FAKULTA
INFORMACNICH
TECHNOLOGII
CVUT V PRAZE

Zadani diplomové prace

Nazev: V ¢ase proménliva stabilni parovani
Student: Bc. Dominik Smejkal

Vedouci: doc. RNDr. Dusan Knop, Ph.D.

Studijni program: Informatika

Obor / specializace: Znalostni inZenyrstvi

Katedra: Katedra aplikované matematiky
Platnost zadani: do konce letniho semestru 2022/2023

Pokyny pro vypracovani

Stable Marriage je fundamentdlni problém teorie stabilnich parovani. Vstupem

problému jsou (stejné velké) mnoZiny agentu M a F. Kazdy z agentl ma preference
vyjadiené jako (totaIni) linearni uspofadani na agentech z opa&né mnoziny. Cilem je najit
parovani mezi agenty, kde nebude existovat dvojice m\in M a f\in F takova, Zze m
preferuje f pred aktudlné pfifazenym pdrem a f preferuje m pred aktualnim partnerem.
Pro tento problém existuje slavny polynomidlni algoritmus, se kterym pfisli vroce 1962
Gale a Shapley. Shapley za vyzkum v oblasti stabilnich parovani dokonce ziskal Nobelovu
cenu.

Cilem prace je studium problému z hlediska temporalnich preferenci, které dobfe
zachycuji dynamicky se ménici svét. Price se bude vénovat zejména hledani
temporalnich interpretacich tohoto problému, se specialnim zaméfenim na algoritmické
a tézkostni vysledky.

Elektronicky schvalil/a Ing. Magda Friedjungova, Ph.D. dne 28. dubna 2022 v Praze.

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Master’s thesis

Temporal Stable Matchings

Bc. Dominik gmejkal

Department of Applied Mathematics
Supervisor: doc. RNDr. Dusan Knop, Ph.D.

May 4, 2023

Acknowledgements

V prvni fadé bych chtél podékovat svému skoliteli, Ing. Simonovi Schierrei-
chovi, za jeho perfektni vedeni mého pribéhu psani diplomové prace. Také
bych rad podékoval rodinné a pritelkyni za jejich podporu a pochopeni v dobé
psani préace.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 4, 2023 .

Czech Technical University in Prague

Faculty of Information Technology

© 2023 Dominik Smejkal. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Smejkal, Dominik. Temporal Stable Matchings. Master’s thesis. Czech Tech-
nical University in Prague, Faculty of Information Technology, 2023.

Abstract

In dynamically changing world, we cannot expect our preferences to be con-
stantly unchanged under outside factors. Hence, we need solutions of our
problems to adapt well to changes. In STABLE MARRIAGE problem, sets of
men and women are being matched according to their preferences. The goal is
to find a matching, where no man and woman both prefer each other over their
current partners. We study the effect of dynamicaly changing preferences of
these men and women and define TEMPORAL STABLE MARRIAGE problem
that adresses these changes. This problem tries to find a matching, where
at most k pairs prefer each other over their current partners under multiple
preference profiles. We prove that this problem is NP-complete, even with
constant value of k, and propose algorithms that might be a few observations
away from being able to find a valid solution in time better than naive brute
force method.

Keywords Stable Marriage, NP-complete, Polynomial Reduction, Dynamic
programming, Blocking pair, Temporal graph, Bipartithe graph

vii

Abstrakt

V dynamicky se ménicim svété nemuzeme ocekavat, ze nase preference zistanou
neménné pod vlivem vnéjsich faktorti. Proto potiebujeme, aby se feSeni
nasich problémii dobfe adaptovaly témto zménam. V problému STABLE MAR-
RIAGE se skupiny muzu a zen paruji podle jejich preferenci. Cilem je najit
takové parovani, kde neexistuje muz a zena, ktefi se vzajemné preferuji pred
svymi aktudlnimi partnery. Efekt dynamicky se ménicich preferenci téchto
zen a muzu studujeme v rdmci nasi definice problému jako TEMPORAL STA-
BLE MARRIAGE, ktery tyto zmény Tesi. Refenfm tohoto problému je nalézt
parovani, ve kterém se nejvyse k paru preferuje vzdjemné pred jejich prirazenymi
partnery pod vice preferenénimi profily. Dokazujeme, ze tento problém je NP-
uplny, i s konstantni hodnotou %, a navrhujeme algoritmy, které jsou poten-
cionalné uz jen par pozorovani vzdalené od schopnosti vracet spravné reSeni
v case lepsim, nez naivni algoritmus hrubou silou.

Klicova slova Stabilni parovani, NP-tuplny, Polynomiélni redukce, Dynam-
ické programovani, Blokujici hrana, V ¢ase proménlivy graf, Bipartitni graf

viii

Contents

Stable marriage|

[1.1 Stable Marriage Problem Research Overview|

[1.3 Gale-Shapley algorithm|
[1.4 Random Paths to Stability]
[L.5 Count of Stable Matchings|.

[2

Finding all Stable matchings|

2.1 Ordering stable matchings|
2.2 Break-marriagel
2.3 Finding all stable pairs in time O(n?)|
24 Rotations o L
2.5 Pausing Breakmarriage Algorithm|
2.6 Finding all rotations in O(n®)
2.7 Enumerating all stable matchings|

Algorithms using enumeration of stable matchings|

[3.1 The minimum regret stable marriagel
3.2 “Optimal” Stable Marriage|
[3.3 Incremental Stable Marriage|.

IO “Hution

4.1 Temporal Stable Marriagel
4.2 Temporal Stable Marriage is NP-complete]
4.3 Algorithm Using Dynamic Programming|

ix

10
13
14

17
17
18
20
22
23
26
27

37
37
39
42

[6_Discussion] 57
5.1 Algorithm Repeating Incremental Stable Marriage] o7
5.2 NP-hardness of Temporal Stable Marriage with Constant Num- |

| ber of Layers| oo 59

iConclusion| 63

|Bibliography| 65

List of Figures

2.1 Graph D for example|9] 28
2.2 Graph G for example |10 oo 31
4.1 Graph of Computation Times by 4 50
4.2 Graph of Computation Timesby n|. 51
4.3 Graph of differences in solutions by 4. 52
4.4 Graph of difterences in solutions by nf 54
4.5 Graph of differences in solutions by A 55

xi

Introduction

The need to be matching agents in pairs is present in a diverse range of fields
and industries. Ranging from mobility as a service and food delivery applica-
tions, where we need to match the driver and the customer, to organ donation,
where we need to match the donor and the recipient, to web advertisements,
where it is needed to match the advertisement and the advertisement space,
fast and, ideally, optimal matching is needed everyday.

One of the options for a model of optimal matching is stable matching in
STABLE MARRIAGE problem. It is a classic problem in the field of mathematics
and computer science that deals with matching pairs from two different sets,
often labeled as men and women. Each one of these men and women have
their strict preferences for their perspective partners, effectively ordering them
from the most preferred partner to the least preferred partner. The question
of this problem is: Does a matching, where no men and women prefer each
other to their respective partners, exist?

The problem was first formally defined by David Gale (December 13, 1921
— March 7, 2008) and Lloyd Shapleg,E] (June 2, 1923 — March 12, 2016) in 1962,
and they showed that the required matching, which is called stable matching,
always exist. It’s proof was constructive, using the very important algorithm
known as GALE-SHAPLEY ALGORITHM or DEFERRED ACCEPTANCE ALGO-
RITHM.

In this thesis, we study how to utilize STABLE MARRIAGE problem in
a changing environment, where the preferences of men and women may be
changing. We are going to define a temporal interpretation of STABLE MAR-
RIAGE problem and examine it’s properties.

150 years after David Gale and Lloyd Shapley first introduced the STABLE MARRIAGE
problem, in 2012, Shapley and Alvin E. Roth (who made significant contributions to practical
applications of STABLE MARRIAGE) received the Nobel Memorial Prize for “the theory of
stable allocations and the practice of market design”. The reason why David Gale was not
awarded the Nobel Memorial Prize is that it is not awarded posthumously.

INTRODUCTION

Thesis Structure

At first, we are going to introduce the STABLE MARRIAGE problem, explore
it’s applications and research which modifications of this problem were already
analyzed. We are going to show some of the complexity and algorithmic results
of these modified versions of STABLE MARRIAGE. We are also going to talk
about problems similar to STABLE MARRIAGE problem.

After we establish the current state of research, we are going to formally
define STABLE MARRIAGE, standard definitions and lemmas surrounding it.
As different authors tend to use slightly different notation, we are going to
unify the theory from different sources.

After showing the GALE-SHAPLEY ALGORITHM, we are going to focus on
selected literature, that is expected to help us with tackling our TEMPORAL
STABLE MARRIAGE problem later. These are going to be examined in detail.
We are also going to show some modified versions of STABLE MARRIAGE
problem more in detail, when they offer interesting solutions.

Finally we are going to introduce our definition of TEMPORAL STABLE
MARRIAGE problem and show some of it’s properties. In the end, we are
going to discuss some of our unsuccessful approaches to face our problem, and
the reasons why we suppose they are not working as first expected.

Goals

Main goals of this thesis are to study the STABLE MARRIACGE problem from
the viewpoint of dynamically changing world. The thesis will focus mainly on
finding temporal interpretations of this problem, with a special emphasis on
algorithmic and complexity results.

We will define TEMPORAL STABLE MARRIAGE problem and analyze it’s
properties, mainly focusing on:

o proving, that the problem is NP-complete (resp. NP-hard) by providing
a polynomial reduction from another NP-complete problem,

e proving, that it belongs to P, by finding an algorithm solving TEMPORAL
STABLE MARRIAGE in polynomial time,

 finding algorithms for special cases of TEMPORAL STABLE MARRIAGE
problem.

CHAPTER 1

Stable marriage

We are going to formally define STABLE MARRIAGE instance and it’s prefer-
ence list first. Later, additional definitions like stability will be introduced.
Definitions, lemmas and theorems in this chapter are based mostly on pa-
pers |1}, 2, 3L 4, 5, 6, 7], unless it is said otherwise. As each publication uses
a slightly different definitions and notation, we are going to use unified defi-
nitions and notation in the whole thesis, therefore they may differ from the
papers cited.

First, we are going to look at a summary of related work on STABLE
MARRIAGE problem in Section After that we show essential definitions
for STABLE MARRIAGE problem, and GALE-SHAPLEY ALGORITHM later.

1.1 Stable Marriage Problem Research Overview

The STABLE MARRIAGE problem is a classic problem in mathematics and
computer science that deals with finding a stable matching () between sets of
men and women based on their preferences for each other. Specifically, given n
men and r women, each with their own strict preference relation ordering
members of the opposite sex, the problem is to find a matching where no two
agents would both prefer to be matched with each other over their current
partners. If such pair exists for this matching, it is called blocking pair, else
we have found stable matching.

We can find a stable matching using GALE-SHAPLEY ALGORITHM in O(nr)
time. This algorithm is also used as a proof for the existence of stable matching
in any instance of the STABLE MARRIAGE problem.

The solution to this problem has important applications in various fields,
including economics, game theory, and network theory. Some of these appli-
cations are:

o Job Matching/School Choice: Companies or schools that are re-
ceiving applications can use the STABLE MARRIAGE problem to match

3

1. STABLE MARRIAGE

applicants with the positions/capacities that best fit their qualifica-
tions and preferences. Examples of this application are National Resi-
dent Matching Program [8], Canadian Resident Matching service |9] and
Japan Residency Matching Program [10], where medical graduates are
matching with country’s hospitals and their available positions. This is
usually modeled as a Hospitals-Residents or College admissions prob-
lem, which is a slightly modified version of the STABLE MARRIAGE
problem, where a single hospital /company /school can accept multiple
residents/applicants/students. This problem was solved in the same pa-
per [1] by Gale and Shapley where the STABLE M ARRIAGE problem was
solved.

e Organ Transplants: The problem of finding a compatible organ donor
for a patient in need of a transplant can be modeled as a STABLE MAR-
RIAGE problem. In this case, the patients represent one set of individu-
als, and the potential donors represent the other set. Kidney exchange
application model is mentioned often in multiple papers [11, |12, 13|
14} [15] and studied extensively (especially by Alvin E. Roth), but we
have not been able to find any proof of an actual kidney exchange using
this algorithm. Most sources tell us that the exchange currently hap-
pens either via a swap of partners in two donor and recipient pairs, or
by NEAD — Never Ending Altruistic Donor chain. NEAD starts with
one unmatched donor, who pairs with a compatible recipient waiting
for transplant and the recipient’s incompatible donor, that was paired
to him earlier is paired with another compatible recipient, creating an
infinite chain. [16]

e Stable Allocations in Content Delivery: Because of the need of
content delivery networks to balance the load to the servers, STABLE
MARRIAGE is used to match clients (map units) and clusters of Akamai
content delivery network, according to Bruce M. Maggs and Ramesh K.
Sitaraman [17]. It uses a generalized definition of STABLE MARRIAGE
problem, utilizing:

— partial preference lists, where the preferences do not need to be
defined for every agent in the opposite set, as there are thousands
of clusters and tens of milions of map units, and

— many-to-many matchings, where the demands of map units and
capacities of clusters are possibly higher than one.
1.1.1 Modified versions of problem

In this section we look at the most important modifications of STABLE MAR-
RIAGE problem that were already analyzed. In addition to the standard def-
inition above, there exists a number of it’s modifications. One of them was

4

1.1. Stable Marriage Problem Research Overview

already mentioned — Hospitals-Restdents or College admissions problem. It
adds an option for one set of agents (the hospital/college set) to have a higher
capacity. These agents then can be in a pair with multiple partners at the
same time, up to their capacity. This is an abstraction for the fact that for
example colleges have many places for new students which are all equal.

Incidental to this definition is an important theorem formulated by Alvin
E. Roth [18] and David Gale and Marilda Sotomayor [19]. Nowadays called
Rural Hospitals Theorem, it proves that every matching, that is stable, is made
by the same subsets of men and women. This means that an agent who is not
part of some stable matching is left out in every stable matching. Additionally,
for the Hospitals-Residents problem it also means that any hospital that fails
to fill it’s capacity in some stable matching will not only fill the same number
of positions in every other stable matching, but will also match the same set
of residents. It’s importance lies in the fact that the selection of subsets of
agents is not a property of the given stable matching, but it is a property of
the given matching instance. [20]

1.1.1.1 Incomplete Preferences and Ties

Another modification is a definition that allows men and women to have in-
complete preference lists, where partners who are not on preference list are
not considered acceptable for the owner of the list. This version is called
STABLE MARRIAGE WITH INCOMPLETE PREFERENCE LISTS, often shortened
as SML. [7]

Another common modification of the basic definition is STABLE MAR-
RIAGE WITH TIES, shortened as SMT, adds the option to rank the members
of the opposite sex in non-strict order. Because of the ties incorporated in
preferences, the definition of stability for this problem was extended to super-
stability, strong stability, and weak stability.

Super stability redefines blocking pairs as not strictly preferred pair to
the current matching for both agents. Strong stability requires the blocking
pair to contain at least one agent that prefers this pair to his current match.
Weak stability has the strongest requirements on a blocking pair, as it requires
both agents in the blocking pair to prefer each other strictly to their current
matches.

It is easy to see that a super-stable matching is strongly stable and strongly
stable matching is weakly stable. Unlike weakly stable matching, the other
two may not exist in a given instance of the STABLE MARRIAGE problem.
Weakly stable matching can be found in O(nr) time. The existence of super-
stable matching is verified by finding one in O(nr) time, and for strongly stable
matching this takes O(I*) (where | = max(n,r)) with algorithm STRONG by
Irving [21], resp. O(I3) with algorithm by Kavitha [22].

A combination of the last two modifications, STABLE MARRIAGE WITH
TIES AND INCOMPLETE PREFERENCE LISTS (SMTI), allows both of these

5

1. STABLE MARRIAGE

modifications at the same time. This problem has the same extended defini-
tions of stability and the same time complexities for verification of existence
of super-stable and strongly stable matchings. Additionally, both of these
types of stability have the same size of all stable matchings for an instance of
STABLE MARRIAGE WITH TIES AND INCOMPLETE PREFERENCE LISTS. [7]

Weakly stable matching exists in every instance of STABLE MARRIAGE
WITH TIES AND INCOMPLETE PREFERENCE LISTS and can be found in O(nr)
time. But now, one instance may have stable matchings of different sizes. A
problem of finding the larges one, known as MAX SMTI problem, was shown
to be NP-complete by David F. Manlove [4] and Iwama [23].

1.1.1.2 Robustness

A question of robustness of stable matching was studied mostly by B. Genc,
M. Siala, G. Simonin, and B. O’Sullivan [24, 25| since year 2017. By their
definition, the robustness of a stable matching is measured by the number
of modifications required to find a different stable matching.

They introduced the notion of (a, b)-supermatch. They define it as a stable
matching @), where we can break up at most a pairs and find a different stable
matching by changing the partners of agents from those a pairs and at most b
other pairs.

In this context, (1,b)-supermatch where b is minimal, is considered the
most robust matching. It is shown that checking whether a given stable
matching is (1, b)-supermatch can be done in polynomial time. Genetic al-
gorithm, local search algorithm and constraint programming model to find
the most robust (1, b)-supermatch is also shown. [25]

It was also shown that the problem of deciding if there exists a (1,1)-
supermatch or (1, b)-supermatch is NP-complete. About (a,b)-supermatch we
only know that it is NP-hard and we also know that (2,0)-supermatches do
not exist. |26} 27|

1.1.2 Similar problems

In this section we explore other similar problems. We chose STABLE ROOM-
MATES and POPULAR MARRIAGE as the representatives.

1.1.2.1 Stable Roommates

The most well known similar problem to STABLE MARRIAGE is probably the
STABLE ROOMMATES problem, first presented by Knuth [28]. The way it
differs from STABLE MARRIAGE the most is that there is only one set of agents,
who try to create a stable matching among themselves. Every agent has a
preference relation ordering others strictly in order of preference. Blocking
pairs work the same way as with STABLE MARRIAGE.

6

1.1. Stable Marriage Problem Research Overview

The main difference of the two problems is that stable roommates instance
may not have a stable matching. It is easy to see, that for n = 3, when every
agent prefers the agent who does not prefer them to the other option, no
matching can be stable, as the third agent is always going to block the other
two.

Still, polynomial algorithm for finding a stable matching, if it exists, was
found by Irving [29]. This algorithm has O(n?) time complexity and two
phases.

In the first phase, every agent starts making proposals to other agents in
order of preference. If agent receives multiple proposals, he keeps the most
preferred and rejects the others. At the end of this phase, every agent is
proposing to someone and is proposed to by some other agent. This reduces
the sizes of preference lists of agents.

The second phase is about eliminating rotations (different rotations than
our rotations defined in Definition [11)). This rotation is a cyclic sequence of
distinct agents, where the second currently most preferred to one agent is the
first most preferred to the next agent in the sequence. This “all-or-nothing
cycle” is used for iteratively eliminating pairs (for details refer to Irving [29))
from the preference lists of agents, until the size of preference lists for all
agents is equal to one. If it becomes empty, that means that the instance of
stable roommates admits no stable matching.

1.1.2.2 Popular Matchings in Stable Marriage

Stable matching exists in every instance of the STABLE MARRIAGE WITH IN-
COMPLETE PREFERENCE LISTS problem, thought there may exist a matching
with higher cardinality than the stable matchings. Péter Bir6, Robert W.
Irving and David F. Manlove [30] propsed the use of popular matchings in
STABLE MARRIAGE problem (and also STABLE ROOMMATES problem). They
define that one matching is more popular than the other, if more agents pre-
fer their matches. Matching is considered as popular, if no other matching is
more popular. They also define a strongly popular matching as a matching
that is strictly more popular than any other matching (it’s existence can be
verified in O(nr) time [30]).

Chien-Chung Huang and Telikepalli Kavitha [31] have shown that a sta-
ble matching is actually a popular matching with minimal cardinality. They
have also proposed an algorithm for finding the maximum cardinality popu-
lar matching in O(nrk) time, where k = min(n,r), and extended the theory
surrounding this algorithm in [32], where they have shown that the maximal
cardinality popular matching can be found even when k£ = 2, hence O(nr)
time.

This algorithm is a simple modification for GALE-SHAPLEY ALGORITHM,
where the men that already proposed to every woman in their preference
list start proposing to them again from the start. But now, they gain one

7

1. STABLE MARRIAGE

“wildcard”, that makes them more preferred when proposing than the agents
with less wildcards. It is shown, that returning agents two times is enough for
the algorithm to return the maximal cardinality stable marriage. [32]

1.2 Basic definitions and theorem

In this section we formally define STABLE MARRIAGE problem and other es-
sential definitions. We also show a major theorem about the existence of stable
matching.

Definition 1 (Stable marriage). An instance I = (M, W, >) of STABLE MAR-
RIAGE consists of n men M = {m1,...,m,} and r women W = {wy,...,w,}
and preference relations >= (>;);cpruw, where each person has a preference
relation that strictly orders members of the opposite sex in strict order of
preference.

Note 1. Even though the sizes of sets of men and women can be different,
we are going to assume n = r, as we can add agents to the smaller set with
arbitrary preference relations to make the sizes equal. For the agents from
the formerly bigger set, these new agents are the least preferred, in arbitrary
order.

Definition 2 (List of Preferences). Let I = (M, W, >) be an instance of the
STABLE MARRIAGE problem. Function pref assign every agent a € M U W
their respective list of agents of the opposite sex. This list pref(a) is ordered
in strict order, ordered from the most preferred partner to the least preferred
one, using the preference relation >,.

An instance of the STABLE MARRIAGE can be interpreted as a bipartite
graph, where every vertex has a strict ranking of it’s incidental edges. There-
fore each edge has two ranks, one from each neighboring vertice.

Example 1. Set of 2 men M = {mj, ma}, set of 3 women W = {w, wo, w3}
and preference relations >= (>, ™ma, =w;» = wss —wy) defined as:

W2 > m W1 > my W3

W1 7 maW2 > my W3

M1 > M2
Mo >, M1

Mo >qg M1

1.2. Basic definitions and theorem

Tuple I = (M, W,) forms an instance of the STABLE MARRIAGE problem.
Given relations = make lists of preferences:

pref(ml) = (’IUQ, w1, ’LU3)

pref(mQ) = (wla w2, ’IU3)

pref(wi) = (mq, ma)
pref(wsg) = (mg, mq)

pref(ws) = (mg, mq)

Definition 3 (Matching). A matching @ in an instance I of STABLE MAR-
RIAGE is a set of disjoint man-woman pairs (m;,w;) € Q. Man m; is said to
be paired to woman w; and woman wj; is said to be paired to man m;. We
write Q(w;) = m; and Q(m;) = w;.

As such, matching in a STABLE MARRIAGE instance can be seen as a
subset of edges in a bipartite graph, where each vertice appears at most once.
Not every man and woman has to be included in a matching.

Example 2. If we take the instance from Example|l] then one of the possible
matchings is Q = {(m1,ws), (ma,w1)}

Definition 4 (Preference). If woman w; precedes woman wg in man m’s
preference list, then we say that man m prefers woman w; to woman wy. We
write wy >, wa.

Example 3. When we look at the man m; in an instance of STABLE MAR-
RIAGE from Example [1], he prefers ws to wy and wy to ws, so we can write

W2 >mq W1 >my W3

Now we are going to define what makes a marriage stable. For that we
need to define about one more thing: a blocking pair.

Definition 5 (Blocking pair). Given an instance of STABLE MARRIAGE [
and a matching @, a pair (m;, w;),m; € M ANw; € W, is blocking pair for Q
if:

1. m; is unassigned in @ or w; >, Q(m;), and

2. wj is unassigned in Q or m; =y, Q(w;).

Definition 6 (Stable matching). Matching @ is said to be stable if it admits
no blocking pair.

1. STABLE MARRIAGE

Example 4. Again, using the instance I from Example [I] and matching Q
from Example we can see that pairs (my,ws) and (mq,w) are both blocking
pairs, as their members prefer each other over their current partners (in case
of we any partner is more preferred than no partner). Hence matching @ is
not stable. If we look at a matching Q' = (my,ws), (ma,w;), we can check
that it contains no blocking pairs. Therefore @’ is stable.

Theorem 1. Every instance I of STABLE MARRIAGE admits at least one
stable matching.

This theorem was first shown in College admissions and the stability of
marriage [1] by Gale and Shapley and they gave a constructive proof. Their
algorithm, which is nowadays referred to as GALE-SHAPLEY ALGORITHM or
DEFERRED ACCEPTANCE ALGORITHM, finds a stable matching Q* in poly-
nomial time. We present this algorithm in the succeeding section.

1.3 Gale-Shapley algorithm

In this section, we introduce a polynomial-time algorithm which finds a stable
matching for any STABLE MARRIAGE instance. We are also going to prove
that the returned matching is truly stable. We define this algorithm formally
in Algorithm [T but for the general outline of the Gale-Shapley algorithm, we
present it’s two most important rules:

1. Every man proposes to the most preferred woman in his list of prefer-
ences. Every woman temporarily pairs with the man that is the highest
ranked in her list of preferences and proposed to her. Every other man
is rejected.

2. At the k-th step of the Gale-Shapley algorithm, those men that were
rejected at (k — 1)-th step propose to their next most preferred woman.
Each woman temporarily pairs with the man that is the highest ranked in
her list of preferences and proposed to her, or stays temporarily paired
to the man she was paired to in the (k — 1)-th step, if none of the
new proposals is from a more preferred man. Every man that is not
temporarily paired to some woman is rejected.

This algorithm is well-defined and terminates with the unique man-optimal
stable matching. Termination can be easily proven, as each man proposes to
each woman at most once. In fact, Gale-Shapley algorithm has at most n? —
2n + 2 stages, as proven by the upcoming Lemma (1} taken from [1], with our
own proof, as it was without one.

10

1.3. Gale-Shapley algorithm

Algorithm 1 Gale-Shapley algorithm

1: function GALESHAPLEYALG(I: instance of SM)
2: Mf — I.men()

3: pref < I.preferences()

4: engagements < ||

5: while M do

6: m <= M;.pop(0)

7 w < pref(m).pop(0)

8: if w not in engagements then

9: engagementsjw] <— m

10: else

11: m2 < engagements[w]

12: if pref{w].indexof(m) < pref[w].indexof(m2) then
13: engagementsjw| <— m

14: M .append(m?2)

15: else

16: My .append(m)

return engagements

Lemma 1. Gale-Shapley algorithm has at most n? — 2n + 2 stages.

Proof. Every man can be rejected at most n — 1 times, one of those times had
to be in the initial stage though. In every stage that is not final, at least one
man had to be rejected. Therefore one initial stage, one final stage and at
most n(n — 2) times was some man rejected in other than the initial stage.
This summed up gives us the promised n? — 2n + 2 stages. O

We claim that the output matching @ is stable. If not, there would be a
blocking pair (m;,w;) such that:

1. wj >m, Q(m;), and
2. My Q(wj)

That this cannot happen is proved in the upcoming lemma, based on
Theorem 1 from [2]:

Lemma 2. Let @) be a matching created by the Gale-Shapley algorithm for
an instance I = (M, W, =) of the STABLE MARRIAGE problem. Then for all
men m € M and all women w € W:

Q(m) =m wV Q(w) =, m

Proof. Let (m;,wj) be a pair in the matching @ created by Gale-Shapley
algorithm where w; =, Q(m;) A m; =y, Q(w;). But man m; must have

11

1. STABLE MARRIAGE

either proposed to w; in an earlier step of algorithm and he was subsequently
rejected by w; in favor of some man that is more preferable for w;, or m;
haven’t proposed to w; and therefore is paired with a more preferable woman
than wj, therefore they also cannot form a blocking pair where both of these
conditions are fulfilled. O

Lemma 3. Let @ be a matching created by the Gale-Shapley algorithm for an
instance I of STABLE MARRIAGE problem. Then we call @) the man-optimal
stable matching. Meaning of man-optimal is that every man is paired with
the most preferred woman, that he can be paired with, in all of the stable
matchings in I. At the same time, all women are paired with their least
preferable man that they can be paired with, in all of the stable matchings in
the given instance of STABLE MARRIAGE [.

Proof. Let) be a matching constructed by Gale-Shapley algorithm
and (m,w) € Q. During the computation, man m only proposes after be-
ing rejected by their current partner, except for the first proposal. Therefore
man m was rejected by all more preferred women than w.

On the other hand, woman w can only get a better partner during the
computation, since accepting her first proposal, as she is only rejecting her
partner if a better proposal comes her way. Now we need to prove that none
of the women that m was rejected by and none of the men that w rejected are
matched with them in some stable matching.

Let’s assume that there exists a woman w* that is matched with m in a
stable matching M*. But then Q(w*) >, m, as m was necessarily rejected
by w* because she has got a better proposal from a more preferred partner.
This would mean that (Q(w*),w*) is a blocking pair for M* and it is not
stable.

In a similar fashion, let’s suppose that woman w is matched with man m/’
whom she prefers less than m in some stable matching Q. That would mean
that w rejected man m and he is matched with some woman w”, w >, w”.
But this means that (m,w) is a blocking pair for Q' O

The proof of the last lemma is ours. If we reverse the roles of men and
women in proposing, then we get woman-optimal stable matching. Now, men
are matched to their least preferred women and women are matched with their
most preferred men that they can be paired with in any stable matching in a
given instance of STABLE MARRIAGE.

In the case where the man-optimal and the woman-optimal stable match-
ing is the same, then there exists only one stable matching for a given instance
of STABLE MARRIACGE. But there is possibly even more stable matchings in
one instance, when these two matchings are different. Later, in the Section[T.5]
we research approximations of the count of stable matchings in one instance.
We are going to explore how to enumerate them all in the next chapter.

12

1.4. Random Paths to Stability

1.4 Random Paths to Stability

In his paper, "Random Paths to Stability” [5], Alvin E. Roth discusses the
application of random paths to solving the STABLE MARRIAGE problem (this
section is based on the said paper). Roth presents a method for using a
randomized algorithm to find a stable matching in a finite number of steps.
The main principle of this approach is satisfying randomly chosen blocking
pairs in a randomly chosen initial matching. We are going to describe the
main theorem of said paper and the main technique used in its proof.

Theorem 2. Let @ be an arbitrary matching for a STABLE MARRIAGE in-
stance I = (M, W,). Then there exists a finite sequence of matchings @1, . . .,
Qp, such that Q = Q1, Qy, is stable, and for each i € {1,...,k — 1}, there is a
blocking pair (m;,w;) for Q; such that Q;4; is obtained from @; by resolving
the blocking pair (m;, w;).

Proof. The proof works with k subsets A; C M x W, where i € {1,...,k}
and Ay C --- C Ag. In every matching ();, there is a subset of agents A; that
does not contain blocking pairs. We begin this in @)1 by randomly choosing
a blocking pair (mq,w;) that creates the first set A; = {mq, w1}, as it alone
cannot create any blocking pair in Aj.

Next, we continue inductively. A matching @4, ¢ € {1, k} contains a subset
of agents A, without any blocking pairs.

If Q4 does not contain any blocking pairs, K = ¢ and we end here. Else
there exists a blocking pair (mg41,wg+1). At most one of these agents is
contained in Ay, which splits this problem into three cases. Regardless on the
case, we build the next subset of agents Ag41 as Agr1 = Ag U {mgq1, wet1}-

If |Ag41| = |Ag|+1, then the new agent (in this example we show woman wg4 1
as the new agent, in the other case the roles of men and women are just re-
versed) chooses it’s most preferred partner mj ., € Agy1 out of all the block-
ing pairs it is involved in. If the most preferred partner m; 1 was unmatched
in Ay, the new subset A4 is without blocking pairs.

Otherwise this new matching might have introduced a new blocking
pair (mg42, wgr2), where both wgyo = Qq(Mmg41) and mg4o are contained
in Ag41. Again, we select the most preferred partner m; 19 of wgyo from all
the partners in A,;; that make a blocking pair with wy42 and we create a
pair (), wy+2).

This process continues until we find ourselves with a matching such that
no blocking pairs are contained in A4, we label this matching as Qq+1. This
has to happen eventually, since no man ever matches with a less preferred
woman and ,therefore, no blocking pair can appear twice in the sequence of
their elimination. The set A,;1 is the set we require for the induction, as it
strictly contains A, and contains no blocking pair for Qg1.

In the case |Ag+1]| = |A4| + 2 where we add both agents from the selected
blocking pair (1mg41,wg+1), we pair these two agents and the new subset Ag441

13

1. STABLE MARRIAGE

is without blocking pairs. Again, set A,41 conforms to our requirements, so
it is the required set in this case.

This process must end eventually. The set A, increases it’s size strictly un-
til a stable matching is reached. Also it cannot contain more agents
than M U W. With this, the proof is now complete.]

Corollary 1. For any initial matching (), the random process beginning by
selecting an arbitrary matching @) and then proceeding to generate a sequence
of matchings @1, ..., where each @);11 is generated by satisfying a single ran-
domly chosen blocking pair in @); converges with probability of one to a stable
matching. We assume a positive probability of choosing any particular block-
ing pair (m,w) in @Q; to be used to generate Q;+1 and depends only on the
matching Q);.

An interesting property of this algorithm is that every stable matching can
be reached by some sequence of matchings, if all agents in the initial matching
are unmatched. Based on the order in which we satisfy blocking pairs, we can
obtain different stable matchings.

For example, we can obtain the man-optimal stable matching by choosing
the first set A; to be the set of all women. Then the sequence of matchings
which occurs in the Gale-Shapley algorithm is precisely the sequence con-
structed in the Theorem Matchings converge to the man-optimal stable
matching.

1.5 Count of Stable Matchings

We know how to find a stable matching and that it always exist in an instance
of STABLE MARRIAGE problem. Now, we can talk about how many of them
can we expect based on the size of our instance.

The smallest amount of stable matchings is obviously one, in an instance,
that allows a stable matching, where every agent is matched with their most
preferred partner. For the maximum amount of stable matchings in an in-
stance, we only know upper and lower bounds.

One easy lower bound for the count of stable matchings is 0(2”/ 2) by
combining disjoint instances of size 2. Knuth [28] has shown that instance
made of four men and four women has at most ten stable matchings, found by
exhaustive search (this instance is shown in Example @ In a specific family
of instances described by Robert W. Irving and Paul Leather [33], there is

g(n) = 3{g(5)} —2{g(P}!, n=zdAn=25 keN

stable matchings for instances with n men and n women. This has been since
shown by Knuth (via personal communication, as shown in [34]) that this

14

1.5. Count of Stable Matchings

recursive formulation equates

(n) > 2.28™

n PP

RCEE)

therefore the lower complexity bound is €(2.28"). This lower bound was
generalized for every value of n by Edward G. Thurber [35] as a slightly
weaker complexity bound of

2.28™
(1 + \/g)logz n+1

The simplest and obvious upper bound for the count of stable match-
ings is O(n!). A better upper bound O(n!/2") was found by Georgios K.
Stathopoulos [36] (by exploiting rotations, which are explained later in Sec-
tion . In 2017, Anna R. Karlin et al. [37] managed to prove an expo-
nential upper bound O(2'"™). The best currently known upper complexity
bound O(3.55™) was found in 2021 by Cory Palmer and Démotor Palvolgyi [38].

15

CHAPTER 2

Finding all Stable matchings

There are situations when just one stable matching is not enough for our
needs. We may have to find all of them, or we search for a matching with
some special property.

Here we are going to describe algorithms that can help us find all stable
matchings in any STABLE MARRIAGE instance. With them, we can find all
stable pairs (pairs that are included in at least one stable matching), all rota-
tions, and all stable matchings. But first, we are going to introduce definitions
of some useful concepts. This chapter is based on literature by McVitie and
Wilson [39], Irving and Leather [33], Knuth [28] and Gusfield [3].

2.1 Ordering stable matchings

First, we are going to explain a relation of dominance between stable match-
ings. This relation is going to help us with ordering stable matchings later.

Definition 7 (Dominance [3]). Let @ and Q" be two stable matchings in
an instance I of STABLE MARRIAGE. Let maz;(Q,Q’) be the most pre-
ferred woman of a man m; between his two assigned partners in Q and Q.
Then maz(Q, Q') is a mapping of each man m; to maz;(Q,Q’). We say that
matching @ dominates matching @ (from the perspective of men), if and
only if @ = maz(Q,Q’). Matching Q" is between @ and Q' if and only if Q
dominates Q" and Q" dominates Q'.

A matching dominating another matching is essentially a matching, where
all men have the same or more preferred partner. Hence, there is not a men
who has got a worse partner.

We define dominance from the viewpoint of men, as all of the literature
we use also defines it this way. Obviously, it can also be defined from the
viewpoint of women, which just reverses the order of dominance.

17

2. FINDING ALL STABLE MATCHINGS

Example 5. Let’s continue with the STABLE MARRIAGE problem instance [
from Example [1} If we take two stable matchings M; = {(m1,w2), (ma,w1)}
and My = {(my,w1), (M2, wsz)}, then the matching M; dominates the match-
ing Ms.

Observation 1 (About dominance [3]). Let @ and @’ be two distinct stable
matchings in an instance I of STABLE MARRIAGE. Let m be a man in I.
Then:

o Both maxz(Q, Q') and min(Q, Q') are stable matchings.

o The unique maximum (most dominant) is man-optimal stable match-
ing, and the unique minimum (least dominant) is woman-optimal stable
matching.

e There is no stable matching, in which m is matched to a woman he
prefers to his partner in the man-optimal marriage.

2.2 Break-marriage

Useful concept that will help us get a stable matching other than man/woman-
optimal stable matching is breaking up a selected pair and resuming Gale-
Shapley algorithm. We explore this process in this section.

Definition 8 (Breakmarriage [3,/39]). Let @ be a stable matching. Let man m
be matched (paired) in @ to woman w. The operation breakmarriage(Q,m),
is defined as:

1. Men and women are paired as in Q).
2. Selected pair (m,w) is broken up, making both m and w free

3. Restart Gale-Shapley algorithm, with man m now proposing to the next
most preferred woman on his preference list he has not yet proposed to.

4. Operation terminates when either:

e Some man has been rejected by all women

o Everyone is paired (this happens after w is proposed to)

During the entire run of breakmarriage((), m) there is exactly one free
man at any time. Hence, the sequence of proposals is completely determined:
the next proposal is always made by the unique free man. It is also easy to
see that () dominates every stable matching that is constructed by applying
breakmarriage operation on it.

18

2.2. Break-marriage

Lemma 4 ([39]). If breakmarriage(Q), m) terminates with all men matched,
then matched pairs form a stable matching.

Proof. All pairs are stable, if they were unaffected by the breakmarriage op-
eration, since they were stable in the previous stable matching. If they were
affected by the breakmarriage operation, and man m is matched to woman w
at the end, while he prefers woman w’ to w, then he must have had proposed
to her but she rejected him. Because during the operation, all women get
equal or better partner, hence woman w'’ is paired with a more preferred man
than m, therefore the matching is stable. O

Theorem 3 ([39]). Every stable matching @’ can be obtained by a series of
breakmarriage operations starting from the man-optimal matching Q.

Proof. Man-optimal matching Qo dominates every other stable matching @’
created by using breakmarriage((), m) operation, as no man can get a more
preferred partner. Man-optimal stable matching is also the unique maximum
— most dominant stable matching.

Woman-optimal stable matching is dominated by every other matching,
as it is the unique minimum — least dominant stable matching. Therefore
man-optimal stable matching)y dominates woman-optimal stable matching
and every matching between them.

When man m has a different partner in a stable matching @ than in Q’
and @ dominates @), then operation breakmarriage((Q), m) either results in Q’
or in a stable matching between them (i.e. breakmarriage(Q), m) does not
move any man to a woman below his proper partner in @'). Hence any Q'
can be derived from Qg by successively (and arbitrarily) choosing a man who
isn’t yet paired to his partner in Q’.]

This is a key theorem for finding stable matchings, for which we created our
own simpler proof using domination relation, rather than the original proof by
McVitie and Wilson [39]. Because the path towards getting stable matching Q'
from man-optimal stable matching)y is not completely deterministic as we
are free in our choice of pair that we want to break by breakmarriage(Q,m)
at each step, we are going to be always choosing the first man who is not yet
paired to his intended partner in Q’.

Theorem [3] has two notable corollaries:

Corollary 2 ([3]). If breakmarriage(Q,m) results in matching Q’, then Q'
dominates all matchings which are dominated by) and in which m is not
paired to his partner in Q.

Corollary 3 ([3]). If m is paired to a woman other than his partner in the
woman-optimal stable matching, then breakmarriage((), m) terminates with
a new stable matching, i.e. no man is rejected by all the women.

19

2. FINDING ALL STABLE MATCHINGS

Example 6. Let’s consider a STABLE MARRIAGE instance with 3 men and 3
women with preferences as follows:

W1 »my W2 >m,; W3
W2 > my W3 > my W1

W3 >msg W1 >mg W2

M2 =w; M3 > M1
M3 7wy M1 7wy M2

M1 >y M2 >y M3

Man-optimal STABLE MARRIAGE for this instance is Qo = {(m1,w1),
(ma,ws), (m3,ws)}. If we use breakmarriage(Qp,m1), man m; breaks it’s
pair with woman wj and proposes to the next woman in his preference list, wo.

Because my >y, Qo(w2) = ma, she accepts the proposal which frees the
man meo. Now msy proposes to ws according to his preference list and ws
accepts the proposal according to hers.

This again frees man mgs, who’s next most preferred partner is woman ws,
who is already free, ending this sequence of proposals with a new stable match-
ing Q1 = {(m1,ws), (M2, ws), (M3, w1)}. We can see that all men have a less
preferred partner in matching) than in g, therefore ()9 dominates Q1.

We can use breakmarriage once more on any pair in the new match-
ing Q1. This way we get the woman-optimal stable matching Q2 = {(m1,ws),
(mg,wy), (m3,w2)}. Now we can see that any additional breakmarriage op-
eration is going to leave the chosen man without a partner, as his preference
list would have been exhausted.

2.3 Finding all stable pairs in time O(n?)

In this section, we are going to introduce the definition of a stable pair. We
also describe a method to find all stable pairs for any instance of STABLE
MARRIAGE problem.

Definition 9 (Stable pair [3]). Given an instance I of the STABLE MARRIAGE
problem, a man-woman pair (m,w) is said to be a stable pair if and only if m
is matched to w in some stable matching of I.

Example 7. Using the instance of STABLE MARRIAGE problem from Ex-
ample [6] we can easily see that all possible pairs are actually stable pairs
(as they all appear in the stable matchings Qo, @1, Q2 shown in the said ex-
ample). That does not necessarily mean that using only stable pairs cannot
create blocking pairs. For example, even though a matching Q" = {(m1, ws),

20

2.3. Finding all stable pairs in time O(n?)

(mg,wy), (m3,ws)} is created purely from stable pairs, it is not stable, as a
blocking pair (mg,ws) exists for it:

My =ws Q" (W3) =m3 A ws =m, Q"(m2) = w.

Lemma 5 ([28]). Let I be an instance of STABLE MARRIAGE problem. The
pair (m,w) is stable if and only if there is a stable matching @ in I omitting m
and w, where each man who w prefers to m is matched to a woman he prefers
to w, and where each woman who m prefers to w is matched to a man she
prefers to m.

Proof. If that is not the case, then we are introducing a blocking pair by
adding pair (m,w), which would mean that @ is not stable matching. O

The upcoming theorem is one of the most important pieces of knowledge
from Three Fast Algorithms for Four Problems in Stable Marriage by Dan
Gustield [3]. It proves that we can find all stable pairs in any given instance
using stable matchings and a dominance relation between them.

Theorem 4 ([3]). Let Qo and Q; be the man-optimal and the woman-optimal
matchings in an instance of STABLE MARRIAGE respectively. Let Qq,Q1,

.., Q¢ be a sequence of stable matchings such that for each i € [0,¢ — 1], @Q;
dominates ;11 and there is no stable matching between @Q; and @;11. Then
every pair appears in at least one of the marriages in the sequence.

Proof. Let @; and Q;+1 be two consecutive stable matchings of the sequence.
Let m be matched to w; in Q; and to w41 in Qi+1, w; # wiy1. From the
dominance relation between matchings we know that w; >, w;4+1. If there
exists a stable matching () where m is paired to w, w # w;r1 A w # w;
and w; >y W =y wir1. Then Q' = min(Q;, max(Q, Q;+1)) is also a stable
matching. In @', m is paired with w, hence it is different from both Q;
and Q;+1. But then, since Q; dominates Q' and Q' dominates Q;11, Q' is
between @Q; and @;11, a contradiction. O

Corollary 4 ([3]). Let H be the Hasse diagram of the lattice of all stable
matchings in a STABLE MARRIAGE problem instance. Then the matchings
along any path (directed by the dominance relation) in H between the man-
optimal and woman-optimal marriages contain all the stable pairs.

The sequence of stable matchings Qo, Q1, ..., Q; for Theorem [have to
be known to find all stable pairs. How to find those stable matchings is going
to be shown later in Section but first we introduce a concept of rotations.

21

2. FINDING ALL STABLE MATCHINGS

2.4 Rotations

One of the most important definitions in the stable marriage theory is a rota-
tion. Rotation is a tool to describe a difference between stable matchings in an
instance of STABLE MARRIAGE. They show a “circle” in which partners move
by one person to another (next preferred) to create a new stable matching.
We have already seen rotations as an all-or-nothing cycle in Section [1.1.2
where it is used by Irving’s algorithm [29] to find a stable matching in the
stable roommates problem.

Definition 10 (Next preferred [3]). Let @ be a stable matching in an in-
stance I of STABLE MARRIAGE. For any man m, let S(m) be the first
woman w’ on m’s list such that m prefers his partner Q(m) to w’ and w’
prefers m to her partner Q(w’). Let S’(m) be the man who S(m) is matched
to in Q.

Definition 11 (Rotation [33]). Let @ be a stable matching in an instance [
of a STABLE MARRIAGE problem. Let m = {(my,w1),..., (ms, ws)} be an or-
dered list of pairs from @ such that for each i from 1 to s, S’(m;) = Mi11 mod s-
Then 7 is called a rotation (exposed in Q).

For any given matching there may be one, or many or even no (for woman-
optimal stable matching) exposed rotations. Rotation is essentially describing
which pairs are going to “rotate” their partners if we use breakmarriage(Q, m)
operation on any one of the mentioned pairs. Next, we are going to define
operations and an important theorem for rotations to make them useful in
search for new stable matchings later.

Definition 12 (Moving [3]). For a given instance I of STABLE MARRIAGE
problem, let 7 be a rotation exposed in stable matching @, and let Q(7) be the
matching obtained by mating each man m in 7 with S(m), and mating all men
not in 7 with their partners in). We say that @ moves each man and woman
in 7 from their partners in @ to their partners in Q (7). Rotation always moves
a man to a less preferred partner, while always moving a woman to a more
preferred partner. Moves by a rotation are independent of the marriage it is
exposed in.

Definition 13 (Elimination [3, [33]). A pair (m,w), not necessarily stable,
is said to be eliminated by rotation m if m moves w from m or below in
her preference list to strictly above m. We say that we obtained Q(m) by
eliminating rotation 7 in Q.

Example 8. Again, using the STABLE MARRIAGE problem instance from
Example [6] stable matching Qo = {(m1,w1), (ma, w2), (m3,ws)} has one ro-
tation m = {(my,w1), (ma,ws2), (M3, ws)}. If we eliminate this rotation, we
get stable matching Q1 = {(m1,ws), (ma,ws), (ms3,w1)}, as we moved each
man m to his S(m) according to the rotation.

22

2.5. Pausing Breakmarriage Algorithm

Theorem 5 ([33]). Except for the stable pairs that are part of women optimal
matching (which are in no rotation), each stable pair is in exactly one rotation,
and each pair in rotation is stable.

Proof. We refer to Irving [33]. O

This is another major theorem. The most important takeaway from it,
except the fact that all stable pairs are contained in some rotation with the
said exceptions, is that no stable pair is in two or more distinct rotations,
hence there is only one deterministic option to eliminate a given stable pair
(except for the order in which we eliminate rotations).

2.5 Pausing Breakmarriage Algorithm

Pausing Breakmarriage Algorithm (Algorithm [2)), first presented by Gusfield
in [3], is useful for creating a sequence of stable matchings from man-optimal
to woman-optimal stable matching for any instance I of STABLE MARRIAGE
problem. It computes man-optimal and woman-optimal stable matchings for 1
using Gale-Shapley algorithm. Then, it starts returning every stable matching
in some sequence from man-optimal to woman-optimal (and in this order).

The key modification of the breakmarriage operation at the core of Algo-
rithm [2| is the ability to pause the computation where the next stable match-
ing in the sequence is output. There is a possibility that, during the run of a
breakmarriage operation, some nested rotations can be eliminated.

Therefore, we might skip a stable matching that is between the original
and the resulting stable matchings. The pause of Algorithm [2]occurs when the
nested rotation is recognized. Then the rotation 7 is returned and the next
stable matching is generated from the previous matching by eliminating .

By Corollary |3 each operation of breakmarriage is going to return a new
stable matching (no man is going to be rejected by all women, as we are
not breaking pairs that are found in the woman-optimal stable matching),
although we still have to show stability of all matchings in the sequence and
that we have found all stable matchings in the sequence. Before show the proof
of correctness of the Algorithm [2] we are going to point out some observations
about the actions of algorithm. These are going to simplify later proofs.
Every observation, lemma and theorem (and their respective proofs, with
the exception of proof of Theorem @ which is ours) in this section is from
Gusfield [3].

Observation 2. The men and women in {m,Qr(m) : Qr(m) # Qr+1(m),
m € M} are exactly the same men and women in the pairs of 7;. The men
in 7, prefer their partners in ()i to their partners in Qx4+ and women prefer
their partners in Q11 to their partners in Q.

23

2.

FINDING ALL STABLE MATCHINGS

Algorithm 2 Pausing Breakmarriage Algorithm

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

10:
11:
12:
13:
14:

1
2
3
4
5:
6
7
8
9

: function PAUSINGBREAKMARRIAGE(I: instance of SM)
: 140

M <« I.men()

W < I.women()

Qo < GaleShapleyAlg(M, W)

Q¢ <+ GaleShapleyAlg(W, M).swapPartities()

marks < ||

result < {}
while Q; # Q; do

marks < {}
m <+ first({m’ : m' € M A Q;(m') # Q¢(m/)})
Q<+ Qi
w + Q(m)
marks <— marks U [w]
output, marks < breakmarriagePausing(Q, m, marks, i)
1+—1+1
result < result U output
if Q;—1(m) # output[0][0][1] then
Go to: 12
return resultU Q;

: function BREAKMARRIAGEPAUSING(Q, m, marks, i)
m' < m
while S(m’) not in marks do
m’ « S'(m')
marks < marks U [Q(m/)]
w' <+ S(m')
7 (W) « marks[indexof(w’) :]
(M) + [Q(w) for w in 7w(W)]
T+ [(Q(w),w) for w in 7(W)]
Qit1 < (Q\ m)U{(m",S(m")) for m" in m;}
output <— m;
marks <— marks \ (W)
if Q(m) # w' A Q(w') =, m' then
marks < marks N w’
return output, marks

24

2.5. Pausing Breakmarriage Algorithm

Observation 3. Let m; and mo be two different men in any two consecutive
pairs of 7. If they are matched to wy and ws, respectively, in Qg, then my is
matched to wy in Qgy1.

Observation 4. Let m; and mo be two different men in any two consecutive
pairs of 7. Let them be matched to wi and we, respectively, in Q. Then wo
is the first woman below wj on m;’s list such that wo prefers m; to mo.

Lemma 6. Each Q; found by Algorithm [2]is a stable matching.

Proof. 1t is proven by induction. Qg is stable, and we assume that all marriages
up through Qj are stable.

Suppose Q11 is not stable, then there is a man m and a woman w who
block Qp41. Since, by Observation [2} each woman either improves in Q41
(over Q) or keeps her same partner, m must be in a pair in 7y, otherwise m
and w would block Q.

For the same reason, m cannot prefer w to his partner in Q; so w must
be strictly between (in order of preference) m’s partner in @ and his partner
in Qr+1; Let B denote these women. But by Observation[d], none of the women
in B prefer m to their partners in Q1. Hence Qg1 is stable matching. O

Lemma 7. There is no stable matching between Qf and Q1.

Proof. Suppose, to the contrary, that @ is a stable matching between Q)
and Qry1. We claim that no man m can be paired in) to a woman between
his partner in @), and his partner in Q1.

Let w be such a woman between m’s respective partners, and let m,, be
the partner of w in Q. By Observation [d, w prefers m,, to m, and since Q,
dominates @@ and m,, is not paired with w in), m,, prefers w to his partner
in Q. Hence m,, and w block Q.

So if a stable matching @ exists between Q) and Q. 1, then every man is
either paired to his partner in @)y or to his partner in QQx41, and there must be
at least one man of each type (else @ is equal to either Qy or Qi4+1). Now in
the (circular) order of pairs given in 7y, let m and m’ be any two consecutive
men in 7, and let w and w’ be their respective partners in Q. Recall (by
Observation [3)) that w’ becomes the partner of m in Q1.

Hence it is not possible that in Q, m pairs with his partner in Q41 and m/
is paired with his partner in Qy, since they both would then marry w’. Simi-
larly, it is not possible that in @), m pairs with his partner in @, since they
both would then match w’. Similarly, it is not possible that in @), m pairs with
his partner in Qx and m’ pairs with his partner in Q. 1, for then w’ would be
unpaired in Q.

But then either Q = Qp or Q@ = Qr+1. Hence there is no stable matching @
between @ and Q1. O

25

2. FINDING ALL STABLE MATCHINGS

Theorem 6. The matchings found by the Algorithm [2] contain all stable pairs.

Proof. This theorem is a corollary of Lemmas [6] and [7] and Theorem [Let I
be an instance of STABLE MARRIAGE problem. Thanks to both lemmas we
know that we have found a sequence of stable matchings from man-optimal
to woman-optimal stable matching. From the theorem, we know that every
stable pair of I is appears in at least one of these matchings.]

Theorem 7. All stable pairs can be found and output by the Algorithm
in O(n?) time.

Proof. Man-optimal and woman-optimal stable matchings are computed by
Gale-Shapley algorithm, and therefore their complexity is O(n?). Since no
man-woman pair is in more than one rotation and since no man proposes to
a woman from his list more than once, the time complexity is also O(n?).
We output only all of the rotations plus Q; to efficiently represent the found
stable matchings. Output contains every stable pair and we output every
stable pair only once, therefore even the output has a complexity of O(n?). [

2.6 Finding all rotations in O(n?)

Each cycle found by Algorithm [2]is clearly a rotation. Hence the Algorithm
finds a set of distinct rotations that contain all stable pairs other than those
contained in woman-optimal matching. Therefore, by Theorem[5] Algorithm [2]
finds all rotations, and outputs each one exactly once (as shown in the last
section), and so all rotations can be found and output in O(n?) time. [3]

Theorem 8 ([3]). Let P be any path in the Hasse diagram H from man-
optimal to woman-optimal matching. Then any two consecutive matchings
on P differ by a single rotation. Set of rotations between matchings along P
contain all rotations exactly once.

Proof. Corollary [says that all stable pairs are contained in any path in H
between the man-optimal and woman-optimal stable matching. Thanks to
the Theorem [5] we know that every stable pair except for the ones contained
in the woman-optimal stable matching are contained in exactly one rotation.
And we know that Algorithm [2] returns every rotation. Hence now it’s only a
corollary of Theorems [6] and [7] O

It is now easy to see that a sequence of stable matchings from man-optimal
to woman-optimal matchings, which satisfy the conditions of Theorem [4] must
lie on such a path P in H. Therefore, Pausing Breakmarriage Algorithm
enumerates the matchings along some path P in H from man-optimal to
woman-optimal matching.

26

2.7. Enumerating all stable matchings

2.7 Enumerating all stable matchings

In this section, we describe algorithm enumerating all stable matchings

in O(n? 4+ n|S|) time and O(n?) space, found by Gusfield [3], where S is the
set of all stable matchings in a given instance of STABLE MARRIAGE problem.
In the same time bound, we can explicitly construct the Hasse diagram of the
lattice of all stable matchings.

First, we need to introduce definitions about partial order of rotations.
From this order, we are going to define a directed graph of rotations (rotation
poset), and later it’s sparse subgraph. Later, we present a tree structure built
using the sparse subgraph of rotations and a method to enumerate all stable
matchings from it.

Definition 14 (Precedence [33]). Let m and p be two distinct rotations. Ro-
tation 7 is said to explicitly precede p if and only if 7 eliminates a pair (m, w),
and p moves m to a woman w’ such that m prefers w to w’. The relation pre-
cedes is defined as the transitive closure of the relation “explicitly precedes”.

Precedence relation means that no matter how the men are ordered, Paus-
ing Breakmarriage Algorithm always finds rotation m before rotation p. It
is easy to see that if a rotation 7 = {..., (m,w), (m/,), (m",w"),...} ex-
ists, a rotation p = {..., (m,w’), (m’,;w"),...} can only be exposed after the
rotation 7 has been eliminated, as every pair appears in only one rotation.
Precedence also defines a partial order among rotations. The following defi-
nitions are using precedence as a partial order to construct graph and closed
subset.

Definition 15 (Graph of rotations — rotation poset [3]). Given an instance of
the STABLE MARRIAGE problem, let D be a directed acyclic graph, where the
vertices of D are in one-to-one correspondence with the set of rotations (we
name each vertex after its corresponding rotation) and for any two vertices 7
and p, there is a directed edge from 7 to p if and only if rotation 7 precedes
rotation p.

Note that D may have ©(n?) vertices and O(n*) edges [3]. It is also
important to note that in this definition by Gusfield [3], edges are between
the rotations, where one precedes the other, while Irving and Leather [33]
define the edges only between the vertices, where one explicitly precedes the
other.

27

2. FINDING ALL STABLE MATCHINGS

» '@

Figure 2.1: Graph D for example [J]

Example 9. Let’s take instance I of the STABLE MARRIAGE problem of size

four, with preferences:

W1 »my
W2 7 msy
w3 >‘mg,

W4 7 my

m4 >,
M3 > ws
ma >w3

mi >w4

W2 7my
W1 7 my
W4 7 mg

w3 >'m4

ms3 >w,
M4 > ws
my >w3

ma >w4

W3 7m, W4

W4 >my W3
W1 = mz W2
W2 =my W1
mo =, M1
M1 =wy M2
My >wg T3

m3 >, M4

This instance is actually the instance with the most stable matchings for
any instance of size four, as shown by Knuth . We are going to show
the stable matchings in “layers” based on the precedence of rotations that
are required to reach them from the man-optimal stable matching. The first
stable matchings are:

{(m1,w1), (M2, w2), (M3, w3), (ma, wa)}
{(m1, w2), (M2, w1), (m3, w3), (Ma, wa) }
{(m1, w1), (M2, w2), (M3, wa), (Ma, ws) }
{(m1, w2), (ma, w), (M3, wa), (M4, w3)}

28

2.7. Enumerating all stable matchings

These are man-optimal stable matching, and stable matchings created from
it by eliminating rotations m; = {(my,w1),(me,ws)}, or ma = {(ms,ws),
(myg,wy)}. These rotations precede all other rotations.

{(m1, w2), (M2, wa), (M3, w1), (M4, w3)}
{(mla w3)7 (m2a wl)v (m?n w4)7 (m4a w2)}

{(mla w3)7 (va w4)’ (m3’ wl)v (m4’ w2)}

On top of eliminating both preceding rotations, these stable matchings
also eliminate newly exposed rotations w3 = {(mg,w1), (ms,w4)}, or mqy =
{(m1,ws), (Mg, ws)}. Again these rotations precede all of the upcoming rota-
tions.

{(m1,w3), (M2, wa), (M3, wa), (M4, w1)}
{(mlﬁ w4)7 (m27 ’U)3), (m?n wl)a (m4a w2)}

{(mla w4)7 (m27 w3)7 (mg, w2)> (m4, wl)}

The last set of rotations w5 = {(m1,ws), (mao,wy)}, and 7 = {(ms,w1),
(m4,wz)} can be exposed after eliminating the last exposed set of rotations,
and by eliminating the rotation 75 or mg, we get the last three stable matchings
for our instance I.

The rotation poset D for I (graph shown on Image has necessarily six
vertices, one for each rotation. Every rotation m; precedes every rotation 7,
where j > i 4 (i mod 2), which means that D has twelve edges.

Definition 16 (Closed subset of rotations [3]). A subset of rotations SN of D
is closed if and only if SN contains all rotations which precede the rotations
in SN.

Irving and Leather [33] named this closed subset of rotations as antichain.
Their definition is equivalent to this one from Gusfield 3] we used.

Theorem 9 (|33]). Let S be the set of all stable matchings for a given instance
of the STABLE MARRIAGE problem. Let D be the corresponding directed
graph formed from the set of all rotations. Then there exists a one-to-one
correspondence between S and the family of closed subsets in D, i.e. each
closed subset in D specifies a distinct stable matching, and all stable matchings
are specified in this way.

Proof. We refer to [33] for proof. O

Any stable matching can be reconstructed by starting with the man-
optimal stable matching and applying rotations from it’s closed subset of

29

2. FINDING ALL STABLE MATCHINGS

rotations SNN. They must be applied in any order consistent with their prece-
dence relation, meaning that the moves of rotation 7 can be made only after
the moves of all rotations which precede .

Enumerating each closed subset of D to get all stable matchings is not
going to give us the promised O(n? +n|S|) time and O(n?) space complexity,
as D itself needs ©(n*) space to store, hence it could not be achieved using D.
The main idea of the speedup is to use a sparse subgraph of D which preserves
all the closed subsets, and which can be built quickly.

Any subgraph of D, whose transitive closure is D, preserves the closed
subsets. We can construct such a subgraph G, in O(n?) time, with the prop-
erty that G has O(n?) edges, and that no vertex in G has out degree more
than n. This bounded out degree is one of the keys to the n|S| term in the
time bound, the sparsity is integral to the space bound. Now we are going to
define rules for such sparse subgraph and then prove some of it’s traits.

Definition 17 (Subgraph of rotations [3]). Let D be a directed graph of
rotations of an instance of stable matching problem. Let G be a directed
acyclic subgraph of D containing all vertices of D but only the edges which
comply with one of these two rules, which are applied for each man m whose
partner in man-optimal stable matching is is different than his partner in
woman-optimal stable matching:

1. Let W(m) = {wo, ..., w,} be the set of women in decreasing order of
preference by m, such that Vi € 7 = {0,...,7}, (m,w;) is a stable
pair. For Vi € r/—\l, let 7; be the rotation containing pair (m,w;), and
let TI(m) be the set of these rotations. then, for Vi € r — 2, G contains
an edge from m; to mq1.

2. Let W(m) = {wy,...,w,} be the set of women in decreasing order
of preference by m, such that Vi € 7, (m,w;) is a stable pair. Sup-
pose (m,w) is a non-stable pair eliminated by a rotation 7, such that m
prefers w to any other woman w’ in any other pair (m,w’) eliminated
by 7. If there are women w; and w;4+1 in W(m) such that m prefers w;
to w and m prefers w to w;y1, then G contains an edge from 7 to ;.

Lemma 8 ([3]). Let D be a directed graph of rotations of an instance of
stable matching problem. Let GG be a directed acyclic subgraph of D. Then G
has only O(n?) edges. It can be constructed in O(n?) time and no vertex in G
has out degree more than n.

Proof. The rotations can be found in O(n?) using Algorithm [2, We label each
pair that is eliminated by some rotation with the name of the eliminating
rotation. To do this, we examine each rotation m, and, for each woman w
in a pair in 7, we note the men that m moves w over, each of these pairs is
labeled with 7. Since 7 eliminates a set of pairs corresponding to a contiguous

30

2.7. Enumerating all stable matchings

Figure 2.2: Graph G for example

sequence of men in w’s preference list, finding these pairs takes constant time
per pair. Since no pair is eliminated by more than one rotation, these labelings
can be done in O(n?) time.

Now, G can be constructed by processing each man m’s list top down,
keeping a mark on the most recently encountered stable pair in m’s list. When
a new stable pair is encountered, we create an edge in GG from the rotation
labeling the marked pair (if there is one) to the rotation labeling the new pair,
and we update the mark. When a non-stable pair is encountered, we check (in
unit time using a random access list of the rotations) if its label has already
been encountered in m’s list. If not, then we create an edge in G from the
rotation labeling the marked pair (there will be one) to the rotation labeling
the current non-stable pair. Each scan down a man’s list takes O(n) time,
hence O(n?) time in total.

Since the total time to build G is O(n?), it can only have O(n?) edges.
From the details above, it is also clear that for any rotation 7, the scan down
a given man m’s list adds at most one edge out of m, hence the out degree of
any vertex in G is bounded by n, the number of men. O

31

2. FINDING ALL STABLE MATCHINGS

Example 10. If we continue from our Example [9] and build the subgraph
of D called G, first thing we can see is that every pair in I is stable, hence
the second rule for creating an edge in G is not going to be applied. We are
going to create sets II(m) for every man m, according to it’s definition:

(m1) = {Q1,Qs, @5}
H(mg) = {Q1,Q3,Q5}
[(m3) = {Q2,Q3,Q6}
[(my4) = {Q2, Qs, Q6 }

It’s easy to create graph (shown on Image , when we have these sets. G
has six vertices again, but the edges have been reduced from twelve to eight.

Lemma 9 (]3]). Let D be a directed graph of rotations of an instance of
stable matching problem. Let G be a directed acyclic subgraph of D. For any
two rotations w and p, 7 precedes p if and only if 7 reaches p by a directed
path in G, hence the transitive closure of G is D, and so the closed sets of G
and D are identical.

Proof. G is a subgraph of D since each edge in G specifies a precedence rela-
tion between the rotations at the endpoints of the edge. To prove the other
direction, it suffices to show that if 7w explicitly precedes p then 7 reaches p
in G. By definition of “explicitly precedes”, there must be two women w
and w* such that (m,w) is eliminated by 7, and p moves m to w*, and m
prefers w to w*. Then w* is in W (m), and p € II(m); say p = m;=, where, by
definition, p moves m from w;« to w*. So in G there is a directed path from ;
to p for every m; € II(m) such that i <i*.

Now let w’ be the woman most preferred by m such that (m,w’) is elim-
inated by m. By construction of G, there is an edge (associated with the
pair (m,w’)) from 7 to 7, for some 7 € II(m); let wy be the woman that 7y
moves m from. So if i/ < i* (i.e. wy is equal to or is preferred to w;), then
there is a directed path in G from 7 to p. But m prefers w;s to w, and w* to w,
and since, by the actions of Algorithm [2 man m is moved over any particular
woman by at most one rotation, w;+ cannot be preferred to w’; hence w; must
either be w;+ or be preferred to w;«, and the lemma follows.]

G is not necessarily the transitive reduction of D, as general algorithms to
produce the transitive reduction would take much more time than the O(n?)
time to construct G. However, G is sufficient for our time and space complex-
ities.

32

2.7. Enumerating all stable matchings

2.7.1 The enumeration algorithm

This algorithm uses G to build a tree T, which we are going to describe.
Tree T with root r has every edge labeled with a rotation such that the path
from the root r to any vertex in 7' enumerates a distinct closed set SN of
rotations in GG, and such that each closed set in GG is enumerated in this way.

For any rotation 7 on a given edge e = {z,y}, all rotations that precede 7
will be on the path from the root r to z. It follows inductively that the
stable matching corresponding to any vertex x can be explicitly constructed
by starting at the root and successively executing the moves dictated by each
rotation on the path to =x.

Each change takes O(n) time, and each vertex in 7" corresponds to a dis-
tinct stable matching. It follows that all the stable matchings can be output
in O(n) time per marriage, once 7' has been constructed. If T is traversed
depth first, then only one complete marriage must be known at any time,
hence only O(n) additional space is needed for the traversal of T'. [3]

2.7.1.1 Build of tree T

This paragraph is going to talk about a way to build the tree T. The idea of
it’s construction is going to be shown first, and then, also in the role of a time
complexity proof, we are going to explain the construction in more detail.

First, a numerical labeling of rotations is needed. We label them in order
of the topological ordering of G, therefore every rotation has a larger label
than any of it’s predecessors. These labels can be found in linear time in the
number of edges of G, that is, in O(n?) time.

For building the tree T, we start at the root r and successively expand
from any unexpanded vertex in T as follows:

o Let R(y) be the rotations along the path from r to y in T, and let e =
{z,y} be the last edge on this path.

o Let M R(y) be the set of maximal rotations (vertices in G with indegree
zero) when all the rotations in 7(y) are removed from G.

o Let LR(y) be those rotations in M R(y) whose label is larger than the
label on edge e.

Then y is expanded by adding |LR(y)| edges out of vertex y. Each one of
those edges is labeled with a distinct rotation in LR(y). [3]

Lemma 10 (]3]). Given G, T can be constructed in O(n) time per vertex.

Proof. Let e = {z,y} be the last edge on the path to y. Let the rotation
on e be 7. Let there be a graph G(z) at vertex = in T, obtained from G by

33

2. FINDING ALL STABLE MATCHINGS

deleting all vertices in R(x) and all incident edges. Let all indegrees of all
vertices in G(x) be known.

Then LR(y) is the set of all neighbors of 7 in G(z) which have indegree one
and (due to topological labeling) they all have a larger label than 7, together
with the set of rotations LR(x), whose label is also larger than 7. LR(y) can
be found in O(n) time since no vertex in G (hence in G(x)) has out degree
more than n (there are at most n neighbors of 7 in G(z)). For LR(z) we
also claim that |LR(z)| < n, because for any man m, if (m,w) and (m,w’)
are two distinct rotations, then clearly one of them must precede the other.
By construction of induction, every pair of rotations from LR(z) must be
incomparable, and so any man m is in at most one pair in at most one rotation
in LR(x).

Constructing graphs at each of the endpoints must be done in depth first
manner. If we constructed T in breath first manner, then |LR(x)| graphs
would have to be constructed and stored. If we expand a given vertex x in T
depth first, we find all maximal elements in G(z) and store them, essentially
constructing all edges out of z, and we construct only one new graph G(y)
for only one chosen edge {z,y} out of x. Graph G(z) can be transformed
into G(y) in O(n) time by deleting y and all incident edges from G(z).

The indegree of each neighbor of z in G(y) is one less than it’s indegree
in G(z). All other indegrees remain as in G(z). Hence the indegrees are also
maintained in O(n) time. The algorithm can now continue with expanding
from y.

While backing up from y to x, we use G(y) and the rotation on the
edge {x,y} to reconstruct G(z) in time O(n). Now with G(z) and the unex-
panded children vertices of z, we choose unexpanded child 4’ of z, and again
we transform G(x) into G(y'), and then expand y'. Therefore T' can be built
in O(n) time per vertex. O

Lemma (10| shows that we can construct tree 7" in O(n) per vertex, but
does not show us how to enumerate all stable matchings. That is going to be
shown in the proof of the upcoming corollary.

Corollary 5 ([3]). Given G, the set of all stable matchings can be enumerated
in O(n) time per marriage, and O(n?) total space.

Proof. The construction of tree T" takes O(n) time per vertex, but we don’t
need to build it explicitly. What is sufficient at any time is the path from r to
the current vertex being expanded and the edges which directly hang off that
path.

The depth of T is at most O(n?) and the outdegree of each vertex in T
is O(n), hence if we construct and output the stable matchings as T' is being
implicitly built depth first, then we need O(n?) space for T. However this space
bound could have been reduced, if we hadn’t stored the maximal elements
of G(x) at each vertex x. They can be found when backing up from vertex y

34

2.7. Enumerating all stable matchings

to x, where {x,y} is labeled with rotation 7, the maximal elements of G(x)
can be reconstructed from G(y) in O(n) time, since they are the maximal
elements of G(y), plus 7, minus the neighbors of 7 in G(x).

So both G(z) and its maximal elements can be recomputed in O(n) time
on backup. However, we must care for not traversing any edge out of x more
than once.

A simple way to do this is to traverse the edges out of in increasing order
of their labels. Each time we enter a vertex x to expand, we scan the maximal
elements of G(z) and choose the one with the smallest label larger than the
label on the edge just used to enter = (either backup or first entry).

In this way only a single path of tree T needs to be kept at any one time,
hence the total space is O(n?), and the time remains O(n) per vertex. O

The only thing that is needed to be shown now is that the vertices in T
are in one-to-one correspondence to the closed sets of G, and that the order
of the rotations along a path in G has the desired properties claimed above.
This is going to be done in the following lemmas.

Lemma 11 ([3]). Let 2 be an arbitrary vertex in 7. Then R(zx) is a closed
set of rotations in D (hence G).

Proof. By induction, this lemma is clearly true for the root r of T, which
corresponds to the empty set, and for vertices at distance one from the root,
for each of these correspond to a maximal rotation in D. Let x be a vertex.
Let {x,y} be an edge out of x with label 7.

From inductive hypothesis, R(z) is a closed set, and, by construction, 7 is
maximal in G(z), so all the predecessors of 7 are in R(x). Hence R(z) + {n}
is closed set in D, and this set corresponds to vertex y. O

Lemma 12 (|3]). Every closed set in D is R(z) for some vertex z in 7T

Proof. Again we prove this lemma by induction, now on the size of the set.
For size zero and one, the lemma is clearly true, as these sets are the empty
set and the maximal elements in D.

Now let SN be a closed set of size k+ 1. SN must have a minimal element
with respect to the partial order D. Let 7 be the minimal element of SN with
the largest label.

By the induction hypothesis, SN —{7} is R(x) for some vertex x in T'. But,
then 7 is a maximal vertex in G(x), and since it has the largest label of the
rotations in SN, it will label an edge {z,y} out of z. Hence, SN is R(y). O

Lemma 13 ([3]). Let and 2’ be two distinct vertices in T, then R(z) #
R(z'), hence no closed set is enumerated twice in 7.

Proof. Consider a vertex z and two edges {z,y} and {x,y'} out of x labeled m,
resp. p, where 7 has a smaller label than p. Note that all the labels along any

35

2. FINDING ALL STABLE MATCHINGS

path from r are in increasing order, hence 7w cannot appear in the subtree of T’
rooted at 3’. The lemma follows by applying this observation inductively on
the length of the paths. O

With these lemmas, we can finally say that we can enumerate all stable
matchings while implicitly building tree T', and that we find every stable
matching exactly once. Now we finally have an algorithm for any instance of
STABLE MARRIAGE that can output all stable matchings in O(n?+n/|S|) time
and O(n?) space. From Section we know that the best currently known
upper bound for the number of stable matchings is O(3.55"), so we can say
that the time complexity is O(n? + n3.55").

36

CHAPTER 3

Algorithms using enumeration
of stable matchings

We present a detailed theory of enumerating stable matchings, because many
problems that are similar to the one we are facing also use this theory. If we
were to find a solution of our problem using the tree of stable matchings as
shown earlier in Section we would be possibly considering a far smaller
amount of matchings as our solution (O(3.55") instead of n! matchings).

These problems often try to build the tree of stable matchings implicitly
depth first. At each vertex (stable matching) they deterministically choose an
edge (rotation) by which to continue the algorithm and they usually terminate
at the stable matching they seek, rather than scanning the whole path to the
woman-optimal stable matching and choosing the stable matching best fitting
the given condition after.

We are going to take a look at three problems using the lattice of stable
matchings to find their solution. Not all of them construct the tree of stable
matchings the same way as Gusfield [3] did, but all of them use similar tech-
niques of exploiting the structure based on the rotation poset by Irving and
Leather [33].

3.1 The minimum regret stable marriage

This problem is first presented by Knuth [28], among many other problems
related to stable matchings. It tries to quantify a “regret” of each man and
woman.

Regret in this context refers to the difference between the preference rank-
ing of an agent’s assigned partner and their most preferred partner, that they
did not get matched with. The maximum regret is the highest value among
all participants in the matching.

The MINIMUM REGRET STABLE MARRIAGE problem seeks to find a match-

37

3. ALGORITHMS USING ENUMERATION OF STABLE MATCHINGS

ing that minimizes this maximum regret value. Upcoming definitions are go-
ing to formally define regret, and the minimum regret stable matching. This
section is based on articles [3, [28] by Gusfield and Knuth respectively.

Definition 18 (Regret of a person [28]). Let @ be a matching in an instance
of STABLE MARRIAGE problem. Let (m,w) be a pair in the matching Q.
The regret of m, denoted r(m), is the position of woman w in m’s preference
list pref(m), and the regret of w, denoted r(w), is the position of man m in w’s
preference list pref(w).

Definition 19 (Regret of a matching [28]). Let () be a matching in an instance
of STABLE MARRIAGE problem. The regret of a marriage @, denoted R(Q),
is defined to be the maximum regret of any person, given the pairing in Q.
Hence, @ is measured by the person who is worst off in it.

According to Gusfield [3], the solution given by Knuth [28] has a time
complexity O(n?*). Gusfield has shown that using the breakmarriage operation
(Definition , we can obtain a method that runs in O(n?) time, which is
allowed by avoiding duplicated proposals and rejections (specifically by using

Corollary .
The problem can be split in two:

o woman-regret minimum — “find, if one exists, a marriage minimizing R(Q)
over all stable matchings in which at least one woman is a person with
the maximum regret in the marriage”|3]

o man-regret minimum — “find, if one exists, a marriage minimizing R(Q)
over all stable matchings in which at least one man is a person with the
maximum regret in the marriage”|[3]

Both problems are effectively searching for the same value R(Q), but they
aren’t necessarily returning the same matching, as more matchings with the
same regret R(Q)) may exist. It is possible that for a given instance of STABLE
MARRIAGE problem, there are no men (women) with maximum regret, and
therefore no man-regret (woman-regret) minimum exists. This happens only
if all the people with maximum regret in man (woman) optimal marriage
are men (women). From now on, we assume that both woman-regret and
man-regret minimum exists, since the case where they don’t can be easily
checked for as explained above. The Algorithm [3| below finds a woman-regret
minimum, assuming both woman-regret and man-regret minimum exists. It
can be easily modified to find a man-regret minimum.

38

3.2. “Optimal” Stable Marriage

Algorithm 3 Finding a woman regret minimum
1: function ALGORITHM B([: instance of SM)
2 i< 0
3 M < I.men()

4: W 4 I.women()

5: Qo < GaleShapleyAlg(M, W)

6:

7

8

9

Q)+ + GaleShapleyAlg(W, M).swapPartities()
1< 0

R; + W.where(lambda w : r(w, Q;) == r(Q;))
while not empty(R;) do

10: w < getFirst(R;)

11: m < Q;(w)

12: if (m,w) in @Q; then return Q;

13: Qi+1 < breakmarriage(Q;, m)

14: 141+1

15: smregrets; < W.where(lambda w : r(w, @Q;) == r(Q;))

return Q;_;

The Algorithm [3| modifies ()¢ towards); using breakmarriage operations.
Hence, the total number of proposals is O(n?). Because of the computation
of regret in each iteration, we might end up with a O(n?) time complexity.
But Gusfield [3] explains how to use linked lists to represent regrets of women.
It can be initiated in O(n) time and takes O(n) space. Using this structure,
we no longer have to compute all values of regret and can reach a O(n?)
complexity.

3.2 “Optimal” Stable Marriage

A slightly different approach is used by Irving, Leather and Gusfield [6] to
search for an “Optimal” Stable Matching. Gale-Shapley algorithm can find a
matching that favors the men/women at the expense of women/men. With a
goal to find an “optimal” stable matching, Irving is maximizing the total sum
of “satisfaction” of all men and women.

The satisfaction is measured by the position of a person’s partner on his
preference list. Egalitarian measure of optimality was first shown by McVitie
and Wilson [39], they defined ranking as follows:

Definition 20 (Rank [39]). Let I be an instance of a STABLE MARRIAGE
problem. Let @) be a stable matching in I. Let m be a man in I and w
a woman in I. Then r(m,w) is the position of a woman w in the man m’s
preference list and r(w,m) is the position of a man m in the woman w’s

39

3. ALGORITHMS USING ENUMERATION OF STABLE MATCHINGS

preference list. The value of @) is defined as:
i=1 i=1
We say that a stable matching @ is optimal if it has minimum possible value

of ¢(Q).

Clearly, a stable matching that minimizes this criterion maximizes the total
satisfaction of all men and women in this instance. Irving gives an O(n?)-time
algorithm that finds an optimal stable matching.

Rotation poset P is defined as a directed graph structure to store rota-
tions (Definition[I1]) in order of their precedence (Definition [I4)). The rotation
poset is also defined as identical to our already known graph of rotations D
(Definition . Even a sparse subgraph of rotation poset, denoted by P’ is
used here by Irving, which is again equivalent to a sparse subgraph G of D
defined by Gusfield (definition [17]). Therefore we will stick to our old naming
convention for the sake of consistency.

Before explaining the algorithm to find an optimal stable matching, we
need to define a weight of a rotation. Then we are going to show with one
lemma and it’s corollary that we can compute a value ¢(Q) for any stable
matching @ from a man optimal stable matching Q)9 and a subset of rotations
that are on path from Qg to @ in G.

Definition 21 (Weight of rotation [6]). Let mo,...,mi—1 be a subset of
men, wo, . . . , Wi—1 be a subset of women and 7w = {(mg, wo), ..., (Mk—1, wr—1)}
be a rotation in an instance of STABLE MARRIAGE problem. Then the weight
of the rotation 7 is defined as:

k—1 k—1

w(m) = Z(T(mmwz‘) —r(mi, wit1)) + Z(r(wi,mi) —r(w;, mi—1))

=0 1=0
(1 £1 taken mod k)
Lemma 14 ([6]). Let @ be a stable matching in an instance of a STABLE

MARRIAGE problem. Let 7 be a rotation exposed in @, and let Q" be the
stable matching obtained from @ by eliminating 7. Then

o(Q') = c(Q) — w(m).
Proof. We refer to Irving, Leather and Gusfield [6]. O

Corollary 6 ([6]). Let @Q be a stable matching in an instance of a STABLE
MARRIAGE problem. Let my,...,m be a sequence of rotations that have to
be eliminated in men optimal stable matching (in the order of succession) to
receive the matching). Then

e(Q) = e(Qo) = Y wim).

=1

40

3.2. “Optimal” Stable Marriage

3.2.1 Finding the Maximum Weight Closed Subset of G

A network flow is used to find the maximum-weight closed subset of G (G being
the sparse subgraph of rotation poset as defined in Definition . Given a
graph G, the following capacitated s — ¢ flow graph G(s,t) is defined.

Source vertex s and sink vertex t are added to the graph G. A directed
edge is added to every “negative vertex” (every vertex m;, where w(m; < 0).
The capacity of every edge (s, ;) is set to |w(m;)|.

We add a directed edge from every “positive vertex” (every vertex mj,
where w(m; > 0)) to vertex t is also added. These edges (7;,t) have a capac-
ity w(m;). Every original edge in G has the capacity set to infinity. [6]

Theorem 10 ([6]). Let X be the set of edges crossing a minimum s — ¢ cut
in G(s,t), and denote the weight of X by w(X). The positive vertices in the
maximum-weight closed subset of G are exactly the positive vertices whose
edges into ¢ are uncut by X. These vertices, and all vertices that reach them
in G (predecessors), define a maximum-weight closed subset in G.

Proof. We denote the sets of positive and negative vertices in G by V* and V—
respectively. Let N (W) be the set of all negative predecessors of vertices in
any subset W C VT,

Any negative vertex in a maximum-weight closed subset C' C G must
precede at least one positive vertex in C, hence a maximum-weight closed
subset of G can be defined as a subset

= — |lw(N .
W =arg max w(W) — [w(N(W))|
But then the problem of finding a maximum weight closed subset can be also
interpreted as

W = arg WH519+ w(VE\W) + [w(N(W))|.

Now let W be an arbitrary subset of V' and consider graph G(s,t). If
every edge from s to a vertex in N (W) is cut, and every edge from a vertex
in V*\ W to t is also cut, then all paths from s to ¢ are cut. Hence w(X) <
w(VT\ W) + [w(N(W))| for any W C V. Conversely, if we let W* C
V* consist of positive vertices whose edges to t are uncut by X, then, by
definition, X cuts all edges to ¢ from vertices in V7 \W* and X must certainly
cut all the edges from s to vertices in N(W™), since X is an s —t cut of finite
capacity, and all original edges in G have infinite capacity. Hence

w(X) = wVEN W) + [w(N (W) < wVE\W) + [w(N(W))]

for any arbitrary W C V. O

41

3. ALGORITHMS USING ENUMERATION OF STABLE MATCHINGS

Theorem 11 ([6]). The maximum flow and minimum cut X in G(s,t) can
be found in O(n?) time.

Proof. When all capacities in G(s,t) are integral, the running time of the
Ford-Fulkerson algorithm is O(EK), where K is the maximum s — ¢ flow
value. All the capacities in G(s,t) are integral, both E and K are O(n?),
hence the theorem follows. O

Now we have an algorithm using a sparse directed graph G which repre-
sents the precedence of rotations, and with it, we can find the optimal stable
matching using methods for finding the maximum flow, or a minimum cut,
in G(s,t). We also know that it takes O(n?) time to find it. Every step prior
to that takes O(n?) time, as shown earlier.

3.3 Incremental Stable Marriage

In a real world, we can assume that our preferences are going to change. We
have an old stable matching and new, modified preference lists. This problem
is about searching for a stable matching with new preference lists that is the
most similar (by the number of partner swaps) to the old stable matching.

Bredereck et al. [40] address adaptivity to changing environments by propos-
ing “incrementalized version” of STABLE MARRIAGE problem. They ask a
question: “What is the computational cost of adapting an existing stable
matching after some of the preferences of the agents have changed.” The prob-
lem is formally defined as:

INCREMENTAL STABLE MARRIAGE

Input: Disjoint sets M and W of n agents each, two preference
lists pref;, pref, for two STABLE MARRIAGE problem in-
stances Iy = (M, W, pref;) and I, = (M, W, pref,), a stable
matching for instance I; and a non-negative integer k.

Question: Does [admit a stable matching Q2 such that dist(Q1,Q2) =
|Q1AQ2] < k7 (Q1AQ2 denotes symmetric difference be-
tween sets (01 and ()2)

We are given two preference lists, the old pref; and the new pref, for
the same n men and n women. Our goal is to find a matching Q)2 within
an instance of STABLE MARRIAGE problem with preference lists pref,. This
matching Q2 must have a symmetric difference with the old matching @; (that
was created in an instance of stable matching I; using preference lists pref;)
lower or equal to some given threshold k. Therefore, we must try to look for
the most similar stable matchings.

In a similar fashion to the previous section, we are going to use rotation
poset — directed graph D (Definition and it’s sparse version — directed

42

3.3. Incremental Stable Marriage

graph G (Definition . Using a different function to determine weights of
rotations we are once again reducing this problem to finding maximum weight
closed subset of rotations.

To find a maximum weight subset, we obviously need a weight func-
tion w(m). Let Ry denote the set of all rotations for I. For every rota-
tion m € Ry, with m = ((mg, wo), ..., (My—1,w,—1)) let

w(m) :=[{(mi, wit1) | {mi, wip1} € Q1,0 <i <r — 1}~
H{(mi, wi) | {mi,wi} € Q1,0 <i <7 —1}

be the weight of rotation w. This weight function counts the number of pairs
from @y that the elimination of rotation 7 introduces minus the number of
pairs from () that the elimination of rotation 7 removes. [40]

Again, similar to OPTIMAL STABLE MARRIAGE’s Lemma [14] and Corol-
lary [6] we are now going to introduce a lemma and a corollary which allow us
to measure a difference between two stable matchings by the weights of the
rotations that have to be eliminated to reach from one stable matching to the
other one. This value is obviously also dependent on ;.

Lemma 15 ([40]). Let Q1 be a stable matching in the instance of STABLE
MARRIAGE I;. Let Rs be a set of all rotations in the instance of STABLE
MARRIAGE I and let m € Ry be a rotation exposed in a stable matching @
for I, and let @’ be the stable matching obtained from @ by eliminating 7.
Then

Q1N Q' =[Q1 N Q|+ w(r).
Proof. In the following, all subscripts ¢ + 1 are taken modulo r. Let m =

((mo,wo), ..., (mr_1,wy_1)) be a rotation exposed in the stable matching @,
and let @’ be the stable matching obtained from @ by eliminating 7.

[Q1NQ=Q1U(Q UQ)|+ Q1 U (M \ M)
=[{{m,w} | {m,w} € QA (m,w) ¢ 7}|+
[{{m,w} [3i, 0<i<r—1, (mw) = (mi, wit1)}|
=[{{m, w} [{m,w} € Q1 UQ}-
[{{m, w} [{m,w} € QrUQ A (m,w) € m}|+
{{m, w} [3, 0<i<r—1, (m,w) = (M4, wig1)}|
=|@1 N Q[+ w(m) o
Corollary 7 (]40]). Let @1 be a stable matching in the instance of STABLE
MARRIAGE I;. Let C' C Ry be a closed subset of rotations associated with

stable matching () for Iy and let Qy be a men optimal stable matching for
STABLE MARRIAGE instance I5. Then

Q1N QI =Q1NQol + Y w(m).

el

43

3. ALGORITHMS USING ENUMERATION OF STABLE MATCHINGS

Using this corollary, we can reduce this problem to finding a maximum-
weight closed subset of rotations, as shown in the next lemma. After that,
we are going to show that the sum of weights of rotations is at most n, hence
finding such a subset of rotations can be done efficiently.

Lemma 16 ([40]). Let Q; be a stable matching in the instance of STABLE
MARRIAGE I;. Let Qg be man optimal stable matching for instance I» and Q2
a stable matching for Is. Let C be the closed subset of rotations associated

to Q2. Then, dist(Q1,Q2) < kifand only if > - w(m) > (dist(Q1, Qo)—k)/2.

Proof. From the definition of symmetric difference, we know that

dist(Q1, Q2) = [Q1] + [Q2] — 2|Q1 N Q2.

As we know, every stable matching in a given instance always matches the
same set of agents, therefore |Qo| = |Q2|. Using this fact, and Corollary [7] we
obtain

dist(Q1,Q2) = Q1 + |Qo| — 2(1Q1 N Qo| + Y w(m))
el

= dist(Q1, Qo) — 2 >_ w(w) O

el

Lemma 17 ([40]). >°, cg, w(m) < |Q1] and finding a closed subset of rotations
with maximum weight can be done in O(n?) time.

Proof. First, we need to create a definition of an intersection with rotation.
Let m = ((mo,wp), ..., (my—1,w,—1)) be a rotation. We define

TN Q1 := {(ms, wiy1) | {ms, wit1} € Q1 A (M4, wiq1) € 7}

(as usual 7 + 1 is taken modulo r). Using the fact that each pair is at most in
one rotation, we get

dowm < Y [rnQil =1 | (xnQ1)l <1Q1]

TER2 TER> TER2

In Section [3:2.1] we talked about how finding a maximum-weight closed
subset of rotations can be reduced to finding a minimum s — ¢ cut in a flow
network bounded by the sum of the weights of the rotations. The number
of vertices and edges in this sparse directed graph is in O(n?) and the sum
of weights is in O(n) as shown earlier in this proof. This problem can be
solved by Ford-Fulkerson algorithm in O(|E| % w), where |E| is the number of
edges and w is the cost of the minimum s — ¢ cut. Hence the algorithm runs
in O(n?). O

44

CHAPTER 4

Our contribution

The goal of this thesis is to explore properties of TEMPORAL STABLE MAR-
RIAGE problem. Ideally we want to prove either:

e that it is NP-hard to solve it by providing a polynomial reduction from
another NP-hard problem, or

« that it belongs to P, by finding an algorithm solving TEMPORAL STABLE
MARRIAGE in polynomial time.

At first, we are going to formally introduce the TEMPORAL STABLE MAR-
RIAGE problem and then we are going to show some of it’s properties we have
found. Towards the end, we discuss the approaches we tried out, but they
haven’t got us closer towards a solution and reasons why they have failed.

4.1 Temporal Stable Marriage

In real world scenarios, the preferences of people are constantly changing. So-
lution of classical STABLE MARRIAGE problem might not be stable after some
of the participants change their priorities. If these changes are incremental,
then we can use the algorithm for the INCREMENTAL STABLE MARRIAGE
problem we introduced in Section

But, if we know about these upcoming changes in advance, or we can
guess them, and get all ¢ versions of preference lists of all participants, then
the incremental method of modifying the matching with every change might
not be the optimal solution. The problem can be even harder, when we try
to find a single matching minimizing/maximizing some given metric over all ¢
instances of the STABLE MARRIAGE problem.

In our interpretation of this problem, we decided to work with the latter
interpretation. As our metric, we chose the maximum blocking pairs in an
instance over all ¢ given instances of STABLE MARRIAGE. Formally, we define
this problem as:

45

4. OUR CONTRIBUTION

TEMPORAL STABLE MARRIAGE

Input: A set of n men M = {my,...,m,}, a set of n women W =
{wi,...,w,}, ¢ instances of STABLE MARRIAGE prob-
lem Iy,...,I;, where Vi € {0,...,¢}, I, = (M,W,>;), and
a positive integer k.

Question: Is there a matching () such that the maximum number of
blocking pairs in every instance I; is at most k.

4.2 Temporal Stable Marriage is NP-complete

In this section, we are going to talk about one of our results, which is NP-
completeness of TEMPORAL STABLE MARRIAGE even with k = 2. We achieve
this result by a polynomial reduction from the 3-SAT problem.

The main idea is to create one instance of STABLE MARRIAGE for each
clause from the 3-SAT problem, to simulate the logical AND relation between
clauses, and to use parameter k as a “counter”. This counter is used to simulate
the logical OR relation between literals in clauses, by counting the number
of literals in a clause that are not satisfied. Hence it is making sure that
the clause, for which the given stable marriage instance was constructed, is
satisfied. We define our reduction in Theorem [12|and prove that it is a correct
polynomial reduction. At last, in Theorem we complete the proof of NP-
completeness.

Theorem 12. The TEMPORAL STABLE MARRIAGE problem is NP-hard even
if k= 2.

Proof. Let ® be an instance of 3-SAT problem consisting of ¢ three-literal
clauses {C1,...,Cy} and n total variables. We define instance Zg of TEMPO-
RAL STABLE MARRIAGE problem as follows:

For every clause C; € ®, where j € [1,/], we create one instance of stable
marriage and label it ;. For every variable x in ® we add two men m,, m—,
and two women w,, w—, to every instance of stable marriage I1,...,I;. Pref-
erence lists of men and women in every I; are formed as follows:

For every variable that is not present in the clause C};, we create prefer-
ence lists of my, M-, Wz, w—; in I; as follows:

My © Wy, Wy, [other women in arbitrary order]
M-y : Wog, Wy, [other women in arbitrary order]
Wy : Moy, My, [other men in arbitrary order]
Wy : My, M—y, [other men in arbitrary order]
Now we need to split the literals that appear in the clause C; to positive

literals, and negative literals. For the positive literals, we assign preferences
as:

46

4.2. Temporal Stable Marriage is NP-complete

Mg © Wy, Wy, [other women in arbitrary order]
M-y : Wy, W_g, [other women in arbitrary order]
Wy : My, M—y, [other men in arbitrary order]

Wy : My, M—y, [other men in arbitrary order]

At last, we define the preferences for negative literals as:

My : Woy, Wy, [other women in arbitrary order]
Mg : Wog, Wy, [other women in arbitrary order]
Wy : My, M-y, [other men in arbitrary order]

Wy : My, M—y, [other men in arbitrary order]

It is clear that the for every:

» variable z not present in the clause C; € @, the stable pairs in I;
are {(mg, wz),, (Mog, W-yg), (Mg, W), (M_z,wy)} for each variable,

« positive literal x present in the clause C; € ®, each man and woman is in
only one stable pair, and those are {(my, wy), (M—yp, wW-z)}, as (Mg, wy)
blocks the other two options,

» negative literal —z present in the clause C; € ®, each man and woman
is in only one stable pair, and those are {(mg, w-z), (M-z, wy)}, as now
the pair (m,,w-,) blocks the other two options.

Any other pair is always blocked by some of these stable pairs mentioned
above. They cannot ever be stable, as all men and women aligned with the
same variable prefer each other to other men and women aligned with other
variables.

To finish the construction, we set £ = 2. This completes our construction
of TEMPORAL STABLE MARRIAGE problem instance Zg from 3-SAT problem
instance ®. We still need to describe how the existence of acceptable match-
ings for this constructed instance of TEMPORAL STABLE MARRIAGE problem
relates to satisfiability of 3-SAT problem instance ®.

Matching @ is stable for an single instance I; if and only if:

« all pairs consist of a man and woman both aligned with the same vari-
able z,

o for every positive literal = present in the clause C; € ®, pairs {(mg, w;),

(Mogy w-z)} € Q,

47

4. OUR CONTRIBUTION

o for every negative literal « present in the clause C; € @, pairs {(mg, w-y),

(m-z,wy)} € Q.

Now we need to prove that the existence of assignment « satisfying ®
means that a matching @, satisfying Zs exists and has at most k blocking
pairs over all instances I, ..., Iy.

Let a be an assignment satisfying ®. Let matching (), be currently empty.
For each variable x € « assigned the value true, we add pairs {(m,,w;),
(m-yz,w-z)} into matching @Q,. For each variable x € « assigned the value
false, we add pairs {(mz, w-z), (M-z, w,)} into matching Q.

Now we need to prove that such a matching has actually at most k = 2
blocking pairs for each instance I; € Zg. Let I; be an instance with strictly
more than k blocking pairs for matching Q.. We need to show that this
would mean clause C; is not satisfied in ®, hence it cannot occur, as « is an
assignment satisfying ®. We know that the pairs in), aligned with variables
not present in C; are not creating blocking pairs, as both sets of possible pairs
are stable and are not creating blocking pairs (observed earlier in this proof).
Hence, the only two options to create a blocking pair are:

e When C; contains a positive literal z and {(mg, w-z), (Mg, ws)},
which, after checking the preferences, we know creates one blocking pair,
or

e When Cj contains a negative literal z and {(mgs,ws), (M-z,w-z)},
which, after checking the preferences, we know creates one blocking pair.

We know, from how we defined matches in), that the truth value assigned
to the variable x must not satisfy the respective literal in C;. For each of
these literals not satisfied, one blocking pair is added. But if there are strictly
more than k = 2 blocking pairs, and we know that the clause C); contains
three literals, then all three literals are unsatisfied, hence the clause C; is not
satisfied. This shows us that the maximum number of blocking pairs in Qq,
cannot exceed k = 2 and, hence, is a valid solution.

When we proved this implication, we need to prove the opposite implica-
tion. To do that, we first need to prove, that the matching @, acceptable
for Zg, can never contain a pair(m,, w,) (respectively (mg,w-,)) where x # y.

Let matching @’ contain a pair (mg, w,) (respectively (my, w-y)) with man
and woman aligned with different literals x and y (resp. —y). The count of
blocking pairs for I;, where clause C'; € ® contains literal x, is incremented by
at least three. This happens because pairs (my, wy), (Mg, w-y) are necessarily
blocking, as m, is the most preferred partner for both w, and w-;.

Finding the third pair is a little bit more complicated, as there is a mul-
tiple possible cases. In case the literal y (resp. —y) is also contained in the

48

4.2. Temporal Stable Marriage is NP-complete

clause C; € ®, then (my, wy) (resp. (m-y, w-y)) is necessarily a blocking pair,
as wy (resp. w-y) is the most preferred woman for man m,, (resp. m-,). This
fact stays true in case the literal y (resp. —y) is not contained in the clause Cj.

The case when literal -y (resp. y) is contained in the clause C; is the most
complicated, as w, (resp. w-y) is nobody’s first choice. Here we must realize
that one of the men m € {m,, m-,} must be either unpaired or paired with
some w € {w,,w-,}, where w is aligned with some different literal z (z = x
is possible). But this woman is surely less preferred than w, (resp. w-y),
therefore the last blocking pair must be (m,w).

There can be multiple other blocking pairs in @’, but to show that it can-
not be acceptable we need just three blocking pairs. Now we have shown
that no acceptable matching for Zg can contain a pair (mg,w,) (respec-
tively (mg,w-y))

Finally, we can prove that if solution for Zg exists, let it be matching Q,,
then assignment « satisfying ® also exists.

Let a be an assignment. For each of it’s variables x € ®, we set the truth
values as true, when @), contains pair (mg,w,), otherwise we set the truth
values as false when @, contains pair (mg,,w-,). We proved earlier, that one
of these pairs have to be contained in @, else it cannot be a valid solution
for Zp (it would imply that @, contains (mg,w—y) V (Mg, wy)).

We claim that this assignment « satisfies ®. Therefore, it must satisfy
every clause C; € ®.

Let C; be the clause not satisfied by the assignment «. This means that
none of its three literals is satisfied.

We know that there is at most & = 2 blocking pairs for @, in I;. From
earlier observations we know, that the blocking pairs cannot come from pairs
with agents aligned with variables not present in C;. Hence there must be at
least one variable of the three, let it be x, for which the blocking pair among
it’s adjacent agents does not exist.

That means that the matching @, necessarily contains (m,w,), if C;
contains a positive literal of z, respectively contains (mg, w-;), if C; contains
a negative literal of x. But, from how we defined « earlier in this proof, this
means that the literal of = is satisfied, hence C is satisfied, a contradiction.
Therefore such assignment « satisfies ®.

Now the Theorem [12]is proven, as existence of « implies existence of Zg,
and existence of Zg implies existence of a.]

49

4. OUR CONTRIBUTION

Comparison of naive algorithm and dynamic algorithm with increasing value of |

— time_naive
time_dynamic

175

150

125

100

Time [s]

20 15 30 35 40 45 50
|

Figure 4.1: Speed comparison of naive brute force algorithm and algorithm
utilizing dynamic programming. Blue is the naive algorithm, and orange is the
dynamic algorithm, their speeds are relative to the count of stable marriage
instances £ in the given instance of TEMPORAL STABLE MARRIAGE problem

Theorem 13. The TEMPORAL STABLE MARRIAGE problem is NP-complete.

Proof. From Theorem we know that the TEMPORAL STABLE MARRIAGE
problem is NP-hard, now we just need to show that the solution can be verified
in polynomial time. To verify a matching), we need to count the blocking
pairs in each one of the ¢ instances of stable marriage problem in the TEM-
PORAL STABLE MARRIAGE instance. To check one matching, we need up
to O(n?) time, because each matching contains O(n?) edges. When we do
this for all £ instances, we get O(¢n?) time complexity. O

4.3 Algorithm Using Dynamic Programming

Naive algorithm is an option that is surely going to give us the correct so-
lution to Temporary Stable Marriage problem, but it would have time com-
plexity O(n!). One of the most intuitive ways to speed up naive algorithm
is by breaking down a larger problem into smaller subproblems — dynamic
programming — solving each subproblem only once, and storing the solution
in memory for future use. Compared to a naive algorithm, dynamic program-
ming can significantly improve efficiency by avoiding repeated computations.
A naive algorithm solves the same subproblem multiple times (e.g. counting

20

4.3. Algorithm Using Dynamic Programming

Comparison of naive algorithm and dynamic algorithm with increasing value of n in log scale

] . "
i — time_naive

time_dynamic

107

10t

il

Time [s]

10t

103

10

2 3 4 5 & 7 B 9 10
n

Figure 4.2: Speed comparison of naive brute force algorithm and algorithm
utilizing dynamic programming in logarithmic scale of y axis. Blue is the naive
algorithm, and orange is the dynamic algorithm, their speeds are relative to
the size n of the given instance of TEMPORAL STABLE MARRIAGE problem

the blocking pairs in the same subset of pairs), leading to an exponential in-
crease in runtime as the size of the problem grows. But because of the inherent
nature of blocking pairs, this algorithm only approximates the correct result
for reasons given further below.

We utilize dynamic programming to break up our problem into smaller
subinstances with 7 men and j women, j € {1,...,n}. We build our solution
from bottom up, starting by choosing a partner for man m;. With each of
these possible pairs we create the first j = 1-th layer. Each j 4+ 1-th layer
of subinstances is constructed from the j-th layer by choosing a partner for
man m;y1 and adding this pair. Partner of man mj 4 is chosen from the
currently unpaired women.

Now if we follow this pattern, then in j = n-th layer, there will be all n!
solutions. The way how to reduce this number of solutions is for us to only
save the best performing solution for each unique subset of men and women
built while creating the layers.

This means that the size of each j-th layer is exactly (’;) It is caused
by keeping only the solutions containing a distinct subset of women paired to
men {mq,...,m;} in each layer.

We choose the best performing solution by evaluating the number of block-
ing pairs for each I;, where i € {1,/}, in each candidate. The candidate with
the lowest maximum of blocking pairs in an instance is chosen. If none of them

51

4. OUR CONTRIBUTION

Comparisen of naive algorithm and dynamic algorithm with increasing value of |

B Total Instances

B Solved by Naive

500 4 B Solved by Dynamic
B Equal Solutions

M Unsolved by Dynamic

500

400

Cccurences

100

Figure 4.3: Comparison of solutions obtained from naive brute force algorithm
and algorithm utilizing dynamic programming. Blue is the total amount of
instances computed, orange is the amount of those instances for which the
naive algorithm has found a solution, green is the amount of solutions found
by the dynamic algorithm. Red is the count of times both algorithms have
found a solution with the same amount of max blocking pairs and purple is
the amount of instances, where naive algorithm found an acceptable solution,
but dynamic algorithm haven’t. All counts are grouped by the count of stable
marriage instances £ in the given instance of TEMPORAL STABLE MARRIAGE
problem

has the maximum of blocking pairs in an instance lower than parameter k,
then no solution is returned and saved to the new layer.

Pseudocode can be seen in Algorithm [4 We can see that the algorithm
reuses the number of computed blocking pairs from previous iterations on
line [T0] therefore we only need to search for blocking pairs among the edges
incidental with the newly added men m and woman w on line [9}

Another interesting section are lines [L5] and The algorithm must ex-
tract the maximum of blocking pairs in every run. This is because of the
reusing of computed blocking pairs in next layers. If we stored just the max
value, we would run into a problem where a different STABLE MARRIAGE
instance overtake the previous maximum in the number of blocking pairs.

The matching, that is chosen to represent each of the combinations of men
and women, is the first one of the matchings that have the minimal maximum
of blocking pairs. It means that in later layers, this might create more than
is the actual minimal maximum of blocking pairs for the given combination

92

4.3. Algorithm Using Dynamic Programming

Algorithm 4 Algorithm Using Dynamic Programming

1: function DYNAMICTEMPORALSTABLEMARRIAGE(n, ¢, k, prefLists)
2: leaves <+ {{i} : {0} | i € {0,n — 1}}

3: tree <— {1 : leaves}

4: for depth in {1,...,n—1} do

5: fullLayer < {comb : {} | comb € combinations(n, depth + 1)
6: for vertex, oldBlocking in tree[depth] do

7: for i in {0,n — 1} \ vertez do

8: new Vertex < vertex U {i}

9: newBlocking < newBlockingPairs(new Vertex, prefLists)
10: blocking <— newBlocking + oldBlocking

11: fullLayer{sorted(new Vertez)|[new Vertez| < blocking
12: newLayer < {}

13: for candidate in fullLayer.values() do

14: blocksLists <— candidate.values()

15: minBlocks < M pjocks Liste blocksLists MAX be blocks List b

16: minMatching < arg,, c candidate.keys() MinBlocks

17: if max(minBlocks) < k then

18: layer[minMatching] < minimum

19: tree[depth 4 1] < layer

return tree[n]

of men and women. Better way to choose the best performing solution might
exist. Unfortunately we haven’t found one that could find the optimal solution,
without adding magnitude to time complexity.

Lemma 18. Algorithm Using Dynamic Programming for TEMPORAL STABLE
MARRIAGE problem creates O(n2") candidate subsolutions in n layers. Each
layer contains O((j)) subsolutions, where j is the number of men in all of
these subsolutions.

Proof. Let ; be a matching saved in j-th layer. By definition it contains j

men paired with 5 women. We know that for each combination of women in

set {Qj(m1),Q;(ma),...,Qj(m;)} there is one matching saved in j-th layer.

Women from whom we are choosing are n women from the original instance

of TEMPORAL STABLE MARRIAGE problem. Hence there is (;L) possible dif-

ferent combinations of sets of women. The total number of subsolutions n2"
n

comes from sum of all these layers (7),..., (") and the candidate subsolutions
evaluated for them. O

We know that our algorithm evaluates O(n2") different candidates for
subsolutions. Each time we only need to verify the pairs incidental with
newly added agents for each one of the preference profiles, meaning an addi-
tional O(¢n) time.

93

4. OUR CONTRIBUTION

Comparisen of naive algorithm and dynamic algorithm with increasing value of n

Em Sclved by Naive

B Solved by Dynamic
B Equal Solutions

m Unsolved by Dynamic

250 4

]
=

Cccurences

g

Figure 4.4: Comparison of solutions obtained from naive brute force algo-
rithm and algorithm utilizing dynamic programming. Blue is the amount of
instances for which the naive algorithm has found a solution, orange is the
amount of solutions found by the dynamic algorithm. Green is the count of
times both algorithms have found a solution with the same amount of max
blocking pairs and red is the amount of instances, where naive algorithm found
an acceptable solution, but dynamic algorithm haven’t. All counts are grouped
by the size n of the given instance of TEMPORAL STABLE MARRIAGE problem

After computing blocking pairs for each of the candidates, we need to
choose the one with minimal maximum of blocking pairs, which surely takes
at most O(£2"), as there can be at most 2" candidates in a layer, and for each
we need to check count of blocking pairs for each preference profile. As we
check these candidates in every layer, and there are n — 1 layers, evaluating
candidates takes up to O(fn2") time.

If we combine all of these bits of knowledge, we end up with O(¢n?2")
time complexity for Algorithm @ Space complexity is O(¢n?2"), as we need
to store O(n2™) subsolutions of size O(n) and for each subsolution we store ¢
counters of blocking pairs.

4.3.1 Comparison with naive brute force method

We tried to analyze the Algorithm [4] and compare it with a naive brute force
method of searching for solution of a TEMPORAL STABLE MARRIAGE prob-
lem instance. Our naive algorithm is sequentially trying out every possible
matching for a given instance and counting the number of blocking pairs for

54

4.3. Algorithm Using Dynamic Programming

Comparison of naive algorithm and dynamic algorithm with increasing value of k

E Sclved by Naive

mm Solved by Dynamic
B Equal Solutions

mm Unsclved by Dynamic

120 1

100 1

Occurences

20 4

=] — ~ Ll =+ 0 e ~ © @ =] =] s} s} 2 | B =] A a
k

Figure 4.5: Comparison of solutions obtained from naive brute force algo-
rithm and algorithm utilizing dynamic programming. Blue is the amount of
instances for which the naive algorithm has found a solution, orange is the
amount of solutions found by the dynamic algorithm. Green is the count of
times both algorithms have found a solution with the same amount of max
blocking pairs and red is the amount of instances, where naive algorithm found
an acceptable solution, but dynamic algorithm haven’t. All counts are grouped
by the amount k of maximum acceptable blocking pairs in the given instance
of TEMPORAL STABLE MARRIAGE problem

all preference profiles (hence O(In?n!) time complexity).

First, we have Figure [£.2] showing the comparison of the runtime of each
algorithm in logarithmic scale. It is obvious that Algorithm []'s time complex-
ity grows exponentially and the naive algorithm grows even faster. The speed
difference is also huge, as Algorithm [4] finishes the computation for instances
of size n = 10, on average, in ~ 0.5s, while the average computation time for
naive algorithm is already at ~ 1135s.

In the next Figure [£.I] we can se that the difference made by the number
of preference profiles in the given instance is just linear for both algorithms,
as expected from their time complexities. Figures [£.3] [£.4] and [£.5] show us,
most importantly, the amount of instances solved by the naive algorithm suc-
cessfully, but not with Algorithm [4]

We can se that the number is rising in bigger instances both in terms of
number of agents n and in terms of number of preference profiles £. Out of all
105 instances, in which this occurred, from the total 2592 computed instances,
only 26 instances had a possibility for a solution that had strictly less than k

95

4. OUR CONTRIBUTION

max blocking pairs. Out of them, this best solution had 2 less max blocking
pairs on 3 occasions, 3 less blocking pairs on 2 occasions and 1 less blocking
pair in all others.

o6

CHAPTER 5

Discussion

As there are numerous ways to grasp TEMPORAL STABLE MARRIAGE, there
were many approaches that we tried out but didn’t receive any insight from,
hence we evaluated them as “dead ends”. Here we talk about our approaches
to proving/disproving NP-hardness of TEMPORAL STABLE MARRIAGE that
didn’t yield expected results. Most of them end with an unanswered question
that prohibits us to continue that way. This could also mean that they are a
few observations away from being useful.

5.1 Algorithm Repeating Incremental Stable
Marriage

Our first naive attempt at creating an algorithm for TEMPORAL STABLE MAR-
RIAGE problem with ¢ = 2. First we explain the fundamentals of the algorithm
and in the end we describe why this algorithm doesn’t work the way we in-
tended.

Solution is computed by repeatedly calling the INCREMENTAL STABLE
MARRIAGE algorithm with parameter krgyr = 4k (explained in Section
on every stable matching of I;(enumerated by algorithm explained in Sec-
tion . If the algorithm returns a matching, then we “merge” the two
matchings into one and return as a solution.

At first we introduce an auxiliary definition of rotation on symmetric dif-
ference of two matchings, and it’s properties. Then we use these definitions
to simplify the explanation of our algorithm.

Definition 22 (Rotation on symmetric difference). Let Q1, Q2 be two match-
ings in two instances of Stable Marriage problem with the same set of agents.
Rotation on symmetric difference msq = {(m1,w1), ..., (M0,\Qa)» W|@:1\Q2|) }
is a rotation of a subset of @)1 \ Q2 which, when eliminated, creates a subset
of Q2 \ Q1 of the same size. We define maxRotation(Q1AQ2) as the largest
such rotation and R(Q1AQ2) a set of all such rotations in Q1 AQs.

o7

5. DiscussioN

Lemma 19. Let @1, Q2 be two matchings in two instances of STABLE MAR-
RIAGE problem with the same set of agents. Then every edge of Q1 \ Q2 is
part of exactly one rotation on symmetric difference.

Proof. From the definition of symmetric difference Q1AQ2 = (Q1UQ2)\(Q1N
(Q)2) we already know that there cannot be an edge that is in both @1 and Q3.
Therefore the only option for the edges of symmetric difference is that for
every (m,w) € Q1 \ Q2 there exists (m,w’), (m’,w) € Q2 \ Q1, where m # m/
and w # w’, hence the proof is just a corollary of Theorem O

Algorithm 5 Naive algorithm
1: function NAIVETEMPORAL2(I;: instance of SM, I5: instance of SM, k:
positive integer)

2: for) in EnumerateSM(I;) do

3: Q2 +— IncrementalSM(IQ, Q1, Qk)

4: if |Q1AQ2| < 4k and |maxRotation(Q1AQ2)| < k then
5: Ry + {}

6: Ry + {}

7: for =, in, sortedBySize(R(Q1AQ2)).desc() do
8: if ‘R1| < ’R2| then

9: R+ Ry U~

10: else

11: Ry +— RoUm

12: if Ry > k or Ry > k then

13: continue

14: @ + Q1 .eliminateRotations(R;)

15: return @

16: return Null

With this lemma, we can now define the algorithm, which is described in
Algorithm [5] During the computation, we enumerate stable matchings of one
of the STABLE MARRIAGE instances I in O(n? + n|S|) time.

For each stable matching @)1 in I; found, we try to find a similar match-
ing ()2, that is different in at most 2k pairs and none of the rotations found
in the symmetric difference of ()1 and Q2 is bigger than k. If none is found,
we try again for another Q1.

Each computation of INCREMENTAL STABLE MARRIAGE to find a simi-
lar matching takes up to O(n?®) time. As this is done for every enumerated
matching @1, the whole cycle of searching for suitable Q3 takes up to O(n*|S|)
time.

After we find suitable ()1 and @2, we can start with building the result Q.
We split R(Q1AQ2) into two sets of rotations of similar size. Both sets need
to contain less than k pairs in their rotations, else we need to continue our

o8

5.2. NP-hardness of Temporal Stable Marriage with Constant Number of
Layers

search for other suitable matchings. When we successfully find such sets of
rotations, we construct the solution by taking @} and eliminating all of the
rotations contained in one of these sets.

For the splitting of R(Q1AQ2), we need to sort the set of rotations by their
sizes, which takes up to O(klogk) time. As these sets of rotations might be
rejected by the algorithm, we need to take this time complexity into account,
but we can assume that k < n without a loss of generality (if £ > n, then any
matching is acceptable), and O(klogk) < O(n?®). Eliminating the rotations
from @, takes O(k) time, but happens only once. This leaves us with the total
time complexity of Algorithm Repeating INCREMENTAL STABLE MARRIAGE
at O(n*|S)).

This algorithm gives us a matching @ that has both |[QAQ2| < k
and |QAQ1| < k. The problem is that we have not found a way to “translate”
the size of symmetric difference of two matchings into a count of blocking
pairs, as each swap of partners can introduce up to 2n — 3 blocking pairs,
which is shown in the upcoming lemma.

Lemma 20. Let I be an instance of STABLE M ARRIAGE problem with n men
and women and @) a stable matching in /. Then swapping partners of two
pairs (m;, w;), (m;,w;) in @ might introduce 2n — 3 blocking pairs.

Proof. Let I be an instance with preferences for all men m; and women w;,
where ¢ € {1,...,n}, as follows:

W1 »m; W2 >m; >~ m; Wn

MY >, M2 >, > w; M.

Let @ = {(m1,w1),...,(mp,wy)} be a matching in . We can check that @
is stable.

Let’s consider swapping partner of pairs (m1,w;) and (my,,w,) in @ from
now on. Everyone’s favorite partner is mq, resp. wi. These agents are now
paired with their least favorite partner m,,, resp. wy,.

This means that m; and w; create a blocking pair with every other possible
partner, adding up to 2n — 3 pairs (n is the size of their preference lists, minus
their current matchings and counting matching (m,w;) just once). O

This means that we cannot efficiently use symmetric difference to help us
with minimizing the number of blocking pairs. And because of that we cannot
use this algorithm to solve TEMPORAL STABLE MARRIAGE.

5.2 NP-hardness of Temporal Stable Marriage
with Constant Number of Layers

We tried to reduce a chosen NP-problem to TEMPORAL STABLE MARRIAGE
problem with constant value of ¢ (we were trying ¢ € {2,3}). When we did

99

5. DiscussioN

that, we often encountered a problem of “simulating” both logical AND and
logical OR relations while using a constant number of instances to do so for
any sizes of sets of men and women.

One problem we faced was our inability to find a way to create an en-
vironment, where there are two sets of men M; = {mg,m1,me} and My =
{ms, my4, ms} and two sets of women W7 = {wp, w1, ws} and Wo = {ws, wy, ws}.
We need to find such an instance, where matchings:

Qo = {(ms, wi) | i €[0,5]}
Ql = {(mivwi+3 mod 6) | (S [0’5]}

are stable, and all other matchings produce j € NT blocking pairs. We needed
this construction for reduction from ExacT COVER BY 3-SETS problem [41],
for example. We would utilize it to check which elements are in a given subset
if the subset is chosen (signified by M; being matched with women in set W7),
or the subset not being selected (signified by M; being matched with women in
set Wy). It is easy to see why we need all pairs to be “selected” or “unselected”
at once.

The reason for this construction not working is simple, and it’s because
of how rotations work. Let (g, described above, be the man-optimal stable
matching for some instance I = (M; UMy, W1 UW3, =) of STABLE MARRIAGE
problem. If we try to change the pairs with three simple rotations m; =
{(mi,w;), (Mits3,wi+3)}, where ¢ € {0,1,2}, no rotation precedes any other.
Hence, any subset S C {m; | i € {0,1,2}} of rotations eliminated in Qg creates
a stable matching which we do not want.

This shows us that it is needed to create one big rotation that changes all
required pairs at once. But because all rotations are a circular chain, there is
no way to achieve (1 using a single rotation.

Very similar problem occurred when we were searching for a way to create
an environment, where at least one (or more) of three men m; € M; are
matched to women w; € W; with matching index ¢ € {0, 1,2} (simulating
logical OR between the options), else a fixed amount j € NT of blocking pairs
appears. This construction was needed for reduction from 3-SAT problem,
for example.

This time, three independent rotations m; = {(m;, w;), (Mit3, wiys)},
where ¢ € {0,1,2}, create a problem, where by eliminating all R = {m; |
i € {0,1,2}} in Qo to create matching @1, it is also stable. And again, no
bigger rotation can rotate these agents correctly. There is also an option to
make (m;,w;), where i € [0,5], the only stable pairs, but that means that
any matching) containing any pair (m;, w;+3) is not stable. We can still use
the counting of blocking pairs and parameter k£ of Temporal Stable Matching
instance to invalidate the matching if the number of blocking pairs gets above
some threshold (we actually use this method in our proof of NP-hardness
of TEMPORAL STABLE MARRIAGE with unlimited number of instances ¢ in

60

5.2. NP-hardness of Temporal Stable Marriage with Constant Number of
Layers

Section . But with multiple of these constructions in one instance, the
variability of interpretations for the number of blocking pairs (in an instance
with three of these constructions, three blocking pairs could mean that each
construction has one blocking pair, which would be acceptable, but it could
also mean that one ot these constructions has three blocking pairs, which in
this example should be rejected) would block it from any usefulness.

These properties of rotations stopped us from construction a proper poly-
nomial reduction from NP-complete problems we tried out. There is still a
possibility that a different utilization of multiple available instances of STA-
BLE MARRIAGE at once, or the parameter k£, might admit a reduction from
NP-complete problem, but the techniques we tried were unsuccessful.

61

Conclusion

With the goal of tackling the STABLE MARRIAGE problem from the viewpoint
of dynamically changing world, we have researched various available literature
about STABLE MARRIAGE problem, it’s modifications and similar problems.
We mostly focused on the subset of literature, where a rotation poset is used,
as we first expected our problem to be similar to INCREMENTAL STABLE MAR-
RIAGE [40], where this construction plays a major role. Though we weren’t
able to utilize rotation poset much, as blocking pairs are not much similar to
swaps or symmetric difference in usage, as shown in Lemma

Our main contribution in this thesis is the definition of TEMPORAL STABLE
MARRIAGE problem and the proof of it’s NP-completeness even with constant
number of allowed blocking pairs in each instance, by polynomial reduction
from 3-SAT problem. We also provided an algorithm utilizing dynamic pro-
gramming that can approximate the matching with the lowest maximum of
blocking pairs.

We also discussed the reasons why our planned utilization of rotation poset
didn’t work in our proposed algorithm naively repeating algorithm solving
INCREMENTAL STABLE MARRIAGE. At the end we mentioned some of our
most frequent reasons why we were unsuccessful in proving NP-completeness
of TEMPORAL STABLE MARRIAGE problem with small constant parameter £.

There are some open questions after this thesis. One of them is the NP-
completeness of TEMPORAL STABLE MARRIAGE problem with small constant
parameter £. More general open question would be if there exists a right
viewpoint from which we can better utilize blocking pairs, as this could pave
the road for future research. It might be also needed to be able to find some
algorithm solving the problem in polynomial time for some small constant
values of £.

63

Bibliography

GALE, David; SHAPLEY, Lloyd S. College admissions and the stability
of marriage. The American Mathematical Monthly. 1962, vol. 69, no. 1,
pp. 9-15. Available from DOI: https://doi.org/10.2307/2312726.

KNOP, Dugan; SCHIERREICH, Simon; VALLA, Tomas. NI-ATH: Z&kladn{
pojmy. 2022. Available also from: https://courses.fit.cvut.cz/MI-
ATH/lectures/files/lectureO1l.pdf. File accesible after loging into
CTU network.

GUSFIELD, Dan. Three fast algorithms for four problems in stable mar-
riage. SIAM Journal on Computing. 1987, vol. 16, no. 1, pp. 111-128.
Available from DOI: https://doi.org/10.1137/0216010.

MANLOVE, David F; IRVING, Robert W; IWAMA Kazuo; MIYAZAKI,
Shuichi; MORITA, Yasufumi. Hard variants of stable marriage. Theoret-
ical Computer Science. 2002, vol. 276, no. 1-2, pp. 261-279. Available
from DOI: https://doi.org/10.1016/S0304-3975(01)00206-7.

ROTH, Alvin E.; VANDE VATE, John H. Random Paths to Stability in
Two-Sided Matching. Econometrica. 1990, vol. 58, no. 6, pp. 1475-1480.
ISSN 00129682, 1SSN 14680262. Available from DOI: https://doi.org/
10.2307/2938326.

IRVING, Robert W; LEATHER, Paul; GUSFIELD, Dan. An efficient
algorithm for the “optimal” stable marriage. Journal of the ACM. 1987,
vol. 34, no. 3, pp. 532-543. Available from DOI: https://doi.org/10.
1145/28869.28871.

IWAMA, Kazuo; MIYAZAKI, Shuichi. A survey of the stable marriage
problem and its variants. In: Proceedings of the International Confer-
ence on Informatics Education and Research for Knowledge-Clirculating
Society. USA: IEEE Computer Society, 2008, pp. 131-136. ICKS ’08.
Available from DOTI: [10.1109/ICKS.2008.7.

65

https://doi.org/https://doi.org/10.2307/2312726
https://courses.fit.cvut.cz/MI-ATH/lectures/files/lecture01.pdf
https://courses.fit.cvut.cz/MI-ATH/lectures/files/lecture01.pdf
https://doi.org/https://doi.org/10.1137/0216010
https://doi.org/https://doi.org/10.1016/S0304-3975(01)00206-7
https://doi.org/https://doi.org/10.2307/2938326
https://doi.org/https://doi.org/10.2307/2938326
https://doi.org/https://doi.org/10.1145/28869.28871
https://doi.org/https://doi.org/10.1145/28869.28871
https://doi.org/10.1109/ICKS.2008.7

BIBLIOGRAPHY

8. National Resident Matching Program |[https://www.nrmp.org/|. 2023.
Accessed: April 25, 2023.

9. Canadian Resident Matching Service |https://www.carms.ca/|. 2023.
Accessed: April 25, 2023.

10. Japan Resident Matching Program |https ://www . jrmp . jp/]. 2023.
Accessed: April 25, 2023.

11. ROTH, Alvin E.; SONMEZ, Tayfun; UNVER, M. Utku. Efficient Kidney
Exchange: Coincidence of Wants in Markets with Compatibility-Based
Preferences. American Economic Review. 2007, vol. 97, no. 3, pp. 828—
851. Available from DOI: [10.1257/aer.97.3.828.

12. MOULIN, Hervé. Handbook of Computational Social Choice. Ed. by BRANDT,
Felix; CONITZER, Vincent; ENDRISS, Ulle; LANG, Jéréome; PROCAC-
CTA, Ariel D.Editors. Cambridge University Press, 2016. Available from
DOI: |10.1017/CB09781107446984.

13. ROTH, Alvin E.; SONMEZ, Tayfun; UNVER, M. Utku. Kidney Ex-
change. The Quarterly Journal of Economics. 2004, vol. 119, no. 2, pp. 457—
488. 18SN 0033-5533. Available from DOI: [10.1162/0033553041382157.

14. ROTH, Alvin E.; SONMEZ, Tayfun; UNVER, M. Utku. Pairwise kidney
exchange. Journal of Economic Theory. 2005, vol. 125, no. 2, pp. 151—
188. 18SN 0022-0531. Available from DOI: https://doi.org/10.1016/
j.jet.2005.04.004.

15. GUPTA, Sushmita; JAIN, Pallavi; ROY, Sanjukta; SAURABH, Saket;
ZEHAVI, Meirav. On the (parameterized) complexity of almost stable
marriage. In: SAXENA, Nitin; SIMON, Sunil (eds.). 40th IARCS An-
nual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2020. Germany: Schloss Dagstuhl- Leibniz-
Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2020. Leibniz Inter-
national Proceedings in Informatics, LIPIcs. Available from DOI: https:
//doi.org/10.4230/LIPIcs.FSTTCS.2020.24.

16. Programs for Donor/Recipient Pairs with Incompatible Blood Types [https:
//www.kidney.org/transplantation/livingdonors/incompatiblebloodtype].
2019. Accessed: April 25, 2023.

17. MAGGS, Bruce M.; SITARAMAN, Ramesh K. Algorithmic Nuggets in
Content Delivery. Association for Computing Machinery Special Interest
Group on Data Communication Computer Communication Review. 2015,
vol. 45, no. 3, pp. 52-66. 1SSN 0146-4833. Available from DOI: [10.1145/
2805789.2805800.

18. ROTH, Alvin E. The Evolution of the Labor Market for Medical In-
terns and Residents: A Case Study in Game Theory. Journal of Polit-
ical Economy. 1984, vol. 92, no. 6, pp. 991-1016. Available from DOI:
10.1086/261272.

66

https://www.nrmp.org/
https://www.carms.ca/
https://www.jrmp.jp/
https://doi.org/10.1257/aer.97.3.828
https://doi.org/10.1017/CBO9781107446984
https://doi.org/10.1162/0033553041382157
https://doi.org/https://doi.org/10.1016/j.jet.2005.04.004
https://doi.org/https://doi.org/10.1016/j.jet.2005.04.004
https://doi.org/https://doi.org/10.4230/LIPIcs.FSTTCS.2020.24
https://doi.org/https://doi.org/10.4230/LIPIcs.FSTTCS.2020.24
https://www.kidney.org/transplantation/livingdonors/incompatiblebloodtype
https://www.kidney.org/transplantation/livingdonors/incompatiblebloodtype
https://doi.org/10.1145/2805789.2805800
https://doi.org/10.1145/2805789.2805800
https://doi.org/10.1086/261272

Bibliography

19.

20.

21.

22.

23.

24.

25.

26.

GALE, David; SOTOMAYOR, Marilda. Ms. Machiavelli and the Stable
Matching Problem. The American Mathematical Monthly. 1985, vol. 92,
no. 4, pp. 261-268. Available from DOI: [10 . 1080 / 00029890 . 1985 .
11971592.

ROTH, Alvin E. On the Allocation of Residents to Rural Hospitals: A
General Property of Two-Sided Matching Markets. Econometrica [on-
line]. 1986, vol. 54, no. 2, pp. 425-427 [visited on 2023-04-26]. 1SSN
00129682, 1SSN 14680262. Available from: http://www. jstor . org/
stable/1913160.

IRVING, Robert W. Stable marriage and indifference. Discrete Applied
Mathematics. 1994, vol. 48, no. 3, pp. 261-272. Available from DOTI:
https://doi.org/10.1016/0166-218X(92)00179-P.

KAVITHA, Telikepalli; MEHLHORN, Kurt; MICHAIL, Dimitrios; PALUCH,

Katarzyna E. Strongly Stable Matchings in Time O(Nm) and Extension
to the Hospitals-Residents Problem. Association for Computing Machin-
ery Transactions on Algorithms. 2007, vol. 3, no. 2, 15—es. 1SSN 1549-6325.
Available from DOI: [10.1145/1240233.1240238.

IWAMA, Kazuo; MANLOVE, David; MIYAZAKI, Shuichi; MORITA,
Yasufumi. Stable Marriage with Incomplete Lists and Ties. In: WIEDER-
MANN, Jir{; EMDE BOAS, Peter van; NIELSEN, Mogens (eds.). Pro-
ceedings of the 26th International Colloquium on Automata, Languages
and Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp- 443-452. ICALP ’99. 1sBN 978-3-540-48523-0. Available from DOTI:
https://doi.org/10.1007/978-0-387-30162-4_395.

GENC, Begum; SIALA, Mohamed; O’SULLIVAN, Barry; SIMONIN,
Gilles. Robust Stable Marriage. Proceedings of the 31st AAAI Confer-
ence on Artificial Intelligence. 2017, vol. 31, no. 1. Available from DOTI:
10.1609/aaai.v31i1.11107.

GENC, Begum; SIALA, Mohamed; O’SULLIVAN, Barry; SIMONIN,
Gilles. Finding Robust Solutions to Stable Marriage. In: Proceedings
of the Twenty-Sizth International Joint Conference on Artificial Intel-
ligence. International Joint Conferences on Artificial Intelligence Organi-
zation, 2017. IJCAI ’17. Available from DOI: [10.24963/ijcai.2017/88.

GENC, Begum; SIALA, Mohamed; SIMONIN, Gilles; O’'SULLIVAN,
Barry. On the Complexity of Robust Stable Marriage. In: GAO, Xi-
aofeng; DU, Hongwei; HAN, Meng (eds.). Proceedings of the 11th Inter-
national Conference on Combinatorial Optimization and Applications.
Cham: Springer International Publishing, 2017, pp. 441-448. COCOA
"17. 1SBN 978-3-319-71147-8. Available from DOI: https://doi.org/10.
48550/arXiv.1709.06172.

67

https://doi.org/10.1080/00029890.1985.11971592
https://doi.org/10.1080/00029890.1985.11971592
http://www.jstor.org/stable/1913160
http://www.jstor.org/stable/1913160
https://doi.org/https://doi.org/10.1016/0166-218X(92)00179-P
https://doi.org/10.1145/1240233.1240238
https://doi.org/https://doi.org/10.1007/978-0-387-30162-4_395
https://doi.org/10.1609/aaai.v31i1.11107
https://doi.org/10.24963/ijcai.2017/88
https://doi.org/https://doi.org/10.48550/arXiv.1709.06172
https://doi.org/https://doi.org/10.48550/arXiv.1709.06172

BIBLIOGRAPHY

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

68

GENC, Begum; SIALA, Mohamed; SIMONIN, Gilles; O’'SULLIVAN,
Barry. Complexity Study for the Robust Stable Marriage Problem. The-
oretical Computer Science. 2019, vol. 775, pp. 76-92. 1SSN 0304-3975.
Available from DOI: https://doi.org/10.1016/j.tcs.2018.12.017.

KNUTH, Donald Ervin. Marriage stables et leurs relations avec d’autres
problémes combinatoires. Les Presses de 'université de Montréal, 1976.

IRVING, Robert W. An efficient algorithm for the “stable roommates”
problem. Journal of Algorithms. 1985, vol. 6, no. 4, pp. 577-595. ISSN
0196-6774. Available from DOI: https://doi.org/10.1016/0196-
6774(85)90033-1.

BIR(), Péter; IRVING, Robert W.; MANLOVE, David F. Popular Match-
ings in the Marriage and Roommates Problems. In: CALAMONERI,
Tiziana; DIAZ, Josep (eds.). Algorithms and Complexity. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010, pp. 97-108. 1SBN 978-3-642-
13073-1. Available from DOI: https://doi.org/10.1007/978-3-642-
13073-1_10.

HUANG, Chien-Chung; KAVITHA, Telikepalli. Popular matchings in
the stable marriage problem. In: 88th International Colloquium on Au-
tomata, Languages and Programming, I[CALP ’11. 2013, vol. 222, pp. 180—
194. 18SN 0890-5401. Available from DOI: https://doi.org/10.1016/
j.1c.2012.10.012|

KAVITHA, Telikepalli. A Size-Popularity Tradeoff in the Stable Mar-
riage Problem. STAM Journal on Computing. 2014, vol. 43, no. 1, pp. 52—
71. Available from DOI: [10.1137/120902562.

IRVING, Robert W.; LEATHER, Paul. The Complexity of Counting
Stable Marriages. SIAM Journal on Computing. 1986, vol. 15, no. 3,
pp. 655-667. Available from DOI: [10.1137/0215048.

GUSFIELD, Dan; IRVING, Robert W. The Stable marriage problem -
structure and algorithms. Cambridge, MA, USA: MIT Press, 1989. Foun-
dations of computing series. ISBN 978-0-262-07118-5.

THURBER, Edward G. Concerning the maximum number of stable
matchings in the stable marriage problem. Discrete Mathematics. 2002,
vol. 248, no. 1, pp. 195-219. 1sSN 0012-365X. Available from DOTI: https:
//doi.org/10.1016/50012-365X(01)00194-7.

STATHOPOULOS, Georgios K. Variants of stable marriage algorithms,
complexity and structural properties. 2011. Available also from: http:
//mpla.math.uoa.gr/media/theses/msc/Stathopoulos_G.pdf. PhD
thesis. University of Athens, Department of Mathematics—MPLA.

https://doi.org/https://doi.org/10.1016/j.tcs.2018.12.017
https://doi.org/https://doi.org/10.1016/0196-6774(85)90033-1
https://doi.org/https://doi.org/10.1016/0196-6774(85)90033-1
https://doi.org/https://doi.org/10.1007/978-3-642-13073-1_10
https://doi.org/https://doi.org/10.1007/978-3-642-13073-1_10
https://doi.org/https://doi.org/10.1016/j.ic.2012.10.012
https://doi.org/https://doi.org/10.1016/j.ic.2012.10.012
https://doi.org/10.1137/120902562
https://doi.org/10.1137/0215048
https://doi.org/https://doi.org/10.1016/S0012-365X(01)00194-7
https://doi.org/https://doi.org/10.1016/S0012-365X(01)00194-7
http://mpla.math.uoa.gr/media/theses/msc/Stathopoulos_G.pdf
http://mpla.math.uoa.gr/media/theses/msc/Stathopoulos_G.pdf

Bibliography

37.

38.

39.

40.

41.

KARLIN, Anna R.; GHARAN, Shayan Oveis; WEBER, Robbie. A Sim-
ply Exponential Upper Bound on the Maximum Number of Stable Match-
ings. In: Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing. Los Angeles, CA, USA: Association for Computing
Machinery, 2018, pp. 920-925. STOC ’18. 1SBN 9781450355599. Available
from DOI: [10.1145/3188745.3188848.

PALMER, Cory; PALVOLGYI, Domotor. At most 3.55™ stable match-
ings. In: 2021 IEEFE 62nd Annual Symposium on Foundations of Com-
puter Science. 2022, pp. 217-227. FOCS ’21. Available from DOI: [10 .
1109/F0CS52979.2021.00029.

MCVITIE, D. G.; WILSON, L. B. The Stable Marriage Problem. Com-
munications of the ACM. 1971, vol. 14, no. 7, pp. 486—490. 1ssN 0001-
0782. Available from DOI: [10.1145/362619.362631.

BREDERECK, Robert; CHEN, Jiechua; KNOP, Dusan; LUO, Junjie;
NIEDERMEIER, Rolf. Adapting Stable Matchings to Evolving Prefer-
ences. In: 2020, vol. 34, pp. 1830-1837. AAAI ’20. Available from DOI:
10.1609/aaai.v34i02.5550.

GAREY, Michael R.; JOHNSON, David S. Computers and Intractability;
A Guide to the Theory of NP-Completeness. USA: W. H. Freeman and
Co., 1990. 1sSBN 0716710455.

69

https://doi.org/10.1145/3188745.3188848
https://doi.org/10.1109/FOCS52979.2021.00029
https://doi.org/10.1109/FOCS52979.2021.00029
https://doi.org/10.1145/362619.362631
https://doi.org/10.1609/aaai.v34i02.5550

	Introduction
	Thesis Structure
	Goals

	Stable marriage
	Stable Marriage Problem Research Overview
	Basic definitions and theorem
	Gale-Shapley algorithm
	Random Paths to Stability
	Count of Stable Matchings

	Finding all Stable matchings
	Ordering stable matchings
	Break-marriage
	Finding all stable pairs in time O(n2)
	Rotations
	Pausing Breakmarriage Algorithm
	Finding all rotations in O(n2)
	Enumerating all stable matchings

	Algorithms using enumeration of stable matchings
	The minimum regret stable marriage
	``Optimal" Stable Marriage
	Incremental Stable Marriage

	Our contribution
	Temporal Stable Marriage
	Temporal Stable Marriage is NP-complete
	Algorithm Using Dynamic Programming

	Discussion
	Algorithm Repeating Incremental Stable Marriage
	NP-hardness of Temporal Stable Marriage with Constant Number of Layers

	Conclusion
	Bibliography

