
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Automatic Creation of Science and Engineering Fairs in Virtual

Reality

Bc. Tomáš Bašta

doc. Ing. Mgr. Petr Klán, CSc.

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2022/2023

Instructions

Realize an automatic system for science and engineering fairs in virtual reality. Data

from participants will be collected via web application. Fair will be realized by a

combination of immersive and collaborative telepresence.

Follow the steps below:

1. Learn the basic principles of science and engineering fairs and conferences.

2. Design a web application used for collecting conference-related assets (abstracts,

posters, photos, speech recordings, 3D models).

3. Implement the web application.

4. Learn the principles of visual programming in metaverse Neos VR.

5. Design a template virtual world where the conferences will take place.

6. Create and build the template virtual world in Neos VR.

7. Connect the web application with the template virtual world.

8. Visually program the automatic generation of new virtual worlds containing the

corresponding assets.

9. Test the automatic fair system by holding a testing science or engineering conference.

10. Publish the system for public use.

Electronically approved by Ing. Michal Valenta, Ph.D. on 21 December 2021 in Prague.

Master’s thesis

Automatic Creation of Science and
Engineering Fairs in Virtual Reality

Bc. Tomáš Bašta

Department of Software Engineering
Supervisor: doc. Ing. Mgr. Petr Klán, CSc.

May 3, 2023

Acknowledgements

I would like to express my deepest appreciation to my supervisor, doc. Ing.
Mgr. Petr Klán, CSc., for his enthusiastic approach towards my thesis and for
his invaluable input that helped me to produce the best result that I possibly
could. A big thank you also goes to my girlfriend Marie, who lovingly kept
on supporting me during the whole period of writing this thesis, even though
I have probably been unbearable during this time. Next, I would like to thank
my parents, Iva and Roman, for providing me with encouragement throughout
my academic pursuit and for helping me to become the person I am today.
Finally, I would also like to thank my Russian Blue kitten Samuel for his
constant purring that gave me the emotional support that I so desperately
needed.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in par-
ticular the fact that the Czech Technical University in Prague has the right to
conclude a licence agreement on the utilization of this thesis as a school work
pursuant of Section 60 (1) of the Act.

In Prague on May 3, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Tomáš Bašta. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Bašta, Tomáš. Automatic Creation of Science and Engineering Fairs in Vir-
tual Reality. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2023.

Abstract

This thesis describes the process of developing a system for automatic creation
of science and engineering fairs in virtual reality. The thesis starts by describ-
ing what the science and engineering fairs are and introduces the Regeneron
International Science and Engineering Fair as an example. Afterwards, the
whole system, which is composed of two parts, is designed, implemented and
tested. Its first part is a web application written in Go, through which the
users can define the fairs and subsequently upload their projects. The second
part is a virtual world that is created in the Neos VR metaverse. This world
communicates with the web application from which it loads the participants’
projects, which are then displayed in three dimensions inside of the world.
The resulting system is a fully functional solution that is freely available and
which can be used by both individuals and institutions to automatically create
their own science and engineering fairs in virtual reality.

Keywords science fairs, web application, Go, virtual reality, virtual world,
Neos VR

vii

Abstrakt

Tato práce popisuje proces vývoje systému pro automatickou tvorbu vědeckých
a inženýrských konferenćı ve virtuálńı realitě. Práce zač́ıná vysvětleńım toho
co to vědecké a inženýrské konference jsou a uvád́ı Regeneron International
Science and Engineering Fair jako př́ıklad. Následně je celý systém, který se
skládá ze dvou část́ı, navržen, implementován a otestován. Jeho prvńı část́ı
je webová aplikace napsána v jazyce Go, pomoćı které mohou uživatelé kon-
ference vytvářet a následně do nich nahrávat své projekty. Druhou část́ı je
pak virtuálńı svět, který je vytvořen v metaverzu Neos VR. Tento svět ko-
munikuje s webovou aplikaćı, ze které nač́ıtá projekty jednotlivých účastńık̊u
a ty jsou pak ve světě prostorově zobrazovány. Výsledný systém je plně funkčńı
řešeńı, které je volně k dispozici a je možné ho použ́ıt pro automatickou tvorbu
vědeckých a inženýrských konferenćı ve virtuálńı realitě, jak jednotlivci, tak
i institucemi.

Kĺıčová slova vědecké konference, webová aplikace, Go, virtuálńı realita,
virtuálńı svět, Neos VR

viii

Contents

Introduction 1

1 Objectives 3

2 Science and engineering fairs 5
2.1 History . 6
2.2 International Science and Engineering Fair 7
2.3 Virtual science and engineering fairs 9

3 Web application 13
3.1 Analysis . 13

3.1.1 Functional requirements 14
3.1.2 Non-functional requirements 15
3.1.3 Use cases . 15
3.1.4 Functional requirements fulfilment 20

3.2 Design . 20
3.2.1 Architecture . 21
3.2.2 Domain . 21
3.2.3 User interface . 23

3.3 Implementation . 24
3.3.1 Data tier . 24
3.3.2 Application tier . 26
3.3.3 Presentation tier . 37

3.4 Testing . 40
3.5 Deployment . 43

4 Virtual reality application 47
4.1 Neos VR . 47

4.1.1 World creation . 48
4.1.2 Basic tools . 49

ix

4.1.3 Defining object’s properties 51
4.1.4 Visual programming . 53

4.2 Design . 56
4.2.1 Environment . 56
4.2.2 Control panel . 57
4.2.3 Booths . 58

4.3 Implementation . 59
4.3.1 JSON parser . 59
4.3.2 Control panel . 61
4.3.3 Booths . 64
4.3.4 Environment . 67
4.3.5 Finishing up . 68

5 Testing the system 69
5.1 Web application . 69
5.2 Virtual reality application . 72

Conclusion 75

Bibliography 77

A Acronyms 81

B Contents of enclosed CD 83

x

List of Figures

2.1 Student presenting his poster during a local science fair [3] 5
2.2 Finalist hall during the Regeneron ISEF [4] 8
2.3 Student presenting poster to judge during the Regeneron ISEF [4] 9
2.4 Screenshot of the Regeneron ISEF 2022 landing page 10
2.5 Screenshot of a student’s booth from the Regeneron ISEF 2022 . . 11

3.1 UML use case diagram . 19
3.2 UML domain model . 22
3.3 Screen transition diagram . 24
3.4 Google Cloud Console with a running virtual machine 45
3.5 Finished web application accessed on the scifairvr.my.to domain . 46

4.1 Neos VR dashboard . 49
4.2 Loaded MaterialTip with additional predefined material orbs . . . 50
4.3 Cube object with a rotation gizmo 51
4.4 Scene Inspector . 52
4.5 Arithmetical expression in LogiX 54
4.6 Using LogiX to modify the object’s properties 55
4.7 Control panel wireframes . 57
4.8 Booth wireframes with variant with or without poster 59
4.9 GetValueForKey LogiX blueprint 61
4.10 Control panel . 62
4.11 Event UI template initialisation functionality 63
4.12 Model files and textures placed on the booth’s table 66
4.13 Booths implementation with variant with or without poster 67
4.14 World’s environment . 68

5.1 List of created events . 70
5.2 Event detail with uploaded submissions 71
5.3 Control panel testing . 72
5.4 Virtual world with spawned booths 73

xi

List of Tables

3.1 Fulfilment of functional requirements by use cases 20
3.2 Go packages code coverage . 43

xiii

List of Listings

3.1 Event structure definition . 28
3.2 Repository interface definition 29
3.3 Event detail handler implementation 33
3.4 Dockerfile for the Go application 35
3.5 Gitlab pipeline definition . 37
3.6 Go HTML template example 39
3.7 Go TestInMemoryCreate unit test 42

xv

Introduction

Science conferences are events where researchers share their latest findings
and breakthroughs. It is also a place where they can connect with their
colleagues to get inspired, discuss the obstacles they are facing, or receive
a new, unbiased point of view. Similarly, science fairs give a chance to young
passionate students interested in science to taste what the work of a researcher
entails. For these students, science fairs offer the chance to socialise with
similarly minded peers and build lifelong lasting friendships.

In all the above stated cases, the importance of human interaction is ap-
parent. This was not an issue when science fairs were organised in person.
However, the current situation, mostly caused by the COVID-19 pandemic,
made it obvious that holding events physically is not always an option. This
meant that activities which were previously held solely in person had to be
changed into some form of remote variation or be cancelled completely. This
brought the era of home office, remote lectures and conference calls. Science
fairs were also not spared from this remote mode shift. While some fairs got
cancelled altogether, the rest were conducted via meeting calls or other re-
mote methods with limited human to human interaction. This led to various
issues which significantly worsened the attending experience for the contes-
tants. Problems, such as the usage of body language, ability to focus, or
human networking are all issues that are difficult to solve with the common
approach of meeting calls. The technologies which can address these issues
have already been developed, but as of today, are still not commonly used in
conventional software solutions.

In this thesis, a system capable of addressing these issues is designed and
implemented by utilising virtual reality and metaverse. Virtual reality, as well
as metaverse, is, however, still a relatively new concept that most of the public
is not familiar with. Because of this, any solution which would require the
users to perform a complicated sequence of operations in the virtual reality is
doomed to fail. For that reason, the virtual reality application is accompanied
by a web application, a concept known by the majority, which will collect

1

Introduction

assets from the users and transfer them into a virtual world. By opting for
this approach, users will upload their materials in a familiar way and will not
have to worry about getting them into the virtual reality itself. This way,
the resulting system should be easy to use without sacrificing any essential
functionality.

2

Chapter 1
Objectives

The overall goal of this thesis is to design, implement and test a system ca-
pable of automatic creation of science and engineering fairs in virtual reality.
In order to make the implementation process simpler, a number of smaller
sub-objectives were devised, which go through the process in logical succes-
sion and roughly correspond to the thesis assignment. These sub-objectives
are, stated in the order they appear in the thesis, as follows:

Investigation of science and engineering fairs.
In this chapter, science and engineering fairs are examined to learn what they
are and how they are usually organised. Next, the Regeneron International
Science and Engineering Fair is introduced, which is currently the largest
pre-college science fair held every year in the United States. Ultimately, the
chapter explores how individual science fairs handled the switch to remote
mode during the COVID-19 pandemic and it is evaluated whether this trans-
formation was successful or not.

Implementation of the web application.
Based on the information gathered from the previous chapter, a web applica-
tion that is capable of gathering and distributing science fair assets is designed
and implemented. This chapter also briefly discusses all the used technologies
and explains the reasons for choosing them. In the end, the web application
is tested by unit tests and is deployed on the Internet.

Implementation of the virtual reality application.
In this chapter, the Neos VR metaverse is introduced as the main enabling
technology for the virtual reality part of the system. Throughout this chap-
ter, the most essential principles of Neos VR are explained with a special care
being given to its visual programming language called LogiX. Afterwards, the
virtual world inside of Neos VR is designed, implemented and published in
the Content Hub for public use.

3

1. Objectives

Test of the final system.
As the last step, the resulting system is checked by holding a testing science
fair. Next, any potential issues that are uncovered by the testing are fixed
and it is evaluated whether the system successfully fulfils the thesis assign-
ment and if it can be used as an alternative method for holding remote science
and engineering fairs.

4

Chapter 2
Science and engineering fairs

Science and engineering fairs, sometimes also referred to as science conferences,
are competitions intended for elementary, middle, and high school students.
Their focus is to get students more interested in science by giving them a task
of creating a science project. Each student must find an area he is interested
in, formulate a question or a hypothesis, design a research method, gather
relevant data, form a conclusion and ultimately create and present a poster
showcasing his results. By going through this process, which roughly corre-
sponds to the scientific method, students can use the knowledge learned in
classrooms in a real-world scenario, thus enhancing the comprehension of the
subject [1]. Furthermore, it can also improve their creative thinking, the abil-
ity to work with data, and even inspire them to pursue a career in science or
engineering [2].

Figure 2.1: Student presenting his poster during a local science fair [3]

5

2. Science and engineering fairs

Science and engineering fairs are held, with some alterations, worldwide
and often follow a similar pattern. The whole process usually starts at local
schools where students participate in a fair by presenting their findings in the
form of a poster [2], as seen in figure 2.1. This participation can be mandatory
or optional for an extra credit or a better grade. Because science fairs are es-
sentially competitions, they include a judging process where the best students
advance to regional and subsequently to national or even international rounds.
The biggest international science fairs include Regeneron International Science
and Engineering Fair (ISEF) [4] held yearly in the United States, and the Eu-
ropean Union Contest for Young Scientists (EUCYS) [5] which occurs every
year in Europe. Because these rounds are often sponsored by big science and
technological companies, they feature cash prizes, awards or scholarships for
the best students. It is also possible for students to arrange internships or
even secure a job in one of these companies. In addition, students can inter-
act with each other to make like-minded friends or form groups to tackle more
challenging problems.

2.1 History

The history of science fairs can be dated back to the 1930s, when the Ameri-
can Institute of the City of New York began uniting after-school science clubs
into an association [6]. Their focus was to get young students more interested
in STEM (science, technology, engineering, and mathematics) fields and to
get them to experience science by doing, rather than by memorising formulas.
Initially, science fairs were mostly about science demonstrations, rather than
discovery and innovation projects, which define science fairs as we know them
today. However, this has changed during the years 1939 and 1940, when the
New York World’s Fair was held [7]. This large event featured several thou-
sand, mainly high-school, students presenting exhibits from various fields, such
as chemistry, engineering, or physics. The event was met with a large public
success and over 10 million visitors came to see it. Among them were also
George Edward Pendray, the executive of the Westinghouse company, and
Watson Davis, the director of the Science Service, which later became known
as the Society for Science. Intrigued by what they saw at the World’s Fair,
they started discussing how to encourage more students to pursue science and
ultimately started their own national science competition, called the Westing-
house Science Talent Search (STS). The Westinghouse company continued to
sponsor the STS until the year 1998, when the main sponsor became Intel,
which was afterwards succeeded by Regeneron in the year 2016 [8]. In 1950,
Society for Science started another event called the International Science and
Engineering Fair (ISEF). ISEF started as a national science fair, but quickly
expanded and became an international competition, and, as of today, is the
largest pre-college STEM competition in the world.

6

2.2. International Science and Engineering Fair

Inspired by the success of the science and engineering fairs in the United
States, many local and national science fair competitions started forming all
over the world. However, they did not become an integral part of the countries’
education systems, as in the US, and are considered a special extracurricular
activity that only a fraction of students participate in. The reason science
fairs are so popular in the United States, and not so much anywhere else
in the world, can be traced to the Next Generation Science Standards [9].
These standards, published in 2013 in the United States, are split into three
dimensions: Cross-cutting Concepts, Science and Engineering Practices, and
Disciplinary Core Ideas. Each dimension contains a list of guidelines and
recommendations, with the overall idea of teaching STEM fields in context
rather than in vacuum, and focusing on deep understanding and application
of a smaller amount of essential ideas, rather than on a shallow understand-
ing of numerous concepts. For example, the guidelines for the Science and
Engineering Practices states, that students should understand and learn the
following eight practices:

1. Asking questions and defining problems.

2. Developing and using models.

3. Planning and carrying out investigations.

4. Analysing and interpreting data.

5. Using mathematics and computational thinking.

6. Constructing explanations and designing solutions.

7. Engaging in argument from evidence.

8. Obtaining, evaluating, and communicating information.

The correspondence between these practices and science fairs is apparent, and
is most likely the main reason local science fairs are a part of science curriculum
in schools all over the United States.

2.2 International Science and Engineering Fair

In order to study the specifics of science and engineering fairs on a concrete
example, the Regeneron International Science and Engineering Fair (ISEF) [4]
is presented, which was already introduced in the previous sections. Regeneron
ISEF is an international science and engineering fair organised every year by
the Society for Science in the United States. ISEF is intended for students
in grades 9 – 12 (ages 14 – 18) who were selected from ISEF affiliated local,
regional, or national science fairs, which can be found in over 75 countries all
over the world. Upon qualifying, students compete with their projects in 21

7

2. Science and engineering fairs

categories, each with several subcategories, such as animal sciences, biomedical
engineering, mathematics, or systems software. Each year, over 1800 students
qualify to compete in the event and roughly 1000 researchers and scientists
volunteer to judge their efforts in a setting similar to that shown in figure 2.2.
Thanks to the high number of sponsors, winners split over $6 million in prize
money, awards, and scholarships, with the top prize of $75,000 awarded to the
best overall project.

Figure 2.2: Finalist hall during the Regeneron ISEF [4]

ISEF is a multiple day event and usually spans from Sunday to Friday.
The fair’s program starts by contestants dropping off their projects, which
then undergo a safety inspection and check by the Science Review Commit-
tee [10]. On Monday and Tuesday, a wide selection of events is held which
the participants can attend, such as lectures, workshops and symposia. Dur-
ing this time, the participants are also given various opportunities to interact
with each other, tour the town the fair is organised in, and prepare for the
presentation of their project. Wednesday marks the start of the main event
when, during multiple sessions, judges interview the contestants and judge
their projects. This judging process requires the contestants to be present at
the respective booth with their poster and present the project to the judge
similarly, as shown in figure 2.3. The judge then, based on the established
guidelines, evaluates the project on a scale of 0 – 100, taking into considera-
tion aspects such as creativity, the oral presentation and the correctness of the
scientific approach [4]. The next day, the science fair opens to the public and
the special awards ceremony is held. Here, various prizes, such as scholarships

8

2.3. Virtual science and engineering fairs

or internships, are awarded to the selected projects from the fair’s sponsors.
On the last day, the grand awards ceremony is held where the winners for each
individual category and the overall winners are announced.

Figure 2.3: Student presenting poster to judge during the Regeneron ISEF [4]

The Regeneron ISEF offers a wonderful opportunity for young students
interested in science to engage in their hobby. They obtain invaluable feed-
back on their projects from real researchers and might even win various cash
prizes or scholarships. Thanks to the human networking aspect of the event,
they can also discuss their research with the members of numerous research or
educational institutions, which might help them decide what they want to do
after graduating from high school. In addition, participants are given oppor-
tunities to interact with each other, which, thanks to the international nature
of the event, might help them learn something new about other cultures. In
the end, Regeneron ISEF is an amazing experience for all the participants, and
can be the deciding factor why students decide to pursue a career in science.

2.3 Virtual science and engineering fairs

When the global pandemic of COVID-19 started in March 2020, one of the
most important safety precautions was to limit physical contact between peo-
ple as much as possible. This meant that most companies opted for home office
and children were educated online through applications such as Google Class-
room or Microsoft Zoom. Because of the increased organisational complexity
and the lack of experience, numerous organisers did not follow this trend and

9

2. Science and engineering fairs

cancelled their science and engineering fairs for the time being. However,
some of them persevered and successfully switched the fairs to a virtual vari-
ant. The individual methods of the virtual fairs differed based on the specific
event, but options such as broadcasting pre-recorded speeches, describing the
projects over a Zoom meeting call, or presenting the digital versions of the
projects via Microsoft PowerPoint could have all been seen [11]. However,
these methods also come with some disadvantages, which are mostly caused
by the reduction of human representation to a mere video frame. Acts, such as
using body language to further emphasise various sections of the presentation,
or changing the content and form of the presentation based on the audience’s
expression, suddenly become hard when the human-to-human contact is re-
moved from the events. Also, students usually consider the interaction and
collaboration aspect as the most valuable feature of the science fairs [12]. With
virtual science and engineering fairs, these aspects are often omitted, which
might ultimately lead to a reduced number of students that will participate in
these events. However, there are also some substantial advantages to holding
virtual science fairs. For one, once the process of organising the event has been
established, it is relatively easy to redo it in the following years. There are
also no costs related to venue renting, which might notably reduce the organ-
isational costs. Also, if the used technologies allow for it, it is often possible
to account for a higher number of participants compared to physical variants,
and to even make the event accessible to the public with little additional work.

Figure 2.4: Screenshot of the Regeneron ISEF 2022 landing page

The Regeneron ISEF is one of the science and engineering fairs which has
successfully adapted to the need to host the event virtually. The organisers at
Society for Science have opted for an unusual approach, where they used a spe-

10

2.3. Virtual science and engineering fairs

cial purpose product called ProjectBoard [13], which is shown in figure 2.4.
ProjectBoard is a software platform that is specifically aimed at hosting vir-
tual STEM events and student fairs, and is essentially a content management
system where students upload the digital version of their project, video con-
taining the presentation, and any other additional documents. During specific
times, the judges and public can also chat with the participants via a live chat
to ask them questions. ProjectBoard also gives organisers the option to cus-
tomise the event’s landing page and booth design, as shown in figure 2.5, to
match the appearance of the real event. This solution, however, suffers from
the same issues as the options stated in the previous paragraph. Here, the
human-to-human interaction aspect is eliminated almost completely, except
for the written chat, which might make the project’s presentation difficult. It
can also be noted that, while it may initially look interesting, it is not anything
special and will most likely not motivate students to pursue a career in science
in the long-term. Despite all that, the ProjectBoard platform was successfully
used for hosting not only the ISEF but also the years 2021 and 2022 of the
Canada-Wide Science Fair (CWSF) [14] and the American Junior Academy
of Science (AJAS) [15] conference’s poster session. This year (2023), ISEF is
scheduled to be resumed as a physical event in Dallas, Texas, with a support-
ing virtual part hosted on ProjectBoard, where the public will browse through
the participant’s projects and engage with their authors through chat.

Figure 2.5: Screenshot of a student’s booth from the Regeneron ISEF 2022

With the current improvement of the COVID-19 pandemic, science and
engineering fairs are slowly becoming organised physically again. However,
the situation is somewhat different from what it was before. Some science
fairs are newly featuring virtual aspects such as allowing the public to browse

11

2. Science and engineering fairs

through the projects online, while others choose to continue in a hybrid mode,
which is a mode where some participants are present physically and some are
connected virtually. On the other hand, some organisers might have found
that virtual events work the best for their specific use cases and audience, and
will from now on prefer holding virtual events over physical ones. For this
reason, it would be highly desirable to develop a new, more immersive system
capable of addressing at least some of the above stated issues, which is the
goal that this thesis is trying to achieve.

12

Chapter 3
Web application

Utilising the newly acquired information about the science and engineering
fairs and conferences, this chapter describes the development process of the
first part of the system for the automatic creation of these types of events in
virtual reality. This part is realised through a simple web application, which
will work as a content management system that can be used by the science
fair organisers to specify the details of the event they are holding. Next,
users interested in participating in the event will upload their submissions to
the event, which will contain their project’s poster, abstract, audio record-
ing of their speech and possibly any additional images or three-dimensional
(3D) models. Then, when the date of the event comes, the event organiser
will log into a special virtual world, which is developed later in this thesis,
which will communicate with this web application to automatically create the
environment for the science fair by importing the participants’ assets.

3.1 Analysis

To specify the requirements for the web application, the gathered knowledge
about science and engineering fairs from the previous chapter 2 was used.
Based on this knowledge, the core requirements were specified, which made
sure that the resulting application will be able to address all the usual demands
of the fairs. This core was then further expanded by including the requirements
from the thesis assignment and by additional ones that were gathered upon
a discussion with the supervisor, who is the intended user of the system. The
final collection of the requirements also contains a few that were not explicitly
requested, but are generally considered an industry standard for this type of
application. To formally state the requirements, a combination of functional
requirements, non-functional requirements, and use cases was used, which are
all commonly used for the requirements engineering process.

13

3. Web application

3.1.1 Functional requirements

Functional requirements define the functionality which the system should have
to fulfil its purpose. They should contain a name along with a brief descrip-
tion of that specific functionality. Usually, it is also desirable to include an
indication of the requirement’s importance and difficulty of implementation,
based on which the selection of the implemented requirements is made. How-
ever, since this web application is relatively simple and does not feature that
many requirements, this evaluation step was skipped, because all the require-
ments will be implemented. Next, to make it possible to address individual
requirements, each of them will also contain a unique identifier in the form
of FRx, where FR stands for functional requirement and x is the sequence
number of that specific requirement. The functional requirements that will be
implemented in this thesis are:

• FR1 - Management of user accounts
Because it is required to link the ownership of events and submissions
to the users, a simple user management must be implemented. This
will include the creation of a new account and logging in and out of the
account.

• FR2 - Management of events
The events will form the core of the web application. Logged-in users
must have the ability to create new events by specifying the basic infor-
mation such as the name, description or date of the event. It should also
be possible to define what assets, such as the poster, audio, images, or
models, are required to participate in that specific event. Furthermore,
logged-in users must be able to edit and delete their own events.

• FR3 - Management of submissions
Logged-in users must be able to upload submissions for the individual
events. The submission content will differ based on the event’s settings,
but it should be possible to add both texts and files as a part of the
submission. Upon submitting, the author must also be able to edit and
delete his submission.

• FR4 - Accepting common formats for different asset types
Users must be given the option to upload their assets in multiple different
formats. The system should not force them to use a single proprietary
format, which is otherwise rarely used.

• FR5 - Specific purpose single person events
Since the aim of the whole system is to generate a virtual world with the
uploaded assets, it should be possible to create a specific type of events
where only one person will participate. Therefore, it should be possible
to allow one participant to have multiple submissions per single event.

14

3.1. Analysis

This will allow users to utilise the system for the creation of virtual
galleries and presentation displays, besides the science and engineering
fairs.

• FR6 - Accessing submission data through VR application
In order to access the required information through the virtual reality
application, the web application must be able to supply the information
in a standardised machine-readable format.

3.1.2 Non-functional requirements

Non-functional requirements do not specify the functionality of the system,
but rather the attributes and constraints that are required from the system.
They often describe attributes such as speed, reliability, or security, which is
why they usually dictate the architecture of the system. When defining the
non-functional requirements, it is important to always specify the metric of the
requirement, which can later evaluate whether the requirements were fulfilled
or not. Similarly to functional requirements, an identifier will be assigned to
each requirement in the form of NFRx, where NFR stands for non-functional
requirement and x is the sequential number of that specific requirement. For
this web application, the following non-functional requirements were specified:

• NFR1 - User facing web application
The application will be accessible through the Internet from everywhere
and will feature a graphical user interface through which the users will
interact with it.

• NFR2 - Data persistence
The application’s data and submissions’ assets will be persistently stored
in a way where restarts or upgrades of the application do not result in
a loss of data.

• NFR3 - Encrypted communication
Because the application will require the users to login via password,
the communication between the application and the users has to be
encrypted.

• NFR4 - Resilience
While it would be optimal, applications are rarely made with no bugs.
For this reason, the application will contain a fail-safe mechanism that
will recover the application in case any error occurs during the request
handling instead of crashing the application.

3.1.3 Use cases

Use cases are formal descriptions of the smallest sequences of actions that
achieve a common goal within the system. The usual content of the use case

15

3. Web application

differs based on the project’s needs. In this thesis, a simple representation of
the use case was selected that contains its name, the executing actor, sequence
of steps, and, optionally, the requirements needed to execute the use case. In
this context, the actor can be understood as the user, which will usually
perform the specific use case. To later use them in the use cases, the following
three actors are defined:

• Guest - non-logged in user accessing the system via browser
• Member - logged in user accessing the system via browser
• VR application - virtual reality application accessing the system via

a standardised protocol

Besides the above stated attributes, a unique identifier was also assigned to
each use case in the form of UCx, where UC stands for use case and x is
the sequential number of that specific use case. The use cases that will get
implemented in this thesis are:

• UC1 - Register
Actor: Guest
Requirements: An account with the same email does not exist.
Sequence: This use case starts when the actor is on the initial page of
the application.

1. Actor clicks the Login button at the top of the page.
2. System displays the login page.
3. Actor clicks the Register here hyperlink.
4. System displays the registration page.
5. Actor fills his email address, name and two matching passwords.
6. Actor clicks the Register button.
7. System creates the account in the database and redirects the actor

back to the login page.

• UC2 - Login
Actor: Guest
Requirements: An account with the email and password already exists
in the database.
Sequence: This use case starts when the actor is on the initial page of
the application.

1. Actor clicks the Login button at the top of the page.
2. System displays the login screen.
3. Actor fills his email address and password.
4. Actor clicks the Login button.
5. System changes the actor’s role from Guest to Member and redi-

rects the actor back to the initial page.

16

3.1. Analysis

• UC3 - Logout
Actor: Member
Sequence: This use starts on the initial page of the application.

1. Actor clicks the Logout button at the top of the page.
2. System changes the actor’s role from Member to Guest and redi-

rects the actor back to the initial page.

• UC4 - Create event
Actor: Member
Requirements: The date of the event is not in the past, and an event
with the same name does not exist.
Sequence: This use case starts on the initial page of the application.

1. Actor clicks the Events hyperlink at the top of the page.
2. System displays a visual representation of the created events.
3. Actor clicks the button for the creation of a new event.
4. System displays a form for the creation of a new event.
5. Actor fills the name, description, and date of the event. He can also

specify the maximum number of participants, maximum number of
submissions per participant, and the type of assets the event will
allow, or leave these to their default preset values.

6. Actor clicks the Create button.
7. System creates the event in the database and redirects the actor to

the detail page of the created event.

• UC5 - Display event details
Actor: Member/Guest
Sequence: This use case starts on the initial page of the application.

1. Actor clicks the Events hyperlink at the top of the page.
2. System displays a visual representations of the created events.
3. Actor clicks on the event he is interested in.
4. System displays the detail page for the selected event.

• UC6 - Edit event
Actor: Member
Requirements: The actor is the creator of the event.
Sequence: This use case starts on the detail page of the event.

1. Actor clicks the button for the editing of the event.
2. System displays a form containing the current details of the event.
3. Actor changes the details to the desired state.
4. Actor clicks the Update button.
5. System updates the event in the database and redirects the ac-

tor back to the event detail page, which will contain the revised
information.

17

3. Web application

• UC7 - Delete event
Actor: Member
Requirements: The actor is the creator of the event.
Sequence: This use case starts on the detail page of the event.

1. Actor clicks the button for the deletion of the event.
2. System removes the event from the database, along with any con-

nected submissions and assets, and redirects the actor to the lists
of the already created events.

• UC8 - Create submission
Actor: Member
Requirements: The number of current participants is lower than the
event’s capacity and the number of submissions for the actor is lower
than the event’s maximum submission allowance.
Sequence: This use case starts on the detail page of the event.

1. System displays a submission form on the event detail page.
2. Actor fills the name of the submission and uploads all assets that

are marked as required by the event.
3. Actor clicks the Submit button.
4. System creates the submission in the database and redirects the

actor back to the event detail page.

• UC9 - Edit submission
Actor: Member
Requirements: The actor is the creator of the submission.
Sequence: This use case starts on the detail page of the event.

1. Actor clicks the button for the editing of the submission.
2. System displays a form containing the current details of the sub-

mission.
3. Actor changes the details, removes unwanted assets, and uploads

additional assets.
4. Actor clicks the Update button.
5. System updates the submission in the database, deletes removed

assets and redirects the actor back to the event detail page.

• UC10 - Delete submission
Actor: Member
Requirements: The actor is the creator of the submission.
Sequence: This use case starts on the detail page of the event.

1. Actor clicks the button for the deletion of the submission.
2. System removes the submission from the database along with any

connected assets and redirects the user back to the event detail
page.

18

3.1. Analysis

• UC11 - Verify user credentials
Actor: VR application
Requirements: The provided credentials are valid.
Sequence: This use case starts when a user attempts to login in the
VR application.

1. Actor sends an email and password to the system.
2. System verifies the credentials and sends the identifier for that user

to the actor.

• UC12 - Get events for user
Actor: VR application
Requirements: The user for that specific identifier exists.
Sequence: This use case starts when the VR application successfully
authenticates the user.

1. Actor sends an identifier of a user to the system.
2. System sends a list of events created by that specific user to the

actor.

• UC13 - Get data for event
Actor: VR application
Requirements: The event for that specific identifier exists.
Sequence: This use case starts when the user clicks the event initiali-
sation button in the VR application.

1. Actor sends an identifier of the event to the system.
2. System sends the data of the event, along with the event’s submis-

sions data, to the actor.

Figure 3.1: UML use case diagram

19

3. Web application

The visual representation of all use cases and their executing actors can
be seen in figure 3.1, which shows the Unified Modelling Language (UML) use
case diagram. From this diagram, it can be observed that all the previously
defined actors were used and that all use cases are executed by at least one
actor. It can further be observed that UC6 – UC10 are extensions of UC5,
which the diagram represents by the use of the «extend» relation. This means
that upon executing UC5, the actor can optionally continue with any of the
extending use cases, provided the requirements are met.

3.1.4 Functional requirements fulfilment

The fulfilment of individual functional requirements by the use cases can be
seen in table 3.1. This table, which lists use cases in rows and functional
requirements in columns, shows which use cases satisfy which functional re-
quirements. It can be concluded that all functional requirements are satisfied,
because each column contains at least one check mark. Similarly, since all rows
contain at least one check mark, it means that all use cases serve a purpose
within the system and that none of them fall out of the previously defined
scope of the system.

FR1 FR2 FR3 FR4 FR5 FR6
UC1 ✓
UC2 ✓
UC3 ✓
UC4 ✓ ✓
UC5 ✓
UC6 ✓ ✓
UC7 ✓
UC8 ✓ ✓ ✓
UC9 ✓ ✓ ✓
UC10 ✓
UC11 ✓ ✓
UC12 ✓ ✓
UC13 ✓ ✓ ✓

Table 3.1: Fulfilment of functional requirements by use cases

3.2 Design

This section discusses various design decisions, which are essential for the
successful implementation of the web application. These design decisions are
done while keeping technology agnosticism in mind. This way, the design
produced in this section will not limit the implementation to any specific

20

3.2. Design

technology and it will be possible to select the most suitable one later during
the implementation process.

3.2.1 Architecture

For architecture, the three-tier architecture was selected, which is the most
common when developing web applications [16]. In this architecture, the sys-
tem is split into three distinct tiers, based on their functionality, which often
run on separate devices. The bottom tier is called the data tier and is used to
retrieve and persistently store the application data. This can be any type of
relational database management system (RDBMS) such as PostgreSQL [17]
and MySQL [18], or a NoSQL database server such as MongoDB [19] and
Apache Cassandra [20]. The middle tier, called the application tier, contains
the application’s core and handles the business logic specific to that given
application. In addition, it also updates data in the database by commu-
nicating with the data tier through its Application Programming Interface
(API). A wide range of programming languages can be used to implement
the application tier, but Python [21], Java [22], and Go [23] are among the
most commonly used ones [24]. The last tier is the presentation tier, which
displays the data to the user in a readable way. It is also used to gather the
input from the user and delegate it to the application tier, which then per-
forms the relevant computations. This tier is the most standardised out of
the three and essentially all web applications use a combination of Hypertext
Markup Language (HTML), Cascading Style Sheets (CSS) and JavaScript [25]
to implement this tier.

3.2.2 Domain

Domain describes what entities the web application will contain, and what
type of relations will be between them. It also describes what attributes of
which type each entity contains. Based on the functional requirements FR1,
FR2, and FR3, specified in the analysis subsection 3.1.1, three initial entities
were defined. These are: User, containing the login information and refer-
ences for created events and submissions. Event, containing basic information
such as name, description, date, and references to linked submissions. And
Submission, containing the references to uploaded assets. In addition, an en-
tity called File was also defined, which holds asset related data such as its
type and name. Besides these, two auxiliary entities were also added called
SubmissionFiles and ModelAsset, which do not have any data on their own,
and are only used to hold references to individual files. These two entities
are intended to be embedded into the corresponding entities and are used to
simplify the data organisation.

21

3. Web application

Figure 3.2: UML domain model

The final representation, shown as an UML domain model, can be seen in
figure 3.2. This diagram shows the individual entities, together with the names
of their attributes. Each attribute also contains a data type that will represent
it in the final application. This design uses only a few data types, which
are present in most programming languages and database engines. These
are strings, which represent a text of an unspecified length, datetime, which
describes a specific point in time, and integers. Furthermore, two custom
enumeration data types were also defined. The first one, called EnableState,
can be Disabled, Enabled, or Required and is used to specify the submission
format for that given event entity. The second one, called FileType, can be
Poster, Audio, Image, Model, or Texture, which corresponds to all the different
asset types that the web application will accept.

Besides the names and data types of the attributes, the model also contains
the information about the attribute’s visibility. This is expressed by the plus
sign (+) for public attributes and the minus sign (−) for private attributes.
The diagram also describes the direction of the relation by using single or
bi-directional arrows and the cardinality of the respective relations. In this
context, cardinality refers to the number of values for that specific relation.
For example, the relation between submission and event is bi-directional, with

22

3.2. Design

cardinality 1 in the direction from the submission to the event. This means
that for each submission, there is exactly 1 event in the submission’s public
attribute BelongsTo. Looking at the relation from the other direction, the
event entity will have a public attribute called Submissions, which will contain
any number of submissions, ranging from zero to infinity.

To represent the identifiers (IDs) of the entities, version 4 of the Universally
Unique Identifier (UUID) will be used, which is a randomly generated 128-bit
number expressed as a string in a predefined format. UUIDs were designed
to be unique across time and space, and the standard [26] defines 5 different
versions of them. These versions differ in the values that the algorithm uses for
the generation of the UUID, rather than in the format of the actual identifier.
For this application, the UUID of version 4 was selected, which generates the
variable bits either randomly or pseudo-randomly. This means that while it is
technically possible that two same UUIDs will be generated, this probability
is so close to zero that it is often neglected. Also, since all the information
is generated randomly, the UUID of version 4 does not hold any information
about when or where it was generated, which is the characteristic of the other
versions of the UUIDs. Because of this, the UUIDs of version 4 are the most
commonly used, which is why this version was selected for this application.

3.2.3 User interface

Another design decision that can be made without anticipating any specific
technology is the organisation of the user interface (UI). The use cases, which
are intended for human users (UC1–UC10), already specify some of the re-
quired buttons and screen transitions. All this information can be collected
and visualised as a screen transition diagram, which can be seen in figure 3.3.
This diagram is not standardised and does not use the UML notation, but
similar diagrams are often produced during the software engineering process.
In this diagram, the individual screens are represented as rectangles, with
arrows depicting the transitions between them. Each transition also contains
a description of an event or trigger that is connected to that specific transition.
The diagram should be read from the circle, labelled Entry, which depicts the
starting point of the screen transition flow. In the diagram, there are also
three rectangles that have a thicker border than the rest. These screens are
special in the sense that there will be a hyperlink referring to them in the ap-
plication’s menu bar. This means that it will be possible to transition to them
from any other page from within the application. However, to keep the dia-
gram as simple as possible, these arrows were omitted. Another set of arrows,
which were also omitted, are the return arrows from the form pages. Each
form will feature a mechanism that will make it possible to cancel the data
input and return to the invoking page. In addition, when the user provides
invalid data into any form, he will be kept on the page with the form and an
error message will be shown, which will describe the occurred issue.

23

3. Web application

Figure 3.3: Screen transition diagram

3.3 Implementation

In this section, the technologies used for implementing the web application are
described and the reasons for choosing them are briefly stated. Starting with
the data tier, the implementation process is described in the order of the three-
tier architecture, which should make the explanations easy to follow. After
the data tier subsection, the application and presentation tier subsections will
follow, where numerous backend and frontend technologies, which were used
to create the final web application, are explained.

3.3.1 Data tier

For the data tier, the initial decision that had to be made was to choose either
classical RDBMS or some form of a NoSQL database. The main advantage
of RDBMSs is that they are well established in the industry and have been
continuously developed for the past 30 years. They also feature a powerful
querying mechanism called Structured Query Language (SQL), which makes it
possible to get any combination of data from the database efficiently. However,
the main disadvantage of RDBMSs lies in their inability to scale properly.
This is caused by the necessity of having all the database’s data on a single
machine, meaning that if the machine’s capacity runs out or it cannot keep up
with the computations, the whole database needs to be moved to a new, more
performant machine. This scaling approach is called vertical scaling or scaling
up and is considered inferior to other approaches since there is a physical limit
of how performant a single machine can be. Because of this reason, RDBMSs
are not appropriate for applications where a big amount of data is expected.

The other option is a NoSQL database. The main difference between
RDBMS and a NoSQL database lies in the data storing method. In RDBMS,
the individual entities are stored in rows and the entities’ attributes are stored

24

3.3. Implementation

in columns. This means that there must exist a clearly defined scheme, which
is usually prescribed by the stored entity, that specifies the number, names,
and data types of that database’s columns. For NoSQL databases, one of the
most popular data storing models is a document database, which stores whole
entities as strings in a format that is easily processed by machine, such as
the JavaScript Object Notation (JSON) or its binary equivalent. Other pop-
ular NoSQL data storing models include key-value stores, which only store
a single value for a specific key, or graph databases, which model the rela-
tions between the entities as a graph, therefore allowing the user to query the
database by utilising graph algorithms. NoSQL databases also do not force
the user to use a specific database scheme, so it is possible to save objects with
different attributes into a single database. This makes the use of a NoSQL
database much simpler, but at the cost of a slightly less powerful querying
mechanism compared to SQL. However, a big advantage of NoSQL databases
lies in the support of a concept called sharding. Sharding refers to a technique
where the database’s data is split across multiple devices, which are referred
to as shards, to improve database’s capacity, security, and performance. This
concept allows the database to balance the load by redirecting different re-
quests to different shards, which has a positive impact on the performance,
because it is possible to fulfil multiple requests concurrently. It also gives the
database the option to scale horizontally, such that it is possible to improve
the database’s performance and capacity by adding new shards. This means
that NoSQL databases are often easier to use and scale, and offer different
data models, which might be more appropriate for the application’s use case.
They, however, do not offer as powerful and universal querying methods as
SQL and should be only used in applications where complex queries are not
required.

MongoDB

The database engine that was selected for the application’s data tier is called
MongoDB [19]. MongoDB is a NoSQL document database which stores whole
entities in binary JSON (BSON). The reason for choosing a NoSQL document
database is that it will be easy to transfer the entities between the application
and the database, since it will not require any relational mapping. Mon-
goDB also supports sharding, which, even though it will most likely not be
required, will allow the application to scale horizontally and serve multiple
users concurrently in case the need to do so ever arises. In addition, Mon-
goDB’s proprietary query language allows querying the database by attributes
or embedded documents, which is entirely sufficient for this web application.
Also, MongoDB is one of the most popular document databases, comes with
high-quality documentation, and offers official support for 12 programming
languages including Java, Python and Go, which makes it ideal for almost
any type of project.

25

3. Web application

MongoDB offers 3 products which are: Community Edition, Enterprise
Advanced, and Atlas [19]. Community Edition can be downloaded and self-
hosted for free and offers all the essential functionality that is needed from
a database server. Enterprise Advance is a product aimed at larger companies,
which adds features such as enterprise level engine encryption, data audit-
ing, dedicated technical support and requires a payment that differs based on
the company size and functionality requirements. MongoDB’s latest product,
called Atlas, features a fully managed cloud database. With Atlas, developers
do not have to worry about the infrastructure on which the database server
runs. They only configure the properties of the database and specify the num-
ber of shards, and then Atlas takes care of the rest. As for the pricing model,
it works similarly to other cloud services, where the user pays only for the
used space and the number of operations. This means that it is possible to
start with minimal investment and slowly increase the resources as required.
Atlas also features a free tier with 512 megabytes of storage, which can be
used for smaller projects with no time limits.

Because the web application will not be data intensive, the free tier of
MongoDB Atlas was selected for the data tier. This should provide the ap-
plication with enough data storage for the initial stage, with the option of
upgrading it to a bigger capacity tier in the future. Upon registering into
Atlas, the system created 3 database shards in the us-central1 region, and
gave the user the access to the developer portal. Through this portal, it was
possible to configure the database’s properties, check various metrics, or set
up triggers that would execute an action every time a specific condition was
met. The created database was also assigned an Uniform Resource Locator
(URL), which could be used to connect to it either via the command line
utility or through any of the provided programming language drivers.

3.3.2 Application tier

For the application tier, the main decision lies in the programming language
for the application’s backend. Most present day programming languages are
already mature enough and offer the tools needed for web application devel-
opment in the form of networking functions within the standard library. In
addition, the ecosystems of the languages often offer web development frame-
works, such as Spring [27] for Java or Django [28] for Python. These frame-
works can make the web development process much easier when compared to
the standard library, because they can solve common issues related to web ap-
plications, such as authorisation, request routing, and HTML rendering. The
languages can also differ in whether they are statically or dynamically typed.
In statically typed languages, variable types are known during compile type
and cannot change during the lifetime of the application. On the other hand,
in dynamically typed languages, the types are checked during runtime, which
might introduce some stability and performance issues into the application.

26

3.3. Implementation

However, for this type of application, the performance difference would be so
small that it would most likely not be recognisable. In the end, the program-
ming language decision for this type of simple web application does not matter
and should be solely based on the developer’s preference and experience.

Go

The Go [23] programming language was used as the main language for imple-
menting the web application’s backend. This language was chosen because the
author had the most experience with it and felt confident that it can be used to
create the required application. Go, sometimes referred to as Golang to avoid
ambiguity, is a statically typed programming language released by Google in
2009. Go was created to be fast and powerful, while being simple and easy to
learn. By looking at the code, Go can appear similar to C or C++, thanks to
its use of pointers and curly brackets. It also contains some quality of life im-
provements that are commonly seen in higher-level programming languages,
such as automatic garbage collection or the use of packages. In addition, Go
also features a built-in concurrency support and extensive standard library
with an elaborate networking part, which makes it an ideal candidate for web
applications. Currently, Go is being most often used for cloud services and
DevOps applications, but web development is also a common use case.

The work on the application was started by making a new Go project and
creating the domain entities that were defined in the domain model shown in
figure 3.2. Go contains all the common types, such as string or int, while
also allowing users to create custom types by using the type keyword. These
custom types can either rename existing types and further extend them, or
create completely new composite types by using the struct keyword. This
feature was used to create the enumeration entity EnableState for which the
following three values were defined: Disabled, Enabled, and Required by using
the var keyword. A custom composite type called Event was also created,
which contains all the fields defined in the domain model. To represent the
date of the event, the Time object from the time standard library was used,
which describes a specific point in time along with the time zone information.
To represent the ID of the entity, a custom embedded object from the repos-
itory package was used, which is defined in the repository folder within the
project, that creates a version 4 UUID based on the definition specified in [26].
The last step was to represent the relations to User and Submission entities.
Here, while it is possible to reference the object by using a pointer value, it
is desirable to avoid this approach because it makes the implementation more
complex and introduces issues such as circular dependency. For this reason,
only the IDs of other entities were stored inside of the objects, which were
then used to load the referenced entities from the database if required. This
keeps the implementation straightforward and makes it possible to reference
other objects by simple types, such as string, or a list of strings, which in

27

3. Web application

Go is defined as []string. The final definition of the Event composite type
along with the EnableState custom type can be seen in listing 3.1.

import (
"scifairvr/repository"
"time"

)

type EnableState string

var EnableStateDisabled EnableState = "Disabled"
var EnableStateEnabled EnableState = "Enabled"
var EnableStateRequired EnableState = "Required"

type Event struct {
repository.ID `validate:"required,uuid"`
Title string `validate:"required"`
Date time.Time `validate:"required"`
Description string
MaxParticipants int `validate:"required,gte=1,lte=16"`
MaxSubmissionsPerUser int `validate:"required,gte=1,lte=24"`

CreatedByUUID string `validate:"required,uuid"`
SubmissionsUUID []string

WithAbstract EnableState `validate:"required"`
WithPoster EnableState `validate:"required"`
WithAudio EnableState `validate:"required"`
WithImages EnableState `validate:"required"`
WithModels EnableState `validate:"required"`

}

Listing 3.1: Event structure definition

To make the entity validation process easier, the go-playground/validation
library [29] was used. With this library, it is possible to define validation tags
for individual attributes, which can then be checked before saving the entity
into the database. The library offers a wide range of checks, such as checking
for a specific string format, or comparing the attributes between themselves.
In this application, mainly the required check was used, which makes sure that
the attributes contain a non-zero value, together with the uuid check, which
checks that the string corresponds to a valid UUID. In addition, the gte and
lte checks were also used to make sure that the integer satisfies the specified
upper and lower bound. By opting for this approach, the requirements for

28

3.3. Implementation

the attributes are defined in a single location, which removes the need for any
code duplication, while also making sure that the same validation rules are
enforced everywhere within the application.

After creating all the entities from the domain model, the Repository and
Ider interfaces were defined, which are shown in listing 3.2. The Ider inter-
face is simple and prescribes a single function GetId that returns a string
containing the ID of the object. Repository is slightly more complex and aims
to provide an abstraction over the numerous possible storage types. It works
with any entity that satisfies the Ider interface and allows it to be Created, Up-
dated or Deleted within that specific storage type. In addition, it also provides
three different querying functions that either return all the entities within the
storage, all the entities that contain a specific value in a given field, or a single
entity based on its ID. Furthermore, all functions return an error, which is
Go’s built-in type used to inform the user that the operation has failed. Go
also supports returning multiple values from functions, so it is possible to re-
turn an error in case of a failure and a value in case of a success as seen in
the Get, GetAll and GetByField functions.

type Ider interface {
GetId() string

}

type Repository[T Ider] interface {
Get(id string) (*T, error)
GetAll() ([]*T, error)
GetByField(field string, value string) ([]*T, error)

Create(entity *T) error
Update(entity *T) error
Delete(entity *T) error

}

Listing 3.2: Repository interface definition

Interfaces in Go work similarly as in Java, in the sense that they are a set
of function definitions that aim to achieve some common goal. They do not
contain any function implementations and therefore cannot be used on their
own. To use them, an implementation, in the form of an object implementing
all the interface’s functions, must be created first. The advantage of referring
to an interface rather than to a concrete object lies in the fact that it is pos-
sible to swap the interface’s implementations as required and to do so even
during runtime. In the case of this application, two classes that implement
the Repository interface were created. One is an in-memory storage, which
stores all the data in the system’s operating memory and does not save the

29

3. Web application

data persistently. This implementation was used in tests to make sure that the
individual parts of the application work properly without the need to burden
the production database. The second implementation uses MongoDB’s official
driver to connect to the MongoDB instance specified by the mongoURI envi-
ronmental variable. This implementation is used in the production version of
the application to save the data persistently in the MongoDB Atlas database.

Gin

While Go has an amazing standard networking library capable of producing
any web application on its own, a web framework was used, because it can
address the most common issues related to web application development to
make the implementation easier. For this purpose, the Gin [30] web frame-
work was selected, which is currently the most popular web framework for Go,
according to GitHub repository stars. This framework provides functionality,
such as request routing, HTML rendering, or middleware support, which will
all be very useful during the development process and will help to limit boil-
erplate code. Gin also offers high-quality documentation with code examples
for various use cases, and an active community, which frequently adds new
functionality into the framework by creating new, optional packages.

One of the most important features of the Gin framework is the request
router, implemented by the gin.Engine struct. With this router, it is possible
to define request handlers for specific combinations of URL patterns and Hy-
pertext Transfer Protocol (HTTP) methods. In addition, it is also possible to
specify middleware functions that will get executed either before or after the
handler function to provide some additional functionality. By default, Gin cre-
ates the router with two middleware functions attached. The first is a logger
middleware, which outputs the details of every incoming request, informing
about values such as current time, requested URL, used HTTP method, or
returned HTTP status code. The second is a recovery middleware, which re-
covers the application in case any critical error occurs in the handler during
the request processing. By using this middleware function, the application will
not crash even if some internal error occurs, which will have a positive impact
on the application’s stability. In addition, two additional custom middleware
functions were defined that are located in the middleware folder within the
project. First is the LogInternalError, which specifically logs error details for
any request that results in HTTP status code 500, which is used to describe
internal server error. The second one is called Sessions, which manages the
sessions of the currently active users and enables them to perform authorised
operations upon logging in the application.

Once the request router and all the middleware functions were ready, the
handlers for the individual combinations of URLs and HTTP methods were
defined, which are based on the use cases defined in subsection 3.1.3. To
make the code simple to orient in, handlers with common goals were grouped

30

3.3. Implementation

together. By using this approach, three distinct categories emerged, which
correspond to functional requirements FR1, FR2, and FR3 that were previ-
ously defined in subsection 3.1.1. To implement these categories, three custom
Go objects called UserController, EventController, and SubmissionController
were defined, which are all located in the controllers folder within the project.
To specify the URL patterns, Gin supports a combination of static strings
and dynamic variables, which are denoted by a colon sign. This allows to de-
fine patterns similar to /events/:event id/, which will match URLs such as
/events/1/ and /events/08e0cfcb-a129-423d-9a19-f6e8438021dd/ and
will make it possible to obtain the provided ID in the handler by referring
to the event id URL parameter. As for the utilised HTTP methods, only the
GET and POST methods were used, because standard HTML does not offer
a simple way to send anything else. The main difference between these two
methods is that GET is almost exclusively used for data querying and should
not carry any additional data in the request. On the other hand, POST re-
quests often contain data that is sent together with the request, which is then
used by the application to update resources in the database. This makes the
GET method ideal for listing the entities, whereas POST for creating, updat-
ing, or deleting them. A list of all the implemented handlers, along with the
corresponding controller, URL pattern, HTTP method, and content type of
the response can be seen below.

Handler: LoginGet
Controller: UserController
URL pattern: /login/
HTTP method: GET
Content type: HTML

Handler: LoginPost
Controller: UserController
URL pattern: /login/
HTTP method: POST
Content type: HTML

Handler: LoginAPI
Controller: UserController
URL pattern: /api/login/
HTTP method: POST
Content type: JSON

Handler: RegisterGet
Controller: UserController
URL pattern: /register/
HTTP method: GET
Content type: HTML

Handler: RegisterPost
Controller: UserController
URL pattern: /register/
HTTP method: POST
Content type: HTML

Handler: Logout
Controller: UserController
URL pattern: /logout/
HTTP method: POST
Content type: HTML

31

3. Web application

Handler: All
Controller: EventController
URL pattern: /events/
HTTP method: GET
Content type: HTML

Handler: Create
Controller: EventController
URL pattern: /events/
HTTP method: POST
Content type: HTML

Handler: My
Controller: EventController
URL pattern: /events/my/
HTTP method: GET
Content type: HTML

Handler: MyAPI
Controller: EventController
URL pattern: /api/events/my/
HTTP method: GET
Content type: HTML

Handler: Detail
Controller: EventController
URL pattern: /events/:event id/
HTTP method: GET
Content type: HTML

Handler: Update
Controller: EventController
URL pattern: /events/:event id/
HTTP method: POST
Content type: HTML

Handler: Delete
Controller: EventController
URL pattern: /events/:event id/
delete/
HTTP method: POST
Content type: HTML

Handler: DetailAPI
Controller: SubmissionController
URL pattern: /api/events/:event id/
submissions/
HTTP method: POST
Content type: JSON

Handler: Create
Controller: SubmissionController
URL pattern: /events/:event id/
submissions/
HTTP method: POST
Content type: HTML

Handler: Update
Controller: SubmissionController
URL pattern: /events/:event id/
submissions/:submission id/
HTTP method: POST
Content type: HTML

Handler: Delete
Controller: SubmissionController
URL pattern: /events/:event id/
submissions/:submission id/delete/
HTTP method: POST
Content type: HTML

Apart from the above stated handlers, the final implementation also con-
tains some additional ones, such as one for serving static files or displaying
the Not Found page, which were omitted to keep the list in accordance with
the previously defined use cases. Each handler is implemented as a Go func-

32

3.3. Implementation

tion that takes a single argument, which is a pointer to the gin.Context.
Context is another very important object within the Gin framework that con-
tains information about the currently processed request along with methods,
which can format the response in various formats, such as JSON or HTML.
It can also be used to obtain the parameters from the URL or parse data
from the POST request’s body. An example of the Detail handler, which
is a part of the EventController and handles GET requests that map to the
/events/:event id/ URL, can be seen in listing 3.3. In this handler, an event
with the ID corresponding to the event id URL parameter is queried from the
events repository. In case no event is found, the handler calls the NotFound
function, which returns the HTTP status code 404: Not Found, and renders
the Not Found page to the user. If the event is found, the handler continues
by loading relevant render information, obtaining the user details from the
session, and filling the event with submissions by calling the loadSubmissions-
ForEvent function. In case an error occurs during the submission loading,
a human readable error page is shown to the user and the handler returns,
otherwise the status code 200: OK is returned and the event detail page is
shown to the user.

import(
"net/http"
"github.com/gin-gonic/gin"

)

func (ec *EventController) Detail(c *gin.Context) {

e, err := ec.eventCore.GetById(c.Param("event_id"))
if err != nil {

NotFound(c)
return

}

rInfo := rInfoEventDetail(e, ec.userCore)
usr, _ := getUserFromSession(c, ec.userCore, rInfo)
ok, _ := loadSubmissionsForEvent(c, e, usr,

ec.submissionCore, ec.userCore, &rInfo)
if !ok {

return
}

renderHTML(c, http.StatusOK, rInfo)
}

Listing 3.3: Event detail handler implementation

33

3. Web application

Docker

To simplify the development process even further, a few supporting technolo-
gies were used. First of them is Docker [31], which solves issues related to
software portability. Without Docker, each machine needs to have a specific
set of development tools and libraries in order for the application to run prop-
erly. These libraries often create unnecessary clutter on the host machine and
may even cause severe issues, such as software version conflicts. Docker solves
these problems by packaging the application along with all its dependencies
into a container. The packaged container can then be run on any machine
which has Docker installed, without needing to worry about the machine’s
operating system or configuration. In addition, Docker creates a new separate
runtime environment for each container, which is by default isolated from the
machine’s devices. In this way, Docker also functions as a security mechanism
because it prevents the containerised application from interfering with any
running processes, filesystems or network interfaces.

To run a container, an image needs to be created first. Image contains
the container’s filesystem with the application, dependencies, and all addi-
tional binaries that are planned to be used. It also contains the container’s
configuration, such as the default command to run, environment values, and
other metadata. There are multiple methods of defining images, but creating
them via a Dockerfile is the most common one. Dockerfile is a plain text file
that contains a list of instructions specifying how the image should be made.
There is a wide range of commands that can be put into the Dockerfile, but
COPY, for copying files, or RUN, for running commands, are among the most
common ones. Other commands that are often used are: WORKDIR, which
sets the working directory for subsequent commands, EXPOSE, which informs
the container about which ports should be exposed, and CMD, which defines
the command to be run after the container starts. Last important command,
which is mandatory and has to be the first within the Dockerfile, is the FROM
command, which specifies the base image on which the new image will be
built on. While it is possible to start with an entirely new image by typ-
ing FROM scratch, most images will need some additional functionality and
it therefore makes sense to start with some predefined base image. Popular
choices for general use are Ubuntu or Alpine Linux, but a wide range of special
purpose images can be found on Docker Hub [32], which is Docker’s official
image repository. Docker Hub contains, among others, officially maintained
images for operating systems, databases, programming languages, and utility
software. Upon registering, it is also possible to upload created images in
order to share them with other developers.

The Dockerfile that was written to create the image for the Go application
can be seen in listing 3.4. It starts by defining the golang:1.20-alpine as the
base image, which is an image based on the Alpine Linux that contains a ver-
sion 1.20 of the Go programming language, and by specifying the /app folder

34

3.3. Implementation

as the working directory. It continues by copying the go.mod and go.sum
files into the image, which contain information related to used 3rd party li-
braries, and by downloading them to satisfy the application’s dependencies.
Afterwards, all other files from the local folder are copied into the image and
the application is built as the goAPP binary. While it might be argued that
the initial copying of the go.mod and go.sum files is unnecessary, since the
COPY . . command will also copy these files, this approach was used because
of caching. The way the caching works in Docker is that for every Dockerfile
command, for which the resource did not change, a cached value will be used.
This means that if the application’s source code changes, but no 3rd party
libraries are modified, the cached results of the COPY go.mod go.sum ./ and
RUN go mod download commands are used, which would not be possible if
the COPY commands would not be separated. The shown Dockerfile also uses
an approach called multi-stage build, which is another optimisation technique.
Because the Go installation is needed only to build the application and not to
run the resulting binary, it is possible to split the build process into multiple
stages, where each stage uses a different base image. Thanks to this, it is pos-
sible to start with the golang:1.20-alpine image to build the application and
continue with a simpler alpine:latest image to which the built binary is copied,
along with additional static files, and then executed. By using the multi-stage
build, the size of the produced image is only 28 megabytes compared to the
620 megabytes produced by the conventional build.

FROM golang:1.20-alpine AS build
WORKDIR /app

COPY go.mod go.sum ./
RUN go mod download
COPY . .
RUN go build -o /goAPP

FROM alpine:latest AS run
WORKDIR /

COPY --from=build /goAPP .
COPY /resources /resources
COPY /html /html

EXPOSE 80 443
CMD ["/goAPP"]

Listing 3.4: Dockerfile for the Go application

35

3. Web application

Git

The second tool which was used to help with the development process is
Git [33]. Git is an open source version control system, which tracks the
project’s history and allows the developers to bring back past versions of all
files within the project. Git does this by storing the changes of all files, within
a specific editing session, into an object called commit. By saving only the
changed lines of the affected files, commits do not require a lot of space while
still allowing to revert any file to any point in time by applying the changes
in the reverse order. This also means that Git works the best with plain text
files, such as source code or configuration files, which are edited line by line,
and does not perform well when used with binary files where individual lines
do not have a meaning on their own. Git is also often used as a collabora-
tion tool, because it allows multiple developers to edit files at the same time.
This feature is, however, not realised by locking the file or by broadcasting
the changes between the developers at all times, as other collaboration tools
often do. This functionality is achieved by a process called merging, which oc-
curs every time someone publishes a commit that edits a file that has already
been edited by someone else in the meantime. During merging, the developer
is presented with a list of conflicting lines, which are lines that were edited
by both commits, and has to decide which lines to keep in the result. Once
the merging is confirmed, the conflicting lines are appropriately updated by
the newly created merge commit, which can then be distributed to the other
developers.

Git, on its own, works only locally and does not deal with file distribution
over the network. However, there are multiple companies that offer free pri-
vate Git repositories with various limitations. For this purpose, the faculty’s
GitLab [34] was used, because it offers the most generous limits and is free for
CTU’s students. Thanks to GitLab, the project was uploaded online, which
made it possible to work on it from anywhere, while also serving as an online
backup tool in case of any problems. GitLab also allows creating pipelines,
which are sequences of steps to be run on the code every time a new commit is
uploaded to the repository. These sequences often contain actions such as test-
ing the code, and subsequently building it and deploying it to the production
server. Pipelines for GitLab are defined in a file called .gitlab-ci.yml, which
is placed together with other files in the repository. The pipeline definition,
which was used for this project, can be seen in listing 3.5. In this pipeline, two
stages are defined: test, which runs the unit tests for the Go files, and build,
which checks if the code can be successfully built. Because the pipelines are
run inside of containers, they require a definition of the base image, which will
be used to run the container. Here, similarly to the Dockerfile, the golang:1.20
image is used, which will provide all the tools needed for testing and building
the Go application. To keep the testing process separated from the production
MongoDB Atlas database, the pipeline was set up such that it runs a local

36

3.3. Implementation

MongoDB instance, which is then propagated into the tested application via
the mongoURI environment variable. Apart from running the automated unit
tests by using the go test command, the pipeline also formats the code via
the go fmt utility and checks for any warning by using the go vet utility. In
case both the fmt and vet utilities are satisfied and all the unit tests pass,
the pipeline runs the second stage where the application is built to make sure
that there are no errors which would prevent it from compiling.

image: golang:1.20

stages:
- test
- build

test:
stage: test
services:

- mongo:latest
variables:

mongoURI: "mongodb://mongo:27017"
script:

- go fmt $(go list ./...)
- go vet $(go list ./...)
- go test -race -cover -timeout 30s $(go list ./...)

build:
stage: build
script:

- mkdir -p bin/
- go build -o bin/ ./...

Listing 3.5: Gitlab pipeline definition

3.3.3 Presentation tier

For the presentation tier, the technology choices were fairly clear since the
set of HTML, CSS, and JavaScript [25] is currently the standard for creating
user facing web interfaces. These technologies are commonly used in unison
with one another, because each of them addresses a different aspect of the
user interface. HTML is a markup language that defines what objects should
the user’s browser render on the web page. HTML does this by defining
elements, which are semantical blocks enclosed by tags that are represented
by angle brackets. Tags usually come in pairs, where the element’s content is
enclosed by the opening and closing tag, which specifies the semantic type for

37

3. Web application

that element. A simple example is the <p>Hello World</p> element, which
defines a paragraph of text, indicated by the p tag, containing the Hello
World string. Besides paragraphs, HTML contains tags that can describe text
with different types of semantic meaning, such as headers, hyperlinks, ordered
or unordered lists, and more. In addition to text elements, HTML can be
also used to create tables, media objects, or even interactive elements, such as
forms and buttons, through which the user can interact with the web page.

HTML is used to define only the content and type of the objects to be
rendered on the page. It does not concern itself with the element’s visual
appearance and provides all the elements unstyled. To define the visual prop-
erties of elements, the CSS language is used. By using CSS, it is possible to
alter the visual appearance of the HTML elements by specifying various vi-
sual attributes, such as colour, background, or border. It also allows defining
of the spacing between the individual elements by setting their margins and
paddings. Once a CSS style is defined, it can be applied to a group of HTML
elements by the use of selectors. CSS defines several selectors, which can be
further combined to describe any combination of elements. The most common
ones can select a single element based on its unique ID, select a group of ele-
ments that share a common class, or select all elements for a specific HTML
tag.

Both HTML and CSS offer various methods to achieve basic levels of in-
teractivity. With HTML, it is possible to create forms to obtain data from the
user or define buttons, which the user can use to navigate between the pages
of the application. On the other hand, CSS allows defining conditional styles
where elements might change their colour once the user hovers over them with
the cursor, or change the element’s positioning based on the user’s screen size
and orientation. For anything more complex than this, the JavaScript pro-
gramming language has to be used. JavaScript can be used to add new HTML
elements into the page or change attributes of the existing ones dynamically,
without the need to refresh the page. JavaScript can also perform more ad-
vanced functions, such as sending HTTP requests to other web applications,
which enable a completely new set of possibilities. Similarly to programming
languages in the application tier, there currently exist many JavaScript frame-
works, which provide commonly used functionality for the presentation tier
and allow the developers to produce cleaner and more easy-to-read code. The
most widely used JavaScript framework is React [35], which has been created
by Meta, that allows the developers to create reusable JavaScript components.
While it was originally thought that the application would use some JavaScript
framework, it later became obvious that it would only increase the complexity
of the project while providing little to no benefit. This is mainly caused by the
fact that the Go programming language contains a HTML templating library,
which can generate static HTML pages with variable content. Thanks to this
library, the project contains almost zero JavaScript and therefore did not need
to use any JavaScript framework.

38

3.3. Implementation

Go templates

To provide the dynamic content for the HTML pages, the html/template [36]
package was used, which is a part of the Go standard library. With Go
templates, it is possible to write classic HTML code that is enriched by special
control structures, which are enclosed by two curly brackets and are unique to
the template package. The package offers some of the most common control
structures known from programming languages, such as if/else conditions
or the range loop, which iterates over all elements of a list. In addition, when
working with an instance of a Go object, it is also possible to access its public
fields, or call its methods and use the obtained values as content or attributes
for HTML elements. The package also automatically escapes all values, which
prevent attackers from performing code injection attacks, which is a type of
attack where the attacker attempts to change the way a computer program
works by injecting it with malicious code.

An example of the HTML code, which uses the Go template’s special con-
trol structures, can be seen in listing 3.6. This code is a part of the events.html
page, which is responsible for rendering a list of all the events to the user. This
example uses the range control structure, which loops over a list of event ob-
jects that is provided to the template in the events variable. In the loop’s
body it creates a card element for each event, which will contain the event’s
title, date in a human-readable format, and shortened description, along with
a hyperlink that will redirect the user to the detail page for that specific event.
The rest of the presentation tier’s HTML pages are done similarly, where the
dynamic values are provided by the Go application to the HTML templates,
which are then compiled into pure HTML by substituting the template’s con-
trol structures with concrete values.

<div class="row">
{{ range .events }}

<div class="col">
<div class="card">

<div class="card-body">
<h5>{{ .Title }}</h5>
<h6>{{ .DateHuman }}</h6>
<p>{{ .DescriptionShort }}</p>
Detail

</div>
</div>

</div>
{{ end }}
</div>

Listing 3.6: Go HTML template example

39

3. Web application

Bootstrap & Font Awesome

The last two technologies that were used for the presentation tier are Boot-
strap [37] and Font Awesome [38], which both helped to improve the visual
appearance of the application. The issue with using only the HTML and CSS
is that all the elements are, by default, unstyled. This means that in order to
define standardly looking elements, developers must write a lot of CSS code,
which needs to be rewritten over and over across every project. Bootstrap is
a CSS framework that aims to solve this issue by defining a collection of com-
monly used styled components. Besides components, it also defines various
utility and layout styles, which can be used to organise the components into
containers, rows, columns, or even grids. Bootstrap does all of this by defining
a set of CSS classes, which can be applied to the HTML elements to achieve
the desired look and functionality. It is also possible to apply multiple classes
on a single element to achieve multiple visual or functional effects at the same
time. An example of using the Bootstrap classes can be seen in the previous
listing 3.6. Here, the row and col classes on the div HTML element define the
layout of the embedded elements and the card and card-body classes are used
to create a styled card component to achieve a nice visual design.

Font Awesome is an icon library that offers thousands of icons, which can
improve the visual appearance of the website. Each icon is also available in
multiple styles, which gives the developers the option to select the one which
matches the overall look and feel of the application the most. Besides different
styles, Font Awesome also provides different colour and size variants for each
icon, and even defines a few simple animations that can be used with no
additional CSS code. In the application, the Font Awesome icons were used
to replace some buttons with icons to make the user interface more intuitive,
and to define the website’s favicon, which is the icon that is displayed in the
browser’s address bar next to the website’s name.

3.4 Testing

The goal of every developer is to produce software that will satisfy users’
requirements and function correctly in every situation. This goal is, however,
almost impossible to achieve in reality, because it is not possible to think of
everything that might happen during the code’s execution. Yet, it is possible
to reduce the number of errors by properly testing all aspects of the developed
software. Thanks to the fact that the application uses a managed database
service in the database tier, the responsibility for the database is shifted to the
provider of the service, which meant that there was nothing to test. As for the
presentation tier, the most severe issues are often related to the inability of
the users to navigate through the website easily and perform all the required
tasks successfully. This means that the target user is needed to test the
presentation tier accurately. For now, the user testing of the presentation tier

40

3.4. Testing

is skipped, because a user testing session will occur once the whole system
is finished. During this testing session, the whole system will be checked by
holding a testing science fair, which will verify that all parts of the system
work correctly along with the web application’s presentation tier. This leaves
only the application tier, which is a part that will be focused on in this section.

There are various ways of testing the source code of the application tier,
with unit tests being the most common one. Unit tests are automated tests
that verify the correct functioning of the code by separately checking each
unit, which in this situation refers to functions and methods. To do so, unit
tests attempt to execute every single line of the code, which can help to
identify most common issues such as null pointer exceptions, unreachable
parts of code, errors in the code’s logic, and more. Once a test is defined and
executed, the ratio of executed lines of code to the total number of lines of code
is calculated and is presented to the user in percentages as the code coverage.
Usually, it is desirable to strive for the highest code coverage possible, but it is
often unnecessary to aim for perfect coverage as the creation of tests becomes
unproportionally difficult and provides little informational value once it gets
close to 100%. For non critical software, the code coverage of over 80% is
considered a good goal to aim for [39]. It is, however, important to note that
while higher code coverage can help to find more errors in the code, having
perfect coverage does not guarantee that the code is completely free of errors.
This is caused by the fact that there are still some variable parts, such as,
for example, the user’s input, where an unexpected and untested value can
produce an error within the code.

The creation of unit tests in Go is easy thanks to the testing [40] pack-
age from the standard library and the go test utility that is built into the
language. The testing package prescribes a specific file naming standard for
test files, which must contain the test suffix. In addition, the testing func-
tion that performs the unit test must be called TestXxx, where Xxx is the
name of that specific test, and take exactly one argument in the form of
a testing.T pointer. In this project, the testing files were included in the
same folders as the source code files and matched their filenames such that
it is obvious which source code file is tested by which test file. This means
that, for example, the controllers/events.go source code file is tested by the
controllers/events test.go test file, models/validation.go is tested by the mod-
els/validation test.go test file, and so on. An example of a simple test from
the repository/inmemory test.go test file can be seen in listing 3.7. This exam-
ple shows the TestInMemoryCreate unit test, which verifies that the Create
method of the InMemory object performs as expected. In this test, a new
InMemory object is created, and it is made sure that it is empty and does not
contain the o1 object. Then, the o1 object is created within the InMemory ob-
ject by using the Create method and the InMemory is checked again to make
sure that, this time, the o1 object is present inside of it. In addition to the
testing package, a 3rd party assert [41] library was used, which made it possi-

41

3. Web application

ble to define the test requirements in the form of assert statements. The assert
library offers a wide range of different assertion statements to choose from,
such as checking if two values are equal, checking if an array has the expected
length, or checking if an object is or is not nil, which is Go’s built-in type
for undefined values that corresponds to the null type in other programming
languages. By using the assert library, it was possible to reduce boilerplate
code, which is otherwise required when working only with the testing package,
and produce unit tests that are easy to read and comprehend.

import (
"testing"
"github.com/stretchr/testify/assert"

)

func TestInMemoryCreate(t *testing.T) {

im := NewInMemory[StringIntObject]()
assert.NotNil(t, im)
assert.Len(t, im.objects, 0)

x, err := im.Get(o1.GetId())
assert.NotNil(t, err)
assert.Nil(t, x)

err := im.Create(o1)
assert.Nil(t, err)
assert.Len(t, im.objects, 1)

x, err := im.Get(o1.GetId())
assert.Nil(t, err)
assert.Equal(t, o1, x)

}

Listing 3.7: Go TestInMemoryCreate unit test

After defining the unit tests for all the major functions, code coverage
of over 80% was reached for all the packages. The accomplished coverage
for the respective packages can be seen in table 3.2. This table shows that
the project was able to achieve the perfect coverage of 100% for 7 out of the
10 packages, which means that each line of code out of these packages was
executed at least once. Furthermore, thanks to the fact that unit tests can be
executed and evaluated automatically, the GitLab repository was set such that
it runs the unit tests every time a new commit is pushed into the repository,
which was already shown in the pipeline definition in listing 3.5. By using

42

3.5. Deployment

this approach, the GitLab always sends an error message whenever the newly
uploaded changes to the code break some already functional behaviour. This
made it possible to identify and fix these issues quickly and efficiently because
it was always clear when they happened and which commit introduced them
into the code.

Package Code coverage
scifairvr 83.9%
scifairvr/controllers 84.5%
scifairvr/html 100%
scifairvr/middleware 100%
scifairvr/models 100%
scifairvr/models/event 100%
scifairvr/models/file 100%
scifairvr/models/submission 100%
scifairvr/models/user 92.9%
scifairvr/repository 100%

Table 3.2: Go packages code coverage

3.5 Deployment

With the application successfully implemented and tested, the last step was
to deploy it to the cloud to make it accessible to the users and the VR ap-
plication. There is currently a wide range of cloud infrastructure providers
out of which the Amazon Web Services (AWS) [42], Microsoft Azure [43], and
Google Cloud [44] are the biggest ones based on their market share. All three
providers offer free trials during which the developer can use various products,
up to certain limits, for free. Upon registering, the developers are also given
some initial free credits, which are valid through the period of the trial, that
can be used to test additional paid products. The application’s requirement
for the cloud provider was to publish a containerised web application online
and to connect to it from anywhere. Since this is a common use case, all the
providers offer tools that are required to achieve this goal, which all share
the same functionality. Ultimately, the Google Cloud was picked thanks to its
generous free tier offering. While all three providers make it possible to deploy
a containerised application for free, only Google Cloud offers this option with
no time limit. Both Microsoft Azure and AWS limit this offer to 12 months,
after which the billing period starts no matter if the application stays within
the free offering limits or not.

With Google Cloud, it was possible to create the simplest instance of
a virtual machine, called e2-micro, which offers 0.25 core of a virtual central
processing unit (CPU), 1 gigabyte of random access memory (RAM), and
persistent hard drive with 30 gigabytes of storage, for free. Even though the

43

3. Web application

provided resources are relatively small, they will suffice for the initial phase of
running the application. As with other cloud providers, Google Cloud makes
it easy to migrate the application to a more performant variant of the virtual
machine in case the demand will increase and the current machine will be
unable to keep up. Also, in case any other cloud provider introduces a better
deal, it is also possible to migrate the application there, thanks to the fact that
the implementation does not depend on any Google Cloud specific solution.

In order to run the container with the application on the virtual machine,
the Docker image had to be published first. Google Cloud offers a product,
which is specifically intended for this purpose, called Artifact Registry. Arti-
fact Registry offers 500 megabytes of image storage as a part of the free tier,
which was, thanks to the fact that the image’s size was reduced by using the
multi-stage build, fully sufficient. Once the image was uploaded to the reg-
istry, the virtual machine was set in a way where it automatically downloaded
the image and started the container every time the VM was booted on. This
option was available as a part of the virtual machine creation setting, which
meant that it would persist even if the VM were to be restarted or migrated.
When specifying the container details, the mongoURI environment variable
was set, to make sure that the application connects to the MongoDB Atlas
database, and a mounted directory was defined to which the uploaded assets
will be stored into. Once the whole configuration of the VM was defined and
confirmed, Google Cloud created the virtual machine in the us-central1 re-
gion, and gave it an ephemeral Internet Protocol (IP) address, where the VM
was reachable. A screenshot of the Google Cloud console showing the running
virtual machine, along with all the related actions, can be seen in figure 3.4.

With the virtual machine set up like this, it was possible to connect to
the provided IP to verify that everything works properly. Yet, there was still
a bit of fine tuning required to make the application production ready. The IP
address, which was currently assigned to the VM, was ephemeral, which means
that it could change every time the virtual machine got restarted. Luckily,
Google Cloud allows the developers to change an ephemeral IP address into
a static one for free, meaning that the virtual machine will always be reachable
on that address even if it gets restarted or migrated to a different physical
server. By using a static IP address, the application was accessible at a fixed
location, but the problem still was that IP addresses are hard to remember
and users are not accustomed to using them when accessing websites. For this
reason, the FreeDNS [45] website was used, through which the scifairvr.my.to
domain was registered. FreeDNS is a domain name system (DNS), which
handles the translation of domain names the users write in the browser’s
address bar into IP addresses. With FreeDNS, it was possible to set the
translation rule for the scifairvr.my.to domain such that each request got
forwarded to the static IP address of the virtual machine running on the
Google Cloud platform.

The final step was to secure the communication between the user and the

44

3.5. Deployment

Figure 3.4: Google Cloud Console with a running virtual machine

web application. Until now, the application was using the HTTP protocol to
send the data, which does not protect the communication against a potential
attacker in any way. This behaviour is highly undesirable, because the ap-
plication asks the users to log in to perform various operations. This would
result in the users’ passwords being sent as plain texts through the Internet,
which would be considered a great threat from the security perspective. The
solution to this problem is to use the encrypted variant of the HTTP protocol
called Hypertext Transfer Protocol Secure (HTTPS). HTTPS encrypts the
HTTP communication by utilising the Transfer Layer Security (TLS) proto-
col. In order to work properly, the TLS protocol requires a certificate that
describes the identity of the website, which has to be signed by a trustworthy
certificate issuer. There are currently multiple certification authorities capa-
ble of creating free TLS certificates out of which the Let’s Encrypt [46] is the
most popular one. By using Let’s Encrypt, it was possible to issue a signed
certificate for the scifairvr.my.to domain, which was then uploaded to the vir-
tual machine with the application. This gave the users, as well as the virtual
reality application, the ability to communicate with the web application in
a secured way by using HTTPS.

45

3. Web application

With the deployment process completed and the security issue taken care
of, the work on the web application was done. A screenshot of the website
accessed through the HTTPS on the scifairvr.my.to domain can be seen in
figure 3.5. This marks the first half of the automatic science fair generation
system done, which leaves only the virtual reality application left to be im-
plemented, which is further described in the following chapter.

Figure 3.5: Finished web application accessed on the scifairvr.my.to domain

46

Chapter 4
Virtual reality application

In this chapter, the design and implementation process of the virtual reality
application is described. This application will handle the automatic generation
of the science and engineering fairs and allow the users to connect to the gen-
erated worlds to attend the fairs in virtual reality. To obtain the participants’
assets to use for the world generation, the VR application will communicate
with the web application, which was developed in the previous chapter, and
transfer the assets into the virtual reality for the users to see and use.

Because of the fact that the development of a virtual reality application
differs from that of a web application, this chapter will be structured differ-
ently. It will begin by introducing the technology that will be used throughout
the whole implementation, called Neos VR [47]. This technology, which is also
specified as a requirement in the thesis’s assignment, will make it possible to
create the virtual world, as well as program any dynamic behaviour, com-
pletely inside of the virtual reality. Following the Neos VR introduction, will
be the design and implementation sections during which the system will be
created and published for public use. This will finalise the automatic fair cre-
ation system and prepare it for the final chapter that will feature the testing
process of the whole system.

4.1 Neos VR

Neos VR [47], sometimes referred to simply as Neos, is a social virtual real-
ity platform with an emphasis on immersion, social interaction, and creative
freedom. With Neos, users can create their own virtual worlds, fill them with
numerous 3D models, create new objects with a predefined behaviour, or even
program their own custom behaviour by using the built-in visual programming
language. In addition, non-developer users can use Neos to explore a vast uni-
verse of different worlds created by other users, and, thanks to the integrated
networking capabilities, do so together with friends. For this reason, Neos is
also often used as a collaboration tool, where people can meet without wor-

47

4. Virtual reality application

rying about the physical distance between them. This makes Neos VR an
ideal tool for the creation of the science and engineering fair system, since the
participants will be able to connect to it from anywhere in the world by using
only their computer and, optionally, a virtual reality headset.

The development in Neos is substantially different from other methods
commonly used for creating virtual reality applications. Currently, the most
frequently used tools when developing for virtual reality are game engines,
such as Unity [48] and Unreal Engine [49]. In these tools, the developer has
to implement all the general functionality, such as communication with the
VR headset, user movement and physics, and networking, before he may start
working on the actual virtual reality application. Also, all of this implemen-
tation is done exclusively by using the mouse and keyboard, and the virtual
reality headset is used only as a display device to make sure that everything
works properly. Neos VR takes a different approach to the development pro-
cess, where the whole implementation occurs within the virtual reality, with
an option of switching to a desktop mode if required. Neos also takes care of all
the essential functionality, meaning that the developer can focus only on the
important part, which is the actual development of the application. In addi-
tion, thanks to the fact that Neos is an actively developed product, developers
do not have to worry about supporting the latest virtual reality equipment as
this functionality is managed by the Neos development team. The final ad-
vantage of developing with Neos is that once the application is finished, it can
be uploaded to the Content Hub, where other users can browse the published
worlds and easily access them. This removes the need to distribute the ap-
plication via the Internet, which can often be difficult because users are often
cautious when downloading executable files from new, untrusted sources.

4.1.1 World creation

To start creating virtual worlds in Neos VR, the developer has to download
and install it first, which can be done either through the official site [47] or by
using a supported software distribution tool such as Steam [50]. Once Neos is
successfully installed, the users can start creating the worlds straight away or
register a user account first. With a Neos account, each user acquires access
to 1 gigabyte of personal storage, which can be used to save worlds and assets
in the cloud to make them accessible from anywhere.

Upon starting Neos, users are greeted with a dashboard similar to the
one shown in figure 4.1, which serves as the main control element of the
application. Through the dashboard, users can create new worlds, access the
Content Hub, or get to know the controls of Neos. At the bottom, the users
can access other sections of the dashboard that offer additional functionality.
These include the Worlds section, where the user can join active worlds hosted
by other users, Inventory, which offers a selection of tools and items created
by the developers and the community, File Browser, which can be used to

48

4.1. Neos VR

import external files into Neos, and more. To create a new world, the user
needs to press the Create New World button, which is located in the Home
section on the dashboard. Upon pressing it, Neos displays the user a world
creation dialog. Here, it is possible to specify the name of the world, set
whether the world will be publicly available to other users or not, and choose
the world’s starting template, which adjusts the initial skybox and material
of the ground. Once the selection is confirmed, the user is teleported into
the new world, which he may start modifying by using the basic tools, by
spawning items from the inventory, or by importing external models from the
computer.

Figure 4.1: Neos VR dashboard

4.1.2 Basic tools

Neos offers a wide range of basic tools, called tooltips, that can be used to
create new objects, or modify various properties of the existing ones. These
tools are located in the Essential Tools folder within the inventory and need
to be spawned and equipped before they can be used. Simple tools include
brushes that can draw lines in the air, similar to real world 3D pens, or
create various geometrical shapes with modifiable colour and material. An
example of a more complex tool can be the LightTip, which creates a new
point, directional or spot light of the specified intensity, or GlueTip, which
can glue several objects into a single one to make the manipulation with the
objects easier. Most of the tools also offer a context menu that contains

49

4. Virtual reality application

additional settings and working modes for that specific tooltip. With the help
of the context menu, it is, for example, possible to specify the type of the
cast shadows for the LightTip, or set whether the GlueTip will also bake the
meshes of the glued objects together or not.

Another tool that is essential when creating in Neos is the MaterialTip,
which is used to change the objects’ materials. To use this tool, a material, in
the form of a material orb, has to be loaded into the tool first. With the tool
loaded with the orb, it is then possible to change the material of any object
within the world by clicking on it with the trigger button of the VR headset’s
controller or with the left mouse button if using the desktop mode. As for the
materials, the inventory within Neos is full of predefined ones that represent
numerous variants of wood, ground, glass, and many more. By using the tool’s
context menu, it is also possible to create new physically based materials with
custom colours, textures or blend modes. In addition, it is also possible to
define a normal map for the material, which, upon applying on an object, will
render the model with additional spatial details that are not present in the
model’s mesh. The MaterialTip, loaded with a grass material, together with
a few predefined material orbs from the inventory, can be seen in figure 4.2.

Figure 4.2: Loaded MaterialTip with additional predefined material orbs

The last tool that needs further introduction is the DevToolTip. This
tool offers the most versatile usage by allowing the user to create any type of
object in Neos. This includes objects that can be created by using specialised
tools, such as lights or materials, as well as other types of objects that do
not have a specific tool, such as colliders, particle effects, or UI elements.
The DevToolTip can also be used to position, rotate and scale objects more
precisely. In Neos, most of the objects can be picked up and dropped off

50

4.1. Neos VR

wherever the user needs them. It is also possible to rotate the object by
grabbing it with the controller and rotating the hand. The issue is that neither
of these methods is very precise and always modifies the object’s position or
rotation in all axes at once. With the DevToolTip, it is, however, possible to
position, rotate, or scale the object on a single axis at a time, which results
in a much finer control over the object’s properties. This can be done by
grabbing the axis gizmo, which is shown in figure 4.3 and appears around
the object by selecting it with the DevToolTip, and moving it in the desired
direction.

Figure 4.3: Cube object with a rotation gizmo

4.1.3 Defining object’s properties

The last capability of the DevToolTip is to open the Scene Inspector, which
lists all the objects inside the current world. In Neos, objects are referred to as
slots, where each slot holds the same attributes. These attributes are name,
parent slot reference, tag, position, rotation, scale, order offset, and informa-
tion, whether the slot is active and persistent or not. The most important
ones out of these are the position, rotation, and scale, which are represented
by triplets, where each component specifies the property on either the X, Y, or
Z axis. Neos uses a system of local coordinates, meaning the values in position,
rotation, and scale are always described in relation to the parent slot. This
also means that every time a transformation is applied to the parent, corre-
sponding transformations are also applied to all of its children. This gives the
user the ability to create objects that are composed of multiple parts, where
it is possible to grab the parent object and move it somewhere and have the
child objects follow it by keeping their relative position.

51

4. Virtual reality application

However, specifying properties such as the name and position of the slot
is not enough to have anything displayed on the screen. In order for the slots
to have any kind of functionality, they need to have a component attached to
them that will handle that specific behaviour. Apart from sharing the com-
mon persistent and enabled attributes, each component contains a different set
of properties which are based on the component’s type. By using components,
it is possible to define visual properties of the slots by specifying their meshes
or materials, as well as physical properties, such as colliders or various phys-
ical interactions. In addition, there are also components that can make the
slots behave dynamically by making them move or even perform animations.
According to Neos Wiki [51], there are currently over 500 components, each
having a different behaviour and use case, which can be used to make almost
anything by adding suitable components and adjusting their properties.

Figure 4.4: Scene Inspector

The Scene Inspector, which is currently displaying the details of the Box
slot, can be seen in figure 4.4. The left portion of the inspector, indicated
by the yellow background, displays all the objects inside of the current world.
It can be observed that while there are objects that would be expected to
be here, such as the ground, skybox, or light. There are also internal objects
such as the user, gizmo, and even the inspector itself. This goes on to show
that everything in Neos is a slot and is handled the same way. The left side
also shows the hierarchy of the world with all the objects being parented
under the Root slot. To change the hierarchy, it is possible to either set
a reference to a new parent in the slot’s parent attribute or to drag and
drop the slot under the intended parent. The right side, indicated by the
turquoise background, displays the details of the selected box slot. It includes

52

4.1. Neos VR

all the common properties from the above paragraphs, like the slot’s name
and position, with shortcuts for resetting the attributes or re-parenting the
object under the root slot. In addition, there is also one component attached
to the box slot called BoxMesh. BoxMesh is one of the predefined mesh
components, which can be used to define any rectangular mesh by setting the
size attribute. To edit any value in the inspector, it is possible to click on the
input field to invoke a virtual keyboard and replace the current value of the
attribute with the desired one. The inspector also contains additional control
elements, located above the slot’s name attribute, that can be used to further
interact with the currently selected slot. By clicking the green square button,
it is possible to create a copy of the currently selected slot, while the yellow
arrow and star can be used to create an empty slot as the selected slot’s parent
or child, respectively. Finally, the two trash cans are used to delete the slot
and differ in whether the slot’s assets are preserved or not.

4.1.4 Visual programming

Sometimes the functionalities of the predefined components are, however, not
fully sufficient and a custom solution is required. For these situations, Neos of-
fers its own visual programming language called LogiX. In LogiX, each element
of the language is represented by a block, called a node in Neos, with inputs
and outputs of specific types. By interconnecting these with the inputs and
outputs of other nodes, it is possible to create visual algorithms and programs
with functionality similar to those produced by conventional programming lan-
guages. LogiX contains all the common data types, such as booleans, strings,
integers and floating-point numbers, while also providing more complex ones
that might not be present in other programming languages, such as time or
colours. Since everything in Neos is represented in three dimensions, it is of-
ten necessary to address points in space or objects’ rotations, which cannot
be easily expressed by a single value. For this reason, LogiX also provides
built-in support for pairs, triples, and even quadruples of common data types
that greatly simplify the work with these kinds of values.

To use LogiX, the LogiX tooltip from the inventory is required. With
the LogiX tool equipped, it is possible to open the node browser that offers
all the LogiX nodes grouped into distinct categories by using the context
menu. Out of these, the categories that include the most important nodes
are actions, which contain nodes for writing values or references to variables,
flow, with nodes for flow control like loops or conditional statements, and
input, which contains data types with adjustable values to be used as inputs
for other nodes. Apart from these, LogiX also contains a wide range of nodes
for specific mathematical or physical computations, or nodes for working with
3D models and their textures. Some nodes also support overloading, meaning
that it is possible to connect multiple different data types to the node’s inputs.
This concept is often utilised by nodes that accept floating-point numbers by

53

4. Virtual reality application

allowing the user to input integers as well, but there are also nodes that can
change their behaviour completely based on the type of the provided input.
For example, the “+” node does an addition when given a numerical input,
but in the case of a string input, it performs a string concatenation. LogiX also
uses a system of colour coding the data types, so it is always apparent what
types are being exchanged between the nodes. This is achieved by representing
each data type with a unique colour, out of which the red for strings, green
for integers and light blue for floating-point numbers are the most often seen
ones.

Figure 4.5: Arithmetical expression in LogiX

The LogiX tooltip can also be used to interconnect the nodes by drawing
wires between the nodes’ inputs and outputs. A simple LogiX program that
represents the arithmetical expression (2 + 3) × 2.5 can be seen in figure 4.5.
This expression is read from left to right and begins by declaring two integers
and adding them together by using the “+” node. The output of this oper-
ation, together with an additional floating-point number, is then used as an
input for the “×” node, which performs multiplication. Finally, the output
of the “×” node is displayed to the user as the result of the computation.
This figure also shows an example of overloading the “+” node, which, upon
creation, expects floating-point inputs. However, after being provided with an
integer input, it changes into the integer variant. The “×” node also features
another concept, called type casting, where the inputted integer is converted
into a floating-point number because the node does not offer an overloaded
variant for a combination of integers and floating-point numbers.

The above example, which only displays the result in the world, might
be sufficient for demonstration, or people interested in visually programming

54

4.1. Neos VR

mathematical expression, but the main advantage of LogiX lies in the ability
to alter the properties of objects. By using the LogiX tooltip, it is possible
to extract any slot or component from the inspector and use its properties as
either the inputs or outputs for the LogiX nodes. This enables the user to
load the values from any slot or its components, perform calculations on them
and write them back into an attribute of the same slot or a different one. This
way, it is possible to define any custom behaviour of the objects without being
limited by the predefined components. An example of this approach can be
seen in figure 4.6. In this example, the “+” node is used to perform string
concatenation on a string constant Hello, which is defined through a LogiX
node, and the Name attribute of the Box slot. The result of this concatenation
is then written into the Text property of the TextRenderer component, which
renders the given string on the screen.

Figure 4.6: Using LogiX to modify the object’s properties

In LogiX, there are two categories of nodes that differ in when they execute.
The nodes that belong to the first category execute the operation given by its
type all the time. This means that every time the input values change, the
outputs immediately change as well to reflect the new inputs. These nodes are
often easier to use, but might increase the world’s complexity because a lot
of unnecessary computations are executed in every frame. The previously
shown examples in figures 4.5 and 4.6 both belong to this category, but they
would not, thanks to their simplicity, result in a noticeable performance drop.
The nodes belonging to the second category perform one time operations and
need to be triggered in order for the computations to happen. To send the
trigger signal, a built-in impulse type is used, which is always the first input
value that the nodes of this category accept. In addition, these nodes also

55

4. Virtual reality application

produce an impulse as the first output value, which is triggered once the node
has finished its execution, that can be used to chain multiple nodes one after
another to create a sequence of actions. Because of the additional need to send
the impulses to execute the actions, these nodes are often more troublesome
to work with, but they offer the ability to control when and how often will
the calculations trigger, which, if used correctly, can result in a much better
overall performance.

The final functionality of the LogiX tooltip is to pack and unpack the
nodes. Once the user has finished the creation of a LogiX program, it is no
longer desirable for the nodes to be freely floating in the world. By using
the LogiX tool, it is possible to hide the visual representations of the nodes,
which is a process referred to as packing the nodes. During the packing, the
nodes are parented under the selected slot and the nodes’ visuals are deleted.
This means that the packed nodes still exist within the world and execute the
actions the same way as before, with the only difference of no longer being
visible to the user. If, for any reason, it is needed to make the nodes appear
again, the tooltip can also perform the reverse operation called unpacking,
during which the nodes’ visuals are brought back into the world.

4.2 Design

In this section, the virtual world is designed along with all the parts that
are needed to achieve the desired functionality. For the design process, there
is no need to be technology agnostic, as with the web application, since the
technology for the implementation is already given by the assignment. For this
reason, the world will be designed by using concepts available in Neos, which
should make the subsequent implementation process go smoothly. Compared
to the web application, there are also no distinct parts that could be handled
completely on their own, because all the implementation will occur in a single
virtual world inside of Neos. However, it is still possible to define a few
elements of the world, with distinct functionalities, that can be designed and
implemented independently of others.

4.2.1 Environment

The environment will be created in such a way, where, upon joining the world,
the participants will get the impression of attending a real science or engineer-
ing fair. Main source of the inspiration will be the ISEF’s finalist hall, which
was previously shown in figure 2.2, with its blue booths and carpets. The
main elements of the world will be a control panel, through which the user will
initialise the event defined in the web application, and participants’ booths,
which will showcase all the assets that were uploaded to the web application
as part of the submissions. To adhere to the ISEF style, the world will contain
one main aisle, which will be lined with the booths from both sides. This will

56

4.2. Design

allow the participants and spectators to walk through this aisle while being
able to look at the posters and interact with their creators, similar to the real
event.

4.2.2 Control panel

The control panel will serve as the main element that will manage the world’s
content. Upon entering the world, the person who created the event in the web
application will be asked to login through the control panel. Once successfully
logged in, the control panel will present the user all of his created events,
together with basic information such as its name, date, current number of
submissions, and description. From these events, the user will be able to
select the one he is interested in and click the spawn button to create the
participant’s booths, along with their respective assets. Because the creation
process will not be instant, since it is necessary to transfer all the assets
between the web application and Neos and position them correctly inside of
the world, the panel will also contain a visual representation of the status of
the ongoing spawning process.

(a) Login screen (b) Event selection screen (c) Spawning screen

Figure 4.7: Control panel wireframes

To get a better idea of how the control panel should look, wireframe designs
for the individual screens were created, which can be seen in figure 4.7. These
wireframes were made by the Uizard [52] wireframing tool, which is normally
used to create wireframes for web and mobile applications. However, thanks
to the fact that Neos offers all the UI elements commonly found in these types
of applications, it was possible to create the wireframes for the control panel in
the same way. The first wireframe 4.7a shows the login screen, where the user
inputs his email and password exactly the same way as in the web applica-
tion. Upon clicking the login button, the user’s credentials will get verified by
the web application and the user will be displayed the event selection screen

57

4. Virtual reality application

shown in wireframe 4.7b. On this screen, the user will be able to list through
the events that he created via the web application and spawn the one he is
interested in. Once the spawning process gets initiated by the user, the control
panel will display the spawning screen, which is shown in wireframe 4.7c, that
informs the user about the current status of the spawning process. Through
this screen, it will also be possible to reset the world, which will remove all the
participants’ booths and redirect the user back to the event selection screen,
making it possible to initialise a different event without the need to create
a new instance of the world. In addition, both the event selection screen and
the spawning screen will contain a user panel, which will display the name of
the logged in user, and the logout button, which will logout the user from the
control panel and take him back to the initial login screen.

4.2.3 Booths

Similarly to the environment, the booths will be modelled by adhering to
the ISEF style. For each submission, the system will generate a booth with
the uploaded assets, while also displaying the submission’s name and author.
Visually, the booth will be composed of a backplate, to which the poster and
images will be attached, and a table, which will provide the authors with
a place to display their uploaded models. Next to the table, there will be
a small area, where the author will be able to stand in order to present his
project to the other participants. In addition, it will also be possible to read
the abstract or listen to the audio file with the speech, provided that it was
uploaded as a part of the submission. This will enable the participants to visit
the world and learn about the projects even if their respective authors will
not be present in the world.

As with the control panel, wireframes of the booths were also created,
which can be seen in figure 4.8. Because the web application allows to specify
what type of content can be uploaded as part of the submissions, it was impor-
tant to create a booth design, which would look good for all combinations of
asset types. For this reason, two designs, which differ depending on whether
there is a poster present in the submission or not, were created. The first
wireframe shown in subfigure 4.8a places the poster on the table, while mak-
ing it as big as possible, to highlight its importance. The additional images
are then scaled down and arranged around the poster, because their purpose
is only to accompany the poster and provide further context. On the other
hand, if there is no poster, the images are scaled up and positioned into the
central area of the booth, as shown in subfigure 4.8b. This type of booth will
probably not be that useful in the case of science and engineering fairs, but
it can be utilised to create virtual galleries or other types of presentation dis-
plays. Besides the poster and images, the booths will contain playable audio,
located at the top right corner, and abstract, which will be attached to the
table mimicking the appearance of an A4 paper. In case that neither of these

58

4.3. Implementation

two will be present in the submission, their absence in the booth should not
introduce any weird appearance, which is why there was no need to create
a specific booth variant for them. The last type of assets, which cannot be
seen in the wireframes, are the models, which will also provide an additional
context for the poster. The models will be placed on the table, which is why
they are not visible in the wireframes.

(a) Booth with poster (b) Booth without poster

Figure 4.8: Booth wireframes with variant with or without poster

4.3 Implementation

In this section, the implementation process of the virtual world inside of Neos
is described. Apart from stating the most important aspects of the world,
a few interesting implementation details are also highlighted, which might
provide further insight into how the world functions. This section will contain
all the elements described in the previous design section, but in a slightly
different order. This change should make the text easier to understand, as
each subsection will always focus on one topic without relying on concepts
that have not been introduced yet.

4.3.1 JSON parser

One of the biggest challenges during the implementation was to create a com-
pletely custom JSON parsing solution. Through LogiX, it is possible to send

59

4. Virtual reality application

either the HTTP GET or POST requests, but there are currently no built-in
solutions for parsing JSON or any other machine-readable format to process
the server’s response. Luckily, LogiX offers a wide selection of nodes for work-
ing with strings, which made it possible to create a custom implementation
of JSON parsing mechanism. Thanks to these nodes, it was possible to im-
plement functions that would return the value for a specific key, loop through
the elements of a list, remove the surrounding quotation marks from a string,
and a few others that were used in a range of specific use cases.

To help with the creation process, the LogiX blueprint utility from the
public inventory was used. The blueprint is essentially a plate to which it is
possible to stick LogiX nodes to keep the implementation nicely aligned. By
using the blueprints, it is possible to create reusable blocks of code that can
be duplicated to use the same functionality in multiple places. In addition, it
is also possible to save the created blocks in the inventory for later use. There
is, however, one issue connected to an extensive use of the blueprints which is
that it might result in a decreased performance of the world. This is caused
by the fact that blueprints themselves are objects that were created in Neos
by utilising a big amount of LogiX nodes. Because of this, the blueprints
were used to only create the reusable blocks, and pure LogiX was used for
everything else.

An example of one of the JSON parsing LogiX blocks can be seen in
figure 4.9. This example shows the GetValueForKey blueprint that takes
the JSON and key and returns the value for that given key provided it ex-
ists. In this example, the blueprint takes the {"name":"John", "age":30,
"car":null} JSON and the age key, and returns 30, which is the correspond-
ing value. This blueprint is one of the simpler ones that was created in order
to parse the server’s responses, but the one that was probably used the most.
It works by finding the key’s substring in the JSON by using the Index Of
String node to determine the beginning of the value and then by finding the
first ending symbol that is represented by a comma, square ending bracket, or
curly ending bracket. Once it finds both the bounding indexes, it returns the
inner substring as the result. However, because of the way the ending sym-
bols are checked, this implementation does not work properly if the value for
the queried key is a composite object or a string containing commas. To ad-
dress these issues, special variants of this blueprint were created, which return
the correct output, but at the cost of an increased complexity and a higher
number of LogiX nodes. The reason why the GetValueForKey blueprint was
not completely replaced by these “improved” blocks is, that while the original
block does not return the correct output for every type of input, it behaves
correctly for integers, UUIDs, and lists of non-object values. These types of
values were the ones that had to be queried the most often, which is why the
GetValueForKey blueprint was sufficient most of the time. Also, by opting for
this approach, it was possible to limit the complexity of the implementation
while keeping the number of LogiX nodes to a minimum.

60

4.3. Implementation

Figure 4.9: GetValueForKey LogiX blueprint

4.3.2 Control panel

With the JSON parsing blueprints created, it was possible to start making
the functional elements of the world. First, the control panel was created,
through which the user will be able to interact with the world, by following
the wireframe designs shown previously in figure 4.7. To define the UI of the
panel, the UIX components were used, which Neos uses to render interactive
elements of the user interface, such as the content of the scene inspector or
the node browser for the LogiX tool.

The most essential part of each user interface, which uses the UIX com-
ponents, is the Canvas component that defines the dimension of the UI along
with the accepted user interaction methods. After defining the main Canvas
component that is shared for the whole panel, the login, event selection, and
spawning screens were created. To define the layout of the pages, Neos offers
the HorizontalLayout and VerticalLayout UIX components that specify the
positions of their child objects by aligning them either horizontally or verti-
cally. These components position the UI elements such that each occupies
the same amount of space, which might not always be the desired behaviour.
However, by using the LayoutElement component, it is possible to define the
ratios of their height and width relative to one another, which makes it pos-
sible to change the sizing of the individual elements. Once the layout of the
screens was created, the graphical components, which are used to render im-
ages and texts, as well as the interactive components, such as buttons and
text fields, were added into the screens. After defining all the UI elements,
the appearance shown in figure 4.10 was achieved, which is close to that of
the wireframes from the design section.

61

4. Virtual reality application

(a) Login screen (b) Event selection screen (c) Spawning screen

Figure 4.10: Control panel

By using the UIX components, it was possible to interact with the control
panel by changing the text in the input fields or clicking the buttons. Upon
clicking the buttons, there was, however, no action other than a slight colour
change to indicate the click. In addition, there was also no mechanism to
switch between the screens of the control panel other than manually selecting
the active one in the inspector. The functionality of each page was specified by
creating LogiX programs, which utilised the previously created JSON parsing
blueprints. This custom functionality was then connected to the control panel
in such a way that it executed every time the user pressed any of the buttons.

The LogiX functionality for the login page shown in subfigure 4.10a is
simple. Upon pressing the login button, the user’s email and password are
collected from the input fields and sent as a body of an HTTP POST request to
the web application’s /api/login/ endpoint. This endpoint then verifies the
received user information with the data from the database and returns either
the HTTP status code 200: OK along with user’s ID encoded as JSON, or
a different status code with an error that further describes the occurred issue.
This means that it is sufficient to only check the response’s status code and,
based on it, parse either the value for the userID or error key by using the
GetValueForKey blueprint. In case the request results in an error, the error
description is displayed on the screen and the user is given a chance to fix the
issue and try again. Otherwise, the parsed user’s ID is saved into a variable
for later use and the user is shown the event selection screen.

The functionality of the event selection page shown in subfigure 4.10b is
the most complex out of the three screens. Its execution starts right after

62

4.3. Implementation

the screen gets activated by the login page and begins by sending an HTTP
GET request to the /api/events/my/ endpoint with the user’s ID supplied as
a URL parameter. This endpoint then returns a list of all the events created
by the user with the provided ID, encoded as a JSON. To represent the data
of each returned event, a template UI object, which has the necessary UIX
components to render the event’s name, date, description, and the number of
submissions, was created. In addition, a LogiX procedure that initialises this
template was also created, which listens for the JSON representation of the
event, from which it extracts the respective values and writes them into the
UIX components to render them on the screen. This implementation is shown
in figure 4.11 and can be visually split into two parts. The left portion parses
the individual values from the JSON by using the previously defined GetVal-
ueForKey functionality and the right side transforms the parsed values into
the required format and writes them into the Text UIX components’ Content
fields to make them appear on the screen. This event UI template is then
duplicated for each event that is returned as a part of the response from the
endpoint and initialised with the obtained JSON. Apart from visualising the
event details, this screen also contains some additional LogiX functionalities
that were implemented separately. This includes the logout process, which
only clears the variable with the user’s ID and changes the active screen to
the login page, and the event selection control, which lists through the loaded
events by clicking either the left or right arrow below the event’s details. The
final functionality of this screen is triggered upon pressing the spawn button at
the bottom of the page, which initiates the spawning process for the currently
selected event, while also changing the active screen to the spawning page.

Figure 4.11: Event UI template initialisation functionality

63

4. Virtual reality application

The LogiX implementation for the spawning page shown in subfigure 4.10c
is the least complicated out of the three. During the event’s spawning process,
the booths trigger two types of impulses. AssetLoading, which is triggered once
the asset’s loading process starts and AssetLoaded, which is triggered once
the loading process finishes. To keep track of the current loading progress,
the program defines two integer variables, one for each impulse type, which it
increments every time it receives the respective impulse signal. Based on these
two variables, it then calculates the current spawning progress by dividing the
number of loaded assets by the number of all assets and expresses the result
as percentages on the screen. Besides displaying the spawning status, it also
allows the user to logout the same way as the event selection page and to reset
the current event by clicking the reset button at the bottom of the screen. By
resetting the event, all the event’s booths are removed from the world and the
active screen is changed to the event selection page, which gives the user the
ability to spawn a different event without having to reset the whole world.

4.3.3 Booths

The booths represent the most essential part of the world, because they will
display the assets that the participants uploaded to the web application. Sim-
ilarly to the control panel, the creation of the booths began by creating the
static models by following the design wireframes that were shown previously in
figure 4.8. To create the models, the assets from the Neos inventory were used,
together with the help of some of the basic tools. The inventory contained the
3D models of the table and curtains, which were then modified to match the
ISEF’s style by changing their material by using the material tooltip. Next,
the developer tooltip was used to create simple cuboids, which were then used
as the booth’s backplate and as the dividers between the individual booths.
In addition, a text object, which shows the name of the submission, and a la-
bel, which displays the author’s name, were also created and placed in their
respective places inside of the booth.

Once all the static parts of the booths were finished, the dynamic objects,
which will visualise the assets loaded from the web application, were created.
First, the poster object was defined, which is the most important out of all
the assets, because it represents the foundation of the participant’s project.
Usually, to make image files appear in Neos, users have to find the required
file through the built-in file browser and go through the importing procedure.
Because this process contains manual steps and it cannot be automatically
executed even through LogiX, a different approach had to be found. To render
the images, Neos uses the StaticTexture2D component, which contains an URL
attribute. This attribute usually links to the URL of the image inside of the
Neos server, but it is also possible to supply a custom URL to render any
image from the Internet. This made it possible to display the posters by
substituting the value of the URL attribute with the address of the file from

64

4.3. Implementation

the web application. Once the file was loaded from the web application and
displayed through the StaticTexture2D component, all that was required was
to define a simple procedure in LogiX that properly scaled the image while
keeping its aspect ratio and placed it into the designated space inside of the
booth.

With the poster template created, a similar functionality was defined for
the additional images. The process of showing the images was exactly the same
as with the poster, the only difference was the subsequent placement of the
image objects. According to the design wireframes from figure 4.8, two types
of image layouts were created that differed based on whether the submission
does contain a poster or not. In case the submission does contain a poster, the
images are placed alternatingly in two columns next to the poster. Otherwise,
the images are placed in a grid layout in the centre of the booth to maximise
the usage of space. Furthermore, a slight modification was also made to the
scaling LogiX procedure, which limited the maximum size of each respective
image to prevent it from expanding outside of the booth area.

In the case of the audio files, the importing suffered from the same issues as
did the images. Luckily, it was also possible to solve them in a similar way. To
represent the audio, the StaticAudioClip component was used, which contains
the URL attribute from which it loads the audio data. As for the control of
the audio clip, there was no need to implement any custom solution, because
Neos comes with its own audio player. Through this player, it is possible to
play, pause, or stop the audio. In addition, it also allows the users to change
the volume of the currently played track or specify various looping options.
Because this player contained all the required functionality, there was no need
to modify its visuals or implementation in any way. The only issue that was
connected with the usage of this player was that it incorrectly displayed the
audio’s length for audio files that were loaded from the Internet. Thankfully,
Neos provides a good selection of LogiX nodes aimed at working with audio,
so it was possible to create a simple LogiX program that fixed this issue and
made sure that the audio’s length gets displayed properly.

The final asset type were the models and their textures. The original idea
was to use the StaticMesh component through which it is possible to load
the object’s mesh from a URL. However, this component expects a URL that
points to a .meshx file, which is an internal type of file used by Neos to define
meshes. This meant that changing the component’s URL to a file from the
web application would not work, because these files are in the standardised
formats such as .obj, .fbx, or .gltf. Because of this, it was not possible to
import the models automatically, since it was necessary to have Neos convert
them into the internal .meshx representation by manually going through the
import dialogue. To make this process as easy as possible for the users, a vi-
sual representation of the model files was created, which links to the assets
uploaded to the web application by using the StaticBinary component. Upon
loading, these file representations are placed on the table where they await

65

4. Virtual reality application

the participants, who can then initialise them by clicking and going through
the importing dialogue. In case the user has also uploaded a texture for the
model, a material tool loaded with the uploaded texture will be placed right
next to the model’s file. By using this material tool, the user will be able to
apply the texture on the imported model by clicking on it. An example of the
uploaded files and the prepared material tools can be seen in figure 4.12. This
figure also shows the models that were obtained by going through the import
dialogue and by using the provided material tools to apply the textures.

Figure 4.12: Model files and textures placed on the booth’s table

After processing all the asset types, all that was left to place into the
booth was the abstract. This was probably the easiest part, because the web
application provides the abstract as a plain text rather than a file. Thanks
to this, it was possible to supply it directly to the TextRenderer component,
which displayed it on the screen. Visually, the abstract object was made to
look similar to a paper, which was then attached to the front side of the booth’s
table. To make the text easily readable for the participants, the abstract
object was supplied with the Grabbable component, which makes it possible
to grab and move up close in order to read it. Furthermore, the Snapper and
SnapTarget components were also used to align the abstract properly back into
its original place once the user is done with the reading and places it back on
the table. The finished booths can be seen in figure 4.13. The subfigure 4.13a
shows the booth that contains both the poster and the images. In this type
of booth, the poster is placed in the centre as the main element, whereas the
images are placed around it to provide additional context. The layout of the
images in this type of booth was also made to be slightly rotated towards the
middle of the booth to make them easier to see while looking at the poster.

66

4.3. Implementation

The second subfigure 4.13b shows the booth where the poster is absent and
only the images are present. In this case, the images are stretched to fill the
maximum amount of space, which might be useful for the creation of virtual
galleries. In addition, the booths in both subfigures contain labels with the
name of the project and the author, a playable audio at the top-right corner,
a file for the model together with its texture placed on the table, and the
abstract attached to the front corner of the table.

(a) Booth with poster (b) Booth without poster

Figure 4.13: Booths implementation with variant with or without poster

4.3.4 Environment

Once all the functional elements of the world were done, the next task was to
create the world’s environment. Instead of containing the world inside of some
building, the world was created as an open space with sufficient lighting to
make sure that the participants will be able to read all the texts with no issues.
The ground was made by creating a circular plate with a concrete material on
which a blue carpet was put to make it appear similar to the ISEF. At the end
of the carpet, the control panel was placed and the world’s spawning point

67

4. Virtual reality application

was set such that every user will face the control panel directly upon joining
the world. Next, an information board was created and positioned right next
to the control panel, which informs the users about the world’s purpose and
describes how to use it. To finish the visuals of the world, palm trees were
also added to fill the empty spaces and to evoke the atmosphere of attending
a real science fair somewhere in the United States. The resulting environment,
shown from the bird’s-eye view, can be seen in figure 4.14.

Figure 4.14: World’s environment

In case some institution will want to use this system to hold their own
science or engineering fair, they will probably want to organise it in their own
custom environment. This environment will most likely be in the form of a 3D
scan or a 360° photograph of a building or an assembly hall in which the fairs
are usually held. Therefore, by keeping the world’s default environment as
simple as possible, it will be easy to create these personalised variations of the
world, because the number of required changes will be minimal.

4.3.5 Finishing up

To finish up the implementation, all the functional elements were connected to
work together. This included triggering the spawning process for the booths
upon clicking the spawn button and subsequently removing them upon clicking
the reset button on the control panel. Once the implementation was fully
functional, the work was finalised by publishing the world through the Content
Hub under the name SciFairVR. The world is currently freely accessible to
anyone, and it is possible to open it either from the world browser option on
the dashboard or to find it under the published worlds in the Content Hub.

68

Chapter 5
Testing the system

With the implementation of both the web application and the virtual reality
application done, the final task that remains is to test the entire system. In this
chapter, the whole process of creating the science fair through this automatic
generation system is performed, starting by registering a user account in the
web application all the way until the final initiation of the participants’ booths
in the virtual reality application. Throughout this chapter, it is also evaluated
if the system successfully fulfils the requirements defined at the beginning
of this thesis, and stated whether the system is capable of being used by
organisers to host virtual science and engineering fairs with no complications.

5.1 Web application

The testing process was initiated by accessing the web application by typ-
ing the https://scifairvr.my.to/ URL into Google Chrome’s address bar.
Once the page loaded, the login button was pressed to navigate to the login
form and then, by clicking the register here hyperlink, the registration form
was accessed. Here, the application asks the user to input an email address,
name, and two identical passwords for validation purposes. To check how
the application behaves if given invalid data, first an incorrect email address,
followed by two passwords that did not match, was input into the form. In
both cases, the application correctly recognised that the input is not valid and
displayed an error message, which described the reason why the registration
failed. After providing the correct information, the application redirected the
user back to the login page with a success message, which stated that the
user account had been created. Here, the login form was tested by inputting
incorrect user data, which always resulted in a failed login request and an
error notification. Only after providing the correct user information that was
previously used during the registration process did the login request finish
successfully and the user was brought back to the initial landing page.

69

5. Testing the system

Afterwards, the events page was opened through the events hyperlink from
the menu bar and then the create event dialogue was invoked by clicking the
“+” button. Here, a name, date, description, maximum number of partici-
pants, and maximum number of submissions per participant were input into
the form. To make it possible to test all the asset types, the abstract, audio,
images, and models submission assets were set to enabled, and the poster to
required. Then, after clicking the create button, the event got successfully
created, and the user was taken to its detail page. To check that the created
event got correctly linked to the user account, the my events page was ac-
cessed, which contained the newly created event as can be seen in figure 5.1.
The event creation dialogue was also tested by supplying incorrect values, like
setting an event date in the past, attempting to create an event with an already
existing name, or inputting a number that is out of the allowed bounds. The
application had correctly rejected all these creation requests while displaying
an error message similar to the ones on the login and registration pages.

Figure 5.1: List of created events

With the event created, its detail page was accessed where it was possi-
ble to add submissions to it. Through the submission upload dialogue, eight
different submissions were created, out of which the first two can be seen in fig-
ure 5.2. During the uploading process, the application rejected all submissions
that did not contain any poster. This was correct behaviour since the poster
asset type was previously set as required during the creation of the event.
In order to test booths with various layouts, the submissions were created in
a way where all of them contained a different combination of the asset types.
As for the respective assets, files with different file extensions were uploaded

70

5.1. Web application

to verify that all of them will get displayed correctly inside of Neos. These file
extensions included the .jpg, .jpeg and .png for the images, textures and
posters, .wav, .ogg, and .flac for the audio files, and .obj, .fbx, .dae, and
.gltf for the 3D models. The editing of the submission had also been tested
by both adding an asset into the submission and removing an asset from the
submission to make sure that it works properly.

Figure 5.2: Event detail with uploaded submissions

During the testing of the web application, there were no major issues
that would crash the application or otherwise prevent the user from correctly
executing the use cases defined in subsection 3.1.3. The only issues that
were found were related to a few hanging success and error messages, which
were easily fixed once the main cause of the problem was identified. Apart
from allowing the user to execute all the previously defined use cases, the
application also satisfies all the functional and non-functional requirements
from subsections 3.1.1 and 3.1.2. Also, to make sure that the web application’s
UI is intuitive, the thesis supervisor, which represents the intended user of the
system, was invited to join in for a testing session. During this session, the
supervisor went through the basic process of creating a user account, logging
into the application, creating an event, and uploading the submissions with no
complications. From this result, it can be concluded that the web application
was designed and implemented properly and that it correctly fulfils its main
purpose of collecting the fair-related assets.

71

5. Testing the system

5.2 Virtual reality application

With the web application tested, all that remained was to test the virtual re-
ality application to make sure that the whole system works properly. The test
was started by opening Neos and finding the SciFairVR world inside of the
list of all the published worlds by typing its name into the search field. Then
a private session of the world was created, and the user was, after a small load-
ing period, transported into the world. Here, the user was spawned such that
he immediately faced the instructions and the control panel, which displayed
the login screen. To test the login process, several combinations of invalid
user information were input into the login screen’s text fields. Similar to the
web application, the control panel successfully rejected all these requests and
always displayed an error message that informed the user that the informa-
tion is invalid. Only after inputting the data that was previously registered
through the web application did the control panel accept the login request
and show the user the event selection screen that contained the previously
created event. The login screen, which shows a failed login request, together
with the event selection screen, which shows the event created through the
web application, can be seen in figure 5.3.

(a) Failed login request (b) Event from the web application

Figure 5.3: Control panel testing

72

5.2. Virtual reality application

With the event selection screen opened, the event was initialised by clicking
the spawn button. Afterwards, all the eight booths appeared along the main
aisle with placeholder assets. These assets were then automatically loaded
and scaled one by one, which was a process that took around a minute and
was visualised through the progress indicator on the control panel. Once the
last asset got loaded and placed within the booth, a bell sound was played
that informed the user that the spawning process had finished. Throughout
this process, all the submissions’ assets got loaded into the world, with the
only exception of the 3D models. These were supplied into the world in
the form of clickable files that were placed on the booths’ tables and had
to be imported before they could be used. After spawning all the models
by manually going through the importing dialogues and applying textures on
them with the provided material tools, the models were ready to be used.
With all the assets present in the world, the event’s initiation process was
completed, and the world was ready to be joined by the fair’s participants.
The resulting world, filled with the booths that contained the submissions
that were previously uploaded through the web application, can be seen in
figure 5.4. From the control panel, it was then possible to remove the currently
spawned event by clicking the reset button, which removed all the booths and
set the active screen back to the event selection page. Afterwards, the last
step was to log out of the control panel by clicking the logout button, which
brought the user back to the initial login screen.

Figure 5.4: Virtual world with spawned booths

During the testing of the virtual world, one big issue was uncovered, which
prevented the user from spawning events that had more than four submissions.
The cause of this issue was that LogiX, which takes care of creating the booths

73

5. Testing the system

based on the submission data returned from the web application’s API, was
too slow to process all the submissions at once. The solution was to introduce
an artificial delay into the algorithm, which forced it to wait half a second
after the creation of every booth. This way, the program always has enough
time to process each individual submission before advancing to the next one.
With the issue fixed like this, it was possible to spawn the testing event that
contained eight submissions, with no problems. However, to make sure that
this solution truly solved the issue and did not just make it work for this
particular event with eight submissions, a different testing event was created
that contained the maximum number of submissions, which is currently set to
24. Thankfully the fixed implementation worked properly even for this event,
which meant that no further change was necessary.

Similar to the testing of the web application, the thesis supervisor was
invited to join the testing of the virtual reality application to make sure that
the control panel’s UI is intuitive and that the world functions correctly when
used simultaneously by multiple users. During this testing, the supervisor
successfully opened the world, logged into the control panel by using the pre-
viously registered user information from the web application, and initiated the
spawning process of an event. During this process, a strange issue occurred
where the final booth’s poster loaded on only one computer, which caused
the shown progress to get stuck on 75%. Only after resetting the event and
spawning it again did the final poster load on both computers and the progress
indication reached 100%. To find the cause of this issue, the virtual world was
tested on one more computer where it exhibited a similar behaviour of getting
stuck on a certain percentage. However, after giving it a few minutes, the
stuck asset eventually loaded and the spawning process reached 100%. From
this behaviour, it can be concluded that on some computers, the asset loading
process takes longer than on others, which is most likely caused by various
external factors that do not relate to Neos, such as the configuration of the
device or the computer’s network interface controller.

Overall, the testing of the virtual reality application can also be considered
being a success. The virtual world correctly displays all the submission assets
uploaded through the web application and works properly, even when used by
multiple users simultaneously, even though the loading times might be longer
for some users. Visually, the main aisle and the booths, which were shown
in figure 5.4, look rather similar to the real world ISEF finalist hall that was
shown at the beginning of the thesis in figure 2.2. Ultimately, the delivered
system that is composed of both the web and virtual reality applications
offers a viable alternative to currently used methods for hosting virtual science
and engineering fairs. By using this system, even users that do not possess
a high expertise in virtual reality can host virtual science and engineering
fairs without the need to worry about importing the participants’ assets. In
addition, the participants will also benefit from this solution thanks to the
added engagement that comes from the immersion aspect of virtual reality.

74

Conclusion

The goal of this thesis was to create a system for automatic creation of science
and engineering fairs in virtual reality. This task was accomplished by creating
two separate applications, each with a specific purpose. The first application
was implemented in the form of a web application written in Go that allows the
event organisers to define events through a simple web interface. Afterwards,
the event’s participants can use this application to upload their submissions
by supplying the project’s poster together with any assets that they might
want to use during the project’s presentation.

The second part of the system is the virtual reality application, which was
realised as a virtual world in the Neos VR metaverse. This world communi-
cates with the developed web application to load the uploaded assets, which it
then uses to automatically generate the participants’ booths that look similar
to those commonly found in real world science and engineering fairs. The
organisers and participants can then all join this prepared world and start
presenting the projects without having to worry about manually transferring
all the assets into the virtual reality.

The resulting system offers a fully functional solution for hosting remote
science and engineering fairs that does not require the event organisers to be
experienced users of virtual reality. Yet, by using the system, virtual reality
will help the participants to focus more easily and give them the ability to
express themselves better when compared to the conventional methods of
presenting the projects through conference calls.

Currently, both the web application and the virtual world inside of Neos
VR is freely available to anyone wanting to try the system, with no limitations.
Going forward, the system is intended to be used for organising the science and
engineering fairs that are a part of the Scientific thinking subject taught here
at CTU. Furthermore, it is planned to offer the system to various Czech and
international institutions that organise student fairs, to give it an additional
use besides its utilisation at the university.

75

Bibliography

1. KOOMEN, Michele Hollingsworth; RODRIGUEZ, Elizabeth; HOFF-
MAN, Alissa; PETERSEN, Cindy; OBERHAUSER, Karen. Authentic
science with citizen science and student-driven science fair projects.
Science Education. 2018, vol. 102, no. 3, pp. 593–644. issn 0036-8326.
Available from doi: 10.1002/sce.21335.

2. MCCOMAS, William F. Science fair. The Science Teacher. 2011, vol. 78,
no. 8, pp. 34–38. issn 0036-8555.

3. Student projects wow at STEM fair [online]. Farmington (Utah) [visited
on 2023-03-16]. Available from: https://www.davis.k12.ut.us/dis
trict/district-news/˜board/news-stories-2022/post/student-
projects-wow-at-stem-fair.

4. Regeneron ISEF [online]. Washington, D.C.: Society for Science & the
Public, (c)2023 [visited on 2023-03-19]. Available from: https://www.
societyforscience.org/isef/.

5. EUCYS 2023: European Contest for Young Scientists — 12-17 September
2023, Square, Brussels [online]. (c)2023 [visited on 2023-03-20]. Available
from: https://eucys2023.eu/.

6. GRINNELL, Frederick. Reinventing Science Fairs. Issues in Science and
Technology. 2020, vol. 36, pp. 23–25. issn 1938-1557.

7. TERZIAN, Sevan G. The 1939-1940 New York World’s Fair and the
transformation of the American science extracurriculum. Science Edu-
cation. 2009, vol. 93, no. 5, pp. 892–914. issn 0036-8326. Available from
doi: 10.1002/sce.20329.

8. Society for Science [online]. Washington, D.C.: Society for Science & the
Public, (c)2023 [visited on 2023-03-18]. Available from: https://www.
societyforscience.org/.

77

https://doi.org/10.1002/sce.21335
https://www.davis.k12.ut.us/district/district-news/~board/news-stories-2022/post/student-projects-wow-at-stem-fair
https://www.davis.k12.ut.us/district/district-news/~board/news-stories-2022/post/student-projects-wow-at-stem-fair
https://www.davis.k12.ut.us/district/district-news/~board/news-stories-2022/post/student-projects-wow-at-stem-fair
https://www.societyforscience.org/isef/
https://www.societyforscience.org/isef/
https://eucys2023.eu/
https://doi.org/10.1002/sce.20329
https://www.societyforscience.org/
https://www.societyforscience.org/

Bibliography

9. NGSS LEAD STATES. The Next Generation Science Standards: Execu-
tive Summary [online]. Washington, D.C. [visited on 2023-03-19]. Avail-
able from: http://www.nextgenscience.org/sites/default/files/
Final % 20Release % 20NGSS % 20Front % 20Matter % 20 - %206 . 17 . 13 %
20Update_0.pdf.

10. Intel International Science and Engineering Fair 2013 Program. Wash-
ington, D.C.: Society for Science & the Public, 2013.

11. Hosting a Virtual Science Fair during COVID-19 [online]. Newton (Illi-
nois) [visited on 2023-03-20]. Available from: https://classroomcomple
tepress.com/blogs/community-buzz/hosting-a-virtual-science-
fair-during-covid-19.

12. SHEPHERD, Marshall. The Coronavirus Pandemic Forces Virtual Sci-
ence Fairs - And That’s Okay [online]. New York: Forbes Media LLC.,
(c)2023 [visited on 2023-03-20]. Available from: https://www.forbes.
com / sites / marshallshepherd / 2021 / 01 / 27 / the - coronavirus -
pandemic-forces-virtual-science-fairs-and-thats-okay.

13. ProjectBoard [online]. Toronto, (c)2023 [visited on 2023-03-20]. Available
from: https://projectboard.world/.

14. Edmonton 2023: Youth Science Canada — Youth Science Canada [on-
line]. Youth Science Canada, (c)2023 [visited on 2023-03-20]. Available
from: https://youthscience.ca/science-fairs/cwsf/edmonton-
2023/.

15. AJAS - National Association of Academies of Science [online]. National
Association of Academies of Science, (c)2023 [visited on 2023-03-20].
Available from: https://www.academiesofscience.org/ajas.php.

16. What is three-tier architecture? [Online] [visited on 2023-03-26]. Available
from: https://www.ibm.com/topics/three-tier-architecture.

17. PostgreSQL [online]. The PostgreSQL Global Development Group,
(c)1996-2023 [visited on 2023-03-26]. Available from: https : / / www .
postgresql.org/.

18. MySQL [online]. Oracle, (c)2023 [visited on 2023-03-26]. Available from:
https://www.mysql.com/.

19. MongoDB: The Developer Data Platform [online]. MongoDB, Inc.,
(c)2023 [visited on 2023-03-26]. Available from: https://www.mongodb.
com/.

20. Apache Cassandra [online]. The Apache Software Foundation, (c)2009-
2023 [visited on 2023-03-26]. Available from: https://cassandra.apac
he.org/_/index.html.

21. Python [online]. Python Software Foundation, (c)2001-2023 [visited on
2023-03-26]. Available from: https://www.python.org/.

78

http://www.nextgenscience.org/sites/default/files/Final%20Release%20NGSS%20Front%20Matter%20-%206.17.13%20Update_0.pdf
http://www.nextgenscience.org/sites/default/files/Final%20Release%20NGSS%20Front%20Matter%20-%206.17.13%20Update_0.pdf
http://www.nextgenscience.org/sites/default/files/Final%20Release%20NGSS%20Front%20Matter%20-%206.17.13%20Update_0.pdf
https://classroomcompletepress.com/blogs/community-buzz/hosting-a-virtual-science-fair-during-covid-19
https://classroomcompletepress.com/blogs/community-buzz/hosting-a-virtual-science-fair-during-covid-19
https://classroomcompletepress.com/blogs/community-buzz/hosting-a-virtual-science-fair-during-covid-19
https://www.forbes.com/sites/marshallshepherd/2021/01/27/the-coronavirus-pandemic-forces-virtual-science-fairs-and-thats-okay
https://www.forbes.com/sites/marshallshepherd/2021/01/27/the-coronavirus-pandemic-forces-virtual-science-fairs-and-thats-okay
https://www.forbes.com/sites/marshallshepherd/2021/01/27/the-coronavirus-pandemic-forces-virtual-science-fairs-and-thats-okay
https://projectboard.world/
https://youthscience.ca/science-fairs/cwsf/edmonton-2023/
https://youthscience.ca/science-fairs/cwsf/edmonton-2023/
https://www.academiesofscience.org/ajas.php
https://www.ibm.com/topics/three-tier-architecture
https://www.postgresql.org/
https://www.postgresql.org/
https://www.mysql.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://www.python.org/

Bibliography

22. Java [online]. Oracle, (c)2022 [visited on 2023-03-26]. Available from:
https://www.java.com/en/.

23. The Go Programming Language [online]. Google [visited on 2023-03-26].
Available from: https://go.dev/.

24. 11 Most In-Demand Programming Languages [online] [visited on 2023-
03-26]. Available from: https://bootcamp.berkeley.edu/blog/most-
in-demand-programming-languages/.

25. Web Design and Applications [online]. W3C, (c)2016 [visited on 2023-03-
26]. Available from: https://www.w3.org/standards/webdesign/.

26. LEACH, Paul J.; SALZ, Rich; MEALLING, Michael H. A Universally
Unique IDentifier (UUID) URN Namespace [RFC 4122]. RFC Editor,
2005. Request for Comments, no. 4122. Available from doi: 10.17487/
RFC4122.

27. Spring [online]. VMware, Inc., (c)2023 [visited on 2023-03-29]. Available
from: https://spring.io/.

28. Django: The web framework for perfectionists with deadlines [online].
Django Software Foundation, (c)2005-2023 [visited on 2023-03-29]. Avail-
able from: https://www.djangoproject.com/.

29. GitHub: go-playground/validator [online]. GitHub, Inc., (c)2023 [visited
on 2023-03-30]. Available from: https://github.com/go-playground/
validator.

30. Gin Web Framework [online]. Gin Team, (c)2022 [visited on 2023-03-31].
Available from: https://gin-gonic.com/.

31. Docker: Accelerated, Containerized Application Development [online].
Docker Inc., (c)2023 [visited on 2023-04-04]. Available from: https :
//www.docker.com/.

32. Docker Hub Container Image Library [online]. Docker Inc., (c)2023 [vis-
ited on 2023-04-05]. Available from: https://hub.docker.com/.

33. Git [online] [visited on 2023-04-06]. Available from: https://git-scm.
com/.

34. GitLab FIT [online]. GitLab B.V., (c)2023 [visited on 2023-04-06]. Avail-
able from: https://gitlab.fit.cvut.cz/.

35. React [online]. Meta Open Source, (c)2023 [visited on 2023-04-07]. Avail-
able from: https://react.dev/.

36. Go Packages: template package [online]. Google [visited on 2023-04-07].
Available from: https://pkg.go.dev/html/template.

37. Bootstrap: The most popular HTML, CSS, and JS library in the world
[online]. Bootstrap team [visited on 2023-04-07]. Available from: https:
//getbootstrap.com/.

79

https://www.java.com/en/
https://go.dev/
https://bootcamp.berkeley.edu/blog/most-in-demand-programming-languages/
https://bootcamp.berkeley.edu/blog/most-in-demand-programming-languages/
https://www.w3.org/standards/webdesign/
https://doi.org/10.17487/RFC4122
https://doi.org/10.17487/RFC4122
https://spring.io/
https://www.djangoproject.com/
https://github.com/go-playground/validator
https://github.com/go-playground/validator
https://gin-gonic.com/
https://www.docker.com/
https://www.docker.com/
https://hub.docker.com/
https://git-scm.com/
https://git-scm.com/
https://gitlab.fit.cvut.cz/
https://react.dev/
https://pkg.go.dev/html/template
https://getbootstrap.com/
https://getbootstrap.com/

Bibliography

38. Font Awesome [online]. Fonticons, Inc. [visited on 2023-04-07]. Available
from: https://fontawesome.com/.

39. What is code coverage? [Online]. Atlassian, (c)2023 [visited on 2023-
04-09]. Available from: https://www.atlassian.com/continuous-
delivery/software-testing/code-coverage.

40. Go Packages: testing package [online]. Google [visited on 2023-04-09].
Available from: https://pkg.go.dev/testing.

41. Go Packages: assert package [online]. Google [visited on 2023-04-09].
Available from: https://pkg.go.dev/github.com/stretchr/testify/
assert.

42. Cloud Computing Services: Amazon Web Services (AWS) [online]. Ama-
zon Web Services, Inc., (c)2023 [visited on 2023-04-09]. Available from:
https://aws.amazon.com/.

43. Cloud Computing Services: Microsoft Azure [online]. Microsoft, (c)2023
[visited on 2023-04-09]. Available from: https://azure.microsoft.
com/.

44. Cloud Computing Services: Google Cloud [online]. Google [visited on
2023-04-09]. Available from: https://cloud.google.com/.

45. FreeDNS: Static DNS subdomain and domain hosting [online]. Joshua
Anderson, (c)2001-2023 [visited on 2023-04-10]. Available from: https:
//freedns.afraid.org/.

46. Let’s Encrypt [online]. San Francisco: Internet Security Research Group
(ISRG) [visited on 2023-04-10]. Available from: https://letsencrypt.
org/.

47. Neos Metaverse [online]. Solirax CoreDev s.r.o [visited on 2023-04-12].
Available from: https://neos.com/.

48. Unity Real-Time Development Platform: 3D, 2D, VR & AR Engine [on-
line]. Unity Technologies, (c)2023 [visited on 2023-04-12]. Available from:
https://unity.com/.

49. Unreal Engine: The most powerful real-time 3D creation tool [online].
Epic Games, Inc., (c)2004-2023 [visited on 2023-04-12]. Available from:
https://www.unrealengine.com/.

50. Steam [online]. Valve Corporation, (c)2023 [visited on 2023-04-12]. Avail-
able from: https://store.steampowered.com/.

51. Neos Wiki: Components [online] [visited on 2023-04-13]. Available from:
https://wiki.neos.com/index.php?title=Category:Components.

52. Uizard: App, Web, & UI Design Made Easy [online]. Uizard Technologies,
(c)2023 [visited on 2023-04-19]. Available from: https://uizard.io/.

80

https://fontawesome.com/
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
https://pkg.go.dev/testing
https://pkg.go.dev/github.com/stretchr/testify/assert
https://pkg.go.dev/github.com/stretchr/testify/assert
https://aws.amazon.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://cloud.google.com/
https://freedns.afraid.org/
https://freedns.afraid.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://neos.com/
https://unity.com/
https://www.unrealengine.com/
https://store.steampowered.com/
https://wiki.neos.com/index.php?title=Category:Components
https://uizard.io/

Appendix A
Acronyms

3D 3-Dimensional

AJAS American Junior Academy of Science

API Application Programming Interface

AWS Amazon Web Services

BSON Binary JSON

CPU Central Processing Unit

CSS Cascading Style Sheets

CWSF Canada-Wide Science Fair

DNS Domain Name System

EUCYS European Union Contest for Young Scientists

FR Functional Requirement

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ID Identifier

ISEF International Science and Engineering Fair

JSON JavaScript Object Notation

NFR Non-Functional Requirement

RAM Random Access Memory

81

A. Acronyms

RDBMS Relational Database Management System

SQL Structured Query Language

STEM Science, Technology, Engineering, and Mathematics

STS Science Talent Search

TLS Transfer Layer Security

UC Use Case

UI User Interface

UML Unified Modelling Language

URL Uniform Resource Locator

US United States

UUID Universally Unique Identifier

VM Virtual Machine

VR Virtual Reality

82

Appendix B
Contents of enclosed CD

readme.txt..........................the description of the CD contents
src.......................................the directory of source codes

web.................... the directory of web application source codes
thesis the directory of thesis source codes

text ... the directory of text files
DP Bašta Tomáš 2023.pdf.............the thesis text in PDF format

83

	Introduction
	Objectives
	Science and engineering fairs
	History
	International Science and Engineering Fair
	Virtual science and engineering fairs

	Web application
	Analysis
	Functional requirements
	Non-functional requirements
	Use cases
	Functional requirements fulfilment

	Design
	Architecture
	Domain
	User interface

	Implementation
	Data tier
	Application tier
	Presentation tier

	Testing
	Deployment

	Virtual reality application
	Neos VR
	World creation
	Basic tools
	Defining object's properties
	Visual programming

	Design
	Environment
	Control panel
	Booths

	Implementation
	JSON parser
	Control panel
	Booths
	Environment
	Finishing up

	Testing the system
	Web application
	Virtual reality application

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

