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Instructions

Nowadays, live streaming is gaining popularity and thus becoming a standard service 

that is integrated within social networks like Facebook, TikTok, and Twitch. However, 

current implementations of video transcoding services like Wowza, Flussonic, Elemental, 

or cloud solutions provided by eg. Amazon have either suboptimal end-to-end latency, 

are not optimized for scale, or are quite expensive.

Moreover, most of these solutions are built on top of FFmpeg libraries, which are not easy 

to work with. Furthermore, they are written in C, do not provide any memory-safe 

guarantees, and often introduce new bugs due to new functionality added.

This thesis aims to implement a parallel GPU accelerated video transcoding service. 

Moreover, the end-to-end latency should be minimal to achieve the best interaction 

between the audience and the streamer. Use Nvidia libraries to interact with the 

hardware accelerator (Nvenc, Nvdec, Cuda). To achieve memory safety, write the 

application in  Rust, implement safe memory wrappers and use FFI to interact with the 

low-level Nvidia libraries. The application should balance among all available GPUs to 

accomplish an equal workload across all cards. Currently, we expect to work with Nvidia 

A16 or RTX A4000s but this is subject to change based on availability, testing, etc. All 

required hardware (servers, GPUs, networking, colocation, ...) will be provided by the 

supervisor. 

In the thesis, apply standard SE methods and consider the following requirements:
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- Implement proof of concept of Nvidia accelerated video transcoder using Nvenc, Nvdec, 

and Cuda.

- Write it in Rust to achieve better memory safety. And use FFI to interact with the low-

level code.

- Balance incoming streams across multiple GPUs within a single node.

- Support video codec H264.

- Use RTMP on the input.

- The output format is to be considered by the student.

- Set up proper CI/CD environment and implement tests.

- Create user/programmer documentation.
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Supervisor: Ing. Tomáš Kvasnička
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Abstract

Nowadays, live streaming is gaining popularity and thus becoming a standard service that is
integrated within social networks like Facebook, TikTok, and Twitch. However, current imple-
mentations of video transcoding services like Wowza, Flussonic, Elemental, or cloud solutions
provided by eg. Amazon have either suboptimal end-to-end latency, are not optimized for scale,
or are quite expensive.

Moreover, most of these solutions are built on top of FFmpeg libraries, which are not easy
to work with. Furthermore, they are written in C, do not provide any memory-safe guarantees,
and often introduce new bugs due to new functionality added.

This thesis aims to implement a parallel GPU accelerated video transcoding service, address-
ing some of these issues.

Keywords video, transcoding, GPU, NVIDIA, Rust

Abstrakt

V současné době źıskává živé vyśıláńı na popularitě, a stává se tak standardńı službou, která
je integrována do sociálńıch śıt́ı, jako jsou Facebook, TikTok a Twitch. Nicméně, současné im-
plementace služeb pro transcoding videa, jako jsou Wowza, Flussonic, Elemental, nebo cloudová
řešeńı poskytovaná např. společnost́ı Amazon maj́ı bud’ suboptimálńı latenci mezi koncovými
stanicemi, nejsou optimalizovány pro škálováńı nebo jsou poměrně drahé.

Většina těchto řešeńı je nav́ıc postavena na knihovnách FFmpeg, které neńı snadné použ́ıvat.
Kromě toho jsou napsána v jazyce C, neposkytuj́ı žádné pamět’ově bezpečné funkce, a proto je
nelze použ́ıt a často přinášej́ı nové chyby v d̊usledku přidáńı nových funkćı.

Ćılem této práce je implementace paralelńı služby překódováńı videa akcelerované pomoćı
GPU, která řeš́ı některé z těchto problémů.

Kĺıčová slova video, transcoding, GPU, NVIDIA, Rust
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Introduction

Firstly I would like to thank you for choosing my master’s thesis as a source of information. I
will do my best to explain all the details about video engineering best practices, slang, and the
current state-of-the-art implementations used worldwide.

In recent years, live streaming is gaining more popularity. It is integrated into many social
platforms like YouTube, Twitch, and Facebook. Thus, live streaming as a service is becoming a
part of every public social network and seeks presence from the target audience.

This thesis aims to settle down an overview of the video engineering processes and seeks
to set a knowledge baseline and terminology, possible state-of-the-art solutions used, and some
protocols and hierarchical outlines. Moreover, this thesis discusses potential bottlenecks in this
live-streaming process and possible improvements.

Most of the practices used nowadays are not very well documented, or they do not have
documentation at all, and it is hard to get into video engineering for newcomers. Therefore,
there will be a dedicated chapter that should go through all the necessary details.

Furthermore, we aim to implement the proof of concept of the parallel GPU-accelerated
video transcoding service. Moreover, the goal is to implement it in Rust. Concepts used in
implementing should serve as a solid foundation for implementing more robust systems.
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Chapter 1

About this thesis

In this chapter, we will discuss our goal for this thesis, and we will talk about the structure of
this thesis. Moreover, this chapter is an extension of the introduction chapter to ensure that we
understand the situation to lay down a solid knowledge foundation.

1.1 Expected results

Roughly speaking, the goal of this thesis is to implement a proof-of-concept video transcoder
service that is optimized for low-latency streaming. Moreover, the transcoder should be memory
safe, where memory safety will be achieved by implementing it in Rust. That is a lot of words
that need to be clarified. We will dig deeper into each step in the following chapters.

We will not be implementing a transcoder from scratch. Instead, we will implement safe FFI
bindings that interact with NVIDIA libraries. These NVIDIA libraries will communicate with a
GPU accelerator to handle all videos for transcoding.

The implementation part is a proof of concept; thus, we may take some shortcuts to achieve
the desired goal. By proof of concept, we do not mean that it will not work, but it means we will
implement only limited input and output formats as well as encoding codecs compared to the
paid production-ready software. Also, the error handling will not be optimal. Ultimately, the
steps we will discuss should serve as a firm base for someone who wants to implement something
similar.

Moreover, the theoretical part of this thesis should lay stable bases for introduction to video
engineering. There are few up-to-date materials that serve as beginner-friendly to the video
engineering world. Therefore we will define the whole transcoding pipeline as well as we will
describe each individual step.

1.2 Thesis structure

In the chapter 2, we will go through definitions of video engineering and all other concepts we
will discuss later. These concepts consist of basic transport definitions like what is a format,
muxing, demuxing, what we mean by transportation, and certain guarantees from the transport.
Next, we will take a look at the transcoding process itself, like decoding, scaling, encoding, etc.
This chapter should be enough to begin with the implementation part, where we will use all
the knowledge we gain here. Furthermore, as we mentioned earlier, this chapter should serve as
a necessary foundation for video engineering introduction for newcomers. This chapter should

3



4 About this thesis

serve as learning material to clarify all video engineering concepts that are partially defined or
not at all in the real world.

We will begin with the implementation part in the chapter 3. We will discuss why the Rust
programing language is the right choice. We will talk about its performance, reliability, and
productivity. Also, we will show how we can benefit from using the Rust programming language.
Deeper into the chapter, we will talk about NVIDIA SDK, how it is structured, what APIs we can
use, and how context management works. Furthermore, we must discuss why NVIDIA libraries
and GPUs are good for video transcoding. We will take a look at how we can take advantage of
the GPU that can help us with decoding video, scaling frames, and encoding it back again.

In the chapter 4, chapter 5, chapter 6, and chapter 7, we will draft and discuss Rust-related
wrappers around NVIDIA libraries. We will implement a wrapper around CUDA and context
management functions. Next, we will take a look at NVIDIA NVDEC wrappers that will handle
video decoding, where it will output decoded frames into the GPU memory. For the video
encoding, we will wrap the NVIDIA NVENC, which will take frames from the GPUs memory
and output the encoded byte stream. And for the frame resizing, we will implement wrappers
around NVIDIA NPP.

In the chapter 8, we will use our developed libraries from the previous chapter and glue them
together to implement a transcoding service that will use multiple GPUs for video transcoding
and load-balance among them, respectively. The primary goal of the transcoding service is to
accept incoming streams, schedule them among available GPUs as fast as possible, and implement
video playback. We will set up each card to transcode the streams quickly to achieve the lowest
latency.

In the last chapter 9, we will do a summary where we will sum up all results and achievements
and possible plans for the future and improvements.



Chapter 2

Video engineering introduction

In this chapter, we will grasp video engineering terminology and its definitions. These definitions
are significantly shattered. Video engineering involves designing, developing, and implementing
video systems and technologies. It surrounds a wide range of activities, including creating and
manipulating video content, developing video codecs and formats, and designing video distribu-
tion systems. There are many specializations in video engineering. We can observe some of them
in the following list, which is not exhaustive[1].

1. Video compression – Video compression techniques or algorithms are used to reduce the
size of video files by removing redundant data and reducing the amount of data that needs to
be transmitted or stored. Common video compression algorithms include H264[2], H265[3],
AV1, VP9, and many more.

2. Video transportation – Video transportation involves delivering video content over the net-
work. Technologies such as HTTP Live Streaming (HLS)[4] and Dynamic Adaptive Streaming
over HTTP (DASH)[5] are commonly used for video streaming or even the FLV, which be-
haves like an endless file. However, there are also more old-school transport protocols that
are noncacheable, like RTMP.

3. Video quality and perception – The quality of a video is determined by a variety of
factors, including resolution, frame rate, and bitrate. Video engineering also involves the
study of how these factors affect the perceived quality of a video by viewers.

We will use the following Definition 2.1 for the Streaming. Moreover, we will be using
streaming and live-streaming interchangeably. Some pieces of literature distinguish between
these two things. For example, media such as video-on-demand or YouTube videos are technically
streamed but not live-streamed.

▶ Definition 2.1 (Streaming). Live-streaming or just streaming is streaming media simultane-
ously recorded and broadcast in real-time over the network.

▶ Definition 2.2 (Stream). The stream refers to a continuous flow of data. These data do not
have to have precise boundaries where they begin or end. The stream represents the video, audio,
or subtitles data flow.

The video processing pipeline can be seen in the Figure 2.1. This will be our alpha omega
in the implementation part. This pipeline is similar to the TCP/IP model[6], where each layer
has a defined API for the lower or upper layer. Our view perspectives will be really similar.
Moreover, it is a goal to map this terminology onto an already widely known model because then
it is much easier to understand. The following sections define each layer.

5



6 Video engineering introduction

The highest layer is the Transport layer. It handles all IO operations and ensures audio/video
data delivery. Most transport protocols transport data in an arbitrary high-level structure, or
often the audio or video data are interleaved together in a well-known format. Multiple tracks
often represent the stream. The track can be video, audio, or subtitles. In the most typical
scenario, we can have a stream where a track represents video in a certain quality. The stream
can have multiple languages as audio; each language’s audio is a separate track. The demuxer
or muxer layer is responsible for extracting particular video or audio packets for the given track.

Remember that some stream formats support only a single track for audio and video. Also,
some formats support multiple tracks, where each track can be the same video but in a different
codec, or similarly for the audio, it can contain multiple audio tracks where each track is the
same audio but in a different codec.

Packets are the input for the decoder. Packets may contain multiple encoded frames. Frames
are produced by the decoder and are required by the encoder. Frames can then be post-processed;
it includes operations like resizing or color tuning.

Transport

Demuxer

Packets

Decoder Frame Encoder

Packets

Muxer

Transport

demuxing

decoding transformation

encoding

muxing

Figure 2.1 Video processing model

2.1 Transport layer
▶ Definition 2.3 (Ingestion). Ingestion refers to the process of receiving or consuming data
from a source, such as video streaming software.

▶ Definition 2.4 (Egestion). Egestion is the opposite of the Ingestion. The egestion refers to
the process of sending data out over the network to the consumer like video player.

The main goal of the transportation layer is to retrieve or deliver audio or video data. The
most used transportation medium is the internet. However, in the imaginary world, we do not
have to be limited by the internet. The transportation medium can even be a USB stick or a
pigeon[7]. A considerable amount of work has been done in the last decade to make live streaming
more reliable, stable, accessible, and efficient. The current trend shows that for the ingestion
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part, the RTMP or WebRTC is mainly used, and for the delivery part (or the egestion), the
HTTP-based formats[8] are used. HTTP because they are more accessible to the cache.

We will take a look at the most used ingest protocol RTMP in the subsection 2.1.2. Where
ingest protocols are used to transport data from the publisher (or the publishing software) to
the transcoding server, where it is processed.

The processed audio and video must then be delivered to the player. These delivery methods
(or egress) are often encapsulated with HTTP-supported formats like HLS and DASH, which
we will discuss in the subsection 2.1.1.1 and the subsection 2.1.1.2. These two delivery methods
are famous for the accessibility of easy caching. They have well-defined boundaries of segments
and are decodable independently of previous segments. These two formats go in hand with
Adaptive bitrate streaming, which the viewer uses to detect appropriate video quality based on
the bandwidth. We will discuss this in the subsection 2.1.1.

2.1.1 Adaptive bitrate streaming

Adaptive bitrate streaming is a technique used to provide high-quality video streaming over the
internet. It works by adjusting the bitrate of the video stream in real-time based on the available
network bandwidth and the device’s processing power. The video player itself monitors these
metrics. The Player then decides which video track is appropriate based on these monitored
metrics[9].

Adaptive bitrate streaming uses multiple versions of the same video, each at a different bitrate
and resolution. Moreover, versions are segmented into smaller clips so viewers do not need to wait
for an entire video to load before they can begin watching it[9]. The player dynamically switches
between these renditions based on the current network conditions. Some video players can use
or rely on different predicates that determine appropriate renditions. This allows the video to
be played smoothly even when there are fluctuations in the network bandwidth or the device’s
processing power. One of the key benefits of adaptive bitrate streaming is that it provides a
consistently high-quality viewing experience for the user. It ensures that the video is played at
the highest possible quality, given the available resources, and it minimizes buffering and other
interruptions[10]. Adaptive bitrate streaming is commonly used in online video platforms such
as YouTube, Netflix, Twitch, and Hulu. It is also used in live-streaming events, such as sporting
events and concerts, to ensure a smooth and uninterrupted viewing experience for the audience.

The following diagram [11] graphically represents what Adaptive Bitrate Streaming is. Overall
there are several benefits to using adaptive bitrate streaming.

1. Reduced bandwidth costs – Adaptive bitrate streaming can help reduce bandwidth costs
for content providers by only delivering the necessary amount of data to the viewer based on
their connection speed[12].

2. Compatibility with a wide range of devices – Adaptive bitrate streaming can be used
to deliver content to a wide range of devices, including computers, smartphones, tablets, and
smart TVs[12].

3. Improved scalability – Adaptive bitrate streaming can help content providers scale their
operations more easily by allowing them to deliver content to a larger number of viewers
without overloading their servers or network infrastructure[12].
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Figure 2.2 Adaptive Bitrate Streaming [11]

2.1.1.1 HLS
HTTP Live Streaming (HLS) is a protocol developed by Apple for adaptive bitrate streaming of
audio and video content over the internet. It works by breaking the content into small chunks,
called segments, and storing them on a web server. The player retrieves these segments and
plays them in a continuous stream. One of the critical features of HLS is that it can adapt to
changes in network conditions by switching between different bitrates of the same content. This
allows the player to maintain a high-quality viewing experience even when there are fluctuations
in the network bandwidth or the device’s processing power. HLS is widely supported on various
devices and platforms, including iOS, Android, and desktop web browsers, but it is primarily
used only in iOS devices[4].

HLS is entirely a text-based format where the information is encoded via m3u8[13]. On the
top level, the main HLS manifest consists of the main master.m3u8, it specifies the locations of
various media files that are available for streaming. The file typically contains a list of URLs
for the media files, along with metadata about the media, such as the video codec, resolution,
bitrate, and many more. Furthermore, the file serves as the ”master” playlist for the media being
streamed, and it is used to index the individual media files that make up the stream when a
viewer accesses the master.m3u8 file, their device will download and parse the file to determine
the locations of the media files and the metadata associated with them. The device will then use
this information to request and play the media files in sequence, creating a continuous streaming
experience for the viewer. The file itself is encoded in plain text [14, 8].

1 #EXTM3U
2 #EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=150000,RESOLUTION=640x360
3 https://domain.com/360p/index.m3u8
4 #EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=240000,RESOLUTION=1280x720
5 https://domain.com/720p/index.m3u8
6 #EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=440000,RESOLUTION=1920x1080
7 https://domain.com/1080p/index.m3u8

Code listing 1 Example of master.m3u8

Each sub playlist of the mentioned master.m3u8 contains a list of URLs for a set of media
segments, along with metadata about the segments, such as segment duration length, timing
information, etc. The sub-playlists are typically organized into different tiers or qualities. For
example, in the provided listing 1 we can see that each tier corresponds to a different bitrate
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and resolution. This allows the viewer’s device to select the appropriate sub-playlist based on
its available bandwidth and device capabilities. An example of a sub-playlist can be seen in the
following listing 2.

1 #EXTM3U
2 #EXT-X-TARGETDURATION:10
3 #EXT-X-VERSION:4
4 #EXT-X-MEDIA-SEQUENCE:4
5 #EXTINF:10.00,
6 fileSequence4.ts
7 #EXTINF:10.00,
8 fileSequence5.ts
9 #EXTINF:10.0,

10 fileSequence6.ts,
11 #EXTINF:10.0,
12 fileSequence7.ts,
13 #EXTINF:10.0,
14 fileSequence8.ts,
15 #EXTINF:10.0,
16 fileSequence9.ts

Code listing 2 Example of index.m3u8[15]

2.1.1.2 DASH
Dynamic Adaptive Streaming over HTTP (DASH) is a protocol for adaptive bitrate audio and
video content streaming over the internet. It is similar to the HLS protocol. It is a text-
based format where the pieces of information are stored as XML. Apart from the HLS, the
DASH playlist an only a single file. It does not require fetching individual sub-playlists. Other
than that, it has the same properties as HLS. DASH is an open, standardized protocol that is
supported by a wide range of devices and platforms, Android and desktop web browsers. It is
not well supported on iOS devices[5].

2.1.2 RTMP
RTMP is the live-streaming transport protocol that Adobe developed, where it was initially
used to stream audio and video content from Flash Player to media servers for playback in web
browsers.

It transports video, audio, and metadata over the internet. The protocol itself has a turbulent
history, the specification has not been not fully released, so we have only partial specification[16].
The protocol is no longer maintained and lacks support for newer media formats and codecs[17].
The specification was reverse-engineered before its documentation was partially released. There-
fore, there exist implementations of the RTMP that do not have to understand each other. So
it, unfortunately, leads to multiple, incompatible implementations.

The protocol itself is based directly on the TCP, where the transported data have binary
representation. Consequently, when the client initiates the connection to the server, it establishes
bidirectional connections between the client and the server. After the client connects, the server
initiates the handshake process. Once the handshake is finished, the client and the server initialize
the session. This includes the client sending pieces of information about the session, like if the
client wants to receive data or publish data. RTMP internally uses FLV for the encapsulation of
the audio of video data[16].
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RTMP has been widely used for live streaming of events as of today, but it is being replaced
by newer, more modern streaming protocols such as HLS and DASH. RTMP is used the most
for the ingestion of the source data. It is not used for the delivery part because it does not scale
well. Transported data cannot be effectively cached, and it does not support adaptive bitrate
streaming[17].

2.2 Muxer and demuxer layer
The muxer and the demuxer are often tightly coupled with the transportation layer.

The transportation layer determines the input for the demuxer. Demuxing is the process of
reading a stream and saving each part of audio, video, and metadata – as a separate stream[18] for
a given track. Therefore, the responsibility of the demuxer is to produce packets for each stream.
More broadly speaking, the demuxer ensures that the incoming stream is correctly deinterleaved
into separate tracks. The track can be video, audio, or subtitles data. Each deinterleaved packet
corresponds to the given track.

The muxer accepts packets for each track that was predefined. Videos can contain multiple
video or audio tracks. Moreover, the videos can contain multiple subtitles tracks. Each packet
that we put into the muxer corresponds to each track. Muxer ensures that these packets are
correctly interleaved and serialized for the transportation part[19].

▶ Definition 2.5 (Demuxing). Demuxing is the process of separating a multiplexed stream of
data into its individual components. Moreover, it refers to the process of separating the audio,
video, and other data streams that are multiplexed together in a single file or stream[18].

▶ Definition 2.6 (Muxing). Multiplexing is a technique used to combine multiple data streams
into a single stream for transmission or storage[19].

▶ Definition 2.7 (Remuxing). Remuxing is a combination of demuxing 2.5 and muxing 2.6.
It separates the input multiplexed stream from one format/container, and then it combines these
separated streams into another format/container.

2.2.1 FLV
Flash Video (FLV) is an audio/video format developed by Adobe. It was tightly incorporated
within the Adobe Flash Player[16].

FLV consists of tags. Tag is the elementary unit of the FLV format. The concatenation of
many tags represents the whole FLV file. There is the Video tag, Audio tag, and Data tag. The
first two mentioned tag types are used to store video and audio data. The Data tag is used
to store helper metadata pieces of information. The most commonly used Metadata tag is the
OnMetaData. It contains meta information like video width and height, audio sampling, encoder,
etc[20].

The FLV officially supports only a single video track and can have multiple audio tracks.
However, the binary representation of the format allows numerous tracks of the same type. FLV
also supports a limited amount of codecs that are predefined. The most commonly used are H264
for the video and AAC for the audio[16]. However, some companies/individuals also requested
unofficial support for the H265 video codec[21], nevertheless this feature was rejected.

2.2.2 MP4
MP4 is one of the most popular formats. YouTube uses it, and its versatility makes it the most
common video format[22]. MP4 has universal support for many devices like mobile phones, web
browsers, consoles, etc.
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The elementary unit of each MP4 is called Atom. The whole MP4 format consists of multiple
Atoms that are sequentially stored. Each Atom has a tree data format, where each child of the
parent is another Atom. There are countless options for generating these Atoms for a given video
because it depends on whether we want to focus on low latency, immense video fragmentation,
backups, etc[23].

2.3 Decoder and encoder layer
The decoder and encoder layer aims to accept packets on the input and generate new packets
at the output. This transformation into other packets can include a change of the codec itself,
frame resizing for the video part, or other byte stream tuning like adding additional metadata
to the video frames.

To be precise, the decoder accepts packets. When the decoder receives enough packets for the
decoding, it starts the decoding part. The number of incoming packets to start the decoding is
specific to a given video codec. A single packet can contain multiple video frames. On the decoded
frames, we can do various types of transformations. It includes transformations like resizing (or
sometimes called scaling), color tuning, etc. All of these transformations are optional and can
be arbitrarily chained. We generally want to scale down frames in the resizing transformation
because it is a lossless process.

The encoder accepts raw frames on the input. The mentioned decoder typically produces
these raw frames. The objective of the encoder is to do the encoding on incoming frames and
generate new packets that the muxer can process.

▶ Definition 2.8 (Encoding). Video encoding is the process of converting raw video data into a
compressed digital format that can be stored, transmitted, and played back on a device or system.
Video encoding involves applying a specific algorithm or set of algorithms to the raw video data
in order to reduce the file size and make it more suitable for transmission or storage.

▶ Definition 2.9 (Decoding). Video decoding is the process of converting a compressed digital
video format into raw video data that can be displayed or processed by a device or system. Video
decoding involves applying a specific algorithm or set of algorithms to the compressed video data
in order to reconstruct the original raw video data.

▶ Definition 2.10 (Transcoding). Transcoding is a combination of the Definition 2.9 and the
Definition 2.8 process. Optionally process can also include the resizing part.

2.3.1 Codec
A codec is a software algorithm that compresses and decompresses digital data. It is primarily
used to reduce the size of the data so that it can be stored and transmitted more efficiently
over the network. There are many different video and audio codecs (like H264, H265, AAC,
and AV1), each with its unique features and compression methods. For example, some are more
encoding-heavy than decoding-heavy, and vice versa[24, 25].

2.3.1.1 Bytestream
Some codecs, like H264 and H265, need to be wrapped into a format more suitable for trans-
portation. For example, there is a Annex B[2] or AVCC[23]. Therese transportation formats
differ for various video codecs. However, we will focus only on these two mentioned.

The fundamental building block is the NALU which stands for Network Abstraction Layer
Unit, where each NALU contains information about the type of data it carries and a payload,
which is the actual compressed video data[2].
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The Annex B specifies that each NALu[2], is prefixed with specified start code 0x00 00 00 01
or 0x00 00 01, there is also a safety mechanism called emulation byte prevention. Emulation
byte prevention is the mechanism to prevent misinterpretation of start codes in the compressed
video byte stream. It is achieved by adding an extra 0x03 byte when encountering the 0x00 00
pattern to the byte stream[2]. This is true for both the H264 and H265[3] codecs.

The AVCC specifies that each NALu is prefixed with its size rather than the specified start
code. However, emulation byte prevention is still used[2]. This byte stream format is used for
the MP4 and FLV format[23].

2.3.2 Frame and pixel format
Frame refers to a single still image from the video sequence. Keep in mind that a series of
frames that are rapidly displayed form the illusion of seamless motion. The number of frames
displayed per second is referred to as the frame rate and is usually expressed as frames per second
(FPS)[25].

The frame’s byte representation can often be viewed as a 2D array, where the width of the
frame is the number of columns, and the height is the number of rows for the array, where each
element in this 2D array is a pixel. The pixel of a frame is often represented by more than a
single byte. The pixel format specifies the arrangement of bits to represent the color information
for each pixel. Each pixel is specified by its color depth, e.g., 8, 10, or 12 bits[26, 27]. The most
common pixel formats are listed below.

RGB – Red, Green, and Blue. This pixel format is widely used in computer graphics and
video displays because of its simplicity. It is an additive color model in which the color
components are added together in various ways to produce a broad array of colors[28].

YUV – Luma and chroma, where the brightness information (luma) is represented by one
channel, and two additional channels represent the color information (chroma).

CMYK – Cyan, Magenta, Yellow, and Key (black), which is used in color printing.

We also distinguish between Packed, Planar, and Semipacked variants. These three mentioned
formats describe how the pixel is stored in the mentioned imaginable 2D array.

Packed – Pixels are stored and clustered consecutively. For example, for the RGB, it means
that pixels are stored R G B, R G B, ...[29].

Planar – It is the opposite of the Packed variant, where each pixel is made of individual bits
stored in their own plane. For example, the RGB would be represented as R R R ..., G G
G ..., B B B ...[29].

Semipacked – Semipacked is a combination of the Packed and the Planar variant. There
are multiple combinations; however, it is most commonly used in the YUV pixel format. For
example, the NV12 pixel format is Semipacked and is represented as Y Y Y ..., U V U V
U V ...[29].

2.3.3 Scaling or resizing
Scaling or resizing is a process of changing the size of the frame, either by increasing or decreasing
the frame’s dimensions by adding pixels or removing pixels, or stretching the existing pixels[30].



Chapter 3

Implementing safe wrappers

Starting from this chapter, we have sufficient knowledge to start implementing the practical
part. Our goal is to interact with the NVIDIA libraries to accelerate the video encoding process,
decoding process, and scaling of the frames. Moreover, we will be using Rust programming
language to implement safe wrappers. The safe wrapper is a layer of code that encapsulates and
abstracts away potentially unsafe or error-prone functionality, providing a more straightforward
and safer interface that we can interact with.

To recapitulate the assignment. We will be using Rust programming language [31] to achieve
memory safety. The more detailed reason why Rust is in the section 3.1. Our main goal is
to implement a parallel GPU-accelerated video transcoding service. Building this application
will be in chapter 8; however, before we start building it, we first need to implement the three
main components that form the video transcoder. And that is the decoder (chapter 5), encoder
(chapter 6), and frame resizing (chapter 7). The NVIDIA libraries will do all the heavy lifting
of the transcoding. Therefore, we need to gain a better understanding of these libraries, what
they do, and how they operate. We will discuss this in the section 3.2. Also, we aim for the best
end-to-end latency. To achieve this, we need to utilize a whole pipeline of the NVIDIA GPU.
This means that we will store raw decoded frames in the GPU memory. This will help us with
the latency because GPU’s ram is much ”closer” than the host memory. Also, transporting raw
decoded frames through the PCI bus from the GPU to the host memory is not wise because it
could lead to congestion.

However, using NVIDIA libraries casts another burden upon us. Since we will be using a
higher-level language than C, so we need to create some interoperability between our ”happy”
Rust world, where we have a more robust API, and the depths of the C world, where most of the
functions can shoot us in the leg or provide us with undefined behavior. Luckily NVIDIA has
C-compatible ABI. Therefore, we can use FFI calls to interact with these libraries. Rust offers
us to utilize FFI, but there is a catch, the compiler is not able to guarantee anything, but more
on that in the section 3.3.

3.1 Why Rust is the right choice
Let’s elaborate a little bit on why Rust should be the right programming language and how it
will help us. The rust-lang.org points out the following things Rust can offer.

Performance – Rust is blazingly fast and memory-efficient: with no runtime or garbage
collector, it can power performance-critical services, run on embedded devices, and easily
integrate with other languages [31].

13
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Reliability – Rust’s rich type system and ownership model guarantee memory-safety and
thread-safety enabling you to eliminate many classes of bugs at compile-time [31].

Productivity – Rust has great documentation, a friendly compiler with useful error mes-
sages, and top-notch tooling, an integrated package manager and build tool, smart multi-
editor support with auto-completion and type inspections, an auto-formatter, and more [31].

The strongest reason why to use Rust is its memory management approach. This memory
management attitude is called Ownership, where Ownership is a set of rules that govern how
a Rust program manages memory. Most well-known programming languages like Go, C#, and
Java have garbage collection that regularly looks for no longer-used memory as the program runs.
On the other side of the memory management spectrum, where the programmer has to manage
how they use the memory by hand, we have programming languages like C, C++, Assembly,
etc. Rust uses a third approach. Memory is managed through a system of ownership with a set
of rules that the compiler checks. If any of the rules are violated, the program won’t compile.
None of the features of ownership will slow down the program while it’s running [32].

These Rust ownership rules are [32]:

1. Each value in Rust has an owner.

2. There can only be one owner at a time.

3. When the owner goes out of scope, the value will be dropped.

1 // This example will not compile
2

3 // `s1` now owns the string.
4 let s1 = String::from("hello");
5 // Ownership is transferred to the `s2`.
6 let s2 = s1;
7 // `s1` no longer owns the string, thus we are not able to access it.
8 println!("{}, world!", s1);

Code listing 3 Example of violation of the Rust ownership [32]

To enrich the Rust compiler’s power, the borrow checker operates by keeping track of the
lifetime of data and the references to that data. When a reference is created, the borrow checker
ensures that the data it references is still valid and that no other references to the same data
exist. When a reference goes out of scope, the borrow checker ensures that the data it references
is not accessed again [33].

The borrow checker also enforces rules for mutable references, which allow data to be modified.
Only one mutable reference to a piece of data is allowed at a time to prevent data races and
other concurrency-related bugs [34].
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1 fn main() {
2 let s1 = String::from("hello");
3

4 let len = calculate_length(&s1);
5

6 println!("The length of '{}' is {}.", s1, len);
7 }
8

9 fn calculate_length(s: &String) -> usize {
10 s.len()
11 // Here, s goes out of scope. But because it does not have
12 // ownership of what it refers to; it is not dropped.
13 }

Code listing 4 Example of Rust borrow checker [33]

3.2 NVIDIA SDK

The NVIDIA Software Development Kit (SDK) is a collection of software development tools and
libraries provided by NVIDIA for use with their GPUs. The SDK consists of libraries and tools
for a wide range of tasks [35]. Namely, it includes GPU-accelerated libraries, debugging and
optimization tools, a C/C++ compiler, and runtime libraries. We will be using only the GPU
accelerated libraries [36].

The kernel is the code that can be executed on the NVIDIA GPU. It is a function executed
in parallel by multiple threads on the GPU and designed to perform a specific computation. The
CUDA is a platform and programming model for general-purpose GPU computing. NVIDIA
is well known for its CUDA capabilities. Note that GPUs provide much higher instruction
throughput and memory bandwidth than the CPU. Many applications leverage these higher
capabilities to run faster on the GPU than on the CPU. This difference in capabilities between the
GPU and the CPU exists because they are designed with different objectives in mind; therefore,
using the GPU for programming requires adapting different programming approaches. While
the CPU is designed to excel at executing a sequence of operations as fast as possible and has a
limited amount of cores, the GPU is designed to excel at running thousands of cores in parallel.
However, these GPU cores are much more lightweight than their CPU counterpart [37].

The GPU context (often just called the context) is defacto the allocator bookkeeper. When
we allocate memory in the GPU, we need to tighten the allocation with a particular context.
When the context goes out of the scope, it automatically deallocates everything tight with it.
We will talk about context management in the subsection 3.2.3.

3.2.1 Library overview
Our primary interest in NVIDIA SDK is due to the dedicated chips on the NVIDIA GPU, which
are used for video acceleration. NVIDIA GPUs contain one or more hardware-based decoders
and encoders (separate from the CUDA cores), providing fully-accelerated video decoding and
encoding for several popular codecs. With decoding/encoding offloaded, the graphics engine and
the CPU are free for other operations [38].
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Figure 3.1 NVIDIA codec SDK [38]

We will be using a few libraries from the Nvidia SDK:

1. libcuda – This is the main building block for all libraries that NVIDIA offers. This library
offers context creation on the GPU. Context is a runtime state that allows CUDA commands
to be executed on a specific GPU. Moreover, CUDA context manages the GPU’s memory and
resources, such as CUDA streams, events, and textures [37]. Therefore, every other library
is somewhat dependent on this library. We will dig more into this library in the chapter 4.

2. libnvcuvid – Library that provides API for the mentioned NVIDIA decoder. We will refer
to this library as NVDEC. NVDEC decodes the compressed video streams and copies the
resulting YUV frames to video memory [39]. This library consists of 2 main parts that we
will be using, the video decoder and parser, more on that in the chapter 5.

3. libnvidia-encode – It provides API for NVIDIA video encoder. It will help us to offload
video encoding from the CPU to the GPU. NVENC is a proprietary technology developed
by NVIDIA, and is only available on NVIDIA graphics cards [40]. We will dig more into this
library in the chapter 6.

4. linpp* – Collection of libraries for image manipulation. The NVIDIA Performance Primitives
(NPP) library provides GPU-accelerated image, video, and signal processing functions. It
can perform tasks such as color conversion, image compression, filtering, thresholding and
image manipulation [41]. We will use this for image resizing. We will talk more about these
libraries in the chapter 7.
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3.2.2 Driver vs. runtime API
NVIDIA GPU has two types of programming API. The low level is called a driver API, and the
higher level is called runtime API. The low level API is C ABI compatible, so it is used when
we want to operate the GPU from other programming languages than C or C++. On the other
hand, the runtime API is a C++ wrapper, so it is hard to use in other programming languages
due to ABI incompatibility and name mangling. The driver and runtime APIs are very similar
and can be used interchangeably. However, there are some differences worth noting.

Figure 3.2 Runtime vs. driver API comparison.

Runtime API is built directly on top of the driver API, as can be seen in the Figure 3.2.
Thus, it does not bring anything specific that cannot be achieved via the mentioned driver API.

Complexity vs. control – In comparison, the driver API offers more fine-grained low-
level control, particularly over contexts and module loading. Kernel launches in the driver
API are much more complex to implement [42], as the execution configuration and kernel
parameters must be specified with explicit function calls. In the runtime API, all the kernels
are automatically loaded during initialization and stay loaded for as long as the program
runs [43].

Context management – Runtime API solves all context management shenanigans. Man-
aging context can become very difficult in large-scale applications. We will uncover all the
mist in the subsection 3.2.3.

We will not be dealing with the kernel launches on the GPU because all necessary functionality
can be found in the libraries. However, when using NVIDIA’s compiler nvcc, it automatically
uses the runtime API. Thus, the kernel launches are much easier to read. Examples like code
differences will be omitted for the sake of simplicity. Still, they can be found online in NVIDIA’s
documentation for the CUDA [44].

3.2.3 Context management
A single context represents a specific instance of the driver that is associated with a particular
thread of execution. Each context maintains its own state and can be used to perform operations
on the GPU, such as allocating memory, launching kernels, and synchronizing execution. A
process can create multiple contexts, allowing different threads to perform operations on the
GPU concurrently [37]. However, a single context can be active at the time and can be used
only in a single thread; this thread synchronization should be done in the GPU driver itself.
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However, it is poorly documented [45, 46], but more on that in the implementation chapter in
the chapter 4. Context management has a structure of the stack data structure. Each time that
we want to operate the GPU, we need to call cuCtxPushCurrent(). Only the context that is
on the top of the stack is currently active. To make this context available to other threads, we
need to pop it from our stack with cuCtxPopCurrent(), then we are able to push on the top of
the stack of other threads [47].

Context can be created by the cuCtxCreate() function call. After creation, this context is
already present at the stack, and we need to pop it right away [47].

Remember that multiple contexts (and their associated resources such as global memory
allocations) can be allocated concurrently on a given GPU, but only one of these contexts can
execute work at any given moment on that GPU; contexts sharing the same GPU are time-
sliced. Thus creating additional contexts incur memory overhead for per-context data and time
overhead for context switching. Therefore, it is best to avoid multiple contexts per GPU within
the same CUDA application [48].

Figure 3.3 Context manipulation

It is said that context management can be done through the driver API but is not exposed
in the runtime API. Instead, the runtime API decides which context to use for a thread. Since
we are not using the runtime API, therefore we will omit the explanation of it. Keep in mind
that contexts may consume significant resources, such as device memory, extra host threads, and
performance costs of context switching on the device. It is recommended to create only a single
context per application. But not only that, it is recommended to use only a single context per
the GPU [43].

3.3 Rust FFI

FFI (Foreign Function Interface) is a mechanism that allows a program written in one pro-
gramming language to call functions from libraries written in another programming language.
Practically, it allows for interoperability between different languages by providing a bridge be-
tween them. This is often used when we need to use a library or function that is written in a
different language but don’t want to re-write the entire program in that language. To make this
work, these two worlds need to have well-defined ABI (Application Binary Interface). To put this
into perspective, when passing data between these two worlds, like structs, integers, etc., they
need to have the same layout, size, and alignment. This can get complex because complicated or
non-trivial objects or datatypes may be difficult to map from one environment to another, so we
often rely on trivial types like numbers and pointers. Most of these FFI calls rely on C ABI [49].
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3.3.1 Unsafe Rust

Rust itself has two modes, the ”safe, happy world” (we will call it the safe Rust) and the ”unsafe”
world (which will just call unsafe Rust). In fact, the safe Rust does not allow dereferencing
random pointers. In the safe Rust, we can only access references because, with references, the
compiler can check the validity of the reference. References are generic over a type and over a
lifetime. References have the following syntax &'a T (where the lifetime can be omitted in most
cases [50]), where the ampersand signal the reference, the ’a signals the lifetime a, and the T is
a generic type. The lifetime refers to the duration for which a reference to a value is valid.

Rust pointers (*const T or *mut T) have no lifetime parameter. Thus compiler does not
guarantee anything, which is why it is considered unsafe. However, keep in mind that storing
pointers is not unsafe; only dereferencing is unsafe, thus when we want to access data on the
pointer, we need to use the keyword unsafe { /* dereferencing */ }) to tell the compiler
that we are aware of all risks [51, 52].

3.3.2 Creating bindings

We must create the bindings to communicate with libraries written in a different programming
language. Because the NVIDIA libraries are C ABI compatible, we can call the function from
these foreign libraries with the Rust types because Rust enables us to use the C byte-aligned
types.

To create bindings, we can do it by hand, as can be seen in the listing 5. But writing it by
hand is not error-prone and can lead to many attention errors, like writing a bad type or bad
function name.

1 use libc::size_t;
2

3 #[link(name = "library_name")] // Library name that we want to link.
4 // Can be omitted.
5 extern {
6 // Here, inside the extern, are functions exported from
7 // the library.
8 fn get_data(input_size: size_t) -> size_t;
9 }

10

11 fn main() {
12 let x = unsafe { get_data(100) };
13 println!("Returned number from the FFI: {}", x);
14 }

Code listing 5 Bindings written by hand [53]

However, these attention bugs can be easily eliminated. We can take advantage of commonly
used tool bindgen[54]. This tool can be used as a library or as a CLI utility. It accepts the
header file on the input a produces equivalent Rust code. One example of how it works can be
seen in the listing 6. Also, these bindings are often generated automatically by the build.rs[55].
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1 typedef struct Example {
2 int foo;
3 char bar;
4 } Example;
5

6 void accept_example(Example* ex);
7

8 // Transforms into.
9 // #[repr(C)]

10 // pub struct Example {
11 // pub foo: ::std::os::raw::c_int,
12 // pub bar: ::std::os::raw::c_char,
13 // }
14 //
15 // extern "C" {
16 // pub fn accept_example(ex: *mut Example);
17 // }

Code listing 6 Transformed C header file into Rust.



Chapter 4

CUDA wrapper

To use more specific hardware capabilities like NVENC or NVDEC, we first need to create an
abstraction over the CUDA context management and memory allocation. We will not imple-
ment all the features that CUDA offers, so we will only focus on a minimal subset we need. This
subset consists of context creation (and manipulation) and memory allocation. The following
chapters section 4.1 and section 4.2, will talk about implementing each of mentioned parts. As
we have mentioned earlier in the chapter 3 we will use the Driver API for abstracting calls to
the libcuda.so. This library is distributed along the NVIDIA drivers. However, we will install
the NVIDIA SDK, which is a superset to the NVIDIA drivers. The NVIDIA SDK contains
drivers, development tools like CUDA memory check, NVIDIA compiler (NVCC), and develop-
ment header files that we need for the binding generation. We need the header file to be able
to create bindings with the bindgen[54]. We need the cuda.h for this particular CUDA library
wrapper.

4.1 Context creation and destruction

For the sake of simplicity and line reduction, we will omit error checking for the returned errors
by the NVIDIA driver. Also, we assume that the binary is correctly linking against the correct
library, and bindings were generated for the Rust.

Rust has a very satisfying idiomatic pattern using marker types to restrict implementations
that we will use for the context abstraction[56].

4.1.1 Context initialization
Before we start creating the context, we need to call the cuInit(0), zero as an argument is the
default value, and the parameter is reserved for future use. Furthermore, the call initializes the
CUDA driver API and must be called before any other function from the driver API[57]. This
call can be called multiple times without causing unexpected side effects.

To proceed further with the context creation, we must get all available devices. By de-
vice, the terminology means the GPU. The number, UUID, or PCI bus address identifies each
GPU. We will stick with the number identification. We can retrieve all GPUs by calling the
cuDeviceGetCount(&mut local_variable). It will initialize the variable that we provided a
reference to it. We can easily wrap this call to the CudaContext, where we will determine the
device count and then return Device abstraction with its identifier. We will use this extracted
identifier in the context creation.

21
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1 /* imports omitted */
2 pub struct Device {
3 pub id: CUdevice,
4 }
5

6 pub struct Initialized {
7 pub(crate) cuda_context: *mut CUctx_st,
8 }
9 pub struct NotInitialized;

10

11 pub struct CudaContext<Stage = NotInitialized> {
12 pub(crate) stage: Stage,
13 }
14

15 impl CudaContext {
16 pub fn new() -> CudaContext<NotInitialized> {
17 unsafe { cuInit(0)) };
18

19 Ok(CudaContext {
20 stage: NotInitialized {},
21 })
22 }
23

24 /// Lists all devices that the NVIDIA driver recognizes.
25 pub fn get_devices(&self) -> Vec<Device> {
26 let mut count = -1;
27 unsafe { cuDeviceGetCount(&mut count) };
28

29 let mut result = Vec::<Device>::with_capacity(count as usize);
30

31 for i in 0..count {
32 result.push(Device {
33 id: i,
34 });
35 }
36 result
37 }
38 }
39

Code listing 7 Cuda context initialization

If we are unsure if the index for the given GPU is correct, we can request additional infor-
mation for the given GPU by calling the cuDeviceGet(&mut device, index)[58]. It enables
us to extract more information from the GPU. Also, when using the nvidia-smi[59], the listed
indexes for the GPU can be shown as well. However, remember that the index is not guaranteed
to be the same for the GPU after the reboot. If we have only a single GPU, then we do not need
to care about reindexing, but most of the time, we will have multiple GPUs in the machine.
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4.1.2 Context building & destruction
After CUDA driver API initialization, we can proceed to the context creation itself. It can be
done by calling the cuCtxCreate_v2(&mut local_context_variable, 0, device_id). The
call will initialize the provided pointer. As a second parameter, we will set it to zero, which
means CU CTX SCHED AUTO. This argument can tune the scheduler behavior. As a last argument,
we specify the device on which we want to have the context allocated[60].

Context management has a structure of the stack data structure. Only the context that is on
the top of the stack is currently active. For example, when we want to allocate memory on a spe-
cific device, then the device context must be active in the executing thread. Moreover, when the
stack is active, then we have access to its address space; otherwise, when we access allocated mem-
ory on the noncurrent active context, then we would get an error. When we create the context,
it is made active in the current thread automatically. So we need to pop it right away to make
it floating. It can be achieved by calling the cuCtxPopCurrent_v2(std::ptr::null_mut()))
where the argument is a destination where we want to pop it[60].

When we allocate the context, we also must not forget to deallocate the allocated context. It
can be simply implemented in the Drop[61] trait, which is Rust’s destructor. Context is destroyed
by calling the cuCtxPopCurrent_v2(cuCtxDestroy_v2(pointer_to_the_context)).

1 /* rest of the previous example */
2

3 impl CudaContext {
4 /// Creates context that is linked with a given GPU.
5 pub fn create_context(self, device: CUdevice)
6 -> CudaContext<Initialized> {
7 let ctx = unsafe {
8 let mut ctx: *mut CUctx_st = mem::zeroed();
9 cuCtxCreate_v2(&mut ctx, 0, device);

10 cuCtxPopCurrent_v2(std::ptr::null_mut());
11

12 ctx
13 };
14

15 Ok(CudaContext::<Initialized> {
16 stage: Initialized { cuda_context: ctx },
17 })
18 }
19

20 }
21

22 // Destructor
23 impl Drop for Initialized {
24 fn drop(&mut self) {
25 cuCtxDestroy_v2(self.cuda_context);
26 }
27 }

Code listing 8 Cuda context creation & destruction

To make working with context easier, we can implement run in context function, which will
accept a lambda function that will be executed when the context is made active in the current
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thread. This helper function will ensure that we always correctly pop the context from the
currently active.

1 /* rest of the previous example */
2

3 impl CudaContext<Initialized> {
4 /// Runs operation in cuda context.
5 pub fn run_in_context<F, O>(&self, func: F) -> O
6 where
7 F: FnOnce() -> O,
8 {
9 unsafe {

10 cuCtxPushCurrent_v2(self.stage.cuda_context);
11 };
12

13 let result = func();
14

15 unsafe {
16 cuCtxPopCurrent_v2(std::ptr::null_mut());
17 };
18

19 result
20 }
21 }

Code listing 9 Run in the Cuda context

A process can create multiple contexts, allowing different threads to perform operations on
the GPU concurrently. However, it is recommended to use a single context per GPU and thus
when we want to use a single context for a single GPU then we need to share that one context
across multiple threads. Context can be shared by multiple threads where the GPU driver will
solve the synchronization. Because each request for the GPU needs to be serialized, as of the
time writing this, the context is thread safe[37]. This information is hard to find because it is not
explicitly written because, in the earlier version of the CUDA, it probably was not thread-safe[45,
46].

4.2 GPU memory allocation
NVIDIA driver API offers many memory allocation primitives like 1D, 2D, and 3D arrays.
Moreover, there are aligned and unaligned versions of them. For our purpose, the 1D array
will be enough. We need to implement allocation, deallocation, and moving between the device
memory space and the host memory space. Keep in mind that this implementation completely
omits error handling for the sake of simplicity[62].

To simplify the wrapper, we will define the SlabType, which is our user-defined type. The
SlabType represents arbitrary memory allocation. For now, it only represents the ContinuousMemory.
This abstraction represents the 1D array that we have talked about. However, in the future, it
can also represent the 2D and 3D allocations.

This abstraction is needed because most of the other memory structures have different func-
tion calls for copying between each other. The ContinuousMemory is probably the simplest one
to copy and manipulate. In 2D and 3D allocations, we need to consider the alignment and
padding, and that would make the wrapper messier.
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1 /* imports omited */
2

3 /// Memory that is allocated on the particular device
4 #[derive(Debug)]
5 pub struct DeviceSlab {
6 pub(crate) cuda_context: Arc<CudaContext<Initialized>>,
7 pub(crate) ptr: CUdeviceptr,
8 pub(crate) slab_type: SlabType,
9 }

10

11 #[derive(Debug)]
12 pub enum SlabType {
13 ContinuousMemory(u64),
14 }
15

16 impl CudaContext<Initialized> {
17 /// Allocates continuous slab of memory.
18 /// It is the same like `malloc`, but rather
19 /// in the device memory.
20 pub fn mem_alloc(self: &Arc<Self>, size: u64) -> DeviceSlab {
21 let ptr = unsafe {
22 self.run_on_context(|| {
23 let mut ptr: CUdeviceptr = mem::zeroed();
24 cuMemAlloc_v2(&mut ptr, size);
25 ptr
26 })
27 };
28

29 Ok(DeviceSlab {
30 cuda_context: self.clone(),
31 slab_type: SlabType::ContinuousMemory(size),
32 ptr,
33 })
34 }
35 }
36

37 impl Drop for DeviceSlab {
38 fn drop(&mut self) {
39 self.cuda_context.run_on_context(|| unsafe {
40 let result = cuMemFree_v2(self.ptr);
41 if result != cudaError_enum::CUDA_SUCCESS {
42 tracing::error!(?result, "Unable to free cuda memory.");
43 }
44 }
45 }
46 }

Code listing 10 Cuda memory allocation structures

Copying data between address spaces is simple as well. It can be achieved by the cuMemcpyHtoD v2,
cuMemcpyDtoH v2 and cuMemcpyDtoD v2. Where the H stands for the Host and the D stands
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for the device[62].

CUDA also offers Unified Memory, where the Unified Memory is a single memory address
space accessible from any processor in a system. So the GPU driver allows applications to
allocate data that can be read or written from code running on either CPUs or GPUs. When
code running on a CPU or GPU accesses data allocated this way, the CUDA system software and
the hardware takes care of migrating memory pages to the memory of the accessing processor[63].
But we will not use the managed memory because it would be inefficient for our use case. The
Unified Memory introduces unnecessary overhead and higher latency due to synchronization
between the host and GPU memory.
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1 impl CudaContext<Initialized> {
2 /// Copies data from the host to the device memory. Device memory must
3 /// be same size as host input array to prevent undefined behavior.
4 pub fn copy_host_to_device(
5 &self,
6 host: &[u8],
7 device: &mut DeviceSlab,
8 ) {
9 unsafe {

10 self.run_on_context(|| {
11 match device.slab_type {
12 SlabType::ContinuousMemory(size) =>
13 cuMemcpyHtoD_v2(device.ptr, host.as_ptr().cast(), size),
14 }
15 })
16 }
17 }
18

19 /// Copies data from the device memory into the host memory.
20 /// Host memory must be same size as
21 /// device memory to prevent undefined behavior.
22 pub fn copy_device_to_host(
23 &self,
24 device: &DeviceSlab,
25 host: &mut [u8],
26 ) {
27 unsafe {
28 self.run_on_context(|| {
29 match device.slab_type {
30 SlabType::ContinuousMemory(size) =>
31 cuMemcpyDtoH_v2(host.as_mut_ptr().cast(), device.ptr, size),
32 }
33 })
34 }
35 }
36

37 /// Copies data from source slab into destination slab.
38 pub fn copy_device_to_device(
39 &self,
40 src: &DeviceSlab,
41 dst: &mut DeviceSlab,
42 ) {
43 unsafe {
44 self.run_on_context(|| {
45 match src.slab_type {
46 SlabType::ContinuousMemory(size) => {
47 cuMemcpyDtoD_v2(
48 dst.get_inner_ptr(),
49 src.get_inner_ptr(),
50 size
51 )
52 },
53 }})}}}

Code listing 11 Cuda memory copying
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Chapter 5

NVIDIA decoder wrapper

The decoder is responsible for decoding the encoded frames. These encoded frames are mostly
encoded with the H264, H265, or AV1 codec. Therefore decoder will extract the encoded frames
in the incoming byte stream.

The NVIDIA GPU has, in most of the newer GPUs, a dedicated hardware processor for
accelerating video decoding. It is mainly referred to as NVDEC. To access the NVDEC, we will
need to use a library named libnvcuvid.so which exposes API to the decoder and the needed
parser. Moreover, we will need the CUDA abstraction that we have implemented in the chapter 4
to be able to store the decoded frames in NVIDIA’s GPU. We will limit our scope primarily to
the H264[2] video codec. We assume that bindings to the library were correctly generated by
the bindgen[54].

5.1 Video parser
Encoded packets are often stored in something that is called the byte stream. For the H264[2] and
H265[3], this byte stream is called AnnexB (there is also AVCC [23] more on that in the chapter 2).
This byte stream contains encoded frames with their corresponding metadata. Some metadata
are necessary for decoding, and some only store helper pieces of information from the encoder. We
will use the video parser provided in the libnvcuvid.so, which will provide correctly initialized
structs for the decoder, which we will receive via callbacks.

The callbacks run on the calling thread. They do not create additional threads. However,
they are called from the C world, therefore, they need to be marked as extern "C"; otherwise,
they would be mangled. Data are injected into the parser via the cuvidParseVideoData call,
which accepts two arguments, one is an instantiated parser, and the other is populated struct
CUVIDSOURCEDATAPACKET. This structure contains points to the byte array, its size, and optional
flags, like the end of the data stream, etc. For H264 and H265 codecs, it secretly expects video
data in the AnnexB format, which we have mentioned earlier. Once the library encounters
the picture parameter set and sequence parameter set, it triggers the pfnSequenceCallback
callback. This callback has enough information for the decoder initialization. We are not able
to instantiate the decoder itself without processing the input data first. It will tell us the width,
and height of the input, how many decoding planes we need to allocate, etc. Once the parser
has enough data, then it triggers the pfnDecodePicture callback, where we pass the callback
data into the encoder.

Based on our pieces of information, we can effortlessly hide the parser logic behind the safe
interface. We need to have the sequence, decode, and display callback. Moreover, we want to

29
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be able to take advantage of the question mark operator to propagate errors downstream. Also,
we need another helper method to report errors. Keep in mind that the interface will be called
from the C world. Therefore, we need a way to send these errors to the Rust world before we
eventually return execution to the C world.

1 pub trait ParserCallbacks<Error>
2 where
3 Error: std::error::Error,
4 {
5 /// This callback is called only once at the beginning once the picture
6 /// parameter set and sequence parameter set is encountered. In this
7 /// function, you must initialize the frame decoder. You cannot do it
8 /// earlier because you need more information to initialize the
9 /// decoder.

10 ///
11 /// It can be called later again when a format change is detected.
12 fn sequence_callback(&mut self, format: CUVIDEOFORMAT)
13 -> Result<SequenceOutput, Error>;
14

15 /// It is triggered when we have enough data to call the decoder.
16 /// Thus we need to submit the frame to the decoder.
17 fn decode_callback(&mut self, params: CUVIDPICPARAMS)
18 -> Result<(), Error>;
19

20 /// Once we are ready to retrieve decoded frames from the decoder,
21 /// this callback will be called.
22 fn display_callback(&mut self, picture: CUVIDPARSERDISPINFO)
23 -> Result<(), Error>;
24

25 fn report_error(&mut self, error: Error);
26 }
27 pub enum SequenceOutput {
28 /// Correct value is located in the [`CUVIDEOFORMAT`]
29 /// in `min_num_decode_surfaces`.
30 DecoderSurfaceCount(u8),
31 }

Code listing 12 Parser interface

When creating the new parser, we require that the passed state type to the parser must
satisfy the necessary trait bounds, where the error type will be hardcoded to a well-known error
type.

The mentioned state will represent our business logic in a plain Rust world without know-
ing about the parser implementation. The state needs to implement the parser callback trait.
Therefore the state will receive a callback notification once the parser is populated with more
data.

The passed state needs to be allocated on the heap. We need to guarantee that the value will
not move. Otherwise, the provided opaque pointer to the user data in the initialization phase
of the parser would not be valid in the long run. However, we cannot use the Box primitive
directly because Box has strict-aliasing rules. We must assert uniqueness over its content. We
must ensure that raw pointers derived from a box after that Box has been mutated through,
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moved, or borrowed as mutable is not allowed[64].

1 pub struct Parser<T>
2 where
3 T: ParserCallbacks<NvidiaDecoderError>,
4 {
5 /// Newtype around *mut c_void that
6 /// is Send and Sync.
7 handle: ParserHandle,
8 state: *mut T,
9 }

Code listing 13 Parser structure

In summary, we have the parser abstraction. This parser abstraction will own the state. This
will represent the decoder instance, where the state needs to implement the required trait bound.
So when we feed the parser with more data, the parser will call the callbacks on the state when
deemed appropriate.

5.2 Video decoder
The video decoder has an independent API from the parser. Therefore, it has its initializa-
tion process. The decoder’s configuration options include parameters like: codec, chroma for-
mat, output frame format, deinterlace mode, output surfaces, and counting. Most of these
options are obtained from the sequence callback, where the parser triggers that. Parser callback
provides everything in the CUVIDEOFORMAT structure. Decoder is then created by calling the
cuvidCreateDecoder(&mut local handle, options).

Therefore, the best way to continue is to declare a new structure for the Decoder part since
it is an independent unit. So the first step is to implement the ParserCallbacks, where we
will instantiate the Decoder in the sequence callback. We are obliged to define codec in the
sequence callback. NVDEC itself supports multiple codecs. However, we will narrow it down
to just the H264 for simplicity. Also, we need to specify the output format, which is the pixel
format of the outputted frames. We need to put the NV12 pixel format. Others are supported in
rare situations, unlike the mentioned NV12, which is supported for all input data. NVDEC also
supports dynamic resolution change, which means that if input data changes during the stream,
then the decoder reconfiguration is triggered, and we do not have to allocate the new Decoder
so we can reuse the existing one. It is also not used in many situations. To fulfill our predefined
trait contract, we need to return the SequenceOutput from the sequence callback. This is to let
the parser know which value we determined.

5.2.1 Submitting decoding
We will implement the decoding of the frames in the decode callback. The parser triggers this
callback when it has enough data. The decoding is initiated by calling the cuvidDecodePicture,
where we get the arguments for this function in the callback. We also need to execute the decoding
in the context of the GPU.

Also, we need to remember that the decoding is blocking operation. Therefore, we must feed
data into the parser on a separate thread or blocking task. We will be using tokio[65] for the
multithreading part. Tokio offers us to offload the blocking operation to the individual thread
by calling tokio::task::spawn blocking(...).
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1 pub struct NvidiaDecoder {
2 parser: Arc<Mutex<Parser<Decoder>>>,
3 }
4 tokio::task::spawn_blocking(move || {
5 let mut inner = inner.blocking_lock();
6 // Decode operation is blocking.
7 inner.parse_new_data(&data)
8 })
9 .await

10 .expect("Video decoding cannot panic.")?;

Code listing 14 Parser offloading

However, it has problems. The function tokio::task::spawn blocking(...) requires that
the passed value must have a static lifetime. Therefore we must create an atomic reference count
(ARC) and also put it inside the mutex because we require a mutable reference. Every time we
call spawn blocking, we must acquire the lock even though we know that we are the only one
contesting the lock.

5.2.2 Retrieving submitted frame
Once the frame is ready to be retrieved from the decoder, the parser triggers the display callback.
The decoded frame resides in the decoder buffer. To retrieve the frame, we need to allocate a
separate memory slab in the GPU, and then we need to copy it from the decoder buffer into the
pre-allocated memory slab.

When the callback is triggered, the decoder expects that we will map into the memory the
frame ready to be decoded. The function cuvidMapVideoFrame64 maps video frames correspond-
ing to the given index for use in the CUDA world. It returns the device pointer and associated
options for the frame. Once we successfully map the video frame, then we can retrieve the decode
status of the frame by calling the cuvidGetDecodeStatus. Decode status tells us whether the
decoding process was successful. If it is successful, then we can copy the data from the buffer
to the preallocated slab in the GPU memory. Where in our case, the decoded frame would be
in the NV12 format. This output format depends on the decoder configuration. However, we
hardcoded this value always to be the NV12 pixel format because others are not well supported,
and they do not work for all input types. Keep in mind that once we successfully mapped the
video frame, we also need to correctly unmap it by calling the cuvidUnmapVideoFrame64, so
we can create a straightforward abstraction over it. We can create a helper structure that will
map the frame inside the constructor and unmap it in the destructor. Thus we do not forget
to deallocate it correctly. Once the frame is copied to the separate slab, we are done and ready
to transport decoded frame to the next stage for preprocessing, which can be resizing/scaling or
encoding into a different codec.

5.3 Abstraction summary

Our abstraction consists of a parser abstraction wrapper that handles all callbacks. Parser has
two functions: a generic constructor over a parameter requiring callbacks implemented and it also
has a function from which we can feed new data into the parser. From this, we must remember
that the parser is blocking and pushing new data triggers callbacks on the generic parameter.
Therefore it can be blocking. Next, we implemented abstraction over the decoder, where the
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decoder implements callbacks required from the parser trait bound. Therefore parser triggers a
function on the decoder and initiates decoding.

To wrap this up, we can implement a glue that glues these two components together and
handles blocking operations. Our decoder has a contract that requires sending a channel. There-
fore, we can take advantage of the channel implementation in the tokio[66] library. When we
push data into the glue, we call spawn blocking as mentioned earlier and await finish. Once the
newly decoded frame is ready, we can expect it on the receiving part of the channel.

1 /* imports omitted */
2 pub struct NvidiaDecoder {
3 parser: Arc<Mutex<Parser<Decoder>>>,
4 }
5 impl NvidiaDecoder {
6 pub fn new(
7 cuda_context: Arc<CudaContext<Initialized>>,
8 codec: VideoCodec,
9 ) -> Result<

10 (
11 Self,
12 mpsc::UnboundedReceiver<
13 Result<NV12DecodedGpuFrame,
14 NvidiaDecoderError>>,
15 ),
16 NvidiaDecoderError,
17 > {
18 /* initialization omitted */
19 }
20 pub async fn push_new_data(&mut self, data: Vec<u8>)
21 -> Result<(), NvidiaDecoderError> {
22 let inner = self.parser.clone();
23 // Decoding itself is a blocking operation.
24 {
25 tokio::task::spawn_blocking(move || {
26 let mut inner = inner.blocking_lock();
27

28 // Decode operation is blocking.
29 inner.parse_new_data(&data)
30 })
31 .await
32 .expect("Video decoding cannot panic.")?;
33 }
34 Ok(())
35 }
36 }

Code listing 15 The decoder glue
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Chapter 6

NVIDIA encoder wrapper

Encoder is responsible for encoding individual frames. The output is in the form of a byte stream.
Namely, NVIDIA supports H264 and H265. The latest generation of the GPU newly supports
AV1. Encoder also ensures that the appropriate metadata for the byte stream is generated. This
metadata can include arbitrary SEIs or even subtitles.

The NVIDIA GPU has a dedicated hardware accelerator for the encoding part. It is commonly
known as the NVENC. To access the NVENC, we need a library libnvidia-encode.so that
includes all functions that we need. Moreover, we will need the CUDA abstraction that we have
implemented in the chapter 4 to be able to submit frames for encoding. Because in our processing
pipeline, we store decoded frames in the GPU memory, therefore, we also supply the frames to
the encoder from the same GPU memory. We limit our use case only to the H264 codec for
simplicity. We assume that bindings to the library were correctly generated by the bindgen[54].

6.1 Binding generation caveats

Generating bindings for the NVENC has some caveats. Bindgen has a problem with C macro
expansions[67]. This is rather unfortunate because NVENC API requires specifying the version of
parameters that are supplied with each call, where the version is specified by the mentioned macro
expansion. However, the stock bindgen configuration is not able to generate this expansion.
Therefore, we need to help the bindgen a little bit. We can tweak our bulid.rs to generate
bindings only for the necessary functions and to fix the macro expansion.

35
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1 // Related https://github.com/rust-lang/rust-bindgen/issues/753
2 #[derive(Debug)]
3 struct Fix753;
4 impl bindgen::callbacks::ParseCallbacks for Fix753 {
5 fn item_name(&self, original_item_name: &str) -> Option<String> {
6 Some(original_item_name.trim_start_matches("Fix753_").to_owned())
7 }
8 }
9 fn main() {

10 println!("cargo:rustc-link-lib=nvidia-encode");
11 let bindings = Builder::default()
12 .clang_args(["-I", env!("CARGO_MANIFEST_DIR")])
13 .header("wrapper.h")
14 .parse_callbacks(Box::new(Fix753 {}))
15 .allowlist_type("ˆCU.*")
16 .allowlist_function("Nv.*")
17 .allowlist_type("NV.*")
18 .allowlist_var("Fix753.*")
19 .allowlist_var("NVENC.*")
20 .default_enum_style(bindgen::EnumVariation::Rust {
21 non_exhaustive: false,
22 })
23 .derive_debug(true)
24 .impl_debug(true)
25 .generate()
26 .expect("Unable to generate bindings");
27 let out_path = PathBuf::from(env::var("OUT_DIR").unwrap());
28 bindings
29 .write_to_file(out_path.join("nvenc.rs"))
30 .expect("Couldn't write bindings!");
31 }

Code listing 16 NVENC build.rs bindgen helper

Unfortunately, it is not the only caveat. The GUID profiles need to be correctly exported as
well. GUID profiles are used in the encoder configuration step. GUID profiles tell which profiles
and parameters we would like to use, for example, which quality preset we want. Fortunately,
we can handle this easily with the Rust macros.

6.2 Video encoder
To get started, we firstly need to check for the API compatibility version and initialize the
encoding API. The check for the max supported version is required to avoid runtime errors of
incompatible calls. The current API version is defined in the header file because every NVENC
header file is associated with a particular NVENC version. Where the current version is equal
to the NVENCAPI MAJOR VERSION << 4 | NVENCAPI MINOR VERSION, so the current API version
must be lower than the maximally supported version that can be retrieved by calling the Nv
EncodeAPIGetMaxSupportedVersion. If this check passes, we can obtain the mentioned API
function list. The API function list is required to call individual functions performing NVENC
operations. We do this by calling the NvEncodeAPICreateInstance where the argument is the
NV ENCODE API FUNCTION LIST. This structure has a property version, and we, as the caller, must
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populate the version field with the version defined in the header file. That is why we needed a
working macro expansion from the bindgen to avoid random numbers in our source code.

6.3 Video encoder configuration
After we successfully obtain the function list, we can proceed with the initialization of the encoder
itself. To do so, we need to create a valid configuration. The configuration is represented by the
NV ENC INITIALIZE PARAMS and the NV ENC CONFIG. We must specify the codec. The codec is
defined by the GUID that we mentioned earlier. Each codec has its own GUID. Currently, the
NVENC supports three codecs H264, H265, and newly the AV1. As we mentioned earlier, we will
focus only on the H264 codec. Next, we need to specify the preset. This preset is only NVIDIA-
specific, where each preset will generate predefined defaults that can be overridden later. The
defaults are handy because we do not have to tune every property, so we can focus only on those
that are interesting to us. Presets can go from P1 up to P7, where P1 means defaults that
consume the lowest amount of resources up to P7, which can be hungry for resources.

After that, we are obliged to specify the width and the height. NVENC supports changing
the width and the height in runtime. Therefore it allows us to specify the encoding width and
max encode width and vice versa with the height. These three properties are mandatory, and
others are optional. We can also specify the encoded framerate. However, the encoder itself does
not do frame dropping and frame adding. If we are about to lower the frame rate or increase the
frame rate from the input, we must do the frame adding or dropping by ourselves. Moreover, we
can also edit the rate control options that include the variable bitrate and the constant bitrate,
where we can hint at the average bitrate. Also, we can specify the keyframe interval by GOP
length.

After we assemble our desired configuration, we can call the nvEncInitializeEncoder from
the function list. It initializes provided pointer with the encoder.

6.4 Encoder input buffers
NVIDIA supports submitting frames for encoding from the userspace memory. However, we
want optimal utilization by keeping the decoded frames in the same GPU memory. It is much
faster than copying decoded frames from the GPU back to the user space memory and sending
them again to the GPU memory for encoding. NVIDIA supports submitting frames from the
GPU memory. However, it requires extra steps. We need to register new input buffers that will
hold the frames that are ready to be encoded.

These buffers require extra bookkeeping that we can handle with helper wrappers. We can
model them as a simple state machine. One state is the mapped state, and the second state is
the unmap state. We can generally start with the following Listing 17, where we have mapped
and unmapped buffers that share a standard structure.

Input buffer, in general, needs to hold a pointer to the encoder. Because when creating
the input buffer, we must also register it to the encoder. Also, the encoder owns the buffers.
Therefore it needs to be wrapped in the atomic reference counter to prevent leaking the memory.
Also, the input buffer needs to allocate GPU memory through our CUDA implementation that
we did earlier. When we register the buffer, it first starts in the unmapped state. When the
buffer is unmapped, we can only expose a single function called map that requires self-reference.
Therefore we can guarantee in compile time that the map is not called more than once because
calling it performs a transition to the other state. We can simulate this in the Listing 18.

Also, we need to implement the destructor for the input buffer, which will unregister the
resource eventually.

When the buffer is mapped, we must implement a special destructor for the MappedInputBu
ffer that will unmap the resource. We must do it because we cannot unregister resources that
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1 pub(crate) struct InputBuffer {
2 encoder: Arc<EncoderWrapper>,
3 pub slab: DeviceSlab<ContinuousMemory>,
4 pointer: *mut c_void,
5 }
6

7 pub(crate) struct MappedInputBuffer {
8 input_buffer: Option<InputBuffer>,
9 mapped_resource: MappedResourcePtrWrapper,

10 }
11

12 pub(crate) struct UnmappedInputBuffer(InputBuffer);

Code listing 17 NVENC buffers

1 impl MappedInputBuffer {
2 pub(crate) fn get_mapped_resource_ptr(&self) -> *mut c_void {
3 self.mapped_resource.0
4 }
5

6 pub(crate) fn unmap(mut self)
7 -> Result<UnmappedInputBuffer, NvidiaEncoderError> {
8 #[allow(clippy::expect_used)]
9 let input_buffer = self.input_buffer.take().unwrap();

10

11 unsafe {
12 input_buffer
13 .encoder
14 .function_list
15 .nvEncUnmapInputResource
16 .unwrap()(
17 input_buffer.encoder.encoder_ptr,
18 self.mapped_resource.0,
19 ).unwrap()
20 };
21

22 Ok(UnmappedInputBuffer(input_buffer))
23 }
24 }

Code listing 18 NVENC unmap buffer transition
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are mapped. Therefore, this nice abstraction will solve all possible logical bugs.
The transition from the mapped state is similar to the mapped buffer. We expose the un-

map function that behaves like a destructor, so it unmaps the buffer, and the function returns
UnmappedInputBuffer.

6.5 Encoder output buffers
We also need to prepare output buffers for the encoder. NVENC supports the output of the
encoded frames into the GPU memory. However, we do not need this feature. Therefore, we can
use the direct simplified API to download the encoded frame. For this purpose, we need to create
an abstraction over the buffer. We call nvEncCreateBitstreamBuffer in the constructor of the
OutputBuffer, and in the destructor, we will perform the correct deallocation. Once we want
to retrieve the encoded data from the NVENC, this can be done only after successful encoding.
Then we must lock the output buffer. Once it is in the locked state, we can retrieve the encoded
data.

This can model this abstraction in a way where the OutputBuffer has a single method
lock that will return a drop guard that will hold the reference to the parent. This drop guard
pattern[68] will ensure that we do not hold the locked buffer for too long as well as due to the
borrow checking rules, we cannot call the lock more than once, and the compiler will guarantee
this for us.

In the LockedBuffer<’ >, we then can write data into an arbitrary type that implements the
Write trait. Once the buffer is locked, we can download the NVENC buffer. When the buffer is
locked successfully, it hints us the size of the encoded byte stream. So as long as the buffer is
locked, we can download the output data. We can do it by resizing our buffer to the expected
size and calling the memory copy from the exposed buffer into the output preallocated buffer.
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1 pub(crate) struct OutputBuffer {
2 encoder: Arc<EncoderWrapper>,
3 // Place where encoded data are held.
4 temporary_buffer_space: Vec<u8>,
5 pointer: OutputPtrWrapper,
6 }
7 impl OutputBuffer {
8 pub(crate) fn lock(&mut self)
9 -> Result<LockedOutputBuffer, NvidiaEncoderError> {

10 /* calling the nvEncLockBitstream */
11 }}
12 pub(crate) struct LockedOutputBuffer<'a> {
13 buffer: &'a mut OutputBuffer,
14 expected_data_size: usize,
15 bitstream_ptr: *mut c_void,
16 }
17

18 impl LockedOutputBuffer<'_> {
19 pub fn write_into<T>(&mut self, destination: &mut T)
20 -> std::io::Result<()> {
21 /* writing downloaded data into the destination */
22 }
23 }

Code listing 19 NVENC output buffer

6.6 Encoding process

Once we have done all the configuration and wrapper shenanigans, we are ready to send frames
for encoding. We can make a high-level structure NvEncoder that will accept the CUDA context
and the NVENC configuration. In the constructor, we can create all the necessary buffers.
Typically we want to create the same amount of input buffers as well as output buffers. We can
make this number of buffers configurable.

Next is the function that accepts the frame itself. We need to define a wrapper structure that
will represent the frame. This wrapper structure needs to contain a GPU memory slab. And we
can pass other meta pieces of information, for example, SEIs or if we want to force the keyframe.
These parameters are stored in the NV ENC PIC PARAMS structure.

Initially, we need to obtain one input and output buffer from our buffer of free ones. If we do
not have any, we cannot continue. We need to copy the input frame to the mapped input buffer,
and after that, we can get the mapped resource pointer. Also, we need to get the underlying
pointer to the output buffer. We need to do the bookkeeping for these buffers because when we
run the encoding function nvEncEncodePicture it can return two non-error status codes.

If the encoder returns with NV ENC ERR NEED MORE INPUT we need to put both the mapped
input buffer and the output buffer to hold into the FIFO queue. This status code can be used
when we set up the encoder to use the B-frames. Therefore, we need to wait for more user input.

If the encoder returns the NV ENC SUCCESS we can iterate through the FIFO queue of the
output buffers. In order, we need to lock the output buffer and copy the data from the locked
buffer to our desired destination for each of them. After we copy the data from the output buffer,
we can drop the lock, unmap the corresponding input buffer, and return both buffers to the pool
of free buffers.
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6.7 Encoder wrapper summary
Our abstraction involves implementing multiple buffer wrappers for input and output frames and
the encoder itself. Moreover, it handles all possible weird cases, whereas our API is still simple
enough. We only expose the constructor that prepares everything and the encoding function,
where the encoding function will write output data (if any) into the provided mutable reference
that implements the well-known Write trait.
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Chapter 7

GPU frame resizing wrapper

Frame resizing is responsible for doing multiple output qualities. Typically we want to create
multiple output resolutions for the incoming stream. Moreover, we often want to downscale the
incoming stream.

A classic scenario is that we decode the incoming video stream. By decoding the stream, we
obtain individual frames of the video. Then we downscale each frame to multiple resolutions and
send this downscaled frame into the particular encoder for the given resolution. Because each
encoder expects only a single video track, or at least our implementation of NVENC expects
that.

We will perform this resizing in the NVIDIA GPU with its CUDA capabilities. There are
already existing NVIDIA primitives that are widely popular. Therefore, we will go with the
NVIDIA Performance Primitives (NPP); this library provides GPU-accelerated image functions
that are faster than the CPU-only implementations[69].

Everything is located in the npp.h header file and we will be using the libnppig.so and
the libnppicc.so.

We will use only a subset of these primitives because we need only three functions. We assume
that bindings to the library were correctly generated by the bindgen[54].

7.1 Error handling

In order to ensure correct memory handling, we need to create a special error type. We need to
encapsulate the general NPP error and our custom errors. For example, for us, it does not make
sense to resize frames that do not have width or height divisible by two.

So we can create the following error type. We will also write a helper macro that will help
to check for successful returns from the FFI function.

43
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1 #[derive(Error, Debug, PartialEq, Eq)]
2 pub enum NppError {
3 #[error( "Npp error: {:?}.", .0)]
4 Library(crate::ffi::NppStatus),
5 #[error( "Cuda error: {0:?}")]
6 Cuda(#[from] rust_cuda::CudaError),
7 #[error( "Height is not divisible by two.")]
8 OddHeight,
9 #[error( "Height is not divisible by two.")]

10 OddWidth,
11 #[error( "Width and heigh do not mach the slab capacity.")]
12 InvalidDimensions,
13 #[error( "Slab is too big to resize.")]
14 SlabSizeTooHigh,
15 }
16

17 macro_rules! check_npp {
18 ($err :expr) => {{
19 if $err != $crate ::ffi::NppStatus::NPP_SUCCESS {
20 return Err($crate ::NppError::Library($err ));
21 }
22 }};
23 }
24 pub(crate) use check_npp;

Code listing 20 NPP Error type

Also, we will use the thiserror[70] crate, which provides convenient derive macros for the
enum type. This will implement the std::error::Error[71] for our enum types.

To narrow down our custom errors in each of the following functions, we need to validate
whether the input width and height of the NV12 frame are equal to the allocated slab. Moreover,
we need to check if the input height or input width is not odd. Otherwise, we cannot process it
because our encoder implementation requires even width and height.

7.2 Deinterleaving
Our use case is very narrow in this library. Therefore, we will have a limited public API. We
will define a structure that will hold the CUDA-allocated device slab with continuous memory.
Define the width and height as u16. And that will be our only parameter for the function.
The Rust programming language currently does not support named arguments of the function.
Therefore when combining multiple arguments with the same data type in sequential order,
we can accidentally switch the position of the arguments. This can be fixed by a mentioned
structure where each property has its name, and we cannot mismatch the height and the width
of the frame. We will use this pattern for the upcoming function wrappers as well.

Our input is a raw frame with NV12 pixel format encoding, which we mentioned in the Video
Engineering chapter. However, NPP does not support NV12 as the interleaved format. Instead,
it wants to be in the planar format, so each plane is separate. So we need to separate the luma
plane and the chrominance plane. Therefore, we first need to begin with deinterleaving the input
NV12 frame.

We will wrap the nppiYCbCr420 8u P2P3R[72] function from the NPP library that does the
mentioned conversion. We must not forget to execute the function in the CUDA context. Oth-
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erwise, we are not able to access the slab pointer. The first parameter to the mentioned NPP
function is a pointer to the GPU-allocated luma plane. This one is easy because NV12 starts
with the luma plane. Therefore we can give it the initial pointer to the DeviceSlab. The second
argument is the width of the frame. Next follows the interleaved chroma plane. The offset of
this plane is the product of the width and the height. Next follows the output arguments, where
we need to specify to which position we want to save the deinterleaved planes.

1 let ctx = slab.get_context();
2 let carry_slab_for_deinterleaving = ctx.mem_alloc(slab.capacity())?;
3 let y = slab.get_inner_ptr();
4 let cb_cr_offset = u64::from(width) * u64::from(height);
5 let cb_or_cr_size = u64::from(width) * u64::from(height) / 4;
6 let cbcr = slab.get_inner_ptr() + cb_cr_offset;
7

8 ctx.run_in_context(|| {
9 check_npp!(unsafe {

10 nppiYCbCr420_8u_P2P3R(
11 y as *const u8,
12 width,
13 cbcr as *const u8,
14 width,
15 [
16 carry_slab_for_deinterleaving.get_inner_ptr(),
17 carry_slab_for_deinterleaving.get_inner_ptr() + cb_cr_offset,
18 carry_slab_for_deinterleaving.get_inner_ptr()
19 + cb_cr_offset + cb_or_cr_size,
20 ]
21 .as_mut_ptr()
22 .cast(),
23 [width, (width / 2), (width / 2)].as_mut_ptr(),
24 NppiSize { width, height },
25 )
26 });
27 Ok(())
28 })??;

Code listing 21 NPP deinterleave

7.3 Interleaving

Interleaving is the inverse process of deinterleaving. We need it for assembling back the correct
NV12 frame. On the input, it expects data to be in the planar format.

The interleaving function will have the same function arguments as the mentioned deinter-
leaving function. It will accept the struct wrapper that wraps the slab, width, and height. At
the beginning of the function, we also need to perform the same checks for input validation.

We will wrap the nppiYCbCr420 8u P3P2R[73] function from the NPP library that does the
conversion. This function also must be executed in the CUDA context. Otherwise, it will not
have the correct memory access rights. The arguments are similar to the deinterleaving version.
It expects an array of separated planes and their corresponding width. Also, we must specify
the destination to which it will output the results.
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1 let ctx = slab.get_context();
2 let carry_slab_for_interleaving = ctx.mem_alloc(slab.capacity())?;
3

4 let y = carry_slab_for_interleaving.get_inner_ptr();
5 let cb_cr_offset = u64::from(width) * u64::from(height);
6 let cb_or_cr_size = u64::from(width) * u64::from(height) / 4;
7 let cbcr = carry_slab_for_interleaving.get_inner_ptr() + cb_cr_offset;
8

9 ctx.run_in_context(|| {
10 check_npp!(unsafe {
11 let width = i32::from(width);
12 let height = i32::from(height);
13 #[allow(clippy::as_conversions)]
14 nppiYCbCr420_8u_P3P2R(
15 [
16 slab.get_inner_ptr(),
17 slab.get_inner_ptr() + cb_cr_offset,
18 slab.get_inner_ptr() + cb_cr_offset + cb_or_cr_size,
19 ]
20 .as_mut_ptr()
21 .cast(),
22 [width, (width / 2), (width / 2)].as_mut_ptr(),
23 y as *mut u8,
24 width,
25 cbcr as *mut u8,
26 width,
27 NppiSize { width, height },
28 )
29 });
30 Ok(())
31 })??;

Code listing 22 NPP interleave

7.4 Resizing

Resizing is the process of changing the resolution of the frame. We will only do the downscaling,
which means that we will only lower the resolution of the given frame. Upscaling is a challeng-
ing problem because we need to come up with arbitrary pixels to fill the gaps. On the other
hand, lower resolution just means removing some already existing pixels, which is a relatively
straightforward process.

Our resize function will tight together the previously implemented deinterleaved and inter-
leave functions. Moreover, it will wrap the nppiResizeSqrPixel 8u C1R[74] function. We will
accept the frame information from a wrapper structure, where this previously mentioned wrapper
structure holds together the allocated slab, width, and height of the frame. Moreover, we will
specify the destination width and the destination height. At the beginning of the function, we
must check for the even height and even width. Also, we must validate that the allocated slab
capacity and its corresponding width and height are equal. Otherwise, we could expect weird
behavior.

At the beginning of the function (apart from the input validation), we will call the previously
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1 // This will be for resizing output.
2 let carry_slab_for_resizing = ctx
3 .mem_alloc((f32::from(destination_width)
4 * f32::from(destination_height) * 1.5) as usize)?;
5

6 // Needed offsets for the deinterleaved plane.
7 let src_cb_cr_offset = u64::from(width) * u64::from(height);
8 let src_cb_or_cr_size = u64::from(width) * u64::from(height) / 4;
9 let dst_cb_cr_offset = u64::from(destination_width)

10 * u64::from(destination_height);
11 let dst_cb_or_cr_size = u64::from(destination_width)
12 * u64::from(destination_height) / 4;

Code listing 23 Resize offsets

implemented function for deinterleaving. The deinterleaving function will output a new GPU
memory slab containing sequentially stored planes. After this, we need to calculate offsets for
the given slab. We can see this in the Listing 23.

The resizing part needs to be done for each plane. This means that we will need to call
resize for the luma plane and both chroma planes. However, the luma part will have different
arguments than the chroma planes for the resize function. We can see this preparation in the
Listing 24.

As mentioned before, we need to call the resize function multiple times. We have already
prepared the ResizeStruct helper that we will use now. The structure encapsulates the given
source pointer, source width, source height, destination width, and destination height. The source
pointer will always be the deinterleaved slab we have received with the deinterleave function
implemented before. We also need to have preallocated destination slab for the resizing part.

We can see the implementation in the Listing 25.
After the resizing part, we will call the previously implemented interleave function that will

glue everything together to form a valid NV12 frame again.
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1 let planes_to_resize = [
2 ResizeStruct {
3 src_ptr: deinterleaved_slab.slab.get_inner_ptr(),
4 src_width: width,
5 src_height: height,
6 dst_ptr: carry_slab_for_resizing.get_inner_ptr(),
7 dst_width: destination_width,
8 dst_height: destination_height,
9 },

10 ResizeStruct {
11 src_ptr: deinterleaved_slab.slab.get_inner_ptr() + src_cb_cr_offset,
12 src_width: width / 2,
13 src_height: height / 2,
14 dst_ptr: carry_slab_for_resizing.get_inner_ptr() + dst_cb_cr_offset,
15 dst_width: destination_width / 2,
16 dst_height: destination_height / 2,
17 },
18 ResizeStruct {
19 src_ptr: deinterleaved_slab.slab.get_inner_ptr()
20 + src_cb_cr_offset
21 + src_cb_or_cr_size,
22 src_width: width / 2,
23 src_height: height / 2,
24 dst_ptr: carry_slab_for_resizing.get_inner_ptr()
25 + dst_cb_cr_offset
26 + dst_cb_or_cr_size,
27 dst_width: destination_width / 2,
28 dst_height: destination_height / 2,
29 },
30 ];

Code listing 24 Wrapper for resizing planes
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1 for i in planes_to_resize {
2 ctx.run_in_context(|| {
3 check_npp!(unsafe {
4 nppiResizeSqrPixel_8u_C1R(
5 i.src_ptr as *const u8,
6 NppiSize {
7 width: i.src_width,
8 height: i.src_height,
9 },

10 i.src_width,
11 NppiRect {
12 x: 0,
13 y: 0,
14 width: i.src_width,
15 height: i.src_height,
16 },
17 i.dst_ptr as *mut u8,
18 i.dst_width,
19 NppiRect {
20 x: 0,
21 y: 0,
22 width: i.dst_width,
23 height: i.dst_height,
24 },
25 f64::from(destination_width) / f64::from(width),
26 f64::from(destination_height) / f64::from(height),
27 0.,
28 0.,
29 NppiInterpolationMode::NPPI_INTER_CUBIC as i32,
30 )
31 });
32 Ok(())
33 })??;
34 }

Code listing 25 Resize function
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7.5 Frame resizing summary
In this chapter, we have successfully implemented the wrappers around NVIDIA NPP primitives.
After all, we have three wrapper functions because our resize function generally consists of 3
underlying functions: deinterleave, resize, and interleave. We have also implemented some input
validation checks to prevent resizing invalid frames for the decoder. For example, the odd height
or width frames are considered invalid for the NVENC.
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Implementing transcoding service

In this chapter, we will implement and discuss individual subsystems of the transcoding service.
For these subsystems, we will use the above-implemented wrappers and helpers. The video
transcoding service will have the following subsystems.

Ingest part – We will use the RTMP protocol for the ingestion part. The RTMP protocol
is very straightforward for this use case because there are libraries that already implement
the serialization protocol in the Rust programming language. Moreover, the FLV format that
RTMP uses is also straightforward to implement.

Playback – For the playback part, we will use the RTMP. However, the playback path
will differ from the publishing path because our transcoding service can produce multiple
qualities. FLV and, thus, RTMP support only a single video track. So we must make the
stream available for playback on a different path. More on that later.

Scheduling part – The critical component of a distributed transcoding service is to take
advantage of multiple GPUs that are present in the host operating system. We will develop
a cautious scheduling system that will distribute the transcoding jobs based on their cost.

Muxing and demuxing part – So far, we have yet to implement higher-level abstraction
for format handling. FLV is austere to implement. Therefore, we will implement a quick
wrapper that will help us encapsulate the data from the encoder.

For the sake of simplicity, we will omit the audio handling. Therefore we will drop the
incoming audio, and it will not be represented on the output. Moreover, we will not take care
of exceptional cases like reconnecting the publisher, dynamic resolution change, adaptive bitrate
streaming, etc. Also, we will implement tests that will be able to test everything that we have
implemented in the CI environment.

8.1 Video ingestion
Video ingestion is related to the process where we deliver data into the transcoding server. We
can split it into two categories, and that is the push model and the pull model. We will go with
the push model, where we send new video data to the transcoding service. The pull model is
used only in exceptional cases, for example, video restreaming. However, restreaming is different
from our use case.

RTMP is a complex protocol. It is an RPC-based protocol with its own serialization mech-
anisms and control flow. Luckily we will not have to implement the publishing part. We can
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already use existing software like OBS[75] or FFmpeg[76]. The tricky part is the receiving part
from the server’s perspective. Fortunately, there is already an existing library in Rust that will
help us (more on that later).

8.1.1 RTMP

For the RTMP part, we will use a library called rust-media-libs[77]. This library supports
the client part and the server part implementation of the RTMP protocol. However, we will be
using only the server-side part.

Library has two levels of abstraction. It can act as a low-level serialization library that only
guarantees serialization correctness, and the high-level abstraction generally encapsulates the
RPC calls. Therefore, the high-level abstraction exposes functions like publishing requests and
so on. It is implemented like a state machine. It is not bound to a particular socket. It just
accepts bytes on the input, and as an output, it generates events to which we can react. When
we want to react to a particular event, then we call the function on the state machine, and it
serializes the messages and generates bytes that we are responsible for shipping to the end client.

When acting as a server, we must first listen to the specific port. RTMP is commonly bound
to port 1935. We can use the TcpListener[78] from the tokio[65] crate. Once we accept the
incoming client, we move the stream handle to a different task via tokio::spawn[78].

1 let mut listener = TcpListener::bind("0.0.0.0:1935").await?;
2 loop {
3 let (stream, socket) = listener.accept().await?;
4 tokio::spawn(async move {
5 // Start RTMP state machine.
6 });
7 }

Code listing 26 RTMP listening loop

The first RTMP-specific thing that we need to do is to do an RTMP handshake. Because
before the client can process any RTMP traffic, both sides must perform a handshaking process.
The handshake itself is implemented as part of the RTMP library that we are going to use[79].

Initially, we need to create the Handshake instance and specify the peer type that we want
to act as a server. After that, we poll the socket for new bytes and try to progress with the
handshaking. So, we read new bytes into the intermediate buffer. The read function returns
how many bytes were read. If zero bytes are read, the client is disconnected, so we can stop
processing the request and return. As long as we have new bytes incoming, we can feed it to
the instantiated Handshake instance until the handshake completion. If we do not complete the
handshake process in the first iteration, e.g., we do not have read enough bytes, we must continue
reading until we have enough. The handshake instance keeps buffering the incoming data, so
we supply it only with new data. Ultimately, we must return the bytes we have not used so far
because they are necessary for the follow-up steps.
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1 /// Performs handshake and returns remaining bytes.
2 async fn perform_handshake(stream: &mut TcpStream)
3 -> Result<Vec<u8>, RtmpBridgeError> {
4 let mut buffer = [0; BUFFER_SIZE];
5 let mut server = Handshake::new(PeerType::Server);
6 loop {
7 let read_bytes = stream.read(&mut buffer).await?;
8 if read_bytes == 0 {
9 return Err(RtmpBridgeError::ClientDisconnected);

10 }
11 match server.process_bytes(
12 buffer
13 .get(..read_bytes)
14 .ok_or(RtmpBridgeError::UnableToIndexBuffer)?,
15 )? {
16 HandshakeProcessResult::Completed {
17 response_bytes,
18 remaining_bytes,
19 } => {
20 stream.write_all(&response_bytes).await?;
21 break Ok(remaining_bytes);
22 },
23 HandshakeProcessResult::InProgress { response_bytes } => {
24 stream.write_all(&response_bytes).await?;
25 },
26 };}}

Code listing 27 RTMP server handshake

The next step is to setup is the server session, where the server session encapsulates the
parsing of the RTMP chunks coming from the client into the RTMP messages. It performs
common sever side workflows to handle those messages. Moreover, it can provide pre-serialized
messages that can be sent back to the client or events that other applications can perform custom
logic against. However, we will use only the serialization part. Remember that the server session
does not care how RTMP chunks are transferred or received. It leaves that space for us as the
implementor of this library. During the initialization, we must pass the remaining bytes into
the instantiated server session. It is required due to the properties of the header compression of
the RTMP chunking protocol. Moreover, it requires that all responses generated by the server
session are returned to the client in order as they were generated. Also, we must ensure that
no additional bytes are sent to the client by us (other than those generated by the server session
implementation) because any violation of these rules can lead to parsing errors by the client[80].

1 // Server initialization.
2 let mut events = VecDeque::new();
3 let (mut session, results) = ServerSession::new(ServerSessionConfig::new())?;
4 events.append(&mut session.handle_input(&remaining_bytes)?.into());
5 events.append(&mut results.into());

Code listing 28 RTMP server session initialization
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After the server session initialization boilerplate, we must start the RTMP server event queue
handler. During the server session creation, we created the VecDeque[81], which is the doubled-
sided ring buffer. It serves the purpose of saving events that are ready to be processed. This
event can be the output response of the raised event. The output response must be sent to the
client via the create socket stream. Therefore we take the bytes and write them all to the socket.
The raised event is something that we need to handle server side. Most of the time, these events
are parsed client data. So it contains things like received audio data, video data, metadata
changes, publish requests, connect requests, etc. When the whole event queue is processed, we
just try to progress. This try progress means that we are trying to read new client-side data
and parse them to populate the event queue.

1 // RTMP event loop
2 loop {
3 while let Some(i) = self.events.pop_front() {
4 match i {
5 RtmpServerStateMachineResult::OutboundResponse(p) => {
6 self.stream.write_all(&p.bytes).await?;
7 },
8 RtmpServerStateMachineResult::RaisedEvent(event) => {
9 self.handle_event(event).await?;

10 },
11 }
12 }
13 // Reads new data from socket.
14 self.try_progress().await?;
15 }

Code listing 29 RTMP server event loop

During the event handling, we have multiple options for which events to react to. We will
omit most of the events here for simplicity. In the beginning, the first event that the client
sends is the connection request. The connection request is tied to the particular application
name. We can imagine this as the request from the client that it wants can connect to the
particular application name. We then have the possibility to accept the request or ignore it.
When we call the accept, we must supply the request-id that we want to accept. We can do this
by calling the accept request function on the server session. It then generates events that we
need to append to our event queue. After the connection is accepted, the client decides whether
it wants to publish or play the particular stream name on a given application name. Keep in
mind that there can be multiple stream keys on a given application name. However, only a
single publisher is allowed for the combination of the stream key and the application name. If
the client requests the publish stream request, it supplies the information to which the stream
key it wants to publish. We need to check whether the streaming combination of the stream key
and the application name is not already occupied and decline if so. Otherwise, we can accept the
publish request. Once we accept the publish request, it starts sending the audio and video data
that are represented as the video data event and audio data event. These data events are the
FLV chunks. However, for our use case, we will feed this data into the video transcoder that will
generate multiple qualities. Suppose the client decides after the connection request that it wants
to play the data. In that case, it sends the play stream request that also contains the stream
key that it wants to play from the particular application name. After we accept the request, it
expects from us that we will send it the FLV audio and video chunks.
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1 async fn handle_event(&mut self, event: ServerSessionEvent)
2 -> Result<(), RtmpBridgeError> {
3 match event {
4 ServerSessionEvent::ConnectionRequested {
5 request_id,
6 app_name,
7 } => {
8 self.events
9 .append(&mut self.server_session

10 .accept_request(request_id)?.into());
11 },
12 ServerSessionEvent::PublishStreamRequested {
13 request_id,
14 app_name,
15 stream_key,
16 ..
17 } => {
18 /* Many things omitted */
19 self.events
20 .append(&mut self.server_session
21 .accept_request(request_id)?.into());
22 },
23 ServerSessionEvent::VideoDataReceived {
24 data, timestamp, ..
25 } => {
26 /* TODO: Send data to the transcoder. */
27 },
28 ServerSessionEvent::PlayStreamRequested { .. } => {
29 /* Accept and send audio and video data. */
30 },
31 event => {
32 tracing::debug!(?event, "Unhandled event.");
33 },
34 }Ok(())}

Code listing 30 RTMP event handling

8.1.2 FLV
We need a wrapper to help us deserialize and serialize FLV data. FLV, in general, is represented
by chunks, with three types of chunks. The video, audio, and script data. For our purpose, we
need only to handle video data. In general, we need a way how to extract H264 video data from
the FLV video chunk. Moreover, we need to serialize the video data back once we successfully
transcode the video because the encoder does not know how to encapsulate the video data to
form the FLV chunk or the RTMP library.

We can observe the FLV packer structure in the following Table 8.1. It starts with packet
type; we are only interested in packet type 9, which means it is a video packet. The next is
the payload size, which defines how long is the given payload without the header. Stream ID
is often hard coded to the number 0 or 1 because, for our use case, it does not make sense to
interleave the incoming FLV. Also, it is not a widely used feature of the FLV. Then follows the
payload itself. However, we need to parse deeper because this payload represents the FLV video
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packet which differs from the FLV packet we are talking about right now. After the payload,
there is the size of the packet as a whole. This property is valuable when we seek the FLV from
backward. However, this is also not our use case.

Table 8.1 FLV packet header[16]

Packet type uint8
Payload size uint24 be
Timestamp uint32 be
Stream ID uint24 be
Payload variable
Size of packet uint32 be

After identifying the video packets, we can check the frame type and the video codec for the
particular chunk. We can limit our scope to the H264 only. Therefore the frame type will always
be the number 7, and the frame type depends on what the encoder produces. It will be either a
keyframe (number 1) or an inter-frame (number 2).

Table 8.2 FLV video packet header[16]

Frame type 4 bits
Video codec 4 bits

Once we are sure it is the H264 video codec, we can check the last nested header, which is
the H264 packet header. It contains two properties, and that is the packet type, which specifies
whether it is the sequence header, NALu, or end of sequence signal. The sequence header
contains all the necessary information for decoding. It contains things like sequence parameter
sets, decoding parameter sets, and so on. The last property is composition time. This property
is not used in the wild and is set to zero.

Table 8.3 FLV H264 packet header[16]

Packet type uint8
Composition time int24 be

To implement all this behavior in the Rust programming language, we will start with the
demuxing. We will use the nom[82] crate, which is the efficient zero-copy library. It is a parser
combinator library with a focus on safe parsing.

We can see the demuxing implementation in the following Listing 31. It uses nom for the
deserialization where the function accepts a reference to the slice of u8, and it returns a parsed
struct with the remaining bytes that were not parsed. The same goes for the video parsing and
the H264 parsing. We are interested in the raw AVCC format of the H264 byte stream that we
mentioned in the first chapters.

For the muxing back, we will implement for each struct the Into<Vec<u8>>[83] trait. We can
see the example in the Listing 32. The implementation relies on each underlying structure that
implements this interface as well. Otherwise, we are not able to serialize it. This method has
caveats because it does unnecessary memory allocations.

We will omit the rest of the demuxing and muxing examples because they repeat themself
and are really similar to the Tag implementation, only with different properties.
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1 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
2 pub enum TagType {
3 Audio,
4 Video,
5 Script,
6 }
7 #[derive(Clone, Debug, PartialEq, Eq)]
8 pub struct Tag<'a> {
9 pub tag_type: TagType,

10 pub data_size: u32,
11 /// Timestamp is often represented in milliseconds from the
12 /// start of the FLV.
13 pub timestamp: u32,
14 /// Be aware of the fact that most FLV processing services like
15 /// RTMP servers silently assume that only a single `stream_id`
16 /// is used. Thus it is recommended to interleave all AV
17 /// packets, including metadata, into a single `stream_id`.
18 pub stream_id: u32,
19 pub data: &'a [u8],
20 }
21 pub fn parse_complete_tag(input: &[u8]) -> IResult<&[u8], Tag> {
22 flat_map(tuple((tag_type, be_u24)), |(tag_type, data_size)| {
23 map(
24 tuple((be_u24, be_u8, be_u24, take(data_size), be_u32)),
25 move |(timestamp, timestamp_extended, stream_id, data, _)| {
26 Tag {
27 tag_type,
28 data_size,
29 timestamp: (u32::from(timestamp_extended) << 24)
30 + timestamp,
31 stream_id,
32 data,
33 }
34 },
35 )
36 })(input)
37 }

Code listing 31 FLV demuxing with nom
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1 impl Into<Vec<u8>> for Tag<'_> {
2 fn into(self) -> Vec<u8> {
3

4 let data_size = &u64::try_from(self.data.len())
5 .expect("We assume that we are running on 64bit platform.")
6 .to_be_bytes()[5..]; // u24
7 [
8 &[self.tag_type.into()],
9 data_size,

10 &self.timestamp.to_be_bytes()[1..], // timestamp upper
11 &[self.timestamp.to_be_bytes()[0]], // timestamp lower
12 &u64::from(self.stream_id).to_be_bytes()[5..], // u24
13 self.data,
14 &[0], // padding byte to fulfil u32
15 data_size,
16 ]
17 .concat()
18 }
19 }

Code listing 32 FLV muxing

8.2 Scheduler

The hard part in implementing distributed service is to stress each GPU in the system evenly.
Let us call the transcoding process a job. The job represents the transcoding unit, e.g., it consists
of decoding, resizing, and encoding. Each job typically has a different utilization because we may
want to produce different output quality; therefore, we stress the encoder differently. Moreover,
we can generate multiple resolutions, so we utilize the resizing part, or the incoming video has a
high resolution; therefore, the decoder is utilized more.

We will go with the most straightforward scheduler implementation that we can implement.
There were different experimentations with multiple implementations, and this one gave the most
optimal results.

In the beginning, we will predefine transcoding templates. Each template specifies the proper-
ties of the transcoding part. The template specifies how many output qualities will be produced.
Moreover, it can specify things like how many frames per second each quality should have, bi-
trate, keyframe duration, profile, and many more things that can be tuned. Furthermore, each
transcoding template will have a given cost. This cost needs to be tested and optimized based
on the GPU we will use because the cost can differ on each GPU type.

We can relax our condition by assuming that all servers are homogenous and have the same
GPU. So each GPU has the same computing power. Each GPU will then have an assigned
current capacity and maximum capacity.

In Rust, we can start implementing our idea of the scheduler. Our API will expose three main
public functions. The constructor that initializes everything. The scheduler function, where we
provide the function with the cost, and the function returns us the chosen GPU that we can
use for the scheduling process. And the last function that will deallocate the cost for the chosen
GPU once we are done using it.

The scheduler will generally hold the pool of available GPUs and their current usage. It can
be represented as a vector of SchedulableDevice. We will initialize this pool in the constructor
and assign a predefined maximum capacity for each GPU. Since we are in a homogenous system,
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each GPU will have the same maximum capacity.
The following main thing is to expose the function to retrieve context for the chosen GPU.

As we mentioned earlier, we will go with the simplest solution, and that is to select the least
used GPU. In this case, we assume that the cost was carefully chosen and will mostly stay the
same over time. It is better to guess the higher cost for the job than the lower cost and test the
job utilization on the GPU itself.
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1 #[derive(Debug)]
2 struct SchedulableDevice {
3 name: String,
4 initialized_context: Arc<CudaContext<Initialized>>,
5 usage: usize,
6 max_usage: usize,
7 index: usize,
8 }
9 #[derive(Debug)]

10 pub struct Scheduler {
11 devices: Vec<SchedulableDevice>,
12 }
13

14 impl Scheduler {
15 pub fn try_new() -> Result<Self, SchedulerError> {
16 /* initialization */
17 }
18 pub fn schedule_transcoder_job(&mut self, cost: usize)
19 -> Result<ChosenGPU, SchedulerError> {
20 let mut usable_gpus: Vec<&mut SchedulableDevice> = self
21 .devices
22 .iter_mut()
23 .filter(|element| element.usage + cost <= element.max_usage)
24 .collect();
25

26 usable_gpus.sort_by(|element1, element2|
27 element1.usage.cmp(&element2.usage));
28

29 if let Some(the_chosen_one) = usable_gpus.get_mut(0) {
30 the_chosen_one.usage += cost;
31 Ok(ChosenGPU {
32 index: the_chosen_one.index,
33 context: the_chosen_one.initialized_context.clone(),
34 usage: cost,
35 })
36 } else {
37 Err(SchedulerError::SchedulerOverloaded)
38 }
39 } /* more stuff */ }

Code listing 33 GPU scheduler
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8.3 Transcoder calls
We have the encoder and decoder implementation ready from the previous chapters. For simplic-
ity, we can create an abstraction over the decoder, resizing part, and the encoder. We will call
this abstraction transcoder. It will have a simple API where each transcoder instance accepts
the hashmap of templates. The output width, height, and frames per second will represent our
template. Also, we assume that each template has its own name.

In the following Listing 34, we can demonstrate the planned usage. We define a broadcast
channel that will be used to receive new frames from the transcoder wrapper. Sender handlers
will be cloned to each separate task, and we will receive the transcoded packets via the receiving
handle, where the packets will have the corresponding template name to which they belong. Then
we iterate over the templates and create the encoder for each template. We start a subroutine
for each template, feeding it with decoded frames from the decoder.

Next, we need to expose a function that will feed new packets to the decoder. We can see
the example in the Listing 35, where we submit data to the global decoder per job and await
the results of the decoder. Once the decoding completes, resize the frame, and after successful
resizing, send it to the corresponding encoder in a separate tokio task.
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1 let (tx_packets, rx_packets) = broadcast::channel(256);
2 let mut encoders = Vec::new();
3 for (key, value) in templates {
4 let (tx, mut rx) = mpsc::unbounded_channel();
5 let mut encoder = EncoderContext::<NvidiaH264Encoder>::open_for_encoding((
6 NvidiaH264EncoderConfig {
7 /* template defaults + template values */
8 },
9 context.clone(),

10 ))
11 .await?;
12 let tx_packets = tx_packets.clone();
13 tokio::spawn(async move {
14 while let Some((frame, timestamp)) = rx.recv().await {
15 encoder
16 .send_for_encoding(Some(frame), /* options */ )
17 .await.unwrap();
18 while let EncoderStatus::Alive(PacketStatus::Ready(packets)) =
19 encoder.retrieve_encoded_frames().await
20 {
21 let packets = packets.unwrap();
22 // We do not really care whether the packet was delivered.
23 tx_packets
24 .send(TranscoderItemResult {
25 packet: packets,
26 timestamp,
27 template: key.clone(),
28 })
29 .ok();
30 }
31 }
32 });
33 encoders.push(TranscoderInstance { config: value, tx });
34 }

Code listing 34 Service transcoder
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1 pub async fn push(&mut self, data: H264AnnexB, timestamp: u32)
2 -> Result<(), TranscoderError> {
3 self.decoder.send_for_decoding(Some(data)).await?;
4

5 while let DecoderStatus::Alive(FrameStatus::Ready(frame)) =
6 self.decoder.retrieve_decoded_frame().await
7 {
8 let frame = frame?;
9 for i in &mut self.encoders {

10 let frame = frame.downscale(FrameDimensions {
11 destination_width: i.config.width,
12 destination_height: i.config.height,
13 })?;
14 i.tx.send((frame, timestamp)).ok();
15 }
16 }
17 Ok(())
18 }

Code listing 35 Feeding new data into the service transcoder

8.4 Muxing and demuxing

The next step is to integrate the previous transcoder wapper into the RTMP server. We create
the transcoder instance within the PublishStreamRequest, where we make sure that it is the
first client that is currently streaming. We must find the template and calculate the cost for
all the needed jobs. For that, we will utilize the RTMP application name that will match
the predefined templates. We will reject the stream if the application name does not find any
predefined template. Request the GPU from the scheduler based on the cost that we provide.
After all of this, we are ready to create a ring buffer where each quality will be outputted. We will
not go deeper into ring buffer implementation because it is unattractive. The pool of ring buffers
has simple rules, we need to identify each ring buffer by the application name, stream name,
and template name. We must ensure that we drop only NALu data from the ring buffer and not
the sequence header. Therefore, the first entry in the ring buffer must always be the sequence
header, and on top of that the next entry must be the keyframe. Otherwise, we cannot decode
the following entries properly unless we reach another keyframe. The sequence header can be
omitted when we do not care about players that connect mid-stream, so it will play adequately
only for these streams where we requested playback for the given key before the publisher started
publishing.

We can see the mentioned implementation in the Listing 36. This code represents the code
we can fit into the mentioned PublishStreamRequest event handler.

The next crucial part is to supply data to the transcoder. In the previous chapter, we said
that the transcoder expects data to be in the AnnexB format. However, the VideoDataReceived
event supplies us with bytes that can be parsed into the FLV’s VideoData. The FLV video
data are in the AVCC format. The video data returns what the underlying frame type is. We
do not care much about this value when deserializing. It also informs us about the code type.
We must ensure that the codec is always the H264. Once we are sure that the data are in the
H264 format, we can parse them and retrieve the AVCVideoPacket. There we have the packet
type and the composition time. For us, the important thing is the packet type. The packet
type can be sequence header, NALu, or the end of sequence signal. The sequence header is a
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1 let (stream_key, args) = parse_stream_key_with_args(stream_key);
2 let Some(templates) = self
3 .application_state
4 .config
5 .transcoding_templates
6 .get(&app_name) else {
7 return Err(RtmpBridgeError::TemplateNotFound);
8 };
9 let total_cost = templates

10 .values()
11 .fold(0, |item, template| item + template.cost);
12 let chosen_gpu = self
13 .application_state
14 .scheduler
15 .write()
16 .await
17 .schedule_transcoder_job(total_cost)?;
18 let mut publishers = HashMap::default();
19 for template_name in templates.keys() {
20 let stream_identifier =
21 construct_unique_key(&app_name, &stream_key, template_name);
22 let publisher = self
23 .application_state
24 .chunk_market
25 .create_store(
26 stream_identifier.clone(),
27 StatikCache { args: args.clone() },
28 )
29 .await
30 .ok_or(RtmpBridgeError::NotFirstPublisher)?;
31 publishers.insert(template_name.clone(), publisher);
32 }
33 let (transcoder, rx) =
34 Transcoder::new(chosen_gpu.context.clone(), templates.clone())
35 .await
36 .map_err(|error| {
37 tracing::error!(%error, "Unable to crate transcoder.");
38 RtmpBridgeError::InvalidData
39 })?;
40 tokio::spawn(handle_transcoder_publishing(rx, publishers));

Code listing 36 Integrate transcoder into the RTMP server
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special thing for the AVCC format. We can be sure that the publisher always sends this as a
first FLV video atom. The sequence header contains the sequence parameter set and the picture
parameter set. We cannot start the decoding without these two NALus, because they are needed
to set up the decoder properly. The proper format of the sequence header is specified in the ISO
specification[2, 23].

Once we converted the sequence header to the AnnexB compatible NALu, we are ready to
parse the subsequent FLV video data we receive. Now we should expect only the packet types of
type NALu. Once we encounter the packet type end of the sequence, then it does not contain any
valuable data, so we can drop it and end the transcoding. The mentioned packet types of type
NALu must also be converted to AnnexB. To make it AnnexB compatible, we need to traverse
the current AVC packet data and replace the width of the atom size with 0x00 0x00 0x00 x01
as mentioned in the earlier chapters. After converting, we supply the data into the transcoder
with the defined push(...) method.

The last thing is to retrieve the data from the encoders, convert it to the FLV AVCC and store
it in the mentioned ring buffer. Our transcoding API return a channel receiver, in which we get
the key and a value, where the key is the template name and the value is encoded packets. First,
we must convert it to the AnnexB format. We can see naive implementation in the Listing 37.
During the conversion, we return the vector of tuples where the bool signals whether the NALu
contains the keyframe. After the successful conversion, we can check whether we have already
sent the sequence header. If not, we have guaranteed from the NVIDIA encoder that the first
generated packets are picture parameter set and sequence parameter set so that we can craft
the sequence header from these pieces of information. We create the AVC video packet with
composition time zero and the crafted sequence header. We then can create the FLV video
header with H264 video codec, and as frame type, we can say that it is a keyframe. For the
following packets, we can generate the same; however, it is not the sequence header anymore but
NALu and the composition time will always be zero. For the frame type, it will depend on the
output of the conversion. It can be only the keyframe or interframe type.

Once we successfully muxed everything, we can append the data into the mentioned ring
buffer, where that client can request playback for the particular ring buffer.
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1 pub fn convert_annexb_to_avcc(buffer: &[u8]) -> Vec<(bool, Vec<u8>)> {
2 let mut result = Vec::new();
3 let mut current = Vec::new();
4 let mut index_current = 0;
5 let index_end = buffer.len();
6 let mut is_first = true;
7 loop {
8 if index_current >= index_end {
9 let first = current[0];

10 let is_keyframe = first & 0b00011111u8 == 5;
11 let mut length = current.len().to_be_bytes()[4..].to_vec();
12 length.append(&mut current);
13 result.push((is_keyframe, length));
14 return result;
15 }
16 if buffer[index_current] == 0 && buffer[index_current + 1] == 0
17 && buffer[index_current + 2] == 1
18 {
19 if !is_first {
20 let first = current[0];
21 let is_keyframe = first & 0b00011111u8 == 5;
22 let mut length = current.len().to_be_bytes()[4..].to_vec();
23 length.append(&mut current);
24 result.push((is_keyframe, length));
25 } else {
26 is_first = false;
27 }
28 current = Vec::new();
29 index_current += 3;
30 } else if buffer[index_current] == 0 && buffer[index_current + 1] == 0
31 && buffer[index_current + 2] == 0 && buffer[index_current + 3] == 1
32 {
33 if !is_first {
34 let first = current[0];
35 let is_keyframe = first & 0b00011111u8 == 5;
36 let mut length = current.len().to_be_bytes()[4..].to_vec();
37 length.append(&mut current);
38 result.push((is_keyframe, length));
39 } else {
40 is_first = false;
41 }
42 current = Vec::new();
43 index_current += 4;
44 } else {
45 current.push(buffer[index_current]);
46 index_current += 1;
47 }
48 }
49 }

Code listing 37 Converting AVCC to AnnexB
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8.5 Continous integration
Let us talk about setting automatic testing environment. Nowadays, we mainly use GitHub[84]
or GitLab[85] repositories for storing our code. Moreover, many companies host their GitLab
instances on-premise. These online git repositories support pipeline integration. Therefore once
we push our code into the online repository, we can run automatic pipelines that can run tests
automatically. However, our code and tests rely on the NVIDIA GPU, so we encounter caveats.
In my case, I used the company’s GitLab instance, where we managed to configure the GitLab
runner to use the GPU, which was provided for this thesis by the supervisor. It can be achieved
by installing a docker engine that supports the passthrough of NVIDIA GPU, where we say in the
GitLab runner that it should execute code in a docker container. The nvidia-docker[86] extends
capabilities of the Dockerfile syntax[87], enabling us to specify the required capabilities like
CUDA version that we require, which device to use, and driver capabilities like encode/decode
capabilities, CUDA compute and many more[88].
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Chapter 9

Summary

The thesis had several objectives. The first want was to present the current state of video
engineering. Moreover, to set up terminology and definitions. Then we slowly started talking
about Rust and NVIDIA video-related stuff and started building Rust abstraction over the
NVIDIA exported primitives. The abstractions were needed so we could react with the GPU.
We successfully implemented abstractions over the CUDA context, NVDEC, NVENC, and NPP.
In the latest chapter, we glued everything together to create a video streaming service. The
service starts with a configuration file that specifies available transcoding templates and their
cost. We can stream into the service via the RTMP protocol. Upon a new RTMP publish
request, we allocate GPU for our transcoding purpose and create the transcoder itself. We can
then play the requested video quality via other well-known RTMP names.

Significant knowledge has been gained during the creation of this thesis. Moreover, together
with the supervisor, we have deployed this solution in production thanks to the infrastructure
of a large CDN provider. The transcoder now powers hundreds of GPUs running inside tens of
servers worldwide. When writing this thesis, the modified version of the application and libraries
we implemented in this thesis handled thousands of video streams daily.

We have accomplished all goals that were set in the assignment. We have accomplished
all goals that were set in the assignment. We implemented a proof of concept of NVIDIA
accelerated video transcoder using NVENC, NVDEC, and CUDA. We wrote everything in the
Rust programming language a used FFI to interact with the low-level libraries. We implemented
support for load balancing across multiple GPUs in the system. We used H264 for the video
encoding. We implemented RTMP support for publishing and playback. We set up the CI/CD
with tests with corresponding documentation. As a bonus, the developed application is now
running in production.

9.1 Plans for the future
In the near future, we plan to build extensive AV libraries that are optimized for live streaming
in general. Moreover, we plan them to be written in Rust. The current implementation that
we have does not support multiple video codecs or any audio codec. We plan to support audio
resampling as well. Furthermore, we plan to implement more transport protocols that are used
nowadays, like HLS, DASH, and WebRTC.
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