
CZECH TECHNICAL UNIVERSITY IN
PRAGUE

FACULTY OF TRANSPORT SCIENCES

JAN MACEK

AGENT-BASED MODELING OF ITS SYSTEMS IN
VEHICLE SIMULATOR

MASTER’S THESIS

2022

Abstract

The use of Intelligent Transport Systems (ITS) has become increasingly important in
managing transportation networks and improving safety, efficiency, and sustainability
of traffic. This thesis aims to advance the development of ITS through the utilization
of Multi-agent Systems (MAS) in vehicle simulator software. The opportunities and
underlying challenges of successful simulation of an ITS system in a vehicle simulator
software are investigated and consequentially, a framework for ITS solution implementation
into a simulator software is presented. The agent-based framework is able to facilitate
simulating complex behaviour of various road users as well as road equipment such as
(cooperative) traffic lights. The main advantage of the framework is modularization of
agent’s skills which makes it easier to model complex behaviour. The framework also
simplifies implementation of communication interface to arbitrary agent, which makes it
a suitable tool for Cooperative ITS (C-ITS) simulation. Finally, a simple ITS solution
featuring a connected traffic light which provides information to connected vehicles for
dynamic navigation is successfully integrated into the simulator using the framework. The
framework can enable researchers to be able to implement various Intelligent Transport
systems into vehicle simulator software while reducing development time and increasing
maintainability of the software.

Abstrakt

Využití inteligentních dopravních systémů (ITS) je stále důležitější pro řízení dopravních
sítí a zlepšování bezpečnosti, efektivity a udržitelnosti v dopravě. Tato práce si klade
za cíl pokročit ve vývoji ITS prostřednictvím využití Multi-agentních systémů (MAS) v
softwaru simulátoru vozidla. Dále jsou prozkoumány příležitosti a hlavní úspěšné simulace
systému ITS v softwaru simulátoru vozidla a následně je prezentovaný softwarový frame-
work pro implementaci ITS do softwaru simulátoru. Framework založený na agentech je
schopen usnadnit simulaci komplexního chování různých účastníků silničního provozu a
také silniční infrastruktury, jako jsou (kooperativní) semafory. Hlavní výhodou frame-
worku je modularizace schopností agenta, což usnadňuje modelovat komplexní chování.
Framework také zjednodušuje implementaci komunikačního rozhraní, což z něj dělá vhodný
nástroj pro kooperativní ITS (C-ITS) simulace. V závěru práce je do simulátoru pomocí
frameworku úspěšně integrován jednoduchý ITS systém s kooperativním semaforem, který
poskytuje informace připojeným kooperativním pro dynamickou navigaci. Framework
může výzkumníkům umožnit implementaci různých inteligentních dopravních systémů do
softwaru simulátoru vozidla a zárověň zkrácuje dobu vývoje a zvyšuje míru udržitelnosti
softwaru.

Jan Macek

Keywords

Intelligent transport systems, Multi-agent systems, Vehicle simulator, Cooperative ITS,
Agent-based modeling, Unity.

Klíčová slova

Inteligentní dopravní systémy, Multi-agentní systémy, Vozidlový simulátor, Kooperativní
ITS, modelování na bázi agentů, Unity.

2

Statutory Declaration

I, Jan Macek, solemnly and sincerely declare that:

I am the author of the master’s thesis titled Agent-based Modeling of ITS Systems in
Vehicle Simulator.

The research work presented in this thesis is the result of my own original investigations,
except where otherwise acknowledged.

I have appropriately acknowledged and referenced all sources used in this thesis, includ-
ing but not limited to published and unpublished works, data, and other materials, in
accordance with the recognized academic standards and conventions.

I have clearly identified and cited the contributions of others to my research, including
collaborators, advisors, and previous researchers, through appropriate acknowledgment
and citation in the relevant sections of this thesis.

I have not engaged in any form of academic misconduct, including plagiarism, fabrication,
falsification, or any other fraudulent practices, in the preparation or presentation of this
thesis.

This thesis has not been submitted, in whole or in part, for the award of any other degree,
diploma, or qualification.

I have adhered to the ethical guidelines and principles governing research involving human
subjects, and I have obtained the necessary ethical clearances and permissions, where
applicable, prior to conducting any research involving human participants.

I understand that any violation of the above declarations may result in severe consequences,
including the cancellation of my degree and other disciplinary actions as deemed appropriate
by the academic institution.

I make this solemn declaration conscientiously, believing it to be true and knowing that it
is of the same legal force and effect as if made under oath.

Signed:

1

Jan Macek

Acknowledgement

I would like to express my sincere gratitude and appreciation to all those who have
contributed to the completion of this master’s thesis. This work would not have been
possible without the support, guidance, and encouragement from numerous individuals
and institutions, and for that, I am deeply indebted.

First and foremost, I extend my heartfelt thanks to my thesis supervisor, Ing. Dmitry
Rozhdestvenskiy and Clas Rydergren, PhD, for their invaluable guidance, expertise, and
support throughout this research journey. Their insightful feedback, constructive criticism,
and dedication have been instrumental in shaping this thesis into its final form.

I am also indebted to the faculty members and the academic staff at the Czech Technical
University in Prague and the Linköping University, who have contributed significantly to
my intellectual development during my time here. Their dedication and commitment to
teaching has broadened my understanding of the subject matter.

Last but not least, I would like to acknowledge the unwavering support and love of my
family. Their encouragement, understanding, and belief in me have been my constant
motivation throughout this academic endeavor.

4

Jan Macek CONTENTS

Contents

1 Introduction 8
1.1 Introduction to the problem . 8
1.2 Aim . 9
1.3 Research questions . 9
1.4 Methodology . 10
1.5 Delimitations . 10

2 Intelligent Transport Systems 10
2.1 Simulator-based research . 11
2.2 Intelligence distribution . 12

2.2.1 Current research . 13
2.3 Conclusion . 19

3 Multi-agent systems 20
3.1 Agents . 20
3.2 Agent type and architecture . 21

3.2.1 Reactive agent architectures . 21
3.2.2 Deliberative agent architectures . 21
3.2.3 Hybrid approaches . 23

3.3 Interaction between agents . 24
3.3.1 Organizational decomposition . 25
3.3.2 Communication between agents . 26
3.3.3 Agent Communication Language 27

3.4 Conclusion . 27

4 Requirements definition 32
4.1 System requirements . 32

5 Implementation toolset 34
5.1 Simulator software . 34
5.2 Agent Development Platforms . 35
5.3 Conclusion . 37

6 Proposed framework 39
6.1 Agent/micro architecture overview . 39

6.1.1 The architecture layers . 39
6.2 Macro architecture . 43

6.2.1 Communication protocol . 43
6.2.2 Broadcasting . 43
6.2.3 Implementation . 43

5

Jan Macek CONTENTS

6.2.4 ETSI message services . 43
6.2.5 Negotiation and Agreement . 45
6.2.6 Conflict detection . 46
6.2.7 Conflict resolution . 46

6.3 Conclusion . 47

7 System implementation 50
7.1 Agent implementation . 50

7.1.1 Inter-layer interaction . 50
7.1.2 Deliberation layer . 52
7.1.3 Sequencer layer . 53
7.1.4 Skill layer . 53

7.2 Communication module implementation 54
7.2.1 Message broker . 54
7.2.2 Communication Skill . 56
7.2.3 Message implementation . 56

7.3 Unity integration . 56
7.4 Conclusion . 58

8 System validation 59
8.1 Qualitative analysis . 59

8.1.1 Results discussion . 60
8.1.2 In-Vehicle Information System . 61

8.2 In-Vehicle Information System implementation 61
8.2.1 System description and requirements 62
8.2.2 External dependencies . 63
8.2.3 Agent implementation . 64
8.2.4 Simulation set-up . 69
8.2.5 Simulation results . 70

8.3 Conclusion . 71

9 Discussion 72
9.1 Results . 73

9.1.1 Benefits . 73
9.1.2 Shortcomings . 74

9.2 Future work and implications . 74

10 Conclusion 76

11 Attachments 78

6

Jan Macek LIST OF FIGURES

List of Tables

1 C-ITS use cases [14] . 16
2 GDT to ITS mapping . 18
3 Gricean maxims . 25
4 Categories of communicative acts [30] . 29
5 The ACL-compliant agent requirements [30] 30
6 Pre-defined message parameters [30] . 31
7 Proposed system requirements . 33
8 Quantitative analysis results . 60
9 Parameter values for simulation batches 70

List of Figures

1 Example of a Subsumption architecture . 22
2 The BDI architecture schematic . 23
3 An architecture model of a 3T hybrid architecture 24
4 The Unity development platform UI . 35
5 ActressMAS - Class diagram of framework’s main components [35] 36
6 ActressMAS - Class diagram of distribution service [35] 37
7 An overview of the proposed 3T architecture 42
8 The CAM message specification [38] . 44
9 The DENM message specification [38] . 45
10 An example behavior of vehicle-based agents using the proposed architecture 48
11 Class diagram of main agent framework components 51
12 Trivial activity diagram of the implemented 3T architecture 55
13 Class diagram of the implemented communication interface 57
14 EasyRoads3D - The road building UI showcase 63
15 Simple Traffic System - A showcase of vehicles following a route 64
16 Class diagram of the Connected Traffic Light implementation 65
17 Activity diagram of the Connected Traffic Light agent 66
18 Class diagram of the Connected Vehicle implementation 67
19 Activity diagram of the Connected Vehicle agent 68
20 Road stretch for simulating the IVIS system 69
21 Simulation results - Total travel time . 70
22 Simulation results - Min and Max travel time 71

7

Jan Macek 1 INTRODUCTION

1 Introduction

This thesis aims to investigate the possibilities and delimitations of multi-agent systems
application(s) for Intelligent Transport Systems (ITS) modeling in an IVS. Simulating
traffic behavior in a virtual environment, such as an Interactive Vehicle Simulator (IVS),
is a complex problem, mainly because of its highly dynamic nature. Trying to accurately
simulate traffic on a microscopic level, where individual road users (e.g. vehicles) are the
elementary units in a system, requires complex modelling. All vehicles need to interact
with each other and act upon other drivers’ actions. Because agent-based simulations have
proven to model complex behavior well [1], this modeling technique seems like a suitable
solution for achieving a realistic traffic environment for IVS.

In the first two chapters, a review of the state-of-art research on Intelligent Transport
Systems and Multi-agent Systems (MAS) are presented and important features related
to the main topic of the thesis are discussed. This research leads to the definition of
system requirements that are described in the third chapter. In the fourth section, a
framework architecture is developed, in line with MAS paradigms for simulation of ITS
solutions. In the fifth section, development tools and their delimitations for framework
development are presented. The simulator software integration, additional development
platforms and libraries facilitating the framework development process are discussed. In
the sixth section, a technical implementation of the framework is presented, showing the
implementation details while also serving as the software’s documentation. In section
number seven, a validation of the proposed framework is conducted by implementing
a distributed cooperative ITS system into the IVS, using the proposed framework and
assessing its performance and overall results.

1.1 Introduction to the problem

In a world where vehicle transport plays an inseparable role in the society, with an
ever-increasing traffic demand, it is important to analyze and study driver behavior and
inherently interactions and relationships between drivers and their environment. Even
though substantial advancements in autonomous driving are being made, for the near
future, vehicles will be controlled by humans. Consequentially, this makes them exposed
to a substantial danger. Data shows that about 95 % of traffic accidents are a result
of human error [2]. Each traffic accident has got a tremendous effect on socioeconomic
growth. A study by the European Union states that accident-related expenses (including
the cost of fatal accidents) cost 1,8 % of the EU’s GDP [3]. A rather non-cynical point of
view is that each life lost is a failure in the society itself. Therefore, an effort should be
made to eliminate fatal accidents.

A method that has proven to be effective at studying driver behavior and traffic safety is
performing research through the usage of an interactive vehicle simulator (IVS), which

8

Jan Macek 1 INTRODUCTION

allows to undertake experiments in a safe, controlled and reproducible environment [4].
Because the vehicle simulator is a digital twin of a real vehicle, it is desirable to make the
interaction between the driver and IVS as close to reality as possible. Making such effort
naturally improves the trustworthiness of acquired data from experiments and potentially
also range of IVS applications. The IVS has got a broad spectrum of utilization. It is not
only used as a tool to research driver behaviour, but also used in development and testing
of advanced driver-assistance systems, extending the simulator to a hardware-in-the-loop
or vehicle-in-the-loop software, which enables testing real hardware in virtualized traffic
[5].

1.2 Aim

The goal of this thesis is to investigate multi-agent systems (MAS) and evaluate possibility of
application of these systems in the scope of Intelligent Transport Systems (ITS) simulation.
The objective is to find out whether the shared characteristics of MAS & ITS, e.g.
distribution of intelligence, make agent-based modeling a strong tool for simulating ITS
solutions. The output of the experimental/practical part of the thesis is a MAS-based
simulation framework for facilitating the process of ITS implementation into an IVS
software with the benefit of modular and easy-to-extend functionality. The developed
system should also be able to model state-of-the-art ITS systems that utilize communication
between road users, such as C-ITS systems.

1.3 Research questions

Given the main goal of the thesis, which is to empirically investigate feasibility of ITS
implementation into simulation software, the research questions are defined so that they
help understand the scope of the thesis and expected outcomes.

• Can agent-based modeling be applied to simulate Intelligent Transport Systems in
vehicle simulators and are they a viable option?

• How would an ITS simulation be implemented into an existing IVS using agent-based
modelling?

• What are the available modules and libraries for implementing MAS in different
programming languages?

• What are the advantages and challenges associated with using agent-based modeling
to simulate Intelligent Transport Systems in vehicle simulators, and how can they
be addressed?

9

Jan Macek 2 INTELLIGENT TRANSPORT SYSTEMS

1.4 Methodology

The main objective of the thesis is to create a framework for ITS implementation into a
vehicle simulator software. In the first step, a literature review regarding research topics
of the thesis is performed - Multi-agent Systems and Intelligent Transport Systems. The
idea is to gain an insight into how to approach modeling systems using MAS. Secondly,
research on the current state of Intelligent Transport Systems is conducted in order to
identify system features and interactions that are important when attempting to create a
base model for ITS implementation.

Based on the analyzed resources, requirements for the framework’s functionality are defined.
With the framework’s requirements in consideration, implementation options and possi-
bilities of external software usage are discussed. With the implementation scope defined,
architecture of the simulation framework is presented, including component description
and its internal structure. After the framework’s structure defined, integration with
simulator software is discussed. With the completed framework definition, implementation
using a chosen software/programming language is done through definition of individual
components and their interface.

The the end goal is to implement a module/framework for general ITS implementation
in a vehicle simulator. The main objective of the framework development will be to
create a framework that will be sufficiently modular for a wide variety of ITS solutions to
implement. At the same time, it should be easy and straightforward to use. The framework
is evaluated by implementing a sample ITS simulation, which helps to empirically evaluate
the implementation process and the framework’s capabilities and shortcomings.

1.5 Delimitations

Research delimitations refer to the scope of the study. The delimitations for a thesis
on Agent-based modeling of Intelligent Transport Systems in vehicle simulator include
mainly the technical scope. The framework needs to be compatible with the Unity game
development engine which is used in the IVS laboratories of the Czech Technical University
University in Prague (CTU). It should be well-integrated with the simulator software so
that the development using the framework offers seamless interaction with other system
components.

2 Intelligent Transport Systems

This section focuses on examining various existing ITS solutions and attempting to
recognize their agent-based characteristics and principles in order to determine the possible
application of MAS for simulation of ITS systems.

Intelligent transport systems describe an initiative to utilize modern technology to optimize

10

Jan Macek 2 INTELLIGENT TRANSPORT SYSTEMS

and increase the efficiency of processes common to the domain of transportation. This
usually involves enabling different actors in the transportation system to communicate
with each other and share available information (much like multi-agent systems). With
the availability of shared information, complex, data-driven systems can be built utilizing
state-of-the-art technology like machine learning, computer vision and IoT. Integrating
such concepts with road users to improves traffic safety and increases traffic efficiency. It
also addresses environmental issues by controlling traffic to prevent congestion or lessen
their adverse effects.

Looking these solutions from a systemic point of view, they can, more or less, resemble
multi-agent systems. Such approach answers whether a suitable application for agent-based
modeling of ITS is feasible. The insights gained by reviewing the current state of ITS will
serve as a base for further sections, where considerations regarding framework design and
its validation are discussed.

ITS provides itself most useful in the following aspects of transportation: Mobility, Safety,
Environment [6]. To provide an example, regarding mobility, one of the most common
systems is routing and navigation for road users. These systems can factor in time, distance
and even emissions when providing route guidance [7]. This leads to increased performance
of road networks. Regarding safety, one can mention emergency management systems like
E-Call, which provides automated post-crash assistance by contacting emergency services as
soon as an accident occurs. In terms of the environment protection, ITS allows for demand
management through electronic fee collection, which makes flexible charging for road usage
possible, based on vehicle type and emissions category [8]. Another, more general example
of emissions reduction of ITS is through reducing congestion, as road vehicle emissions
are proven to pose a significant negative factor for the environment. Especially because
they produce emissions in densely-populated areas, exposing a large population to serious
health risks. In a study conducted by the Harvard School of Public Health, air pollution
from traffic congestion in 83 of the USA’s largest urban areas contribute to more than
2,200 premature deaths annually, costing the healthcare system at least $18 billion [9].

2.1 Simulator-based research

Using virtual simulation tools to research and evaluate the impacts of ITS solutions greatly
reduces the overall cost of product development. It also offers for fast-paced and flexible
testing in virtual space allowing for frequent, iterative evaluation of features.

It is important to say that ITS solutions vary in terms of driver engagement. Because the
primary use case of an IVS is to research driver behavior, the scope of the current state of
ITS is focused on ITS solutions that both integrate automotive transport and offer some
degree of driver engagement.

To give an example, some ITS use cases with high driver engagement are listed [6]:

11

Jan Macek 2 INTELLIGENT TRANSPORT SYSTEMS

• Geo-info service

• Real-time road condition service

• Accurate traffic-info service

• Real-time vehicle info service

• Parking guidance service

These use cases shall be considered when modeling the ITS simulation framework in the
practical part of the thesis.

2.2 Intelligence distribution

It is important to acknowledge whether the underlying system control is centrally gov-
erned or whether the intelligence is distributed across multiple actors, where individual
components of the system can act semi- or fully independently. Such phenomena are
important to consider because ITS solutions with centralized or distributed intelligence
can be fundamentally different. This leads to different system models being optimal to use
when simulating a particular ITS. Intelligent transport systems are, by nature, systems
combining several actors to achieve a common goal. This, however, doesn’t mean that it
is optimal to model every ITS as a multi-agent system.

Historically speaking, ITSs that proved helpful for optimizing traffic were centralized [10],
meaning there is a single, central component in charge of the decision-making logic. A
centralized traffic system organizes other units/actors within the system, while interacting
with the drivers in the traffic as external actors. The main advantage of this approach
is that is is less complex, therefore it is easier to develop a resilient and safe product.
The main drawback of this method is that it is heavily affected by the size of instances,
increasing the complexity and often resulting in exceedingly large computation time,
making the solution sub-optimal [10].

As with the distributed systems, the logic how to solve the main problem is systematically
distributed to individual agents solving a sub-problem and cooperating to achieve optimal
and predictable results. Such distributed intelligence is often modeled using Multi-agent
Systems. This topic is further discussed in the section 3. Distributed systems can be
used to solve traffic optimization problems on a larger scale. These systems have seen
larger usage, especially in recent times, as newly produced vehicles come equipped with
powerful computers. This is leveraged to spread out the computational burden from
the core computational unit in centralized systems. A practical example of distributed
intelligence solutions are the state-of-art communication protocols like DSRC and ITS-G5,
which enable low-latency direct communication between vehicles.

One example of ITS where implementations have been carried out in both centralized
and decentralized principles numerous times is a Network traffic control. The goal of

12

Jan Macek 2 INTELLIGENT TRANSPORT SYSTEMS

this system is to use knowledge about the traffic on the network to control traffic lights
and other active control elements to optimize traffic flow and decrease travel time. In a
recent research that reviews signal timing optimization approaches compared centralized
and distributed network traffic control systems. The final conclusion is that although
the centralized system is able to achieve better performance and higher global efficiency,
the decentralized solution requires significantly less computation time (40 % in their
experiment case) [11].

Other decentralized systems that are more exposed to the user (i.e. driver) include
the Adaptive Cruise Control (ACC). ACC extends the usual cruise control systems
that maintain vehicle speed by adapting to the speed of the vehicle in front. Recent
development has led to further improvement, making ACC a cooperative system (CACC)
that enables vehicles to adopt a driving strategy by communicating with the infrastructure
(V2I communication).

2.2.1 Current research

In general, it is important to examine systems that are time-relevant and bring benefit
to current as well as future IVS and Human-Machine Interface (HMI) research activities.
Therefore, this sub-section focuses on reviewing ITSs that are an ongoing subject to
research and current trends in the ITS industry, exploring state-of-the-art ITS solutions.
To determine which ITSs are relevant, ongoing projects of governmental bodies and their
strategies as well as the current trends in automotive ITS are reviewed.

In Europe, there are initiatives to centralize decision-making and ITS deployment on
the scale of the European continent. The reason behind this initiative is quite clear -
to enable Europe-wide interoperability between deployed ITS and ITS-enabled vehicles.
Such organization would closely work with the industry, helping to create conditions for
deployment of novel ITS technologies.

ERTICO One such European organization is the European Road Transport Telematics
Implementation Coordination (ERTICO) - a public-private partnership organization with
close to 120 members, connecting 8 different sectors in the ITS Community, including
service providers, suppliers, traffic and transport industry, research institutions and
universities, public authorities, user organizations, the connectivity industry as well as
vehicle manufacturers [12].

As of now, ERTICO’s activities focus on the following areas:

Connected Cooperative & Automated Mobility - The computational power of newly-
produced vehicles is increasing dramatically with every new generation, as well as the
number of sensor data. ERTICO states that their focus is on utilizing the large amounts
of real-life data to deepen the machine learning models, as well as building infrastructure

13

Jan Macek 2 INTELLIGENT TRANSPORT SYSTEMS

that will allow handling this data. C-ITS (Cooperative Intelligent Transport Systems)
is also a topic that ERTICO is invested in. C-ITS is being put into practice by several
projects, namely European Truck Platooning (ETPC), Advanced map-enhanced driver
assistance systems (ADASIS) and more. ERTICO’s main contribution is to facilitate
the creation of the ITS ecosystem by following a multidisciplinary approach involving all
relevant transport stakeholder sectors.

Clean & Eco Mobility - As has been already mentioned, smart mobility innovations
make a major contribution towards reducing the impact of transport-induced pollution,
which has got a non-negligible contribution to global greenhouse gas emissions production
[13]. Below are the four main objectives in the area of Clean & Eco-Mobility [12].

• Develop a common approach to the evaluation of ITS deployment as a tool for
emissions reduction

• Contribute to smart mobility solutions being recognized as a tool for reducing
emissions

• Achieve interoperability of electro-mobility
• Contribute to creating an ICT network with seamless and interoperable electro-

mobility services

Urban Mobility - Another focus of ERTICO is Urban Mobility, where the main
goal is to provide "Mobility as a Service" (MaaS), which is a system that could decrease
congestion and provide low-carbon and -emission multi-modal transport solutions.

Transport & Logistics - ERTICO states that the current European world of transport
and logistics is too fragmented, so an effort to developing a solution for connecting logistics
information systems would optimize cargo flows and facilitate supply chain management.

In conclusion, the ERTICO organization helps to reduce the time to market of innova-
tive, state-of-the-art technologies, increasing inter-operability between individual ITS by
promoting an open framework for the integration and deployment of intelligent transport
services.

As described above, there are potential systems that are yet to be fully implemented and
deployed for consumer use.

Cooperative ITS Cooperative Intelligent Transport Systems (C-ITS) refer to transport
systems where ITS subsystems (personal, vehicle, roadside and central) cooperate. This
enables and provides an ITS service that offers better quality and an enhanced service
level, compared to the same ITS service provided by only one of the ITS sub-systems [14].

The concept of C-ITS was developed by the European Commission, representatives
of industry and authorities in the European Union. In 2016, the bodies agreed on a
coordinated establishment of intelligent transport systems in Europe. It is considered to

14

Jan Macek 2 INTELLIGENT TRANSPORT SYSTEMS

be one of the tools to facilitate achieving the vision zero, which is a project that aims to
mitigate all fatalities involving road transport.

The European Commission outlined its plan for the coordinated deployment of C-ITS in
Europe in its communication "A European strategy on Cooperative Intelligent Transport
Systems", in which it also states that the full-scale deployment of C-ITS services and
C-ITS-enabled vehicles were expected to start in 2019.

The main feature of C-ITS is its distributed intelligence across vehicles and the infrastruc-
ture, which is a novel concept in the ITS world. Consequently, it is easy to see similarities
in how a MAS is described. Regarding the topic of this thesis, this could pose an argument
to implement one of the C-ITS systems in the practical part of this thesis.

Vehicles and infrastructure equipped with C-ITS can, for example, communicate a traffic-
related warning to each other. Upon receiving such warning, the drivers are informed
about the upcoming traffic situation in time for them to take the necessary actions to avoid
potential harm. Other potential benefits of the use of C-ITS include reduced congestion
and improved driver comfort. Vehicles share data directly with each other (V2V) and
with the infrastructure (V2I) using ad-hoc short-range telecommunication. The two types
of communication are sometimes together referred to as Vehicle-to-everything (V2X)
communication.

This technology aims to benefit both manually-driven vehicles as well as autonomous
self-driving vehicles. The main use cases, which were developed as standalone services
using C-ITS technology can be seen in the table 1 below.

In general, traffic safety and traffic flow improvements can be grouped based on which
operational tasks they serve [15]:

• Provide information to road users to improve road safety and comfort.

• Display regulatory boundaries to inform road users of specific obligations, restrictions
or prohibitions

• Provide warnings to road users about incidents ahead in their exact nature.

Project C-Roads The C-Roads project was established by the EU member states and
road operators to study the effects and refine the future deployment process of C-ITS.
The project’s main objective is to harmonize C-ITS deployment activities across Europe.
Within the C-Roads project, 6 work groups (WG) were established, each focusing on a
specific topic/scope regarding C-ITS objectives and priorities for research, testing and pre-
deployment of C-ITS [16].

• WG1: Develop an EU agenda for testing

• WG2: Coordination and cooperation of R&I activities

15

Jan Macek 2 INTELLIGENT TRANSPORT SYSTEMS

General use case Implementation example

Signalized intersections Green Light Optimal Speed Advisory
Traffic Light Prioritisation
Signal Phase and Timing Information
Imminent Signal Violation Warning
Emergency Vehicle Priority

In-Vehicle Signage Dynamic Speed Limit Information
Dynamic Lane Management
Other Signage Information

Probe Vehicle Data Vehicle Data Collection
Event Data Collection

Hazardous Location Notification Accident Zone
Traffic jam Ahead
Stationary vehicle
Weather condition warning
Emergency vehicle approaching

Road works warning Lane closure
Road closure
Road works - mobile

Table 1: C-ITS use cases [14]

• WG3: Physical and digital road infrastructure

• WG4: Road Safety

• WG5: Access and exchange of data & cyber-security

• WG6: Connectivity and digital infrastructure

Regarding the scope of this thesis, WG3 is the most informative segment because the focus
of this group was, in the first place, regarding the infrastructure support for autonomous
vehicles1. One of the objectives was combining relevant physical and digital infrastructure,
assessing the relevance between them and automated vehicles, and mapping infrastructure
elements to use-cases as Generic Driving Tasks (GDTs):

• Sensing & Perception

– Ego localization

– Environmental awareness (object classification and incident detection)

– Enhanced perception (for limited visibility scenarios)

• Planning

– (Dynamic) information and regulations
1Autonomous vehicles of Level 4 defined by the Society of Automotive Engineers

16

Jan Macek 2 INTELLIGENT TRANSPORT SYSTEMS

– Safe and appropriate navigation plans

– Cooperative planning

• Actuation

– Motion Control

– Minimum Risk Manoeuvre

It is therefore advisable to keep these GDTs Tasks in mind when thinking about the
proposed framework features. To maximize the number of potential use cases of the
designed MAS simulation framework, it shall offer basic components to simulate all
aforementioned GDTs, as the tasks above will be a fundamental part of the future C-ITS
deployment.

To put these GDT use cases into a better perspective, a mapping was created (table 2)
that links the aforementioned GDTs to existing, relevant ITS solutions. This should clear
up and simplify the process of defining requirements for the proposed system, as the new
framework requirements could be easily adopted from existing system documentation of
the particular mapped ITS.

17

Jan Macek 2 INTELLIGENT TRANSPORT SYSTEMS

Table 2: GDT to ITS mapping

GDT ITS Mapping

Group Name Type Description

Sensing &
Perception

Ego-localization HD Maps Geo-fencing
AD Self-driving algorithms

Environmental
awareness

IVIS Intersection Collision
war.
Emergency Vehicle
war.
Stationary Vehicle war.
Traffic Jam war.
Traffic accident war.

Enhanced
perception

IVIS Overtaking war.

Intersection Collision
war.
VRU warning

Planning Information and
regulations

CACC Green Light Optimal
Speed Advisory

Safe navigation
plans

Navigation Dynamic Vehicle Rout-
ing

Cooperative
planning

AD Platooning

Actuation Motion Control AD Self-driving algorithms
Minimum Risk
Manoeuvre

AD Self-driving algorithms

Legend

Abbreviation Meaning

HD High-definition
AD Autonomous driving
IVIS In-Vehicle Information Systems
VRU Vulnerable Road User
CACC Cooperative Adaptive Cruise Control

18

Jan Macek 2 INTELLIGENT TRANSPORT SYSTEMS

2.3 Conclusion

In this section, Intelligent Transport Systems are introduced. ITS is an important part of
traffic engineering, utilizing traffic data and mathematical modeling to reduce congestion,
improve traffic safety and reduce emissions. The main focus of this section is to discuss
important features of Intelligent Transport Systems that are related to the topic of this
thesis. The relationship between the driver and ITS system and intelligence distribution
across ITS actors is discussed. ITS projects relevant to the thesis topic are investigated,
including the research and developments efforts on the EU level. The results suggested
that C-ITS systems are a hot topic in current research. Furthermore, numerous projects
(e.g. C-Roads) have been built and tested, paving the way for the future of interconnected
vehicle mobility.

19

Jan Macek 3 MULTI-AGENT SYSTEMS

3 Multi-agent systems

Multi-agent systems (MAS) is a broad paradigm and/or research topic. It is a subfield of
Distributed problem-solving. A multi-agent system can be concisely described as a group
of autonomous agents that act towards their objectives in an environment to achieve a
common goal [17]. The agents can be defined as independent units in an environment,
forming a system. They act independently, possess knowledge and communicate with each
other (i.e. share knowledge). The agents are working towards some form of a common
goal, which could be achieved either by cooperating or competing. The agents usually
have a perception through which they can gain knowledge from their environment.

The basic definition of MAS suggests that it should be used to model a system that is not
centralized but rather distributed, where autonomous, intelligent units perform actions
independently. Multi-agent systems have gained popularity in recent years, as they offer
high flexibility in modeling highly non-linear systems. They also offer abstraction levels
that make it more natural to deal with scale and complexity in these systems [18]. MAS
excels in modeling social environments involving humans, as MAS share a lot of features
with human societies. These societies also revolve around atomic units - persons, that
act independently - each person makes decisions and acts upon their own beliefs. People
also interact with each other, be it through communication, cooperation or competition,
while working towards some goal. Numerous real-life examples strongly resemble this MAS
definition, for example, sports teams, where each player has his role, like a defender and
striker. Although all players have the same intention (i.e. win the game), their specific
actions differ depending on the state of their environment, each of them acting upon their
own beliefs, which makes the team resemble a distributed system. From a more practical
perspective, the MAS paradigm can be used when building complex computer networks.

3.1 Agents

Agents are fundamental building blocks of a multi-agent system. While they can have many
features and characteristics specific to their use case and are not possible to generalize,
the following elementary characteristics define them in the scope of MAS [17].

Situatedness - Agents directly interact with the environment through sensors and
actuators.

Autonomy - An agent is able to choose its actions without other agents’ interference
on the network.

Inferential capability - An agent is able to work on abstract goal specifications,
identifying and utilizing relevant information it gets from observations.

Responsiveness - An agent is able to respond to a perceived condition of the environ-
ment in a timely fashion.

20

Jan Macek 3 MULTI-AGENT SYSTEMS

Social behaviour - An agent must be able to interact with external sources when the
need arises, e.g. cooperating and sharing knowledge.

3.2 Agent type and architecture

As has been already stated, in order to model complex applications, the agent characteristics
as well as their internal control architecture differ between use cases. To standardize MAS
development, several architectures that describe how agents work have been proposed.
Generally, [19] defines three classes of agent modeling architectures based on interaction
complexity with external sources

• Reactive agents

• Deliberative agents

• Interacting agents

An overview of the class characteristics and examples of agent architectures utilizing the
respective classes is given in the sections below.

3.2.1 Reactive agent architectures

Having first emerged in behaviorist psychology, the foundations of the reactive agent
concept are that an agent makes its decisions based on limited information, with simple
situation-action rules. The agent usually makes decisions directly based on input from its
sensors. This type of agent is mostly suited for applications where agent resilience and
robustness is the most important factor, instead of optimal behavior [19]. An example of
a reactive agent architecture is the Subsumption architecture.

This architecture, described by Rodney Brooks [20], decomposes the agent into hierarchical
levels that operate in a bottom-up fashion. In other words, the bottom layers that control
elementary behavior are activated by the upper layers that define more complex actions or
define goals for the agent. The behavioral modules map sensations directly to actions and
can only define what the agent does, therefore the agents is not able to change its desires.
An example of a subsumption architecture is depicted in fig. 1 with example modules from
each hierarchical level, where the bottom-level module is Avoid Objects. This action is
needed in order to complete the Wander Around action, which is consequently induced by
the general goal on the top layer - Explore World.

3.2.2 Deliberative agent architectures

Compared to a reactive agent, deliberative agents have a more complex structure and
are closer to human-like, rational behavior. A key feature of a deliberative agent is
that possesses a symbolic model of the world in which decisions are made via symbolic
reasoning [21]. In other words, the agent maintains its internal representation of the

21

Jan Macek 3 MULTI-AGENT SYSTEMS

Figure 1: Example of a Subsumption architecture

external environment and thus is capable to plan its actions, while being in an explicit
mental state which can dynamically change. The The Beliefs, Desires and Intentions
(BDI) architecture is the most widely known modeling approach of deliberative agents.

The BDI paradigm has been used in various applications, such as simulating the impacts of
climate change on agricultural land use and production [22] or improving internet network
resilience by creating BDI agents that combat DDoS attacks [23]. The main idea behind
this architecture is the emphasis on practical reasoning - the process of figuring out what
to do. There are three logic components that characterize an agent:

Beliefs - The internal knowledge about the surrounding environment, which is being
constantly updated by the agent’s perception.

Desires - What the agent wants to accomplish. An agent can have multiple desires,
which can be hierarchically structured or have different priorities.

Intentions - Intentions are formed when an agent commits to a plan in order to
achieve a chosen goal. The plans are pre-defined within an agent, formally called a plan
library. The plan that an agent has set to carry out can dynamically change based on
updated beliefs or desires.

These components together define an agent’s reasoning engine (fig. 2), which drives the
agent’s (deliberative) behavior.

This definition can be made clearer with a simple example scenario - a waiter in a restaurant.
The waiter’s beliefs are the tables with customers and information about the state of each
table (i.e. choosing the menu, waiting for a meal, willing to pay etc.). The waiter’s desires
are to serve customers, for example, accept orders from a customer. The waiter carries
out his desires by making a plan of intentions (e.g. go to a table and ask if the customer

22

Jan Macek 3 MULTI-AGENT SYSTEMS

Figure 2: The BDI architecture schematic

wants a drink).

The advantage of this architecture is that the functional decomposition of the system is
clear and intuitive. However, with this architecture, there is a commitment-reconsideration
tradeoff that needs to be optimized [24]. With too much plan commitment, there is a risk
of agent overcommitment, where an agent might be trying to achieve a goal that is no
longer valid. On the other hand, if an agent reconsiders too often, there is a risk that the
agent will not achieve any goal because it will switch between intentions too quickly.

3.2.3 Hybrid approaches

Hybrid architectures try to utilize the best of both worlds of agent modeling. Purely reactive
agents might lack the ability to solve complex tasks, whereas deliberative architectures are
challenging to successfully implement on a concrete problem [19]. Pre-compiling a plan
library for every possible scenario that can happen in an environment with a vast amount
of complexities is simply not feasible, due to uncertainties of environment state changes
when agents interact with the environment.

The underlying concept of hybrid architectures is to structure agent functionalities into
layers that interact with each other. The most important advantage this provides is
modularization, which decomposes the agent’s functionalities into distinct modules that
have determined interfaces. This helps to deal with design complexity. Furthermore, having
distinct layers enables them to run in parallel, thus increasing an agent’s computational
ability as well as reactivity [25].

The majority of hybrid architectures have a controller layer to handles reactive tasks.
This layer is also connected to the sensor readings, and is hierarchically on the lowest
level. Then there is a planning layer that handles logic-based, deliberative tasks and often
interacts with the controller layer. In between them, there is usually a sequencing layer

23

Jan Macek 3 MULTI-AGENT SYSTEMS

that can suppress output from the reactive layer. An example of a hybrid architecture is
the 3T architecture, whose abstract model can be seen in the figure 3 below.

Figure 3: An architecture model of a 3T hybrid architecture

3T architecture
This architecture builds upon a predecessor architecture called Reactive Action Packages
(RAPs) [26]. A RAP is essentially a process or a description of how to complete a task
using discrete steps. It has got no planning abilities, i.e. its actions are only based on
current perceived environment state and not on an anticipated state. When a RAP is
executed, it should finish only when it satisfied its outcome or else it will produce a
failure state. This ensures that the agent can self-diagnose a failure and implement some
fail-safe mechanisms. Individual RAPs are queued by the interpreter, in the case of the 3T
architecture it is called a sequencer, which is the intermediate layer between the reactive
skills and deliberation layer.

The skills layer is a collection of so-called skills. Skills provide an interface of an agent
to its environment. They are abilities that allow the agent to transform or maintain a
particular state in the environment. Each skill has got an expected input and output,
which allows to route them together.

Finally, the deliberation layer is responsible for planning on a high level of abstraction, in
order to make its problem space small. Routine sequences of tasks should not be specified
or dealt with at this layer.

3.3 Interaction between agents

An agent-based ITS system requires some form of agent interaction and thus communication
between individual agents. To make agents interact with each other, an agents needs to be
extended with an interface dedicated to communication, which allows it to communicate

24

Jan Macek 3 MULTI-AGENT SYSTEMS

directly and cooperate in a decentralized fashion. The concept of cooperation between
agents is important in the ITS modeling context, as these systems facilitate sharing
of information between drivers and also from the road traffic environment to drivers.
Therefore, interaction is an important component when considering modeling ITS and
road traffic in general. However, this interface also adds to the system’s complexity.

Most agents achieve their common goal through cooperation, where some form of forced
altruism is given to the agents. Furthermore, situations can happen where conflicts of
interest between agents occur with no clear positive outcome, i.e. zero-sum games [17].

One should adhere to some communication principles to facilitate cooperation between
agents. As such, agents should communicate according to Gricean maxims (see the table
3) [1]. This way, the communication and performance overhead is minimized and the
system is more stable.

Table 3: Gricean maxims

Quantity Say not more nor less than it is required

Relevance Stay relevant to the topic of discussion

Manner Avoid obscurity and ambiguity

Quality Do not give false or unsupported information

The agents developed for an ITS simulation should make an effort to cooperate rather
than to compete, with the desired state of the system being rated "better" the more the
agents cooperate. For example, when designing a cooperative intersections system, the
reward function for the individual intersections (i.e. agents) should take into account not
only the throughput on their intersection but also the throughput of the whole system.
However, that doesn’t eliminate the need to negotiate. Let’s consider a situation where
there are multiple traffic light intersections, each deciding on which phases to enable based
on the incoming traffic intensity. An optimal option that minimizes cost (e.g. travel time)
for one agent could have a significant negative effect on other intersections. Therefore the
main objective would be to achieve an optimum that minimizes the overall cost.

3.3.1 Organizational decomposition

Before defining the communication protocol, which is a key aspect of agent interaction,
it is important to think about the overall system topology and inter-agent relationships.
There are two possibilities when designing agent structure.

Hierarchical organization
In hierarchical organization [27], agents are organized in a tree structure, where each level

25

Jan Macek 3 MULTI-AGENT SYSTEMS

has got a different level of autonomy. The flow of control is from top to bottom, i.e. agents
in the lower level of the hierarchy conform to decisions from higher levels.

A simple form of hierarchical organization ensures that there is a low number of conflicts
and the system can be operated by relatively simpler sequential processes where the control
flow is straightforward. However, this also decreases the robustness of the system because
the control and autonomy not as distributed. To illustrate, a failure of a single agent
at a high hierarchical level causes the whole system to fail. In a uniform hierarchy, the
authority is more distributed among the agents. This makes the system more fault tolerant
and performs graceful degradation in scenarios where one or more parts of the system fail
[17].

Coalitions
Another useful agent organization is to organize agents into coalitions. In coalitions, a
group of agents come together for a short time to increase the utility or performance of
the individual agents within the group [17]. After the goal is reached or the coalition is no
longer feasible, the coalition ceases to exist. The coalition can have a flat hierarchy, with
the possibility to have one agent as having the leader role for external interactions. The
use of coalitions allows for a highly dynamic system, which on the other hand increases
the system’s complexity.

There are more concepts for structuring a multi-agent system from an organizational point
of view, such as teams and holons. Though, the two mentioned approaches are the most
well-suited for an ITS system development, supported by usages in other ITS-related
research (e.g. [28] and [29]).

In conclusion, the usage of the aforementioned organizations should ensure that the system
complexity is kept as low as possible and the topology is transparent and uncluttered.
The hierarchical organization can be beneficial when applied to ITS systems such as
urban traffic management, where conflicts of interest are resolved by a capable authority.
Whereas, the coalition-based organization could be applied to create virtual clusters of
connected vehicles (platooning) to apply C-ITS features, e.g. dynamic navigation or
GLOSA.

3.3.2 Communication between agents

Agent communication is a crucial component of a multi-agent system. Communication
improves inter-agent interaction, beyond cues that an agent receives from its sensors, as
agents can either exchange or broadcast information that could not be obtainable for the
agent otherwise. This allows for deeper and more complex decision-making and behavior
design - agents can act upon the received information or update their beliefs about the
world and provide distributed problem-solving in general.

26

Jan Macek 3 MULTI-AGENT SYSTEMS

3.3.3 Agent Communication Language

Any language, including the one used by agents in an arbitrary system, should have defined
syntax and semantics to be an effective medium. Effectively, this means that a dedicated
communication interface for each agent should be defined, with a standardized way of
expressing information. A language developed specifically for inter-agent communication
has been created, called Agent Communication Language (ACL) [30]. Its specification
proposes a standard for agent communication. Most importantly, it defines so-called
communicative act (CA) - a special class of actions that correspond to the basic building
blocks of dialogue between agents. A communicative act has a well-defined, declarative
meaning, independent of the content of any given act. CAs are modeled on speech act
theory. Pragmatically, CA’s are performed by an agent sending a message to another agent,
using a specified message format. For the index of the defined CAs and their classification,
see the table 4.

Using all of the defined message types is not mandatory in order to use the ACL. However,
the standard introduces ACL-compliant agent requirements that need to be fulfilled. The
agent requirements are in the table 5.

Apart from the mentioned communicative acts, the ACL standard also defines message
parameters, which form the structure of a message (table 6).

One needs to consider that there are plenty of other standard definitions that are suited for
distributed system interoperability, such as W3C, CORBA, UML and many others, so the
choice of the ACL needs to be argued. A lot of these applications are based on the so-called
CRUD set of communication primitives - Create, Read, Update and Delete. In contrast to
this, ACL defines a lot of different communication primitives (i.e. communicative acts).
This leads to more complex control [31]. Also, [31] states that The ACL model naturally
allows more semantic context to be included in messages. This can give applications
more understandable information about unexpected events. In addition, the richer set of
primitives can lead to more flexible interaction processes.

3.4 Conclusion

The different architecture types that are presented each have a different application where
they excel. It is important to note that a border between reactive and deliberative agents
is not necessarily strict, hence the development of hybrid architecture types.

Choosing the optimal agent architecture depends depend on the scope of agent goals,
environment and action space definition. Concerning the topic of this thesis, which is to
create a framework for implementing various ITS, there isn’t a clear-cut choice regarding
architecture selection. Although the vast majority of ITS solutions share the same goals
(see section 2), the operating environment, underlying concepts and also used technology

27

Jan Macek 3 MULTI-AGENT SYSTEMS

vary substantially.

To put things into a perspective, let’s consider an example from the ITS domain. Systems
such as autonomous driving algorithms require high resilience, determinism, and high
performance, all in extremely dynamic conditions. This suggests using a reactive architec-
ture. On the other hand, there are systems such as traffic network management, where
highly complex problems with lots of variables are considered. Such non-linear behavior
requires complex logic and frequent re-planning, therefore more suited for deliberative
architectures. Furthermore, when considering the aforementioned cooperative ITS, which
give emphasis on information sharing and environmental awareness, it becomes clear that
hybrid architectures that offer both planning and reactive behavior would be the optimal
choice.

As such, when creating the framework for ITS implementation later in this thesis, the 3T
architecture with RAP utilization is used.

The ways how agents interact with each other are described, concerning the application
scope of this thesis, i.e. applying MAS principles to implement an ITS simulation. The
most important findings are that agent organization needs to be considered - although
MAS is designed to be highly distributed, giving the agents hierarchical roles can often
facilitate interaction between agents. Also, it can decrease system complexity while
preserving functionality, especially during negotiation between agents. Agent grouping
should decrease computation and communication overhead while also contributing to
decreased system distribution.

Designing how agents communicate is a crucial part of MAS development that can get
complex, so it is important to keep the ways of sharing information as organized as possible,
which can be done by defining the language, primarily its semantics and associated syntax.
The cornerstones of inter-agent communication are discussed, and a suitable framework
for the thesis’ use case of setting up communication between agents is investigated and
chosen. The framework of choice was the Agent Communication Language, because its set
of communication primitives already assumes the MAS-based use cases, with predefined
requirements, message parameters and message types while also being open for extension.

28

Jan Macek 3 MULTI-AGENT SYSTEMS

Table 4: Categories of communicative acts [30]

Communicative act

In
fo

rm
at

io
n

p
as

si
n
g

R
eq

u
es

ti
n
g

in
fo

rm
at

io
n

N
eg

ot
ia

ti
on

A
ct

io
n

pe
rf

or
m

in
g

E
rr

or
ha

nd
lin

g

accept-proposal ■

agree ■

cancel ■

cfp ■

confirm ■

disconfirm ■

failure ■

inform ■

inform-if (macro act) ■

inform-ref (macro act) ■

not-understood ■

propose ■

query-if ■

query-ref ■

refuse ■

reject-proposal ■

request ■

request-when ■

request-whenever ■

subscribe ■

29

Jan Macek 3 MULTI-AGENT SYSTEMS

Table 5: The ACL-compliant agent requirements [30]

Requirement 1: Agents should send not-understood if they receive a message
that they do not recognize or they are unable to process the content of the message.
Agents must be prepared to receive and properly handle a not-understood message.

Requirement 2: An ACL-compliant agent may choose to implement any subset
(including all, though this is unlikely) of the predefined message types and
protocols. The implementation of these messages must be correct with respect to
the referenced act’s semantic definition.

Requirement 3: An ACL-compliant agent which uses the communicative acts
whose names are defined in the specification must implement them correctly with
respect to their definition.

Requirement 4: Agents may use communicative acts with other names, not
defined in the specification document, and are responsible for ensuring that the
receiving agent will understand the meaning of the act. However, agents should
not define new acts with a meaning that matches a pre-defined standard act.

Requirement 5: An ACL-compliant agent must be able to correctly generate a
syntactically well-formed message in the transport form that corresponds to the
message it wishes to send. Symmetrically, it must be able to translate a character
sequence that is well-formed in the transport syntax to the corresponding message.

30

Jan Macek 3 MULTI-AGENT SYSTEMS

Table 6: Pre-defined message parameters [30]

Message
Parameter

Meaning

:sender Denotes the identity of the sender of the message, i.e. the
name of the agent of the communicative act.

:receiver Denotes the identity of the intended recipient of the message.

:content Denotes the content of the message; equivalently denotes
the object of the action.

:reply-with Introduces an expression that will be used by the agent
responding to this message to identify the original message.
Can be used to follow a conversation thread in a situation
where multiple dialogues occur simultaneously.

:in-reply-to Denotes an expression that references an earlier action to
which this message is a reply.

:envelope Denotes an expression that provides useful information
about the message as seen by the message transport service.

:language Denotes the encoding scheme of the content of the action.

:ontology Denotes the ontology which is used to give meaning to the
symbols in the content expression.

:reply-by Denotes a time and/or date expression which indicates a
guideline on the latest time by which the sending agent
would like a reply.

:protocol Introduces an identifier that denotes the protocol which the
sending agent is employing.

:conversation-id Introduces an expression that is used to identify an ongoing
sequence of communicative acts that together form a con-
versation.

31

Jan Macek 4 REQUIREMENTS DEFINITION

4 Requirements definition

This section is mainly devoted to defining what should the proposed system be capable of
in terms of functionality. The previous sections are devoted to discussion about the main
ITS simulation aspects of the proposed framework. This section expands on it, going into
more details and processes on how to achieve a system that is both modular enough to
support a wide range of ITS solution simulation and offers enough facilitation value for
streamlining the development of ITS simulations at the same time.

Another outcome of this section is to determine which toolset to use to facilitate the
building of the framework. Ideally, an existing library for agent-based modeling should be
used, which has got its structure in line with the proposed specifications in this section.

Furthermore, regarding the topic of this thesis, the inductive approach of analyzing actors
and processes of various ITS solutions is then used to validate the proposed framework.
The framework is designed using the obtained knowledge in the literature review researched
in the previous section 3. Consequentially, an ITS solution is chosen to implement using
the proposed framework, which will serve both as a proof-of-concept and as a benchmark
for evaluation of the framework.

4.1 System requirements

Defining requirements ensures that functionality identified in both the inductive system
decomposition in section 2, and the deductive approach in section 3 are met. This results
in an ITS virtual-deployment framework that is highly modular and capable of simulating
a large number of ITS. The requirements are summarized in the table 7.

32

Jan Macek 4 REQUIREMENTS DEFINITION

Table 7: Proposed system requirements

Requirement 1: The framework shall be a multi-agent based system, supporting more
actors that can act independently, have their logic and can make decisions based on their own
perception of the environment.

Requirement 2: The framework shall support modular architecture by employing a layer-based
architecture model

Requirement 3: The implementation of a particular ITS agent’s elementary capability shall
be done using skill modules, each of them serving one purpose. The skill modules must provide
a pre-defined input and output interface.

Requirement 4: An agent shall be able to communicate with others through a dedicated
communication module/skill that will manage the communication.

Requirement 5: Agents shall be able to act upon received information from their sensory
and communication interfaces and dynamically adjust their plans using the deliberation and
sequencing layer.

Requirement 6: Sensory and communication capability of an agent shall be incorporated as a
pre-implemented module.

Requirement 7: Where applicable, agents shall be able to detect conflicting intentions with
other agents while executing their tasks.

Requirement 8: Agents shall resolve conflicts using a standardized communication specifica-
tion, and comply with its requirements, mentioned in section 3.3.3. An interface to support
basic negotiations shall be provided.

Requirement 9: The framework’s architecture shall be modular enough to support a broad
spectrum of ITS, including but not exclusive to C-ITS solutions.

Requirement 10: The framework shall support C-ITS messaging services (Decentralized
Environmental Notification Basic Service (DENM) & Cooperative Awareness Basic Service
(CAM)) out-of-the-box and according to their specifications.

Requirement 11: The supported communication modes shall be both direct (messaging
specific agents) and indirect (broadcast & subscription).

33

Jan Macek 5 IMPLEMENTATION TOOLSET

5 Implementation toolset

With the finished system specification, this section discusses which tools will be used
to build the software framework. First, it is important to analyze the IVS simulation
system/software (i.e. the super-system) that the proposed framework is incorporated into.
It should maximize the super-system acceptance of this system by choosing an optimal
tool set for its implementation. This, for the most part, refers to an optimal choice of a
programming language and a subsequent agent-based modeling library to use.

In order to find a suitable tool for the case of MAS in the simulator software, the simulator
software is examined.

5.1 Simulator software

The particular simulator software that is being used at the CTU’s HMI research laboratories
is being developed using the Unity game engine, developed by Unity Technologies. The
game engine was first released in 2005 and has been used to develop numerous simulators
as well as other video games ever since [32]. Unity has also been used as a tool in physical
product modeling, AI & machine learning and digital twins, used in many industries
[33]. The main strengths of Unity are multi-platform development support, virtual reality
development support, good community support (including its asset store) and detailed
documentation. The game engine has got its development environment, which can be seen
in figure 4.

The game engine’s runtime is written in the C++ programming language, but the scripting
API that it offers is in the C# language. Consequently, there should be a noticeable
benefit when the chosen agent-development platform used to develop the proposed system
is also written in the C# language (same as the Unity scripting API) to achieve maximum
customization and interoperability.

The scripting follows the usual object-oriented programming paradigm, where one script
contains a behavior encapsulated in a class. Each script can contain a reference to another
script/class. Each object in the scene (referred to as a game object) can be assigned an
arbitrary number of scripts that upon assigning gain access to the game object’s properties,
such as object velocity, weight and position. Scripts can also be used to programmatically
gain knowledge about the environment, for example using ray-casting to discover objects
surrounding a game object. This object-centered development suggests that applying
agent-based behavior could be well integrated into the simulator software and offer needed
flexibility and cross-integration.

34

Jan Macek 5 IMPLEMENTATION TOOLSET

Figure 4: The Unity development platform UI

5.2 Agent Development Platforms

Having a development tool that is dedicated to agent-based modeling is an advantage as
opposed to building the system on a "green field", as the tools have the common domain
of agent system paradigms implemented and ready to use by a designated interface (e.g.
communication, localization, state definition), ideally being built in line with widespread
standards and ideally tested in practical commercial and industrial use.

An example of popular platforms, according to [34] can be found below.

JADE

Jade is a free software developed under a grant from the European Commission. The main
advantage of the platform is the containerization of agents, which allows to distribute
agents across systems, even with cross-platform (OS) support. Configuration changes can
be done in run-time. The core components of the platform are Agent Management System
(AMS), Agent Communication Channel (ACC) and Directory Facilitator (DF). JADE
also supports the FIPA communication standard ACL, mentioned earlier. The platform is
implemented with the Java programming language.

FIPA-OS

FIPA-OS is an open-source implementation of the FIPA standard. It is a small-footprint
development platform, which is loosely coupled and offers implementation also on mobile
devices. The development is also done using Java.

Although these most popular platforms for agent-based development are industry-tested
tools, in the current times they are obsolete, as their development was abandoned in the
year 2005. Also, most of the advantages described, such as multi-platform support and

35

Jan Macek 5 IMPLEMENTATION TOOLSET

decentralization across machines is not relevant to this thesis’ use case, as the proposed
MAS will be run on one machine, preferably directly within the simulator software, to
minimize system acceptance conflicts.

Another issue is that such tools have been developed to run on JVM (Java Virtual
Machine), therefore the integration with the simulator software would create another layer
of complexity to building an ABM framework. Related to the system implementation, it
is therefore important to choose a platform supporting development in C# language as
well, to ensure full and non-complex integration with the simulator software.

ActressMAS

ActressMAS is a multi-agent framework running on the .NET runtime, written in C#.
The author says that its main advantages are conceptual simplicity and ease of use [35].
The framework’s last release was in the year 2021, making it a non-outdated option with
potentially ongoing development. Notably, the framework is open-source, meaning the
source code can be inspected and possibly adjusted to the needs of the developed system.

Upon inspecting the source code of ActressMAS, there are three main components that
form the basic building blocks of a MAS environment - Agent, EnvironmentMas and
Container. The class diagram of the components can be seen in the figure 5 below.

Figure 5: ActressMAS - Class diagram of framework’s main components [35]

The agent environment can be distributed between more machines. Each machine runs
a container that communicates with a server, as seen in fig. 5. The service handling
communication between containers is a big part of the framework, as it is composed of
many classes, offering communication through web sockets and even offering to use the
SSL security protocol and async version of communication, see fig. 6.

There are, however, some issues related to the use case of the proposed framework. Overall,
the implementation of the classes creating the local agent environment doesn’t contain

36

Jan Macek 5 IMPLEMENTATION TOOLSET

Figure 6: ActressMAS - Class diagram of distribution service [35]

much (relevant) logic - the logic mostly serves to distribute messages to agents. It cannot
be clearly said if this is an advantage or a disadvantage, as for specific use-cases, like
building an ITS multi- agent framework is expected to have specialized logic. However,
the lack of behavior implementation also means that the agent architecture has to be built
from the ground up either way, not bringing any benefit of using this framework. On a
second note, agents only update their state once they receive a message, which doesn’t
meet the requirement for agents to act independently and autonomously. This also means
that agents are not able to gather and act upon information from their sensors, just from
messages received from other agents. This behavior might be implemented by the user, but
there might be conflicts with the current design of the interaction interface of the agents
and the EnvironmentMas class that would add redundant effort as opposed to building an
agent environment from "scratch".

5.3 Conclusion

In this section, the technical aspects of implementation requirements are discussed. The
simulator engine is introduced, describing the aspects of programming integration. The
main aspects of integration are discussed, which should enhance the subsequent decision
about which MAS development platform to use for the proposed system implementation.
Consequently, MAS development platforms suggested by the literature are examined.
However, their review concludes not to use them as they are outdated and would not
offer an advantage concerning integration with simulator software. Their focus is to
integrate with distributed computer networks focusing on different problems. Lastly,
a promising agent-developed framework called ActressMAS is introduced, whose main
advantage is being .NET/C# based and open-source, allowing for adequate customization.

37

Jan Macek 5 IMPLEMENTATION TOOLSET

However, after further inspection of the codebase, it was concluded that the way the
agent-based system proposed in this thesis is designed, there were no significant potential
benefits that implementation of the framework would bring. The ActressMAS framework’s
implementation revolves around deployment across multiple machines and offered minimal
abstraction of the agent framework itself, i.e. agent behavior and interaction. Therefore,
building the framework independent from a pre-existing MAS platform offers maximum
customization according to the system specification and its requirements.

38

Jan Macek 6 PROPOSED FRAMEWORK

6 Proposed framework

This section is dedicated to designing the system that is used to implement ITS in the
vehicle simulator software. A framework dedicated to generic MAS-based ITS system
implementation is designed, utilizing the principles and paradigms gathered in the preceding
sections 2 & 3. Firstly, the micro-architecture is defined, i.e. the specification of the
system’s actors (agents) - their inner structure is defined, as well as interfaces to the
environment. Secondly, a high-level technical specification is proposed - responsibilities of
inner components and their inter-relationships. This will form the elementary foundation
that is used to build an actual framework. The subsequent macro-architecture proposal
mainly encompasses modes of inter- agent communication. This outline forms a system
specification that is used to build the agent-based ITS framework for IVS software.

6.1 Agent/micro architecture overview

As per the previous section(s), where the individual MAS architectures have been reviewed
(section 3), it was decided to utilize the hybrid 3T architecture (section 3.2.3), which will
offer sufficient flexibility. Such modeling flexibility is needed primarily because there won’t
be a single, particular system to model, but rather a generic system that will facilitate
arbitrary agent-based ITS implementation. As such, it makes sense to choose a hybrid
architecture, which ensures that there is an optimal balance between robust, reactive
behavior without giving up capabilities to model complex behavior.

The architecture is designed with a formal assumption that the implementation will be
realized using the Object-Oriented Programming (OOP) paradigm. There are multiple
reasons for that. Firstly, the nature of agent-based systems, having their internal logic
and interacting with the surroundings through a pre-defined interface, corresponds to a
large degree to the concepts of OOP, especially the encapsulation principle. Secondly due
to the existing IVS software being developed in an OOP way.

The individual layers/components are outlined in the following section, in a bottom-up
fashion.

6.1.1 The architecture layers

In this section, the individual layers of the architecture are defined. The layers’ definition
adheres to the characteristics of the 3T architecture. For each layer, its purpose and
relation to other layers is described, together with technical implementation guidelines,
such as configuration, operation modes, inter-layer interface and internal processes within
the individual layers.

Reactive skills layer

This layer encapsulates all the skills an agent can do. These are the most primitive types of

39

Jan Macek 6 PROPOSED FRAMEWORK

its behaviour2. For example, a skill might be to slow down or to follow a vehicle in the case
of a vehicle-based agent. Skills can be activated and deactivated based on the cognitive
capabilities of the higher layer (sequencing) and more than one skill can be active at any
moment, and they should be independent of each other. However, one skill might use the
output of another skill as its input, effectively making a network of skills. By providing
skills for elementary operation, a level of abstraction is created, which emphasizes focus on
the impacts of task sequencing without being overly concerned by how the individual skills
interact with the environment. The original article proposing the architecture outlines the
following canonical approach for skill specification [36]:

1. The skill’s input and output specification - Each skill must provide a description of
the inputs it expects and a listing of the outputs that it generates

2. A computational transform - This is where the skill does its work. Once a skill is
enabled, it uses this transform to continually recompute its outputs based on its
current inputs.

3. An initialization routine - Each skill is allowed to initialize itself when the system is
started

4. An enable function - The sequencer can enable and disable skills Depending on the
context, a skill is allowed to perform any special start-up procedures each time it is
enabled.

5. A disable function - When a skill is no longer needed, the sequencer will disable it
and the disable function performs any necessary cleanup actions.

In practice, each skill is an individual script that runs asynchronously. Each script
implements a activation, update and deactivation function. The script is used to define
functionality of each particular skill with outputs from other pre-selected skills optionally
available and consequentially to define its own outputs. Inside the script, it is possible to
interact with the skills inputs and transform them into outputs. The primary use case
of this functionality is routing output from sensors or communication skills to (multiple)
other skills that could utilize the information. Skills will provide an interface to the higher
abstraction layer through pre-defined events specific to each skill.

The lower-level skills (i.e. communication and sensory) should have configurable physical
layer parameters such as signal range or relative service reliability (error rate). A skill
should also be able to return a failure state event to enable fail-safe behavior.

2The original author of the architecture refers to them as Reactive Action Packages (RAPs) [26].

40

Jan Macek 6 PROPOSED FRAMEWORK

Sequencing layer

The sequencing layer is responsible for the individual skills execution, essentially controlling
which skills to enable/disable to achieve a certain behavior. It is the intermediate layer
between the reactive skill layer and the deliberative planning layer.

This layer features logic that is used to accomplish a task in varying circumstances, based
on the state of the environment or the agent itself. For instance, regarding a driving
vehicle, a routine task to avoid an obstacle (which is defined by enabling certain skills by
the sequencer) is handled differently on a road with more than two lanes.

The sequencing layer should not be responsible for more complicated reasoning, but rather
to define how to handle routine situations. The responsibility for high-level planning to
achieve a global goal for an agent is reserved for the upper (deliberation) layer. The
sequencing layer’s role is to provide interface to control execution of particular skills.

To formalize the purpose of this layer in the proposed system, it should:

• Contain definitions of which skills to enable in order to complete a rudimentary task.

• Managing execution of sequences of common skills (i.e. tasks).

• Implement logic that serves to adapt to completing the tasks in different conditions.

The layer interacts with both the lower (skill) layer - interacting through events triggered
by individual skills to alter skill execution and the upper (deliberation) layer.

Deliberation layer

The deliberation layer (also referred to as the planner) synthesizes high-level goals into a
partially ordered plan, listing tasks that the agent has to perform, in order to achieve the
specified goal. Ultimately, the main purpose of the layer is to manage the execution of
tasks to achieve a specified goal. A goal could be something that the user wants the agent
to accomplish, for example, a vehicle’s goal is to arrive at its final destination.

Thanks to the abstractions provided by the two lower layers, the planner can be represented
as a conditional state-based model, vastly simplifying its definition [36]. In addition to
this, it is possible to add parameters to the goal definition. The final version of the plan is
then generated based on parameter values and internal logic that processes them.

In practice, the most trivial specification of the deliberation layer consists of:

a) Primary goal - The main objective that the agent was designed to perform.

b) Fail-safe goal - The desired outcome of the agent’s behavior in case an unexpected
failure occurs in any of its components or when the agent fails to achieve the primary
goal. For example, performing a Minimum Risk Maneuvre in vehicle-based agents
[37].

41

Jan Macek 6 PROPOSED FRAMEWORK

For more complex behavior, additional goals can be specified. In that case, the choice
which plan to prioritize is determined by sets of pre-conditions and constraints represented
by the agent state.

To sum it up, a detailed view of the individual components of the architecture and their
interface is on the figure 7.

Figure 7: An overview of the proposed 3T architecture

42

Jan Macek 6 PROPOSED FRAMEWORK

6.2 Macro architecture

6.2.1 Communication protocol

As has been discussed in the previous sections, communication plays an important part in
MAS, mainly because it vastly extends the capabilities of interaction between agents and
thus the ability to model more complex behavior. In section 3.3.3, the ACL communication
standard for MAS has been introduced and requirements for the protocol implementation
have been presented. To be able to utilize the communication, requirements for messaging
utility and high-level implementation details is presented below.

6.2.2 Broadcasting

Message broadcasting is the first type of communication that will be implemented, due
to the fact that ITS uses information broadcasting in a lot of cases. Generally, there are
mostly two types of service messaging in ITS [38]:

• Periodic status exchange - ITS services often need to know about status of other
actors, such as terminals or vehicles. These periodic updates often include basic
status messages such as location, ID, speed, etc.

• Asynchronous notifications - Messages that are used to inform about a specific
event, usually related to a specific service and functionality.

The framework should therefore support message broadcasting for both synchronous and
asynchronous events, which should ensure that all potential use cases are covered.

6.2.3 Implementation

The ability to broadcast and subscribe to a broadcast should be handled by a separate skill
component. Upon skill initialization, a communication skill connects to a communication
channel and listen to or send messages. Each communication stream has a specified
message format so that agents can be set up to process the broadcasted information. The
agents are then able to react to received messages by sending an internal event message to
the sequencer.

Given the great utility of the C-ITS system and identified similar characteristics and use-
cases with agent-based systems (discussed in section 2.2.1), the framework features V2V
communication support with standardized message structure and semantics out-of-the-box;
Namely the Cooperative Awareness Message (CAM) and Decentralized Environmental
Notification Message (DENM).

6.2.4 ETSI message services

Due to the wide range of beneficial use cases for the aforementioned types of information
sharing types (periodic status exchange & asynchronous notifications), ETSI has defined

43

Jan Macek 6 PROPOSED FRAMEWORK

two basic messaging services; The CAM message (synchronous status update) and the
DENM message (asynchronous notifications). Both message types are described along
with the implementation details below.

Cooperative Awareness Message

The CAM message is specified by the Cooperative Awareness Basic Service. By definition,
CAM provides a means of periodic status data sending, sharing cooperative awareness to
neighboring nodes. From the message propagation point of view, the CAM differs from
the DENM message by only allowing single-hop transmission. This way, only vehicles in
the relative vicinity of the broadcasting vehicle will receive the message. CAM messages
should be then processed by the CAM management component to apply additional logic
[39]. For example, CAM management can detect a slow vehicle warning by analyzing
received CAM messages from a particular vehicle. In other words, the receiver is expected
to evaluate the relevance of the contained information. The CAM service has its message
format specification, which is found in figure 8.

Figure 8: The CAM message specification [38]

Decentralized Environmental Notification Message

Instead of vehicle/station status updates, DENM messages directly carry traffic safety-
related information, characterized by event type identifier. Another difference from the

44

Jan Macek 6 PROPOSED FRAMEWORK

previous message type is that DENM messages are multi-hop, and their range is expressed
by geo-validity specification. Among other attributes, the DENM message contains
attributes for message generation frequency or temporal validity threshold (expiration
time). Despite specifying such attributes, it is still up to the receiving station/vehicle to
determine information relevance [40] and whether to take further actions like displaying
the message to the driver. The DENM service message specification is presented in the
figure 9.

Figure 9: The DENM message specification [38]

6.2.5 Negotiation and Agreement

Negotiation between agents is important especially when agents (mutually) prevent other
agents from completion of their goals. In other words, the best course of action for one
agent is not necessarily the best for the other. This is more than likely to happen in
environments where multiple agents share the same resource and their state is defined on
the same domain, which is often the case. As such, the theory of games is formally used
to model these interactions [34].

Such type of negotiation is quite different from the principles of agent cooperation. In
cooperation negotiations, the worst-case scenario improvement as opposed to working

45

Jan Macek 6 PROPOSED FRAMEWORK

individually is net-zero [34]. This is inherently contrary to the statement made in the
section 3.3, where it was suggested that agent cooperation should be emphasized. As
agents are formally modeled as self-interested, it cannot be guaranteed that they won’t
encounter conflicts with each other. Therefore, modeling cooperation before figuring out
conflict resolution would inherently result in a more fragile system.

6.2.6 Conflict detection

As has been stated above, because of the scope limitation of this thesis, conflict resolution
as a system functionality should precede cooperation. The cooperation abilities of agents
can be added later by extending the framework. This decision will theoretically lead to
better system stability, before offering extended behavior possibilities.

The first step is to have a way for an agent to determine if a conflict has happened. An
agent is not able to resolve s conflict if it doesn’t know it has occurred. To comply with
the 3T architecture topology defined above, this should be handled on the reactive skills
layer. Consequentially, detected conflict is handled by a dedicated skill module. If an
agent is expected to run into a conflict with another agent (of the same type), it has to
be equipped with a dedicated skill that behaves as a sensor detecting conflict with the
implementation left to a specific use case. In other words, the logic for conflict detection
is left to define together will specific agent and its properties, and other modules.

When one agent detects a conflict through one of its modules, it required to inform other
agents involved about the conflict so that all involved agents are aware of the situation.

6.2.7 Conflict resolution

Now that the conflict detection process is defined, in that case, it is possible to build
on it to define how conflicts are resolved. Considering the findings in section 3.3.1, the
simplest tool to resolve conflicts is to define a hierarchy in the agent. In order to avoid
more complex mathematical reasoning models [34], hierarchy, along with agent-bound
state variables can be used as a bidding resource. Whichever agent can bid the highest
value gets priority in conflict resolution (e.g. by being able to act in its interests).

To facilitate the communication related to conflict resolution & bidding, the FIPA message
standard is used. The FIPA standard offers pre-defined messages for such situations -
most importantly the Call For Proposal (CFP) and Propose messages. Although it
was mentioned that agents are self-interested, in order to make things simpler, agents
assume that the counterparties in conflict are truthful and only bid resources that are
available to them. Also, deciding which bid proposal has won is handled by the agent
that had called for the proposal, so the counterparties assume that the deciding agent is
truthful and decides correctly according to the bids.

To better illustrate the negotiation process, an example scenario of the negotiation process

46

Jan Macek 6 PROPOSED FRAMEWORK

is described in the Example part below.

Example

To illustrate how the system would work in practice a sample scenario is presented below
in figure 10, where the agents are drivers/vehicles. The scenario demonstrates how agents
achieve their goals using the three layers, as well as conflict detection and resolution.

There are two vehicle agents (A, B) in the scenario, which both have three routine tasks
defined: drive, avoid:object and wait and negotiate. Both vehicle agents have a goal
not to crash and keep a certain speed. To ensure a fail-safe behavior, a logic defined on
the deliberation level is implemented to attempt to avoid objects in case the driving task
fails. Furthermore, if the avoid object task fails due to another vehicle being detected, the
negotiation task is executed. The execution of this task on one agent should trigger the
execution of such task on the other agent in conflict as well. Based on the result of the
negotiation, the agents’ respective deliberation layers enqueue either the avoid:object or
wait task and enqueue the basic drive skill to come after the current task completion.

1. Both agents do not detect any obstacles in their surroundings, so the planner
initializes a plan with only the drive task sequenced, which gets executed.

2. Agent A spots an obstacle in his way (an oil spill). This causes the drive task to fail
and A’s planner has to re-plan to reach its goal (not crash). The failed task’s fail-safe
task is triggered (avoid:object) and added to the new fail-safe plan. The new plan
is initialized with the two following tasks sequenced: avoid:oil_spill → drive.

3. However, this plan also fails, as agent B detects a path conflict, consequentially
informing agent A about it. They now have to initiate a negotiation task to reach an
agreement and resolve the conflict using auction-like bidding. The agent B wins the
bid, due to being in the right lane and so agent A is forced to give way. The planner
creates a new plan: wait → avoid:oil_spill → drive.

4. The individual tasks finish successfully and the agents’ goal is fulfilled.

6.3 Conclusion

In the preceding sections, the multi-agent system framework was proposed. This framework
is used to implement various suitable ITSs into an interactive vehicle simulator. The
system was described both on a micro and macro level. The micro level mainly addressed
the specification of the inner architecture of individual agents, and how they achieve their
goals using their intelligence. For building independent agents that need to be flexible in
terms of their capabilities, the 3T architecture was chosen and the individual layers of the
architecture were specified in detail, specifying their responsibilities and capabilities.

Afterward, the macro architecture was specified, addressing mainly the ways how agents

47

Jan Macek 6 PROPOSED FRAMEWORK

Figure 10: An example behavior of vehicle-based agents using the proposed architecture

48

Jan Macek 6 PROPOSED FRAMEWORK

interact with each other. Firstly, the communication interface was defined, including how
agents are able to use it on the micro-architecture level. Building upon that, the ways how
conflicts between agents are handled were proposed, utilizing communication to resolve
conflicts through resource bidding.

With the micro- and macro-architecture being specified, the final requirements for the
system implementation are proposed, which aim to help ensure that the software framework
is facilitates ITS implementation into IVS software in an organized way, with a high system
resilience.

49

Jan Macek 7 SYSTEM IMPLEMENTATION

7 System implementation

Now that the system architecture model has been designed and the technical requirements
and tools considered, it is possible to create the system implementation. In this section,
the process of building the software package and subsequent implementation into the
simulator software will be described.

The software package design will be separated from the simulator software so that it will
be implementation agnostic and could be used for other game engines or other simulation
purposes.

The first section will be devoted to micro-agent implementation, where it will be described
which classes and services is the agent unit comprised of. The next section will describe
how the communication between agents is implemented, including the implementation of
the ACL and C-ITS communication standards and agent negotiation.

The way the framework is built is that it mostly consists of abstract classes that have got
some common behavior pre-defined but require the user to specify given behavior that is
exclusive to their use case. This allows for a framework that has got the generic behavior
already completed but gives the user freedom and guidance concerning detailed behavior
implementation.

7.1 Agent implementation

As has been defined in the section 6 which proposed the system model, the agent component
will be composed of the three main layers, represented as standalone classes interacting
with each other - deliberation, sequencer and skill classes.

7.1.1 Inter-layer interaction

There are two ways in which the individual layers can interact and inform each other.
The top-down interaction (the deliberation layer is considered to be the top and the skill
layer the bottom one) is done by supplying the superior (i.e. top) layer with a reference to
the lower layer so that its whole interface is available to use. Interaction initiated by the
lower layer with the upper layer is implemented in a different way, where the lower layer
initiates a context-specific event with an optionally-specified content that the superior
layer subscribes to. The reason behind this implementation is that this ensures that the
lower layers can’t control the upper layers but rather just inform them about potentially
important/interesting events that have taken place while operating and interacting with
the environment.

Below is a class diagram of the components with marked dependencies, including their
methods and properties (fig. 11).

50

Jan Macek 7 SYSTEM IMPLEMENTATION

Figure 11: Class diagram of main agent framework components

51

Jan Macek 7 SYSTEM IMPLEMENTATION

7.1.2 Deliberation layer

The deliberation layer is the highest from a hierarchical point of view. Its responsibility is
to create a plan that satisfies a goal that the agent gets as input. Apart from the layer
being abstract (i.e. requiring further implementation details specified by inheriting from
the class), it is also generic. That means that it will defer the type specification of its
state until it is declared by the derived class. This leaves the state specification to be
implemented to the user’s needs. For example, a vehicle agent can have its state as a
three-dimensional vector, whereas a broadcasting station will have its state defined as one
of its possible states (e.g. represented by a single discrete number). The initial value of
the state parameter is required to be specified upon object instantiation/creation.

Upon providing a goal to the layer by the executing client, it should resolve it by initializing
a sequence of pre-defined AgentTask objects whose execution should accomplish the goal.
The input goal should be defined as a high-level keyword, and the layer is assumed to
receive only pre-defined goal keywords, which will be matched to different patterns of
task-resolving logic.

The AgentTask class encapsulates a list of skill types that shall be activated once the
task is executed. The skill list does not contain the actual instantiated objects, but
just information about skill type (derived from the Skill abstract class). Such type of
pseudo-contract is then transferred to the Sequencer layer and validated at run-time. In
other words, the Sequencer class must contain instantiated Skill objects listed in the
received AgentTask.

To offer a form of task reuse, a parametrization of tasks is implemented. This feature is
implemented in a way that the task also contains an optional transform procedure delegate
which gets passed to the Skill object once it’s activated as part of the task execution. As
an example, a task that contains a general communication skill that broadcasts messages
to other agents can have the broadcasted message type and content specified differently in
each separate instance of resolved tasks. The logic in the AgentTask type can be reused
while allowing for parametrized Skill initialization (e.g. broadcasted information type).

This layer can also receive notification from the lower layer when a task has failed or the
initialized sequence of tasks (i.e. plan) has finished. As defined in the system requirements,
the user must implement behavior when the execution of an instantiated plan has failed
or has been interrupted by impacting events in the operating environment. The user has
to implement a fail-safe AgentTask that will get activated in case the Deliberation layer is
not able to achieve the specified goal.

52

Jan Macek 7 SYSTEM IMPLEMENTATION

7.1.3 Sequencer layer

The Sequencer class is responsible for the most amount of general logic. This is because
it interacts with both the upper and lower layer and hands over information about skill
execution to the Deliberation layer. Its primary responsibility is to keep track of currently
executing skills and activate or deactivate them respectively to the currently executing
task.

When the Deliberation layer generates a sequence of tasks, it is enqueued into the
Sequencer’s internal task queue. The tasks in the queue get sequentially executed.
Before activating skills according to the task specification, the task-specific initialization
transform, if there is any, is applied to respective Skill(s). Afterward, the Skills get
activated by the Sequencer. The Sequencer class also exposes the interface to the upper
(Deliberation) layer to dynamically add to or overwrite the AgentTask queue during
runtime. This can come useful when there are immediate changes to the environment
which the Deliberation layer evaluates to re-plan to reach the current goal.

Another responsibility of the Sequencer class, which requires implementation from the
user by inheriting from the base class, is Skill termination management. The class
gets notified about skill terminating by subscribing to the SkillTerminated event for
each of the Skills bound to the layer. When one of the Skills triggers such an event
and terminates, the Sequencer gets information about the type of terminated Skill and
termination reason, which is of one of three defined values - Finished, Interrupted or
Failed. The logic implemented by the user, based on the type- and reason-based inputs,
should identify whether the case of Skill termination is detrimental to the execution of
the whole task (meaning task execution has failed or finished). If so, the Sequencer
triggers the respective task termination event and the resolving logic is handled to the
Deliberation class. Alternatively, the terminated Skill can be left disabled or re-started.

7.1.4 Skill layer

The Skill layer comprises a defined collection of objects derived from the base Skill class.
The implementation of the base abstract class is only about defining its methods that
should ensure proper integration with the upper layers, such as methods for activation
and deactivation of the skill exposed to the Sequencer class.

The implementation required by the user-specific use case of a particular skill is mainly the
Act method implementation, where the user is required to specify the Skill’s computational
transform (as specified by the requirements in section 6).

The Skill layer is also expected to utilize the chaining of Skill inputs and outputs. Skills
are expected to slightly vary in abstraction level, meaning there should be Skills directly
interacting with the agent’s sensory hardware and providing such information as an output.

53

Jan Macek 7 SYSTEM IMPLEMENTATION

The logic which makes use of the agent’s sensors to compute additional transform should be
encapsulated in a dedicated Skill to conform with each Skill having a single responsibility.
Skill chaining is defined in the class derived from Skill. Skill outputs are defined as
public class properties. To allow the use of Skill A’s output in skill B, the reference of A is
provided in B’s constructor. The B Skill can then use A’s exposed output property in its
transform function.

An activity diagram sowing process logic and interaction between inner components can
be seen in figure 12.

7.2 Communication module implementation

As has been started section 4, where the system requirements are defined, the framework
will come with a pre-implemented communication interface which will allow the agents to
exchange pre-defined messages. There are two base object types handling communication
between agents - an agent-bound CommunicationSkill class that serves as an agent’s
proxy to the communication space, and the MessageBroker class that handles message
delivery to individual agents. In addition to that, message types created according to the
C-ITS and ACL standards are created to carry appropriate content. The class diagram of
the communication interface can be seen in figure 13.

7.2.1 Message broker

The MessageBroker is a static class (only one allowed instance per simulation) which
manages message delivery and simulates the communication space. It manages both the
ACL and C-ITS messages by providing overloads for its methods based on the provided
message type. Because the class is static, agents3 can interact with it without having to
hold a reference to it. Agents can:

• Register to message broadcasts

• Broadcast messages themselves

• Send messages directly to specific agents

When an agent registers to the class, it holds its reference in its register. That way the
class can access the registered agent’s inbox when a message is being delivered.

When sending/broadcasting a message, apart from providing the actual content (i.e. the
message object), the message must be "wrapped" in a tuple which must contain the
sender ID. When sending the message directly, the sender must provide the recipient agent
ID.

3More precisely, communication skills that agents come equipped with

54

Jan Macek 7 SYSTEM IMPLEMENTATION

Figure 12: Trivial activity diagram of the implemented 3T architecture

55

Jan Macek 7 SYSTEM IMPLEMENTATION

7.2.2 Communication Skill

The CommunicationSkill class derives from the base Skill class, so it should be handled
like any other skill. This type itself is generic and abstract. For the skill to be used,
a derived class with a specified Message type needs to be created and implemented.
The pre-defined behavior is in the Act method, where all Messages to broadcast are
handed to the MessageBroker class. The Messages to broadcast are specified upon
AgentTask initialization by the transform procedure. That way, different AgentTasks
can re-use the single CommunicationSkill class. Then, all messages received in the
Skill’s ReceivedMessagesQueue are processed. The message processing logic should be
implemented by the user by pattern matching. The pattern matching can be defined in the
CommunicationSkill itself, but to honor the single responsibility paradigm, a better way
is to use the pre-defined behavior, where a MessageReceived event is invoked and other
Skills subscribed to this event can process the message, deciding if they are interested in
the contents and acting upon it accordingly.

7.2.3 Message implementation

The ACL and C-ITS (i.e. DENM and CAM services) message contents are implemented
according to the official documentation. For reference, the ACL message contents can be
seen in the figure ?? and table 4, the C-ITS message contents can be seen in figures 8 and
9.

7.3 Unity integration

As has been mentioned in the introduction to Unity software in the section 5, programmat-
ically defined behavior is implemented by assigning C# scripts as individual components
to game objects in the scene. The scripts are not being executed by a main client script
like in conventional software, but rather by calling an Update method in the Unity script
which is invoked by the Unity engine on each game tick. Such behavior is obtained
by inheriting from the MonoBehaviour class, which also defines other methods that get
invoked in certain scenarios. Including the Update method, the standard methods used in
most cases are:

• Start method, which substitutes object initialization through the constructor and
is called at the start of the script lifetime

• OnDisable method, which gets called when the script component or the whole game
object gets disabled. Disabled components aren’t rendered and cannot interact with
the scene nor be interacted with.

• OnEnable method, which is inverse to the previous and gets called when game objects
or components are enabled/activated.

56

Jan Macek 7 SYSTEM IMPLEMENTATION

Figure 13: Class diagram of the implemented communication interface

57

Jan Macek 7 SYSTEM IMPLEMENTATION

The idea behind the proposed MAS ITS framework integration with Unity is to assign the
Agent class to game objects as a component in order to use the game object as an agent.
For instance, the game object can be a vehicle model or even a non-physical game object
invisible in the scene, e.g. a traffic controller. When the Agent class would get assigned to
a game object, it would be able to interact with its other game components and object
properties through pre-defined sensor or actuator skills.

Although the Agent class and its components (i.e. layers) come with the Update method in
their default implementation, it will still not get called by the Unity engine. For that reason,
a wrapper class AgentMonoWrapper been created. This class will get added as a component
to the game object that the user wants to induce agent behavior on. The class will
initialize an agent by calling an abstract method InitAgent() at MonoBehaviour.Start()
invocation and call Agent.Update() on MonoBehaviour.Update() invocation.

7.4 Conclusion

In this section, the implementation details of the proposed framework are discussed. The
C# language has been used to write the framework’s code, as per the discussion in the
section 5. The framework’s core components are defined as abstract classes, implementing
general behavior and defining required behavior to be implemented by the user, which
is use-case dependent. For instance, such behavior can be the Act method in the Skill
layer, which serves as Skill’s way of interacting with the environment, which is different for
every defined Skill. The relations between classes and inner processes have been described,
serving as documentation for the usage of the framework.

As per the initial requirements, the agent interaction interface has been implemented.
The framework’s agent architecture components have been used to create dedicated
communication skills that can broadcast and directly send standardized messages to each
other together with a custom messaging service. Consequentially, a C# implementation of
ACL and C-ITS (CAM, DENM) message standards has been created to be used in the
framework.

Lastly, integration of the framework with the Unity game engine has been discussed
and described in detail, introducing an additional wrapper component to ensure proper
cross-interaction.

58

Jan Macek 8 SYSTEM VALIDATION

8 System validation

This section is devoted to the evaluation and demonstration of the proposed MAS-based
ITS implementation framework. An ITS solution is chosen to demonstrate implementation
using the framework, serving as a validation of the system design. The chosen ITS
solution is then simulated in the IVS software by using the proposed framework. The
implementation process is documented, and the simulation results are discussed.

8.1 Qualitative analysis

The following paragraphs picks up on the findings in the section 2.2.1, where the table 2
maps GDTs to state-of-the-art ITS solutions. Those ITS solutions are analyzed in this
section in an attempt to transparently select a system to implement using the developed
framework in order to validate and demonstrate its use-case.

In order to demonstrate the framework’s capabilities, a suitable ITS is chosen to implement
using the framework. The goal is to identify which ITS solutions are suitable to implement
using the multi-agent simulation framework. In order to achieve this, attributes reflecting
the suitability to implement are defined. For each system in a selection of relevant ITS
solutions, a numerical value is assigned to each identified attribute, based on how strongly
the feature is represented in the system. The decision of the value of feature representation
rate is decided by the thesis’ author subjectively, based on his knowledge of the topic. This
is considered as sufficient given the fact that the validation is done still in the development
stage of the framework A sum of the scores for each ITS solution makes for a qualitative
benchmark that is used to select an ITS solution for demonstration of the proposed
framework’s capabilities.

The method to determine how well-suited the candidate system type is for the implemen-
tation to an IVS is to evaluate it based on the three features discussed in the preceding
section 2:

• Intelligence distribution rate
• Driver engagement
• Research relevance

A set of integer values determine the rates how the selected features are represented in the
ITS solution in question. The representation level is expressed in a fuzzy logic given in
four levels:

• None → 0
• Low → 2
• Moderate → 5
• High → 8

59

Jan Macek 8 SYSTEM VALIDATION

Because None representation of the feature does not bear any significance to choosing
an ITS in question, it is assigned zero. Low representation should not have a significant
impact on the suitability of ITS, therefore its value is only incremented by two as opposed
to None. Moderate and High rates of feature representation should have a more significant
influence on the final system choice, therefore their values have been assigned as increments
of three instead of two.

Each system reviewed in section 2 is evaluated and the sum of individual feature evaluation
determines its score. The higher the score, the better the result for a particular ITS. The
system with the highest score is chosen to implement using the proposed framework. The
results of the qualitative analysis can be seen in the table 8 below.

Table 8: Quantitative analysis results

Features

ITS Intelligence
distribution

Driver
engagement

Research
relevance

Score

E-Call 2 2 5 9

Electronic fee collection 2 0 2 4

Parking guidance 2 8 5 15

Network traffic control 8 0 8 16

Cooperative ACC 8 8 8 24

European Truck Platooning 5 2 8 15

ADASIS 2 8 8 18

Mobility as a Service 8 2 8 18

Map services (Geo-fencing) 2 5 8 15

Self-driving
algorithms

& Platooning 8 2 8 18

In-vehicle Information System 8 8 8 24

8.1.1 Results discussion

The conducted analysis has determined two ITS solutions as suitable systems to demon-
strate implementation - In-vehicle Information System (IVIS) awareness and warning
system and Cooperative ACC. Both come from the state-of-the-art C-ITS subfield. As
previously discussed, the Cooperative ACC system is using dedicated message types in its
implementation - the SPaT and MAP messages. On the other hand, the IVIS system can
use the pre-implemented CAM and DENM messages to share traffic-related information.
For this reason, the IVIS-based awareness and warning information system is chosen to

60

Jan Macek 8 SYSTEM VALIDATION

implement using the proposed framework. In the following section, the system is described.

The developed system should also be able to model state-of-the-art ITS systems that
utilize communication between road users, such as C-ITS systems.

8.1.2 In-Vehicle Information System

The In-Vehicle Information System, shortly IVIS, is a term that comprises a vast number
of vehicle technology solutions that assist the driver either by providing information about
the vehicle and the surrounding environment or serving as an interface to control vehicle
systems.

The integral part is the Infotainment system, which is, in most cases, a touch screen
interface. It provides control through elements such as touch screen button panel or voice
commands. Moreover, it integrates other vehicle technology elements, such as the CAN
interface, connectivity modules (e.g. Wi-Fi, GPS), sensors etc [41]. A screen panel is an
excellent medium to provide additional safety information to the driver, especially when
the gauge clusters have been replaced by an additional screen. This improves the HMI
aspect by reducing the disruptive effect of checking the screen and making the displayed
information more noticeable.

The conventional, more basic capabilities of IVIS are Heating, Ventilation, and Air
Conditioning (HVAC) control, multimedia controls, navigation support and parking
assistance (i.e. parking camera view). Despite these systems not being of value concerning
the thesis topic, the important feature of IVIS is the integration with the emerging C-ITS
technologies, which greatly extend the capabilities of IVIS, i.e. displaying warning and
awareness messages from the V2X interface. This fact makes IVIS a good candidate to
implement the IVS in the practical part because the V2X C-ITS is a great subject for
research as of now and the distributed nature of the systems corresponds to the agent-based
requirement of the thesis topic. On top of that, the important HMI aspect of IVIS could
provide great value for future utilization in research using IVS.

The general, high-level solution for IVIS simulation is to provide C-ITS awareness and
warning information system by implementing the C-ITS messaging service standard, which
provides a dedicated interface for broadcasting such information, simulating message-based
communication between road users & infrastructure, integrating with technical solutions
to display the information on the infotainment screen.

8.2 In-Vehicle Information System implementation

With the particular ITS implementation decided, the whole process of implementation
is described. Before describing the implementation process itself, a description of the
implemented IVIS solution is given, together with implementation requirements and
expected results. Afterward, is custom testing environment setup (i.e. the system

61

Jan Macek 8 SYSTEM VALIDATION

implementation) is be presented. Finally, the implementation test results are presented
and discussed.

8.2.1 System description and requirements

As has been described in the preceding section, the In-Vehicle Information System can
enable the driver to control various aspects of vehicle set-up, as well as provide information
about the vehicle and the environment, including traffic conditions. The state-of-the-art
IVIS solutions include V2X communication where vehicles and the infrastructure can
distribute otherwise locally-available information to all interested road users.

One such V2X communication use-case referred to as Smart Routing, is providing traffic
real-time traffic condition information to relevant connected vehicles. For instance, suppose
there is congestion forming at a particularly busy road stretch. The local roadside
equipment can automatically collect accurate traffic density data of connected vehicles
broadcasting awareness messages, process the collected information and in turn broadcast
information about local congestion to other remote road users that can optimize their
route planning using received information [42].

In order to successfully build and verify the implementation of the system in the IVS
software, initial requirements and expected outputs need to be set. The implementation
should conform to the following specification:

1. Intelligent agents should be created using the proposed framework’s interface.

2. The agents should be able to communicate through the standard C-ITS communica-
tion protocol.

3. There should be two types of ITS agents - the connected vehicle agent and the
connected infrastructure agent.

4. The infrastructure agent should be able to detect emerging congestion forming
nearby.

5. Likewise, the agent should also detect that the congestion has decreased.

6. The congestion event should be specified by the appropriate Cause Code.

7. Similarly, the event status should be specified with a Sub-Cause Code value - 1 for
free flow and 4 for heavy traffic jam [40].

8. The connected vehicle agent should then be able to commit to a plan where it
attempts to reach a destination, potentially re-planning its route if it receives a
DENM message about a downstream congestion forming.

If these conditions are met, the system should have a positive effect on traffic by decreasing
the overall travel time for vehicles. The implementation is validated by collecting and

62

Jan Macek 8 SYSTEM VALIDATION

analyzing traffic data from the simulation.

8.2.2 External dependencies

In order to facilitate the validation experiment setup and keep the experiment scope to
C-ITS Smart Routing system implementation, additional packages available to use in the
simulation software are utilized to model the traffic. Below is a brief overview of the
external packages.

EasyRoads3D by AndaSoft

This package allows one to easily build roads directly in the Unity UI. The main advantage
of the package is usage simplicity and friendly UI - the user can create road stretches
using simple mouse-based UI with the possibility to connect road segments to create
intersections and build a road network.

With this tool, a testing road network is built that the vehicle agents will drive through.

Figure 14: EasyRoads3D - The road building UI showcase

Simple Traffic System by TurnTheGameOn

This package can be used to easily generate vehicle traffic. The traffic is set up by creating
waypoint-based routes that can be interconnected in a modular way to populate road
networks with traffic. Vehicles are spawned to follow the route waypoints without crashing
into each other.

This tool is used to create vehicles that follow a pre-defined path of points. The package

63

Jan Macek 8 SYSTEM VALIDATION

also features a traffic light interaction functionality where a route can manage yielding
vehicles based on the traffic light signal.

Figure 15: Simple Traffic System - A showcase of vehicles following a route

8.2.3 Agent implementation

This section covers the implementation of the chosen C-ITS solution using the proposed
MAS framework. Based on the specification, two agents are created. The agents are
created by inheriting classes from the MAS framework components and implementing
custom behavior, as well as using its pre-defined C-ITS communication modules to simulate
V2X communication.

Connected Traffic Light

The Connected Traffic Light agent is the first actor in the Smart Routing implementation.
There is only one instance of this agent in the simulation which manages a single traffic
light. This agent monitors the number of vehicles in the queue at a designated intersection
and processes the data to evaluate if congestion is forming. It informs about its local traffic
state via localized (meaning that message includes the traffic light’s location) DENM
messages broadcasted to all connected road users.

Since the agent’s behavior is constant, apart from broadcasted DENM message content
(value of Sub-Cause Code), the agent has got only one task, consisting of two Skills -
ITSCommunicationSkill for messaging service and MonitorQueueSkill which changes
broadcasted Sub-Cause Code based on discovered number of vehicles in the queue. For

64

Jan Macek 8 SYSTEM VALIDATION

reference, the agent’s composition can be seen in fig. 16 and the agent’s activity diagram
can be seen in fig. 17.

Figure 16: Class diagram of the Connected Traffic Light implementation

Connected Vehicle

The Connected Vehicle agent is the second agent type in the simulation. This agent type
is added as a component of each vehicle spawned in the simulation run. The purpose of
this agent module is to process received DENM messages and evaluate if the planned route
needs to be changed. It also broadcasts CAM messages to other road users. The content
of broadcasted CAM messages is the vehicle’s location.

Although there is only a single task defined in this agent, its initialization is parametrized,
allowing the agent to adapt to the current conditions. The task consists of four Skills:

• ITSCommunicationSkill - C-ITS messaging interface, as has been described before.

• VehicleInfoSkill - A Skill for retrieving information about the vehicle, namely its
current position, and additional navigation properties, which is discussed separately.

• CAMPositionUpdateSkill - As the name suggests, this is a trivial "plumbing" Skill
that takes vehicle position from the foregoing Skill and updates the broadcasted
CAM message of the message service Skill accordingly.

• CongestionMonitorSkill - This Skill takes input from VehicleInfoSkill and
processes received DENM messages if there are updates about traffic conditions

65

Jan Macek 8 SYSTEM VALIDATION

Figure 17: Activity diagram of the Connected Traffic Light agent

66

Jan Macek 8 SYSTEM VALIDATION

on the network. Initially, it checks whether the DENM event location is along
the planned route and throws the message away if not. If there is congestion on
the planned route, the Skill then finds out and triggers a Skill Interrupted event,
which signals to the Deliberation layer to re-plan the route. Here, the parametrized
initialization of the agent’s task is utilized by providing a flag/switch to plan the
default or an alternative route.

The agent’s class diagram can be seen in figure 18 and its activity diagram on figure 19.

Figure 18: Class diagram of the Connected Vehicle implementation

Other modifications

Since the information about vehicle navigation and route information is managed by the
Simple Traffic System (STS) package scripts, modifications needed to be added to the
vehicle management and route management scripts. This mainly involved exposing private
class fields to be accessible to other classes or adding other ways how to modify inner
properties from the outside, so that the external MAS framework scripts can interact with
them. The VehicleInfoSkill provided an interface to manipulate required properties.
Additionally, the route-switching algorithm has been modified. In the original (STS) code,
a vehicle chooses a turn at an intersection randomly. The performed modifications allow
outside code to decide which turn shall the vehicle take.

Regarding the simulation evaluation, a logging script has been created that can be used
on the vehicles in the simulation logging object uptime and writing it into a log file. As a

67

Jan Macek 8 SYSTEM VALIDATION

Figure 19: Activity diagram of the Connected Vehicle agent

68

Jan Macek 8 SYSTEM VALIDATION

result, the time taken by each vehicle to reach its destination can be measured and further
analyzed.

8.2.4 Simulation set-up

After describing the IVIS system implementation details, the simulation set-up and
evaluation methodology is described.

Using the third-party packages, a road stretch has been created to test the implementation.
The road stretch features a primary route that has got a traffic light along the way,
imitating an intersection. This route represents the shortest path route through an urban
area. There is also a second route, which is considerably longer and winding, representing
a countryside road with less average traffic intensity. A "warm-up" section where vehicles
are spawned is preceding the branch-off into the two routes. For visual reference, see
Figure 20.

Figure 20: Road stretch for simulating the IVIS system

To verify and prove that the Smart Routing IVIS system works, simulations were run
iteratively with parametrized traffic light queue size threshold for identifying congestion.
In other words, the queue size threshold parameter expresses how many vehicles should
be in the traffic light queue before the value of sub-cause code withing the broadcasted
DEMN message changes from "free traffic" to "congestion". The number of vehicles to
drive through the road stretch is chosen to be Nv = 20 and the queue size threshold ranged
from 0..Nv. To gather more results and avoid the risk of unknowingly analyzing an edge
case parameter combination, the simulation batch was run multiple times with modified
traffic flow influencing parameters. The variable parameters are:

• Alternative route speed limit (Valt)

• Green phase length (Tg)

• Stop phase length (Ts)

69

Jan Macek 8 SYSTEM VALIDATION

Table 9 shows the three variations of chosen simulation parameters.

Table 9: Parameter values for simulation batches

Valt Tg Ts

[kmh−1] [s] [s]

1 25 6 4
2 25 7 5
3 30 7 4

8.2.5 Simulation results

The simulations were successfully run and the logs containing travel time for each vehicle
were processed and evaluated. The observed variables were Total travel time, Maximum
travel time (TTmax) and Minimum travel time (TTmin), which were recorded for simulation
runs with a variable queue size threshold. The plotted simulation results are in Figures 21
and 22. Note that the plot legend conveys information about simulation parameters in
format [Valt - Tg - Ts].

Figure 21: Simulation results - Total travel time

When evaluating the simulation results, it is clear that the threshold value does influence
the travel time of vehicles, which is expected if the IVIS implementation is assumed to
work. With the threshold equal to zero, all vehicles take the alternative longer path and
experience large travel times. When the threshold gradually increases, allowing groups

70

Jan Macek 8 SYSTEM VALIDATION

Figure 22: Simulation results - Min and Max travel time

of vehicles onto the main route, the travel time starts decreasing rapidly, as the main
route has enough capacity to clear the oncoming traffic without disruption. Around the
threshold level of six, the traffic flow rate reaches the route’s capacity and with increasing
queue threshold the travel times start to increase while rendering the alternative route
under-utilized.

All three simulation batches do affect travel time (which implies that traffic flow is also
affected) as expected. The absolute values of travel time have changed, however, the
relative changes depending on queue threshold size were very similar in all three variations.

8.3 Conclusion

In this section, an ITS solution for the framework validation is chosen to implement using
the proposed framework, based on a qualitative analysis considering criteria determined
from preceding discussion and research. The system to implement is the Smart Routing C-
ITS utilizing V2I communication, dynamically re-planning optimal route to the destination.
Requirements for system implementation are defined to better evaluate the implementation
results. Afterward, third-party packages that facilitate validation scenario development
are briefly introduced, leading to agent type specification and their components, as well as
action diagrams outlining their behavior, while also addressing the required IVS package
code changes to ensure successful integration with the agent framework. Simulation
methodology is introduced and simulations are successfully run, after which the results

71

Jan Macek 9 DISCUSSION

are analyzed. From the simulation results, it is identified that the chosen system behaved
as one would expect and it is concluded that the implementation of the C-ITS system is
successful.

9 Discussion

This section goes over the overall process the work that has been done regarding the
thesis and evaluate the outcomes. Firstly, it should be assessed whether the thesis has
fulfilled the given guidelines in the thesis assignment. The following section goes over the
guidelines and discuss whether the assignment outline has been fulfilled.

Research question #1: Can agent-based modeling be applied to simulate ITS in vehicle
simulators and are they a viable option?

In section 3, the literature regarding Multi-agent Systems is reviewed. The review is focused
mainly on the primary characteristics of MAS and on various types and implementation
methodologies of MAS. The outcome of the section is identifying important implementation
details of MAS which would aid in ITS implementation using agent-based modelling.

In section 2, the current research regarding ITS systems is reviewed. The current trends
in ITS suggest that modern ITS systems will rely on maximizing interoperability between
individual road users, utilizing direct, non-centralized wireless communication. Such
features are common in agent-based systems as well, therefore it has been concluded that
MAS could represent a convenient way how to simulate such systems. Cooperative ITS
(C-ITS) systems and connected In-vehicle Information Systems are identified as the most
suitable systems for application using MAS.

Research question #2: How would an ITS simulation be implemented into an existing
IVS using agent-based modelling?

In section 6, a system to integrate novel ITS solutions into a vehicle simulator is developed
using the research findings in the preceding parts of the thesis. The system implemented the

3T architecture for individual agents that is supposed to offer a sufficient balance between
system complexity and modularity. The architecture of the macro-system, which defined
mainly how agents interact with each other, is also developed in line with requirements
based on MAS research as well. The system is then implemented using the C# programming
language, because of its object-oriented properties and the fact that the intended simulator
software uses C# scripting API as well, allowing for deep integration with the software.
The implementation comprises partially functional classes that define the system’s structure
but are open to detailed logic implementation based on a specific use case.

72

Jan Macek 9 DISCUSSION

Research question #3: What are the available modules and libraries for implementing
MAS in different programming languages?

As a secondary objective to building an ITS simulation framework for an IVS, it is
required to review available MAS implementation modules that would facilitate building
the desired framework. Multiple modules are reviewed, including their main use-cases
and implementation details. After discussing the main aspects of integration into the
simulator software (section 5), it is concluded that there are no suitable modules for MAS
implementation to the specific IVS, as the researched modules are either outdated or
focused on different aspects of multi-agent systems. Therefore, it is decided that the
framework would be built from the ground up.

Research question #4: What are the advantages and challenges associated with using
agent-based modeling to simulate Intelligent Transport Systems in vehicle simulators, and
how can they be addressed?

The system evaluation is, in part, done by implementing a sample C-ITS system into
the simulator software, with a cooperative traffic light and connected vehicles. The
implementation of the sample system proves that it is possible to implement specific
ITS solutions using the developed framework, therefore simulating Intelligent Transport
Systems using agent-based modeling is possible.

The observed challenges are that implementing conflict resolution and cooperation between
agents deems to be a very complex topic which would take a lot of additional research
and effort to implement and therefore is decided that it will not be part of the developed
ITS implementation framework. This could result in a less stable agent behaviour during
simulation. This missing feature could be added in future improvements to the framework.

9.1 Results

Based on the designed system and its implementation, the implications of the research
activity and its benefits, caveats and application possibilities are analyzed.

9.1.1 Benefits

The main benefit of developing an ITS implementation framework is obvious. In theory,
the framework should facilitate ITS implementation into a vehicle simulator so that it
enables the developer to focus more on the high-level implementation related to the ITS
system itself, as the structure of the underlying agent system would be pre-implemented.

For instance, the developer implementing a given ITS solution into the IVS can implement
a desired behavior of an actor in the system by dividing the algorithm into atomical skill
modules which inherently makes developing complex behavior easier and more manageable,
as well as open to extending its capabilities by iteratively adding more modules. Also,

73

Jan Macek 9 DISCUSSION

one of the greater benefits is the fact that communication API for the system developer
has been implemented, according to the C-ITS ETSI standards. This makes it very
easy for developers to implement C-ITS systems which rely heavily on distributed road
user communication, which has been the case when developing a sample ITS simulation
(dynamic vehicle navigation) in order to validate the framework’s capabilities. The
development process of the communication interface was simply filling the pre-defined
DENM and CAM message parameters with desired information. The inner architecture of
agents defined by the framework allows to develop complex, dynamic behaviour.

9.1.2 Shortcomings

When implementing the sample C-ITS system using the proposed framework, shortcomings
were also identified during the process. The perceived disadvantage of using the framework
is that when implementing a simple behavior that does not need complex decision-making,
all the agent layers need to be implemented, although they might not be fully utilized. For
instance, the Connected traffic light in section 8.2.3 only has one goal in the deliberation
layer and also just one task to perform, which implies that the agent model could have been
reduced just to a static, cyclic execution of the skills used mainly for communication with
the connected vehicles. Therefore, the developed MAS framework is likely to demonstrate
its advantages only when building larger-scale ITS projects in the vehicle simulator which
require developing complex behavior logic for the agents.

Another potential disadvantage that was identified during the framework development is
that although the 3-layer concept might be effective, it might not be intuitive to use for
someone new to the concepts for multi-agent systems. For instance, it is not very clear
how to decide on the atomicity of the individual actions the agent can perform. However,
this problem can be solved by providing a template for a "simple" agent which has got
the deliberation (and potentially also the middle sequencing layer) in a single state.

9.2 Future work and implications

Regarding future work and further improvements of the outcomes of this thesis, it would
be beneficial to implement agent negotiation, which has been discussed in the theoretical
part of the thesis but has not been implemented as part of the framework. The system
validation section has shown that it is possible to develop fully functional simulations of
Intelligent Transport Systems, however, developing a negotiation model for the agents
would make the framework more robust and would allow modeling systems with greater
complexity.

Apart from the improvement mentioned above, the system can already be used to model
ITS systems with intelligent agents, including state-of-the-art cooperative ITS systems.
To mention a few, the framework can model various in-vehicle information systems, such

74

Jan Macek 9 DISCUSSION

as the intersection collision warning, emergency vehicle warning or overtaking warning.
Apart from the mentioned sensing & perception systems, planning-focused its systems
such as dynamic vehicle routing or green light optimal speed advisory can be modeled.
After the potential improvement of adding agent negotiation, it would also be possible to
implement autonomous driving and related advanced driver assistance systems using the
framework.

75

Jan Macek 10 CONCLUSION

10 Conclusion

The goal of this thesis was to investigate Multi-Agent Systems, which is a sub-field of
Artificial Intelligence research, especially research related to the application of Multi-Agent
Systems in Intelligent Transport Systems simulation.

First, the area of Intelligent Transport Systems was investigated, setting delimitations
and important features that were important to the topic of the thesis. The relationship
between IVS and ITS systems was discussed, leading to a discussion about intelligence
distribution and current research in the ITS field.

The second part was dedicated to MAS literature review and the main principles of
MAS were discussed. Furthermore, individual MAS architectures were described and
reviewed. Finally, the concepts of communication between agents were investigated,
defining requirements on how the agents should communicate.

In the practical part of the thesis, system requirements were defined first, in order to
facilitate the process of implementation and clearly define the system’s capabilities. The
development platform was discussed, and MAS modeling libraries that would help building
the framework were discussed. It was identified that there are no suitable modules for
MAS implementation to an IVS, as the research modules were either outdated or focused
on different aspects of multi-agent systems. Therefore, it was decided that the framework
would be built from the ground up.

Next, the actual system was proposed. The system design was divided into two parts
- a micro-architecture that focused on the inner structure of individual agents, whose
goal was to make the agents sufficiently modular as well as to actually facilitate the ITS
implementation. The architecture was designed based on the literature review in the
preceding chapters. The second part was dedicated to the macro architecture, which
described how the individual agents should interact with each other. The integral part
of agent interaction was communication specification, how agents will send and receive
information. Based on the preceding research on ITS and MAS, the ETSI messaging
standards (CAM & DENM) were decided to be implemented.

After the system for MAS-based ITS systems implementation has been specified, the
next part was devoted to the system implementation. The outcome is a highly modular
framework that is integrated with the chosen simulator software, with general behavior
specific to MAS & ABM and the architecture pre-implemented. The framework was
implemented using the C# programming language and the simulator engine (Unity) API.

The developed framework was then validated by choosing a case appropriate for demonstra-
tion of the framework’s utility. The selected system for the demonstration was a dynamic
routing system whose purpose was to improve traffic conditions by harmonizing a road
network’s load by the use of cooperative traffic lights and connected vehicles. The system

76

Jan Macek 10 CONCLUSION

was successfully implemented and the analysis of the simulation showed that the system is
behaving as expected, i.e. reducing the overall travel time when calibrated.

Overall, the goals specified by the thesis guidelines have been fulfilled. The outcome
of the thesis is a modular C# framework/module which facilitates implementation of
various (Cooperative) Intelligent Transport Systems solutions implementation into a vehicle
simulator software.

77

Jan Macek 11 ATTACHMENTS

11 Attachments

The attachment of this thesis is a repository with the ITS implementation framework
named "ITS-MAS-Framework" and the validation project (in folder "Validation Project")
hosted on the GitHub site.

The repository is found on the following link:
https://github.com/Honzeak/ITS-MAS-Framework

78

https://github.com/Honzeak/ITS-MAS-Framework

Jan Macek REFERENCES

References
[1] Yoav Shoham and Kevin Leyton-Brown. Multiagent SystemsAlgorithmic, Game-

Theoretic, and Logical Foundations. doi: 10.1017/cbo9780511811654.020.
[2] European Parliament. Road fatality statistics in the EU. June 2021. url: https:

//www.europarl.europa.eu/news/en/headlines/society/20190410STO36615/
road-fatality-statistics-in-the-eu-infographic.

[3] W. Wijnen et al. Crash cost estimatesfor European countries. Research rep. , De-
liverable 3.2 of the H2020 project SafetyCube. European Commission, 2017. url:
https://ec.europa.eu/research/participants/documents/downloadPublic?
documentIds=080166e5b1e92ba3&appId=PPGMS.

[4] Joost de Winter, P.M. Leeuwen, and Riender Happee. “Advantages and Disadvantages
of Driving Simulators: A Discussion”. In: Jan. 2012.

[5] Márton Horváth et al. “Vehicle-In-The-Loop (VIL) and Scenario-In-The-Loop (SCIL)
Automotive Simulation Concepts from the Perspectives of Traffic Simulation and
Traffic Control”. In: Transport and Telecommunication Journal 20 (Apr. 2019),
pp. 153–161. doi: 10.2478/ttj-2019-0014.

[6] Taras Lishchenko. Intelligent Transport System: Trends, best practices, success stories.
N-iX. Jan. 2021. url: https://www.n-ix.com/intelligent-transport-system/.

[7] P.E. Firmin. “Satellite Navigation Technology Applications for Intelligent Transport
Systems: A European Perspective.” In: May 2006.

[8] Intelligent Transport Systems - Road. 2022. url: https://transport.ec.europa.
eu/transport-themes/intelligent-transport-systems/road_en.

[9] Jonathan Levy. Emissions from traffic congestion may shorten lives. 2011. url:
https://www.hsph.harvard.edu/news/hsph-in-the-news/air-pollution-
traffic-levy-von-stackelberg/.

[10] Francesco Corman et al. “Centralized versus distributed systems to reschedule
trains in two dispatching areas”. In: 2 (2010), pp. 219–247. issn: 1866-749X. doi:
10.1007/s12469-010-0032-7.

[11] Andy H.F. Chow, Rui Sha, and Shuai Li. “Centralised and decentralised signal timing
optimisation approaches for network traffic control”. In: Transportation Research
Procedia 38 (2019). Journal of Transportation and Traffic Theory, pp. 222–241.
issn: 2352-1465. doi: https://doi.org/10.1016/j.trpro.2019.05.013. url:
https://www.sciencedirect.com/science/article/pii/S2352146519300225.

[12] ERTICO. url: https://ertico.com.
[13] Hannah Ritchie, Max Roser, and Pablo Rosado. “CO2 and Greenhouse Gas Emis-

sions”. In: Our World in Data (2020). https://ourworldindata.org/co2-and-other-
greenhouse-gas-emissions.

[14] C-ITS: Cooperative Intelligent Transport Systems and Services. 2022. url: https:
//www.car-2-car.org/about-c-its.

[15] C-Roads brochure. 2021. url: https://www.c- roads.eu/fileadmin/user_
upload/media/Dokumente/C-Roads_Brochure_2021_final_2.pdf.

[16] European Commision. Final report of the Single Platform for Open Road Testing
and Pre-deployment of Cooperative, Connected and Automated and Autonomous
Mobility Platform (CCAM platform). 2021.

[17] Balaji Parasumanna Gokulan and D. Srinivasan. “An Introduction to Multi-Agent
Systems”. In: vol. 310. July 2010, pp. 1–27. isbn: 978-3-642-14434-9. doi: 10.1007/
978-3-642-14435-6_1.

79

https://doi.org/10.1017/cbo9780511811654.020
https://www.europarl.europa.eu/news/en/headlines/society/20190410STO36615/road-fatality-statistics-in-the-eu-infographic
https://www.europarl.europa.eu/news/en/headlines/society/20190410STO36615/road-fatality-statistics-in-the-eu-infographic
https://www.europarl.europa.eu/news/en/headlines/society/20190410STO36615/road-fatality-statistics-in-the-eu-infographic
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b1e92ba3&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b1e92ba3&appId=PPGMS
https://doi.org/10.2478/ttj-2019-0014
https://www.n-ix.com/intelligent-transport-system/
https://transport.ec.europa.eu/transport-themes/intelligent-transport-systems/road_en
https://transport.ec.europa.eu/transport-themes/intelligent-transport-systems/road_en
https://www.hsph.harvard.edu/news/hsph-in-the-news/air-pollution-traffic-levy-von-stackelberg/
https://www.hsph.harvard.edu/news/hsph-in-the-news/air-pollution-traffic-levy-von-stackelberg/
https://doi.org/10.1007/s12469-010-0032-7
https://doi.org/https://doi.org/10.1016/j.trpro.2019.05.013
https://www.sciencedirect.com/science/article/pii/S2352146519300225
https://ertico.com
https://www.car-2-car.org/about-c-its
https://www.car-2-car.org/about-c-its
https://www.c-roads.eu/fileadmin/user_upload/media/Dokumente/C-Roads_Brochure_2021_final_2.pdf
https://www.c-roads.eu/fileadmin/user_upload/media/Dokumente/C-Roads_Brochure_2021_final_2.pdf
https://doi.org/10.1007/978-3-642-14435-6_1
https://doi.org/10.1007/978-3-642-14435-6_1

Jan Macek REFERENCES

[18] Birgit Burmeister, Afsaneh Haddadi, and Guido Matylis. “Application of multi-agent
systems in traffic and transportation”. In: IEE Proc. Softw. Eng. 144 (1997), pp. 51–
60.

[19] Patricia Anthony et al. “Agent Architecture: An Overview”. In: TRANSACTIONS
ON SCIENCE AND TECHNOLOGY (Jan. 2014), pp. 18–35.

[20] R. Brooks. “A robust layered control system for a mobile robot”. In: IEEE Journal on
Robotics and Automation 2.1 (1986), pp. 14–23. doi: 10.1109/JRA.1986.1087032.

[21] M. Wooldridge. What agents aren’t: a discussion paper. UNICOM Seminar on Agent
Software, 1996. doi: 10.1049/ic:19960648.

[22] Philippe Caillou et al. A Simple-to-use BDI architecture for Agent-based Modeling
and Simulation. 2017. doi: 10.1007/978-3-319-47253-9_2.

[23] Ingrid Nunes, Frederico Schardong, and Alberto Schaeffer-Filho. “BDI2DoS: An
application using collaborating BDI agents to combat DDoS attacks”. In: Jour-
nal of Network and Computer Applications 84 (2017), pp. 14–24. issn: 1084-8045.
doi: https://doi.org/10.1016/j.jnca.2017.01.035. url: https://www.
sciencedirect.com/science/article/pii/S1084804517300577.

[24] Michael Wooldridge and Simon Parsons. “Intention Reconsideration Reconsidered”.
In: (1999), pp. 63–79. issn: 0302-9743. doi: 10.1007/3-540-49057-4_5.

[25] Jörg Müller. “Architectures and applications of intelligent agents: A survey”. In:
The Knowledge Engineering Review 13 (Feb. 1999), pp. 353–380. doi: 10.1017/
S0269888998004020.

[26] R. James Firby. “An Investigation into Reactive Planning in Complex Domains”. In:
Proceedings of the Sixth National Conference on Artificial Intelligence - Volume 1.
AAAI’87. Seattle, Washington: AAAI Press, 1987, pp. 202–206. isbn: 0934613427.

[27] Ariuna Damba and Shigeyoshi Watanabe. “Hierarchical Control in a Multiagent
System”. In: (2007). doi: 10.1109/icicic.2007.334.

[28] P. G. Balaji et al. “Multi-agent System based Urban Traffic Management”. In: (2007).
doi: 10.1109/cec.2007.4424683.

[29] Michael Vijsel and John Anderson. “Coalition Formation in Multi-Agent Systems
under Real-World Conditions”. In: AAAI Workshop - Technical Report (June 2004).

[30] Foundation for Intelligent Physical Agents. Agent Communication Language Specifi-
cation. 2001. url: http://www.fipa.org/specs/fipa00018/.

[31] Stefan Poslad. “Specifying Protocols for Multi-Agent Systems Interaction”. In: 2
(2007), p. 15. issn: 1556-4665. doi: 10.1145/1293731.1293735.

[32] Unity Technologies. Unity. 2022. url: https://unity.com/.
[33] Unity Technologies. Top Uses of Unity Solutions. 2022. url: https://unity.com/

solutions/government-aerospace.
[34] Walter Binder. “State-of-the-art in Agent-based Services”. In: (Oct. 2022).
[35] Florin Leon. “ActressMAS, a .NET Multi-Agent Framework Inspired by the Actor

Model”. In: Mathematics 10.3 (Jan. 2022), p. 382. doi: 10.3390/math10030382.
[36] R. Bonasso et al. “Experiences with an Architecture for Intelligent, Reactive Agents.”

In: vol. 9. Jan. 1995, pp. 187–202. doi: 10.1080/095281397147103.
[37] Working party on Autonomous vehicles. Proposal for the 01 series of amendments to

UN RegulationNo. 157 (Automated Lane Keeping Systems). Standard ECE/TRAN-
S/WP.29/2022/59/Rev.1. United Nations, May 2022.

[38] José Santa et al. “Vehicle-to-infrastructure messaging proposal based on CAM/DENM
specifications”. In: 2013 IFIP Wireless Days (WD). 2013, pp. 1–7. doi: 10.1109/WD.
2013.6686514.

80

https://doi.org/10.1109/JRA.1986.1087032
https://doi.org/10.1049/ic:19960648
https://doi.org/10.1007/978-3-319-47253-9_2
https://doi.org/https://doi.org/10.1016/j.jnca.2017.01.035
https://www.sciencedirect.com/science/article/pii/S1084804517300577
https://www.sciencedirect.com/science/article/pii/S1084804517300577
https://doi.org/10.1007/3-540-49057-4_5
https://doi.org/10.1017/S0269888998004020
https://doi.org/10.1017/S0269888998004020
https://doi.org/10.1109/icicic.2007.334
https://doi.org/10.1109/cec.2007.4424683
http://www.fipa.org/specs/fipa00018/
https://doi.org/10.1145/1293731.1293735
https://unity.com/
https://unity.com/solutions/government-aerospace
https://unity.com/solutions/government-aerospace
https://doi.org/10.3390/math10030382
https://doi.org/10.1080/095281397147103
https://doi.org/10.1109/WD.2013.6686514
https://doi.org/10.1109/WD.2013.6686514

Jan Macek REFERENCES

[39] ETSI. Specification of Cooperative Awareness Basic Service. Standard RTS/ITS-
0010018. 2014.

[40] ETSI. Specification of Decentralized Environmental Notification Basic Service. Stan-
dard REN/ITS-0010019. 2019.

[41] Anshul Saxena. Everything You Need to Know About In-Vehicle Infotainment Systems.
url: https://www.einfochips.com/blog/everything-you-need-to-know-
about-in-vehicle-infotainment-system/.

[42] Areti Kotsi, Evangelos Mitsakis, and Vasileios Psonis. Coordinated provision of
C-ITS services for Dynamic Traffic Management. 2020. doi: 10.1109/itsc45102.
2020.9294559.

81

https://www.einfochips.com/blog/everything-you-need-to-know-about-in-vehicle-infotainment-system/
https://www.einfochips.com/blog/everything-you-need-to-know-about-in-vehicle-infotainment-system/
https://doi.org/10.1109/itsc45102.2020.9294559
https://doi.org/10.1109/itsc45102.2020.9294559

	Introduction
	Introduction to the problem
	Aim
	Research questions
	Methodology
	Delimitations

	Intelligent Transport Systems
	Simulator-based research
	Intelligence distribution
	Current research

	Conclusion

	Multi-agent systems
	Agents
	Agent type and architecture
	Reactive agent architectures
	Deliberative agent architectures
	Hybrid approaches

	Interaction between agents
	Organizational decomposition
	Communication between agents
	Agent Communication Language

	Conclusion

	Requirements definition
	System requirements

	Implementation toolset
	Simulator software
	Agent Development Platforms
	Conclusion

	Proposed framework
	Agent/micro architecture overview
	The architecture layers

	Macro architecture
	Communication protocol
	Broadcasting
	Implementation
	ETSI message services
	Negotiation and Agreement
	Conflict detection
	Conflict resolution

	Conclusion

	System implementation
	Agent implementation
	Inter-layer interaction
	Deliberation layer
	Sequencer layer
	Skill layer

	Communication module implementation
	Message broker
	Communication Skill
	Message implementation

	Unity integration
	Conclusion

	System validation
	Qualitative analysis
	Results discussion
	In-Vehicle Information System

	In-Vehicle Information System implementation
	System description and requirements
	External dependencies
	Agent implementation
	Simulation set-up
	Simulation results

	Conclusion

	Discussion
	Results
	Benefits
	Shortcomings

	Future work and implications

	Conclusion
	Attachments

