
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Parallel construction of convex hull

Bc. Matěj Šprysl

doc. Ing. Ivan Šimeček, Ph.D.

Informatics

Computer Systems and Networks

Department of Computer Systems

until the end of summer semester 2023/2024

Instructions

1. Study Chan’s, Quickhull, and Concurrent Hull algorithms. [1-5]

2. Implement the Quickhull and Concurrent Hull algorithms:

 a. For sequential computation

 b. For parallel computation on the CPU using the OpenMP library

 c. For parallel computation on the GPU using the CUDA library

3. Design a new version of the Quickhull algorithm that utilizes so-called "crawlers."

4. Design and implement at least two generators of input points for convex hull

algorithms, each generating points in a different layout.

5. Measure and compare the performance and speedup of your implementations on the

server STAR using:

 a) Different layouts and sizes of input point sets

 b) Different numbers of threads for the CPU

 c) Different execution configurations for the GPU

6. Compare the computational performance of your implementation to already existing

implementations. [6-8]

7. Discuss possible improvements to your implementation.

Literature:

[1] https://www.researchgate.net/publication/

271146554_A_Novel_Implementation_of_QuickHull_Algorithm_on_the_GPU

[2] https://timiskhakov.github.io/posts/computing-the-convex-hull-on-gpu

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 20 January 2023 in Prague.

Master’s thesis

PARALLEL
CONSTRUCTION OF
CONVEX HULL

Bc. Matěj Šprysl

Faculty of Information Technology
Department of Computer Systems
Supervisor: doc. Ing. Ivan Šimeček, Ph.D.
May 4, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Bc. Matěj Šprysl. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Šprysl Matěj. Parallel construction of convex hull . Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments viii

Declaration ix

Abstract x

List of Abbreviations xi

1 Convex Hull Problem 1
1.1 Convex Set . 1
1.2 Convex Hull . 2

2 Convex Hull Algorithms 3
2.1 Jarvis March . 3

2.1.1 Algorithm . 3
2.1.2 Complexity . 3

2.2 Graham Scan . 3
2.2.1 Algorithm . 4
2.2.2 Complexity . 4

2.3 Chan’s Algorithm . 5
2.3.1 Algorithm . 5
2.3.2 Complexity . 5

2.4 Crawlers . 5
2.4.1 Complexity . 6

2.5 Concurrent Hull . 6
2.5.1 Algorithm . 6
2.5.2 Complexity . 7

2.6 Quickhull . 7
2.6.1 Algorithm . 7
2.6.2 Complexity . 8

3 Technologies 9
3.1 OpenMP . 9

3.1.1 Task Parallelism . 9
3.1.2 Data Parallelism . 10

3.2 CUDA . 11
3.3 Thrust . 12

4 Design 13
4.1 Data Structure . 13
4.2 CPU Algorithms Design . 13

4.2.1 Quickhull . 13
4.2.2 Concurrent Hull . 16
4.2.3 Quickhull with Crawlers . 18

iii

iv Contents

4.3 GPU Algorithms Design . 20
4.3.1 Quickhull . 20
4.3.2 Concurrent Hull . 26
4.3.3 Quickhull with Crawlers . 27

5 Implementation 29
5.1 CPU Implementation . 29

5.1.1 Model . 29
5.1.2 Quickhull . 30
5.1.3 Concurrent Hull . 32

5.2 CPU Sequential Versions . 35
5.3 GPU Implementation . 36

5.3.1 Model . 36
5.3.2 Quickhull . 36
5.3.3 Concurrent Hull . 41

6 Measurement and Comparison 47
6.1 Generators . 48
6.2 Parallelization . 48
6.3 GPU Execution Configuration . 49
6.4 Algorithm Comparison . 49

6.4.1 CPU Algorithms Comparison . 50
6.4.2 GPU Algorithms Comparison . 54
6.4.3 Conclusion . 57

6.5 Implementation Comparison . 58
6.5.1 Cluster Layout . 58
6.5.2 Circle Layout . 58
6.5.3 Fuzzy Circle Layout . 59

6.6 Discussion . 60
6.6.1 Parallelization . 60
6.6.2 GPU Configurations . 60
6.6.3 CPU Implementations . 60
6.6.4 GPU Implementations . 60

7 Conclusion 61

Contents of Enclosed Media 65

List of Figures

1.1 Convex and concave set . 1
1.2 Convex hull algorithm . 2

2.1 Jarvis march algorithm [5] . 4
2.2 Graham scan algorithm [7] . 4
2.3 Chan’s algorithm [9] . 5
2.4 Crawler movement through the grid [10] . 6
2.5 A demonstration of the 2D ConcurrentHull [10] 7

3.1 OMP parallel for scheduling strategies [14] . 11

4.1 Quickhull on the GPU data representation [17] 20
4.2 Procedure of the 2D CUDA QuickHull on the GPU [17] 22
4.3 GPU Quickhull Data Representation and Procedure 24
4.3 GPU Quickhull Data Representation and Procedure (cont.) 25

6.1 Generator layouts . 49
6.2 CPU algorithms comparison: Cluster layout, 102 points 50
6.3 CPU algorithms comparison: Cluster layout, 104 points 51
6.4 CPU algorithms comparison: Cluster layout, 106 points 51
6.5 CPU algorithms comparison: Circle layout, 102 points 52
6.6 CPU algorithms comparison: Circle layout, 104 points 52
6.7 CPU algorithms comparison: Fuzzy circle layout, 102 points 53
6.8 CPU algorithms comparison: Fuzzy circle layout, 104 points 53
6.9 CPU algorithms comparison: Fuzzy circle layout, 106 points 54
6.10 GPU algorithms comparison: Cluster layout, 102 points 54
6.11 GPU algorithms comparison: Cluster layout, 104 points 55
6.12 GPU algorithms comparison: Circle layout, 102 points 56
6.13 GPU algorithms comparison: Circle layout, 104 points 56
6.14 GPU algorithms comparison: Fuzzy circle layout, 102 points 57
6.15 GPU algorithms comparison: Fuzzy circle layout, 104 points 57

List of Tables

4.1 First split data structure . 15
4.2 Recursive split data structure . 15

6.1 STAR server specifications - node gpu-02 . 47

v

6.2 Parallelization measurement: Cluster layout, grid dimension: 20 49
6.3 GPU execution configurations measurement: Cluster layout, 104 points, grid di-

mension: 20 . 49
6.4 Implementations comparison: Cluster layout, 106 points 58
6.5 Implementations comparison: Circle layout, 106 points 58
6.6 Implementations comparison: Fuzzy circle layout, 106 points 59

List of Algorithms

1 Quickhull CPU Design - Sequential version . 14
2 Quickhull CPU Design - Parallel out-of-place version 15
3 Quickhull CPU Design - Parallel in-place version 16
4 Crawler algorithm CPU Design . 17
5 Graham scan CPU Design . 17
6 Jarvis march CPU Design . 18
7 Concurrent Hull CPU Design . 18
8 Crawler algorithm for Quickhull CPU Design . 19
9 Quickhull with Crawlers CPU Design . 19
10 Quickhull on the GPU Design . 23
11 Crawler algorithm GPU Design . 26
12 Graham scan GPU Design . 27
13 Concurrent Hull GPU Design . 27
14 Quickhull with Crawlers GPU Design . 27

List of code listings

3.1 OpenMP task paralelism . 9
3.2 OpenMP taskwait declaration . 9
3.3 OpenMP taskgroup declaration [13] . 10
3.4 OpenMP data paralelism . 10
3.5 Thrust example [16] . 12
4.1 Point structure pseudocode . 13
4.2 Example use of thrust::reduce by key function [18] 20
4.3 Rearrange for the use in Thrust function calls . 21
5.1 CSolver CPU class implementation . 29
5.2 Point struct implementation . 30
5.3 Segment struct implementation . 30
5.4 Function calls used for deparallelization . 35
5.5 CSolver GPU class implementation . 36
5.6 qhData struct implementation . 37
5.7 concData struct implementation . 42
6.1 CPU implementations compilation flags . 47

vi

List of code listings vii

6.2 GPU implementations compilation flags . 47
6.3 Qhull library input [19] . 48

I would like to express my gratitude to my parents, close ones,
friends, and colleagues for their never ending support during the
hardships of my studies and all my other endeavours.

viii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46(6) of the
Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including any
and all computer programs incorporated therein or attached thereto and all corresponding doc-
umentation (hereinafter collectively referred to as the “Work”), to any and all persons that wish
to utilize the Work. Such persons are entitled to use the Work in any way (including for-profit
purposes) that does not detract from its value. This authorization is not limited in terms of
time, location and quantity.

In Prague on May 4, 2023 .

ix

Abstract

This thesis is dedicated to the field of the convex hull problem and algorithms for computing
the convex hull of points. The main task of this thesis was to design a new version of the Quickhull
algorithm that utilizes ”crawlers” during the preprocessing phase and compare its performance
to the performance of the Quickhull algorithm, the Concurrent Hull algorithm, and other im-
plementations of solvers of the convex hull problem. To accomplish this goal, we studied the
convex hull problem and the state-of-the-art algorithms designed for solving the convex hull prob-
lem. Subsequently, we designed and implemented the Quickhull algorithm, the Concurrent Hull
algorithm, and the new Quickhull with Crawlers algorithm for computation on the CPU using
the OpenMP API, and for computation on the GPU using the CUDA API and the Thrust library.
To evaluate the quality of our implementations, we measured their performance on datasets out-
putted by generators of input points we designed and implemented. We compared the perfor-
mance of our implementations with each other, as well as with the already existing Qhull library.
In conclusion to this thesis, we proposed ideas for further development of our implementations
as well as ideas for future research in the field of the convex hull problem.

Keywords convex hull problem, Quickhull, Concurrent Hull, OpenMP, CUDA, Thrust, par-
allel algorithm design, parallel algorithm implementation, Qhull

Abstrakt

Tato závěrečná práce je věnována problému konvexńı obálky množiny bod̊u a algoritmům pro
jej́ı výpočet. Hlavńım úkolem této práce bylo navrhnout novou verzi algoritmu Quickhull, která
využ́ıvá ”crawlery” ve fázi předzpracováńı, a porovnat jej́ı výkonnost k výkonnosti algoritmu
Quickhull, algoritmu Concurrent Hull, a jiným implementaćım řešič̊u problému konvexńı obálky
množiny bod̊u. Pro splněńı tohoto zadáńı jsme analyzovali problém konvexńı obálky množiny
bod̊u a algoritmy navržené pro jej́ı výpočet. Následně jsme navrhli a implementovali algorit-
mus Quickhull, algoritmus Concurrent Hull, a nový algoritmus Quickhull with Crawlers pro
výpočet na CPU pomoćı OpenMP API, a pro výpočet na GPU pomoćı CUDA API a knihovny
Thrust. Pro zhodnoceńı kvality našich implementaćı jsme změřili jejich výkonnost na vstupech
vygenerovaných generátory vstupńıch bod̊u, které jsme navrhli a implementovali. Následně jsme
porovnali výkonnost našich implementaćı mezi sebou, a s již existuj́ıćı knihovnou Qhull. V
závěru této práce jsme navrhli možnosti pro budoućı vývoj našich implementaćı, a nápady pro
daľśı výzkum v oboru problému konvexńı obálky množiny bod̊u.

Kĺıčová slova problém konvexńı obálky množiny bod̊u, Quickhull, Concurrent Hull, OpenMP,
CUDA, Thrust, návrh paralelńıho algoritmu, implementace paralelńıho algoritmu, Qhull

x

List of Abbreviations

API Application Programming Interface
CUDA Compute Unified Device Architecture

CPU Central Processing Unit
DNF Did Not Finish
GPU Graphical Processing Unit

ms milliseconds
QH Quickhull

SIMT Single Instruction Multiple Threads
SOA Structure of Arrays
STD C++ Standard Library
STL Standard Template Library

xi

xii List of Abbreviations

Chapter 1

Convex Hull Problem

In this chapter, we will define the convex set and the convex hull problem. Afterwards, we will
be able to describe algorithms that solve the convex hull problem and their practical uses.

1.1 Convex Set

A set of points in a Euclidean space is defined to be convex if it contains the line segments
connecting each pair of its points. The convex hull of a given set X may be defined as [1]:

The (unique) minimal convex set containing X

The intersection of all convex sets containing X

The set of all convex combinations of points in X

The union of all simplices with vertices in X

A concave set, on the other hand, has at least one connecting line residing outside the bounds
of the shape. Observe the examples of convex and concave sets in Figure 1.1.

To explain the definition in a simpler way, the rubber band analogy is usually used. Imagine
stretching a rubber band around all the input points of the set. When released, the rubber band
shrinks around the points. Subsequently, the rubber band will only touch the boundary points
of the set. The set of these boundary points is the convex set of the input points set.

x

y

(a) Convex set [2] (b) Concave set[3]

Figure 1.1 Convex and concave set

1

2 Convex Hull Problem

x

y

A E

B

C

D

G

F

(a) Input set of points

x

y

C

DA E

B

G

F

(b) Output of a convex hull algorithm

Figure 1.2 Convex hull algorithm

1.2 Convex Hull
With the previous definition of the convex set, we can define the convex hull. The condition
of inside-residing connecting lines remains. However, the input is changed from a continuous
Euclidean plane to a discrete Euclidean plane. This change enables modern computers to solve
such problems. Algorithms designed to solve the convex hull problem reduce the size of the set
of points by finding their convex set. The input of these algorithms is usually a set of points,
and their output is their convex set. This fact is well visualized in Figure 1.2.

We will now propose an algorithm designed to verify the correctness of the output. Implied
by the definition, two conditions must be satisfied:

1. All the input points reside within the output set.

2. Of all the output points, none reside within any triangle formed by the input points.

The first condition can be verified by iterating through all points of the input and checking
if they reside on the same side of all boundary lines connecting the points of the hull (directed
in the same direction). In the case of the output in Figure 1.2, these lines would be B → G,
G→ E, E → F and so on. The second condition can be verified by checking if all points of the
output reside inside no triangles formed by the output points.

The convex hull of points can be useful in many fields, including mathematics and statistics.
A good example of the use of algorithms to solve the convex hull problem is processing large
amounts of data from multiple sensors. Upon applying the convex hull solving algorithm, the
size of the set of points outputted by the algorithm can be considerably smaller, allowing for
easier future processing of the data.

Chapter 2

Convex Hull Algorithms

In this chapter, we will list and describe algorithms designed for solving the convex hull problem,
and their complexities. From now on, we will use the standard complexity notation of input size
n, and output hull size h.

2.1 Jarvis March

The Jarvis march, also called ”Gift wrapping algorithm”, is a very basic, well-known convex hull
algorithm. It was published by R. A. Jarvis in 1973 [4]. The execution of the algorithm can be
observed in Figure 2.1.

2.1.1 Algorithm
The Jarvis march algorithm selects a starting point p0, which has to be part of the resulting hull.
Usually, the point with the lowest X coordinate is selected. Subsequently, it selects a random
current point p1, and then proceeds to iterate through all other input points. It finds the point
that maximizes the angle from point p0, to point p1, to the next point. The algorithm stops
when the next point is the same as the point p0.

2.1.2 Complexity
The beauty of this algorithm lies in its complexity. While the algorithm is very simple, it
computes the convex hull in O(n · h) time, where n is the count of input points, and h is the
size of the output convex hull. This means that the Jarvis march algorithm is output-sensitive,
which can be very useful when paired with knowledge about the input points.

2.2 Graham Scan

The Graham scan is very similar to the Jarvis march algorithm but improves its performance
in cases where the resulting hull size is greater. This is caused by the algorithm being output-
insensitive. It was published by Ronald Lewis Graham in 1972 [6]. See Figure 2.2 for an
illustration of the steps the algorithm takes.

3

4 Convex Hull Algorithms

Figure 2.1 Jarvis march algorithm [5]

Input:
Output:

Felkel: Computational geometry

(12)

Graham’s scan – incremental algorithm

GrahamsScan(points p)
points p
CCW points on the convex hull

1. sort points according to increasing x-coord -> {p1, p2, …, pn}
2. push(p1, H), push(p2, H)
3. for i = 3 to n do
4. while(size(H) ¥ 2 and orient(sos, tos, pi) ¥ 0) // skip left turns
5. pop H // (back-tracking)
6. push(pi, H) // store right turn
7. store H to the output (in reverse order) // upper hull
8. Symmetrically the lower hull

tos p
i

sos p
i

p
i

tossos tossos

pop

upper hull

pop H pop H

tos
sos

Stack H

push pop

Figure 2.2 Graham scan algorithm [7]

2.2.1 Algorithm
The main improvement over the performance of the Jarvis march algorithm is achieved by sorting
the points by their polar angle to the starting point p0. Subsequently, a stack is initialized with
points p0 and p1, where p1 is the next point placed in the sorted list of input points. Then for each
point in the sorted input, it checks if the size of the stack is greater than 1, and if the turn from
the point next to the top of the stack, to the point on the top of the stack, to the current point
is counterclockwise. If this condition holds, it pops the last point from the stack. The algorithm
keeps popping points from the stack while the condition holds true. After the popping phase,
the current point is added to the stack.

2.2.2 Complexity
The largest part of the time complexity of this algorithm is the initial sorting, which can be
done in O(n · log n) time when an efficient sorting algorithm is used. However, the main part
of the algorithm takes only O(n) time, which makes it useful when the size of the input set of
points is large and the size of the output set of points is also large. The final complexity of this
algorithm is O(n · log n) +O(n) ∈ O(n · log n), which can be significantly faster than the Jarvis
march algorithm.

Chan’s Algorithm 5

q1

q2q3

q4

pk
pk−1

Jarvis’s algorithm on mini-hulls kth stage of Jarvis’s algorithm

(a) (c)(a) (b)

binary

search

p

K

tangent

Fig. 21: Using Jarvis’s algorithm to merge the mini-hulls.

Lemma: Consider a convex polygon K in the plane and a point p that is external to K, such that
the vertices of K are stored in cyclic order in an array. Then the two tangents from p to K
(more formally, the two supporting lines for K that pass through p) can each be computed in
time O(logm), where m is the number of vertices of K.

We will leave the proof of this lemma as an exercise, but the key idea is that, since the vertices of the
hull form a cyclically sorted sequence, it is possible to adapt binary search to nd the desired points
of tangency with p (Fig. 21(b)). Using the above lemma, it follows that we can compute the tangent
from an arbitrary point to a single mini-hull in time O(log h∗) = O(log h).

The nal “restricted algorithm” (since we assume we have the estimate h∗) is presented in the code
block below. (The kth stage is illustrated in Fig. 21(c).) Since we do not generally know what the value
of h is, it is possible that our restricted algorithm may be run with a value of h∗ that is not within
the prescribed range, h ≤ h∗ ≤ h2. (In particular, our nal algorithm will maintain the guarantee that
h∗ ≤ h2, but the lower bound of h may not hold.) If h∗ < h, when we are running the Jarvis phase,
we will discover the error as soon as we encounter more than h∗ vertices on the hull. If this happens,
we immediately terminate the algorithm and announce the algorithm has “failed”. If we succeed in
completing the hull with h∗ points or fewer, we return the nal hull.

The upshots of this are: (1) the Jarvis phase never performs for more than h∗ stages, and (2) if h ≤ h∗,
the algorithm succeeds in nding the hull. To analyze its running time, recall that each partition has
roughly h∗ points, and so there are roughly n/h∗ mini-hulls. Each tangent computation takes O(log h∗)
time, and so each stage takes a total of O((n/h∗) log h∗) time. By (1) the number of Jarvis stages is
at most h∗, so the total running time of the Jarvis phase is O(h∗(n/h∗) log h∗) = O(n log h∗).

Combining this with the fact that the Graham phase takes O(n log h∗) time, the total time of the
restricted algorithm is O(n log h∗). If we maintain the condition that h∗ ≤ h2 then, irrespective of
success or failure, the running time will be O(n log h).

Guessing the Hull’s Size: The only question remaining is how do we know what value to give to h∗?
Remember that, if h∗ ≥ h, the algorithm will succeed in computing the hull, and if h∗ ≤ h2, the
running time of the restricted algorithm is O(n log h). Clearly we do not want to try a value of h∗ that
is way too high, or we are doomed to having an excessively high running time. So, we should start
our guess small, and work up to larger values until we achieve success. Each time we try a test value
h∗ < h, the restricted hull procedure may tell us we have failed, and so we need to increase the value
if h∗.

Lecture Notes 21 CMSC 754

Figure 2.3 Chan’s algorithm [9]

2.3 Chan’s Algorithm
Chan’s algorithm uses the Graham scan and the Jarvis march and improves their time complexity
further. It was invented by Timothy M. Chan and is known to be optimal [8].

2.3.1 Algorithm
First, the algorithm divides the input points into K = ⌈n/m⌉ subsets, where m should be equal
to h, which is the size of the output hull. This split is usually done either arbitrarily or by the
point’s X coordinates. Then the hull of each of the subsets is computed using the Graham scan
algorithm. This leaves us with K partial hulls.

Lastly, the algorithm uses the Jarvis march algorithm to compute the final hull from the hulls
of the K subsets. The Jarvis march algorithm is modified to find the point with the largest polar
angle from the current point in each of the subsets using binary search. Afterwards, it chooses
the one with the greatest angle. An illustration of the algorithm can be seen in Figure 2.3.

2.3.2 Complexity
Chan’s algorithm hast the complexity of O(n · log h), where h is the size of the output set. The
proof is omitted because it is beyond the scope of this thesis.

2.4 Crawlers
A crawler is a piece of code which crawls from a starting point towards a defined direction with
a width of one partition [10]. In the case of the convex hull problem, the plane upon which the
input points are placed is structured as a grid of K ·K segments. Each point of the input is then
assigned to the corresponding segment in the grid.

Afterwards, each boundary segment is used as a starting point for crawlers. Each of these
crawlers is initialized with its own direction of travel. In the case of a bottom boundary segment,
these directions would be left-diagonal, up, and right-diagonal. This crawler movement can be
examined in Figure 2.4.

6 Convex Hull Algorithms
596 S. Masnadi and J. J. LaViola Jr.

Start

Fig. 2. The gure shows the directions for three 2D crawlers of a starting point. Each

arrow represents one crawler’s direction.

left untouched as a valid partition (note that at least three points are needed
to compute a convex hull). Each partition’s points is passed to a thread and
each thread nds the CH(ρv) using the Quick Hull algorithm. Points inside the
convex hulls of the partitions can be removed as they are already surrounded by
a convex hull inside the nal convex hull. Figure 1c shows the calculated convex
hull for the valid partitions. Yellow points will be removed from the set. The
nal convex hull will be computed using the remaining points.

The justication for using partitions and crawlers for pruning instead of using
the Quick Hull algorithm in the rst step is that the Quick Hull algorithm nds
the points that lie inside the triangle [2] by comparing all of the points with the
three lines that are created by the extreme points and although the operation is
of O(n), it is still a time-consuming task. On the other hand, to prune the points
using partitions and crawlers, we only do one comparison in each crawler’s step
(partition.points.size()>0) which is faster and in the worst case is of O(12k2)in
which k is a constant.

Lemma 1. The nal convex hull points are inside the valid partitions and none

of the points from the nal convex hull can be inside the pruned partitions.

Proof. We prove this lemma by contradiction. Consider a set of 2D points P
divided to k × k partitions. We denote

⋃
v
CH(ρv) as CH . If there exists a

pruned point pp ∈ CH(P) and Pp /∈ CH . This means pp is outside CH . If it
is outside the CH , crawlers have missed the partition (ρp). If there is a valid
partition on the right of ρp, because we assumed pp is outside the CH there
has been a crawler crawling from left to right that picked the partition on the
right of ρp as a valid partition, but since crawlers stop when they nd the rst
partition with at least one point inside, it should have stopped when it reached
ρp and it is a contradiction to the crawler denition. The same case applies to
the other directions around ρp.

Figure 2.4 Crawler movement through the grid [10]

The crawlers continue their crawl until they land upon a non-empty segment. In this case,
they terminate their crawl and declare the first non-empty segment in their direction as valid.
Once all crawlers finish their crawl, we can successfully remove all points not assigned to a valid
segment on the grid. This can significantly reduce the input points for future computations,
especially if the layout of the input points is broadly spaced out. However, crawlers are not very
effective with dense layouts based on specific shapes (e.g., circles, squares, and ellipses).

2.4.1 Complexity
The algorithm first needs to initialize the grid, which can be done with O(K · K) complexity.
Next, the points are assigned to their corresponding segments. Each point has to be visited
exactly once, which gives us the complexity O(n). Lastly, three crawlers are launched from each
boundary segment, with the exception of corner segments, which only launch one crawler. This
step can be completed in O(4 · 3 · (K − 2) + 4) time. The final complexity follows.

O(K ·K) +O(n) +O(4 · 3 · (K − 2) + 4)
∈ O(n + K ·K + 12K − 24 + 4)

∈ O(n + K2 + 12K − 20)

2.5 Concurrent Hull
Concurrent hull essentially mimics Chan’s algorithm in splitting the input dataset into smaller
subsets, finding their convex hulls, and subsequently computing the final hull from the partial
hulls. An additional step is taken in the preprocesing phase, where Crawlers are utilized in prun-
ing the input points. It was published in 2020 by Sina Masnadi and Joseph J. LaViola Jr. [10].

The official publication itself does not explicitly state which algorithms it uses to compute
the partial convex hulls and the final convex hull. From now on, we will assume that it uses the
Graham scan algorithm and the Jarvis march algorithm for the purposes of this thesis.

2.5.1 Algorithm
Initially, the Concurrent hull uses Crawlers to find valid segments and rules out many interior
points. Secondly, the grid used by Crawlers is reused, and convex hulls of individual squares
are found by executing the Graham scan algorithm on each of them. Lastly, the final hull is
computed by the Jarvis march algorithm. These steps can be seen visualized in Figure 2.5.

Quickhull 7

594 S. Masnadi and J. J. LaViola Jr.

the angle they make with P and x-axis. The next step is guring out if the next
point is a right turn or a left turn regarding its preceding point and P . If it is
a right turn (clockwise), then it means that p2 is not a part of the convex hull
and it will be swapped with p3 and the algorithm will proceed to the next set of
points. This process will end when it reaches the starting point P .

2 Related Work

The research on implementing parallel algorithms is scarce. In 1988, Miller et al.
introduced a parallel solution for solving the convex hull problem which given a
sorted set of points and a machine with θ(n) processors can solve it in θ(logn)
[8]. However the high amount of required processors reduces the practicality
of this algorithm. Blelloch et al. introduced a new denition and analysis of
the conguration dependence graph for the randomized incremental convex hull
algorithm and showed it is inherently parallel withO(logn) dependence depth [3].

The other approach is using GPU processing power for solving the problem.
Jurkiewicz et al. introduced a CUDA algorithm which applies quick sort on the
points and solve the problem in O(k log g). g = n

p
input size of the problem

per SIMD-processor and k = n
U

input size of the problem per scalar processor
[6]. GHull is a 3D CUDA-based convex hull algorithm that was proposed by
Gao et al. which is up to 10x faster than the fastest CPU convex hull software,
QuickHull [5]. CudaHull is another 3D convex hull algorithm which is based on
the QuickHull approach [10].

Hybrid GPU-CPU is another approach to the convex hull problem Tang et
al. presented a hybrid CPU-GPU algorithm to compute the convex hull of points
in three or higher dimensional spaces [11]. The GPU is used to remove the points
that do not lie on the boundary, then the CPU computes the convex hull for the
remaining points.

Here we explain our approach for 2D and 3D convex hull and for each of
them, we rst describe the approach for CPU-based implementation and then
the CUDA implementation approach. We will then discuss the benchmarking
task and how our algorithm performed against other algorithms.

(a) Partitioning the
input points

(b) Grey cells are
valid partitions.

(c) Convex hull of
valid partitions.

(d) Convex hull of -
nalized points.

Fig. 1. A demonstration of the 2D ConcurrentHull
Figure 2.5 A demonstration of the 2D ConcurrentHull [10]

2.5.2 Complexity
The complexity of the Concurrent Hull algorithm is essentially the complexity of its partial
algorithms merged together. This means that the complexity of the Concurrent hull algorithm is

O(n + K2 + 12K − 20) + n · O(n · log n) +O(n · h)

Even though this complexity suggests low performance, it is important to keep in mind that
it is designed for parallel computation, and many of its steps can be done in parallel. This an
important property separating it from inherently sequential algorthms like the Jarvis march or
Graham scan.

2.6 Quickhull
Quickhull derives its name from the quicksort algorithm and takes after it in its divide-and-
conquer approach. It was published by C. Bradford Barber, David P. Dobkin, and Hannu
Huhdanpaa in 1996 [11].

2.6.1 Algorithm
The algorithm starts by finding the two most extreme points on the x-axis. This yields the points
max and min, with the maximum X coordinate, respectively, minimum X coordinate. These are
then added to the final hull set.

After these points are found, the input points are split into two sets - points located above
the connecting line and points located below the connecting line. Then, recursively, until all
points in all sets are added to the hull or removed:

1. The farthest point from the dividing line is found and added to the hull

2. Points laying inside the triangle formed by the bordering points and the farthest point are
removed, as they cannot be part of the final hull.

3. The remaining points in the set are split into sets on the left and right sides of the line formed
by the farthest point and its perpendicular foot point to the dividing line.

8 Convex Hull Algorithms

2.6.2 Complexity
First, the points with maximum and minimum X coordinates must be found, which can be done
in O(n). Subsequently, the first split of the input points is computed, which will visit each point
exactly once, resulting in the complexity of O(n). Lastly, the complexity of the recursive step
depends on the layout of the points. If the points are laid out in a way in which the partitioning
only cuts the farthest point, and the rest of the points are placed on one of the sides, we will
arrive at the complexity of O(n2). However, the average partitioning will behave in a logarithmic
manner (similarly to the quicksort algorithm), resulting in O(n · log n) complexity. In summary,
the complexity of the Quickhull algorithm is

O(n) +O(n) +O(n · log n) ∈ O(n · log n)

.

Chapter 3

Technologies

This chapter is dedicated to describing the technologies we will utilize during the latter imple-
mentation phase. These technologies include OpenMP, CUDA, and Thrust.

3.1 OpenMP

OpenMP is an API written in C++ that allows programmers to use its implementations for the
parallelization of CPU programs. It offers thread management and ways of parallelization on
multiple threads, which we will briefly describe in Sections 3.1.1 and 3.1.2 for the purpose of a
basic understanding of our implementation. Further reading can be done on the official OpenMP
website [12].

3.1.1 Task Parallelism

Task parallelism is used as a parallel alternative to recursive programming. In detail, this means
that tasks spawn new parallel tasks. This can be done with the call in Snippet 3.1.

1 # pragma omp task
2 function (arg1 , arg2 , ...);

Code listing 3.1 OpenMP task paralelism

If the program is required to wait for the completion of the tasks it spawned, the call in
Snippet 3.2 declares a barrier, at which the threads will wait for all spawned tasks to be finished.

1 # pragma omp taskwait

Code listing 3.2 OpenMP taskwait declaration

However, the taskwait construct does not wait for child tasks of spawned tasks to finish. If
this is a requirement in the program, the taskgroup construct must be utilized.

9

10 Technologies

1 # pragma omp parallel
2 # pragma omp single nowait
3 {
4 # pragma omp taskgroup
5 {
6 # pragma omp task
7 {
8 # pragma omp task
9 printf (" Hello .\n");

10
11 printf ("Hi.\n");
12 }
13 }
14 printf (" Goodbye .\n");
15 }

Code listing 3.3 OpenMP taskgroup declaration [13]

3.1.2 Data Parallelism
Data parallelism in OpenMP can be used as a way to distribute the execution of for cycles to
threads. To use this construct, the call in Snippet 3.4 can be used.

1 # pragma omp parallel for
2 for (...; ...; ...)
3 { ... }

Code listing 3.4 OpenMP data paralelism

The keyword parallel defines the initialization of threads. It can be omitted to increase the
effectiveness of the program if the threads are already spawned beforehand (e.g. in a previous
omp parallel call). The threads are automatically synchronized after the for block ends.

Another way to optimize data parallelization is scheduling. Scheduling defines the way the
program distributes the for cycle iterations to threads. Available scheduling strategies are
static, dynamic, guided, runtime, and auto. These scheduling strategies can be examined
in Figure 3.1.

If no scheduling is explicitly stated, iterations of the for call are evenly distributed to threads
in blocks of size ⌈N/M⌉, where N is the count of iterations and M is the number of available
threads.

CUDA 11

for loop scheduling

Figure 3.1 OMP parallel for scheduling strategies [14]

3.2 CUDA
CUDA is an API for GPU programming developed and maintained by Nvidia. It provides classes,
functions, and objects for programming computations on GPUs by Nvidia.

Although it provides support for task and data parallelization, it is generally best utilized
for data parallel programs. This is because Nvidia cards support the SIMT (Single Instruction
Multiple Threads) architecture, which means that all threads execute the same instruction at
the same time, each computing their own set of data.

An important fact to note is the difference between host memory and device memory.
In the CUDA environment, host memory is the memory used by the CPU, where data are
usually loaded. Its counterpart, device memory, is a term used for GPU memory. This implies
that the host data needs to be transferred to the device before computation can be performed
on the GPU. After the computation is finished, the computed data have to be transferred back
to the host memory, where it can be saved to a persistent medium. Further reading can be done
on the official CUDA Toolkit Documentation website [15].

12 Technologies

3.3 Thrust
Thrust is a parallel algorithm library which resembles the C++ Standard Template Library
(STL). Thrust’s high-level interface greatly enhances programmer productivity while enabling
performance portability between GPUs and multicore CPUs. [16]

This library provides a host-side abstraction, removing the need for original CUDA kernel
solutions for many problems. See the code Snippet 3.5 for example use, where the program
generates 32 milion integers, transfers them to the device, sorts them, and transfers the sorted
data back to the host in a few simple function calls.

We will later use this library during the implementation phase, as it provides data classes
and functions for reduction, sorting, and other various parallel algorithms.

1 # include <thrust / host_vector .h>
2 # include <thrust / device_vector .h>
3 # include <thrust / generate .h>
4 # include <thrust /sort.h>
5 # include <thrust /copy.h>
6 # include <algorithm >
7 # include <cstdlib >
8
9 int main(void)

10 {
11 // generate 32M random numbers serially
12 thrust :: host_vector <int > h_vec (32 << 20);
13 std :: generate (h_vec.begin (), h_vec.end (), rand);
14
15 // transfer data to the device
16 thrust :: device_vector <int > d_vec = h_vec;
17
18 // sort data on the device (846M keys per second on GeForce GTX 480)
19 thrust :: sort(d_vec.begin (), d_vec.end ());
20
21 // transfer data back to host
22 thrust :: copy(d_vec.begin (), d_vec.end (), h_vec.begin ());
23
24 return 0;
25 }

Code listing 3.5 Thrust example [16]

Chapter 4

Design

In this chapter, we will design CPU and GPU algorithms which we will later implement in
Chapter 5. As a part of the assignment, we will also design a new version of the Quickhull
algorithm, henceforth called Quickhull with Crawlers. We will use the OpenMP API for paral-
lelization of the CPU versions and the CUDA architecture with the help of the Thrust library
for parallelization of the GPU versions.

4.1 Data Structure
Firstly, we decided to design the data structure to store and work with the points based on the
operations we expect to perform on it. These operations are sorting, partitioning, and random
access to items, which clearly rule in favor of a list data structure.

When designing the data structure for individual points, our goal was to design it to occupy
as little memory as possible to allow for fast read and write memory operations. The only fields
required were the point’s X coordinate, the Y coordinate, and the flags to indicate if the point is
removed or a part of the final hull. Snippet 4.1 illustrates pseudocode of the point data structure.

1 Point:
2 value x,
3 value y,
4 flag removed ,
5 flag inHull

Code listing 4.1 Point structure pseudocode

4.2 CPU Algorithms Design
In this part of the thesis, we will design the algorithms for the respective CPU implementations.
These algorithms include Quickhull, Concurrent Hull, and Quickhull with Crawlers.

4.2.1 Quickhull
This subsection of the thesis is dedicated to the design of the CPU implementation of the Quick-
hull algorithm. Due to the nature of the Quickhull algorithm being natively recursive, we decided
to take advantage of the OpenMP task paralelism. This meant that we had to design our own
version of this algorithm.

13

14 Design

4.2.1.1 Sequential version
We proceeded to design a very naive sequential version of this algorithm, which we would later
improve upon by parallelization using the OpenMP API. Our sequential version can be observed
in Algorithm 1.

Algorithm 1 Quickhull CPU Design - Sequential version
1: function QuickhullSequential(P, H) ▷ P := Points, H := Hull
2: sort P by X coordinate (ascending)
3: x ← leftmost point from P
4: y ← rightmost point from P
5: Recursive(P, x, y, true)
6: Recursive(P, x, y, false)
7: H ← {P | inHull = true}
8: function Recursive(P, x, y, o) ▷ o (orientation) ∈ {true, false}
9: if P size = 0 then return

10: x.inHull ← true
11: y.inHull ← true
12: f ← farthest point in the orientation o
13: for point p in P do
14: if p is in triangle {x, y, f} then
15: p.removed ← true
16: f.inHull ← true
17: Recursive(P, x, f, o)
18: Recursive(P, f, y, o)

4.2.1.2 Parallel version
Secondly, we designed a parallel version of the sequential version using the OpenMP API. How-
ever, this was a difficult task that required many changes. The main problem was that all the
data in the sequential version were shared, making parallelization impossible.

The easiest solution to this problem is to make the algorithm work out-of-place, creating new
subsets of data for each iteration. After the computation, the resulting hulls could be effortlessly
copied into the final hull. To implement the parallelization, we would be able to utilize OpenMP
task parallelism, which is usually used for algorithms natively solved by recursive functions.

It is also required that a splitting function be implemented, since the segments threads will
be computing on need to be disjoint. This function would be used to split the array of points
into two subarrays by returning a value less than zero if it is located on one side of the line, equal
to zero if the point lies on the line, and more than zero if the point lies on the second side of the
line. Algorithm 2 describes the out-of-place version of this algorithm’s design.

Although this solution would be faster than the sequential variant due to parallelization, it
would be out-of-place, which would be very inefficient, as data copying would become very costly
with growing sizes of input data. This means, that data has required to be placed in a shared
array that would be split into parts and assigned to new threads without interference. To make
this change possible, a new method of storing and working with the data had to be invented.

We decided to reorder the points in the following scheme (Figure 4.1) for the first split of the
input points. The point with the minimal X coordinate is placed at the beginning of the array,
followed by the point with the maximum X coordinate. After these two points, two sets of points
are placed: the points located above the connecting line (named m) and the points located below
the line (named n).

CPU Algorithms Design 15

Algorithm 2 Quickhull CPU Design - Parallel out-of-place version
1: function QuickhullParallelOutOfPlace(P, H) ▷ P := Points, H := Hull
2: x ← leftmost point from P
3: y ← rightmost point from P
4: PA ← points above line (x,y)
5: PB ← points below line (x,y)
6: HA, HB ← [] ▷ HA and HB are partial hulls
7: Recursive(PA, x, y, HA)
8: Recursive(PB, x, y, HB)
9: H ← {HA ∪HB}

10: function Recursive(P, x, y, H)
11: if P size = 0 then return
12: insert points x and y into H
13: f ← farthest point from line (x, y)
14: for point p in P do
15: if point p is in triangle {x, y, f} then
16: remove p from P

17: insert point f into H
18: i ← point on the line (x, y) closest to point f
19: PL ← points on the left side of line (f, i)
20: PR ← points on the right side of line (f, i)
21: HL, HR ← [] ▷ HL and HR are partial hulls
22: Recursive(PL, x, f, HL)
23: Recursive(PR, f, y, HR)
24: H ← {HL ∪HR}

(Point | min X) (Point | max X) {Points | s > 0} {Points | s < 0}
x y m n

Table 4.1 First split data structure

(Point | max distance) {Points | s > 0} {Points | s < 0} {Points | removed = true}
f m n r

Table 4.2 Recursive split data structure

16 Design

Both parts m and n then follow a similar placement scheme, extended by the points which are
removed. This placement scheme can be observed in Figure 4.2.
This will allow us to parallelize the algorithm with OpenMP task parallelism, without any inter-
ference between threads, and without needless data copying. The algorithm steps are summarized
in Algorithm 3.

Algorithm 3 Quickhull CPU Design - Parallel in-place version
1: function QuickhullCPU(P, H) ▷ P := Points, H := Hull
2: x ← leftmost point from P
3: y ← rightmost point from P
4: x.inHull, y.inHull ← true
5: place x and y to the start of P
6: SA, SB ← partition points by line (x, y) ▷ SA, SB are segments
7: Recursive(P, SA, x, y)
8: Recursive(P, SB, x, y)
9: H ← {P | inHull = true}

10: function Recursive(P, S, x, y)
11: if S size = 0 then return
12: f ← point from S, farthest from line (x, y)
13: f.inHull ← true
14: place f to the beginning of S
15: for point p in S do
16: if point p is in triangle {x, y, f} then
17: p.removed ← true
18: i ← point on the line (x, y) closest to point f
19: R, Q ← partition points in segment to removed and not removed
20: SL, SR ← partition Q by the line (f, i) ▷ SL, SR are segments
21: Recursive(P, SL, x, f)
22: Recursive(P, SR, f, y)

4.2.2 Concurrent Hull
The Concurrent Hull algorithm is designed around computations on beforehand known data.
This is why it is the perfect candidate for OpenMP data parallelism. The crux of designing the
Concurrent Hull was dividing the source code into standalone less complex algorithms. Once
these algorithms were designed, the task of connecting them into the Concurrent Hull algorithm
was trivial.

4.2.2.1 Crawling algorithm
We decided to split the algorithm into two functions - the main driving function, and the crawling
function, which will be called in parallel. (Algorithm 4) The crawling function could also be
implemented as a part of a class, which would take care of the whole crawling process.

CPU Algorithms Design 17

Algorithm 4 Crawler algorithm CPU Design
1: function CrawlersCPU(P, D) ▷ P := Points, D := Grid Dimension
2: S ← grid of segments (D ×D)
3: assign point indexes to segments of the grid
4: for segment s in S do
5: if s is boundary then
6: AC ← all available crawlers starting in s
7: for crawler c in AC do
8: Crawl(c, S)
9: return { segment s in S | s.viable = true }

10: function Crawl(C, S) ▷ C := Crawler, S := Segments
11: while C is not out of bounds of S do
12: if current segment cs is not empty then
13: cs.viable ← true
14: return
15: else
16: C.Step()

4.2.2.2 Graham Scan

The Graham scan algorithm was rather easy to design, as this algorithm is well known and is
published in many forms. The input of the algorithm had to be changed to accommodate for the
use in the Concurrent Hull algorithm’s respective segments. Its steps are listed in Algorithm 5.

This solution requires a function, which determines whether the three input points form
a clockwise, counter-clockwise, or no turn (they are collinear). We decided to call this func-
tion getTurn.

Algorithm 5 Graham scan CPU Design
1: function GrahamScanCPU(P, S) ▷ P := Points, S := Segment
2: x ← point with highest Y coordinate
3: sort P by polar angles to point x
4: y ← second point in sorted segment
5: Q ← {x, y} ▷ Q := stack
6: for point p in S do
7: while getTurn(Top(Q), p, NextToTop(Q)) = non-clockwise turn do
8: pop from Q

9: push p to Q

10: H ← { points in Q } ▷ all points in Q are part of hull
11: return H

4.2.2.3 Jarvis March

Designing the Jarvis march algorithm was fairly easy, because it is very similar to the Gra-
ham scan in the use of the getTurn function. The algorithm can be summarized in steps in
Algorithm 6.

18 Design

Algorithm 6 Jarvis march CPU Design
1: function JarvisMarchCPU(P) ▷ P := Points
2: H ← [] ▷ H := Hull
3: x ← point with lowest X coordinate
4: c ← x
5: n ← 0
6: while n ̸= x do
7: insert c into H
8: n ← next point in P
9: for point p in P do

10: if (c, p, n) form counter-clockwise turn then
11: n ← p
12: c ← n

return H

4.2.2.4 Concurrent Hull

With the partial algorithms implemented, we proceeded to connect them together to form the
final Concurrent Hull algorithm. Refer to Algorithm 7, which contains the final design of the
Concurrent Hull algorithm.

Algorithm 7 Concurrent Hull CPU Design
1: function ConcurrentHullCPU(P, H) ▷ P := Points, H := Hull
2: S ← initialized segments
3: V ← CrawlCPU(S) ▷ V := Viable Segments
4: PH ← [] ▷ PH := Partial Hulls
5: for segment s in V do
6: H ← GrahamScanCPU(P, s)
7: insert H into PH
8: F ← flatten PH into a single dimension list
9: H ← JarvisMarchCPU(F)

4.2.3 Quickhull with Crawlers

An essential part of this thesis, and assignment requirement 3) is the design and implementation
of a new version of the Quickhull algorithm that uses crawlers in its computation. We will
accomplish this by prepending the crawling algorithm to the Quickhull algorithm, since we
already designed the algorithm in Section 4.2.2.1. The algorithm is originally designed as a part
of the Concurrent Hull, which is why slight changes had to be made, forming the algorithm
CrawlersCPU QH. The algorithms can be observed in Algorithm 8 and Algorithm 9.

CPU Algorithms Design 19

Algorithm 8 Crawler algorithm for Quickhull CPU Design
1: function CrawlersCPU QH(P, D) ▷ P := Points, D := Grid Dimension
2: S ← grid of segments (D ×D)
3: assign point indexes to segments in the grid
4: for segment s in S do
5: if s is boundary then
6: AC ← all available crawlers starting in s
7: for crawler c in AC do
8: Crawl(c, S)
9: for point p in P do

10: if p is in an unviable segment then
11: p.removed ← true
12: function Crawl(C, S) ▷ C := Crawler, S := Segments
13: while C is not out of bounds of S do
14: if current segment cs is not empty then
15: cs.viable ← true
16: return
17: else
18: C.Step()

Algorithm 9 Quickhull with Crawlers CPU Design
1: function QuickhullWithCrawlersCPU(P, D, H) ▷ P := Points, D := Grid Dimen-

sion, H := Hull
2: CrawlersCPU QH(P, D)
3: RP ← partition off removed points
4: QuickhullCPU(RP, H)

20 Design

QuickHull Algorithm on the GPU . . . J. Zhang, G. Mei, N.Xu and K. Zhao

4 Implementation Details

4.1 Data Storage and Data Layout

We allocate several arrays on the device side to store the coordinates of planar points, information about

segments, and other required values such as distances; see Table 1.

Table 1: Allocated arrays for storing data on the device

Array Usage

float x[n] x coordinates

float y[n] y coordinates

float dist[n] Distances

int head[n] Indicator of the first point of each segment

(1: Head point; 0: Not a head point)

int keys[n] Index of the segment that each point belongs to

int first pts[n] Index of the first point of each segment

int flag[n] Indicate whether a point is an extreme point or an interior point

(1: Potential extreme point; 0: Determined interior point)

4.2 The Preprocessing Procedure

Before performing the QuickHull algorithm on the GPU, we first carry out a preprocessing procedure to

filter the input points. The objective of this preprocessing procedure is to reduce the number of points

by discarding those points that are not needed for consideration in the subsequent stage of calculating

the desired convex hull.

We use the parallel reduction to find the extreme points with min or max x or y coordinate. In more

details, we adopt the thrust::minmax element(x.begin(), x.end()) to find the left-

most and the rightmost points, and similarly use the thrust::minmax element(y.begin(),

y.end()) to obtain the topmost and the bottommost points. These four extreme points are then used

to form a convex quadrilateral.

We also design a simple CUDA kernel to check each point to determine whether it locates inside

the quadrilateral. In the kernel, each thread is responsible for determining the position of only one point

Pi, i.e., whether or not a point falls into the formed convex quadrilateral. If does, the corresponding

indicator value flag[i] will be set to 0, otherwise, the value flag[i] is still kept as 1.

4.3 The First Split

The first split of the QuichHull algorithm is to divide the set of input points into two subsets, i.e., the

lower and the upper subsets, using the line segment L formed by the leftmost and the rightmost points.

Those points that locate below the L are grouped into the lower subset, while the ones distributed above

the L are contained in the upper subset.

We develop another quite simple kernel to perform the above split procedure. In this kernel, each

thread takes the responsibility to determine the position of only one point with respect to the line segment

L. In this step, we temporarily use the values int flag[n] to indicate the positions: if the point Pi

locates below the L, in other words, if Pi belongs to the lower subset, then the corresponding indicator

value flag[i] will be set to 1, otherwise 0.

4

Figure 4.1 Quickhull on the GPU data representation [17]

4.3 GPU Algorithms Design

In this part of the thesis, we will design the data structures and algorithms for the respective
GPU implementations. Simillarly to the Section 4.2, the implementations include Quickhull,
Concurrent Hull, and Quickhull with Crawlers.

4.3.1 Quickhull
For designing the Quickhull algorithm on the GPU, we decided to use the approach described
in ”A Novel Implementation of QuickHull Algorithm on the GPU” [17]. We decided for this
approach, because the CPU version we designed in Section 4.2.1 is designed for task parallelism,
which is not supported well by the CUDA architecture.

4.3.1.1 Data Representation
The main idea of the approach is to take advantage of the GPU’s SIMT computation architec-
ture. This can be done by separating the data fields needed for points into their own arrays.
This technique is usually referred to as SOA (Structure of Arrays). These arrays are then placed
into a structure that maintains the data. We can look at this structure as a databank for our
program’s computation. This can be observed in Figure 4.1.

The Thrust library functions are clearly designed for this approach because functions use
arrays of data as input as well as output values. This design is well demonstrated in the code
Snippet 4.2, where the thrust::reduce by key function performs a reduction of values assigned
the same keys.

1 const int N = 7;
2 int A[N] = {1, 3, 3, 3, 2, 2, 1}; // input keys
3 int B[N] = {9, 8, 7, 6, 5, 4, 3}; // input values
4 int C[N]; // output keys
5 int D[N]; // output values
6 thrust ::pair <int*,int*> new_end ;
7 new_end = thrust :: reduce_by_key (thrust ::host , A, A + N, B, C, D);
8 // The first four keys in C are now {1, 3, 2, 1}
9 // and new_end .first - C is 4.

10 // The first four values in D are now {9, 21, 9, 3}
11 // and new_end . second - D is 4.

Code listing 4.2 Example use of thrust::reduce by key function [18]

GPU Algorithms Design 21

However, this approach makes sorting and partitioning operations on the data unfeasable. In
order to enable these crucial operations, we need to maintain an array of indexes of points, which
can later be used to access the respective points, and perform these operations on this array.

A significant drawback in this design is that with operations on the point indexes, operations
performed on the original arrays in the databank are incorrect. To rectify this, arrays with the
correctly ordered data need to be initialized and utilized in many Thrust function calls. We will
list an example from our source code where the task is to partition points according to values
in the Flag array. In the Snippet 4.3, we initialize the array flagsHelp, and fill it with the
rearranged flags according to the Indexes array.

1 thrust :: device_vector <FLAG_TYPE > flagsHelp ;
2 rearrangeFlags <<<blocks , threads >>>(data ,
3 thrust :: raw_pointer_cast (flagsHelp .data ()));
4
5 // partition points by flags
6 auto splittingPoint = thrust :: stable_partition (
7 thrust :: device ,
8 data. devIndexes .begin (),
9 data. devIndexes .end (),

10 flagsHelp .begin (),
11 partitionNotRemoved ());

Code listing 4.3 Rearrange for the use in Thrust function calls

4.3.1.2 Algorithm
The original implementation in [17] utilizes the procedure in Figure 4.2. We decided to mimic
the procedure with small changes, as we found that some of the steps are arbitrary and incorrect.

Our design makes changes to the Recursive Step part of the procedure. We explain our
modifications to the procedure in Algorithm 10. Clearly, we omitted step 6). This is because
the segments are only represented by the Head array and the FirstPts array, and the points are
already sorted in a way designed for no partitioning, resulting in the division of the segment into
two new segments being non-sensical.

We also found that steps 7) and 8) are faulty because the Head array is already updated,
therefore, new segments have already been created. Discarding interior points would require
additional computation or data allocation, otherwise the operation would be incorrect. The
relationship between the data representation and the algorithm procedure is depicted in Fig-
ures 4.3a - 4.3f to support our claims about the original procedure. The function FirstSplit of
our algorithm is illustrated in Figures 4.3a - 4.3c, while the function Recursive is illustrated in
Figures 4.3d - 4.3f.

22 Design
QuickHull Algorithm on the GPU . . . J. Zhang, G. Mei, N.Xu and K. Zhao

3 Basic Ideas behind Our Implementation

The most important idea behind our implementation is to directly operate the data in the input arrays that

are originally allocated to store the coordinates of input points, rather than in the additionally allocated

arrays or splitting the input data into separate arrays.

The QuickHull algorithm is a Divide-and-Conquer method, which tends to divide the input data set

into subsets and then handles these subsets recursively. On the GPU, an effective strategy is to divide

the input data set into subsets, but do not store them in separated arrays with different sizes. Instead,

all the data of the subsets are still stored in the input data array, but the data of each subset is stored

into a Segment (i.e., a consecutive piece / partition of data) [4]. Operations carried out for each subset is

exactly the operations for each segment [22]. We adopt this strategy to develop our implementation.

Figure 2: Procedure of the 2D CUDA QuickHull on the GPU (without preprocessing)

Procedure: 2D Quickhull on the GPU

Input: a set of input points pt_in

Output: convex hull ch_out

First Split

1: Use parallel reduction to find the leftmost point Pminx and the rightmost point Pmaxx

2: Determine the positions of the rest points against the line PminxPmaxx

Assign a flag value to indicate the position: flag = 1 when below; flag = 0 when above

3: Use parallel partition to split the points into two segments according to the flag values:

the lower subset Slower and the upper subset Supper

4: Use parallel sorting to sort the Slower in x-ascending and Supper in x-descending

Recursive Step

 Repeat

for each segment (Pfirst, Plast) represented by two points Pfirst and Plast do

5: Find the farthest point Pfar from the line Pfirst Plast

6: Divide segment (Pfirst, Plast) into two new segments (Pfirst, Pfar) and (Pfar, Plast)

7: Update all segments (including head flags, keys, first points)

8: Detect interior points by determining the positions

9: Assign each point a state flag depending on its position to indicate the state:

1: current non-interior points; 0: determined interior points

10: Use parallel stable_partition to gather all interior points according to the state flags,

then remove all interior points

11: Update only the first points of all segments

Until there are no interior points can be found

12: Output the remaining points in pt_in as the extreme points of ch_out

The procedure of our implementation is presented in Figure 2. In our implementation, after splitting

the input set of points into the lower and the upper subsets, we sort the two subsets separately according

to the x-coordinates. After this sorting, either the lower or the upper subset of sorted points can be

considered as a Monotone Chain [1]; in addition, both the above chains can be further considered as two

halves of a general polygon. If we detect and remove those vertices of the general polygon that have the

interior angles greater than 180 degrees, then we can obtain the desired convex hull. The above idea of

first sorting and then removing non-extreme points / concave vertices was introduced in [1] and [13].

Therefore, the basic idea behind our implementation is to “Find-and-Remove”. In the step of first

split, we divide the input points and then sort them to virtually form a general polygon. In the sub-

sequent recursive step, we recursively first find those non-extreme points, and then remove them to

guarantee that all the remaining points are completely extreme points of the expected convex hull.

3

Figure 4.2 Procedure of the 2D CUDA QuickHull on the GPU [17]

GPU Algorithms Design 23

Algorithm 10 Quickhull on the GPU Design
1: function QuickhullGPU(P, H) ▷ P := Points, H := Hull
2: FirstSplit(P)
3: while any point is neither removed nor in hull do
4: Recursive(P)
5: H ← {p from P | p.inHull = true}
6: function First Split(P)
7: x ← leftmost point
8: y ← rightmost point
9: x.head, y.head ← true

10: set flags to points by position relative to line (x, y)
11: U, L ← partition points by flag ▷ U := Upper, L := Lower
12: sort U X-ascending
13: sort L X-descending
14: function Recursive(P) ▷ Performed for each segment
15: f ← farthest point in segment
16: f.head ← true
17: x ← first point in segment
18: y ← first point in next segment
19: for point p in segment do
20: if p is in triangle {x, y, f} then
21: p.flag ← false
22: else
23: p.flag ← true
24: perform global partitioning of P by the Flag array
25: update keys by performing a global inclusive scan of the Head array
26: update the array of first points

24 Design

x

y

A E

B

C

D

F

Points:
Point A B C D E F
Head 1 0 0 0 1 0
Flag 0 0 0 0 0 0

Indexes:
Point F A C B D E
Index 0 1 2 3 4 5

(a) Step 1: Find the points with the maximum and minimum X coordinates and add them to the hull

x

y

A E

B

C

D

F

Points:
Point A B C D E F
Head 1 0 0 0 1 0
Flag 0 0 0 0 1 1

Indexes:
Point A C B D F E
Index 0 1 2 3 4 5

(b) Step 2: Partition points in relation to the connecting line

x

y

A E

B

C

D

F

Points:
Point A B C D E F
Head 1 0 0 0 1 0
Flag 0 0 0 0 1 1

Indexes:
Point A B C D E F
Index 0 1 2 3 4 5

(c) Step 3: Sort the respective partitions (upper X-ascending, lower X-descending)

Figure 4.3 GPU Quickhull Data Representation and Procedure

GPU Algorithms Design 25

x

y

A E

B

C

D

F

Points:
Point A B C D E F
Head 1 1 0 0 1 1
Flag 1 1 0 1 1 1

Indexes:
Point A B D E F
Index 0 1 2 3 4

(d) Step 4: Find the farthest points in segments, add them to the hull, and remove the interior points

x

y

A E

B

F

D

C

Points:
Point A B C D E F
Head 1 1 0 1 1 1
Flag 1 1 0 1 1 1

Indexes:
Point A B D E F
Index 0 1 2 3 4

(e) Step 5: Find the farthest points in segments, add them to the hull, and remove the interior points

x

y

A E

B

F

D

C

Points:
Point A B C D E F
Head 1 1 0 1 1 1
Flag 1 1 0 1 1 1

Indexes:
Point A B D E F
Index 0 1 2 3 4

(f) Step 6: Stop the execution, as all points are in the hull (red) or removed (orange)

Figure 4.3 GPU Quickhull Data Representation and Procedure (cont.)

26 Design

4.3.2 Concurrent Hull
Since the official implementation of the Concurrent Hull algorithm is not published, we were
forced to design our own ways to implement it. The main task was to design its partial algorithms.
Afterwards, the Concurrent Hull was merely a task of connecting these algorithms together in a
correct manner.

4.3.2.1 Crawling Algorithm
Our design for the crawling algorithm had to be reinvented, as passing an array of crawlers to the
GPU threads would require alot of preprocessing, compared to how short the individual threads
of crawlers run. We decided to leave most of the computation to the GPU threads rather than
the CPU. This was accomplished by the code iterating through all available directions on the grid
(Up, RightUp, Right, RightDown, etc.) and calling the Crawl function for each of the segments
of the grid.

This function will simply find its starting segment on the grid relative to its thread number
and iterate until it finds a nonempty segment or runs beyond the grid in one or both of its
dimensions. The entire procedure can be observed in Algorithm 11.

Algorithm 11 Crawler algorithm GPU Design
1: function CrawlersGPU(points, segments) ▷ P := Points, S := Segments
2: for d in directions do ▷ directions = {Up, UpRight, ..., UpLeft}
3: Crawl(S, d)
4: for point p in P do
5: if p is in an unviable segment then
6: p.removed ← true
7: function Crawl(S, D) ▷ S := Segments, D := Direction
8: s ← thread’s segment relative to its thread index
9: if segment s is not boundary then

10: return
11: C ← crawler starting in s with direction D
12: while C is not out of bounds of S do
13: if current segment cs is not empty then
14: cs.viable ← true
15: return
16: else
17: C.Step()

4.3.2.2 Graham Scan
The GPU variant of the Graham scan proved to be much more complex than its CPU counterpart.
Although its main part (iterating through points) is inherently sequential, all pre-processing had
to be done in parallel, which proved to be a difficult task requiring the invention of a new
approach. Refer to Algorithm 12 for the full description of our approach.

4.3.2.3 Jarvis March
Since the Jarvis march algorithm is inherently sequential, we decided to use the CPU version
of this algorithm, as the CPU is better equipped for sequential computations compared to the
GPU. We decided that the only GPU computation utilized in this algorithm would be the search

GPU Algorithms Design 27

Algorithm 12 Graham scan GPU Design
1: function GrahamScanGPU(P, S) ▷ P := points, S := Segments
2: sort P by Y-coordinate descending
3: Q ← indexes of segments for each point from P
4: stable sort P and Q by indexes of segments (Q)
5: R ← perform a reduction by keys operation on Q ▷ R := Segment sizes
6: SI ← perform a global exclusive scan of R ▷ SI := Start Indexes
7: PA ← polar angles of points in their segments relative to the first points in segments
8: ▷ first points in segments are points with maximum Y coordinate
9: sort points in respective segments by their polar angles

10: for segment s in S do
11: GrahamScanCPU(points, s)
12: partition off the removed points

for the point with the minimum X coordinate. The description of the whole algorithm is omitted,
as the transition from the CPU version to the GPU version is trivial.

4.3.2.4 Concurrent Hull
To finalize the Concurrent Hull algorithm, the partial algorithms need to be executed in the
correct order. This is enabled by the coherent design of the partial algorithms.

Algorithm 13 Concurrent Hull GPU Design
1: function ConcurrentHullGPU(P, D, H)
2: ▷ P := points, D := Grid Dimension, H := Hull
3: S ← create and initialize the grid of segments (D ×D)
4: CrawlersGPU(P, S)
5: GrahamScanGPU(P, S)
6: JarvisMarchGPU(P)
7: H ← { P | inHull = true }

4.3.3 Quickhull with Crawlers
The GPU version of the Quickhull with Crawlers algorithm is essentially the same as its CPU
counterpart, as its task is purely to utilize our previously designed algorithms. We will omit
the special Crawlers algorithm design, as it is modified in the same manner as with the CPU
algorithm design (Section 4.2.3). The algorithm can be observed in Algorithm 14.

Algorithm 14 Quickhull with Crawlers GPU Design
1: function QuickhullWithCrawlersGPU(P, D, H) ▷ P := Points, D := Grid Dimen-

sion, H := Hull
2: CrawlersGPU QH(P, D)
3: RP ← partition off removed points
4: QuickhullGPU(RP, H)

28 Design

Chapter 5

Implementation

This chapter is dedicated to implementing algorithms we designed in Chapter 4. First, we will
implement the parallel versions of the CPU versions of our algorithms. Subsequently, we will
implement sequential versions of these algorithms by deparallelization. In the last part of this
chapter, we will implement the GPU versions of our algorithms.

5.1 CPU Implementation

In this section, we will focus on the CPU implementation of the final parallel algorithms. We
will also implement model classes, which will help us in our efforts. We utilized the OpenMP
library for the purpose of parallelization of the programs.

5.1.1 Model
We implemented the following model classes, which helped us keep our code readable, extensible,
and easily debuggable.

The virtual class CSolverCPU (Snippet 5.1) is used as an abstraction of the solver classes,
providing a shared interface. Other solver classes (CQuickhull, CConcurrentHull) extend this
class by providing the implementation of the solve method.

1 class CSolverCPU
2 {
3 public :
4 virtual void solve(std :: vector <Point > &q,
5 std :: vector <Point > &hull) = 0;
6 };

Code listing 5.1 CSolver CPU class implementation

The Point struct was implemented in a manner described in Chapter 4. We had to extend
our class by comparator operators to allow point sorting and comparison. The Point implemen-
tation can be observed in Snippet 5.2. We decided to use the int datatype for point X and Y
coordinates, as floating point datatypes are less user-readable. However, the datatype can be eas-
ily changed by modifying the #define POINT DATATYPE int call to #define POINT DATATYPE
float in Snippet 5.2.

29

30 Implementation

1 # define POINT_DATATYPE int
2 struct Point
3 {
4 POINT_DATATYPE X, Y;
5 bool removed = false , inHull = false;
6
7 Point ();
8 Point(POINT_DATATYPE x, POINT_DATATYPE y);
9 Point(const Point &x);

10
11 friend bool operator <(const Point l, const Point r);
12 friend bool operator ==(const Point l, const Point r);
13 friend bool operator !=(const Point l, const Point r);
14 };

Code listing 5.2 Point struct implementation

To allow for in-place parallelization, a way of assigning subarrays of points to threads had to be
invented. We accomplished this by implementing and utilizing the Segment struct (Snippet 5.3),
which provides the starting and ending indexes to the individual threads.

1 struct Segment
2 {
3 unsigned begin , end;
4
5 Segment ();
6 Segment (unsigned b, unsigned e);
7
8 int size ();
9 };

Code listing 5.3 Segment struct implementation

5.1.2 Quickhull
With the model implemented, we can proceed to describe our implementation of the Quickhull
algorithm as designed in Chapter 4. We will now implement the methods CQuickHull::recurse
and CQuickHull::solve, as they are the driving force behind our implementation.

5.1.2.1 QuickhullCPU Function Implementation
The CQuickHull::solve method implements the function QuickhullCPU from Algorithm 3.
The first step is to initialize the segment to contain all points, find the leftmost and rightmost
points, and place them at the beginning of the points vector.

1 Segment curS = Segment (0, q.size ());
2 unsigned a, b;
3 findExtremaIndexes (q, a, b);
4 q.at(a). inHull = true;
5 q.at(b). inHull = true;
6 placeExtremas (q, a, b);

Subsequently, the points need to be partitioned by their position relative to the line connecting
the extreme points. The result of the call sortBySide(...) are segments greater and lesser,
which will be utilized in latter calls.

CPU Implementation 31

1 curS.begin += 2;
2 unsigned splitter ;
3 sortBySide (q, curS , q.at(a), q.at(b), splitter);
4 Segment greater = Segment (b + 1, splitter),
5 lesser = Segment (splitter , q.size ());

The next step is to call the recurse method twice, once for points above the connecting line
and once for points below the line. It is important to note, that the taskgroup construct was
utilized. This is because opposed to taskwait, it also waits for spawned child tasks. We used
OMP task parallelism for parallelization.

1 # pragma omp parallel
2 # pragma omp single
3 {
4 # pragma omp taskgroup
5 {
6 # pragma omp task shared (q)
7 recurse (q, greater , q.at(a), q.at(b));
8
9 recurse (q, lesser , q.at(a), q.at(b));

10 }
11 }

As the last step of this method, the points which have their inHull variable set to true need
to be copied into the output vector.

1 for (auto it : q)
2 if (it. inHull)
3 hull. push_back (it);

5.1.2.2 Recurse Function Implementation
The CQuickHull::recurse method resembles function Recursive from Algorithm 3. First,
the recursive end condition needs to be checked by checking the current segment size. Subse-
quently, the farthest point has to be located, added to the hull, and placed at the beginning
of the segment.

1 if (s.size () < 1) return ;
2 unsigned iFarthest = getIndexOfFarthestPointFromLine (q, Line(x, y), s);
3 q.at(iFarthest). inHull = true;
4
5 if (s.size () == 1) return ; // return if point item in segment
6 swapItems (q, iFarthest , s.begin);
7 iFarthest = s.begin;
8 s.begin += 1;

The next step is to remove the points in the newly formed triangle. This is accomplished by
determining if the point lies on the same side of all the lines forming the triangle.

1 Point farthest = q.at(iFarthest);
2 Segment viablePoints =
3 removePointsInTriangle (q, s, Triangle (x, y, farthest));
4 if (viablePoints .size () == 0)
5 return ;

Subsequently, the points need to be partitioned according to the line connecting the farthest
point and its perpendicular foot point to the line connecting the segment’s boundary points.

32 Implementation

After partitioning, the algorithm has to determine which segment is closer to which bound-
ary point. This is due to the nature of the computation that determines which side of a line a
point is on. Essentially, the call sideOfLine(p, x, y) produces a different result to the call
sideOfLine(p, y, x).

1 Segment greater , lesser ;
2 Point intersect = getPointFootToLine (Line(x, y), farthest);
3 sortPointsToSidesOfLine (q, viablePoints ,
4 Line(farthest , intersect), greater , lesser);
5 Segment atX , atY;
6 if ((greater .size () > 0 &&
7 arePointsOnSameSideOfLine (Line(farthest , intersect),
8 q.at(greater .begin), x))
9 ||

10 (lesser .size () > 0 &&
11 ! arePointsOnSameSideOfLine (Line(farthest , intersect),
12 q.at(lesser .begin), x)))
13 { atX = greater ; atY = lesser ; }
14 else
15 { atX = lesser ; atY = greater ; }

The last step of the Recursive function are to call the function again twice. Similarly to the
function QuickhullCPU, we utilized OMP task parallelism in these calls.

1 # pragma omp task shared (q)
2 recurse (q, atX , x, farthest);
3
4 recurse (q, atY , farthest , y);

5.1.3 Concurrent Hull
In this part of the thesis, we will describe our implementation of the Concurrent Hull on the
CPU. In compliance with Chapter 4, we decided to implement the partial algorithms and then
proceed to connect them together to form the Concurrent Hull.

5.1.3.1 Crawling algorithm

The implementation of the crawling algorithm proved to be very straightforward, because the
algorithm is very intuitive and simple. The first step of the crawling algorithm is to create the
grid to which points will be assigned. To accomplish this, the variable step has to be computed,
which sets the offset of the segments.

1 Stats stats;
2 unsigned step;
3
4 findExtremeValues (points , stats);
5 step = (stats.xMax - stats.xMin) > (stats.yMax - stats.yMin)
6 ? (stats.xMax - stats.xMin) / gridDim
7 : (stats.yMax - stats.yMin) / gridDim ;

The algorithm can subsequently initialize the grid, which will contain points of indexes
in its segments. We implemented the struct CrawlerSegment, which contains its row, column,
and vector of point indexes, for this purpose.

CPU Implementation 33

1 vector < CrawlerSegment > seg(gridDim + 1);
2 vector <vector < CrawlerSegment >> segments (gridDim + 1, seg);
3
4 # pragma omp parallel for
5 for (unsigned i = 0; i <= gridDim ; i++)
6 {
7 for (unsigned j = 0; j <= gridDim ; j++)
8 {
9 segments .at(i).at(j). row = i;

10 segments .at(i).at(j). row = j;
11 }
12 }

With the grid initialized, we the algorithm can assign the point indexes to the segments of
the grid. We essentially use a similar formula to the one for computing the step variable for
this purpose.

1 for (unsigned i = 0; i < points .size (); i++)
2 {
3 unsigned row = (points .at(i).X - stats.xMin) / step;
4 unsigned col = (points .at(i).Y - stats.yMin) / step;
5 segments .at(row).at(col). pointIndexes . push_back (i);
6 }

We can proceed to the main point of the algorithm, which is launching crawlers from all
boundary segments. To parallelize this execution, we utilized OpenMP data parallelism.

1 # pragma omp parallel for
2 for (unsigned i = 0; i <= gridDim ; i++)
3 {
4 for (unsigned j = 0; j <= gridDim ; j++)
5 {
6 if (i == 0 || j == 0 ||
7 i == segments .size () - 1 ||
8 j == segments .at (0). size () - 1)
9 {

10 vector <Crawler > crawlers ;
11 CrawlerFactory :: createCrawlersFromPoint (
12 segments , i, j, crawlers);
13
14 # pragma omp parallel for
15 for (auto it : crawlers)
16 it.crawl(segments);
17 }
18 }
19 }

The last step of the crawling algorithm is to remove all points which are not placed in viable
segments. Since we can utilize the grid in the Graham scan part of Concurrent Hull, we de-
cided to simply copy the viable segments to a new vector of segments, saved in the variable
viableSegments.

34 Implementation

1 vector < CrawlerSegment > viableSegments ;
2 for (auto row : segments)
3 {
4 for (auto it : row)
5 if (it. viable)
6 viableSegments . push_back (it);
7 }

5.1.3.2 Graham Scan & Jarvis March
The straightforwardness and the simplicity of the Graham scan and Jarvis march algorithms allow
us to omit their full description in this text. Refer to the source code included with this thesis
for full implementation details. However, we will describe the implementation details of these
algorithms, which are not as straightforward.

One of these imlpementation details is the implementation of the function getTurn, mentioned
in Chapter 4. We utilize this function in the computation of both the Jarvis march and the Gra-
ham scan. This function performs a cross-product calculation and returns an enumerated value
from the enum Turn. These enumerated values resemble the clockwise and counter-clockwise
turns, and the points being collinear.

1 enum Turn
2 {
3 COL = 0,
4 CLW = 1,
5 CCW = 2
6 };
7
8 Turn getTurn (const Point x, const Point y, const Point z)
9 {

10 double val = ((y.X - x.X) * (z.Y - x.Y) -
11 (y.Y - x.Y) * (z.X - x.X));
12
13 if (val > 0)
14 return Turn :: CCW;
15 else if (val == 0)
16 return Turn :: COL;
17 else
18 return Turn :: CLW;
19 }

Another implementation detail we would like to describe is sorting points by their polar angle
in Graham scan. At first, we decided to use a map of polar angles assigned to points. The sort
function would effortlessly load the precalculated currently needed polar angles from the map
and sort according to them. This solution proved to be considerably slower than performing
the calculations on the spot in the body of std::sort. For the calculation of the polar angles
themselves, we used the atan2 function from the C math.h library.

1 std :: sort(points .begin () + segment .begin ,
2 points .begin () + segment .end ,
3 [x](Point a, Point b)
4 {
5 double atana = atan2(a.Y - x.Y, a.X - x.X),
6 atanb = atan2(b.Y - x.Y, b.X - x.X);
7 return atana > atanb ||
8 (atana == atanb && a.X < b.X);
9 });

CPU Sequential Versions 35

5.1.3.3 Concurrent Hull
We will now describe how all the algorithms we implemented work in cooperation to form the
Concurrent Hull on the CPU. The first step is to execute the crawling algorithm and retrieve
the viable segments.

1 vector < CrawlerSegment > segments ;
2 crawl(points , segments);

As explained in Chapter 4, the Graham scan algorithm requires two arguments: the points
upon which the computation will take place, and the vector of points for the output. This
means, that we need to create vectors of points for each of the viable segments yielded by the
crawling algorithm.

1 vector <vector <Point >> linearSegments ;
2
3 for (auto it : segments)
4 {
5 vector <Point > segment ;
6 for (auto pi : it. pointIndexes)
7 segment . push_back (points .at(pi));
8 linearSegments . push_back (segment);
9 }

The next step is to initialize the hulls for Graham scans, and execute them. To parallelize
execution, we added the omp parallel for directive utilizing OpenMP data parallelism.

1 vector <vector <Point >> hulls(segments .size (), vector <Point >());
2 CGrahamScan gs;
3 # pragma omp parallel for
4 for (unsigned i = 0; i < segments .size (); i++)
5 gs.solve (segments .at(i), hulls.at(i));

The last step is to execute the Jarvis march part of the algorithm. Before executing the al-
gorithm, the partial hulls must be flattened to a single vector of points.

1 vector <Point > flattenedPoints ;
2 for (auto h : hulls)
3 for (auto item : h)
4 flattenedPoints . push_back (item);
5 CJarvisMarch jm;
6 jm.solve(flattenedPoints , hull);

5.2 CPU Sequential Versions
In this section of the Implementation chapter, we will deparallelize the parallel algorithms we
implemented in Section 5.1. This will satisfy task 2a) of our assignment.

To accomplish this task, we will utilize the function calls in Snippet 5.4. The first call,
omp set dynamic(0), disables dynamic changes to the number of threads available during
the execution. This effectively means that OpenMP will not interfere with the number of threads
used for computation. The second call, omp set num threads(1), sets the number of threads
to one, effectively disabling parallelization.

1 omp_set_dynamic (0);
2 omp_set_num_threads (1);

Code listing 5.4 Function calls used for deparallelization

36 Implementation

5.3 GPU Implementation

In this section, we will focus on the GPU implementation of the algorithms. We decided to use
the Thrust library to help us in our efforts. This mainly includes the thrust::host vector
class, the thrust::device vector class, and the Thrust library functions such as partition,
sort, and reduce.

5.3.1 Model

Similarly to the CPU model, we implemented the virtual class CSolverGPU (Snippet 5.1) in order
to provide a shared interface and allow extendability.

1 class CSolverGPU
2 {
3 public :
4 virtual void solve(const Point *points , const unsigned n,
5 Point **hull , unsigned * hullSize) = 0;
6 };

Code listing 5.5 CSolver GPU class implementation

We decided not to reinvent the wheel and implement the same Point class from Section 5.1.1.
This is because our requirements for the class are the same. This allowed us to focus on other
implementation details.

5.3.2 Quickhull

To describe the Quickhull GPU implementation designed in Algorithm 10, we will first describe
the implementations of the three functions we designed. Due to the approach to data storage
this algorithm utilizes, it is impartial to also describe the special data model our implementation
uses.

5.3.2.1 Model

To implement the model of the Quickhull GPU algorithm, we decided to implement the struct
qhData, which keeps all the data required for computation, and performs operations such as
copying to the device, copying to the host, and input output operations. The declaration of
the qhData class can be observed in Snippet 5.6.

GPU Implementation 37

1 struct qhData
2 {
3 thrust :: host_vector < INDEXES_TYPE > hostIndexes ;
4 thrust :: host_vector < COORDS_TYPE > hostX;
5 thrust :: host_vector < COORDS_TYPE > hostY;
6 ...
7 thrust :: host_vector < FIRSTPTS_TYPE > hostFirstPts ;
8 thrust :: host_vector <FLAG_TYPE > hostFlag ;
9

10 thrust :: device_vector < INDEXES_TYPE > devIndexes ;
11 thrust :: device_vector < COORDS_TYPE > devX;
12 thrust :: device_vector < COORDS_TYPE > devY;
13 ...
14 thrust :: device_vector < FIRSTPTS_TYPE > devFirstPts ;
15 thrust :: device_vector <FLAG_TYPE > devFlag ;
16
17 void resize (unsigned n);
18 void createStructure (const Point *points , const unsigned n);
19 void outputStructure (Point **hull , unsigned * hullSize) const;
20 void copyToDevice ();
21 void copyToHost ();
22 };

Code listing 5.6 qhData struct implementation

5.3.2.2 QuickhullGPU

The main point of this function, in addition to calling the FirstSplit and Recursive functions,
is to check whether the Recursive function should be called again. The implementation performs
this operation by initializing a new thrust::device vector, which we filled with rearranged
head flags. This has to be done for the reasons described in Chapter 4.

To check if the computation should continue, we perform a reduce operation on the vec-
tor of rearranged head flags and compared it to the current point count. This comparison is
valid because the algorithm partitions off the removed points and resizes the vector of points.
This means that only points which are not removed remain.

1 thrust :: device_vector <HEAD_TYPE > help(data. ptsSize);
2 rearrangeHeads <<<ceil ((double)data. ptsSize / BLOCK_SIZE), BLOCK_SIZE >>>(
3 data , thrust :: raw_pointer_cast (help.data ()));
4 int result = thrust :: reduce (thrust :: device , help.begin (), help.end ());
5 return result < data. ptsSize ;

5.3.2.3 First Split

As the first step of the First Split function, the leftmost and rightmost points are to be located.
We used the thrust::minmax element function, which returns the minimum and maximum
elements in the input vector.

38 Implementation

1 thrust :: device_vector < COORDS_TYPE > xHelp(data. ptsSize);
2 thrust :: device_vector < COORDS_TYPE > yHelp(data. ptsSize);
3 COORDS_TYPE *rawX = thrust :: raw_pointer_cast (xHelp.data ());
4 COORDS_TYPE *rawY = thrust :: raw_pointer_cast (yHelp.data ());
5 rearrangeX <<<blocks , threads >>>(data , rawX);
6 rearrangeY <<<blocks , threads >>>(data , rawY);
7
8 auto extremas =
9 thrust :: minmax_element (

10 thrust :: device ,
11 data. devIndexes .begin (),
12 data. devIndexes .end (),
13 compareCoords (rawX , rawY));
14
15 minIndex = thrust :: distance (data. devIndexes .begin (), extremas .first);
16 maxIndex = thrust :: distance (data. devIndexes .begin (), extremas . second);

Subsequently, the points need to be partitioned by the line connecting the extreme points.
To accomplish this, we assign flags to points and use the thrust::partition library function.
The return value of this function is a pointer to the splitting point, which marks the start
of the second partition.

1 assignFlagsToPoints <<<blocks , threads >>>(data , min , max);
2
3 rearrangeFlags <<<blocks , threads >>>(
4 data , thrust :: raw_pointer_cast (flagsHelp .data ()));
5
6 auto splittingPoint = thrust :: partition (
7 thrust :: device ,
8 data. devIndexes .begin (),
9 data. devIndexes .end (),

10 flagsHelp .begin (),
11 partitionByFlag ());

In the next step, the partitions need to be sorted by their X coordinates. As a result of the
data structure we use, a new vector of points has to be initialized upon which we will perform
the sort operations. After the sorting, the qhData.Indexes vector has to be updated according
to the sorted vector of points.

1 thrust :: device_vector <cPoint > points (data. ptsSize);
2 arraysToPoints <<<blocks , threads >>>(
3 data , thrust :: raw_pointer_cast (points .data ()));
4 thrust :: sort(thrust :: device ,
5 points .begin (),
6 points .begin () + splitIndex ,
7 sortPointsAscending ());
8 thrust :: sort(thrust :: device ,
9 points .begin () + splitIndex ,

10 points .end (),
11 sortPointsDescending ());
12 updateIndexes <<<blocks , threads >>>(
13 data , thrust :: raw_pointer_cast (points .data ()));

In order for the Recursive function to have valid data for computation, the keys of all points
must be updated. This can be accomplished by a simple kernel, which compares the index
of the point corresponding to its thread ID with the splitting index.

GPU Implementation 39

1 __global__ void updateKeys (qhData data , unsigned splitIndex)
2 {
3 unsigned thIndex = getThIndex ();
4 if (thIndex >= data. ptsSize)
5 return ;
6
7 unsigned myIndex = data. rawIndexes [thIndex];
8 data. rawKeys [myIndex] = thIndex < split ? 0 : 1;
9 }

5.3.2.4 Recursive

As the first step of the Recursive function, the farthest points in segments need to be found,
and the distances to the connecting lines must be calculated.

Subsequently, the thrust::reduce by key function is called on the rearranged keys
and distances. This allows us to find the maximum distances for each key.

1 calculateDistances <<<blocks , threads >>>(data);
2
3 thrust :: device_vector <KEYS_TYPE >
4 reducedKeys (keysHelp .size ());
5 thrust :: device_vector < DISTANCES_TYPE >
6 reducedValues (distancesHelp .size ());
7 rearrangeKeys <<<blocks , threads >>>(
8 data , thrust :: raw_pointer_cast (keysHelp .data ()));
9 rearrangeDistances <<<blocks , threads >>>(

10 data , thrust :: raw_pointer_cast (distancesHelp .data ()));
11
12 thrust :: reduce_by_key (
13 thrust :: device ,
14 keysHelp .begin (), keysHelp .end (),
15 distancesHelp .begin (),
16 reducedKeys .begin (),
17 reducedValues .begin (),
18 thrust :: equal_to <KEYS_TYPE >(), thrust :: maximum < DISTANCES_TYPE >());

With the maximum distances calculated, a simple kernel can be utilized to determine if the
point possessed by a GPU thread is the farthest in the segment. If a thread finds out its point
is the farthest one, it sets its head flag to 1, and writes its index to an array of indexes of
farthest points.

40 Implementation

1 unsigned thIndex = getThIndex ();
2 if (thIndex >= data. ptsSize)
3 return ;
4
5 unsigned myPoint = data. rawIndexes [thIndex];
6
7 if (data. rawHead [myPoint] == 1)
8 return ;
9

10 unsigned myKey = data. rawKeys [myPoint];
11 if (reducedValues [myKey] == data. rawDistances [myPoint] &&
12 data. rawDistances [myPoint] != 0)
13 {
14 maxDistIndexes [myKey] = myPoint ;
15 data. rawHead [myPoint] = 1;
16 }

The next step in the algorithm is to remove all points in triangles in the respective segments.
This is fairly simple, as the farthest points are already computed. The remaining two points are
easily found, as they are the first points of the segments and the first points of next segments.

1 unsigned __device__ getLowerPoint (qhData &data , unsigned ptIndex)
2 { return data. rawFirstPts [data. rawKeys [ptIndex]]; }
3
4 unsigned __device__ getUpperPoint (qhData &data , unsigned ptIndex)
5 {
6 unsigned myKey = data. rawKeys [ptIndex];
7 if (myKey + 1 < data. rawFirstPtsSize)
8 return data. rawFirstPts [myKey + 1];
9 else

10 return data. rawFirstPts [0];
11 }

Once the points are marked with their flags set to 0, we can partition the points with the call
of the function thrust::stable partition. It is impartial to use stable partition, as the order-
ing of points needs to be preserved.

1 rearrangeFlags <<<blocks , threads >>>(
2 data , thrust :: raw_pointer_cast (flagsHelp .data ()));
3
4 auto splittingPoint = thrust :: stable_partition (
5 thrust :: device ,
6 data. devIndexes .begin (),
7 data. devIndexes .end (),
8 flagsHelp .begin (),
9 partitionNotRemoved ());

After partitioning, the vector of points can be sized down. This ensures that only non-removed
points are present in the vector.

1 unsigned splitIndex =
2 thrust :: distance (data. devIndexes .begin (), splittingPoint);
3 data. resize (splitIndex);

The next step is to update the vectors to prepare them for the possible next Recurse iteration.
This includes updating the Keys vector, which can be done by performing a prefix inclusive sum
of the vector Head. Subsequently, a simple kernel is utilized to update the keys of individual
points. It is important to note that the calculated values need to be decremented by 1. This
decrement is impartial for the values to represent indexes of segments (keys).

GPU Implementation 41

1 thrust :: inclusive_scan (thrust :: device ,
2 headsHelp .begin (),
3 headsHelp .end (),
4 updatedKeys .begin ());
5
6 kernelUpdateKeys <<<blocks , threads >>>(
7 data , thrust :: raw_pointer_cast (updatedKeys .data ()));

To update the vector of first points, the following kernel is called. This kernel checks if the
thread’s point has its value in the Head vector set to 1, and writes its index into the vector of first
points if true.

1 unsigned thIndex = getThIndex ();
2 if (thIndex >= data. ptsSize)
3 return ;
4
5 unsigned myIndex = data. rawIndexes [thIndex];
6 if (data. rawHead [myIndex] == 1)
7 data. rawFirstPts [data. rawKeys [myIndex]] = myIndex ;

Before the iteration can end, the count of first points has to be updated, which is trivially
done by performing a sum reduction of the vector Head.

1 rearrangeHeads <<<blocks , threads >>>(
2 data , thrust :: raw_pointer_cast (headsHelp .data ()));
3 int result = thrust :: reduce (thrust :: device ,
4 headsHelp .begin (),
5 headsHelp .end (),
6 0,
7 thrust ::plus <int >());
8
9 data. rawFirstPtsSize = result ;

5.3.3 Concurrent Hull

We will now advance to the implementation of the Concurrent Hull on the GPU, in accordance
to the algorithm we designed in Chapter 4, Algorithm 13.

5.3.3.1 Model

Inspired by the implementation of the model in the Quickhull GPU algorithm, we implemented
the concData struct. The main difference between the qhData and concData struct is the way
points are saved. Due to the more straight-forward data structure of this algorithm, points
can be saved as objects, whereas in the Quickhull GPU algorithm, points have to be decom-
positioned into vectors of their respective properties. Refer to Snippet 5.7 for the declaration
of the concData struct.

42 Implementation

1 struct concData
2 {
3 thrust :: host_vector <Point > hostPoints ;
4 thrust :: host_vector <unsigned > hostPositions ;
5 thrust :: host_vector <Segment > hostSegments ;
6
7 thrust :: device_vector <Point > devPoints ;
8 thrust :: device_vector <unsigned > devPositions ;
9 thrust :: device_vector <Segment > devSegments ;

10
11 Stats stats;
12 unsigned gridDim ;
13 unsigned step;
14
15 void reserve (unsigned pointsCount , unsigned dimensions);
16 void resize (unsigned size);
17 void copyToHost ();
18 void copyToDevice ();
19 };

Code listing 5.7 concData struct implementation

5.3.3.2 Crawling Algorithm
The GPU crawling algorithm essentially performs similar operations to the CPU version of this
algorithm, as desribed in Algorithm 11. The main difference is that in the CPU version, crawlers
were instantiated into a vector, from which they crawl in parallel. To reduce sequential compu-
tations on the GPU, we decided that the algorithm will iterate through all available directions
and leave the calculations of boundary segments up to the individual threads.

1 for (int i = directions ::U; i != directions ::LU; i++)
2 {
3 int rowStep , colStep ;
4 getStepsFromDirection ((directions)i, rowStep , colStep);
5 crawlKernel <<<ceil ((double)(gridDim * gridDim) / BLOCK_SIZE),
6 BLOCK_SIZE >>>(
7 thrust :: raw_pointer_cast (devSegments .data ()),
8 gridDim ,
9 rowStep , colStep);

10 }

In the final step of the algorithm, points in unviable segments need to be marked as removed.
We accomplished this with the following kernel function.

1 unsigned thIndex = getThIndex ();
2 if (thIndex >= n)
3 return ;
4
5 unsigned ptPos = positions [thIndex];
6 if (segments [ptPos]. viable == 0)
7 points [thIndex]. removed = true;

5.3.3.3 Graham Scan
The first step in the GPU version of the Graham scan is to sort the points by their Y coordinate
descending. For this purpose, we utitlized the function thrust::sort from the Thrust library.

GPU Implementation 43

1 thrust :: sort(thrust :: device ,
2 data. devPoints .begin (), data. devPoints .end (),
3 sortPointsByYDescending ());

The next step is to calculate the segments indexes for the points. To accomplish this, we im-
plemented the following kernel, which calculates the row and column of the segment each point
belongs to.

1 unsigned thIndex = getThIndex ();
2 if (thIndex >= data. rawPointsSize)
3 return ;
4
5 unsigned row = (double)data. rawPoints [thIndex].X / data.step;
6 unsigned col = (double)data. rawPoints [thIndex].Y / data.step;
7
8 unsigned segmentIndex = row * data. gridDim + col;
9 positions [thIndex] = segmentIndex ;

With the point positions in segments calculated, we can sort the points and positions accord-
ing to the segment indexes. It is important to note that stable sort has to be utilized in order
to preserve the ordering of the points inside the individual segments.

1 thrust :: stable_sort_by_key (thrust :: device ,
2 positions .begin (),
3 positions .end (),
4 data. devPoints .begin (),
5 thrust ::less <unsigned >());

The next step is to compute the sizes of segments, which we will later be used to determine
the starting indexes of each segment. To obtain the points counts in segments, the function
thrust::reduce by key with thrust::make constant iterator(1) as the iterator of values
is used.

1 thrust :: device_vector <unsigned >
2 reducedKeys (data. rawPointsSize),
3 reducedCounts (data. rawPointsSize);
4 thrust ::pair < unsigned *, unsigned *> new_end = thrust :: reduce_by_key (
5 thrust :: device ,
6 rawPositions ,
7 rawPositions + positions .size (),
8 thrust :: make_constant_iterator (1),
9 thrust :: raw_pointer_cast (reducedKeys .data ()),

10 thrust :: raw_pointer_cast (reducedCounts .data ()),
11 thrust :: equal_to <unsigned >(),
12 thrust ::plus <unsigned >());

Once sizes of segments are calculated, an inplace exclusive prefix sum is performed, which
completes computation of the starting indexes.

1 thrust :: exclusive_scan (thrust :: device ,
2 reducedCounts .begin (),
3 reducedCounts .end (),
4 reducedCounts .data ());

It is important to acknowledge that some segments might be empty and therefore are not
present in the result of the exclusive prefix sum. This means that the indexes need to be placed
on the correct indexes in order for the upcoming computations to be correct. The kernel

44 Implementation

fillSegmentBeginnings trivially copies the computed segment beginning of each segment
to the correct index.

1 thrust :: device_vector <unsigned >
2 segmentBeginnings (data. gridDim * data. gridDim);
3 thrust :: fill(segmentBeginnings .begin (), segmentBeginnings .end (), 0);
4
5 fillSegmentBeginnings <<<ceil ((double) reducedSize / BLOCK_SIZE),
6 BLOCK_SIZE >>>(
7 thrust :: raw_pointer_cast (reducedKeys .data ()),
8 thrust :: raw_pointer_cast (reducedCounts .data ()),
9 reducedSize ,

10 thrust :: raw_pointer_cast (segmentBeginnings .data ()));

Now, the implementation has all the ingredients to compute the polar angles of points
in segments. The threads with their individual points now know exactly to which segment
the point belongs and where the segment starts. Since we used a stable sort algorithm, the first
points of the segments are points with the highest Y coordinate in the segment.

1 thrust :: device_vector <float > polarAngles (data. rawPointsSize);
2 calculatePolarAngles <<<ceil ((double)data. rawPointsSize / BLOCK_SIZE),
3 BLOCK_SIZE >>>(
4 data ,
5 thrust :: raw_pointer_cast (polarAngles .data ()),
6 thrust :: raw_pointer_cast (positions .data ()),
7 thrust :: raw_pointer_cast (segmentBeginnings .data ()));

As a last step before running the Graham scan on each segment, points in segments need
to be sorted by their polar angles. We used a simple insertion sort kernel because the Thrust
library offers no good solutions to sorting values in multiple vectors at once.

1 unsigned i = start + 1;
2 while (i < end)
3 {
4 unsigned j = i;
5 while (j > start && angles [j - 1] < angles [j])
6 {
7 Point tmp = points [j];
8 points [j] = points [j - 1];
9 points [j - 1] = tmp;

10
11 float ftmp = angles [j];
12 angles [j] = angles [j - 1];
13 angles [j - 1] = ftmp;
14
15 j--;
16 }
17 i++;
18 }

With all points in segments sorted by their polar angle, Graham scan kernels can be executed
on each of the segments. We initialize a new vector of points to reduce execution times caused by
allocation of memory inside kernels. Individual kernels are subsequently able to use this vector
as their stack.

GPU Implementation 45

1 thrust :: device_vector <unsigned > stacks (data. rawPointsSize);
2 grahamScanKernel <<<ceil ((double) reducedSize / BLOCK_SIZE), BLOCK_SIZE >>>(
3 data ,
4 thrust :: raw_pointer_cast (reducedCounts .data ()),
5 reducedSize ,
6 thrust :: raw_pointer_cast (stacks .data ()));

The last step of the Graham scan on the GPU is to partition off the points removed during
the computation. A simple thrust::partition function call can be used for this purpose.

1 auto splittingPoint = thrust :: partition (thrust :: device ,
2 data. devPoints .begin (), data. devPoints .end (),
3 partitionRemoved ());
4
5 unsigned remainingPoints = thrust :: distance (data. devPoints .begin (),
6 splittingPoint);
7 data. resize (remainingPoints);

5.3.3.4 Jarvis March
As mentioned in Chapter 4, our Concurrent Hull implementation on the GPU utilizes the CPU
version of the Jarvis march, because the CPU is better suited for sequential computations.
However, since the data are already saved on the device from previous computations, we decided
to find the point with the minimal X coordinate by calling the function thrust::min element.

1 auto minimalX = thrust :: min_element (
2 thrust :: device ,
3 data.rawPoints ,
4 data. rawPoints + data. rawPointsSize ,
5 sortPointsByXAscending ());

5.3.3.5 Concurrent Hull
To merge the partial algorithms into the Concurrent Hull, the individual functions are called
as methods of their respective classes. This is possible by the intuitive design of the algorithm.

1 concData data;
2 createGrid (points , n, data);
3 data. copyToDevice ();
4
5 CCrawl crawl;
6 crawl.crawl(data);
7
8 CGrahamScan graham ;
9 graham . grahamScan (data);

10
11 CJarvisMarch jarvis ;
12 jarvis . jarvisMarch (data);

46 Implementation

Chapter 6

Measurement and Comparison

This chapter is dedicated to measurement and comparison of the performance of our algorithms.
To satisfy point 4) of our assignment, we will design and implement generators of points, which
we will later use to generate input for our measurement efforts. Subsequently, we will measure the
speedup of our parallel implementations compared to their respective sequential versions (Section
6.2). This will fulfill point 5b) of the assignment. In Section 6.3, we will satisfy point 5c) of
the assignment, by measuring and comparing the performance of our GPU implementations
with different execution configurations. Afterwards, we will compare the performance of our
algorithms with each other in Section 6.4, and compare our best-performing algorithms with
other implementations in Section 6.5. In conclusion to this chapter, we will discuss the results
of the measurements carried out over the course of this chapter in Section 6.6.

The performance measurement will be carried out on the STAR server (more specifically,
its gpu-02 node) present at the Faculty of Information Technology. The specifications of the
STAR server are listed in Table 6.1. Measurements will be performed 10 times in succes-
sion. Subsequently, the medians of the results will be computed and presented in this chapter.
In Sections 6.2, 6.3, and 6.4, import, export, and other factors were eliminated for purposes of
better comparison, therefore, all measurements are pure algorithm execution times. Compilation
flags used for the purposes of our measurement are listed in Snippet 6.1, and Snippet 6.2.

1 g++ -Wall -pedantic -fopenmp -O3 -std=c++2a

Code listing 6.1 CPU implementations compilation flags

1 nvcc -std=c++17 -Xptxas -O3 --extended - lambda

Code listing 6.2 GPU implementations compilation flags

CPU 2x 6core Xeon 2620 v2 @ 2.1GHz
GPU GeForce RTX 2080 Ti
RAM 32 GB
OS CentOS Linux 7 (Core)

Table 6.1 STAR server specifications - node gpu-02

47

48 Measurement and Comparison

6.1 Generators

As part of our assignment, it is required that we design and implement at least two generators of
input points for convex hull algorithms. To accomplish this task, we first decided to explore the
state-of-the-art. Since not many implementations of generators and convex hull algorithms have
been openly published, we decided to inspect the Qhull library. We found that it uses the format
described in Snippet 6.3, which we decided to use for our implementation for compatibility.

1 3 # sample 3-d input
2 5
3 0.4 -0.5 1.0
4 1000 -1e-5 -100
5 0.3 0.2 0.1
6 1.0 1.0 1.0
7 0 0 0

Code listing 6.3 Qhull library input [19]

In this format, the first line specifies the dimensions of the input, the second line the count
of points, and all following lines represent the point’s coordinates.

Subsequently, we decided to analyze the algorithms that we are to implement to find their
strengths and weaknesses. This knowledge could enable us to design generators better suited for
demonstrating the difference in performance of the algorithms.

In the case of the Quickhull algorithm, the divide-and-conquer approach suggests that it
will not perform well if the division of segments is very one-sided (the algorithm keeps splitting
off single points). This could be achieved by a layout of points, which would logarithmically
divide the outline of a circle. However, because of the size of datatypes in computers, such
layout of points would probably run out of coordinates to assign to these points. Therefore, the
computation would likely be very quick nonetheless. To ensure the largest number of iterations
needed for the algorithm, a circle layout of input points would be suitable.

In the case of the Concurrent Hull algorithm, it is clear that it relies on the crawling al-
gorithm removing many of the interior points. Furthermore, since the individual Graham
scans are sequential, they rely on segments not being overfilled with points. In the last step
of the Concurrent Hull algorithm, the global Jarvis march algorithm is executed. This would
also be very costly if the count of points remaining from the input were large. We are essentially
looking for an input where the crawling algorithm and the Graham scans remove as little points
as possible. Again, the circle layout of points would be very suitable for this purpose, as all of
the work would have to be done by the sequential Jarvis march algorithm.

We expect the circle layout to be very difficult for the Concurrent Hull algorithm, therefore,
to give it a fighting chance, we also decided to implement a fuzzy circle layout generator with
fuzziness set to 10%, which will essentially output a donut layout of points. The layouts our
generator outputs can be observed in Figure 6.1.

6.2 Parallelization

To measure the speedup of our parallel CPU implementations, we measured the performance
of sequential versions and parallel CPU versions. We decided to measure the performances on
points in a cluster layout, with the grid dimension set to 20. The results of this measurement in
milliseconds, as well as the calculated speedup values, can be observed in Table 6.2.

GPU Execution Configuration 49

(a) Cluster layout (b) Circle layout (c) Fuzzy circle layout

Figure 6.1 Generator layouts

N Quickhull Concurrent Hull Quickhull with Crawlers
seq par speedup seq par speedup seq par speedup

102 0.0520 0.1846 0.2816 0.3871 0.2494 1.5521 0.3262 0.2350 1.3880
104 0.9295 1.0867 0.8553 1.6630 1.3188 1.2609 0.9438 1.0224 0.9231
106 106.93 86.393 1.2377 237.24 118.31 2.0052 73.058 62.405 1.1707
107 1009.2 822.00 1.2277 2588.3 1044.4 2.4782 682.22 550.09 1.2401
108 OOM OOM OOM OOM OOM OOM
Table 6.2 Parallelization measurement: Cluster layout, grid dimension: 20

6.3 GPU Execution Configuration

To fulfill task 5c) of the assignment, we will now compare the performance of our GPU implemen-
tations with different execution configurations. It is well known within the GPU programming
community, that the optimal blocksizes are multiples of 32, which is the size of the so-called
”warp”. A warp is a set of GPU threads, which execute the same instruction at the same time.
For this reason, measurement will be done on blocks sizes of 32, 256, and 1024. Measurements
will be done on datasets in the cluster layout with point counts set to 104, and grid dimension
set to 20. The results of this measurement, can be observed in Table 6.3.

6.4 Algorithm Comparison

In this section, we will compare our implementations to eachother, and elect the best performing
ones to compare with other implementations. Results of measurements are plotted on bar graphs
presented in this section.

Block size Quickhull with Crawlers Quickhull Concurrent Hull
32 57.2845 ms 105.832 ms 68.0654 ms

256 56.1350 ms 105.027 ms 70.7012 ms
1024 60.0173 ms 108.394 ms 71.0259 ms

Table 6.3 GPU execution configurations measurement: Cluster layout, 104 points, grid dimension: 20

50 Measurement and Comparison

6.4.1 CPU Algorithms Comparison

We will now compare our CPU implementations on inputs of 102, 104, and 106 points in all
layouts presented in Section 6.1. Measurements will be completed on various grid dimension
settings.

6.4.1.1 Cluster Layout

Figure 6.2 shows that in the case of 102 points in a cluster layout, Quickhull performed the best.
This can be easily explained by the implementation being very straightforward, with almost
no overhead for initialization.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(a) Grid dimension: 1

0.00 0.05 0.10 0.15 0.20 0.25
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(b) Grid dimension: 5

Figure 6.2 CPU algorithms comparison: Cluster layout, 102 points

With the count of points expanded to 104, Quickhull no longer performed the best of our
algorithms. Moreover, as it was surpassed by Quickhull with Crawlers in each of the grid dimen-
sion settings. This shows us that the cluster layout of points starts to slow Quickhull down with
increasing point counts. The Concurrent Hull algorithm clearly starts to catch up with the other
algorithms with growing grid dimensions. This measurement can be observed in Figure 6.3.

Algorithm Comparison 51

0 2 4 6 8 10
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(a) Grid dimension: 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(b) Grid dimension: 10

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(c) Grid dimension: 20

Figure 6.3 CPU algorithms comparison: Cluster layout, 104 points

On 106 points (Figure 6.4), all algorithms slow down considerably compared to 104 points.
We can clearly see that Quickhull with Crawlers performs the best out of all our implementations.
Concurrent Hull’s performance increases dramatically with the increase of the grid dimension.
On the other hand, Quickhull lacks the preprocessing advantages Quickhull with Crawlers and
Concurrent Hull have and performs the worst in this measurement. There also seem to be some
inconsistencies in our measurement, as the Quickhull algorithm loses some of its performance
with the grid dimension set to 20. This can be easily explained by a sudden change in the use
of the STAR server, which is shared between all faculty students.

0 20 40 60 80 100 120 140 160
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(a) Grid dimension: 10

0 20 40 60 80 100
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(b) Grid dimension: 20

0 10 20 30 40 50 60 70 80
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(c) Grid dimension: 50

Figure 6.4 CPU algorithms comparison: Cluster layout, 106 points

52 Measurement and Comparison

6.4.1.2 Circle Layout
As Figure 6.5 indicates, the circle layout with 102 points shows a performance similar to the
cluster layout with 102 points, which was expected. Concurrent Hull clearly performs the worst,
although not as bad as we expected.

0.0 0.2 0.4 0.6 0.8
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(a) Grid dimension: 1

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(b) Grid dimension: 5

Figure 6.5 CPU algorithms comparison: Circle layout, 102 points

Figure 6.6 confirms our expectations from Section 6.1. As stated before, the Concurrent Hull
relies heavily on the Crawl and Graham scan phases, which remove no points from the circle
layout. This leaves all the computation up to the last phase, the Jarvis march. Further testing
on more points is therefore redundant, as our expectations have already been proven.

0 200 400 600 800 1000
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(a) Grid dimension: 1

0 200 400 600 800 1000
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(b) Grid dimension: 10

0 200 400 600 800 1000
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(c) Grid dimension: 20

Figure 6.6 CPU algorithms comparison: Circle layout, 104 points

6.4.1.3 Fuzzy Circle Layout
In the case of the 102 point fuzzy circle layout, the algorithms deliver the same performance
results as other layouts. This can be explained by the count of points being too small for the

Algorithm Comparison 53

layout of points to have a large effect on the performance. Observe Figure 6.7 for illustration.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(a) Grid dimension: 1

0.00 0.05 0.10 0.15 0.20 0.25
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(b) Grid dimension: 5

Figure 6.7 CPU algorithms comparison: Fuzzy circle layout, 102 points

As Figure 6.8 illustrates, with an increase in grid dimension, the performances of Quick-
hull with Crawlers and Concurrent Hull also increase. Surprisingly, Quickhull performs quite
well in this measurement, even with no preprocessing. Quickhull with Crawlers keeps the best
performance across all grid dimension settings.

0 2 4 6 8 10
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(a) Grid dimension: 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(b) Grid dimension: 10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(c) Grid dimension: 20

Figure 6.8 CPU algorithms comparison: Fuzzy circle layout, 104 points

Figure 6.9 confirms our findings from Figure 6.8. Compared to the cluster layout with the
same number of points, Concurrent Hull performs considerably worse, which further confirms
our expectations about its performance with densely spaced points.

54 Measurement and Comparison

0 25 50 75 100 125 150 175
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(a) Grid dimension: 10

0 20 40 60 80
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(b) Grid dimension: 20

0 10 20 30 40 50 60 70 80
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(c) Grid dimension: 50

Figure 6.9 CPU algorithms comparison: Fuzzy circle layout, 106 points

6.4.2 GPU Algorithms Comparison
This section is dedicated to comparing our implementations of GPU algorithms. Block sizes are
set to 32 for all measurements, which proved to be a reliable configuration in Section 6.3. Grid di-
mension settings will vary from 1 to 20. Unfortunatelly, measurements cannot be performed on
input sizes above 104, because they cause an error in the Thrust library when executing Quick-
hull and Quickhull with Crawlers. Therefore, measurements will be performed on inputs of 102

and 104 points in all layouts presented in Section 6.1.

6.4.2.1 Cluster Layout
We will start our comparison of GPU algorithms with the cluster layout of 102 points. Figure 6.10
shows the clear dominance of the Concurrent Hull algorithm, with the performance slightly
improving as the dimension of the grid increases to 5.

0 2 4 6 8 10 12
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(a) Grid dimension: 1

0 2 4 6 8 10 12 14 16
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(b) Grid dimension: 5

Figure 6.10 GPU algorithms comparison: Cluster layout, 102 points

Algorithm Comparison 55

As Figure 6.11 indicates, the GPU implementation of Concurrent Hull performs poorly with
the grid dimension set to 1, reaching the time of more than 5,000 milliseconds. Its performance
improves drastically with the increase in the grid dimensions. Quickhull with Crawlers, however,
maintains the better performance.

0 1000 2000 3000 4000 5000
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(a) Grid dimension: 1

0 20 40 60 80 100
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(b) Grid dimension: 10

0 20 40 60 80 100
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(c) Grid dimension: 20

Figure 6.11 GPU algorithms comparison: Cluster layout, 104 points

6.4.2.2 Circle Layout

Interestingly enough, Concurrent Hull on the GPU does very well on the circle layout of 102 points
(Figure 6.12). This can be explained by the algorithm design in Chapter 4, where we decided
to use the CPU version of the Jarvis march algorithm for the last step of the Concurrent Hull.
It is important to note that the performance of algorithms with preprocessing (Concurrent Hull
and Quickhull with Crawlers) does not change marginally with the increase in grid dimension.
This behavior can be explained by the same steps of the algorithm being taken, regardless
of the grid dimension. Furthermore, the algorithms do not provide better performance with the
change of grid dimension, because no points can be removed from the circle layout.

56 Measurement and Comparison

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(a) Grid dimension: 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(b) Grid dimension: 5

Figure 6.12 GPU algorithms comparison: Circle layout, 102 points

Figure 6.13 shows a clear decrease in the performance of Concurrent Hull, as the execution
times increase to 25000 milliseconds. This result was expected, and is very similar to the result
in Figure 6.6, where the Concurrent Hull also underdelivered on its performance.

0 5000 10000 15000 20000 25000
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(a) Grid dimension: 1

0 2500 5000 7500 10000 12500 15000 17500 20000
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(b) Grid dimension: 10

0 2500 5000 7500 10000 12500 15000 17500
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(c) Grid dimension: 20

Figure 6.13 GPU algorithms comparison: Circle layout, 104 points

6.4.2.3 Fuzzy Circle Layout

The fuzzy circle layout produces results posing somewhat as a middleground between the cluster
and circle layouts of 102 points. This reassures us, that our expectations about the performances
were right (Figure 6.14).

Algorithm Comparison 57

0 2 4 6 8 10 12 14 16
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(a) Grid dimension: 1

0 2 4 6 8 10 12 14 16
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(b) Grid dimension: 5

Figure 6.14 GPU algorithms comparison: Fuzzy circle layout, 102 points

With the increase of points to 104, Concurrent Hull performs particularly better with the in-
crease of the grid dimension. It remains outperformed by Quickhull with Crawlers, further prov-
ing our point made in the conclusions from other layouts. The graph depicting this measurement
can be observed in Figure 6.15.

0 1000 2000 3000 4000 5000
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(a) Grid dimension: 1

0 20 40 60 80 100
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(b) Grid dimension: 10

0 20 40 60 80 100
Time [ms]

Concurrent Hull
Quickhull

Quickhull with Crawlers

(c) Grid dimension: 20

Figure 6.15 GPU algorithms comparison: Fuzzy circle layout, 104 points

6.4.3 Conclusion
We will now summarize our findings from the measurements and comparisons in this section in
order to elect our best CPU and GPU algorithm to the comparison with other implementations.

In the case of CPU algorithms, Quickhull with Crawlers offers the best performance on the
fuzzy circle layout as well as the cluster layout of points. It also performs reasonably well on
circle layouts of points, even though not as well as plain Quickhull because of the overhead
preprocessing, which does not come into play on this layout.

58 Measurement and Comparison

As for our GPU implementations, we decided to elect the Concurrent Hull algorithm from
our GPU implementations for the purpose of comparison, as it executes correctly with higher
point counts. If this were not the case, we would have chosen Quickhull with Crawlers, as it offers
better performance over all the layouts.

6.5 Implementation Comparison
In this section, we will compare our best performing algorithms to other implementations.
Unfortunately, we found only two implementations that openly published their source code.
These implementations are the Qhull library [19] (CPU) and CudaChain [20] (GPU). Other im-
plementations (such as the official Concurrent Hull implementation) are supposedly fully avail-
able, however, we were not able to locate them. To make matters worse, the CudaChain im-
plementation was not compileable on the STAR server during the course of writing this thesis.
For these reasons, we will only compare our implementations with the Qhull library.

As stated in Section 6.4.3, we decided to elect our CPU implementation of Quickhull with
Crawlers and GPU implementation of Concurrent Hull for the comparison. Measurements will be
performed on all point layouts of 106 points, with various grid dimensions, and GPU block sizes
set to 32. We used the latest version of the Qhull library (qhull-2020-8.0.2) in the measurements.

6.5.1 Cluster Layout
The cluster layout provided us with the results in Table 6.4. It is apparent that our implementa-
tion of the Concurrent Hull on the GPU underperforms on the dataset of 106 points in a cluster
layout. This can be caused by multiple factors, one is the cost of data copying from the host to
the device and back, and the other is simply our subpar implementation.

Algorithm Grid dimension
20 50 100 200

Quickhull with Crawlers CPU 468 ms 451 ms 481 ms 512 ms
Concurrent Hull GPU 9658 ms 7893 ms 7853 ms 8040 ms

Qhull CPU 502 ms 504 ms 516 ms 514 ms
Table 6.4 Implementations comparison: Cluster layout, 106 points

6.5.2 Circle Layout
The next measurement we performed is computation on 106 points in a circle layout. The results
of this measurement are observable in Table 6.5. In the case of the circle layout, we expected
Concurrent Hull on the GPU to fail. These expectations came true as the Concurrent Hull did
not finish the computation before the server killed the process. This reality is denoted in the table
as DNF (Did Not Finish). On the other hand, our implementation of Quickhull with Crawlers
on the CPU performed much better than the Qhull library by a significant margin.

Algorithm Grid dimension
20 50 100 200

Quickhull with Crawlers CPU 868 ms 875 ms 890 ms 877 ms
Concurrent Hull GPU DNF DNF DNF DNF

Qhull CPU 2487 ms 2483 ms 2518 ms 2510 ms
Table 6.5 Implementations comparison: Circle layout, 106 points

Implementation Comparison 59

6.5.3 Fuzzy Circle Layout
To finish the measurement off, we ran the implementations on a data set of 106 points in a fuzzy
circle layout (Table 6.6). Once again, our Concurrent Hull implementation delivers the worst
performance, with its best result of 7778 milliseconds. On the other hand, our Quickhull with
Crawlers CPU implementation manages to overcome the Qhull library if the grid dimension is
set right.

Algorithm Grid dimension
20 50 100 200 500

Quickhull with Crawlers CPU 465 ms 439 ms 448 ms 454 ms 567 ms
Concurrent Hull GPU 11072 ms 7778 ms 7793 ms 7913 ms 9080 ms

Qhull CPU 503 ms 492 ms 490 ms 489 ms 489 ms
Table 6.6 Implementations comparison: Fuzzy circle layout, 106 points

60 Measurement and Comparison

6.6 Discussion
This section is dedicated to discussing the measurement results, the qualities and shortcomings
of our implementations, and to discussing possible improvements to our implementations.

6.6.1 Parallelization
The main objective of Section 6.2 was the measurement of the speedup of our CPU algorithms
with the transition from sequential to parallel computation. Clearly, parallelization plays an enor-
mous role in the performance of the Concurrent Hull algorithm, with speedup values rising up
to 2.47. In the case of Quickhull, the increase in performance was not as apparent, and in lower
sizes of input datasets, even leading to significant decreases. We suspect the cause to be the algo-
rithm’s design, where the main part of the computation is partitioning points, which is performed
sequentially. If this factor were reduced or even eliminated (similarly to the GPU Quickhull al-
gorithm), the algorithm performance could increase marginally. The last algorithm, Quickhull
with Crawlers, mittigates the speedup faults in Quickhull, while delivering substantial speedup
on higher point counts.

6.6.2 GPU Configurations
The results listed in Section 6.3 suggest that block size does not affect the performance of our
GPU implementations by a significant margin, with the best results delivered by blocksizes
of 32 and 256. We suggest keeping the block size set to values divisible by 32 in the range
between 32 and 256 for the best performance results.

6.6.3 CPU Implementations
Our CPU implementations of algorithms designed for computing the convex hull of points per-
formed well, even when compared to existing implementations. The best performance was
achieved by the new version of Quickhull, which we called Quickhull with Crawlers, which per-
formed even better than the Qhull library. We would like to see an effective algorithm for
evaluating the optimal grid dimension as the next step in development of the Quickhull with
Crawlers algorithm. It is apparent that the Quickhull algorithm can compete with newer and
more complex algorithms like the Concurrent Hull, when assisted with a simple preprocessing
phase. We suggest more research in this branch, which would consist of exploring different
methods of preprocessing.

6.6.4 GPU Implementations
Our GPU implementations will require more development in order for them to be competitive and
useful for practical applications. The main problem in our implementations are the limitations
of the input dataset size. As stated in this chapter, Quickhull and Quickhull with Crawlers are
incapable of working with datasets of 105 points and more. This is caused by an error, which
occurs only when large sizes of data are copied. We suppose that the cause of the error is
the cooperation of Thrust library calls and CUDA kernel calls in complex algorithms, however,
further research is required.

This error is not present in our implementation of the Concurrent Hull algorithm, but the im-
plementation has its own shortcomings. Mainly, the performance when compared to CPU imple-
mentations is very disappointing. We propose further development focused on removing as many
CUDA kernels as possible, leaving most or all of the computation to the Thrust library or other
libraries.

Chapter 7

Conclusion

The main goal of this thesis was to design a new version of the Quickhull algorithm that utilizes
crawlers during the preprocessing phase and compare its performance to the Quickhull algorithm,
the Concurrent Hull algorithm and other implementations of solvers of the convex hull problem.

To accomplish this goal, we first studied the convex hull problem and the state-of-the-art
algorithms designed for solving the convex hull problem. Subsequently, we designed the Quickhull
algorithm and the Concurrent Hull algorithm for computation on the CPU using the OpenMP
API, and for computation on the GPU using the CUDA API and the Thrust library. As part
of the Design chapter of this thesis, we designed a new version of the Quickhull algorithm called
Quickhull with Crawlers that utilizes crawlers during the preprocessing phase. In the chapter
Implementation, we proceeded to implement the algorithms we designed in the Design chapter
of this thesis. We described the parallelization methods we used, the steps the algorithms take,
and other implementation details that we deemed important. To evaluate the quality of our
implementations, we measured their performance on datasets outputted by generators of input
points we designed and implemented. We compared the performance of our implementations
with each other, as well as with the already existing Qhull library.

The output of this thesis are designs and implementations of the Quickhull, Concurrent Hull,
and Quickhull with Crawlers algorithms for computation on both the CPU and the GPU. It has
been published as an open source project:
https://github.com/spryslmatej/ConvexHullAlgorithms.

In conclusion to this thesis, we will propose ideas for future improvements to our implemen-
tations, as well as ideas for future research on the subject of the convex hull problem.

Ideas for future development of our implementations:

The removal of limitations of the input dataset size for our implementations of Quickhull
and Quickhull with Crawlers for the GPU.

Increasing the performance of the Concurrent Hull implementation.

Ideas for future research:

Effective algorithm for evaluating the optimal grid dimension for the Quickhull with
Crawlers and Concurrent Hull algorithms.

Exploration of different methods of preprocessing points for the convex hull problem.

:
:

61

https://github.com/spryslmatej/ConvexHullAlgorithms

62 Conclusion

Bibliography

1. ROCKAFELLAR, R.T. Convex Analysis. Princeton University Press, 1970. Princeton math-
ematical series. isbn 9780691080697. issn 0079-5194. Available also from: https://books.
google.cz/books?id=lfv2vAEACAAJ.

2. Convex polygon illustration 1 [online]. Wikipedia, 2016 [visited on 2023-05-02]. Available
from: https://commons.wikimedia.org/wiki/File:Convex_polygon_illustration1.
svg.

3. Convex polygon illustration 2 [online]. Wikipedia, 2016 [visited on 2023-05-02]. Available
from: https://commons.wikimedia.org/wiki/File:Convex_polygon_illustration2.
svg.

4. JARVIS, R.A. On the identification of the convex hull of a finite set of points in the plane.
Information Processing Letters. 1973, vol. 2, no. 1, pp. 18–21. issn 0020-0190. Available
from doi: https://doi.org/10.1016/0020-0190(73)90020-3.

5. SMET, Alan De. Jarvis march convex hull algorithm diagram [online]. Wikipedia, 2017
[visited on 2023-05-02]. Available from: https://commons.wikimedia.org/wiki/File:
Jarvis_march_convex_hull_algorithm_diagram.svg.

6. GRAHAM, R.L. An efficient algorith for determining the convex hull of a finite planar set.
Information Processing Letters. 1972, vol. 1, no. 4, pp. 132–133. issn 0020-0190. Available
from doi: https://doi.org/10.1016/0020-0190(72)90045-2.

7. FELKEL, Petr. Convex Hulls [online]. Faculty of Electrical Engineering at CTU in Prague,
2014 [visited on 2023-04-25]. Available from: https://cw.fel.cvut.cz/wiki/_media/
misc/projects/oppa_oi_english/courses/ae4m39vg/lectures/04-convexhull.pdf.

8. CHAN, T. M. Optimal Output-Sensitive Convex Hull Algorithms in Two and Three Dimen-
sions. Discrete Comput. Geom. 1996, vol. 16, no. 4, pp. 361–368. issn 0179-5376. Available
from doi: 10.1007/BF02712873.

9. MOUNT, David. CMSC 754: Computational Geometry, Lecture Notes for Spring 2007,
University of Maryland, Lecture 3 [online]. 2007. [visited on 2023-03-20]. Available from:
https://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.
pdf.

10. MASNADI, Sina; LAVIOLA, Joseph J. ConcurrentHull: A Fast Parallel Computing Ap-
proach to the Convex Hull Problem. In: BEBIS, George; YIN, Zhaozheng; KIM, Edward;
BENDER, Jan; SUBR, Kartic; KWON, Bum Chul; ZHAO, Jian; KALKOFEN, Denis;
BACIU, George (eds.). Advances in Visual Computing. Cham: Springer International Pub-
lishing, 2020, pp. 593–605. isbn 978-3-030-64556-4. Available from doi: 10.1007/978-3-
030-64556-4_46.

63

https://books.google.cz/books?id=lfv2vAEACAAJ
https://books.google.cz/books?id=lfv2vAEACAAJ
https://commons.wikimedia.org/wiki/File:Convex_polygon_illustration1.svg
https://commons.wikimedia.org/wiki/File:Convex_polygon_illustration1.svg
https://commons.wikimedia.org/wiki/File:Convex_polygon_illustration2.svg
https://commons.wikimedia.org/wiki/File:Convex_polygon_illustration2.svg
https://doi.org/https://doi.org/10.1016/0020-0190(73)90020-3
https://commons.wikimedia.org/wiki/File:Jarvis_march_convex_hull_algorithm_diagram.svg
https://commons.wikimedia.org/wiki/File:Jarvis_march_convex_hull_algorithm_diagram.svg
https://doi.org/https://doi.org/10.1016/0020-0190(72)90045-2
https://cw.fel.cvut.cz/wiki/_media/misc/projects/oppa_oi_english/courses/ae4m39vg/lectures/04-convexhull.pdf
https://cw.fel.cvut.cz/wiki/_media/misc/projects/oppa_oi_english/courses/ae4m39vg/lectures/04-convexhull.pdf
https://doi.org/10.1007/BF02712873
https://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
https://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
https://doi.org/10.1007/978-3-030-64556-4_46
https://doi.org/10.1007/978-3-030-64556-4_46

64 Bibliography

11. BARBER, C. Bradford; DOBKIN, David P.; HUHDANPAA, Hannu. The Quickhull Algo-
rithm for Convex Hulls. ACM Trans. Math. Softw. 1996, vol. 22, no. 4, pp. 469–483. issn
0098-3500. Available from doi: 10.1145/235815.235821.

12. OPENMP. OpenMP official website tutorials and articles [online]. [N.d.]. [visited on 2023-
04-30]. Available from: https://www.openmp.org/resources/tutorials-articles/.

13. OpenMP task basics (part 2) [online]. 2021. [visited on 2023-05-03]. Available from: https:
//hpc2n.github.io/Task-based-parallelism/branch/master/task-basics-2/.

14. BERTINI, Marco. Parallel Computing [online]. Media Integration and Communication Cen-
ter, The University of Florence, 2016-2017 [visited on 2023-03-23]. Available from: https:
//www.micc.unifi.it/bertini/download/parallel/2016-2017/9_shared_memory_
openmp_directives.pdf.

15. NVIDIA. CUDA Toolkit Documentation [online]. 2023. [visited on 2023-04-30]. Available
from: https://docs.nvidia.com/cuda/index.html.

16. Thrust - Parallel Algorithms Library [online]. [N.d.]. [visited on 2023-03-27]. Available from:
https://thrust.github.io/.

17. JIAYIN, Zhang; MEI, Gang; XU, Nengxiong; YANG, Kun. A Novel Implementation of
QuickHull Algorithm on the GPU. arxiv. 2015. Available from doi: https://doi.org/10.
48550/arXiv.1501.04706.

18. Thrust: thrust::reduce by key [online]. [N.d.]. [visited on 2023-04-23]. Available from: https:
//thrust.github.io/doc/group__reductions_gad5623f203f9b3fdcab72481c3913f0e0.
html.

19. BARBER, C.B. Qhull manual [online]. 1995-2020. [visited on 2023-04-24]. Available from:
www.qhull.org/html/index.htm.

20. MEI, Gang. CudaChain: an alternative algorithm for finding 2D convex hulls on the GPU.
SpringerPlus. 2016, vol. 5, no. 1. Available from doi: 10.1186/s40064-016-2284-4.

https://doi.org/10.1145/235815.235821
https://www.openmp.org/resources/tutorials-articles/
https://hpc2n.github.io/Task-based-parallelism/branch/master/task-basics-2/
https://hpc2n.github.io/Task-based-parallelism/branch/master/task-basics-2/
https://www.micc.unifi.it/bertini/download/parallel/2016-2017/9_shared_memory_openmp_directives.pdf
https://www.micc.unifi.it/bertini/download/parallel/2016-2017/9_shared_memory_openmp_directives.pdf
https://www.micc.unifi.it/bertini/download/parallel/2016-2017/9_shared_memory_openmp_directives.pdf
https://docs.nvidia.com/cuda/index.html
https://thrust.github.io/
https://doi.org/https://doi.org/10.48550/arXiv.1501.04706
https://doi.org/https://doi.org/10.48550/arXiv.1501.04706
https://thrust.github.io/doc/group__reductions_gad5623f203f9b3fdcab72481c3913f0e0.html
https://thrust.github.io/doc/group__reductions_gad5623f203f9b3fdcab72481c3913f0e0.html
https://thrust.github.io/doc/group__reductions_gad5623f203f9b3fdcab72481c3913f0e0.html
www.qhull.org/html/index.htm
https://doi.org/10.1186/s40064-016-2284-4

Contents of Enclosed Media

readme.txt..short media description
src

impl.. implementation source codes
thesis...LATEX format thesis source code

text...thesis text
thesis.pdf...thesis text in PDF

65

	Acknowledgments
	Declaration
	Abstract
	List of Abbreviations
	Convex Hull Problem
	Convex Set
	Convex Hull

	Convex Hull Algorithms
	Jarvis March
	Algorithm
	Complexity

	Graham Scan
	Algorithm
	Complexity

	Chan's Algorithm
	Algorithm
	Complexity

	Crawlers
	Complexity

	Concurrent Hull
	Algorithm
	Complexity

	Quickhull
	Algorithm
	Complexity

	Technologies
	OpenMP
	Task Parallelism
	Data Parallelism

	CUDA
	Thrust

	Design
	Data Structure
	CPU Algorithms Design
	Quickhull
	Concurrent Hull
	Quickhull with Crawlers

	GPU Algorithms Design
	Quickhull
	Concurrent Hull
	Quickhull with Crawlers

	Implementation
	CPU Implementation
	Model
	Quickhull
	Concurrent Hull

	CPU Sequential Versions
	GPU Implementation
	Model
	Quickhull
	Concurrent Hull

	Measurement and Comparison
	Generators
	Parallelization
	GPU Execution Configuration
	Algorithm Comparison
	CPU Algorithms Comparison
	GPU Algorithms Comparison
	Conclusion

	Implementation Comparison
	Cluster Layout
	Circle Layout
	Fuzzy Circle Layout

	Discussion
	Parallelization
	GPU Configurations
	CPU Implementations
	GPU Implementations

	Conclusion
	Contents of Enclosed Media

