data collection and annotation4 can be time or resource-expensive process.
The trade-off is to which set to assign what portion of the data, as we need
both many observations to train the model on and enough for a representative
evaluation later [15].

Depending on the situation and data, two commonly used rules are the
80/20 or 70/15/15 rules for train-test and train-validation-test splits, as pic-
tured on the Figure 1.1.

80% Train Data 20% Test

70% Train Data 15% Val 15% Test

Figure 1.1: Illustration of the train/test splits.

1.2.1.2 K-Fold Cross-Validation

Another approach when pursuing maximal utilization of limited data for model
selection is k-fold cross-validation. The idea behind cross-validation lies in
doing multiple splits of available data to different train and validation sets
and evaluating averaged model performance on k different validation sets,
eliminating possible selection biases during the data splitting and limiting
possible over-fitting. This approach is, however, computationally expensive,
as the model has to be fitted k times on k different training sets [15,18].

4annotation = Also called a label, is the target variable yi assigned to an observation xi.
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1. Machine Learning

Split №1

Split №2

Split №3

Split №4

Split №5

Total number of datasets

Figure 1.2: Illustration of the k-fold cross-validation.

1.2.2 Data Preprocessing

”Garbage in, garbage out” applies heavily to machine learning. Data pre-
processing aims to ensure and enhance models’ performance by reducing the
unnecessary and manipulating the important data in training sets.

Common tasks include cleaning, imputation of missing values, range nor-
malization, encoding of categorical features, discretization of continuous fea-
tures, feature engineering, or dimensionality reduction. These tasks help ad-
dress missing, or inconsistent data, irrelevant features, or high-dimensional
data that can cause overfitting or slow down the training process, thus al-
lowing machine learning models to achieve better accuracy, efficiency, and
generalization performance [19].

However, we should never forget to train preprocessing methods only on
training data before applying them to validation and test sets because it pre-
vents the preprocessing algorithm from leaking information about the other
sets into the training data. Suppose the preprocessing steps are also fitted
on the validation or the test data before the model is trained. In that case,
the model might be biased toward the specific characteristics of the validation
or test data, leading to overfitting or poor generalization. Such information
leakage can also lead to overly optimistic evaluation metrics. Therefore, it is
crucial to keep the training, validation, and test data isolated and only fit the
preprocessing steps on the training data before applying them to validation,
and test sets [20].

With the rise of deep learning, data preprocessing has become even more
crucial because deep learning models often require vast amounts of training
data. Deep learning models are also more sensitive to the input features’
scale and distribution, making preprocessing techniques like normalization and
feature scaling more critical to ensure the numerical stability of deep learning
models. New methods like batch normalization [21] were developed to alleviate
the need for manual feature normalization by doing so automatically inside
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the model itself. However, they have not yet obsoleted the need for manual
rescaling as they cannot be used universally in all models [22].

1.2.3 Loss Function, Batch, Epoch

A loss function, sometimes also called an error function, measures the differ-
ence, or loss, between a predicted label ŷi and a true label yi, also called the
ground truth [15]. The goal is to minimize the average loss during training,
and update the model’s parameters while doing so, a process that we call
learning. Some literature refers to the average total loss on the training set
as to the cost function. We denote the loss function as L(Y , Ŷ ), and the cost
function is thus as follows, where N is the number of training samples.

C(Y, Ŷ) = 1
N

N∑
i=1

L(Yi, Ŷi)

With large training data, it is impossible to train the model on the entire
set in a single step. Instead, we only use a smaller subset at every training step,
which we call a batch, and we update the model parameters after every batch.
Small batch sizes can result in slow training and unstable convergence [23]; too
large batch sizes can be memory-expensive and lead to poor generalization [24].
For this reason, we need to treat the batch size as an essential hyper-parameter
of the training process. Once we have used the entire training set, we call that
a single epoch.

Different machine learning tasks require different loss functions, but all
must meet specific criteria to work well. E.g., for algorithms using gradient
descent as the method of loss minimization, a loss function must be both
continuous, differentiable, and convex [15].

1.2.3.1 Classification

In classification tasks, the model learns to assign one of the k classes to a
given input. We call this task a binary classification when k = 2, or multi-class
classification for k > 2. Some models only predict the final class (e.g., decision
trees), and some models output a vector of probability scores, to which of the
k classes should the input vector xi be mapped, which is a common approach
in neural networks.

P̂ = [P̂1, P̂2, . . . , P̂k]
P̂k = P̂ (Y = k|X = xi)

ŷi = arg max P̂

The loss most commonly used for classification is the categorical cross-entropy,
and is defined as:

L(Y , Ŷ ) = −
k∑

i=0
yi log ŷi

7



1. Machine Learning

1.2.3.2 Regression

In regression tasks, the model learns to predict a continuous numerical value
based on input. Several loss functions commonly used for this task differ in
their sensitivity to outliers and the values that they work with well.

LMAE(Y , Ŷ ) = |yi − ŷi|

Mean Average Error (MAE) measures the absolute difference and is not sen-
sitive to outliers.

LMSE(Y , Ŷ ) = (yi − ŷi)2

Mean Squared Error (MSE), on the other hand, penalizes more significant
errors more heavily.

LRMSE(Y , Ŷ ) =
√

(yi − ŷi)2

Root Mean Squared Error (RMSE) can be elegantly interpreted as the stan-
dard deviation of residuals.

LRMSLE(Y , Ŷ ) =
√

(log(yi + 1) − log(ŷi + 1))2

Root Mean Squared Log Error (RMSLE) is a metric similar to RMSE but
more robust to outliers. During training, the loss function is averaged across
the entire batch or even across multiple regressors in multivariable regression
tasks.

1.2.4 Model Selection and Evaluation Metrics

Whether a model performs as it should is never as straightforward as picking
the one with the highest accuracy. Evaluating the robustness and possible
shortcomings is sometimes a tedious process, in which we can compare dif-
ferent metrics in different scenarios to get a better insight into the model’s
possible shortcomings [15].

A simple example can be made of imbalanced data. If our training data
contain, e.g., patients where only one in a hundred has a certain illness, then
a model that always predicts the patients to be healthy has a 99% accuracy,
yet is not very useful. For this reason, adequate testing methodology and the
use of proper metrics are essential [25, 26].

However, the topic of different evaluation metrics is vast; thus, we will
only focus on methods and terminology necessary for this thesis.

1.2.4.1 Bias-Variance Tradeoff

Bias-variance tradeoff is a fundamental concept in machine learning that de-
scribes the balance between two types of errors: bias and variance. Bias
represents the difference between the predictions and ground truths, while
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Figure 1.3: Illustration of the bias-variance tradeoff.

variance refers to the degree of variation of model predictions for different
inputs.

A model with high bias under-fits the data because of its limited capacity to
capture the complexity of the problem, resulting in large training loss and poor
generalization performance. On the other hand, a model with high variance
has too great of a capacity and over-fits the noise in the data, resulting in low
training error but poor generalization performance [27].

An optimal balance between bias and variance must be found to achieve
good performance, often called the ”sweet spot” in model complexity. This
can be achieved by hyperparameter tuning and regularization techniques such
as dropout5 or early-stopping6.

Until recently, this was the common understanding of the bias-variance
tradeoff. Recent research suggests that with increasing model complexity,
second descent in total error exists and calls the peak in total error with
rising model complexity the interpolation threshold.

This research also suggests the double descent to be the reason why neu-
ral networks with numbers of parameters way higher than data points used
for training operate in the interpolation mode, which is the reason for their
performance. Their final takeaway is that double descent does not nullify the
concepts of bias-variance tradeoff and suggests that very complex models can
still perform well [28, 29].

5dropout = Regularization technique when random nodes and their connections in net-
work are ignored during training.

6early-stopping = Technique to detect when over-fitting begins by monitoring the training
and validation losses during training.
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1. Machine Learning

1.2.4.2 Mean Average Error

The mean average error is the most straightforward metric for regression prob-
lems and is often used in crowd counting as it provides an intuitive estimate
of the model’s accuracy. It does not penalize outliers heavily, which can be
desirable in challenging scenarios with a significant variance of viewpoints.

Average Error = 1
N

N∑
i=0

|Predicted Count − Real Count|

It can, however, be a misleading metric, as closely matching the expected
count does not mean the model was counting people in the image. As we
will see later in this work, these models often find the most prevalent blob-
like shape in the data, which would usually be a person’s head, but it is
not always the case. Minimizing MAE during training helps the model find
optimal thresholds for detecting such blobs with a small error but does not
result in a robust crowd counter. Thus, more metrics and tests are required
for a better evaluation.

1.2.4.3 Accuracy

Accuracy is the most basic classification metric and is widely used as one
of the main indicators of a model’s performance, as it is easily interpretable
and often telling. When applied to the crowd counting problem, the accuracy
has to be interpreted more carefully, as the mean average error can easily be
mistaken for accuracy.

In this work, we will take a closer look at false positives and false negatives
in the predictions of crowd counting models. A false positive prediction in our
context is a person hallucinated by the model, an incorrect count increase. A
false negative is the opposite when the model ignores a person and does not
increase the counter.

Accuracy = TP + TN
TP + TN + FP + FN

Breaking the previous formula down, we can see how a model that precisely
predicts the expected number of people in a crowd can still be inaccurate if
it ignores half the people in the image and hallucinates new people elsewhere.
Such a model could be considered precise when judging by the average error
metric, yet it does not portray the whole picture.

Due to the task of crowd counting not being of a simple classification
nature but rather a regression, decoding individuals from the final count is
not as straightforward. Instead, we will use small custom-designed datasets
to understand the models and their limits better.
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1.3. Deep Learning

1.3 Deep Learning

The term deep learning refers to a class of machine learning models based
around artificial neural networks. The first origins of artificial neurons, in-
spired by biological neurons and their interconnections – synapses – can be
traced back to the work of McCulloch & Pitts in 1943 [30] and later to the
Rosenblatt’s perceptron in 1958 [31] that afterward became the building block
for the first artificial neural networks [32] and gave birth to the entire field of
deep learning.

1.3.1 Artificial Neuron

x2 w2 ξ f(ξ)

Activation
function

ŷ

Output

x1 w1

xn wn

Weights

bias: x0 = 1 w0

...
...

Inputs

Figure 1.4: Single artificial neuron – perceptron.

A perceptron consists of n inputs and a single additional bias input, always
set to output a constant value of one, which functions as an adjustable shift
of the activation function. Every input has its weight w, which is a learnable
parameter of the model. A weighted sum of the inputs and weights is called
the action potential ξ, which is then fed to the activation function f(ξ) to
produce an output ŷ.

Choosing an appropriate activation function is crucial when building a
neural network architecture. It must be continuous and efficiently differen-
tiable for the gradient descent during training. The output range must also
be considered to solve the task, as some commonly used activation functions
have limited range [33].

Examples of some commonly used activation functions are the sigmoid
function, hyperbolic tangent, or the rectified linear units.
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1.3.2 Multilayer Perceptron

Multilayer perceptron is a class of feedforward neural networks, consisting of
multiple layers of multiple neurons, in which the data only flows in a single
direction, thus feedforward. The individual neurons are called nodes, and
every layer can contain a different number of them, plus a bias node per layer,
except for the output layer, which is the last one in the network.

Neural networks can solve complex problems, as the consequent layers can
separate otherwise linearly inseparable7 data by transformation. The networks
also have a variable number of outputs, allowing them to solve complex tasks
with multi-dimensional target variables [33].

...
...

...

1
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1

x
(0)
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x
(0)
n0

1
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1

x
(1)
n1
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(2)
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x
(2)
n2

Input
layer

Hidden
layer

Ouput
layer

Figure 1.5: Multilayer perceptron with a single hidden layer.

In a multilayer perceptron, the l layers are densely connected, meaning
every node is connected to all nodes from the previous layer. The following
equation defines the activation of an individual node:

x
(i)
j = f(w(i)

j,0 +
ni−1∑
k=1

x
(i−1)
k w

(i)
j,k)

where w
(i)
j,k is the k-th weight of x

(i)
j and x

(i−1)
k is the k-th element from the

vector of outputs x(i−1) from the previous layer i−1. The architecture defines
the predicted variable, as the output layer can contain as little as a single

7linearly inseparable = Data that cannot be separated by a single line, or a hyperplane in
higher dimensions, for example the XOR function for linear classifiers such as perceptron.
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neuron for a single variable regression, a binary classification task, or as many
neurons as necessary. The function of the entire network could be described
as follows:

f(x) : Rn0 −→ Rnl

where n0 and ni are the counts of nodes in the input and output layers. We
also call the number of nodes in a layer the width of the layer. The predicted
target ŷ is the output of the last layer x(l), defined as:

x(l) = f(
[
1 x

(l−1)
1 . . . x

(l−1)
nl−1

]


w
(l)
1,0 w

(l)
2,0 . . . w

(l)
nl,0

w
(l)
1,1 w

(l)
2,1 . . . w

(l)
nl,1...

... . . . ...
w

(l)
1,nl−1

w
(l)
2,nl−1

. . . w
(l)
nl,nl−1

)

Learning in these complex models is often done with large training data,
and many weights throughout the architecture must be fitted. This was made
possible by the invention of the error backpropagation algorithm for multi-
layer perceptron on smaller batches of data, which enabled simple end-to-end8

training of these models [34].
Another important thing when training a network on such large data is

regularization to prevent overfitting and improve generalization performance.
An example of a commonly used technique is the dropout, when random
nodes are disabled during training, forcing the network to learn robust and
redundant representations for classification. Although such learning is slower
overall, this approach might lead to faster convergence to a good solution.
For this reason, dropout has been adapted and widely used in many different
neural network architectures [22].

dropout

×

×

×

×

×

×

×

Figure 1.6: Illustration of the dropout regularization in MLP.

8end-to-end training = Compared to traditional approaches with complex feature engi-
neering and preprocessing before training a classifier, during end-to-end training, networks
learn intermediate representations of features and their transformations on their own, sim-
plifying the entire process.
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The problem with a multilayer perceptron, however, is its scalability. The
number of nodes increases rapidly for larger inputs, such as images. A single
128 × 128 grayscale image requires 16,384 input nodes, and every following
layer of the same dimension requires 16, 3842 = 268, 435, 456 weights. For
this reason, different neural network architectures had to be developed for
computer vision tasks and the processing of images.

The densely connected layers of the multilayer perceptron are, however,
still an essential building block in many neural network architectures, often
close to the output of the architecture, where complex decisions can be made
on pre-processed features [33].
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Chapter 2
Computer Vision

Computer vision is a field of study that allows computers to extract informa-
tion from the visual world around us, such as images and videos, understand
them, and even base decisions on them. It is a multidisciplinary field closely
associated with image and signal processing, computer graphics, robotics, neu-
roscience, and artificial intelligence. Its applications in our everyday lives are
many, from robotics and self-driving vehicles to augmented reality and medical
imaging.

2.1 Brief History of Computer Vision

The roots of computer vision research originated in the 1970s. The invention
of line detection and edge extraction algorithms laid the groundwork for many
modern approaches. These algorithms were used for hand-crafting of image
features in combination with simple object-tracking algorithms and motion
estimators, often used for military purposes of vehicle tracking and missile
launches [35].

The field matured enough in the following 20 years to solve more com-
plex tasks and understand images better. Computer vision became more
available outside of military applications for tasks such as automatic num-
ber plate recognition [36], rapid detection [37], and even recognition of human
faces [38]. With computer hardware and software advancements, computer
vision algorithms found use in many fields, from medical imaging to industrial
automation and entertainment [35].

This era had mastered the hand-crafted features with methods such as
HoG9 [39], SIFT 10 [40], and SURF11 [41], but features alone are not enough
for computer vision. Hard-coded algorithms and heuristics had their limits.

9HoG = histogram of oriented gradients
10SIFT = scale-invariant feature transform
11SURF = speeded up robust features
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2. Computer Vision

The paradigm slowly shifted towards statistical modeling, which empha-
sized using probabilistic models to represent and reason about the underlying
structures of visual data. Together with the advancements in computation
performance and larger datasets being increasingly available, hand-crafted
features started to be used in combination with machine learning models such
as the SVMs12 [42] or with k-NN 13 [43]. These methods finally generalized
well enough to be used in varied visual contexts and applied in previously
difficult-to-tackle domains, as they could be trained on large datasets.

2.2 Deep Learning Methods

A major breakthrough came in the year 2012 when Alex Krizhevsky obliter-
ated all competition in the annual ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) by implementing an efficient convolutional neural net-
work (CNN) on GPUs14, as their training on CPUs with such large data was
unfeasible. This alone kickstarted a new era of deep learning in computer vi-
sion tasks, as neural network approaches have shown superior performance on
very complex datasets, possibly due to their immense learning capacity and
capability to learn more structure from large data [44].

Another significant improvement was that compared to traditional ap-
proaches, this model was end-to-end trainable, simplifying the entire process
by learning the image features on its own efficiently. By implementing the net-
work on a GPU rather than a CPU, the computation, which mainly consists of
large matrix multiplications, could be heavily parallelized, taking advantage
of many processing cores in a GPU. Suddenly, very large networks with large
learning capacities could be trained in reasonable amounts of time, making
graphics cards the norm in machine learning to this day [33].

2.2.1 Convolutional Neural Networks

Convolutional neural networks were inspired by animal visual cortices, mim-
icking the organization of brain cells. They dramatically reduce the number
of needed parameters in the network by only ever comparing local neigh-
borhoods of pixels, compared to multilayer perceptron, which compares all
possible pixel pairs and does not take any advantage of the local structure
and spatial locality [45].

The CNN architecture achieves this by utilizing an operation called convo-
lution instead of large matrix multiplications. In simple terms, convolution is
a weighted sum of some neighborhood of a pixel and can be adjusted in many
different ways to achieve different goals. There are many ways how their
behavior can be modified, such as different strides and dilated convolutions.

12SVM = support vector machine
13k-NN = k-nearest neighbors algorithm
14GPU = graphics processing unit
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2.2. Deep Learning Methods

2.2.1.1 Convolution

The convolution is a simple weighted sum of a pixel’s neighborhood. The
neighborhood and its associated weights are called the kernel. This operation
is used as a sliding window over the entire image. We define convolution as:

(I ∗ K)i,j =
o−1∑
a=0

p−1∑
b=0

Ii+a,j+b · Ka,b

where I is an image with dimensions m, n, K is a kernel with dimensions o, p,
and (I ∗ K)i,j is the element at the position i, j in the resulting matrix (I ∗ K)
with the dimensions q, r; where q = m − 2⌊ o

2⌋ and r = m − 2⌊p
2⌋.

(a) Blue matrix represents the
input.
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Figure 2.1: Simple convolution with a kernel size of 3×3 and no padding [46].
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Figure 2.2: Zero-padded convolution with a kernel size of 3 × 3 [46].

As can be seen in Figure 2.1, the convolution filter cannot produce an
output of the same dimension, as the filter cannot be centered on a border
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value, which results in out-of-bounds values in the weighted sum. When the
same size output is desirable, we can add the out-of-bounds values in a process
called padding. We can pad the image with any values we choose; common
approaches are zero padding, as seen in Figure 2.2, or repeating the border
value.

The size of a kernel is by no means limited to 3×3, different filters can work
as receptive fields of different sizes, and larger kernels are often used. The only
drawback is that large kernels are computationally and memory expensive.
One workaround for larger kernels is to use separable kernels. Instead of a
single n×n 2D kernel, two consequent 1D kernels are applied, n×1 and 1×n,
which reduces the kernel complexity, with the possible reduction of accuracy
but significantly more computationally efficient, with only 2n kernel weights
instead of n2 [47].

2.2.1.2 Pooling

Another standard convolutional neural network building block is the pooling
layer. Pooling layers decrease the dimensionality and, thus, computational
requirements by combining filter responses over local neighborhoods while
allowing for a certain degree of spatial translation invariance. This spatial
invariance increases with the number of layers, allowing networks to detect
features of different scales. They can also help the network reduce overfitting
by forcing it to learn more robust features [48].
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Figure 2.3: Different 3 × 3 pooling operations [46].

When shrinking the feature maps with the pooling operation, the choice
between average and max pooling has to be considered, as max pooling focuses
mainly on the presence of the most prominent features. In contrast, average
pooling provides a smoother feature map. In practice, max pooling is used to
identify prominent features, while average pooling is only used for dimensional
reduction and to collapse feature maps to particular sizes.
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2.2.1.3 Tensors

Convolutional neural networks might be easy to illustrate on a 2D matrix
with a single convolutional filter, but that is rarely how they look in real life.
In practice, inputs and outputs of networks and their layers are commonly
described as tensors, which are multi-dimensional arrays. For example, an
RGB image could be represented as a mode-3 tensor or a 3-way tensor, with
the dimensions of height × width × color channels.

During the training of a CNN, we usually train the network on multi-
ple samples at once, a single batch. The input for a network is thus a
4-way tensor A over a field of 32-bit float numbers F with the dimensions
batch size × width × height × number of channels. Learning multiple kernels
per convolution layer is common, which increases the number of channels in
the network. A common approach is to convolve all feature maps of an im-
age to eventually become a feature vector, with the only dimension being the
number of channels, on top of which we build a classifier using fully connected
layers or appropriate convolutional operation to finalize the classification.

If we replace the fully connected layers at the end for a convolution layer
instead, we call the network fully convolutional. The advantage of fully convo-
lutional networks is that input height and width can be of variable size, as the
tiled convolution with sliding window kernels works with inputs of arbitrary
height and width.

The only drawback of such an approach is the memory required to use
larger, fully convolutional models with high-resolution photos. The advantage
of this approach is that instead of splitting large images, they can be processed
in a single go without the problems at the borders of split photos.
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Figure 2.4: Illustration of an input tensor with 3 channels and batch size of 3.
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2.2.1.4 Architectural Designs

The field of architectural design is quickly evolving, and newer architectures
with marginal improvements for different tasks are published almost monthly.
However, a few notable works have advanced the field, and their concepts still
influence the designs of many newer architectures.

After the immense success of AlexNet in 2012, the family of VGG networks
pushed the depth of convolutional networks to 16 and 19 layers, respectively,
with the VGG16 and VGG19 models. They only used 3 × 3 kernel size for
faster training and inference [49]. Going beyond 19 layers was difficult due to
the vanishing gradients problem. Meanwhile, in 2014, the Inception family of
networks was introduced, which used concatenated filters of different sizes to
extract more complex features in the limited number of layers [50].

layer 1
filter

concatenation

1x1 conv

3x3 conv

5x5 conv

3x3 pool

Figure 2.5: Inception block example.

A year later, in 2015, the family of ResNets was introduced by the team
at Microsoft Research, which pushed the depth of CNNs to 152 layers.

layer 1 layer 2 layer 3+x

identity

Figure 2.6: ResNet residual block example.

ResNets contain residual connections – identity shortcuts in the network
that add the output of a layer to one later in the network, alleviating the van-
ishing gradient problem with increasing depth, which increases the accuracy
and learning capacity of the network [51]. Since their invention, residual con-
nections have been widespread in architectural designs of different networks,
as they bring significant improvements at nearly zero computational cost.
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2.2.2 Transformer Architectures for Computer Vision

The transformer architecture was originally designed as a sequence-to-sequence
model (seq2seq), firstly designed for natural language processing (NLP), which
is a field focused on problems such as machine translation. It relies solely on
the attention mechanism, which allows the network to weigh and focus on dif-
ferent parts of the input. Compared to previous works in the field that utilized
recurrent neural networks, it offers excellent potential for parallelization, as it
can process the entire input at once, instead of single input at a time [52].

This approach was very successful in the field of NLP, and soon, the ar-
chitecture was adopted in computer vision as well, which was difficult due to
the nature of images not being a sequence. One approach uses image splitting
into a set of patches treated as a sequence, and their position within a picture
is positionally encoded into every image patch. This architecture was named
the Vision Transformer (ViT) [53].

Another approach uses a convolutional network to learn a representation
of the input image, flattens, and positionally encodes it before feeding it into
a classical transformer encoder-decoder network for predictions [54].

All the described models, however, share a significant drawback, as they
lack some of the inductive biases inherent to CNNs, and, therefore, might not
generalize well when trained with insufficient amounts of data but have enor-
mous learning capacity when the data to learn from is available [52]. This has
led to an explosion of both model parameters and the size of datasets, making
many transformer architectures challenging to use in domains with insufficient
and hard-to-collect data. Those large models are also costly to train in terms
of computation, memory, and required energy, thus only allowing researchers
with plenty of resources and a powerful infrastructure to train these models.
However, some smaller transformer architectures for computer vision can still
be used with smaller datasets and perform well [55].

2.2.2.1 Attention

Attention in machine learning is a technique to evaluate the relevance of dif-
ferent input parts and pay attention to them in a weighted nature. The
network learns which parts of the data are relevant and the context in which
this applies. Attention is also the primary building block of the transformer
architecture [52].

We denote the attention from token i to token j as ai,j . It is important to
note that attention is asymmetric, and high attention ai,j does not translate
to high aj,i, as those are two different values. This asymmetry is achieved
by the design of attention itself, inspired by database information retrieval.
One input is used as the query and is compared to a set of keys that hold the
corresponding values.
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An input token i is embedded in a vector xi. Three matrices are used for
the calculations: the query weight matrix WQ, the key weight matrix WK ,
both of which with the dimension of dk, and the value weight matrix WV with
the dimension dv. The query, key, and value vectors qi, ki, vi are calculated
as a product of the input vector and the corresponding weight matrix. The
attention values are obtained as a dot product of the qi and ki vectors and
are scaled down by the value of

√
dk and normalized using a softmax function.

The final output is a sum of the value vectors weighted by their corresponding
attention values. The calculation can be parallelized for all tokens by writing
all token vectors as rows of the matrices Q, K, and V [52].

Attention(Q, K, V) = softmax
(

QKT

√
dk

)
V

Figure 2.7: Multi-head attention [52].

2.2.2.2 Multi-Head Attention

Instead of single attention head, meaning a single combination of Q, K, and
V matrices, multi-head attention linearly projects the input tokens h times
and performs the computation in parallel, concatenates the outputs and re-
projects them into the previous dimension. This allows the model to attend to
different pairs of tokens simultaneously, allowing for different representations
of tokens, for example, words with multiple meanings based on context. This
is impossible with a single-head attention model.
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2.2. Deep Learning Methods

MultiHeadAttention(Q,K,V) = Concat(head1, head2, . . . , headh)WO

headi = Attention(QWQ
i , KWK

i , VWV
i )

The dimensions of the projection parameter matrices are WQ
i ∈ Rdmodel×dk ,

WK
i ∈ Rdmodel×dk , WV

i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel , where dmodel is
the embedding dimension of tokens.

In the work ”Attention Is All You Need,” the authors used eight parallel
attention layers (= heads) with reduced dimensions dk = dv = dmodel

h = 64,
which reduced the computational cost to that of a single-head attention with
full dimension [52].

2.2.2.3 Types of Attention Layers

As described in Section 2.2.2.1, attention can be calculated between different
inputs. Attention between tokens from single input is called a self-attention.
We can find two more types of attention layers in the encoder-decoder ar-
chitecture (Figure 2.8). The encoder-decoder attention, also called a cross-
attention, where queries come from the decoder itself, and keys and values
come from the encoder, which allows the decoder to attend to the entire input
sequence. Another type is the masked self-attention in the decoder, in which
every token is only allowed to attend to the previous tokens. This allows for
an auto-regressive generation of output without attending to future outputs.
This is achieved by the masking of all values corresponding to illegal attention
connections [52].

2.2.2.4 Positional Encoding

To allow the transformer to learn the positions of tokens in the input, we use
positional encoding that provides the transformer with the information where
the individual words are. Positional encoding can either be function-defined
or learned as a parameter matrix. The original transformer architecture used
sine and cosine functions of different frequencies to create unique positional
identifiers that could be shifted via a straightforward linear transform. The
team hypothesized it would allow the model to learn to attend to relative
positions rather than absolute ones [52,56].

The positional encoding can also be learned as a parameter matrix during
the training. The choice of function-based vs. learned PE is another hyper-
parameter to be tuned, as the performance of each can differ, depending on
the task, as some works show equivalent performance, and others benefit from
one or the other approach. This also heavily depends on whether the trans-
former is used for NLP or as a Vision Transformer. However, one thing is very
clear: without positional encoding, transformer models perform significantly
worse [52,53,56,57].
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Figure 2.8: Transformer encoder-decoder architecture [52].

2.2.2.5 Convolutional Transformer Architecture

In recent years, researchers have been exploring ways of combining the strengths
of CNNs and transformer models by using convolutions for local feature ex-
traction and using the resulting feature vectors in a transformer to capture the
long-range dependencies and the global context in the data. This approach
has been successful in both the tasks of NLP [58], and computer vision [59],
for which are both Vision Transformers (ViT) that use patching and Convo-
lutional Transformers (CvT) that use convolutional approach commonly used
today, but CvT improves significantly on computational efficiency [55,60].
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Chapter 3
Crowd Counting

Crowd counting is a research area in computer vision that aims to estimate the
number of individuals present in an image or video, allowing for a wide range of
applications, such as crowd tracking for traffic optimization and overcrowding
prevention, urban planning, or crisis crowd management. These methods
have also been successfully used in a variety of different scenarios beyond
counting people, from tracking animals in wildlife surveys [61], counting cells
in medical imaging [62], counting crops on a field [63] or counting vehicles on
a highway [64].

Crowd counting comes with a set of challenges that are difficult to over-
come. The varying crowd densities, overlapping individuals, different view-
points, and challenging weather conditions, combined with the often poor
image quality from CCTV cameras, make designing a robust and accurate
crowd counter very challenging.

Earlier approaches were often detector-based, detecting individuals based
on hand-crafted features and counting the individual detections. This ap-
proach had two significant limitations; the hand-crafted features generalized
poorly when the crowd’s appearance or characteristics changed and had trou-
ble with occluded individuals. Such detectors are unsuitable for densely
crowded scenes. Their performance suffers greatly, as it is hard to distinguish
multiple individuals from multiple detections of a single person when the non-
maxima suppression fails. Their error rates were also large, considering the
small crowd sizes on which they even worked [65].

Since the great success of deep learning for computer vision tasks, newer
approaches for dense crowd counting have been invented. The end-to-end
model training paradigm allows for the automatic learning of features on large-
scale datasets. These models generalize better and have outperformed all
previous methods.

The main three types of crowd counting methods today are the direct
regression methods, which directly predict the number of individuals, the
density-based methods, which train the network to predict a density map rep-
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3. Crowd Counting

resenting the spatial distribution of people in the image; and the point-based
and localization methods, that predict center points of individuals in the im-
age. Methods based on object detection have been almost entirely abandoned,
despite R-CNN and YOLO models being very effective object detectors, for
they are ill-suited for counting overlapped individuals. Density-based meth-
ods are currently the most prevalent in the field, as they are forced to learn
the features of the crowd itself and are thus more robust to occluded individ-
uals in very dense crowd scenarios. Point-based methods, on the other hand,
provide us with more precise information about crowd localization and could
be better suited for individual or crowd flow tracking and crowd behavior
prediction [66].

3.0.1 Crowd Counting Datasets

As discussed earlier in Chapter 1, machine learning models can only be as
good as the data they are trained on. In the field of crowd counting, there are
a few essential datasets that have become the norm for the benchmarking of
crowd-counting methods. Each has certain limitations, as the data collection
methods and the data characteristics are very different in every dataset. For
proper evaluation, all methods are usually benchmarked on multiple datasets
for a better overall evaluation of the method.

In our work, we have picked four datasets to evaluate our models on, but
we mention other notable datasets widely used. The main characteristics are
summarized in Table 3.1. The datasets are sorted by their year of publication,
and a few essential metrics are listed. The critical fact is that most datasets
do not contain negative samples, the importance of which will be shown later
in this work. Image resolutions and total annotation counts are essential
measures of how much information can be extracted from the dataset using
augmentation, such as region cropping. Larger image resolutions, however,
can be problematic during the evaluation of some models due to the large
memory demand for count inference. All datasets contain point annotations
for centers of heads, and some include bounding boxes.

Dataset Total
Images

Avg. Image
Resolution

Count Statistics
Total Min Avg Max

WorldExpo’10 3,980 720 × 576 199,923 1 50 253
UCF CC 50 50 2888 × 2101 63,974 94 1,279 4,543
ShanghaiTech A 482 868 × 589 241,677 33 501 3,139
ShanghaiTech B 716 1024 × 768 88,488 9 123 578
UCF QNRF 1,535 2902 × 2013 1,251,642 49 815 12,865
GCC (synthetic) 15,212 1920 × 1080 7,625,843 0 501 3,995
NWPU-Crowd 5,109 3209 × 2191 2,133,375 0 418 20,033

Table 3.1: Comparison of selected crowd counting datasets [1–3,67–69].
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3.0.1.1 WorldExpo’10

This dataset was collected during the 2010 WorldExpo in Shanghai and fea-
tures 108 different surveillance camera bird views. The main drawback of this
dataset is limited resolution and small numbers of people per image, with no
larger scenes with denser crowds [67].

Figure 3.1: Examples from the WorldExpo’10 dataset [67].

3.0.1.2 UCF CC 50

This dataset was collected from FLICKR images, shows mainly extremely
dense crowds, and features very high image resolution. However, it contains
only 50 grayscale images, thus offering small viewpoint and crowd appearance
variance, compared to other datasets [68].

Figure 3.2: Examples from the UCF CC 50 dataset [68].

3.0.1.3 ShanghaiTech

The ShanghaiTech dataset is the most often used crowd-counting dataset,
measured by open-access papers mentioning it [70]. It features two parts with
a total of 1198 images. Part A is collected from the internet, while images
from part B were collected from the streets in Shanghai, and all images have
been taken from different viewpoints [3].

Figure 3.3: Examples from the ShanghaiTech dataset, first two pictures from
part A, second two from part B [3].
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3. Crowd Counting

3.0.1.4 UCF QNRF

This large dataset was collected from the internet in high resolution, featuring
very dense crowds. Compared to previous datasets, UCF QNRF features a
very large diversity, as these images have been sourced specifically from all
parts of the world to ensure a wide variety of crowd appearances. Crowd
sparsity combined with vegetation and buildings is present in the data, which
makes the dataset better-suited for the training of crowd counters in real-world
scenarios [2].

Figure 3.4: Examples from the UCF QNRF dataset [2].

3.0.1.5 GCC

GCC is a synthetic dataset and framework designed to generate large crowd
images with pixel-perfect annotations on demand. This allowed the authors to
collect many pictures of diverse crowd scenarios without time-consuming and
labor-intensive human annotation. The authors also propose a GAN 15-based
method to translate the synthetic images into realistic scenes. The authors
show that larger datasets make for better crowd counters and pre-train their
networks before benchmarking on different datasets to beat previous state-of-
the-art methods [69].

Figure 3.5: Examples from the synthetic GCC dataset [69].

3.0.1.6 NWPU-Crowd

The NWPU-Crowd is a diverse dataset designed to benchmark16 modern
crowd counting and localization and features 5109 high-resolution images and
the most extensive density range. It is also the only dataset mentioning neg-
ative samples in the data for robustness evaluation. They also provide an
impartial benchmark for researchers to validate their results. The results also

15GAN = Generative Adversarial Network
16This benchmark is accessible at https://crowdbenchmark.com/.
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include robustness information by measuring the MAE and MSE loss on im-
ages categorized by luminance levels and scene details [1].

Figure 3.6: Examples from the NWPU-Crowd dataset [1].

3.0.2 Density-Based Methods

Crowd counting is an open-set problem, as there is no real upper bound to
how many people there can be in the picture. For direct count regression
methods, a problem of proper generalization beyond crowd sizes present in
the training data arises. In such models, we also have no idea on what basis
the model decides the final count, nor do we have any information about crowd
localization. Many different methods have been proposed to tackle the open-
set nature of the problem, such as the spatial divide-and-conquer method.
However, they suffer from inaccuracy at the division lines, of which many
exist, especially in very dense crowds [71].

Figure 3.7: Example of the crowd density map.

Instead of global density estimation by direct count regression models,
another paper proposed a 2D regression of the image annotations captured
on a density map representing the crowd based on numbers of individuals
in different areas, as seen in Figure 3.7. This density map is generated by
placing a 2D Gaussian kernel at each annotation and summing the resulting
maps into a total density map [67]. The selection of Gaussian variance σ
depends on several factors and impacts the crowd counter’s final behavior.
Instead of performing a grid search for another hyperparameter of a constant
value of σ, adaptive methods exist that determine the value based on local
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density estimate. Local density is usually estimated by the distance to k-
nearest neighbors, and results in a better density map generation.

Figure 3.8: Multi-column convolutional neural network (MCNN) [67].

However, the scale of features with increasing crowd density can still be
problematic, which different works often treat similarly by extracting and
merging feature maps of different scales. The Multi-Column Convolutional
Neural Network (MCNN) uses three different pathways inside the network,
each with a different size of convolution filters, to create feature maps of
different scales and then merges them to produce the final density map, as
seen in Figure 3.8 [67]. Newer works often adopt the feature pyramid network
(FPN) in their architecture, such as the Scale-Adaptive Selection Network
(SASNet), which uses a VGG16 backbone to extract features of different scales
on the bottom-up pathway, and uses the top-down pathway as a decoder to
produce multiple density maps, which are fused to obtain the final prediction,
as seen in Figure 3.9. The network also learns which feature layers are most
precise at the given scale and merges them as a weighted average, which helps
mitigate the gap between discrete feature scale levels [72].

Although CNN models have achieved state-of-the-art accuracy in many
different tasks, certain design aspects of their architecture might be holding
their accuracy back. Concretely, fixed-size and fixed-weight convolutional ker-
nels limit the receptive fields and are applied regardless of crowd geometric
and visual variations. Some works tried to enhance the receptive fields with
either dilated convolutions [73], deformable convolutions [74], or most recently,
the transformer architecture. Although it comes at a great computational ex-
pense, it improves accuracy in specific scenarios [75]. We were, however, not
able to reproduce these results, as most works either did not publish their
source code [75,76], published incomplete or broken code [77], or did not pub-
lish pre-trained weights and have too great computational requirements for us
to train [78].
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Figure 3.9: Scale-adaptive selection network (SASNet) [72].

3.0.3 Point-Based Methods

In contrast to density-based methods, point-based methods predict individuals
directly in the crowd by their coordinates, which results in easier-to-interpret
data that can be better used for crowd flow or individual tracking. Density-
based methods can also be modified by applying find-maxima functions in
post-processing. However, the localization of individuals is inaccurate in ex-
tremely dense crowds, and individuals cannot be easily distinguished from the
density map [79].

However, a few problems with this approach make designing these models
more technical. One of these problems is the design of the loss function itself,
as the predicted points and ground truth values must be matched first before
calculating any distances. The Hungarian algorithm is often used; however,
as noted in [80], it is not always ideal, as seen in Figure 3.10.

Figure 3.10: Examples of different prediction-GT point matching algorithms,
(c) uses k-NN matching objective as auxiliary matching cost [80].
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The second issue is the network’s design to tackle the problem’s open-
set nature. The P2PNet starts with H × W × 4 point proposals (or 8 for
the UCF QNRF dataset with denser crowds) positioned in a grid throughout
the pyramid levels, on which it builds two prediction branches – classification
and regression – to produce both individual points and their corresponding
confidence scores, as seen in Figure 3.11 [66].

In another transformer-based network called CLTR, authors replaced point
proposals with trainable decoder instance queries. In this architecture, the
authors used a CNN backbone and encoder-decoder architecture to process
image features, on top of which they have built regression and classification
heads, similar to the P2PNet architecture. The authors did, however, not
publish all source files, so we could not test this method, and the impact of
instance queries instead of point proposals on the maximum predicted density,
combined with the global self-attention mechanism for better accuracy [80].

Figure 3.11: The P2PNet architecture [66].

Figure 3.12: The CLTR architecture [80].
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Chapter 4
Experiments and Results

In this chapter, we aim to assess and contrast the approaches employed in
crowd counting over recent years regarding their robustness and accuracy. Our
analysis identifies when these methods fail to detect or mistakenly hallucinate
people or crowds in different places and under what circumstances it hap-
pens. We investigate how these methods perform with different illumination,
whether they fail in dimly-lit areas or direct sunlight, measure their accuracy
in sparsely-populated and densely-packed areas, and investigate whether these
techniques hallucinate heads or crowds in blob-like shapes in the picture.

We test a few selected neural networks with published and reasonably
readable code and either published pre-trained weights or within our compu-
tational capacity to train. We could reproduce ten different approaches, nine
of which are density-based methods, and a single one is point-based. Un-
fortunately, we could not reproduce any methods that use the transformer
architecture. Most works either did not publish their code and weights or
behaved unpredictably with the published code and weights, which was the
case for the LoViTCrowd and CLTR methods [77,80].

We tested on a remote machine with a Xeon E5-2699 v3 CPU, Tesla P100
16GB GPU, and 32GB RAM, running Ubuntu 22.04. The main struggle, how-
ever, was often not computational power but the number of different methods
tested. Each might require different preprocessing for each dataset, and the
published source codes are poorly documented. This task was made much
easier thanks to the C3 Framework, which implements some baseline models
with the required preprocessing. However, it is not longer maintained since
2019, so newer works had to be recreated separately [81].

During the latter stages of working on this thesis, additional resources
in the form of the public leaderboard on the NWPU-Crowd dataset came to
light, which evaluates over 80 different approaches in-depth [1]. We use this
data to perform further statistical analysis on many different state-of-the-art
methods, properly evaluate the current field of crowd counting, and provide
insights into the success of some methods over others.
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4.1 Selected Models

In our work, a total of ten models were selected for benchmarking. Eight are
implementations from the C3 Framework, and two more were recent publica-
tions selected as two original implementations from authors of these methods,
one density-based and one point-based. Although the models implemented in
the C3 Framework are not necessarily state of the art anymore and are only
pre-trained on the synthetic GCC dataset, they are used to illustrate different
architectural designs to provide an intuitive insight into their performance.

4.1.1 C3 Framework Models

4.1.1.1 AlexNet

A baseline model designed from the AlexNet architecture [44], with a few
changes to be more suitable for this work. The padding operations are mod-
ified so that the output from the feature encoder part is 1/16 of the original
image size. The decoder comprises two convolutional and one up-sampling
layer, producing the estimated density map [81].

4.1.1.2 VGG Models

Two VGG-based models are implemented in the C3 Framework and differ only
in the decoder. The first ten convolutional layers from the VGG architecture
are used as an encoder. On top of that, a decoder is built similarly to the
AlexNet model by using two convolutional layers. The other VGG-based
model employs three additional transposed convolution17 layers, which could
be thought of as a trainable upsampling, to produce a more precise density
map. The second model will be denoted as VGG decoder [81].

4.1.1.3 ResNet Models

A total of three ResNet-based models are implemented in the C3 Framework.
The Res50 and Res101 models are slightly modified ResNets with the cor-
responding layer counts, with modified strides to preserve scale at the final
density map. On top of both models, a simple two-layer decoder is built.

The third model, denoted as ResSFCN-101 or SFCN+ is an implementation
of the Spatial Fully Convolutional Network introduced in [69], which adds di-
lated convolutions and a spatial encoder to the top of the backbone, from which
it regresses the final density map. The spatial encoder presents a convolution
sequence in four directions (down, up, left-right, and right-left).

17Note: True inverse convolution operation is rarely used in CNNs. Instead, transposed
convolution operations are used [82].
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4.1.1.4 CSRNet

Implementation of a dilated convolutional network specifically designed for
crowd counting [73]. In the original work, the authors argue that standard
convolutional filters combined with pooling layers result in limited receptive
fields and too significant reduction of spatial resolution, which needs to be up-
sampled with deconvolutional layers in the decoder. They dilate convolutions
to increase their receptive fields to 5 × 5 and 7 × 7 while keeping the 3 × 3
weights per kernel. The base model is VGG-16, with only three pooling layers
instead of five. Their resulting density map is 1/8 of the input size, which
they bilinearly interpolate with a factor of 8.

4.1.1.5 SANet

The Scale Aggregation Network (SANet) is heavily inspired by the Inception
network [50]. To accurately count at different scales, they implement and
concatenate kernels of size 1, 3, 5, 7 in each of the four encoder layers and
transposed convolutions in the decoder for upscaling [83].

4.1.2 SASNet

As described in Section 3.0.2, the SASNet architecture implements a com-
plete feature pyramid and learns the internal correspondence between differ-
ent feature scales during end-to-end training. The authors also propose a
loss function to supervise the network at all pyramid levels [72]. The source
code published is, however, incomplete. The loss and training scripts were
withheld from the repository. Researchers attempting to validate this method
that managed to obtain the code from the authors describe the model as very
difficult to train with convergence issues [84]. We are only provided with pre-
trained weights from ShanghaiTech part A and ShanghaiTech part B datasets.
The model’s architecture can be seen in Figure 3.9.

4.1.3 P2PNet

Despite being from the same authors as the SASNet, the P2PNet is published
with all source codes and pre-trained weights. The architecture of this model
can be seen in Figure 3.11. Also described in Section 3.0.3, this model is the
only point-based method we could validate and train. The P2PNet is also, at
the time of writing this work, the highest-scoring model with complete pub-
lished source code in the NWPU-Crowd benchmark leaderboard. All methods
with better scores are, at this moment, closed-source. For this reason, this
model will be the primary model to validate our experiments on.

35



4. Experiments and Results

Model Total
Params

Total
Mult-Adds

Required Memory
F/B Pass (MB)

AlexNet 2,502,721 986.21 M 5.87
VGG 7,701,057 18.32 G 139.47
VGG decoder 8,397,377 20.47 G 154.66
Res50 8,674,625 9.75 G 342.89
Res101 27,666,753 29.15 G 770.71
SFCN+ 38,596,801 40.41 G 787.95
CSRNet 16,263,489 27.09 G 154.67
SANet 1,388,721 5.95 G 231.21
SASNet 38,898,698 232.38 G 3367.68
P2PNet 21,579,344 26.13 G 313.66

Table 4.1: Summary of selected models, computed for an input tensor of shape
(1,3,256,256).

4.1.4 Model Summary

Table 4.1 lists a few essential details about the models tested. The published
research papers rarely mention how computationally efficient the models are
and whether their large number of parameters translates into a well-used learn-
ing capacity. The computational difficulty significantly impacts real-world
scenarios in which such models could be used. Many of the listed models
would be impossible to run with reasonable inference times on any low-power
embedded hardware in CCTV cameras, where such technology could be of
great use. This table also shows why researchers had difficulties training the
SASNet architecture, as their implementation of the feature pyramid is com-
putationally inefficient and excessive. For this reason, we resized all images
in UCF CC 50 and UCF QNRF datasets so that the longer side has no more
than 1024 pixels, with the aspect ratio preserved. Resized images were used
in all benchmarks in Table 4.2 for a fair comparison of different approaches.

As can be seen in Table 4.2, the pre-trained models from C3 Framework
perform significantly worse than newer approaches in the form of SASNet
and P2PNet, which can be attributed to multiple causes. First, those models
are only trained on synthetic data with rich colors and less-detailed features
than real-world pictures. We observed inferior performance on grayscale im-
ages across all of these models, which is most noticeable on the grayscale-
only UCF CC 50, compared to P2PNet and SASNet. All networks from the
C3 Framework performed significantly better when presented with an RGB
version of the same picture. In some cases, the detection failed entirely in the
grayscale variants of pictures.

An important behavior to note is the difference in SASNet’s performance
with the weight set trained on ShanghaiTech part A or part B. As shown in
Figure 3.3, part A contains dense crowds with often only overlapped heads
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SHA SHB UCF CC 50 UCF QNRF
AlexNet 201.18 26.56 1097.92 288.14
VGG 245.19 48.77 1223.74 392.10
VGG decoder 262.32 41.61 1257.80 426.89
Res50 342.13 52.11 1231.14 581.22
Res101 181.13 27.18 1042.74 317.91
SFCN+ 239.31 29.09 1259.84 318.59
CSRNet 256.76 45.77 1271.04 386.62
SANet 294.95 68.47 1037.10 470.41
SASNet* 68.30/150.01 21.95/6.38 357.23/757.09 212.97/277.70
P2PNet 62.81 22.20 302.54 202.55

Table 4.2: Baseline benchmark of selected models MAE.
*SASNet was tested with two sets of pre-trained weights, from ShanghaiTech
part A and part B, and are listed in this order.

visible, while part B contains few pedestrians with most of their bodies visible
within the frame. The model fine-tuned to this smaller crowd density per-
formed significantly better in this scenario, while the part A model performed
better in any dense-crowd scenario with overlapped individuals.

This scenario can be seen in Figure 4.1, where both SASNet variants are
tested, denoted as SASNet A and SASNet B. SASNet A accurately predicts at all
scales, while SASNet B completely omits the middle part of the crowd, where
it fails to detect the highly-overlapped heads.

Figure 4.1: Comparison of SASNet A and SASNet B models. GT: 1154 people.

Another important fact is that while the GCC dataset used to pre-train the
C3 Framework models contains a wide range of crowd densities, these models
were not designed with sufficiently robust multi-scale detection in mind and
only learned to detect crowds in limited density ranges. This behavior can
be seen in an extreme example from the UCF QNRF dataset, with a wide
range of densities in the picture, as seen in Figure 4.2, where the models fail
to detect at different scales.
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Figure 4.2: Examples of failed detection in an image from UCF QNRF with
extreme difference in scale of individuals. GT: 3566 people.
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4.2 Negative Samples and False Positives

In the previous section, we have shown that these networks can fail to detect
crowds of specific properties if the crowd structure is too far from what the
model expects. In this section, we inspect the opposite scenario, of when
the environment itself contains such a structure that the model incorrectly
perceives it as a crowd. For this experiment, two different datasets were
collected.

The first dataset consists only of crowd-counting negative samples – 232
images of empty outdoor and indoor spaces captured from various viewpoints
during different times of the day, weather, and illumination. At first, we
wanted to collect such a dataset from public web cameras. However, we had
to abandon this approach, as only a few online cameras featured high enough
resolution, and data with reasonable diversity were unobtainable from these.
Another important consideration was the licensing of the pictures. Eventu-
ally, we decided to collect data from royalty-free image providers, such as
Unsplash.com and Pixabay.com, as well as using personally taken pictures.
The individual pictures collected online are documented with links and au-
thor names. In a few pictures, some individuals had to be removed using the
infill feature in graphical software. All pictures were resized so that the width
nor length exceeded 1024 pixels. We denote this dataset as empty places.

Figure 4.3: Example images from the empty places dataset.

The second dataset is a set of 200 images hand-picked from the ImageNet
Challenge (ILSVRC 2010), with the very intention of tricking these networks
into false positive predictions, further testing the robustness of the networks.

Those images intentionally contain high-frequency noise and lots of blob-
like structures and objects, sea waves, plants, chainmail, animals, peanuts,
etc. The images were carefully inspected to ensure no people were pictured
in this dataset so that only false positives could be detected. We denote this
dataset as hard images.

Figure 4.4: Example images from the hard images dataset.
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4.2.1 Negative Samples

Negative samples in the empty places dataset are pictures taken in areas
where a crowd counter typically expects to find a crowd, yet there are zero
people. In this experiment, we specifically target this scenario to test whether
these crowd counters can handle the extreme case of crowd sparsity. In the
same way, as crowd counters generalize poorly beyond crowd densities present
in the training data, our initial hypothesis was that the same would apply to
models trained on datasets with insufficient or no negative samples at all, and
they would hallucinate crowds that they expect to find in every image.

Model MAE MSE >0 FP Imgs Total FP
AlexNet 59.82 34709.96 126/150 8973
VGG 5.55 271.63 85/150 833
VGG decoder 5.62 172.88 146/150 843
Res50 2.50 41.77 72/150 376
Res101 1.11 7.74 43/150 167
SFCN+ 2.43 59.84 61/150 364
CSRNet 6.61 201.53 135/150 992
SANet 25.21 2571.91 149/150 3781
SASNet A 19.86 3618.07 118/150 2979
P2PNet 31.20 14940.89 92/150 4680

Table 4.3: False positives hallucinated in the empty places dataset.

In our experiment, we notice how the smaller models AlexNet and SANet
perform poorly, possibly due to their limited capacity to distinguish features
of crowds from other structures. Apart from just the size of the models,
where the VGG and VGG decoder are close to Res50, the much deeper ResNet
architecture has achieved a much smaller number of false positives. The model
summary can be found in Table 4.1.

We believe this is because the deeper architecture allows the ResNet to
learn more complex features than the much shallower VGG-based models, as
both were trained on the same data until the same convergence criteria were
met. Learning more complex features could help the model distinguish crowds
from different structures in challenging scenarios.

This trend continues with the very deep Res101 and SFCN+ models, which
have achieved the lowest false positives on negative samples. They have even
outperformed much newer and more complex SASNet and P2PNet, possibly
because they were trained on the GCC dataset. GCC used for training the C3
Framework models contains some negative samples, which hints at the possi-
bility of increased robustness when the models are supervised on better data
encompassing these scenarios and penalized for any false predictions, which
forces the learning of more robust features. Selected examples of significant
failures per model are shown in Figure 4.5.
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4.2. Negative Samples and False Positives

Figure 4.5: Examples of significant false positive predictions in the
empty places dataset.
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4.2.2 High Frequency and Blob-Like Objects

With the hard images dataset, we have found the models to behave similarly
to the empty places dataset, where the smaller AlexNet and SANet predicted
high numbers of false positives. In contrast, the deeper ResNet-based models
found significantly fewer false positives and have proven their superior ro-
bustness in these scenarios. They never hallucinated crowds in random noise
areas, such as cloudy skies, but only in blob-like structures, where a remote
resemblance to the human heads can be found. Other models hallucinated
crowds of various densities in foliage, plants, stones, and grass, whereas the
ResNet-based models had no issues with false positives in these pictures.

The P2PNet and SASNet models performed poorly, especially when com-
pared to simpler VGG-based models, where we would expect at least similar
performance, which again hints at the training data used for these models, as
the GCC dataset is around 30× larger, as shown in Table 3.1, and captures a
wider variety of scenarios, as well as some negative samples [69].

Model MAE MSE >0 FP Imgs Total FP
AlexNet 56.59 22238.83 166/200 11318
VGG 21.51 5722.86 137/200 4302
VGG decoder 16.96 2533.03 166/200 3391
Res50 4.06 90.97 124/200 811
Res101 3.66 207.96 70/200 731
SFCN+ 6.38 846.83 77/200 1276
CSRNet 19.59 4027.83 180/200 3918
SANet 66.35 17430.73 200/200 13270
SASNet A 44.15 8827.94 193/200 8829
P2PNet 80.77 54373.84 196/200 16153

Table 4.4: False positives hallucinated in the hard images dataset.

As for the magnitude of the measured errors, the only point-based ap-
proach scored the worst of all models tested. In some scenarios, the P2PNet
predicted extremely dense crowds, with much higher total counts, than what
other models hallucinated in these scenarios, as seen in the outlier-sensitive
MSE metric. As it is the only point-based model we could reproduce, it is im-
possible to evaluate whether the model’s approach is the cause. Because this
model was designed to count in very dense crowds, the number of hallucinated
individuals can quickly get out of hand in challenging scenarios.

The range of errors measured for the density-based methods is large. The
models from the C3 Framework feature similar decoders, so we attribute this
difference to the encoders of these models responsible for the feature extrac-
tion, on top of which the decoders regress the density maps with widely vary-
ing results. Using a better encoder should be the first consideration for model
improvement unless a high-fidelity density map is required as an output.
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Figure 4.6: Examples of significant false positive predictions in the
hard images dataset.
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4.2.3 Impact of the Training Data on the Model Robustness

To investigate and evaluate the impact of the training data on the final model
accuracy and robustness, we have re-trained the P2PNet on the ShanghaiTech
part A, adding 82 negative samples from the empty places training set to
penalize the network for false positives. The batch size was set to 16 samples,
the learning rate of the prediction heads to 10−4 and VGG backbone to 10−5.
The weight decay rate was set to 10−4. We trained for 500 epochs, and
the validation MAE continued to improve throughout the training. We used
random rescaling in [0.7, 1.3] range, random horizontal flip, random crop, and
random patching during the training.

empty places
Model MAE MSE >0 FP Imgs Total FP
SASNet A 19.86 3618.07 118/150 2979
P2PNet (SHA) 31.20 14940.89 92/150 4680
P2PNet (SHA+empty) 11.22 1592.50 54/150 1683
P2PNet (curated) 5.80 989.84 40/150 870

hard images
Model MAE MSE >0 FP Imgs Total FP
SASNet A 44.15 8827.94 193/200 8829
P2PNet (SHA) 80.77 54373.84 196/200 16153
P2PNet (SHA+empty) 72.64 29156.14 159/200 14528
P2PNet (curated) 38.39 28449.61 125/200 7677

Table 4.5: False positives hallucinated in the empty places and hard images
datasets after model re-training.

The re-trained model, denoted as P2PNet(SHA+empty) detects fewer false
positives in both the empty places test set and in the hard images dataset,
as shown in Table 4.5. However, that does not translate into a better model
overall. The model behaves as if the learned detection threshold was just set
higher. It hesitates to detect when in doubt and fails to accurately detect
occluded individuals in dense crowds, underestimating the total count. This
can be illustrated by the abysmal performance when re-tested on the Shang-
haiTech part A test set, where the model scored far worse than before, as
shown in Table 4.6, often predicting much smaller counts.

Model ShanghaiTech A (MAE)
P2PNet (SHA) 62.81
P2PNet (SHA+empty) 323.76
P2PNet (curated) 66.94

Table 4.6: Counting accuracy of the re-trained models.
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Having so many negative samples did not improve the model performance
as we expected, for which we composed a new training set with mere 30
negative samples and combined training sets of both parts of the ShanghaiTech
dataset, plus the 50 samples of extremely dense crowds from UCF CC 50. We
kept the training parameters the same but decreased the batch size to 8. We
have denoted this model as P2PNet(curated). We trained for 500 epochs,
and the best validation MAE was achieved around epoch 475.

The re-trained P2PNet(curated) is much more robust to negative samples,
as seen in Table 4.5, while preserving the accuracy in regular scenarios, as seen
in Table 4.6. This shows that for any crowd counter to be used in real-life
applications, special care must be taken to curate a training set with a wide
variety of different crowd densities, including negative samples, which are
essential for a robust model. Furthermore, architectures with deeper encoders
have shown superior robustness in our testing and should be considered for
crowd counters operating in difficult conditions.

4.2.4 Note on the Importance of Image Resolution

Following the data-hungry approach, we tried to train the model on the
NWPU-Crowd dataset, unfortunately, without much success. The source
codes published had to be modified to enable training with negative sam-
ples, as the point matcher and the augmentation pipeline were broken in such
cases. We have fixed those issues for training on negative samples and smaller
crowds. However, the densities in the NWPU go far beyond what the model
would encounter even in the UCF CC 50 dataset, with up to 5× larger crowds.
At this point, the P2PNet architecture had to be modified, increasing the num-
ber of point proposals, and the hyperparameters had to be re-tuned, as the
authors did not publish theirs, used for the NWPU-Crowd benchmark.

Given our limited computational resources, we could not reach a stable
convergence of the model in the few tests we conducted, as a single re-training
of the model required 14 hours on the Tesla P100. Another reason for the
unstable convergence could be that we had to resize the pictures so the larger
side was no longer than 1024 pixels due to our limited GPU memory. The
resizing had removed most details in the extremely dense crowds (up to 20
thousand people in a single picture), and the model could not distinguish the
individuals and learned poor features.

According to the NWPU-Crowd benchmark website, the authors of the
P2PNet used Tesla V100 cards, a much newer accelerator with more memory
and compute cores, that could enable learning with higher resolution pic-
tures. Unfortunately, training on such large data is beyond the reach of many
researchers. However, larger crowds will require such computation to be ac-
curate. We illustrate this in the following example.

We take the densest image from the NWPU-Crowd set as an example.
With the resolution of 4032 × 3024 pixels and 20, 033 annotated individuals,
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in an ideal scenario with an even distribution of individuals, the model would
have 407 pixels per individual to identify. In the resized image to fit our
memory, with the resolution of mere 1024 × 768 pixels, we have, at best, 39
pixels per individual, which is insufficient for accurate detection. For this
reason, accurate crowd counting in large crowds will require better data.

We have implemented a patched inference pipeline for high-resolution im-
ages to test this hypothesis. Instead of resizing to a smaller resolution, the
image is split into multiple smaller patches that fit into our memory. The re-
sulting prediction is stitched, and counts are summed. The only problem arises
at the patch boundaries, where counting is inaccurate. This can be partially
alleviated by counting in overlapped patches and averaging the overlaps.

We have tested this approach with both the P2PNet(mix) and SASNet A
and used a patch size of 512 × 512 pixels. Table 4.7 shows the results of this
experiment. Both models were able to detect in regions where they previously
could not, as shown in Figures 4.7 and 4.8. We can see that the prediction
is still far from perfect, but this is an extreme scenario, with a density far
beyond what the models were trained on.

Figure 4.7: Illustration of the impact of image resolution on SASNet.

Figure 4.8: (Detail) Illustration of the impact of image resolution on P2PNet.
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However, the difference is evident; the high resolution is necessary for ac-
curate counting. A similar patched approach could be used to train the models
to utilize all the original data without such significant memory demands. We
could, however, not test this, as the original data would require close to a week
to train with our resources. The key takeaway is that high-resolution images
can still be processed on weaker devices at the cost of increased inference time.
In cases where latency is not critical, this enables high-accuracy counting in
challenging scenarios.

4032 × 3024 px 1024 × 768 px
SASNet A 11,326 859
P2PNet (mix) 10,303 1,462

Table 4.7: Total people detected with different image resolutions, out of the
total 20,033 annotations.

4.3 Weather Conditions and Luminance

A robust crowd counter must count accurately under challenging weather
conditions. Rain, fog, bright sun, or shadows can affect the crowd counter’s
accuracy adversely. To evaluate the performance during these conditions,
however, we would need a very specialized dataset, and the annotation of
such images in reasonable quantity would be very labor-intensive. For this
reason, we have decided on augmentation of already annotated images, which
we alter in a way that preserves labels. The rain, shadow, and brightness
shift augmentation code was based on an open-source library [85]. During
the augmentation, random polygon shadow, heavy rain with variable slant,
fog implemented as Gaussian-smoothed white noise, and illumination change
implemented as HSV colorspace value shift were applied to the data.

In this experiment, we selected ShanghaiTech part A as the base dataset
and applied different augmentations to the entire test set beforehand. We
measure the impact of these conditions on the two most accurate models, the
SASNet and P2PNet, to compare a density-based and a point-based method.
Both models had weights fitted to the ShanghaiTech part A training set with-
out weather augmentation.

Table 4.8 illustrates the loss of accuracy during different conditions. Alter-
ing the brightness had a minor impact on counting accuracy, possibly because
the pictures remained sharp and focused. We have observed different behav-
ior with pictures from online cameras. The image quality suffers significantly
from the small sensor size, as the cameras use high ISO values to compensate
for the exposure. In other words, crowd counters can perform well in different
illumination levels as long as the camera does not introduce too much noise.
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Figure 4.9: Examples of weather augmentation methods.

Figure 4.10: Fog-introduced false positives. GT: 172 people.

Fog and rain resulted in significantly worse accuracy, as they obscure most
details in the scene. The density-based method has a slight advantage here,
possibly because these predict a crowd density instead of individuals, which
can prove more robust with very little detail left in the scene. Fog and rain
resulted in the inability to count and introduced many false positives into the
predictions, as seen in Figure 4.10.

To alleviate these issues, we experimented with re-training of the P2PNet
on ShanghaiTech part A dataset, with 1/6 probability of every augmentation
type, including no augmentation, batch size set to 16 samples, learning rate
of prediction heads 10−4 and VGG backbone 10−5. The weight decay rate
was set to 10−4. The lowest validation MAE was achieved after 100 epochs.
We trained for 600 epochs, which continued to improve the training loss, but
only due to gradual overfitting. Checkpoint weights with the lowest achieved
validation MAE were used for benchmarking.

This approach did lessen the error during the rainy weather but at the cost
of performing worse overall. Upon inspection of the test results and predictions
of the model, the performance was abysmal, as the predicted heads were simply
random in any higher-frequency parts of the image. Overall, this approach was
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not successful. Again, the possible cause is the lack of detail in the pictures
caused by the augmentation methods, as the rain and fog remove too much
detail in dense parts of the image to base any reasonable predictions upon.
The model was forced to learn features for detection in such areas, which
resulted in bad learned features and inferior accuracy in most scenarios.

Original Bright Dark Fog Rain Shadow
SASNet A 68.30 71.75 83.45 99.45 281.44 71.86
P2PNet 62.81 66.17 74.57 101.72 302.86 65.29
P2PNet aug 125.11 127.01 118.82 144.95 128.26 128.15

Table 4.8: Model accuracy in challenging weather conditions (MAE).

There is no arguing that physics poses certain limits on how much detail
can even be captured with a camera, which sets an upper limit on counting
accuracy in certain weather conditions. When classic RGB cameras might not
be enough, adding thermal cameras could benefit the crowd counting, as seen
in a relatively recent trend of RGB-T crowd counting with both CNN [86] and
transformer architectures [87,88].

Figure 4.11: Examples of image pairs from the DroneRGBT dataset [89].

Thermal cameras do not require any illumination and could enable crowd
counters to work at nighttime without additional light. This does, however,
not solve rainy conditions, as the water absorbs infrared radiation from ob-
jects. Heavy fog also decreases the effective receptive range of a thermal
camera. However, light fog can still be transparent to infrared radiation for
long enough distances to be used in this scenario. The only drawback of this
approach is the much higher price for such a system.

To summarize, the input image quality is as important as the model itself.
During heavy rain or fog, the image quality decreases significantly, and the
lack of detail in the resulting picture results in inaccurate counting. As for
the illumination, the models performed well in both bright and dark scenarios
if the image was still sharp and in focus. If a worse quality image was sup-
plied, with significant digital noise or very low contrast, the model was at a
disadvantage from the beginning and did not perform well.
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4.4 Analysis of the Trends in Crowd Counting
Research

A convolutional network or a transformer? Most computer vision researchers
in recent years probably faced this question. The transformer architecture
has shown great ability to model long-range dependencies in the visual data,
thanks to global self-attention. It is, however, still a very recent approach, and
the models are resource-heavy, making optimization difficult with the limited
computational resources of many researchers. CNNs, on the other hand, are
a long-established method and are well-understood and optimized.

When the CNN architecture is designed as fully convolutional, it can take
an image of arbitrary size as an input. In contrast, transformers require
preprocessing through patching and positional encoding or a convolutional
encoder. Despite being challenging to implement and use, these transformer
models have recently proven superior in many computer vision tasks.

This dilemma gave birth to a wide variety of hybrid architectures, which
combine convolutions with attention in many different ways, either using
convolutional backbone in an encoder-decoder transformer model [80], in an
encoder-only transformer model [77] or mix the attention blocks into an ex-
isting convolutional architecture [78]. These architectures make a comparison
between the two approaches more difficult.

Thanks to the leaderboard of the NWPU-Crowd benchmark, we can com-
pare many different works and their performance neatly. For this, we have
developed a simple web scraper that has downloaded the achieved scores in
different categories of benchmarks. This data, however, was insufficient on its
own, as it does not contain information about the model’s architecture and
the approach type, whether the model is point-based or density-based. From
the 87 submitted results, we have successfully identified 72 methods and their
corresponding papers to obtain this data. We have also sorted the methods
by the year they were published.

Figure 4.12: Achieved test metrics in the NWPU-Crowd benchmark per year
of publication.
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As for the classification of the approach type, we have considered two sce-
narios: convolutional networks, and networks built around self-attention, that
include the abovementioned hybrid architectures. We do so to measure the im-
pact of self-attention’s holistic, long-range dependency modeling capabilities
and whether they benefit crowd counting.

Figure 4.12 shows the achieved test metrics. It is clear that over the years,
the methods have improved overall. The first published methods using self-
attention blocks scored poorly in the MSE metric but have recently matured
and outperformed CNN approaches. In the downloaded data, only a single
method published during 2023 was benchmarked, a convolutional-only point-
based network designed initially for tracking wildlife mammals that can also
be used for crowd counting [90].

Figure 4.13: Achieved test metrics in the NWPU-Crowd benchmark per level
of illumination.

Figure 4.13 shows that self-attention improves performance in different
luminance levels. The most significant difference is during low-light scenarios,
where the global context enables better density estimation in hard-to-discern
regions with insufficient local details. Overall, incorporating self-attention into
the network architecture is beneficial.

Upon inspection of whether self-attention improves accuracy in specific
crowd densities, we have found only minor differences, as shown in Figure 4.14.
For example, we have expected better robustness to negative samples, but
self-attention yielded no significant improvements. This table also illustrates
what accuracy can be achieved in different crowd density scenarios. Note the
logarithmic y-scale in the plot.

We have also tested whether methods that can localize individuals instead
of estimating crowd density have higher counting accuracy. To clarify, some
methods marked as crowd localization methods are modified density-based
methods to allow for precise individual localization, such as the FIDTM [79],
which we consider crowd localization method, as they meet the criterion that
individuals are distinguishable in the final prediction.
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Figure 4.14: Achieved test metrics in the NWPU-Crowd benchmark per level
of crowd density.

Figure 4.15: Comparison of density-based and point-based methods in the
NWPU-Crowd benchmark.

Although more challenging to design, Figure 4.15 shows that these meth-
ods have recently begun to outperform pure density-based methods, possibly
due to their better ability to distinguish individuals in challenging scenarios,
which is most likely the result of forced learning of better individual-detecting
features rather than crowd-density features, enabling more accurate counting.
The resulting prediction format can also benefit applications like crowd flow
tracking, which is challenging with density-based methods.

To summarize, the analysis of the NWPU-Crowd benchmark results shows
that self-attention benefits the accuracy of a crowd counter, which is most
noticeable in low-light scenarios with insufficient levels of detail present in
local regions, where global context enables better accuracy. We have, however,
not observed any significant increase in robustness to negative samples nor
accuracy in extremely dense crowds, possibly due to a lack of image detail
in the pictures, as mentioned earlier in this work. Furthermore, we have also
observed that crowd localization methods achieve lower errors than purely
density-based approaches that do not consider the localization of individuals.
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Discussion

In this work, we have evaluated the current trends in crowd counting and
how the recent approaches perform in different scenarios. It is clear, that
in the datasets we currently use, with annotated heads of individuals, newer
models achieve higher accuracy, but does that make them suitable for use in
real-world scenarios?

In real-world applications, the faced problem can be eased with application-
specific knowledge, which can filter the data to increase accuracy. One such
approach can be seen in [67], where regions of interest (ROI) are defined in
the data – areas where crowds can be detected. This approach can be used
effectively with any camera with a fixed view and location, which could be the
case for CCTVs. Such ROI can eliminate hallucinated people in areas that
would not make sense, such as the sky, as seen in the empty places examples
in Figure 4.3, making for a more robust crowd counter.

Figure 4.16: Example of the MOG2 background subtraction algorithm from
the OpenCV library [91].

We have experimented with background-subtraction methods for auto-
mated ROI generation, such as the k-NN and MOG2 algorithms implemented
in the OpenCV library [91], an example of which is shown in Figure 4.16.
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These algorithms work on a frame sequence, detecting movement via pixel
changes. For this reason, they could not be used on pictures from our other
datasets.

During our testing, however, these methods introduced much noise, and
even minor changes in the sunlight could throw the results off for multiple
frames. Our experiments were conducted on CCTV footage with a single
frame per second, which was not enough to stabilize the background model,
possibly due to compression artifacts in the video stream, which the algorithm
considered a movement. These algorithms also run on CPU only, increasing
the inference time of the crowd counter with a significant delay on every input
image.

Predefined ROI work very well for real-world applications, and we were
unsuccessful in reasonably automating this process. To some extent, the
self-attention mechanism could achieve the same, attending to the relevant
regions of the image, which we could not test due to poorly documented pub-
lished models and lack of computational power. There lies some potential for
future work, determining whether newer semantic segmentation techniques
could benefit crowd counting and improve the current models by automati-
cally generating ROI masks to eliminate false positives in the background.

Another problem of all current crowd-counting methods we have identified
is handling scattered occlusions. In rainy weather, people wear umbrellas;
during rallies, people march with picket signs. All these occlusions scattered
throughout the crowd make accurate counting difficult, and only counting
unoccluded individuals is inaccurate.

Figure 4.17: Examples of scattered occlusions in crowds [92].

We found only a single work that identifies and tackles this issue by using
custom data, as no public datasets with annotated occlusions exist to our
knowledge at the time of writing this thesis [4]. Their architecture uses three
density prediction heads for crowd, umbrellas, and picket signs, which they
merge into a final density prediction and count. Sadly, we could not obtain the
data or source codes from the authors, so the robustness of such an approach
could not be evaluated in this thesis. Despite this, there is potential for
improvement in real-world use cases, as our tested methods have all performed
poorly in these specific scenarios.
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In this work, we evaluated the current state of the art in crowd counting re-
garding accuracy, reliability, and robustness. We have done so by tracking key
accuracy metrics in various challenging scenarios that can occur during real-
world applications. We have also set out to conduct experiments that would
lead to further insights on eliminating false positives via improved training
data, and those resulted in more significant findings.

We have reproduced ten different works to evaluate the impacts of architec-
tural design on the final performance and found that networks with multi-scale
detection designs, such as a feature pyramid, were more accurate than simpler
networks. We have also observed that networks trained on data in which a
specific crowd density range is absent fail to detect it and do not generalize
beyond ranges found in the training data.

To evaluate whether and how much different models hallucinate false pos-
itives, we have collected two different challenging datasets, one containing
empty outdoor and indoor areas and the second containing objects and scenes
with blob-like structures remotely similar to crowds. Initially, our goal was
to collect this data from online web cameras. However, a stock photography
database had to be used as an alternative to achieve the desired picture quality
and sufficient diversity.

In both datasets, deeper ResNet-based architectures performed superior
to any shallower architectures. This suggests that architectures with deeper
encoders learn more robust features than shallower architectures with similar
computational complexity and should be a first consideration when selecting
a backbone for a crowd counter model.

Upon addition of 82 negative samples to the training data with 300 regular
samples, we have observed decreased numbers of false positive predictions,
but at the cost of worse accuracy in other scenarios. With a more balanced
dataset with additional regular samples from different datasets with a wide
range of crowd densities and fewer negative samples, the robustness increased
significantly without sacrificing nearly any accuracy.
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Conclusion

Considering the aforementioned and the increase in accuracy after fine-
tuning a model to predict a specific density range, we believe fine-tuning
any crowd-counting model to the conditions in which it will be deployed will
benefit the accuracy. Furthermore, when training a universal crowd counter,
the range of different densities in the training data should be balanced for the
optimal performance of the model.

We have also evaluated the performance of different model architectures in
challenging weather conditions and have found that fog and rain are the most
difficult to tackle accurately. Changes in brightness or sharp shadows altering
the contrast had little impact on the accuracy. We have retrained the P2PNet
model with an augmented dataset to enhance the model performance during
challenging weather conditions. This model faced poor convergence, yet it
achieved lesser average error during rain, but the predictions were seemingly
random, and the accuracy was abysmal in any common scenario.

The impact of rain cannot easily be mitigated, as it removes too much de-
tail from the picture, and there is not enough detail left for accurate counting.
When designing a crowd counter, the image quality from a camera used for
counting has to be adequate for the desired accuracy and encountered densi-
ties. We illustrate this with an extreme example of 20 thousand people, where
poor resolution results in detection failure. We have implemented a patched
inference pipeline to circumvent the memory limitations of our hardware and
estimate crowds in a highly detailed photograph. With this approach, the
resulting accuracy improved drastically, proving that high resolution will be
necessary to count larger crowds accurately.

The most significant limitation of this thesis is the lack of transformer-
based models in our evaluations. Unfortunately, we could not obtain source
codes or trained weights for published transformer-based crowd-counting mod-
els, and training those requires more memory than our hardware had available.
Although computationally expensive, these models are a missing piece from
our architectural benchmarks on robustness and accuracy. Instead, we have
focused on evaluating the published results in the NWPU-Crowd benchmark,
for which we implemented a web scraper to obtain the accuracy data from
various methods. We have successfully identified 72 of them, with their cor-
responding published research, analyzed trends in crowd counting research,
and evaluated methods built around self-attention, such as the transformers,
recently gaining much attention in computer vision.

From the collected data, it is clear that architectures built around self-
attention have achieved higher accuracy and, most noticeably, a better low-
light performance compared to purely convolutional models. We believe this
is due to the self-attention long-range modeling capabilities being essential for
decisions where insufficient details are present in local hard-to-discern regions.
We have also found that networks that localize individuals have recently out-
performed density-based approaches in crowd counting.
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In future work, more focus should be paid to the importance and benefits
of self-attention mechanisms in crowd-counting architectures and the possible
impact of their combination with deeper convolutional encoder backbones on
model robustness.

Another promising improvement lies in tackling the high resolution needed
for accurate counting in extremely dense crowds. Most current methods we
inspected have only downscaled any high-resolution data for training, losing
much information in the process. A patch-inference and training pipeline
could utilize all the original data and predict accurately with arbitrary image
size.

Another option would be the research of both memory-efficient and small-
footprint architectures that could fit the high-resolution input into a limited
memory. Candidates for such networks could be the compact convolutional
transformers [55] or attention-approximating architectures that reduce the
quadratic space complexity to linear, such as the Performer architecture [93].

Lastly, apart from the accuracy of the crowd counters, handling scattered
occlusions is another problem to be tackled if a reliable system is to be used
in real-world scenarios. By counting occlusions and the context of where they
appear, it is possible to estimate the number of fully occluded individuals,
contributing to a more accurate total count.

With these improvements, we envision the development of more accurate,
robust, and reliable crowd-counting models that can handle a variety of chal-
lenging scenarios, including challenging weather conditions and both sparse
crowds and large crowds. These models could find numerous applications in
crowd management, security, and event planning. Efficient models that handle
high-resolution input data with limited computational resources could open
new possibilities for real-world applications.
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Appendix A
List of Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

CCTV Closed-Circuit Television

CNN Convolutional Neural Network

CvT Convolutional Transformer

CLTR Crowd Localization Transformer

FCN Fully Convolutional Network

FP False Positive

FPN Feature Pyramid Network

GAN Generative Adversarial Network

GCC GTA5 Crowd Counting

GT Ground Truth

GPU Graphics Processing Unit

HoG Histogram of Oriented Gradients

ILSVRC ImageNet Large Scale Visual Recognition Challenge

k-NN K-Nearest Neighbors Algorithm

MAE Mean Average Error

MCNN Multi-Column Convolutional Neural Network

ML Machine Learning
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A. List of Acronyms

MSE Mean Squared Error

MOG Mixture of Gaussians

NLP Natural Language Processing

PE Positional Encoding

P2PNet Point-to-Point Network

RMSE Root Mean Squared Error

RMSLE Root Mean Squared Log Error

ROI Region of Interest

SANet Scale Aggregation Network

SASNet Scale-Adaptive Selection Network

SFCN Spatial Fully Convolutional Network

SIFT Scale-Invariant Feature Transform

SEQ2SEQ Sequence-to-Sequence Model

SVM Support Vector Machine

SHB ShanghaiTech Part B

SHA ShanghaiTech Part A

UCF CC University of Central Florida Crowd Counting

ViT Vision Transformer

YOLO You Only Look Once Network
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Appendix B
Contents of the enclosed media

All files were submitted, with an exception of the public datasets used in this
thesis, due to their size. Links to download this data for evaluation can be
found in the readme file.

src...................................all source files and model weights
crowdbench scraper........files for crowdbenchmark.com evaluation
datasets .................... scripts for data preprocessing and data

EMPTY PLACES ......................... our empty places dataset
HARD IMAGES............................our hard images dataset
scripts...............................data preprocessing scripts

augmentation......................data augmentation scripts
networks..................... source codes of implemented networks

C3 fw...................source codes of the C3 framework models
P2PNet........................source codes of the P2PNet model
SASNet........................source codes of the SASNet model

DP Vadlejch Martin 2023.pdf............this thesis in the PDF format
DP Vadlejch Martin 2023.zip..........LATEX source files for this thesis
README.md..................further description of all the submitted files
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