
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Exploring Vulnerabilities of the Internet of Things Devices

Bc. Zdena Tropková

Ing. Jiří Dostál, Ph.D.

Informatics

Computer Security

Department of Information Security

until the end of summer semester 2023/2024

Instructions

The recent increase of Internet of Things (IoT) devices in all areas makes them an

attractive target for attackers. For mitigation of security risks is essential to know

common threats and vulnerabilities. In the latest IoT vulnerability ranking created by

OWASP in 2018 were the top three vulnerabilities weak passwords, insecure network

services, and insecure ecosystem interfaces. The OWASP creates its lists based on public

sources and gets data from the contributions of companies as well. After gathering and

processing all data, the result is reviewed and published.

 The main goal of this thesis is to create an Internet of Things vulnerability ranking list

and analyze the explored vulnerabilities.

1. Get familiar with security vulnerabilities in IoT systems and devices.

2. Analyze the current status of vulnerability ranking lists (e.g., OWASP IoT Top 10).

3. Gather data from multiple sources like CVE databases, exploit databases, articles, etc.

4. Create your own IoT vulnerability ranking list based on the created dataset.

5. Choose at least three vulnerabilities from the created list and analyze them in the

context of IoT. Describe possible defense and attack vectors.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 15 January 2023 in Prague.

Master’s thesis

Exploring Vulnerabilities of the Internet of
Things Devices

Bc. Zdena Tropková

Department of Information Security
Supervisor: Ing. Jǐŕı Dostál, Ph.D.

May 3, 2023

Acknowledgements

I would like to thank my supervisor Ing. Jǐŕı Dostál, Ph.D. for the academic
help and guidance. Furthermore, I am also grateful to my boyfriend Petr,
family, and friends for their support during my studies and work on this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 3, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Zdena Tropková. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Tropková, Zdena. Exploring Vulnerabilities of the Internet of Things Devices.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2023.

Abstrakt

V této diplomová práce představujeme žebř́ıček deseti nejčastěǰśıch zranitel-
nost́ı objevuj́ıćıch se v zař́ızeńıch Internetu Věćı. Hlavńım ćılem práce bylo
vytvořit žebř́ıčky z veřejných dat s transparentńım postupem protože nyńı ne-
existuj́ı žebř́ıčky, které by tyto požadavky splňovaly. Např́ıklad projekt OWASP
publikoval nejnověǰśı žebř́ıček v roce 2018 a ostatńı aktuálńı žebř́ıčky nemaj́ı
popsaný postup a doložené zdroje dat. V této práci představujeme žebř́ıček de-
seti nejčastěǰśıch zranitelnost́ı v zař́ızeńıch Internetu Věćı. Dále prezentujeme
podobný žebř́ıček pouze pro kamerová zař́ızeńı a nejobvykleǰśı zranitelnost
pro r̊uzné kategorie chytrých zař́ızeńı. Pro vytvořeńı žebř́ıčk̊u byl implemen-
tován nástroj pro sběr zranitelnost́ı ve frameworku Scrapy. Nav́ıc byla prove-
dena analýza třech kategoríı zranitelnost́ı v kontextu Internetu Věćı. Jedná se
o zranitelnosti z kategoríı Access Control, Overflow a Password Management.

Kĺıčová slova Internet věćı, chytrá zař́ızeńı, žebř́ıček zranitelnost́ı, zrani-
telnost, vytěžováńı dat, framework Scrapy

vii

Abstract

We introduce in this thesis a ranking list of the ten most common vulnerabil-
ities in Internet of Things devices. The main aim was to provide ranking lists
created from public data with a transparent creation methodology because
ranking lists with these requirements currently do not exist. For example, the
popular project OWASP published the most recent ranking list in 2018, and
other existing up-to-date ranking lists do not provide a transparent creation
methodology and used data sources. We introduce in this thesis a ranking list
of the ten most common vulnerabilities in Internet of Things devices. Fur-
thermore, we propose a similar ranking list only for camera devices. Also, we
present the most common vulnerability for different smart device categories.
In addition, the scraping tool for vulnerability collection was implemented in
the framework Scrapy, and an analysis of three vulnerabilities in the context
of the Internet of Things devices was performed. The selected vulnerability
categories are Access Control, Overflow, and Password Management.

Keywords Internet of Things, smart devices, vulnerability ranking list, vul-
nerability, data mining, framework Scrapy

viii

Contents

Introduction 1

1 State-of-the-art 3
1.1 Internet of Things . 3
1.2 Vulnerabilities . 4

1.2.1 Common Weakness Enumeration (CWE) 4
1.2.2 Common Vulnerabilities and Exposures (CVE) 4
1.2.3 Common Platform Enumeration (CPE) 5
1.2.4 Common Vulnerability Scoring System (CVSS) 5

1.2.4.1 CVSS 2 . 6
1.2.4.2 CVSS 3 . 6
1.2.4.3 CVSS 3.1 . 7
1.2.4.4 CVSS 4 . 7

1.3 Vulnerability Ranking Lists . 7
1.3.1 OWASP . 7

1.3.1.1 OWASP TOP 10 8
1.3.1.2 OWASP Internet of Things 8

1.3.2 CWE Top 25 Most Dangerous Software Weaknesses . . 8

2 Data Scraping 11
2.1 Proposal . 11
2.2 Data Sources . 12

2.2.1 National Vulnerability Database 12
2.2.2 Exploit Database . 12
2.2.3 Packet Storm . 13

2.3 Keywords . 13
2.4 Data Scraping Tools . 14

2.4.1 Beautiful Soup . 14
2.4.2 Selenium . 14

ix

2.4.3 Playwright . 14
2.4.4 Scrapy . 14

2.5 Implementation of Scraping Tool 14
2.5.1 Challanges . 15

2.5.1.1 Identification of Internet of Things Vulnerabil-
ities . 15

2.5.1.2 Unification of CVSS Score Versions 16
2.5.1.3 Web Pages Using Java Script 17

2.5.2 Used Libraries . 17
2.5.2.1 Natural Language Toolkit 17
2.5.2.2 Asyncio . 18

2.6 Scrapers . 18
2.6.1 Items . 19

2.6.1.1 Item Vulnerability 19
2.6.2 Spiders . 20

2.6.2.1 CVE NIST API 20
2.6.2.2 EXPLOIT DB WEB PLAYWRIGHT 21
2.6.2.3 EXPLOIT PACKETSTORM WEB 22

2.6.3 Shared Functions . 23
2.6.3.1 CVSS Converter 23
2.6.3.2 Description Processing 25
2.6.3.3 Internet of Things Score 25

3 Dataset 27
3.1 Methodology of Dataset Creation 27
3.2 Dataset Columns . 28

3.2.1 Data Scraping Columns 28
3.2.2 Vulnerability Columns 29

3.3 Vulnerability Categories . 29
3.3.1 Access Control Problem 30
3.3.2 Cross-site Request Forgery 30
3.3.3 Cross-site Scripting . 31
3.3.4 Denial of Service . 32
3.3.5 Execution of Malicious Code 33
3.3.6 Improper Data Handling 34
3.3.7 Improper Input Validation 35
3.3.8 Improper Use of Memory 36
3.3.9 Insecure Design/Design Flaw 37
3.3.10 Other Vulnerabilities . 38
3.3.11 Overflow . 38
3.3.12 Path Traversal . 39
3.3.13 Problematic Authentication/Session Handling 40
3.3.14 Problematic Cryptography 41
3.3.15 Problematic Password Management 42

x

3.3.16 Race Condition . 43
3.3.17 SQL Injection . 44

3.4 Devices Categories . 45
3.4.1 Cameras . 45
3.4.2 Car Devices . 45
3.4.3 Healthmedical Devices 46
3.4.4 Industry Devices . 46
3.4.5 Lightning . 46
3.4.6 Multiple . 46
3.4.7 Network Devices . 46
3.4.8 Smart Buildings . 46
3.4.9 Smart Home Appliances 47
3.4.10 Smart Small Home Appliances 47
3.4.11 Temperature Control . 47
3.4.12 Voicesound Devices . 47
3.4.13 Wearable Devices . 47

4 Ranking Lists 49
4.1 Top 10 Vulnerabilities . 49
4.2 Top 10 Vulnerabilities in Camera Category 50
4.3 Top Vulnerability per Device Category 51

5 Vulnerability Analysis 53
5.1 Access Control Problem . 53

5.1.1 Access Control Architecture 54
5.1.2 Access Control Models 54
5.1.3 Related Attacks . 56

5.2 Overflow . 56
5.2.1 Buffer Overflow Types 57
5.2.2 Buffer Overflow Protection 58
5.2.3 Related Attacks . 59

5.3 Problematic Password Management 60
5.3.1 Password Setting . 60
5.3.2 Password Management 61
5.3.3 Hard-coded/Default Credentials 61

Conclusion 63

Bibliography 65

A Acronyms 73

B Created Ranking Lists 75

C Structure of Enclosed Files 77

xi

List of Figures

2.1 Structure of the Scrapy project files 18
2.2 Example of Item Vulnerability . 19
2.3 Spider processing flow . 21
2.4 EXPLOIT DB WEB PLAYWRIGHT spider processing flow . . . 23
2.5 Differences of CVSS scores between versions 24
2.6 Lenghts of the descriptions from CVE NIST database 26

3.1 Number of vulnerability records per source 28
3.2 Access control . 31
3.3 Denial of service/Distributed Denial of Service 34
3.4 Buffer overflow . 40
3.5 Race Condition . 44

4.1 Number of vulnerability records per device group 52

5.1 Central and distributed access control architecture 55
5.2 Stack buffer overflow attack . 57
5.3 Stack layout with canary value . 59

xiii

List of Tables

1.1 OWASP vulnerability ranking list for Internet of Things 2018 . . . 8

4.1 Ranking List of Top 10 Vulnerabilities in the Internet of Things . . 50
4.2 Ranking List of Top 10 Vulnerabilities in Camera Devices 51
4.3 List of Top Vulnerability per Device Category 52

B.1 Ranking List of Top 10 Vulnerabilities in the Internet of Things . . 75
B.2 Ranking List of Top 10 Vulnerabilities in Camera Devices 76
B.3 List of Top Vulnerability per Device Category 76

xv

Introduction

The emphasis on the security of the Internet of Things devices is still insuffi-
cient despite the recent rapid increase in their use. Nowadays, smart devices
are available to everyone and used daily in numerous diverse areas. We can
easily purchase them to equip our households with smart bulbs, plugs, and
other smart appliances. In addition, smart buildings use thermostats and
controllers. Many wearables, such as smart watches and rings, are widely
available. Furthermore, smart devices like sensors, monitors, and controllers
are frequently used in the automotive, transportation, healthcare, and other
industries.

Despite the broad area of use of Internet of Things devices, many vendors
still do not put enough afford into vulnerability management and product
security. Regardless, people equip their households with vulnerable smart
devices with wide-known security threats, leading to severe security issues for
home networks. The same risks apply to companies and organizations when
the attacker can misuse vulnerable Internet of Things devices to gain control
over the entire system and network.

However, due to many concerns from organizations and security experts,
the situation is slowly improving. For example, by the IoT Security Founda-
tion reports [1], the trend of disclosure policy is gradually increasing. Below
10% of vendors had a disclosure policy in 2018. Later in 2022, over 27% com-
panies offered it. Transparency and vulnerability publishing from vendors is
essential for the security of smart devices. Security experts must know com-
mon problems and threats to mitigate security risks in systems. Therefore, it
needed to have relevant data and reference lists.

For web applications is used the awareness document OWASP TOP 10 [2].
It repeatedly introduces and describes the most common threats and offers a
guide on how to prevent them. Companies adopt it and use it in development
to secure their software. OWASP also published ranking lists for the Internet
of Things devices in 2014 and 2018 [3]. However, with the recent increase
in the use of smart devices, it may be outdated. The more recently created

1

Introduction

ranking lists of smart devices are available online from many different sources,
but their creation and data source methodology is not transparent.

The main goal of this thesis is to propose a vulnerability ranking list of
Internet of Things devices with clarified methodology and known public data
sources. In addition, create the dataset containing vulnerability records about
the Internet of Things devices and implement a tool to collect the required
data.

The thesis is divided into the following six chapters. The first chapter
introduces terms related to this work—Internet of Things, vulnerability, and
ranking lists. In the second chapter is described the entire scraping process.
The data sources are introduced, and the implementation of the scraping
tool is described, including the challenges and structure of the tool. The third
chapter is about the created dataset and its methodology. All dataset columns
are explained, and device and vulnerability categories are presented. In the
fourth chapter, the formed ranking lists are presented. In the last chapter,
three vulnerabilities are introduced and analyzed in the Internet of Things
security context. Finally, the conclusion of the thesis is proposed with future
work to improve the ranking list creation process.

2

Chapter 1
State-of-the-art

In the first part of this chapter, the term Internet of Things is introduced.
Then, vulnerability and associated phrases like CWE a CVSS are explained.
Finally, the ranking lists are presented with their methodology—OWASP TOP
10 and CWE Top 25 Most Dangerous Software Weaknesses.

1.1 Internet of Things

The Internet of Things comprises diverse smart devices with various features
and purposes. Hence, there is no exact definition for it. For example, this work
[4] defines the Internet of Things as devices that are not computers but have
computing power and can exchange and process data. Next, [5] describes it as
a network of intelligent objects used on daily bases. In addition, [6] presents
the Internet of Things as a network of autonomous devices that collect data,
exchange information, and perform computations cooperatively.

Furthermore, opinions differ on what exact devices belong to the Internet
of Things. For illustration, somebody considers mobile phones or network
appliances as smart devices. However, on the opposite, many people think
these devices are closer to computers based on their conduct and computation
power. Therefore, they do not belong in the Internet of Things. The inclusion
of specific device types mostly depends on the used definition in the specific
case.

In addition, many devices can be clearly considered the Internet of Things.
First, it is intelligent home gadgets like bulbs, sockets, thermostats, doorbells,
or locks. Similarly, bigger appliances like fridges, vacuums, or washing ma-
chines. Second, wearable devices nowadays broadly used by people—for ex-
ample, smart watches, rings, or glasses. Next, the gadgets operating in various
industries, like sensors, monitors, or controllers. All devices we view as the
Internet of Things are presented in section Device Categories.

The popularity of the Internet of Things is still rapidly growing. The
statistic from [7] suggests that in 2019 almost 8 billion smart devices were

3

1. State-of-the-art

used. Furthermore, it excepts that in 2030 around 25.5 billion Internet of
Things devices will be connected to the network. That is an expansion of ap-
proximately 200%. Hence, increased use of the Internet of Things in numerous
areas and finding new applications in additional industries is to be expected.

1.2 Vulnerabilities

The vulnerability is a system weakness or flaw the malicious actor can mis-
use for the attack. Vulnerabilities usually arise from programming bugs or
incorrect system architecture. [8] The most common vulnerabilities are, for
example, cross-site scripting, SQL injection, path traversal, or broken authen-
tication.

1.2.1 Common Weakness Enumeration (CWE)

Common Weakness Enumeration is a list presenting categories of the system’s
weaknesses. [9] The categories are structured into a tree defining relations
between them. For example, CWE-862:Missing Authorization is the parent of
the weakness category CWE-425:Direct Request.

The first CWE list was published in 2006, focusing mainly on software.
However, due to the rapid spread of threats to the Internet of Things and
other hardware devices, in 2020, the categories related to them were added.
[10]

Besides defining the structure of weaknesses, CWE includes extensive in-
formation about each category. For example, short and long descriptions.
Further, examples of attacks, impacts of weakness, and affected platforms are
provided.

The primary purpose of the database is to help developers and security
experts understand weaknesses in the systems. Based on that knowledge, they
can eliminate weaknesses in design or development, react efficiently to threats,
and secure products. Second, CWE offers a united structure to communicate
and exchange information about weaknesses.

1.2.2 Common Vulnerabilities and Exposures (CVE)

Common Vulnerabilities and Exposures is a database of published and re-
viewed vulnerabilities. The main goal of it is to categorize the vulnerabilities
from numerous sources affiliated with the CVE program and provide the pub-
lic with unified vulnerability data records. [11]

Each database record describes one specific vulnerability and has assigned
its unique CVE identifier. The ID has a specified form. First is CVE- fol-
lowed by prefix and year of vulnerability publishing. The last part contains at
least four random digits. The identifiers are mainly used to efficiently specify

4

1.2. Vulnerabilities

vulnerabilities in academic papers, articles, vendor security publications, or
software documentation.

Before the vulnerability is officially accepted in the database, it must pass
through several acceptance and confirmation stages. Also, the source must
provide all required data about vulnerabilities like type, consequences, sources,
and affected devices.

1.2.3 Common Platform Enumeration (CPE)

Common Platform Enumeration is a string providing structured information
to identify the system or the device part. The format of the CPE string is
strictly given because it aims to be automatically processed by computers.
Colons separate all 12 parameters like vendor, product, and version. If the
parameter is missing, it is substituted with an asterisk. [12]

For example, the CPE string cpe:2.3:o:planex:cs-wmv02g firmware:*:*:*:*
:*:*:*:*. The first part cpe:23 defines the CPE format and its version. The
following letter o specifies a part of the described system. In this case, it is
the operating system. The other options are h for the hardware and a for
the application. The next two parameters are vendor Planex and product
cs-wmv02g firmware. All remaining parameters are missing, and void places
are filled with asterisks.

The database containing all CPE records is freely available and updated
daily. The CPE strings are primarily used to associate vulnerability records
with specific affected products.

1.2.4 Common Vulnerability Scoring System (CVSS)

The Common Vulnerability Scoring System is an open standard providing a
formula for calculating the severity of the vulnerabilities. The input metrics
for the CVSS formula slightly differ by version and are usually chosen by
security experts. However, all versions operate with the following three main
metrics groups [13]:

1. Base: immutable information about vulnerability

2. Temporal: information about a vulnerability that could be modified in
future

3. Enviromental: vulnerability information related to the concrete envi-
ronment—for example, specific company or organization

The output contains two parts. First is the computed score ranging from
0 to 10. Based on that value, the vulnerability is assigned a severity cate-
gory—low, medium, high, and critical. The second part is the vector. It is
a string with capital letters representing vulnerability metrics divided with

5

1. State-of-the-art

slashes. For example, this CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H
/A:H is CVSS version 3.1 vector for vulnerability CVE-2022-3240.

Companies and security experts use CVSS widely in vulnerability and risk
management. It helps them classify vulnerabilities by priority to primarily
focus on more severe vulnerabilities and threats. Furthermore, the CVSS
score and vector are usually included with records in vulnerability databases.

1.2.4.1 CVSS 2

The CVSS2 was used from 2007 to 2015. It was mainly created to fix issues in
the previous version of CVSS. [14] Due to complaints from the public about
inconsistencies and difficulties in score calculation, it was replaced in 2015 by
version 3.

The CVSS 2 group parameters are the following [14]:

1. Base: Access vector, access complexity, authentication and impact met-
rics (confidentiality, integrity, availability)

2. Temporal: Exploitability, remediation level, report confidence

3. Enviromental: Collateral damage potential, target distribution and
requirements (confidentiality, integrity, availability)

This is an example of CVSS 2 vector AV:L/AC:H/Au:N/C:N/I:C/A:C for
vulnerability CVE-2010-4027. The score for it is 5.6. Thus, the vulnerability
has medium severity. From the vector, we can extract the following informa-
tion, access vector (AV:L) is local, access complexity (AC:H) has a value high,
and authentication (Au:N) is not required. Furthermore, for impact metrics,
confidential (C:N) impact is none, but integrity (I:C) and availability (A:C)
impacts are complete.

1.2.4.2 CVSS 3

The CVSS3 was released in 2015 to replace CVSS 2. The main goal was to
improve scoring based on complaints and requirements from the public. The
three main groups remained the same, but some parameters were adjusted.
New parameters were added to the group Base to describe vulnerability more
clearly. Furthermore, in Enviromental group, some parameters were removed
and substituted by modified base metrics. The last group Temporal was not
changed. Finally, there is the list of categories and parameters for CVSS 3
[15]:

1. Base: Attack vector, attack complexity, privileges required, user inter-
action, scope and impact metrics (confidentiality, integrity, availability)

2. Temporal: Exploit code maturity, remediation level, report confidence

6

1.3. Vulnerability Ranking Lists

3. Enviromental: Modified base metrics and requirements (confidential-
ity, integrity, availability)

1.2.4.3 CVSS 3.1

The main aim of CVSS 3.1, launched in 2019, was to implement improvements
into version 3.0 without any significant changes. Thus, no matrics group pa-
rameter was added or modified. However, their descriptions were modified and
clarified. By creators, the changes should remind users that CVSS is mainly
for severity measures and not only risk management. Also, some changes were
applied to attack vector metrics and scoring guidance. [16]

1.2.4.4 CVSS 4

The CVSS 4 is currently in draft. The primary goal of creators is to clarify
the score and implement new parameters according to the current security
and system state. Some of the approved proposals have already been pub-
lished. For example, the new main group should be added, and some of the
current parameters like Remediation level removed. Furthermore, the attack’s
automation should also be considered in score calculation. For the Internet of
Things devices is relevant a proposal to include a kinetic/safety impact metric.
[17]

1.3 Vulnerability Ranking Lists

The vulnerability rankings lists usually introduce and describe the most com-
mon threats to the systems in the specified area. For example, OWASP TOP
10 is a popular list specializing in web application vulnerabilities. Ranking
lists are a crucial tool for developers, vendors, and security experts. It can
be used to design proper and secure architecture. Also, the developers may
use it to mitigate security flaws in code during development. Furthermore, it
helps security experts in risk management to focus on widespread and more
potential threats primarily.

1.3.1 OWASP

The Open Web Application Security Project (OWASP) is a non-profit foun-
dation dedicated primarily to web security. [18] It includes numerous projects
related to cybersecurity. One of the most recognized is the project OWASP
TOP 10, a standard used widely by companies, developers, and security ex-
perts to secure web applications.

7

1. State-of-the-art

Table 1.1: OWASP vulnerability ranking list for Internet of Things 2018

Position Vulnerability
1 Weak Guessable, or Hardcoded Passwords
2 Insecure Network Services
3 Insecure Ecosystem Interfaces
4 Lack of Secure Update Mechanism
5 Use of Insecure or Outdated Components
6 Insufficient Privacy Protection
7 Insecure Data Transfer and Storage
8 Lack of Device Management
9 Insecure Default Settings
10 Lack of Physical Hardening

1.3.1.1 OWASP TOP 10

OWASP TOP 10 is a periodically published ranking list of the top ten most
common web application vulnerabilities. [2] The last one was posted in 2021.
The ranking lists aim to improve web application security by pointing out
widespread vulnerabilities. Thus, all listed vulnerabilities are associated with
descriptions, examples, and prevention advice.

The OWASP uses numerous data sources to create a list—companies, ven-
dors, or bug bounty programs. The acquired data are verified and reviewed
before acceptance to the dataset. In further processing, the data are normal-
ized, and vulnerability CWEs are revised. The final placement is formed based
on the number of vulnerable applications with specific CWE instead of the
count of the CWE itself. This approach is adopted because a single applica-
tion may have multiple identical CWEs. Furthermore, the result computation
also considers the CWSS score. [2]

1.3.1.2 OWASP Internet of Things

In 2014, OWASP launched a project dedicated solely to the Internet of Things
devices. [3] Similarly to OWASP TOP 10, it aims to help with the security
of smart devices by providing a ranking list to vendors and companies. Since
the project started, two lists were released in 2014 and 2018.

The top 10 vulnerabilities for the Internet of Things for 2018 are presented
in the table 1.1.

1.3.2 CWE Top 25 Most Dangerous Software Weaknesses

The ranked lists made by CWE present 25 of the most common weaknesses in
software. [19] The latest list was published in 2022 and was created from over

8

1.3. Vulnerability Ranking Lists

37 000 CVE records from the preceding two years. As ranking lists described
above, it should help spread awareness about common weaknesses and help
with risk management.

CWE uses as a data source for the ranking list a public database of CVE
records—National Vulnerability Database maintained by NIST. First, the data
are collected for the desired period. Second, the acquired records are divided
into groups by weakness type and then automatically and manually examined
for inaccurate CWE assignation. Finally, the placement is calculated by the
formula considering vulnerability prevalence and CVSS score. [19]

9

Chapter 2
Data Scraping

First, we introduce in this chapter the process of dataset creation. Second,
we propose sources of vulnerability data and lists of keywords. Next, the
implementation of the scraping tool is described. Thus, we present tools and
libraries used for scraping. Also, implementing requirements and challenges,
like the Internet of Things vulnerability detection, are introduced. Finally,
scrapers are individually presented with their functions.

2.1 Proposal

To be able to create ranking lists, we needed to collect data and process them
into the dataset. First, we needed to choose public sources of Internet of
Things vulnerability. We aimed to find sources that are possible to scrape
and offer a satisfactory amount of vulnerability records. Furthermore, the
vulnerability records needed to be in a form that can be processed at least
partly automatically. Based on these requirements, we selected three sources
that are presented in detail in the next section Data Sources. One of the
sources is a database containing all CVE records. Thus, our next goal was to
find additional sources that collect vulnerabilities also without assigned CVE.
That fulfills, for example, exploit databases. We did not use articles about
vulnerabilities because they almost every time covered the vulnerability with
assigned CVE, which is already covered from the source of the CVE database.

Because the chosen sources also include vulnerabilities not associated with
the Internet of Things, we needed to be able to search for required vulnerabil-
ities. We proposed keywords that we used for that. They cover types of smart
devices or vendors of the Internet of Things. We used numerous sources like
e-shops with smart devices or vulnerability records to construct lists of them.
They are closely introduced in section Keywords.

Based on chosen sources and created keywords, we defined the dataset’s
structure. We selected column names and types of values. Also, we formed

11

2. Data Scraping

17 categories of vulnerabilities and 13 categories of smart devices for further
identification of vulnerability record types.

Then we had to pick a tool enabling the scraping of requested sources
and data processing. After researching and evaluating the pros and cons, we
decided to use the framework Scrapy. The process of selecting the suitable
tool for scraping is described Data Scraping Tools.

While implementing the scraping tool, we aimed to process as much data as
possible automatically. Also, we wanted to have data in the dataset consistent
and reduce the number of empty values. However, it was not possible in some
cases, and various parts of the dataset had to be further edited and processed
manually. During the scraping tool implementation, we dealt with numerous
challenges associated with the data sources nature. They are described in
section Challenges.

After processing from Scrapy and manual work, we were able to form a
dataset suitable for ranking lists creation. Based on the dataset, we further
formed three ranking lists fulfilling our requirements on public data sources
and transparent methodology.

2.2 Data Sources

Our primary goal was to choose public sources for the dataset creation. There-
fore, we select the following three web pages to collect vulnerability records
about Internet of Things devices.

2.2.1 National Vulnerability Database

The National Vulnerability Database, run by the U.S. government, is a repos-
itory of standards for vulnerability management. [20] The primary purpose
is aggregating CVE records and collecting vulnerability data from multiple
sources. Also, the vulnerability records have CVSS scores calculated and are
assigned CWE, CPE, and other metrics based on findings. With their used
methodology, they offer consumers an extensive vulnerability database.

2.2.2 Exploit Database

The Exploit Database is a non-profit project operated by Offensive Security.
[21] Project offers a freely available database of public exploits and proofs-of-
concept for security experts and developers. The database consists of records
from multiple sources. They collect data from various public origins, mailing
lists, or direct submissions.

12

2.3. Keywords

2.2.3 Packet Storm

Packet Storm is a webpage created in 1998 about computer security. [22] The
page aims to point to security issues and provide information to developers,
security experts, or companies. The webpage offers a database of files like
tools, advisories, and exploits. Furthermore, articles with information about
vulnerabilities and security incidents are published daily.

2.3 Keywords

We created numerous lists and dictionaries consisting of keywords for easier
vulnerability searching and classification. Due to the enormous amount of data
about the vulnerabilities, we needed to search and pick Internet of Things-
related vulnerabilities effectively. Therefore, we propose lists for vendors,
device types, and vulnerabilities to be used as keywords for searching on the
source webpages and further automatic labeling in the scrapers.

1. vendors keywords: The list comprises vendors associated with the
Internet of Things devices.

2. devices keywords: This list consists of devices in the Internet of
Things.

3. specific devices keywords: The list of keywords with specific devices
from companies not producing only the Internet of Things products. For
example, Amazon Echo or Google Home.

4. ambiguous keywords: The words in this list do not have meaning
only in the Internet of Things like monitor. The monitor can also be
associated with network or monitoring vulnerabilities. The keywords in
this list have added iot shortcut to clear and more effective search.

5. other keywords: The list of general terms about the Internet of Things
or keywords not belonging to any previous list.

6. devices dict: This dictionary has keys defined by categories of devices
like in section Device Categories. Every category has a list of devices
belonging to that group.

7. vulnerability dict: The dictionary with keys representing categories
described in section Vulnerability Categories. Each category has a list of
keywords associated with vulnerability used mainly for labeling further
in the scraping process.

13

2. Data Scraping

2.4 Data Scraping Tools

This section describes tools that we considered using for data scraping. All
of them are compatible with the programming language Python and enable
data collection from web pages. However, they differ in many functionalities
and abilities.

2.4.1 Beautiful Soup

The Python library Beautiful Soup extracts data from XML and HTML files.
It converts given documents into Python objects for further processing. [23]
Therefore, it is not sufficient for scraping data from web pages. Another tool,
for example, Python library requests or urllib3, is needed to perform requests
and get data from the source pages. It is mainly used for small projects and
recommended for beginners in data scraping.

2.4.2 Selenium

Selenium is an open-source project containing various tools for web browser
automation. It is mainly used for web application automation testing because
it offers many components to write tests in multiple programming languages.
[24] However, due to its capabilities, this framework is frequently used for data
scraping.

2.4.3 Playwright

Playwright is a library for automated web page testing using browsers similar
to Selenium. It offers multiple modern browsers like Firefox or Chromium
running in isolation and different configurations. Their main goal is fast and
reliable use. In addition, it provides API to browsers which can also be used
for web page scraping and following data extraction and manipulation. [25]

2.4.4 Scrapy

Scrapy is an application framework for data scraping and web crawling. It
supports more robust projects with the ability to build architecture containing
multiple spiders. For programmers, it offers wide flexibility and many features
helpful in scraping, like working with proxies, data pipelines, or setting request
parameters. [26]

2.5 Implementation of Scraping Tool

We decided to use the framework Scrapy to implement the data scraping tool.
First, it allows us to create a robust system to scrape multiple web pages and
easily add new scraper for additional sources of vulnerabilities in the future.

14

2.5. Implementation of Scraping Tool

Second, it offers mechanisms to process gathered data in a united form and
create pipelines. Furthermore, the scraping parameters, like request headers
or parallelization, can be easily set in the setting file shared by all scrapers.
Also, it offers saving the scraped data into CVS files which we preferred for
further data processing. Last, the Scrapy is fast due to its nature—it is a
framework and not only a library, also it does not run a browser internally to
send requests.

Other tools could not fulfill some of our following requirements:

1. Scalability

2. Easy code modification

3. Repeated launching and crawling

4. Data unification and processing

2.5.1 Challanges

We rose to numerous challenges during the design and implementation of the
scrapers. They were mainly associated with the accurate detection of the
Internet of Things vulnerabilities and the implementation of specific function-
alities of the scrapers. The most significant challenges are described with their
solution below.

2.5.1.1 Identification of Internet of Things Vulnerabilities

We use as data sources the web pages maintaining vulnerabilities information.
However, they not only offer data related to the Internet of Things. Therefore,
we had to use mechanisms to detect vulnerabilities related only to the Internet
of Things. Due to the amount of scraped data, it had to be done mainly
automatically to be able to process it.

In the NIST CVE database are no rules on how the description of the CVE
record should look. Therefore, it is on the reporter of CVE how he defines and
explains the vulnerability. Some of the descriptions are very short or unclear.
Thus, sometimes it is even for humans complicated to decide based on the
description if the vulnerability is relevant to the Internet of Things.

For example, the description of vulnerability: Meross MSS110 devices
through 1.1.24 contain an unauthenticated admin.htm administrative inter-
face.

If somebody does not know that Meross is the company selling smart
home devices and devices with identification MSS110 are smart wifi plugs, the
person can not simply decide that it is the Internet of Things vulnerability.
Therefore, it is complicated to label the vulnerability automatically.

On the other side, it is simple to clearly classify the vulnerabilities with
descriptions when the type of device, like a smart socket or camera, is specified.

15

2. Data Scraping

For example, it fulfills the following description: Syska Smart Bulb devices
through 2017-08-06 receive RGB parameters over cleartext Bluetooth Low En-
ergy (BLE), leading to sniffing, reverse engineering, and replay attacks..

In Exploit Database, the exploits have parameters like Type or Platform.
They can help to specify if the exploit is for the Internet of Things Devices.
Furthermore, as the source of the vulnerability data can be used the title of the
exploit or published code with comments. However, there are no strict rules
or specifications similar to the NIST database. Thus, relying on it entirely
during the automatic classification is not possible.

The vulnerability can be identified in the Packet Strom based on the title
and description. The problem is equivalent to previous sources. No specific
rules are applied. Thus, they can not be used to classify Internet of Things
vulnerabilities fully automatically.

To identify Internet of Things vulnerabilities based on the available data,
we proposed the Internet of Things Score system. It should help determine
how much is a specific vulnerability related to the Internet of Things. The
score is in the range from 0 to 10. A lower value indicates that the vulnerability
is less likely to be associated with the Internet of Things. To calculate the
score, we used the presented keywords and created a dictionary assigning
values to specific keywords based on their association with the Internet of
Things. The whole process is further explained in the section Internet of
Things Score.

The IoT score enabled easier automatic identification of Internet of Things
vulnerabilities. However, due to the problems described above, it is impossible
to classify all vulnerabilities precisely. Nevertheless, it allows the rejection of
vulnerabilities with a low score and vice versa, labeling the vulnerability with
a high score as the Internet of Things related. In addition, it helps with more
effective manual processing and labeling of the scraped data.

2.5.1.2 Unification of CVSS Score Versions

The used CVE database from NIST offers a CVSS score for all vulnerabilities.
However, the older vulnerabilities have the only score available in the CVSS
2. Because we aimed to have a unified form of data in the created dataset,
we decided to work with only one version of the score. In addition, it enables
more precise results when working with CVSS scores of vulnerabilities. We
chose to use CVSS in version 3.1 because it is newer and more commonly used
in enterprises and by security experts.

For CVSS score transformation in scrapers was implemented function con-
vert cvss 2 to 3. It takes the CVSS vector in version 2 as input. After the
conversion process, it returns a vector in version 3.1 and a score calculated
based on it. The entire methodology and function are described in more detail
in the section CVSS Converter. Furthermore, in addition to the newly calcu-

16

2.5. Implementation of Scraping Tool

lated score in version 3.1, we decided to save also the old version to maintain
data consistency.

2.5.1.3 Web Pages Using Java Script

The Exploit Database uses JavaScript to display a list of exploits. First, we
considered that we would access the exploits records directly based on the
index in the URL without the need to process JavaScript content. However,
the quantity of scraped data would be enormous, with only a small amount of
Internet of Things-related vulnerabilities. Thus, the further manual labeling
and processing of the data would be unmanageable.

We needed to access primarily the Internet of Things exploits. Therefore,
we used keywords to search the website to acquire the required exploits. How-
ever, the search function has, as a result, a list of the exploits run by Java
Script. Unfortunately, Scrapy does not support by default scraping webpage
content run by JavaScript. For that reason, we used, in addition, Playwright
integration for Scrapy [27]. It enables a hander in Scrapy that sends Play-
wright requests and gathers required JavaScript content.

If Scrapy sends a request to the exploit database without using the Play-
wright handler, the required exploit list will not be present in response be-
cause the Java Script was not yet loaded. Playwright provides function-
alities that enable waiting for the entire webpage content. Therefore, the
exploit list can be extracted for further use. This way, we could scrape
required vulnerabilities mainly associated with the Internet of Things de-
vices. All implementation details are further described in the section EX-
PLOIT DB WEB PLAYWRIGHT, dedicated to the Exploit database.

2.5.2 Used Libraries

We used numerous commonly used libraries in Python like re and datetime to
implement the data scrapers. Furthermore, the library nltk was used for nat-
ural language processing in descriptions and titles. Due to the usage of Play-
wright, the asyncio had to be used to implement JavaScript content scraping
and processing.

2.5.2.1 Natural Language Toolkit

The Natural Language Toolkit (nltk) is a tool for processing human language.
It supports over 50 languages, like English, Spanish, and Greek. NLTK pro-
vides many procedures and functions associated with the text, like parsing,
tokenization, and stemming. In addition, it offers various wordlists. For ex-
ample, the wordlist stopwords contains the most common words like articles
and prepositions. The library is commonly used for text processing before
analyzing or applying machine learning algorithms. [28]

17

2. Data Scraping

Figure 2.1: Structure of the Scrapy project files. It consists of the default
Scrapy files and files including helper functionalities. In the folder spiders are
files with implemented Spiders used for scraping.

vuln scraping
spiders

init .py
cve nist api.py
exploit db web playwright keywords.py
exploit packetstorm web.py

init .py
cvss converter.py
items.py
keywords.py
middlewares.py
pipelines.py
score.py
settings.py

2.5.2.2 Asyncio

Asyncio is a standard Python library for writing concurrent applications. It
introduces async/await syntax in Python, making it easier to write concur-
rent code. Furthermore, Asyncio enables running multiple coroutines simul-
taneously and provides asynchronous queues and async generators. Also, the
library can be used when dealing with I/O intensive operations such as com-
munication with a remote server and downloading data from it. [29]

2.6 Scrapers

The implemented scrapers for source web pages are united in a single Scrapy
project. We used the structure of folders and files that Scrapy automatically
generates in the creation of the new project. In addition, we created new
spiders and files with helper objects and functions. The structure of the files
is illustrated in figure 2.1.

We used for the implementation of the scraping process Scrapy objects
Item and Spider. The Item was used to store scraped vulnerabilities and Spi-
der for implementing the scrapers. They are described further in the section.
Additionally, we present the scraping process flow and each scraper’s specifi-
cations. Finally, at the end of the section are described in detail functions for
converting CVSS, processing descriptions, and calculating Internet of Things
scores.

18

2.6. Scrapers

Figure 2.2: Example of Item Vulnerability. It presents the structure of scraped
vulnerability saved into Item Vulnerability. The example vulnerability is CVE-
2020-11950 from NIST API.

{’cve ’: ’CVE -2020 -11950 ’ ,
’cvss31 ’: 8.8,
’cvss_original ’: 8.8,
’cvss_vector ’: ’CVSS :3.1/ AV:N/.../S:U/C:H/I:H/A:H’,
’date_scraped ’: ’2023 -04 -01 18:04:54 ’ ,
’date_vuln_published ’: ’2020 -05 -28 13:15:11 ’ ,
’description ’: ’VIVOTEK ...(and ’

’before ... an authenticated user ’
’to upload ... resultant execution of ’
’OS commands ... devices .’,

’device_group ’: ’Cameras ’
’device_type ’: ’camera ’,
’iot_keywords ’: [’camera ’, ’device ’],
’iot_score ’: 8.0,
’searched_keyword ’: ’camera ’,
’source_type ’: ’CVE_API_NIST ’,
’source_url ’: ’https :// se ...? keywordSearch =camera ’,
’vendor ’: [’vivotek ’],
’vuln_description ’: ’improper ... used in an ’

"os ...(’ os command injection ’)",
’vulnerability ’: ’Execution of malicious code ’}

2.6.1 Items

The Item in the framework Scrapy is the tool for manipulating and storing
structured data returned by the spiders. It enables to structure the scraped
data in the following forms: dictionaries, Item objects, dataclass objects, and
attrs objects. The objects are primarily declared in a file generated by Scrapy
item.py. Using Item offers many benefits, like structuring large amounts of
data, creating pipelines processing data, and unifying data from multiple spi-
ders/different sources. [30]

2.6.1.1 Item Vulnerability

We proposed the Item named Vulnerability for structuring scraped vulnerabil-
ities from different sources. We decided to use the Item object type because it
offers various features. The values and their names in Item Vulnerability cor-
responds with columns described in section Dataset Columns. Additionally,
the values in Item are defined by object Field.

An example of the vulnerability record saved into Item is displayed in
figure 2.2.

19

2. Data Scraping

2.6.2 Spiders

The Spider is a class defined for implementing the crawling and scraping
process of the selected source. In addition, it introduces numerous methods
for a more straightforward execution of the scraping procedure. Furthermore,
it allows setting class attributes specifying multiple parameters for scraping
behavior like allowed domains. [31]

First, the URL of the chosen web page is inserted. Second, when the
Spider is launched, the start method start request is called. Then, it performs
the request to a given webpage URL and forwards the content to the method
parse. Furthermore, the method processes the response by specified rules. For
example, the data can be parsed by selectors from HTML content. Then, it
returns the data to the database or exports them into the file. The following
requests are made similarly to scrape the entire content from the webpage.

Further in the section are described all spiders separately. They have a
process flow presented in figure 2.3 and use Vulnerabiliy Item to manage data
the same. Furthermore, they all use keywords to classify dataset categories
and calculate Internet of Things score. However, they differ in methods of
gathering data from web pages or extracting data from responses.

2.6.2.1 CVE NIST API

We used the available API to scrape vulnerabilities from the CVE NIST
database on services.nvd.nist.gov. It returns data in JSON format. To scrape
primarily the vulnerabilities associated with the Internet of Things, we used
the API keyword searching function with keywords from created lists described
Keywords.

The response from the API contains all vulnerabilities associated with the
given keywords. Therefore, vulnerabilities are parsed from the response and
then processed individually. First, during the single vulnerability processing,
the data about the scraping request, like used keywords or URL, are saved
into the Vulnerability Item. Then, the vulnerability data are processed. Due
to the structured response in JSON, it is effortless to extract and parse data.
Furthermore, the vulnerability data are mostly consistent, and values are not
missing, unlike in other scrapers.

The methodology of processing vulnerability is the following. First, the
CVSS score is extracted and converted if needed. Second, the vendor is saved
from the vulnerability’s CPE and vulnerability type category specified based
on the assigned CWE. Next, the description of the scraped vulnerability is
processed by method process description described in section Description Pro-
cessing. The missing values of Item Vulnerability are added from the processed
description using keywords. Finally, the IoT score is calculated based on key-
words and processed description.

20

2.6. Scrapers

Spider method
 start_request()

Vulnerability
source

1. Request based on
the keyword

2. Response with
vulnerability data

Spider method
 parse()

3. Calling parse()
method with response

Feed Export

5. Returning Item
Vulnerability

4. Data processing
with spider's methods

CSV file

6. Export to
CSV file

 convert_date()
get_cvss()

convert_cvss_2_to_3()
get_vendor()

get_vulnerability()
get_description()

process_description()
...
...
...

calculate_iot_score()

Figure 2.3: Spider processing flow. The figure introduces the scraping flow
of Spider from the start method call to the final exporting of the processed
data. It also shows communication with the source and the parsing process
of received data.

2.6.2.2 EXPLOIT DB WEB PLAYWRIGHT

This spider uses as a source webpage exploit-db.com. Due to JavaScript on the
page, the Playwright was used in addition to Scrapy to be able to scrape and
process the JavaScript content. The vulnerabilities related to the Internet of
Things were searched based on the Platform parameter on the webpage and
proposed keywords.

Due to the nature of the webpage, some of the attributes of the Vulner-
ability Item were mainly missing. For example, the webpage does not offer
a CVSS vector or score. Furthermore, CVE does not have to be assigned or
exist for the exploit’s vulnerability. Regardless, we implemented methods to
attempt to extract some value types if they exist.

21

2. Data Scraping

Because of the use of JavaScript, the Playwright handler makes the start
request. Then, the parse method is called with the response as an input. To
get the required data about vulnerabilities, the asyncio library must be used
to be able to wait for the loading of JavaScript content. In response is the part
of the exploit list from which the spider extracts exploit indexes for further
use. Then if possible, it continues to another part of the list. After getting
and extracting data, the following request can be sent using the basic Scrapy
request handler. The whole approach is shown in figure 2.4.

The procedure of processing scraped vulnerabilities is analogous to the
previous spider. First, information about scraping is saved. Next, spiders
attempt to extract CVE. As a description of vulnerability is used title and
code of the exploits. We mostly used comments in the code to extract desired
data. Due to the frequently lengthy code of exploit, we decided to save only
the first 500 characters of the original description. Finally, the vulnerabil-
ity details were extracted based on the processed description by the method
process description, and the IoT score was calculated.

2.6.2.3 EXPLOIT PACKETSTORM WEB

This spider has as a source webpage packetstormsecurity.com . We scraped
data from the file section containing, for example, exploits or advisories.
Searching on the webpages with keywords is used for collecting mostly In-
ternet of Things vulnerabilities.

Vulnerability data are extracted from the title and description of the
found file. Usually, it is very short. However, it mostly contains enough
information to distinguish at least vulnerability and device type by search-
ing keywords from the created wordlists. Similarly to the previous spider
EXPLOIT DB WEB PLAYWRIGHT, some required data are missing. For
example, the CVSS is not added to file descriptions, and CVE occurs occa-
sionally.

The response from the source contains a list of the vulnerability files.
Foremost, the list is parsed, and file information is extracted. Then spider
iterates through all gathered files. The process is almost identical to previous
spiders. First, it is checked that the scraped file has the expected tag—exploit,
vulnerability, or advisory. Second, details about the scraping are saved into the
Item. Then, the spider attempts to extract information about the vulnerability
based on the processed description by the method process description. Also,
the Internet of Things score is calculated based on description and keywords.
Finally, the Vulnerability Item is exported and saved into the CVS file.

22

2.6. Scrapers

Spider method
 start_request() Exploit Database

1. Request by
Playwright handler

2. Response without
JavaScript content

Spider method
 parse()

3. Calling parse()
method with response

Waiting for required
selector

a. Using of search web function
with keyword

b. Waiting for exploit's list
using operator await

c. Extracting exploit's indexes
from list

d. Expanding the list of exploits

e. Using sleep function
to wait for content delivery

4. Collecting
vulnerabity

records d. Getting vulnerability data
based on the extracted

 indexes - calling method
parse_exploit()

5. End if not possible
to expand list

Figure 2.4: EXPLOIT DB WEB PLAYWRIGHT spider processing flow.
The figure presents the scraping process scraping using Playwright due to
JavaScript content.

2.6.3 Shared Functions

This section describes functions shared between the spiders or methods im-
plemented in each spider dealing with the same issue. They mainly resolve
the challenges presented in section Challanges.

2.6.3.1 CVSS Converter

To preserve the consistency in the dataset, we decided to work only with CVSS
in version 3.1. However, the CVE NIST database has only CVSS 2 score and
vector in older vulnerability records. Due to that reason, we propose the
schema to convert the base metrics group of CVSS 2 to CVSS 3.1.

In this work dealing with the CVSS conversion [32], they presented ma-
chine learning using 50 words from the vulnerability description to convert
the CVSS version. We aimed to use a simpler method to quickly process large

23

2. Data Scraping

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
CVSS score version differences

0

50

100

150

200

250

300

350

400

Vu
ln

er
ab

ilit
y

re
co

rd
 c

ou
nt

Figure 2.5: Differences of CVSS scores between versions. Histogram of dif-
ferences between original CVSS 2 and calculated values based on proposed
converter in CVSS 3.1.

amounts of data. Therefore, we implemented a direct conversion based on
assigned values.

For example, the metric Authentication in CVSS2 was replaced by equiv-
alent metric Privileges Required. We transformed values based on the parallel
of values:

• None(N)→None(N)

• Single(S)→Low(L)

• Multiple(M)→High(H)

We decided to keep the previous value of CVSS in case of an erroneous
result of the conversion. As a result, the Vulnerability Item has three fields
associated with CVSS score: cvss31, cvss original, cvss vector. Therefore, it
is possible to work with the previous value if needed. However, based on
the scraped data, the average difference between the original and calculated
values is 0.6, and the maximal difference is 2.1. The histogram of differences
is displayed in a plot in figure 2.5.

The function used for conversion is called convert cvss 2 to 3 and occurs
in the file cvss converter.py. It uses the Python package cvss, which presents
functions related to CVSS score, like calculating the score based on the given
vector. The function takes as an input vector in version CVSS 2 and returns
the transformed vector in version 3.1 and the associated score.

24

2.6. Scrapers

2.6.3.2 Description Processing

The descriptions of the scraped vulnerabilities are very diverse. They are
primarily dependent on the publisher of the vulnerability record. As explained
in the section Challanges, no specific rules exist for writing descriptions or
titles. Therefore, the spiders cannot depend on any specifications and patterns
in processing the descriptions. To be able to work with them and apply the
keywords for classification, we needed to standardize and unite their form.

We used the library nltk to process the description. First, we applied
tokenizer RegexpTokenizer to split the description into tokens— words, digits,
and other symbols. Second, the stopwords were removed based on the corpus
stopwords. Further, the numbers were extracted away. Finally, we applied
WordNet Lemmatizer to get words into the inflected form.

This process is applied in method process description. Each spider has it
implemented separately. The method takes as input the description in the
string format and returns the processed description that is further used for
extracting keywords. Example of the processed description saved as a list:
[’multiple’, ’unspecified’, ’vulnerability’, ’camera’, ’life’, ’attacker’, ’denial’,
’service’, ’unknown’, ’vector’].

2.6.3.3 Internet of Things Score

To automatically identify the Internet of Things vulnerability, we proposed the
scoring schema that assigns the weight to keywords based on the association
with the Internet of Things. The keywords more connected to the Internet of
Things have a higher score. The score ranges from 0 to 10, and the additional
value -1 is set when the score cannot be calculated. The result score is the
mean of keywords weights.

The score is implemented as a Python dictionary. The key is score weight,
and the value is a list of keywords—for example, the score with weight 6:
6: [’smart’, ’device’]. We decided on this structure because it can be easily
modified and applied to the vulnerability data.

The score is calculated in method calculate iot score, which each spider has
implemented slightly differently. However, the whole methodology is identical.
The method takes as input the vulnerability description and, based on the
spider, other vulnerability information like vendor or device type. Then the
score dictionary is applied to input data. Therefore, the keywords are found,
and their weights add up. Finally, the mean of found keywords weights is
calculated.

The primary purpose of the score is to enable automatized classification
of the vulnerabilities. However, it only provides approximate outcomes due
to many factors. For example, the score can be affected by the length of the
description. If the description consists only of a few words or is overly verbose,
it can distort the calculated score. We mainly operated with descriptions

25

2. Data Scraping

0 500 1000 1500 2000 2500 3000 3500 4000
Description length

0

500

1000

1500

2000

2500
Vu

ln
er

ab
ilit

y
re

co
rd

 c
ou

nt

Figure 2.6: Lenghts of the descriptions from CVE NIST database. His-
togram presenting description lengths from obtained CVE NIST vulnerabili-
ties records.

shorter than 500 characters, but occasionally, descriptions were longer than
4000 characters, as displayed in the histogram in figure 2.6.

Due to the distortions, we cannot rely solely on the Internet of Things
score in labeling vulnerabilities. Further classification must be done manu-
ally—however, the scoring significantly helps with manual annotations. First,
it reduces the amount of data that needs to be manually processed. The
vulnerability records with high scores can be automatically labeled as smart
device vulnerabilities. Similarly, we can assume that vulnerabilities with a
lower score are not the Internet of Things associated. Second, the score en-
ables us to group the vulnerabilities by their probability of belonging to the
Internet of Things.

26

Chapter 3
Dataset

This chapter describes the dataset structure and process of creation. First,
the methodology is presented, and dataset columns are defined. Then, the
vulnerability categories are proposed with descriptions, security impacts, and
defense methods. Finally, in the last part of the chapter, we introduce the
device categories.

3.1 Methodology of Dataset Creation

The dataset was created from 3 data sources described in section Data Sources.
We used scrapers defined in the previous chapter Scrapers to scrape the source
web pages and automatically process the obtained data. During scraping,
nearly 16000 vulnerability records were collected that could be potentially
related to the Internet of Things.

After acquiring and automatically processing all data, manual control and
editing were performed. First, the vulnerability records were labeled based
on the Internet of Things score. Second, the device types and vulnerability
categories were checked and corrected if needed. Finally, the missing values
of devices or vulnerabilities were added.

From the manually revised data, duplicates were removed based on the
same CVE or description. Then, only vulnerability records labeled as Internet
of Things related were extracted to create the dataset.

The final dataset comprises 4532 vulnerabilities extracted from nearly 16
000 scraped records. The data are mainly from the CVE NIST database.
The ratio of vulnerability records source is pictured in a graph 3.1. We used
records without any time restriction.

27

3. Dataset

CVE_API_NIST EXPLOIT_DB_WEB EXPLOIT_PACKETSTORM_WEB
source_type

0

500

1000

1500

2000

2500

3000

3500

Vu
ln

er
ab

ilit
y

re
co

rd
 c

ou
nt

Figure 3.1: Number of vulnerability records per source. This figure shows
the number of gathered records from 3 data sources—CVE NIST, Exploit
Database, and Packet Storm.

3.2 Dataset Columns

Each vulnerability record in the created dataset has 18 columns describing
details about scraping and vulnerability. In the following sections that are
divided by information type, the columns are listed and described.

3.2.1 Data Scraping Columns

In this section are described five columns. They consist of information about
the scraping process and sources.

• date scraped: date of the scraping from the webpage in format YYYY-MM
-DD HH:MM:SS

• date vuln published: date of publishing on the website in format
YYYY-MM-DD HH:MM:SS

• searched keywords: keywords used to search a vulnerability on the
website

• source type: scraped webpage label

– CVE API NIST: services.nvd.nist.gov
– EXPLOIT DB WEB: exploit-db.com
– EXPLOIT PACKETSTORM WEB: packetstormsecurity.com

• source url: URL of scraped webpage

28

3.3. Vulnerability Categories

3.2.2 Vulnerability Columns

The following columns consist of details about the scraped vulnerability.

• cve: assigned CVE if exists

• cvss31: CVSS score in version 3.1

• cvss original: CVSS in the previous version if new one in CVSS 3.1
needed to be calculated

• cvss vector: CVSS vector if exists

• description: description of vulnerability obtained from the scraped
webpage

• device group: category of the device (additionally explained in section
Device Categories)

• device type: exact type of device

• vendor: vendor of the vulnerable device

• is iot: label if a vulnerability is considered as the Internet of things

• iot score: calculated Internet of Things score (further described in sec-
tion Internet of Things Score)

• iot keywords: keywords used for calculation of Internet of Things score

• vulnerability: category of the vulnerability (more in section Vulnera-
bility Categories)

• vuln description: description associated with vulnerability type on
the scraped webpage

3.3 Vulnerability Categories

In the dataset, we propose the following 17 categories of vulnerability cat-
egories. First, our primary goal was to cover all possible vulnerabilities in
smart devices. Therefore, we primarily used the CWE list [9] for reference
and classification creation. Second, we tried select groups of vulnerabilities
for the best automatic classification result and low rate of false positives.

29

3. Dataset

3.3.1 Access Control Problem

Problems with access control enable an attacker to access resources that should
be restricted or hidden. Therefore, during the attack, the malicious actor
can bypass protection and access the forbidden resource. [33] This unwanted
behavior can lead to data breaches or misuse of functionalities by the attacker.

Access control problems arise mainly from poor design or errors in de-
velopment. Therefore, analyzing permissions and privileges in a system and
correctly setting up access control lists is essential. [34] The system setting
also should not be left in the default state setting. Furthermore, for the system
security is crucial to implement user authentication properly. Before taking
action on the device, firstly user must be identified and verified. Secondly, the
user’s permissions must be checked and compared with set-up permissions for
the requested operation. Otherwise, a malicious actor could access resources
and attack the system. Also, after permitting access to the resource, the oper-
ation should be logged for security monitoring and eventual security incident
investigation.

In this category belongs numerous vulnerabilities. First, it contains vul-
nerabilities associated with missing or improper set authentication. Thus, the
attacker is not required to prove his identity before accessing the resource.
Next, vulnerabilities arise from incorrect permissions and privileges settings.
For example, the permissions are incorrectly set if a logged user to internet
banking can access sensitive data from other users, like account balance or list
of payments, as displayed in figure 3.2.

The access control problem can lead to numerous critical security incidents.
For example, a company’s reputation can be badly affected if the attacker
gains and leaks sensitive data like personal or health records. Also, it can
cause financial loss. Similarly, if the malicious actor attains high privileges,
he can control the whole system. Then, based on the goal, he can damage or
misuse it for the following attack.

We chose this category based on CWE-284: Improper Access Control, and
high placements in OWASP TOP 10 for the web applications [2].

3.3.2 Cross-site Request Forgery

In the Cross-site Request Forgery attack, the attacker manipulates the authen-
ticated victim into sending his malicious request to the vulnerable webpage.
As a result, the malicious actor bypasses the necessity to be authenticated
directly into the system as the victim. [35] Thus, he does not need to know
the user’s password, session cookie, or another secret to perform malicious
action via request.

First, the attacker crafts a request for an adversary operation, such as
altering the victim’s settings, changing the password, or performing an action
on the vulnerable web page on the victim’s behalf. For example, in internet

30

3.3. Vulnerability Categories

User A
Account balance

User A
Server with

incorrectly set
permissions

Account balance
User B

Account balance
User A

Server with
correctly set
permissions

Account balance
User B

X

Figure 3.2: Access control. This figure shows two servers with differently
set access control. The first server is poorly set. Therefore, the user can
incorrectly access the data about different users.

banking, the attacker could make a payment as a victim to the desired bank
account. Second, he delivers a malicious link. The victim can receive an e-mail
with the link or click a button on the attacker’s website. The attacker usually
uses social engineering to force the victim to send the malicious request.

In CSRF, the malicious actor abuses parameters added to the request
by the browser—for example, session cookies. The parameters are added
automatically to the fraudulent request because the legitimately logged victim
performs the action, not the attacker. Thus, the sent request to the web
application cannot be detected as adversarial. [36]

Nowadays, various methods exist to prevent Cross-site Request Forgery
attacks. Primarily, the CSRF token should be used in web applications. [35]
Furthermore, the SameSite cookie flag should be set to prevent sending session
cookies with a request from another webpage.

Even though CSRF is a web application vulnerability, many smart devices
use webpages for configurations, settings, and other functionalities. Thus, it
is also relevant to The Internet of Things. This category covers CWE-352:
Cross-Site Request Forgery (CSRF).

3.3.3 Cross-site Scripting

Cross-site scripting is a web application vulnerability when the attacker injects
malicious code or script into a legitimate web page running in the victim’s
browser. The attacker can change with injection the form of the webpage.
[37] For example, he can craft a fake login screen on the vulnerable site and

31

3. Dataset

steal the victim’s credentials. Furthermore, the attacker can gain sensitive
data like the user’s session cookie and impersonate the victim.

In XSS, the attacker abuses the webpage’s running code in the victim’s
browser. He injects his code into an HTML element and makes browsers exe-
cute it on behalf of the victim. There are several ways how to place malicious
code into the webpage. According to the code injection method, various types
of XSS exist, for example, stored, reflected, or DOM. [38] This is an example
of the payload which triggers an alert on the webpage and print session cookie:
<script>alert(document.cookie)</script>.

Stored cross-site scripting occurs when the attacker saves the code into
the webpage. Then the victim must perform the required action to execute
the code. For example, the attacker can post a comment on a vulnerable
webpage with malicious code. Thus, the comment with payload is then per-
manently saved into the page. When the victim visits the webpage and views
the comment, the code is executed, and the attack is performed successfully.

In reflected cross-site scripting, the malicious code is injected into the
webpage only temporarily. The attacker must craft a webpage link and then
make the victim click on it to execute the attack. The victim can be convinced
to click on the malicious link through social engineering.

The DOM cross-site scripting arises when the attacker injects a malicious
code into the Document Object Model (DOM). The payload can be delivered
to the victim via the link as in the previous type of attack.

This vulnerability arises due to improper input validation from the user.
To prevent this attack, controlling and validating all input is necessary. For
example, special symbols can be escaped or removed based on the input data
type. However, security measures do not have to relate only to input. The
headers in the response, like Content Security Policy, should be adequately
and correctly set. Also, suitable flags of cookies can prevent session data from
stealing.

The consequences of the attack depend on the webpage content and applied
protection measures. However, the XSS can lead to information disclosures
and or the compromisation of user accounts.

This category was chosen for similar reasons to the previous class Cross-
site Request Forgery.

3.3.4 Denial of Service

The attacker’s primary goal is to make the system unusable in the Denial
on Service attack. Thus, the attacked system cannot run correctly and be
appropriately used by legitimate users. The system during the DoS attack is
usually running slow, and functionalities are not working correctly. In some
cases, the system can be shut down by the attacker.

The Denial of service can be caused in several ways. Firstly, the attacker
can be sent an enormous amount of network traffic to the targeted system.

32

3.3. Vulnerability Categories

This behavior can lead to the consumption of the victim’s resources. Thus
the system cannot establish new connections and process more demands. [39]
In this category belongs attacks like ping flood, SYN flood, or Slow Loris.
Second, the malicious actor can craft a malformed request that the system
cannot correctly proceed.

This category also includes Distributed Denial of service (DDoS). The
attacking approach is analogous to DoS, but the attacker abuses numerous
sources to generate traffic for flooding the victim. [40] The misused devices
are often part of the botnet— an automatized group of infected machines fre-
quently containing the Internet of Things devices. The attacks are portrayed
in figure 3.3.

Nowadays, it is essential to protect publicly available systems before DoS
attacks. The system should be able to handle extensive incoming traffic and
respond to it with defined procedures. [40] Numerous devices and solutions
focusing primarily on DoS protection are available on the market —for exam-
ple, IPS systems, firewalls, routers, or proxies. Also, the attack surface should
be minimized, and unnecessary system functionalities should be suppressed
from the public.

The DoS system can have various consequences. For companies, it can be
reputation and financial losses due to the unusability of the service used by
their consumers. Furthermore, the unusable system can have various critical
outcomes in specific areas like healthcare.

We proposed this category because the Denial of service is a widespread
threat. For example, according to the report from Cloudflare, in the third
quarter of 2022, amount of DDoS attacks increased compared to the previous
year [41].

3.3.5 Execution of Malicious Code

The execution of malicious code in the victim’s system is a threat with severe
consequences. It can cause significant damage to the system or even enable
the attacker to take over control of it. [42] This broad category contains
vulnerabilities enabling attackers to run malicious code or commands in the
targeted system.

There are many possible attack vectors on how the attacker can force the
system to execute his code. Sometimes is possible to do it remotely, in other
cases, the attacker must have physical access to the device. Furthermore, the
attacker can execute his malicious program or inject code into the running
process. For example, the attacker can misuse the improper input check in
the system. If the vulnerable system does not control input sufficiently and
executes it without restrictions, the attacker can insert input with malicious
code and attack the system.

There are multiple methods how to protect the system from letting the
attacker execute the malicious code. The antivirus can be used to catch hostile

33

3. Dataset

Attacker Victim

Denial of Service (DOS)

Attacker Victim

Distributed Denial of Service (DDoS)

Nodes

Figure 3.3: Denial of service/Distributed Denial of Service. The figure presents
the difference between Denial of Service and Distributed Denial of Service.
During DDoS, numerous machines are misused to attack the victim.

programs. Also, proper monitoring and logging should be implemented to
detect an attack. Furthermore, all system input should be validated before
further processing, and the permissions in the system should be adequately
set and enforced to prevent code execution. Many security measures can also
be taken in the system architecture. For example, the data can be labeled
executable or non-executable based on their purpose. Also, integrity checks
can be done. [43]

The execution of malicious code in the system can have severe conse-
quences. For example, the attacker could run malware like ransomware or
virus to damage the system. Furthermore, executing the code can enable the
attacker to control the system and perform adversary operations. Also, the
attacker could elevate his privileges or access sensitive data via executing code.

This category was classified based on the severity of the execution of ma-
licious code in the system. It groups multiple vulnerabilities with CWE like
CWE-78: Improper Neutralization of Special Elements used in an OS Com-
mand (’OS Command Injection’) or CWE-94: Improper control of generation
of code (’code injection’). Other proposed categories like SQL injections or
Cross-site scripting could be considered a subcategory of this. However, we
decided to separate them based on the specification of the attack.

3.3.6 Improper Data Handling

This category contains all vulnerabilities associated with file manipulation
and data handling in the system. The attacker can abuse poorly implemented
data management and gain control over the victim’s system or access sensitive

34

3.3. Vulnerability Categories

data. Thus, it is essential to correctly manipulate data and perform secure
operations with them to prevent security incidents and data leaks.

One of the common weaknesses in the system is an unrestricted file upload.
With insufficient restrictions, the attacker can upload a problematic file format
for the system. [44] For example, if the system prompts the user to upload an
image, other formats, like executable programs, should be rejected. Instead,
only file types typical for images like JPEG or PNG should be accepted as
input from the user. If the system does not restrict the upload of a hostile
file, the attacker could potentially upload malware or any other desired file
and attack the vulnerable system. Also, parameters like file size should be
limited.

Systems usually contain various files and process numerous data. There-
fore, it is crucial to manipulate them carefully. It should be appropriately
specified how to manipulate sensitive data. For example, sensitive informa-
tion should not be stored in logs. Furthermore, sometimes information like
personal data does not have to be permanently stored in the system. Also,
the file system should be adequately implemented in the system. For exam-
ple, only specified users should have the right to access and modify files. Also,
sensitive files should be treated carefully. [45]

Vulnerabilities in this category can have various impacts. First, the mali-
cious actor could misuse the vulnerability to access restricted data. Thus, it
could lead to a leak of sensitive data like personal information, which can be
critical for companies and organizations. Second, the attacker could execute
malicious code and harm the vulnerable system. Furthermore, the vulnerabil-
ity could lead to file modification or corruption.

As mentioned above, the protection from vulnerabilities in this category is
proper file and data management design. Thus, only files with permitted types
and parameters should be accepted and saved into the system. Furthermore,
sensitive data should be treated carefully and saved only if needed. [45]

This category is based on CWEs like CWE-434: Unrestricted Upload of
File with Dangerous Type or CWE-59: Improper Link Resolution Before File
Access (’Link Following’). It was proposed to cover all vulnerabilities related
to file and data management. However, it overlaps with categories Improper
input validation and Problematic cryptography.

3.3.7 Improper Input Validation

Insufficient input validation can lead to many severe security threats. If the
input is not validated correctly, the attacker can construct a malicious input
payload and attack the system. As a result, the system’s integrity, confiden-
tiality, and availability could be violated. This category includes vulnerabili-
ties associated with input validation issues in the systems.

It is necessary to check and validate all input data from the user and
untrusted sources before further processing it in the system. If the validation

35

3. Dataset

is improper, the input data from the attacker can trigger an adversary action
in the system and lead to various security issues. [46] Therefore, the system
should always operate with data that are considered safe and correct.

Various parameters and requirements should be checked based on the data
input type—for example, input length, data type, object structure, or special
symbols. Furthermore, the correctness of the data should be validated, like
correct date values or birth number form requirements.

For illustration, the user inserts the amount of money to transfer in the
banking system. The input does not have to consist of letters or special
characters. Thus, the system should check that input consists only of digits.
If the attacker attempts to insert the malicious payload with special symbols,
the system will not accept the input and stop the attack. Also, the system
should check that the required amount of money can be transferred. Hence,
the user balance in the bank account is sufficient, and the input value is not
negative.

Various protection methods exist to prevent the attacker from inserting
malicious input into the system. First, the system should never trust the user
input, and control should always be performed. Second, restricted characters
can be escaped or removed based on the system’s requirements. Also, regular
expressions or allowlists/blocklists can define the correct input structure.

Incorrect or insufficient input control can lead to various security breaches.
The specifics of the attacks and consequences depend heavily on the system
type. However, the attacker can misuse input vulnerabilities to, for example,
execute malicious code, cause Denial of Service, or access sensitive data.

Many of the proposed categories of vulnerabilities could be considered a
subcategory of this one. For example, SQL injection or Cross-site script-
ing. However, we divided them into separate categories based on the attack
methods and impacts to achieve more complex classifications. Therefore, this
category was created to cover vulnerabilities similar to CWE-20: Improper
Input Validation and CWE-129: Improper Validation of Array Index.

3.3.8 Improper Use of Memory

Vulnerabilities listed in this category affect the security of memory. They
usually occur from programming bugs or incorrect memory management. As
a result, the attacker can misuse memory vulnerabilities in various forms to
attack the system and cause several security breaches. For example, the mali-
cious actor can cause a crash, corrupt the data in memory or execute malicious
code.

Nowadays, many programming languages like C# or Java have memory
safety. That means they provide protection in development, prevent from
bugs in code leading to memory vulnerabilities and enable automatic memory
functions like garbage collectors. Therefore, it should increase the memory’s
security. However, languages like C or C++ are not memory save. Thus,

36

3.3. Vulnerability Categories

they do not protect from errors, and memory management is mainly on the
programmer. [47]

Many vulnerabilities can occur during memory allocation and release. For
example, the same allocated memory can be faulty freed two times. Further-
more, the released address in memory can be addressed in the program again,
causing unpredictable behavior. Also, it is not secure to not free memory when
it is no longer needed. This can be misused by the attacker, for example, for
Denial of the service.

The manipulation with pointers can also lead to security threats. [47]
For example, performing arithmetics with pointers can cause reaching in the
memory out of bounds. Thus, possibly enabling the attacker to perform the
attack. Furthermore, attempting to access a resource with a NULL pointer
also impacts the system’s security.

The protection from this type of vulnerability is to use memory safety
programming languages if possible. Furthermore, the correct and safe function
should be implemented to perform operations with memory. Also, the code
should be appropriately checked and tested to detect and mitigate bugs.

The vulnerabilities in memory can be critical for system security. First,
the attacker could gain access to sensitive data, which can be critical based
on the system type. Second, he could modify or damage the data stored in
the memory. Furthermore, the attacker could execute code and take control
of the system. Also, the crush of the system can arise.

We proposed this category due to the severity and widespread memory-
related vulnerabilities. Furthermore, vendors often use memory-unsafe pro-
gramming languages like C or C++ in the Internet of Things devices. This
category contains CWEs related to memory vulnerabilities like CWE-415:
Double free or CWE-416: Use after free. The overflow vulnerabilities are
separated in category Overflow due to the high occurrence.

3.3.9 Insecure Design/Design Flaw

This category includes vulnerabilities arising from design flaws and incorrect
programming techniques. Therefore, the malicious actor misuses development
bugs in the system to perform the attack. As a result, the flaws can cause
severe damage based on the severity of the error and the parameters of the
system.

During development, many bugs can arise from poor programming prac-
tices or laxness. For example, in programming languages such as C or C++,
errors can appear from incorrect type conversions or initialization of the ob-
jects, leading to unexpected behavior that the attacker can misuse. Further-
more, errors can occur from inaccurate arithmetic operations like float multi-
plication. Also, if the values are not properly checked, the error arises when
the number is divided by zero value. Similarly, overflow or underflow of value

37

3. Dataset

occurs when the operation result has a form the system cannot store correctly.
[48]

Problematic are also redundant fragments of code and comments in the
program. The unnecessary code increases the attack surface, and the malicious
actor can misuse it to perform the attack. Furthermore, the comments can
be problematic if they contain sensitive information such as passwords or API
keys. Also, they can provide information about system logic to the attacker.
[48]

The developers should focus on system architecture and proper system
design to prevent vulnerabilities in the category. Also, emphasis should be
put on correct programming practices during development. Implemented code
should be appropriately checked and tested to discover bugs. Thus, minimizing
the attack surface for the attacker.

Vulnerabilities in this category can lead to numerous security risks based
on the system type and flaw effects. For example, if the attacker misuses the
infinite loop, he could cause the Denial of the Service and damage the system.
Furthermore, executing malicious code and taking control of the system would
be possible. Also, the malicious actor could access sensitive data or any other
restricted resource.

We proposed this category to categorize vulnerabilities occurring from poor
programming practices. This category is based on many CWEs like CWE-489:
Active Debug Code and CWE-704: Incorrect Type Conversion or Cast.

3.3.10 Other Vulnerabilities

The data in the dataset are labeled automatically. Therefore, we created this
category to assign a label to vulnerabilities that do not belong to any pro-
posed category. Usually, it considers vulnerabilities with a low occurrence
rate. Thus, we decided not to propose a separate category for them. Further-
more, records with uncertain vulnerability types or covering a wide range of
vulnerabilities are put in this category.

3.3.11 Overflow

The overflow in memory occurs when the data saved into the buffer are writ-
ten over the buffer’s boundary. The vulnerability caused by this improper
behavior usually leads to the execution of malicious code by the attacker. [49]
Furthermore, it can crash a system or lead to faulty program outcomes. Thus,
it is a severe vulnerability that can cause extensive damages to the vulnerable
system.

The buffer is a part of the memory reserved for temporary data storage.
It is used mainly during the transportation of the data from the input. [50]
Thus, the malicious actor can prepare the adversary input payload and attack
the system over overflow vulnerability. However, there is a wide range of types

38

3.3. Vulnerability Categories

of overflow attacks that differ in many aspects. For instance, it can vary in
memory placement— stack or heap. [51]

The scenario of the attack may be as follows. First, the attacker crafts
the input larger than the buffer size. Therefore, after inserting the input,
the overflow in the buffer occurs. This behavior is shown in figure 3.4. If
the system has no protection, the data in the memory out of the buffer are
rewritten based on the attacker’s input, and the program continues without
detecting malicious behavior. For example, the attacker could rewrite the
function’s return address in memory with his address value where the malicious
code is prepared. Therefore, when the function is finished, the system uses
the attacker’s malicious address and fetches instructions with the adversarial
code.

The overflow is still a common vulnerability. It occurs mainly from incor-
rect system design or faulty implementation of the program. Thus, inappro-
priate functions are used, and the input is not adequately controlled. Also,
the input size for the buffer is not checked correctly. This vulnerability is fre-
quently in programs written in C or C++. Therefore, it is a relevant attack
for the Internet of Things devices because the following languages are often
used for implementation.

There are multiple mechanisms to protect the system from overflow at-
tacks. For example, the canary values can be used. The system detects
overflow and stops undesirable actions if the canary value is overwritten in
memory. Next, the part of the memory can be marked as unexecutable, so
data in the buffer are treated as data and not instructions. [51]

This category could be considered as a subcategory of Improper use of
memory. However, we proposed it separately based on the high occurrence of
overflow vulnerabilities in the Internet of Things devices. Category Overflow
consists of multiple CWEs, for example, CWE-787: Out-of-bounds Write or
CWE-120: Buffer copy without checking size of input (’classic buffer over-
flow’).

3.3.12 Path Traversal

The path traversal vulnerability enables the attacker to access the file system’s
parts unauthorizedly. Therefore, the attacker can browse directories and read
files that should be inaccessible to him. [52] This undesirable behavior can
cause data breaches and disturb the system’s confidentiality. Path traversal
vulnerability occurs from incorrect input validation and sanitization.

Firstly, in a path traversal attack, the malicious actor must find the vulner-
able entry point to the file system. Second, he crafts a malicious input payload
that creates a pathname in the file system for the desired file. The malicious
payload usually contains special symbols based on system type. For example,
adversarial input for reading file passwd in the Unix operating system can look
like this: ../../etc/passwd.

39

3. Dataset

B U F F E R

Buffer
Size: 6 bytes

O V E R

Overflow

Figure 3.4: Buffer overflow. In the figure is displayed a buffer with a size of
6 bytes. The input ’Overflow’ is larger than the given size. Therefore, the
overflow occurs, and data are written outside the buffer.

Because the system does not correctly sanitize the given file name from the
attacker, the file system receives the whole path and returns the requested file.
Therefore, it allows the attacker access to the file system outside the permitted
bounds. As a result, the malicious actor can gain potentially sensitive data
with a successful path traversal attack.

The correct input validation should be implemented in the system to pre-
vent path traversal. Thus, escape special characters that are usually not in the
file names. Furthermore, the system should not return the file to the attacker
without providing the required permission for access.

The path traversal vulnerability is relevant for the Internet of Things be-
cause smart devices also contain web applications. We proposed this category
based on the specifications of the attack and high occurrence in Internet of
Things devices. The group is based mainly on CWE-22: Improper Limitation
of a Pathname to a Restricted Directory (’Path Traversal’).

3.3.13 Problematic Authentication/Session Handling

All vulnerabilities in this category are caused by incorrect authentication
mechanisms or improper session management. These vulnerabilities usually
arise from poor design and incorrect system implementation, leading to var-
ious security violations like bypassing authentication or stealing the user’s
session.

The main aim of the authentication process is to verify the identity of
the user. This process is essential for the system’s security because the user’s
identity should be checked before accessing restricted resources. [53] The user
must provide during the authentication process login credentials, including
his secrets like password, PIN, or key. Based on those identifiers, the system
checks the user. If the authentication is successful, the user usually receives

40

3.3. Vulnerability Categories

a token to further identity checks before accessing resources, executing oper-
ations, etc.

The session is established after the successful authentication when the ses-
sion parameters are set and the tokens are created for the identified user. The
tokens, such as cookies or JWT tokens, are usually used for user identification
during the entire session. [54] Therefore, they should be appropriately secured,
and only the authenticated user should have access to them. However, if the
attacker can get them, it can lead to several security problems. For example,
the malicious actor can hijack the session or recreate parameters that do not
have high entropy.

Furthermore, the whole session should be terminated appropriately. [54]
The tokens should be invalidated after a specified time or based on the user’s
request. If the session can not be ended on demand, it can be critical if the
attacker gains the secret tokens.

All vulnerabilities in this category can lead to various security incidents.
For example, the attacker can bypass vulnerable authentication processes and
gain access to the system without knowing or providing correct login creden-
tials. Furthermore, authentication is often missing in the systems, so resources
are freely available. Finally, in the case of session management, the malicious
actor can steal the user session and impersonate the victim. This attack can
be critical for systems processing sensitive data like internet banking.

The authentication process should be correctly implemented to avoid vul-
nerabilities in this category. Thus, multifactor authentication and known pro-
tocols like OAuth should be used. [55] Also, authentication should be required
before accessing nonpublic resources. In addition, for session management, the
tokens should be protected from malicious actors. For example, the cookies
should have flags like Secure and HttpOnly to protect them from stealing.

A similar category is repeatedly highly placed in OWASP’s TOP 10 list,
even though proper authentication and session management are essential for
the system’s security. Thus, we proposed this category to cover corresponding
vulnerabilities due to their severity and possible impact. Some of the As-
sociated CWEs are CWE-278: Improper authentication, CWE-384: Session
fixation, or CWE-306: Missing authentication for critical function.

3.3.14 Problematic Cryptography

This category covers all vulnerabilities associated with lacking or insufficient
implementation of cryptographic mechanisms in the system. Cryptography is
primarily used to secrete data from the access of unauthorized actors. [56]
However, poorly implemented cryptographic functions can lead to data leaks
and several security breaches. Therefore, it is crucial to secure data during
transportation and storage.

Sometimes when data are encrypted, weak or incorrectly implemented
algorithms are used. This incorrect behavior can lead to disclosure issues

41

3. Dataset

or help the malicious actor further in the attack. For example, if the attacker
can access unencrypted data from the network traffic or system logs, he can
use gained information like IP addresses in the next part of the attack. In
addition, although many weak algorithms were considered strong before, flaws
were found in their design, or the computers now have enough computation
power to crack them. So nowadays, for example, RC4 and DES are considered
weak algorithms. [57]

This category also includes vulnerabilities associated with certificate ma-
nipulation and insufficient entropy.

Poor cryptography can lead to numerous security risks and issues. As
mentioned above, the attacker can misuse gained data in the following attacks.
Furthermore, the malicious actor can leak stolen data like personal or health
records to the public and cause harm to the attacked company.

To prevent vulnerabilities in this category, emphasis should be placed on
selecting the correct and strong algorithms while designing the system archi-
tecture. Furthermore, the system should be prepared for a possible change
of cryptographic algorithms in case of failure of their security requirements.
Also, developers should never design and implement their security algorithms.
Instead, the verified and standard ciphers should be used, for example, AES
and RSA.

As mentioned above, using solid cryptographic algorithms is essential for
system security. Insufficient encryption can lead to several threats to Internet
of Things devices. Therefore, we proposed this category to classify all vul-
nerabilities associated with encryption. In this category are many CWEs like
CWE-295: Improper Certificate Validation or CWE-326: Inadequate encryp-
tion strength.

3.3.15 Problematic Password Management

Following good practices with password manipulation in development is essen-
tial to system security. The attacker can misuse improper implementation or
another flow in the system to gain the user’s passwords. This category contains
a wide range of vulnerabilities that arises from poor password management.

Weaknesses can occur already during password creation. First, the suffi-
cient requirements of passwords should be enforced. For example, the minimal
length of the password should be set, and passwords from known wordlists
should be forbidden. The password wordlists usually consist of popular and
often-used passwords that leaked from data breaches. By SecLists, the most
popular passwords are the following [58]:

1. 123456

2. password

3. 12345678

42

3.3. Vulnerability Categories

4. qwerty

5. 123456789

If the login is not adequately secured, the attacker could perform a brute
force attack to log in as a victim.

Furthermore, the user should have the option to change login credentials.
Often in the Internet of Things devices, the passwords are hard coded. Thus,
even when the password is exposed, the user can not change it, and the device
is not correctly protected. The malicious actor could, for example, bypass the
authentication and misuse the device in the botnet.

Next, the set passwords should be securely stored in the system. Thus, the
correctly implemented cryptography method should protect passwords from
attackers. For instance, the attacker can attempt to crack a weak hash and
gain a user password in clear text. [59]

This category contains vulnerabilities associated with poor password man-
agement, as described above. Some vulnerabilities could be considered part of
the category Problematic cryptography due to encryption issues. However, we
placed them in this category because of their connection with password man-
agement. This category covers multiple CWEs like CWE-522: Insufficiently
Protected Credentials and CWE-798: Use of Hard-coded Credentials.

3.3.16 Race Condition

The race condition occurs when at least two entities simultaneously attempt
to operate with the same shared resource. [60] Thus, it violates the expected
behavior of sequential processing of that resource. Race conditions lead to un-
expected results and unpredictable behavior. Therefore, vulnerabilities arise,
and the adversarial actor can misuse them to attack the system.

The race condition can lead to numerous consequences. First, the vulner-
able system can crash because of the attack and be unable to use. Second, the
attacker can force the system to perform an adversarial operation. Next, the
malicious actor can misuse the incorrect behavior and modify the processed
resource—like variables, objects, or files. [61] For example, in a vulnerable
banking system, the attacker can send malicious requests to raise a race con-
dition and force the system to modify the account balance to the required
value or send money incorrectly. This conduct is pictured in figure 3.5.

Prevention of the attack is to design and implement the system properly.
Thus, the sequence of the resource operations should always be strictly given
and synchronization mechanisms like locks should be used. Furthermore, the
developers should try to avoid shared states as much as possible and thereby
prevent potential race conditions.

This category was proposed based on the specific behavior leading to race
condition vulnerabilities. It includes CWEs like CWE-336: Race Condition

43

3. Dataset

Time

Account balance:
100

Thread 1

Thread 2

Send 100 if balance
is over 100

Update balance
-100

Send 100 if balance
is over 100

Account balance:
0

Update balance
-100

Account balance:
-100

Attacker

Figure 3.5: Race Condition. The figure describes race conditions in a vul-
nerable banking system. The attacker can withdraw the same value multiple
times and obtain more money than is available.

within a Thread and CWE-367: Time-of-check Time-of-use (TOCTOU) Race
Condition.

3.3.17 SQL Injection

SQL injection, also known as SQLI, occurs when the attacker injects an adver-
sary payload into a SQL statement and tricks the database into executing it.
[62] Thus, the malicious actor misuses improper system validation and neu-
tralization of the part of the SQL statement given by the user. As a result,
the database is forced to run the malicious command crafted by the attacker.
This attack allows the attacker to read data or take control of the vulnerable
database.

SQL is a language used for the manipulation of data in databases. With
SQL commands, the user manages numerous records without describing an ex-
act method of processing data in the database. [63] For example, this simple
statement SELECT * FROM computer WHERE computer.os = ’linux’ picks
all information from database storage about computers in table computer run-
ning the operating system Linux.

There are many ways how to accomplish a successful attack. Based on
its execution, many types of SQL injection exist, such as in-band (also called
classical) or blind. In the in-band injection, the attacker injects a malicious
payload into the SQL statement and gets data from the database clearly in
response. Thus, it is the most straightforward way of this attack. Another
type is blind SQL injection. The attacker crafts the requests with SQL state-
ments the way that the database response True or False. Then, based on the
responses, the attacker can construct the data from the database. [62]

The SQLI attack can have various consequences. The malicious actor
can gain data from the database that should not be accessible. The severity
depends on the nature of the stolen data. It can be critical for companies

44

3.4. Devices Categories

in case of stealing personal records or login credentials. Furthermore, the
attacker could modify the database content or even destroy it.

The primary protection from SQL injection attacks is proper input val-
idation. Thus, control all data the users give and neutralize all potentially
problematic characters. Second, the prepared statements should be used in
the database. Furthermore, the SQL statements formed from the user input
should be executed with the lowest permissions possible.

We proposed this category based on CWE-89: Improper Neutralization of
Special Elements used in an SQL Command (’SQL Injection’). Because of the
use of databases in smart devices, SQL injection is a relevant and dangerous
threat to the Internet of Things. Furthermore, we decided to separate this
category from Execution of malicious code due to the specificities of the attack.

3.4 Devices Categories

The Internet of Things in the last few years extended into many fields. Smart
devices nowadays are used in smart buildings, multiple industries, and more.
Their spread will continue into numerous other areas, and new devices will be
invented in the following years. Therefore, the number of categories will likely
increase in the future.

We propose categories based on current common-use areas of Internet of
Things devices. We even created categories for specific smart devices like cam-
eras or temperature gadgets. Also, some categories may overlap because we
picked groups of devices with more specific uses from general categories. For
example, due to the extensity and specificity of some smart devices, we ex-
tracted the automotive and healthcare industry into their separate categories
from the category Industry devices.

3.4.1 Cameras

Cameras are one of the most spread Internet Of Things devices. There are
used for multiple purposes. For example, they can be placed in households or
buildings for security monitoring. Hence, we proposed this category for the
specific device as a camera due to its broad usage.

3.4.2 Car Devices

The Automotive Internet of Things consists of smart devices used in vehi-
cles—for example, sensors, detectors, or monitors. According to the forecast
[64], it will be fastly increasing, and by 2030, it should expand by a quarter.
Therefore, we created this category of smart devices.

45

3. Dataset

3.4.3 Healthmedical Devices

The following category was proposed to cover devices in The Medical Internet
of Things. The range of use in healthcare is broad—for example, monitoring
systems for glucose or heart, smart peans, or wearable devices.

3.4.4 Industry Devices

Internet of Things devices are used in many industries like energy, chemical,
or mining. Primarily it is devices such as sensors, actuators, monitors, or
controllers. We classified the industries with the most extensive representation
into their own separate categories.

3.4.5 Lightning

Smart lighting devices have been very popular recently. Thus, we proposed
the category only for them. This category includes smart light switches, bulbs,
or light strips.

3.4.6 Multiple

In this category belongs the vulnerability records with multiple associated
diverse devices, for illustration, if the vulnerability from the same vendor is
relevant for camera devices and wearable gadgets.

Example of vulnerability description with multiple affected device groups:
Memory corruption due to use after free issue in kernel while processing ION
handles in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity,
Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT,
Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music,
Snapdragon Wearables.

3.4.7 Network Devices

We suggested this category because network devices also belong to the Internet
of Things. This includes all devices providing network communication, such
as routers, switches, or gateways.

3.4.8 Smart Buildings

Smart buildings use the Internet of Things devices for operating functionalities
and automated management. For example, temperature, humidity, electricity,
or lighting can be regulated and monitored through smart devices.

46

3.4. Devices Categories

3.4.9 Smart Home Appliances

The popularity of smart home appliances has increased in recent years. As a
result, many households use smart appliances such as fridges, vacuums, coffee
makers, or televisions. Therefore, we suggested this category.

3.4.10 Smart Small Home Appliances

This category contains small smart devices used in households—like smart
plugs, power strips, sockets, alarms, doorbells, or locks. We proposed this
based on the vast popularity of smart small home devices.

3.4.11 Temperature Control

The devices for temperature control are broadly used in smart households and
buildings. It is The Internet of Things devices like thermostats, air condition-
ing, heaters, or weather stations.

3.4.12 Voicesound Devices

This category includes all smart devices associated with voice and sound-for
example, speakers or voice assistants. We proposed this category because
speakers are among the most popular Internet of Things devices.

3.4.13 Wearable Devices

Wearable devices are a broad category. It includes many types of gadgets with
various uses, for example, health or fitness. This category includes devices
such as fit bands, gloves, glasses, rings, or other jewelry.

47

Chapter 4
Ranking Lists

This chapter presents numerous ranking lists created from the dataset intro-
duced in the previous chapter Dataset. First, we propose a ranking list of the
top 10 vulnerabilities in the Internet of Things and the creation methodology.
Second, the ranking list of the top 10 vulnerabilities focusing on camera de-
vices is presented. Finally, we introduce the top vulnerability for each device
category.

4.1 Top 10 Vulnerabilities

This ranking list shows the top 10 vulnerabilities in Internet of Things devices.
It was formed from the collected vulnerability records. The data was gathered
from 3 sources—CVE NIST database, Exploit Database, and Packet Storm,
and for their collection, scrapers implemented in the Scrapy framework were
used. The raw collected data were after scraping processed automatically and
manually. A detailed description of the whole method of dataset creation is
shown in section Methodology of Dataset Creation.

The order of the ranking list is set by the number of occurrences of specific
vulnerability categories. We did not use any other metrics like CVSS in the
computation of the final order due to the lack of it in numerous vulnerability
records from the Exploit Database and Packet Storm. The result would not
be accurate and consistent if some values were missing.

The final ranking list of the top 10 vulnerabilities in the Internet of Things
is presented in the table 4.1. Based on the result, we can assume that Inter-
net of Things devices are most vulnerable due to exposures associated with
memory. Also, poor access control and password management widely threaten
smart devices due to their high ranking. Furthermore, it briefly corresponds
with the ranking list created by OWASP for smart things devices in 2018, even
though the methodology of categorizing vulnerabilities into groups slightly dif-
fers.

49

4. Ranking Lists

Table 4.1: Ranking List of Top 10 Vulnerabilities in the Internet of Things

Position Vulnerability category Occurences
1 Overflow 1116
2 Improper use of memory 624
3 Access control problem 463
4 Execution of malicious code 374
5 Problematic password management 340
6 Problematic authentication/session handling 261
7 Improper input validation 255
8 Denial of service 210
9 Problematic cryptography/certificate manipulation 155
10 Insecure design/design flaw 111

The presented results from the ranking list are similar to what we would
expect based on our observations and knowledge. However, the actual state of
security in the Internet of Things devices used in organizations and households
can differ due to insufficient reporting from vendors and lacking disclosure
policies. Nevertheless, the ranking list gives an idea what are most common
and threatening vulnerabilities for the Internet of Things devices. It can help
vendors during development or security experts with securing smart devices.

4.2 Top 10 Vulnerabilities in Camera Category

This ranking lists present the top 10 vulnerabilities in camera devices. The
methodology of creation is identical to the previous ranking list. Therefore,
the order is given by the number of occurrences of specific vulnerability types.
We proposed this list due to the wide use and popularity of camera devices.
The created ranked list is shown in the table 4.2.

The result in the ranking list defined only for cameras varies from common
ranking lists. The first place has a category Problematic password manage-
ment, which can be expected due wide use of default or hard-coded credentials
in cameras. In the common ranking list, it is placed in fifth place. The ninth
and tenth positions in the list are vulnerabilities associated with web appli-
cations. That is caused because we also consider vulnerabilities found in web
configuration pages for cameras and other smart devices. This list also cor-
responds with the OWASP Internet of Things 2018 ranking lists. The first
place shared similar categories associated with password management.

50

4.3. Top Vulnerability per Device Category

Table 4.2: Ranking List of Top 10 Vulnerabilities in Camera Devices

Position Vulnerability category Occurences
1 Problematic password management 96
2 Access control problem 94
3 Overflow 61
4 Execution of malicious code 58
5 Problematic authentication/session handling 47
6 Improper data handling 24
7 Improper use of memory 23
8 Problematic cryptography/certificate manipulation 18
9 Path traversal 17
10 Cross-site Request Forgery 15

4.3 Top Vulnerability per Device Category

The following list displayed in table 4.3 presents all categories with their most
common vulnerability. Like in previous ranking lists, the top vulnerability
is determined by the occurrences of a specific vulnerability category. The
result in some device categories can be distorted by a low rate of vulnerability
records. The amount of vulnerability records for each device group is displayed
in figure 4.1.

The categories mostly repeat in the first place of rankings lists for device
categories. The most common is the category Access control problem. Then it
is followed by two categories with the same number of occurrences—Overflow
and Problematic authentication/session handling. Also, categories associated
with memory, device design, and authentication appear in the presented table.

51

4. Ranking Lists

Ne
tw

or
k

de
vi

ce
s

M
ul

tip
le

W
ea

ra
bl

e
de

vi
ce

s

Ca
m

er
as

Sm
ar

t s
m

al
l h

om
e

de
vi

ce
s

In
du

st
ry

 d
ev

ice
s

Sm
ar

t h
om

e
ap

pl
ia

nc
es

Ot
he

r

Te
m

pe
ra

tu
re

 c
on

tro
l

Ca
r d

ev
ice

s

Se
ns

or
s

Sm
ar

t b
ui

ld
in

gs

Lig
ht

ni
ng

Vo
ice

/s
ou

nd
 d

ev
ice

s

He
al

th
/m

ed
ica

l d
ev

ice
s

Ot
he

r

Device group

0

200

400

600

800

1000

1200

Vu
ln

er
ab

ilit
y

re
co

rd
 c

ou
nt

Figure 4.1: This graph shows the number of gathered vulnerability records
from multiple sources. Each bar represents a different device group.

Table 4.3: List of Top Vulnerability per Device Category

Device category Top vulnerability category
Cameras Problematic password management

Car devices Problematic authentication/session handling
Health/medical devices Problematic authentication/session handling

Industry devices Access control problem
Lightning Access control problem
Multiple Overflow

Network devices Overflow
Other Access control problem

Sensors Access control problem
Smart buildings Access control problem

Smart home appliances Access control problem
Smart small home devices Overflow

Temperature control Problematic authentication/session handling
Voice/sound devices Insecure design/design flaw

Wearable devices Improper use of memory

52

Chapter 5
Vulnerability Analysis

This chapter presents three chosen vulnerability categories and their analysis
in the context of the Internet of Things. We selected those categories based
on occurrence and placement in the created ranking lists. The first described
category of vulnerabilities is the access control problems. It takes first place in
numerous ranking lists separately made for categories of devices. Then over-
flow vulnerability analysis is presented. The category Overflow is the most
common threat for Internet of Things devices based on the created ranking
lists. Finally, the last section introduces vulnerabilities caused by poor pass-
word management. This category is first placed in ranking lists composed of
camera devices.

5.1 Access Control Problem

Th access control problems are a widespread threat to Internet of Things
devices. This category takes third place in the created ranking list of the
top 10 vulnerabilities in smart devices shown in table 4.1. Furthermore, it
is in second place in the list explicitly proposed for the cameras presented in
table 4.2. Also, access control problems are frequently identified as the most
occurred vulnerability category for specific device category. These statistics
are presented in the table 4.3.

One of the main uses of The Internet of Things devices is data manip-
ulation. Due to the wide adoption of smart devices in numerous areas like
healthcare, industries, and even households, the handled data can be of sen-
sitive nature. Therefore, it is essential to put emphasis on securing them
from unauthorized actors with a properly implemented access control system.
However, that can be challenging due to the heterogeneous nature of the In-
ternet of Things. The smart devices in a maintained network are often from
multiple different vendors and use various technologies and protocols. Fur-
thermore, new devices are easily attached to the existing system, which raises

53

5. Vulnerability Analysis

numerous security challenges, including implementing secure access control
management.

The general information about access control management and protection
is already shown in a section describing vulnerability category Access control
problem. In the following part of the thesis, we introduce access control man-
agement specifically for Internet of Things devices. Finally, we present known
attacks associated with access control vulnerabilities.

5.1.1 Access Control Architecture

There are numerous approaches to the access control architecture design and
implementation in the Internet of Things. First is the centralized architecture
where one central entity handles all operations associated with access con-
trol. Therefore, all smart devices rely on the specified entity and leave all
access control management on it. This approach has several weaknesses. If
the central entity is vulnerable or attacked, the security of all smart devices
is compromised. Similarly, if the central object is unavailable, the access con-
trol is not enforceable because the smart devices do not have the capability.
Therefore, the attacker can misuse the single point of failure to attract the
Internet of Things devices. [65]

The next type of architecture is hybrid architecture. It is similar to the
previous one, but smart devices can participate in access control operations. In
the last presented architecture distributed architecture is not central objects
managing access control operations. Instead, the devices communicate and
share data about access control between themselves. It removes a single point
of failure problem from previous architectures. [65] The form of architecture
is displayed in figure 5.1.

5.1.2 Access Control Models

The process of providing user access to the required entity can be implemented
by numerous access control models. In the Internet of Things, smart devices
usually use models derivated from known access control models as role-based
or attribute-based. [66] The role-based model permits or restricts user access
by assigned roles and set policies. Each role has set the rights allowing access
to specified entities. Users can have assigned more roles which enables a more
straightforward setting of rights to the specific user. However, the model
administration can be unbearable in large networks due to dynamic of Internet
of Things devices. [65]

In the attribute-based model, the user is granted permission by satisfying
the required attributes. [66] The range of attributes that can be set and
enforced is wide. For example, the attributes associated with the smart objects
like device ID or environment attributes like location. [65]

54

5.1. Access Control Problem

Central
authority Smart device

1.Authorization
request

2.
Request

evaluation

3. Respond
with result

Centralized architecture

Distributed architecture

1.Authorization
request

2. Request
evaluation

3. Respond
with result

Smart device

Actor

5. Access
permitted/restricted

Smart device

Actor

5. Access
permitted/restricted

Figure 5.1: Central and distributed access control architecture [65]. This
figure shows the differences between the two architectures. In central archi-
tecture, the main authority responsible for all actions exists. In a distributed
architecture, the devices communicate with each other to execute requested
actions.

In this published work [67], the authentication and access control model
for the Internet of Things devices is proposed. It is built on centralized archi-
tecture and uses a role-based model for access control. The roles representing
a position in an organization are put into a hierarchical structure. That should
ensure consistency in the network and enable the management of a large num-
ber of smart devices efficiently. Furthermore, the model should protect from,
for example, replay attacks or eavesdropping attacks. This publication [65]
introduces a model suitable for Internet of Things devices. It uses tokens
to permit access to the requested resource. This approach enabled work with
constrained devices because some devices might not support the required cryp-
tographic algorithms or have insufficient computing power.

Work [66] uses smart contract technologies to implement a framework en-
abling access control for Internet of Things devices. Specifically, the Ethereum
smart contract platform is used. However, smart devices do not perform smart
contract operations due to their limitation of computation power. Instead,
they are connected to the gateways responsible for Ethereum operations en-
abling running access control systems via smart contracts. Similarly, the work
[68] proposes a schema built on an attribute-based access control model using

55

5. Vulnerability Analysis

the Ethereum platform. It aims to provide a reliable access control mechanism
and solve issues associated with the Internet of Things—the dynamic behavior
and distributed structure.

5.1.3 Related Attacks

There are many known vulnerabilities in Internet of Things devices caused by
poor access control implementation. For example, in 2016, numerous vulner-
abilities were found in the baby heart monitor produced by Owlet. One of
the vulnerabilities was caused by missing access control. The base station and
sensor linking did not require authentication. Therefore, the malicious actor
could access the device and sensitive data. [69] In 2017, an access control
vulnerability was discovered in St. Jude pacemakers. The malicious actor
could remotely change the commands and influence the behavior of the pace-
maker. For illustration, that could lead to battery drain or modifying pacing.
This vulnerability could have severe outcomes as it involves the devices im-
plemented in the patient’s body affecting health. The solution to it was to
update the firmware by a healthcare provider. [70] Furthermore, an access
control flaw was found in Trendnet cameras. Anyone who known the cam-
era’s IP address could access the footage, even on the devices that had set up
the password. Many vulnerable cameras were found online, and footage from
them was published. Therefore, the privacy and security of many people or
organizations were disrupted. The vendor published a firmware update to fix
the vulnerability in the affected cameras. [71]

5.2 Overflow

The buffer overflow vulnerability is a serious threat. It may allow the attacker
to execute malicious code or gain sensitive data. Therefore, it is necessary to
protect smart devices against it. However, this category is in first place in the
created ranking lists presenting the top 10 vulnerabilities in the Internet of
Things in table 4.1. Furthermore, it takes third place in the list introducing
vulnerabilities in camera devices proposed in table 4.2. Also, it is placed in
the first position in numerous lists explicitly created for the device categories.

Many Internet of Things devices have components implemented in C or
C++. Unfortunately, these languages are considered memory unsafe. There-
fore, the memory management is mainly on the programmer, which can lead
to bugs and buffer overflow vulnerabilities. Securing smart devices against
the buffer overflow can be challenging. The standard method may not be
sufficient in some cases due to the computing ability and restricted resources
of the Internet of Things devices. [72]

The principles of the buffer overflow attack were already described in sec-
tion Overflow, which introduces the vulnerability category. This section fur-
ther presents the types of buffer overflow attacks and the protection from them

56

5.2. Overflow

Buffer: Saved string with expected length Local variables Return address ...

Low
address

High
addressStack growth

...

Buffer: Malicious code inserted by the attacker ...
Modified

return
address

...

Low
address

High
addressStack growth

...

Expected stack values

Buffer overflow attack

Figure 5.2: Stack buffer overflow attack [74]. In the figure are displayed buffers
on the stacks. The first stack shows the expected layout and data storage. In
the second one, the buffer overflow attack is pictured.

in Internet of Things devices. Then, known buffer overflow vulnerabilities are
introduced.

5.2.1 Buffer Overflow Types

For a successful buffer overflow attack, the malicious actor usually must pre-
pare an advisory code and modify the memory so the system is forced to run
the prepared code. Based on the method of attack implementation, the types
of buffer overflow exist. In addition, the buffer overflow attacks can be divided
by the type of memory. Therefore, heap and stack buffer overflow exist.

In this section, we introduced two methods of executing the buffer over-
flow attack. In the first technique, the attacker injects the input, including
malicious code and the address of the first adversary instruction. The in-
jected address rewrites the return address saved in memory. [73] An example
of adversarial input saved memory is shown in figure 5.2. Thus, the system
executes malicious code when the return address is fetched from memory and
called. Various defense methods exist for this technique and are described in
the following section.

To avoid protection, return-oriented programming can be used. As in the
previous method, the attacker must force the system to execute the instruction
in the desired place. However, the attacker does not inject the malicious code,
but it is composed of the parts of already existing code occurring in memory.

57

5. Vulnerability Analysis

The parts are called gadgets. By composing the gadgets in sequence, the
attacker can perform various operations in the vulnerable system. [74]

5.2.2 Buffer Overflow Protection

A wide range of protection methods from buffer overflow exists. Usually,
the combination of them is implemented to protect the device or system from
buffer overflow attacks. First, the save programming language should be used.
However, in the case of Internet of Things devices, it can be problematic due
to their nature. For example, some devices have low computing power. [72]
Therefore, the programming language as C must be used for implementation.

In the case of memory-unsafe programming languages, at least the safe
version of functions should be used. For example, the function gets in pro-
gramming language C reads data from the input and saves it into the array
specified by a given pointer. However, it is considered unsafe because it does
not check the input size and boundary limits. Thus, it is vulnerable to a
buffer overflow, and the attacker can misuse it for code execution, for exam-
ple. The function fgets should be used as a replacement. It fixes the issues in
the function gets because it must have the specified allowed input data size as
a function parameter.

In addition, the proper programming techniques should be followed by
developers to avoid buffer overflow vulnerability. Therefore, during the data
manipulation, the data should always be checked if they fulfill the required
length based on the buffer size. Furthermore, static or dynamic analysis should
be performed of the source code to discover vulnerable parts. [75] However,
these analyses do not directly protect from the buffer overflow but can detect
vulnerable code and minimize risks.

Many protections from buffer overflow can be applied during the run of
the smart device. One of them is address space layout randomization. In this
method, the operating system places the segments of the executed program
in random places in the memory. Therefore, the attacker cannot predict the
address during the attack. However, it can be insufficient protection in Inter-
net of Things devices using 32-bit architecture due to lack of randomization
space. [74] The next approach is data execution prevention when certain parts
of the memory used for data storage cannot be executed. This protection can
be bypassed by return-oriented programming. [74]

These previously described protection methods attempt to prevent buffer
overflow attacks. The following techniques differ because they try to detect
and stop the ongoing attempt. It can be done, for example, by checking the
integrity of the pointers and return addresses. Thus, the system can detect
the modification caused by the attacker.

The canary is a value placed into the memory before the return address.
Figure 5.3 displays the memory layout with canary value. Suppose the mali-
cious actor misuses buffer overflow vulnerability and attempts to rewrite the

58

5.2. Overflow

Buffer Local variables Canary Return address ...

Low
address

High
addressStack growth

...

Figure 5.3: Stack layout with canary value [74]. The figure shows a stack
layout with a buffer and protection mechanism Canary.

return address. In that case, the system detects the canary value modification
and restricts the jump to a corrupted return address. There are many differ-
ent types of canary values. For example, it can consist of null terminators,
which protect the functions that detect the end of the string based on that.
Furthermore, the canary can be a random value which is also saved in a global
variable to further comparison. Due to the randomness, the attacker cannot
predict the canary value in advance. [76]

Many works focus directly on protecting the Internet of Things devices
from buffer overflow. For example, the work [74] presents a method to pro-
tect embedded devices. Therefore, it considers their restricted resources and
computing power. The proposed method prevents address modification by the
malicious actor. In work [77] also focus on embedded devices protection from
buffer overflow attack. The protection comprises two components—hardware
boundary checking and integrity of the pointer controlling.

5.2.3 Related Attacks

There are numerous published and described overflow vulnerabilities in In-
ternet of Things devices. For example, the TrendNet camera with a specific
firmware version is vulnerable to overflow due to improper parsing of Autho-
rization header. The header’s value is saved in memory without a check of the
length. Therefore, the malicious actor could potentially rewrite memory out
of the bound of the buffer and attack the device. Furthermore, the attacker
even does not need to authenticate to perform a malicious operation. [78]
Similarly, the overflow vulnerability was found in the baby monitor produced
by the vendor Victure. The attacker could also misuse the parsing of Au-
thorization header. In addition, in the device were discovered multiple other
vulnerabilities like missing access control or hard-coded credentials. [79]

Next, in the Sonos speaker, the overflow vulnerability was found. It occurs
during the parsing of audio content. The attacker can misuse it to code
execution as a root. That is a critical vulnerability because it does not require
the authentication of the malicious actor. Therefore, it has a CVSS score of
8.8. The vendor recommends updating the software to a specific version to
protect the device from vulnerability. [80]

59

5. Vulnerability Analysis

5.3 Problematic Password Management

Password management is frequently a weak security component in Internet of
Things devices. This vulnerability category ranks fifth in the created ranking
list of most common vulnerabilities presented in table 4.1. In addition, it has
first place in the ranking list specified directly on the camera devices from
table 4.2. A similar category appears in first place in the ranking list of the
Internet of Things vulnerabilities from 2018 created by OWASP.

The vulnerabilities associated with poor password management are mainly
caused by a lack of emphasis on the security by Internet of Things vendors.
They often aim to produce devices fast and cheaply. Therefore they do not
focus enough on designing proper password management and implementing
security mechanisms. In many cases, they even knowingly use hard-coded
credentials. That is a significant security issue because many smart devices
are used in critical infrastructure and networks. It can lead to numerous severe
security incidents like sensitive data breaches or the attacker taking control of
the system.

Password management was briefly introduced in section Problematic pass-
word management. It describes the vulnerability category of the same name.
In the following sections, we provide more details about password setting
principles and the correct storage of passwords in smart devices. In addition,
default and hard-coded credentials are discussed.

5.3.1 Password Setting

The principles of setting and manipulating password in the Internet of Things
is similar to password management in web applications or other systems. The
smart device user should be able to set and change a password. In addition, the
password should fulfill multiple parameters to protect the system’s security.
For example, the following password parameters can be enforced:

• password length

• use of numeric characters

• use of special symbols

• use of uppercase and lowercase letters

• does not contain personal information like date of birth

• does not belong in known-password lists

• entropy

Based on those parameters, the system can calculate password strength.
Thus, how challenging it is for an attacker to guess the password. The tools

60

5.3. Problematic Password Management

used for calculation are named password strength meters. They perform an
analysis of the given password and can deliver feedback on the password for-
mat to the users. Unfortunately, some password strength meters may be
implemented insufficiently. By a study [81], many password strength meters
operated by popular companies can produce misleading results on password
strength.

Furthermore, the system should check if the user’s password is not in the
list of known passwords. Those lists are usually freely available online and
come from data breaches. For example, the famous list of passwords RockYou
named after the company where the data leak occurred. Over 32 million user
accounts were compromised because the company did not use encryption for
user data. From the gathered leaked password, the word list was created and
is now widely used by security experts and even attackers. For example, the
malicious actor can misuse it for a dictionary attack. [82]

The system should force the user to set a strong password following the
specified policies to prevent security incidents caused by weak passwords. Fur-
thermore, the device should limit the amount of failed login attempts, and it
should not matter if the tries are performed remotely or if the attacker has
physical access to the device. These described mechanisms prevent brute force
or dictionary attacks from the malicious actor trying to gain access to the sys-
tem.

5.3.2 Password Management

The password must be manipulated and stored appropriately. Therefore, the
vendors must focus on it sufficiently during device design and implementation.
First, encrypted configuration files or databases must be used for storage in the
Internet of Things devices. These objects must be adequately protected from
unauthorized users due to sensitive content. Only essential entities should be
able to access the data for necessary operations. Second, the password cannot
be saved in plain text. Strong and proper cryptography algorithms should be
used to protect the password from the attacker. [83] If inadequate algorithms
are implemented, the attacker can crack the password and gain plaintext form.

5.3.3 Hard-coded/Default Credentials

Frequent security issues in the Internet of Things devices are hardcoded cre-
dentials—sensitive login data like usernames and passwords accessible in the
source code of the smart device. Many vendors of smart devices use this ap-
proach due to simplicity and low costs. They do not consider security aspects.
[84]

The default credentials are login data set by the vendor of a device. Usu-
ally, there are shared between all the same types of devices. It is on the

61

5. Vulnerability Analysis

consumers to change the device credentials to secure ones. However, many
users do not modify it, leaving the device insecure.

On the Internet are accessible numerous revealed hard-coded/default login
credentials for specific smart devices. Therefore, it is usually easy for the
attacker to find the required credentials for the vulnerable devices. Then, the
malicious actor can them to login into the victim’s device. That can lead to
numerous security incidents. In addition, if the demanded login data are not
accessible online, the attacker can use reverse engineering methods to attempt
to gain data from the source code.

The hard-coded/default credentials in devices are frequently misused by
botnets. The botnet is a network of infected machines that the attacker con-
trols. They are often misused in Denial of Services attacks or for sending spam
messages. The Internet of Things devices are a common target of the attacker
forming the botnet due to their wide use and lack of security.

One of the most famous botnets is Mirai. It possesses mostly the Internet
of Things devices. To access the device and take control of it, Mirai uses hard-
coded credentials. [83] The impacts of Mirai attacks are noticeable worldwide.
For example, in 2016, Mirai raised the Distributed Denial of Service attack
against the DNS provider Dyn. It led to the inaccessibility of many popular
websites like Twitter, Github, and Reddit. [85]

To mitigate security risks associated with the default password, the user
must change it before using the device. If the device does not support password
change, it should not be used because it is not secure by default. Using
knowingly vulnerable devices in the network is an enormous security risk.
For example, the attacker can use it as an access point to the company or
household network.

62

Conclusion

This thesis’s main goal was to create a vulnerability ranking list for the Inter-
net of Things with transparent methodology and public data sources. There-
fore, we used three web pages and APIs containing Internet of Things vulnera-
bilities to obtain the data. To gather the data automatically, we implemented
the scraping tool in the framework Scrapy. During the implementation, we
had to deal with numerous challenges associated with scraping content pro-
cessed by JavaScript and CVSS score unification. Furthermore, we needed to
develop a mechanism to categorize scraped vulnerabilities and identify if they
belong to the Internet of Things area.

After collecting data, we processed them automatically and manually. The
automatic processing was handled by the scraping tool. Further annotation
and edits were performed manually. To simplify the manual work, we pro-
posed the Internet of Things score to determine if a scraped vulnerability is
associated with the Internet of Things.

The cleaned and processed data were further used for dataset creation.
It contains of 4532 vulnerability records. Based on the dataset, we proposed
various ranking lists for smart devices. First introduced is the ranking list of
the top 10 vulnerabilities occurring in the Internet of Things. Then, the top
10 vulnerabilities in the camera devices ranking list is presented. Also, we
introduce the most common vulnerbaility for each device category.

From the formed common ranking list, we can assume that the most com-
mon vulnerabilities are related to the memory of Internet of Things devices.
For cameras, the most common vulnerabilities are associated with password
management. A similar category was first in the OWASP ranking list for smart
devices created in 2018. However, the classification of categories slightly differs
from our created categories, so it cannot be directly compared.

The created ranking lists can be helpful tools for security experts, organi-
zations, and device vendors. It shows the most common threat to the Internet
of Things devices. Therefore, it enables prioritizing more spread vulnerabil-

63

Conclusion

ities and threats first. That can lead to preventing security incidents and
severe impacts. Also, ranking lists are valuable for risk management.

In the last part of the thesis, the vulnerability analysis in the context of the
Internet of Things was performed. We selected three vulnerability categories in
the final ranking lists based on their occurrence. Then, we analyzed them and
described protection from malicious actors and possible attacks. The chosen
categories were Access control problem, Overflow, and Problematic password
management.

In future work, the scraping tool can be expanded in multiple ways. For
example, new data sources for vulnerabilities can be added. Next, categories
of devices and vulnerabilities can be expanded or divided into more detailed
categories. It may even be necessary due to the increasing use of Internet
of Things devices and vulnerability reporting. Furthermore, the vulnerability
record category classification mechanism can be improved to reduce the error
rate and simplify the manual processing and labeling of data. Similarly, the
Internet of Things score can be edited or replaced with different heuristics.

In addition, the scraping tool can be repeatedly used to collect data for
new ranking list creation in the future. Also, it can help with automatic data
processing with implemented tools and mechanisms.

The result of this thesis is expected to be processed and published as an
academic paper.

64

Bibliography

[1] Foundation, I. S. IOT Security Foundation announces Fifth Report on
consumer IOT vulnerability disclosure policy status. [Visited 25-03-
2023]. Available from: https://www.iotsecurityfoundation.org/iot-
security-foundation-announces-fifth-report-on-consumer-iot-
vulnerability-disclosure-policy-status/

[2] OWASP. Owasp Top Ten. [Visited 27-03-2023]. Available from: https:
//owasp.org/www-project-top-ten/

[3] OWASP. Owasp internet of things project. [Visited 27-03-2023]. Avail-
able from: https://wiki.owasp.org/index.php/OWASP_Internet_of_
Things_Project

[4] Rose, K.; Eldridge, S.; et al. The internet of things: An overview. The
internet society (ISOC), volume 80, 2015: pp. 1–50.

[5] Xia, F.; Yang, L. T.; et al. Internet of things. International journal of
communication systems, volume 25, no. 9, 2012: p. 1101.

[6] Chen, Y.-K. Challenges and opportunities of internet of things. In 17th
Asia and South Pacific design automation conference, IEEE, 2012, pp.
383–388.

[7] Jay, A. Number of internet of things (IOT) connected devices world-
wide 2022/2023: Breakdowns, Growth & Predictions. Mar 2023, [Visited
02-04-2023]. Available from: https://financesonline.com/number-of-
internet-of-things-connected-devices/

[8] OWASP. Vulnerabilities. [Visited 24-03-2023]. Available from: https:
//owasp.org/www-community/vulnerabilities/

[9] Mitre. Common weakness enumeration. [Visited 28-03-2023]. Available
from: https://cwe.mitre.org/

65

https://www.iotsecurityfoundation.org/iot-security-foundation-announces-fifth-report-on-consumer-iot-vulnerability-disclosure-policy-status/
https://www.iotsecurityfoundation.org/iot-security-foundation-announces-fifth-report-on-consumer-iot-vulnerability-disclosure-policy-status/
https://www.iotsecurityfoundation.org/iot-security-foundation-announces-fifth-report-on-consumer-iot-vulnerability-disclosure-policy-status/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://financesonline.com/number-of-internet-of-things-connected-devices/
https://financesonline.com/number-of-internet-of-things-connected-devices/
https://owasp.org/www-community/vulnerabilities/
https://owasp.org/www-community/vulnerabilities/
https://cwe.mitre.org/

Bibliography

[10] Mitre. Common weakness enumeration - About. [Visited 28-03-2023].
Available from: https://cwe.mitre.org/about/index.html

[11] CVE. Website. [Visited 28-03-2023]. Available from: https://
www.cve.org/About/Overview

[12] NIST. Website. [Visited 28-03-2023]. Available from: https://
nvd.nist.gov/products/cpe

[13] Mell, P.; Scarfone, K.; et al. Common Vulnerability Scoring System.
IEEE Security & Privacy, volume 4, no. 6, 2006: pp. 85–89, doi:
10.1109/MSP.2006.145.

[14] FIRST. Website. [Visited 27-03-2023]. Available from: https://
www.first.org/cvss/v2/guide

[15] FIRST. Website. [Visited 27-03-2023]. Available from: https://
www.first.org/cvss/v3.0/specification-document

[16] FIRST. Website. [Visited 27-03-2023]. Available from: https://
www.first.org/cvss/v3.1/specification-document

[17] Dugal, D.; Rich, D. Common vulnerability scoring system -
The State of CVSS to Come. [Visited 27-03-2023]. Available
from: https://www.first.org/resources/papers/sig-may-jun2021/
CVSS-v4-FIRST-SIG-Update-2021.pdf

[18] OWASP. Owasp. [Visited 27-03-2023]. Available from: https://
owasp.org/projects/

[19] MITRE. Common weakness enumeration - TOP 25. Available from:
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

[20] NIST. NVD - General. [Visited 30-03-2023]. Available from: https://
nvd.nist.gov/

[21] security, O. Exploit Database - Exploits for Penetration Testers, Re-
searchers, and Ethical Hackers. [Visited 30-03-2023]. Available from:
https://www.exploit-db.com/

[22] storm, P. Packet Storm. [Visited 30-03-2023]. Available from: https:
//packetstormsecurity.com/about/

[23] Richardson, L. Beautiful soup documentation. 2007, [Visited 30-03-
2023]. Available from: https://beautiful-soup-4.readthedocs.io/
en/latest/

66

https://cwe.mitre.org/about/index.html
https://www.cve.org/About/Overview
https://www.cve.org/About/Overview
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/products/cpe
https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v3.0/specification-document
https://www.first.org/cvss/v3.0/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/resources/papers/sig-may-jun2021/CVSS-v4-FIRST-SIG-Update-2021.pdf
https://www.first.org/resources/papers/sig-may-jun2021/CVSS-v4-FIRST-SIG-Update-2021.pdf
https://owasp.org/projects/
https://owasp.org/projects/
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://nvd.nist.gov/
https://nvd.nist.gov/
https://www.exploit-db.com/
https://packetstormsecurity.com/about/
https://packetstormsecurity.com/about/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/

Bibliography

[24] Selenium. Selenium with Python - Selenium Python Bindings 2 doc-
umentation. [Visited 31-03-2023]. Available from: https://selenium-
python.readthedocs.io/

[25] Playwright. Playwright Python. [Visited 31-03-2023]. Available from:
https://playwright.dev/python/docs/intro

[26] Scrapy. Scrapy 2.8 documentation - Scrapy 2.8.0 documentation. [Vis-
ited 31-03-2023]. Available from: https://doc.scrapy.org/en/latest/
index.html

[27] Scrapy. Scrapy-plugins/scrapy-playwright: playwright integration for
Scrapy. [Visited 31-03-2023]. Available from: https://github.com/
scrapy-plugins/scrapy-playwright

[28] NLTKproject. NLTK - Natural Language Toolkit. [Visited 31-03-2023].
Available from: https://www.nltk.org/

[29] Python. Asyncio — Asynchronous I/O. [Visited 31-03-2023]. Available
from: https://docs.python.org/3/library/asyncio.html

[30] Scrapy. Items - Scrapy 2.8.0 documentation. [Visited 1-04-2023]. Available
from: https://doc.scrapy.org/en/latest/topics/items.html

[31] Scrapy. Spiders - Scrapy 2.8.0 documentation. [Visited 1-04-2023]. Avail-
able from: https://doc.scrapy.org/en/latest/topics/spiders.html

[32] Nowak, M.; Walkowski, M.; et al. Machine learning algorithms for conver-
sion of CVSS base score from 2.0 to 3. x. In Computational Science–ICCS
2021: 21st International Conference, Krakow, Poland, June 16–18, 2021,
Proceedings, Part III, Springer, 2021, pp. 255–269.

[33] Beckerle, M.; Martucci, L. A. Formal definitions for usable access control
rule sets from goals to metrics. In Proceedings of the ninth symposium on
usable privacy and security, 2013, pp. 1–11.

[34] Sandhu, R. S.; Samarati, P. Access control: principle and practice. IEEE
communications magazine, volume 32, no. 9, 1994: pp. 40–48.

[35] Siddiqui, M. S.; Verma, D. Cross site request forgery: A common web ap-
plication weakness. In 2011 IEEE 3rd International Conference on Com-
munication Software and Networks, IEEE, 2011, pp. 538–543.

[36] Barth, A.; Jackson, C.; et al. Robust defenses for cross-site request
forgery. In Proceedings of the 15th ACM conference on Computer and
communications security, 2008, pp. 75–88.

67

https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://playwright.dev/python/docs/intro
https://doc.scrapy.org/en/latest/index.html
https://doc.scrapy.org/en/latest/index.html
https://github.com/scrapy-plugins/scrapy-playwright
https://github.com/scrapy-plugins/scrapy-playwright
https://www.nltk.org/
https://docs.python.org/3/library/asyncio.html
https://doc.scrapy.org/en/latest/topics/items.html
https://doc.scrapy.org/en/latest/topics/spiders.html

Bibliography

[37] Gupta, S.; Gupta, B. B. Cross-Site Scripting (XSS) attacks and defense
mechanisms: classification and state-of-the-art. International Journal of
System Assurance Engineering and Management, volume 8, 2017: pp.
512–530.

[38] Hydara, I.; Sultan, A. B. M.; et al. Current state of research on cross-site
scripting (XSS)–A systematic literature review. Information and Software
Technology, volume 58, 2015: pp. 170–186.

[39] NCSC. Denial of service (DOS) guidance. [Visited 15-03-2023]. Avail-
able from: https://www.ncsc.gov.uk/collection/denial-service-
dos-guidance-collection

[40] Carl, G.; Kesidis, G.; et al. Denial-of-service attack-detection techniques.
IEEE Internet computing, volume 10, no. 1, 2006: pp. 82–89.

[41] Yoachimik, O. Cloudflare ddos threat report 2022 Q3. Nov 2022,
[Visited 27-03-2023]. Available from: https://blog.cloudflare.com/
cloudflare-ddos-threat-report-2022-q3/

[42] Wikipedia. Arbitrary code execution. Mar 2023, [Visited 16-03-2023].
Available from: https://en.wikipedia.org/wiki/Arbitrary_code_
execution

[43] Fiskiran, A. M.; Lee, R. B. Runtime execution monitoring (REM) to de-
tect and prevent malicious code execution. In IEEE International Con-
ference on Computer Design: VLSI in Computers and Processors, 2004.
ICCD 2004. Proceedings., IEEE, 2004, pp. 452–457.

[44] Pooj, K.; Patil, S. Understanding File Upload Security for Web Applica-
tions. International Journal of Engineering Trends and Technology, vol-
ume 42, no. 7, 2016: pp. 342–347.

[45] Tayan, O. Concepts and tools for protecting sensitive data in the it indus-
try: a review of trends, challenges and mechanisms for data-protection.
International Journal of Advanced Computer Science and Applications,
volume 8, no. 2, 2017.

[46] Scholte, T.; Robertson, W.; et al. Preventing input validation vulnerabil-
ities in web applications through automated type analysis. In 2012 IEEE
36th annual computer software and applications conference, IEEE, 2012,
pp. 233–243.

[47] Azevedo de Amorim, A.; Hriţcu, C.; et al. The meaning of memory safety.
In Principles of Security and Trust: 7th International Conference, POST
2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,
2018, Proceedings 7, Springer, 2018, pp. 79–105.

68

https://www.ncsc.gov.uk/collection/denial-service-dos-guidance-collection
https://www.ncsc.gov.uk/collection/denial-service-dos-guidance-collection
https://blog.cloudflare.com/cloudflare-ddos-threat-report-2022-q3/
https://blog.cloudflare.com/cloudflare-ddos-threat-report-2022-q3/
https://en.wikipedia.org/wiki/Arbitrary_code_execution
https://en.wikipedia.org/wiki/Arbitrary_code_execution

Bibliography

[48] OWASP. Owasp secure coding practices-quick reference guide. [Visited
17-03-2023]. Available from: https://owasp.org/www-project-secure-
coding-practices-quick-reference-guide/

[49] Lhee, K.-S.; Chapin, S. J. Buffer overflow and format string overflow
vulnerabilities. Software: practice and experience, volume 33, no. 5, 2003:
pp. 423–460.

[50] Wikipedia. Data buffer. Mar 2023, [Visited 17-03-2023]. Available from:
https://en.wikipedia.org/wiki/Data_buffer

[51] Larochelle, D.; Evans, D. Statically detecting likely buffer overflow vul-
nerabilities. In 2001 USENIX Security Symposium, Washington, DC, Ver-
sion: http://www. usenix. org/events/sec01/larochelle. html, 2001, pp. –.

[52] Flanders, M. A simple and intuitive algorithm for preventing directory
traversal attacks. arXiv preprint arXiv:1908.04502, 2019.

[53] Ometov, A.; Bezzateev, S.; et al. Multi-factor authentication: A survey.
Cryptography, volume 2, no. 1, 2018: p. 1.

[54] Vlsaggio, C. A.; Blasio, L. C. Session management vulnerabilities in to-
day’s web. IEEE Security & Privacy, volume 8, no. 5, 2010: pp. 48–56.

[55] OWASP. Authentication cheat sheet. [Visited 18-03-2023]. Avail-
able from: https://cheatsheetseries.owasp.org/cheatsheets/
Authentication_Cheat_Sheet.html

[56] Rivest, R. L. Cryptography. In Algorithms and complexity, Elsevier, 1990,
pp. 717–755.

[57] OWASP. WSTG - Testing for Weak Encryption. [Visited 18-03-2023].
Available from: https://owasp.org/www-project-web-security-
testing-guide/latest/4-Web_Application_Security_Testing/09-
Testing_for_Weak_Cryptography/04-Testing_for_Weak_Encryption

[58] Miessler, D. Danielmiessler/Seclists. [Visited 18-03-2023]. Available from:
https://github.com/danielmiessler/SecLists

[59] Wikipedia. Password policy. Jul 2022, [Visited 18-03-2023]. Available
from: https://en.wikipedia.org/wiki/Password_policy

[60] Netzer, R. H.; Miller, B. P. What are race conditions? Some issues and
formalizations. ACM Letters on Programming Languages and Systems
(LOPLAS), volume 1, no. 1, 1992: pp. 74–88.

[61] CWE. Common weakness enumeration. [Visited 19-03-2023]. Available
from: https://cwe.mitre.org/data/definitions/362.html

69

https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/
https://en.wikipedia.org/wiki/Data_buffer
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/04-Testing_for_Weak_Encryption
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/04-Testing_for_Weak_Encryption
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/04-Testing_for_Weak_Encryption
https://github.com/danielmiessler/SecLists
https://en.wikipedia.org/wiki/Password_policy
https://cwe.mitre.org/data/definitions/362.html

Bibliography

[62] Halfond, W. G.; Viegas, J.; et al. A classification of SQL-injection attacks
and countermeasures. In Proceedings of the IEEE international sympo-
sium on secure software engineering, volume 1, IEEE, 2006, pp. 13–15.

[63] NIST. [Visited 20-03-2023]. Available from: https://www.itl.nist.gov/
div897/ctg/dm/sql_info.html

[64] VerifiedMarketResearch. IOT in automotive market size, share, trends,
Opportunities and Forecast. Jan 2023, [Visited 27-03-2023]. Avail-
able from: https://www.verifiedmarketresearch.com/product/iot-
in-automotive-market/

[65] Andaloussi, Y.; El Ouadghiri, M. D.; et al. Access control in IoT environ-
ments: Feasible scenarios. Procedia computer science, volume 130, 2018:
pp. 1031–1036.

[66] Zhang, Y.; Kasahara, S.; et al. Smart Contract-Based Access Control for
the Internet of Things. IEEE Internet of Things Journal, volume 6, no. 2,
2019: pp. 1594–1605, doi:10.1109/JIOT.2018.2847705.

[67] Liu, J.; Xiao, Y.; et al. Authentication and Access Control in the
Internet of Things. In 2012 32nd International Conference on Dis-
tributed Computing Systems Workshops, 2012, pp. 588–592, doi:10.1109/
ICDCSW.2012.23.

[68] Song, L.; Li, M.; et al. Attribute-based access control using smart con-
tracts for the internet of things. Procedia computer science, volume 174,
2020: pp. 231–242.

[69] Thomson, I. Wi-Fi Baby Heart Monitor may have the worst
IOT security of 2016. Oct 2016, [Visited 14-04-2023]. Available
from: https://www.theregister.com/2016/10/13/possibly_worst_
iot_security_failure_yet/

[70] Davis, J. FDA to patients with St. Jude Pacemakers: Update needed
to keep hackers out of devices. Aug 2017, [Visited 14-04-2023]. Avail-
able from: https://www.healthcareitnews.com/news/fda-patients-
st-jude-pacemakers-update-needed-keep-hackers-out-devices

[71] Zetter, K. Flaw in home security cameras exposes live feeds to hackers.
Feb 2012, [Visited 14-04-2023]. Available from: https://www.wired.com/
2012/02/home-cameras-exposed/

[72] Mullen, G.; Meany, L. Assessment of Buffer Overflow Based Attacks On
an IoT Operating System. In 2019 Global IoT Summit (GIoTS), 2019,
pp. 1–6, doi:10.1109/GIOTS.2019.8766434.

70

https://www.itl.nist.gov/div897/ctg/dm/sql_info.html
https://www.itl.nist.gov/div897/ctg/dm/sql_info.html
https://www.verifiedmarketresearch.com/product/iot-in-automotive-market/
https://www.verifiedmarketresearch.com/product/iot-in-automotive-market/
https://www.theregister.com/2016/10/13/possibly_worst_iot_security_failure_yet/
https://www.theregister.com/2016/10/13/possibly_worst_iot_security_failure_yet/
https://www.healthcareitnews.com/news/fda-patients-st-jude-pacemakers-update-needed-keep-hackers-out-devices
https://www.healthcareitnews.com/news/fda-patients-st-jude-pacemakers-update-needed-keep-hackers-out-devices
https://www.wired.com/2012/02/home-cameras-exposed/
https://www.wired.com/2012/02/home-cameras-exposed/

Bibliography

[73] Fu, D.; Shi, F. Buffer Overflow Exploit and Defensive Techniques. In 2012
Fourth International Conference on Multimedia Information Networking
and Security, 2012, pp. 87–90, doi:10.1109/MINES.2012.81.

[74] Habibi, J.; Panicker, A.; et al. DisARM: mitigating buffer overflow at-
tacks on embedded devices. In Network and System Security: 9th Inter-
national Conference, NSS 2015, New York, NY, USA, November 3-5,
2015, Proceedings 9, Springer, 2015, pp. 112–129.

[75] Fu, D.; Shi, F. Buffer Overflow Exploit and Defensive Techniques. In 2012
Fourth International Conference on Multimedia Information Networking
and Security, 2012, pp. 87–90, doi:10.1109/MINES.2012.81.

[76] Cowan, C.; Wagle, F.; et al. Buffer overflows: Attacks and defenses for
the vulnerability of the decade. In Proceedings DARPA Information Sur-
vivability Conference and Exposition. DISCEX’00, volume 2, IEEE, 2000,
pp. 119–129.

[77] Shao, Z.; Zhuge, Q.; et al. Defending embedded systems against buffer
overflow via hardware/software. In 19th Annual Computer Security Appli-
cations Conference, 2003. Proceedings., 2003, pp. 352–361, doi:10.1109/
CSAC.2003.1254340.

[78] Munawwar. TrendNet wireless camera buffer overflow vulnerability. Dec
2022, [Visited 18-04-2023]. Available from: https://payatu.com/blog/
trendnet-wireless-camera-buffer-overflow-vulnerability/

[79] Bitdefender. Security cracking the victure IPC360 monitor - bitdefender.
[Visited 18-04-2023]. Available from: https://www.bitdefender.com/
files/News/CaseStudies/study/402/Bitdefender-PR-Whitepaper-
VictureIPC-creat5590-en-EN.pdf

[80] ZeroDayInitiative. ZDI-23-449 — Zero Day Initiative. [Visited 18-
04-2023]. Available from: https://www.zerodayinitiative.com/
advisories/ZDI-23-449/

[81] de Carné de Carnavalet, X.; Mannan, M. From very weak to very strong:
Analyzing password-strength meters. In Network and Distributed System
Security Symposium (NDSS 2014), Internet Society, 2014, pp. –.

[82] Wikipedia. Rockyou. Dec 2022, [Visited 14-04-2023]. Available from:
https://en.wikipedia.org/wiki/RockYou

[83] Singh Verma, R.; Chandavarkar, B. Hard-coded credentials and web ser-
vice in IoT: issues and challenges. International Journal of Computational
Intelligence & IoT, Forthcoming, volume 2, no. 3, 2019.

71

https://payatu.com/blog/trendnet-wireless-camera-buffer-overflow-vulnerability/
https://payatu.com/blog/trendnet-wireless-camera-buffer-overflow-vulnerability/
https://www.bitdefender.com/files/News/CaseStudies/study/402/Bitdefender-PR-Whitepaper-VictureIPC-creat5590-en-EN.pdf
https://www.bitdefender.com/files/News/CaseStudies/study/402/Bitdefender-PR-Whitepaper-VictureIPC-creat5590-en-EN.pdf
https://www.bitdefender.com/files/News/CaseStudies/study/402/Bitdefender-PR-Whitepaper-VictureIPC-creat5590-en-EN.pdf
https://www.zerodayinitiative.com/advisories/ZDI-23-449/
https://www.zerodayinitiative.com/advisories/ZDI-23-449/
https://en.wikipedia.org/wiki/RockYou

Bibliography

[84] Chandavarkar, B. R. Hardcoded Credentials and Insecure Data Transfer
in IoT: National and International Status. In 2020 11th International
Conference on Computing, Communication and Networking Technologies
(ICCCNT), 2020, pp. 1–7, doi:10.1109/ICCCNT49239.2020.9225520.

[85] Wikipedia. Mirai (malware). Mar 2023, [Visited 14-04-2023]. Available
from: https://en.wikipedia.org/wiki/Mirai_(malware)

72

https://en.wikipedia.org/wiki/Mirai_(malware)

Appendix A
Acronyms

AES Advanced Encryption Standard

API Application Programming Interface

CPE Common Platform Enumeration

CSRF Cross-site Request Forgery

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DES Data Encryption Standard

DOM Document Object Model

HTML Hypertext Markup Language

IP Internet Protocol

IoT Internet of Things

JSON JavaScript Object Notation

JWT JSON Web Token

NIST National Institute of Standards and Technology

NLTK Natural Language Toolkit

OWASP Open Worldwide Application Security Project

SQL Structured Query Language

XML Extensible Markup Language

73

A. Acronyms

XSS Cross-site scripting

URL Uniform Resource Locator

74

Appendix B
Created Ranking Lists

Table B.1: Ranking List of Top 10 Vulnerabilities in the Internet of Things

Position Vulnerability category Occurences
1 Overflow 1116
2 Improper use of memory 624
3 Access control problem 463
4 Execution of malicious code 374
5 Problematic password management 340
6 Problematic authentication/session handling 261
7 Improper input validation 255
8 Denial of service 210
9 Problematic cryptography/certificate manipulation 155
10 Insecure design/design flaw 111

75

B. Created Ranking Lists

Table B.2: Ranking List of Top 10 Vulnerabilities in Camera Devices

Position Vulnerability category Occurences
1 Problematic password management 96
2 Access control problem 94
3 Overflow 61
4 Execution of malicious code 58
5 Problematic authentication/session handling 47
6 Improper data handling 24
7 Improper use of memory 23
8 Problematic cryptography/certificate manipulation 18
9 Path traversal 17
10 Cross-site Request Forgery 15

Table B.3: List of Top Vulnerability per Device Category

Device category Top vulnerability category
Cameras Problematic password management

Car devices Problematic authentication/session handling
Health/medical devices Problematic authentication/session handling

Industry devices Access control problem
Lightning Access control problem
Multiple Overflow

Network devices Overflow
Other Access control problem

Sensors Access control problem
Smart buildings Access control problem

Smart home appliances Access control problem
Smart small home devices Overflow

Temperature control Problematic authentication/session handling
Voice/sound devices Insecure design/design flaw

Wearable devices Improper use of memory

76

Appendix C
Structure of Enclosed Files

README.txt.....................the file with attched content description
datasets..................................folder with created datasets
jupyter notebooks........................attached Jupyter notebooks
scraper..................................Python code of scraping tool
thesis text folder with thesis source code

77

	Introduction
	State-of-the-art
	Internet of Things
	Vulnerabilities
	Common Weakness Enumeration (CWE)
	Common Vulnerabilities and Exposures (CVE)
	Common Platform Enumeration (CPE)
	Common Vulnerability Scoring System (CVSS)
	CVSS 2
	CVSS 3
	CVSS 3.1
	CVSS 4

	Vulnerability Ranking Lists
	OWASP
	OWASP TOP 10
	OWASP Internet of Things

	CWE Top 25 Most Dangerous Software Weaknesses

	Data Scraping
	Proposal
	Data Sources
	National Vulnerability Database
	Exploit Database
	Packet Storm

	Keywords
	Data Scraping Tools
	Beautiful Soup
	Selenium
	Playwright
	Scrapy

	Implementation of Scraping Tool
	Challanges
	Identification of Internet of Things Vulnerabilities
	Unification of CVSS Score Versions
	Web Pages Using Java Script

	Used Libraries
	Natural Language Toolkit
	Asyncio

	Scrapers
	Items
	Item Vulnerability

	Spiders
	CVE_NIST_API
	EXPLOIT_DB_WEB_PLAYWRIGHT
	EXPLOIT_PACKETSTORM_WEB

	Shared Functions
	CVSS Converter
	Description Processing
	Internet of Things Score

	Dataset
	Methodology of Dataset Creation
	Dataset Columns
	Data Scraping Columns
	Vulnerability Columns

	Vulnerability Categories
	Access Control Problem
	Cross-site Request Forgery
	Cross-site Scripting
	Denial of Service
	Execution of Malicious Code
	Improper Data Handling
	Improper Input Validation
	Improper Use of Memory
	Insecure Design/Design Flaw
	Other Vulnerabilities
	Overflow
	Path Traversal
	Problematic Authentication/Session Handling
	Problematic Cryptography
	Problematic Password Management
	Race Condition
	SQL Injection

	Devices Categories
	Cameras
	Car Devices
	Healthmedical Devices
	Industry Devices
	Lightning
	Multiple
	Network Devices
	Smart Buildings
	Smart Home Appliances
	Smart Small Home Appliances
	Temperature Control
	Voicesound Devices
	Wearable Devices

	Ranking Lists
	Top 10 Vulnerabilities
	Top 10 Vulnerabilities in Camera Category
	Top Vulnerability per Device Category

	Vulnerability Analysis
	Access Control Problem
	Access Control Architecture
	Access Control Models
	Related Attacks

	Overflow
	Buffer Overflow Types
	Buffer Overflow Protection
	Related Attacks

	Problematic Password Management
	Password Setting
	Password Management
	Hard-coded/Default Credentials

	Conclusion
	Bibliography
	Acronyms
	Created Ranking Lists
	Structure of Enclosed Files

