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Abstract

This thesis focuses on the design and implementation of an interpreter for the FML language
which is used at CTU for teaching the Runtime systems course. FML is a small, dynamically
typed, object oriented language based on Feeny and ML. The reference implementation created
this way will contain a garbage collector (GC) and a just-in-time (JIT) compiler.

Keywords FML, teaching language, GC, garbage collector, JIT, just-in-time compiler

Abstrakt

Tato práce se zaměřuje na návrh a implementaci interpreteru pro jazyk FML, který je využ́ıvaný
na ČVUT k výuce předmětu Runtime systémy. FML je malý, dynamicky typovaný, objektově
orientovaný jazyk inspirovaný jazyky Feeny a ML. Takto vzniklá referenčńı implementace bude
obsahovat garbage collector (GC) a just-in-time (JIT) kompilátor.
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Introduction

As students of computer science progress through their studies, they are tasked with implement-
ing compilers, analyzers, interpreters and other tools for various programming languages.

Usually these are not general purpose languages but are designed for teaching specific top-
ics and must strike a balance between being too simple, where students may not learn much
from implementing them, and being too complex, where students cannot implement them in a
reasonable timeframe.

One such language is FML, for which students implement a bytecode compiler and interpreter
as part of the Runtime Systems course. However, the code of the current reference implementa-
tion of FML is not as clean and readable as it could be and lacks a garbage collector (GC) and
just-in-time (JIT) compiler.

A garbage collector is a runtime mechanism for managing memory used by a computer pro-
gram. It automates memory management, freeing developers from the burden of manual memory
management, reducing the likelihood of memory leaks and memory-related bugs. The garbage
collector is responsible for identifying objects that are no longer used by the program and deal-
locating them. There are many strategies for garbage collection, but in general, it works by
periodically traversing the program’s heap to find objects that are no longer reachable and free-
ing their memory.

A JIT compiler is a type of compiler that dynamically translates bytecode or other interme-
diate representations into native machine code at runtime, rather than ahead of time. This can
result in significant performance improvements over interpreting the program. More advanced
JIT compilers can optimize code based on runtime information and architecture-specific details
to reach or surpass the performance of ahead-of-time (AOT) compilers. However, JIT compilers
can also introduce additional overhead during program execution.

The objective of this thesis is to provide a high-quality reference implementation of FML that
includes a garbage collector and a JIT compiler. High performance is explicitly not a goal, the
implementation should be reasonably efficient while also ensuring that the code is well-engineered
and accessible to students.
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Chapter 1

Description of the FML Language

This chapter describes parts of the FML teaching language relevant to this thesis. It provides
a short overview of its syntax, some aspects of its semantics and details the structure of its
bytecode.

FML is a small, imperative, dynamically typed, object-oriented programming language. Its
semantics and bytecode are based on Feeny and its syntax is inspired by ML. FML is designed
to be simple enough to implement by a student during one semester, yet provides non-trivial
features such as inheritance and dynamic dispatch, which makes it useful as a teaching tool.

It should be noted there are multiple implementations of FML. There is the original reference
implementation in Rust by Ing. Konrad Siek, Ph.D [1], the new reference implementation in C
by Bc. Michal Vlasák [2], as well as a number of publicly available student implementations.

As the contents of the Runtime Systems course evolve, so does the FML language. The Rust
version has not been updated for the current semester (summer 2022/2023) and as a result the
newer C version has diverged slightly. [3]

This thesis is based on the original Rust implementation. The sources used in this chapter
therefore are:

the website of the Runtime Systems course from previous years [4]

the original reference implementation available on GitHub [1]

Whenever this thesis refers to the reference implementation, it means the original Rust im-
plementation.

1.1 Language Elements
Since FML source code compiles to bytecode and the JIT compiler operates on the bytecode,
not source code or abstract syntax tree (AST), we will only explain the syntax briefly to aid
understanding code snippets. A much more elaborate explanation is available in the sources
cited above and a complete explanation would necessarily only duplicate that effort.

3
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1.1.1 Basic Syntax
FML has the same syntax for comments as C. Line comments begin with // and end at the end
of the line. Block comments begin with /* and end with */. For example:

// This is a comment

/* This is also a comment */

Variables are declared using let and =, for example let x = 1;. The initial value is required.
All variables are mutable and can be reassigned using ‘->’, for example x -> 2;.

Expressions are separated by semicolons (;). Blocks are delimited by begin and end. The
last expression in a block is its return value regardless of whether it is followed by a semicolon.
A block is therefore an expression.

Variable declarations and assignments, conditionals, loops and function calls are all also
expressions. Conditionals use the if keyword and loops use while.

Functions are introduced using the function keyword. They can have multiple parameters
and always have one return value. The body can be a simple expression of a block containing
multiple other expressions. There is no return keyword, the expression which the body evaluates
to is the return value. This also means all functions have exactly one entry and exactly one exit
point.

FML has one built-in function, print, which takes a format string and a variable number
of arguments. The format string can contain tilde (˜) characters which are replaced by the
corresponding arguments. It returns the value null.

The format string supports certain escape sequences such as \n, \t, \", \\ and \˜.

Code listing 1.1 Examples of FML functions
function add(x, y) -> x + y;
function add1(x) -> begin

print (" before ˜\n", x);
x <- x + 1;
print (" after ˜\n", x);
x

end;

print ("˜\n", add (1, 2));
print ("˜\n", add1 (3));

1.1.2 Types
The FML language has only 5 types:

Unit with its only value null.

Boolean with values true and false.

Integer which is a 32-bit signed integer.

Array - a fixed size collection indexable by integers which can contain 0 or more values of
any type.

Object - a user-defined structure which can have fields, methods and operators and can inherit
from other values (including primitive types and arrays).
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FML is dynamically typed which means types are associated with values, not variables.
Variables can be assigned values of any type and the type assigned to a variable can change
during its lifetime.

Strings and functions are not types. They cannot be assigned to variables, passed to user-
defined functions or returned from them. The string literal used in the print function is a special
case and the only place where a string is used in FML.

Unit, boolean and integer are primitive types. They are allocated directly on the stack and
passed by value. Arrays and objects are allocated on the heap and passed by reference.1

Code listing 1.2 Example of an array being passed by reference. The modification performed inside
the function is visible outside of it.
// An array of size 3, all elements initialized to 0
let arr = array (3, 0);
print ("˜\n", arr [0]); // prints 0

function modify (x) -> begin
x[0] <- 42;

end;

modify (arr );
print ("˜\n", arr [0]); // prints 42

1.1.2.1 Primitive Types
All primitive types support comparison using the == and != operators or equivalently using the
eq and ne methods. Comparisons using == between different types return false. There are no
automatic conversions between types.

Unit supports only equality and inequality comparisons. The null value is only equal to
itself.

Boolean supports == and != and logical operators listed in table 1.1.

Operator Method
== eq
!= ne
& and
| or

Table 1.1 Boolean operators and their corresponding methods

Integer supports more comparisons and also mathematical operators listed in table 1.2.

1.1.2.2 Arrays
An array is constructed using the array keyword which is syntaxcically similar to a function
call that takes two arguments. The first argument is the size of the array and the second is an
expression used to initialize the elements.

Arrays have the set and get methods for indexing. The syntax using square brackets is
compiled into calls of these methods as shown in table 1.3 . They can contain elements of any
type, including other arrays. An array containing a reference to itself is valid but might cause

1Since this paragraph describes language semantics, it doesn’t matter where values are allocated. It would
be equally valid to allocate primitive types on the heap. However since they have to be passed by value it’s
more natural and efficient to allocate them on the stack and copy them each time they’re used. This is how the
reference implementation works.
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Operator Method
<= le
< lt
>= ge
> gt
== eq
!= ne
+ add
- sub
* mul
/ div
% mod

Table 1.2 Integer operators and their corresponding methods

issues such as infinite recursion when printing it. The specification doesn’t address this edge case
and the reference implementation doesn’t handle it.

Syntax Corresponding method call
arr[index] <- new_value arr.set(index, new_value)

arr[index] arr.get(index)
Table 1.3 Array operators and their corresponding methods

Arrays are interesting from a teaching perspective because the initializer can be an arbitrary
expression and can have side effects which means the value it returns can be different for each
element. The bytecode compiler has to take this into account and despite the syntax looking
simple, it might have to generate a loop to initialize the array.

1.1.2.3 Objects and Inheritance
Objects are declared using the object keyword and can optionally specify a value they inherit
from using the extends keyword. The parent can be any of the 5 types, that includes primitives,
arrays and other objects. If extends is not specified, the parent is null.

Methods receive an extra hidden argument called this which allows them to access the object
they’re being called on, it’s other methods, operators and fields.

Method dispatch works by looking for the method (or operator) on the current object. If it’s
not found, it does the same on the parent until either the method is found or there are no more
parents.

Field access is not dispatched to parents. If a field is not found on the current object, it’s an
error.

Each use of the object keyword in code results in a separate class definition being created,
which is then saved in the program’s bytecode representation. A class has statically known fields,
methods, and operators; they can’t be added or removed at runtime.

1.1.3 Scoping
In FML, variable scoping is lexical, which means the scope of a variable is known statically at
compile time based on where it is declared. Variables are not accessible outside the block in
which they are declared.
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FML supports both global and local variables. Global variables are declared outside of any
function, method, or block and are accessible throughout the entire program. Local variables
are declared inside a block. This block can be in a function or method but also in the implicit
entry function.
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1.1.4 Example
The following example shows the syntax of FML and how it can be used to implement the stack
data structure.

Code listing 1.3 A stack implemented as a linked list.
function Stack () -> object begin

let head = null;

function push( element ) -> this.head <- Node(element , this.head );

function peek () -> begin
if null == this.head then

null
else

this.head. element ;
end;

function pop () -> begin
let element = this.peek ();
if null != this.head then

this.head <- this.head.prev;
element

end;
end;

function Node(element , prev) -> object begin
let element = element ;
let prev = prev;

end;

function test_eq (l, r) -> begin
if l == r then

print ("OK (got/ expected ˜)\n", l)
else

print (" Got ˜, expected ˜\n", l, r)
end;

let s = Stack ();
test_eq (s.pop (), null );
test_eq (s.peek (), null );
s.push (1);
test_eq (s.peek (), 1);
s.push (2);
test_eq (s.peek (), 2);
s.push (3);
test_eq (s.peek (), 3);
test_eq (s.pop (), 3);
test_eq (s.peek (), 2);
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1.2 The Bytecode Virtual Machine

1.2.1 Bytecode Format Overview
A program compiled to bytecode has the following components:

Constant pool - a vector a program objects.

Globals - a vector of indices into the constant pool.

Entry point - an index into the constant pool representing the function that will be called
when the program starts.

Code - a vector of opcodes. All methods are compiled into the same linear sequence of
opcodes.

FML has two separate concepts with similar names - program objects, which are data known
at compile time, and runtime objects, which will be described in the next section.

1.2.1.1 Program Objects
Program objects are stored in the constant pool and are referenced by indices. There are seven
different kinds of program objects:

Null - the null literal.

Boolean - a boolean literal - either true or false.

Integer - a single value of type integer.

String - a character string in the UTF-8 encoding. They can represent format strings and
the names of functions, methods, operators, fields and labels.

Slot - an index into the constant pool. It always points to a string and is used to represent
the name of an object’s field or a global variable.2

Method - a method is a structure can represent an object’s member function (colloquially
called a method in many programming languages) or a global function. It contains its name
as an index into the constant pool, the number of arguments it takes, the number of local
variables it has and information how to locate its opcodes in the code vector in the form of
an address and length.

Class - a structure describing the fields and methods of an object declared by the object
keyword in FML source code. It contains a vector of infices into the constant pool, each of
which points to either a method or a slot representing a field name.

Since functions and methods are implemented the same way in bytecode, the terms can often
be used interchangeably. The reference implementation uses a struct called Method for both of
them, so this thesis will often use the term method to refer to both.

1.2.1.2 Globals
Similarly to classes, the vector of globals contains indices that point to either methods or slots.
These represent global functions or the names of global variables respectively.

2Slots provide a level of indirection that is not necessary and they are no longer present in the newer C
implementation.
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1.2.2 The Virtual Machine’s State
The previous section described the static structure representing a compiled program. This section
will describe structures representing the runtime state of the program and how they relate to the
static structures.

FML values inside the virtual machine are called runtime objects. There are five types of them
corresponding to the five types of FML values - Null (for the Unit type), Boolean, Integer, Array
and Object. According to the specification, runtime objects are referred to by pointers. The
specification, however, only specifies observable behaviour of the VM, iplementations are free to
use any representation they deem suitable. In particular, it is unnecessary to allocate primitive
values on the heap and use pointers to them. In this case the pointer would become a tagged
union that either embeds the value of a primitive type in itself or points to a heap-allocated
object.

The FML virtual machine has the following components:

Heap

Frame stack

Operand stack

Instruction pointer

The heap is an area of memory that stores runtime objects. A pointer is an index into the
heap and points to the beginning of a runtime object.

Frame stack and an operand stack are separate entities. The frame stack contains frames of
all active functions and methods as well as their return addresses. A frame is a structure that
contains the return address and a vector of pointers representing local variables.

The operand stack is temporary storage for the values being processed by the VM. Most
opcodes work with the operand stack by pushing values onto it or popping them from it. Some
opcodes also work with the frame stack or the heap.

The VM also has an instruction pointer which is the index of the current opcode. Executing
an opcode updates this instruction pointer, usually by incrementing it but jumps, calls and
returns set it to a new, arbitrary value.

1.2.3 Opcodes
Finally, we can describe FML’s 17 opcodes, along with their effects on the VM’s state.

Each opcode is a tagged union. The opcode’s kind is represented by 1 byte and each opcode
can have additional data.

1.2.3.1 Literal
Pushes a primitive value which is a compile time constant onto the operand stack.

It contains an index into the constant pool. The index must point to a program object of
type Null, Boolean or Integer which is then converted into the corresponding runtime object and
pushed onto the operand stack.

Bumps the instruction pointer.

1.2.3.2 Get Local
Reads the value of a local variable and pushes it onto the stack.

It contains an index into the current function’s frame that specifies which variable.
Bumps the instruction pointer.
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1.2.3.3 Set Local
Reads the value on top of the operand stack and stores it into a local variable.

It contains an index into the current frame that specifies which variable. Does not pop the
value from the operand stack.

Bumps the instruction pointer.

1.2.3.4 Get Global
Reads the value of a global variable and pushes it onto the stack.

It contains an index into the constant pool. The pointed to program object must be a string
which specifies the name of the global variable. This variable must exist in the globals vector.

Bumps the instruction pointer.

1.2.3.5 Set Global
Reads the value on top of the operand stack and stores it into a global variable.

It contains an index into the constant pool. The pointed to program object must be a string
which specifies the name of the global variable. This variable must exist in the globals vector.
Does not pop the value from the operand stack.3

Bumps the instruction pointer.

1.2.3.6 Call Function
Calls a global function (not an object’s method).

Contains two fields. The first one is an index into the constant pool. It must point to a string
which specifies the name of the function. The name must exist in the globals vector and must
point to a method program object. The second field is the number of arguments this function
expects.

Creates a new local frame on the frame stack. Pops the specified number of arguments from
the operand stack and stores them into the new frame’s locals in reverse order. Therefore the
value popped first is the last argument and the value popped last is the first argument.4 Fills
the rest of the frame’s locals with null values.

First bumps the instruction pointer, then sets the frame’s return address to the new value
which therefore points to the next opcode after the call, and finally sets the instruction pointer
to the address of the called function’s first opcode.

1.2.3.7 Return
Returns from the current global function or object’s method.

Contains no additional data.
Sets the instruction pointer to the return address of the current frame. Pops the current

frame from the frame stack.

1.2.3.8 Label
Does not modify the VM’s state except the instruction pointer.

Contains an index into the constant pool which must point to a string which is the label’s
name. There must be no other label with the same name in the entire program, not even in
different methods.

3The spec from previous semesters says the value is popped, that is incorrect, it’s only peeked.
4This might be more intuitive to understand from the perspective of the compiler pushing arguments onto the

stack before a function call - the arguments are pushed left to right, therefore they have to be popped right to
left.
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The label serves as target for jump and branch opcodes.5
Bumps the instruction pointer.

1.2.3.9 Jump
Unconditionally jumps to a label.

Contains an index into the constant pool which must point to a string which is the label’s
name.

Sets the instruction pointer to the address of the label opcode.

1.2.3.10 Branch
Conditionally jumps to a label.

Contains an index into the constant pool which must point to a string which is the label’s
name.

Pops a value from the operand stack. If the value is null or false, it is considered falsy.
Otherwise it is considered truthy.

If the value is falsy, bumps the instruction pointer. If the value is truthy, sets the instruction
pointer to the address of the label opcode.

1.2.3.11 Print
Prints values according to the format string.

Contains two fields. First an index into the constant pool which must point to a string
program object which is the format string. Second the number of arguments.

Pops the specified number of arguments from the operand stack, the format string must
contain the same number of placeholders. The arguments in reverse order (same as the Call
Function opcode) are used to fill placeholders in the format string.

Pushes a null onto the operand stack.
Bumps the instruction pointer.

1.2.3.12 Array
Creates a new array.

Contains no additional data.
Pops a value from the operand stack. This becomes the initial value of the array’s elements.

Pops a second value from the operand stack. This becomes the array’s length and must be a
non-negative integer. Creates a new runtime object of type Array and pushes a pointer to it
onto the operand stack.

This opcode does not initialize the array’s elements according to FML’s semantics as described
in 1.1.2.2. The initial value is typically null and the array’s elements are initialized later by a
loop the bytecode compiler generates after the Array opcode.

Bumps the instruction pointer.

1.2.3.13 Object
Creates a new object.

Contains an index into the constant pool which must point to a class program object. Allocate
a new runtime object of type Object. Pops values from the operand stack to initialize its fields

5Since this opcode effectively does nothing, one common optimization in student implementations is to remove
them from the code vector completely when loading the bytecode and instead only store the addresses in a separate
location.
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according to the class program object. Pops one more value from the operand stack which
becomes the object’s parent.6

Pushes a pointer to the new object onto the operand stack.
Bumps the instruction pointer.

1.2.3.14 Get Field
Reads the value of an object’s field and pushes it onto the stack.

Contains an index into the constant pool which must point to a string program object which
is the field’s name.

Pops a value from the operand stack which must be a pointer to an object. Reads the value
of the specified field from the object and pushes it onto the operand stack.

Bumps the instruction pointer.

1.2.3.15 Set Field
Reads the value on top of the operand stack and stores it into an object’s field.

Contains an index into the constant pool which must point to a string program object which
is the field’s name.

Pops a value from the operand stack, this becomes the new value. Pops a second value from
the operand stack which must be a pointer to an object. Stores the new value into the specified
field of the object.7

Bumps the instruction pointer.

1.2.3.16 Call Method
Calls an object’s method.

Contains two fields. The first one is an index into the constant pool. It must point to a
string which specifies the name of the method. The second field is the number of arguments this
method expects, including the implicit this pointer.

Pop the specified number of arguments from the operand stack, the last one becomes the
receiver.

If the receiver is null, a boolean, an integer or an array, no call is performed. If the method
name matches the name of a built-in method or operator, the result is calculated by the inter-
preter and pushed onto the operand stack. Otherwise a runtime error occurs.

If the receiver is an object, the interpreter looks for the specified method on the object and
if not found, its parent recursively. If the method is not found, a runtime error occurs. If the
method is found, creates a new local frame on the frame stack. Fills it with the arguments
including the receiver and null values for the remaining locals. Sets the frame’s return address
to the address of the next opcode after the Call Method opcode.

If no call was performed, bumps the instruction pointer. Otherwise sets the instruction
pointer to the address of the called method’s first opcode.

1.2.3.17 Drop
Removes the value on top of the operand stack.

Contains no additional data.
Bumps the instruction pointer.

6The description of this opcode and some others is greatly simplified because it’s not relevant to this imple-
mentation of a garbage collector or JIT compiler.

7Note that unlike Set Local and Set Global, this opcode does remove the value from the operand stack.
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Chapter 2

Description of x86-64 Assembly
and Machine Code

This chapter describes elements of the x86-64 instruction set architecture necessary for writing
a simple JIT compiler. It provides a short introduction to the basics, then compares 64-
bit calling conventions and details how instructions are encoded, including special cases of
memory operands.

The x86-64 instruction set architecture (ISA), also known as x64 or AMD64, is a common
architecture for desktop and server computers. It, or a simplified variant, is also used at FIT
CTU as part of several courses so many students are familiar with it to some extent. Therefore
it was chosen as the target architecture for this JIT compiler.

The main source used throughout this chapter and during implementation is the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volumes 1 and 2 [5]. Most importantly
in Volume 1 it was Chapter 3.4 Basic Program Execution Registers and in Volume 2 Chapter
2 Instruction Format and parts of Chapters 3-6 detailing the individual instuctions used in this
JIT compiler.

Introduction to x64 Assembly [6] served as a more gentle introduction.
x86-64 is a complex instruction set computer (CISC)1 architecture with variable-length in-

structions. It has 16 general-purpose 64-bit registers: RAX, RCX, RDX, RBX, RSP, RBP, RSI,
RDI and R8-15. They can be accessed as 32-bit registers by replacing the leading R with an E.

The RSP register is the stack pointer. The stack is used for storing local variables, return
addresses, arguments which don’t fit in registers and other things. It grows downwards, i.e. when
pushing a value onto the stack, the stack pointer is decremented and the value is stored at the
new address. Popping values from the stack increments the stack pointer.

The ISA has a large number of instructions but for implementing a simple JIT compiler only
a small subset will be needed:

Instructions for moving data between registers and memory such as MOV, PUSH and POP.

Arithmetic instructions such as ADD, SUB, IMUL and IDIV.

Logical instructions such as AND and OR.

Comparison instructions such as CMP and TEST.
1CISC means the ISA tends to have complex instructions that can do a lot of work in a single instruction,

often supporting complex addressing modes, as opposed to reduced instruction set computers (RISC) which have
simpler instructions.
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Control flow instructions such as CALL, RET, JMP and Jcc.2

Various other instructions for debugging and other purposes such as NOP, UD2, INT3, CQO.

Many of these instructions take one or more operands which can be registers, memory loca-
tions or immediate values (constants).

There are two commonly used syntaxes for x86-64 assembly. In Intel syntax registers are
specified simply by their name, memory operands are specified by using square brackets and the
destination operand is on the left. The other syntax is called AT&T syntax. It requires a leading
% for registers, memory operands are specified by using parentheses and the destination operand
is on the right. There are other differences as well. This thesis uses Intel syntax.

A few example instructions:

mov rax, 42: stores the value 42 in RAX.

add rax, 42: adds the value 42 to the value in RAX and stores the result in RAX.

add rax, rbx: adds the values in registers RAX and RBX and stores the result in RAX.

add rax, [rbx]: reads a value from memory at the address in RBX, adds it to the value in
RAX and stores the result in RAX.

x86-64 is a deep and complex topic that is impossible to adequately cover here. This chapter
aims to provide only a high-level overview. Topics covered in slightly more depth are calling
conventions, memory addressing and instruction encoding.

2.1 Calling Conventions
When writing assembly code that interacts with other functions, it is necessary to follow a set of
rules called the calling convention. It specifies which registers or parts of the stack are used for
passing arguments and returning values, which registers must be preserved by whom and other
important details. We will explore two calling conventions here.

When talking about arguments and return values, we will mainly consider 32 and 64-bit
integers and 64-bit pointers since FML doesn’t support floating-point numbers.

In both x86-64 calling conventions, the stack must be aligned to a 16-byte boundary before
the call instruction is executed. A lack of alignment typically manifests itself as a segmentation
fault.

Each register is considered either volatile or non-volatile in a given calling convention. Volatile
(caller-saved) means that if the caller wants its value to be preserved after a function call, it must
save it on the stack before the call and restore it afterwards. Non-volatile (callee-saved) means
that if the callee wants to use it, it must save the value on the stack before modifying it and
restore it before returning.

2.1.1 Microsoft x64 Calling Convention
The Microsoft x64 calling convention is used by Microsoft Windows.

The first four arguments are passed in registers RCX, RDX, R8 and R9 [7]. Additional
arguments are passed on the stack. The return value is saved in RAX if it fits, otherwise the
caller allocates space for it on the stack and sends the callee a pointer to it as the first argument
in RCX. Additionally, the caller must allocate 32 bytes of shadow space on the stack for the
callee to use.

Caller-saved registers are RAX, RCX, RDX and R8-11.
Callee-saved registers are RBX, RBP, RSP, RDI, RSI and R12-R15.

2Jcc is a family of instructions for conditional jumps such as JE, JNE, JG, JGE, JL, JLE.
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2.1.2 System V AMD64 Calling Convention
The System V AMD64 calling convention is used by Linux, macOS and many other Unix-like
operating systems.

The first six arguments are passed in registers RDI, RSI, RDX, RCX, R8 and R9 [8]. Addi-
tional arguments are passed on the stack. The return value is saved in RAX and RDX if it fits,
otherwise the caller allocates space for it on the stack and sends the callee a pointer to it as the
first argument in RDI. This means this calling convention can return two 64-bit values using just
registers. There is no shadow space.

Caller-saved registers are RAX, RCX, RDX, RDI, RSI and R8-R11.
Callee-saved registers are RBX, RBP, RSP and R12-R15.

2.2 Memory Addressing

Many x86-64 instructions can take a memory operand. It is specified in square brackets and has
three components: a base register, an index register with its scale and a displacement (offset).
It can look like this: mov rax, [r15 + rsi * 8 + 0x45]. All components are optional. The
scale can be 1, 2, 4 or 8. If it’s 1, it can also be omitted. For example in mov rax, [rcx + rdx],
RCX is the base, RDX is the index scaled by 1 and there is no displacement.

2.3 Instruction Encoding

For educational purposes, it was also decided to write a custom assembler instead of using an
existing one.3 This section describes how x86-64 instructions are encoded into machine code.

The encoding of an instruction consists of the following components:

Prefixes - optional, each has 1 byte.

Opcode - 1-3 bytes.

ModR/M byte - optional, 1 byte. Specifies the operands, either registers or part of the
addressing mode. Can also contain an extension of the opcode.

SIB byte - optional, 1 byte. Specifies part of the addressing mode.

Displacement - optional, 1, 2 or 4 bytes. Represents an offset added to the memory address.

Immediate value - optional, 1, 2, 4 or 8 bytes. Represents an immediate value used as an
operand.

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2 [5], Chapter 2
is an indispensable resource for fully understanding this topic. It explains the information covered
here in much greater detail and contains tables with the meanings of each field of the ModR/M
and SIB bytes. Since the encoding depends on the given instruction and its form, Chapters 3-6 are
also required to determine how a particular instruction is encoded. Furthermore, the AMD64
Architecture Programmer’s Manual Volume 3: General-Purpose and System Instructions [9]

3As a result, a considerable amount of time was spent understanding and implementing the encoding of x86-64
instructions, especially the various addressing modes, with the expectation that they would be important when
implementing the JIT compiler. This assumption proved to be incorrect. At the time of writing, the JIT compiler
contains a total of three instructions using a memory operand, and none of them use the more complex form with
an index register.
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contains largely the same information presented differently and might be helpful for a better
understanding.4

The most important prefix here is the REX5 prefix. Its high 4 bits always contain the value
0b0100. The low 4 bits are called W, R, X and B. REX.W specifies that the instruction is using
64-bit operands.

Each register has a number from 0 to 15. The original 8 32-bit registers have numbers 0-7
which requires 3 bits. Access to the other 8 64-bit registers is requires a 4th bit which can
be specified in the REX prefix. REX.R/X/B provide an extra bit for registers specified in the
ModR/M.reg, SIB.index and ModR/M.rm fields respectively. This means they are used when
selecting registers R8-15.

The opcode determines which instruction is executed. Many instructions have several variants
which accept different operands, often two registers, a register and a memory location or a register
and an immediate value. The variants have the same mnemonic in assembly code but different
opcodes when compiled to machine code.

The ModR/M byte has three fields:

mod - 2 bits. Specifies the addressing mode - whether a register is used directly or if it’s part
of the addressing mode and whether a displacement is used and how many bytes it has.

reg - 3 bits. Usually specifies a register, which operand depends on the instruction opcode.
For some instructions it’s used as an extension of the opcode.

rm - 3 bits. Usually used to specify a register.

The SIB byte is used when the memory operand contains an index register. It also has three
fields:

scale - 2 bits. Specifies the scale of the index register. The 2 bits offer 4 different values, each
corresponding to a different scale.

index - 3 bits. Specifies the index register.

base - 3 bits. Specifies the base register.

The displacement is an offset added to the memory address. Its length is determined by the
mod field of the ModR/M byte.

The immediate value is used if the instruction takes an operand which is a constant. Its
length is determined by the instruction opcode.

2.3.1 Special Cases
A closer examination of the tables related to the ModR/M and SIB bytes in the Intel manual
reveals that there are some special cases which are not covered by the general description above.6

In particular, if the ModR/M.rm field is 0b100, then the SIB byte is used. The value 0b100
corresponds to the ESP, RSP or R12 registers. When one of them is used as the base register,
the SIB byte must be used. The SIB.base field is then set to 0b100 and the SIB.index field is
set to its special value, which is also 0b100 and means no index register is used.

This special meaning of SIB.index applies regardless of the value of ModR/M.rm. This means
ESP and RSP can’t be used as the index register.

4Finally, to properly grasp how addressing modes are encoded, the author recommends finding a
few worked examples such as https://www.systutorials.com/beginners-guide-x86-64-instruction-encoding/ and
https://stackoverflow.com/questions/28664856/how-to-interpret-x86-opcode-map and going through them.

5REX stands for register extension
6These rules are rather hard to understand. The Intel manual offers Table 2-5. Special Cases of REX

Encodings, which documents them in one place. The author found other descriptions helpful, such as
https://stackoverflow.com/questions/52522544/rbp-not-allowed-as-sib-base.
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Their register number is the same as R12. However that register requires REX.X to be 1
which means it can be differentiated from ESP and RSP. Therefore R12 can be used as the index
register.

One more special case is EBP or RBP as base with ModR/M.mod set to 0b00. This combi-
nation in 32-bit mode means the register is not used but a 32-bit displacement is used instead.
However in 64-bit mode, this has been changed to mean RIP-relative addressing.
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Chapter 3

Design of the Garbage Collector
and JIT Compiler

3.1 Garbage Collector
There are many different approaches to garbage collection, each with its own strengths and
weaknesses. In this project, the author chose to implement one of the simpler methods - the
mark and sweep garbage collector, with support for compaction.

The mark and sweep algorithm works by starting in roots and walking through the heap while
marking all reachable objects. [10] [11] Roots are runtime objects that are reachable directly -
global variables, local variables and values on the stack. This is the mark phase. It then scans
through the heap again and frees all unmarked objects. This is the sweep phase.

This would, however, leave holes in the heap. This is called fragmentation. The heap as
implemented in FML is a simple vector of runtime objects and relies on the allocator of the host
language. Normally the heap would be a vector of bytes and the objects would take up each
a different number of bytes. If the holes became small, there might be enough free space for a
new object in total but it would be impossible to allocate it since none of the holes would be big
enough.

To solve this problem, the heap is compacted as part of the sweep phase. This is done in
three passes. First the garbage collector calculates a new position for each live object. Then it
updates all references between objects to these new positions. Finally, it moves the objects to
their new positions.

3.2 JIT Compiler

3.2.1 Assembler
The JIT compiler uses a custom assembler that supports a small but sufficient subset of x86-64
instructions.

This assembler first encodes the instructions into an intermediate representation called En-
coding which closely mirrors the components described in 2.3. It then serializes the Encoding into
a sequence of bytes which is the machine code and machine code can be quite easily deserialized
back into Encoding. This two-step approach proved to be very useful for multiple reasons:

For testing because comparing two Encodings is much easier for a human than comparing
two sequences of bytes. If a test of the assembler fails, it prints both Encodings and the
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progammer can not only see which bytes are different but also which component of the
encoding they correspond to.

For debugging and exploration. It’s possible to use an external compiler to generate ma-
chine code for a given instruction, especially with a complex memory addressing mode, then
disassemble it to inspect the contents of the ModR/M and SIB bytes.

Implementing both serialization and deserialization, then making sure their behavior matches
over the entire test suite is a good way to decrease the chances of bugs.

3.2.1.1 Alternative Approaches
The author considered two alternative approaches instead of implementing a custom assembler.

The first was to use an existing library. For Rust, the dynasm [12] crate appeared most
promising. It’s a library for generating machine code at runtime. Dynasm is accompanied by the
dynasmrt crate which provides a runtime that handles other tasks such as allocating executable
memory.

The second was determining which exact instructions are needed by the JIT and serializing
those using an external compiler and hardcoding them into the JIT compiler. The JIT compiler
would then only need to patch certain parts of the machine code such as offsets in jumps and
calls and immediate values. Originally the author believed even registers could be patched this
way but over time he realized he would have to avoid the special cases described in 2.3.1.

Both approaches were rejected. Using an external library would take most of the complexity
away so students exploring the reference implementation would learn less about the inner work-
ings of a JIT compiler. Hardcoding the instructions and patching them later was deemed too
risky without understanding the whole complexity of their format.

3.2.2 Calling Convention
Rust, the language used in the reference implementation has its own internal calling convention
which is unstable. However, it needs to interact with functions generated by the JIT compiler.
Therefore it was necessary to choose a calling convention. After evaluating both options presented
in 2.1, the author chose System V AMD64 mainly because it allows passing more arguments and
returning more values in registers, therefore reducing complexity by avoiding the stack in more
cases.

3.2.3 Replacing the main interpreter loop
The core of the bytecode interpreter is a loop that reads the next opcode and branches to
the corresponding handler. The simplest way a JIT compiler could speed up the program is by
eliminating this overhead. The JIT compiler iterates through the bytecode and generates a block
of native code for each opcode. Each block calls the handler of the original opcode. Additionally
blocks which represent jumps (opcodes Jump, Branch, CallFunction, CallMethod and Returns)
also have to perform a jump in the native code to the correct location. That way the block
corresponding to the correct opcode is executed next. The interpreter still does most of the work
but there’s no overhead from branching and looping.

A key insight here is that control flow is now fully dictated by native code. The instruction
pointer inside the VM is still getting updated but it no longer affects anyting. The second speedup
comes from slightly changing the inteprter so it no longer updates its instruction pointer when
executing jitted code.

This is a relatively simple way to improve performance using a JIT compiler but it only gives
a small benefit.
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3.2.4 Optimizing integer-only functions
A more complex but also more effective way to speed up the program is to convert some functions
to native code entirely so they do all computation in native code without calling back into the
interpreter. Depending on how advanced the JIT compiler is, this can be done for all functions
or only those that meed certain criteria. The JIT compiler implemented in this thesis is very
simple so the criteria for this optimization are quite strict. The only operations permitted are:

integer arithmetic - method calls that resolve to the built-in methods

boolean consitions where the result is used to branch - again method calls that resolve to the
built-ins

simple control flow - label, jump, branch and return opcodes

local variables - set and get opcodes

integer literals and the drop opcode

These conditions ensure that the native code doesn’t accidentally interact with runtime ob-
jects it doesn’t support and interpret then as integers because that would lead to undefined
behavior. Functions that meet these criteria, however, can be sped up significantly.

With a bit more work the conditions could be relaxed. For example, allowing function calls
to other functions that meet the same criteria would allow optimizing several more functions
from the FML test suite.
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Chapter 4

Implementation

The current implementation is based on the reference implementation written in Rust, which was
used in previous semesters. The author of this thesis tried to keep most of the structure of the
code. Noentheless, some things were simplified and reorganized. For example a fairly shallow
change that affected most of the code is that it was formatted and items were grouped so that
structures and enums are together at the top and impl blocks are together below them. This
makes it easier to see at a glance the greater structure of the data and how individual objects
relate to each other.

Similarly a lot of small values in many places which were passed by reference are now passed
by value. Incidentally this was necessary to avoid invoking undefined behavior due to Rust’s
aliasing rules when these values were passed into native code generated by the JIT compiler.
However, it is also more idiomatic in Rust.

The original implementation consumed a lot of memory because each object instance con-
tained the Method structs for its methods. This was changed so that instances only contain
indices into the constant pool. This also the correct behavior according to the specification.

4.1 Garbage Collection

The garbage collector is a fairly straightforward mark and sweep implementation. It’s not opti-
mized in any way but should be simple to understand.

It’s all contained within a single function which takes the frame stack and the operand stack
as arguments. They contain the roots necessary to begin tracing which runtime objects are still
reachable.

The garbage collector is triggered when the heap is full and the program attempts to allocate.
Because the JIT compiler optimizes into native code only functions that don’t allocate, the
garbage collector doesn’t interact with the JIT in any way and doesn’t need to traverse the
native stack.

4.2 x86-64 Assembler

The assembler supports a number of arithmetic, locical, control flow and other instructions.
They are represented as a Rust enum. Because many of them have several variants, accepting
different types of operands, the enum can contain several variants per instruction.

Operands are represented as Reg and Mem objects. Reg allows specifying 32 and 64-bit reg-
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isters. It currently doesn’t support 8-bit registers.1 Mem allows specifying all addresing modes
using the 64-bit registers and 32-bit offsets. The assembler also supports 32-bit immediates for
many instructions and 64-bit immediates for MOV.

4.3 JIT Memory
There are implementations of executable memory for Windows and for Unix-like systems. The
Unix implementation uses posix_memalign and mprotect and properly makes sure the mem-
ory is never writable and executable at the same time. The Windows implementation uses
VirtualProtect. Both implementations are tested on CI.

4.4 JIT Compiler
Due to time constraints, the JIT compiler is mostly implemented as a single function. It iterates
through all functions and attempts to generate an optimized version for each one. If it encoun-
ters an unsupported construct, it gives up. The JIT compiler generated unoptimized fallback
implementations for all functions.

The unoptimized fallback simply has a block of native code for each opcode which calls into
the interpreter. Some opcodes such as Label can avoid using the interpreter entirely.

4.5 Testing
The x86-64 assembler contains a large number of tests. All instructions are tested with various
combinations of operands, likewise all supported memory addressing modes are tested.

The file src/tests/asm_compiler.rs contains whole functions implemented using these in-
structions which are then executed using JitMemory and the result is checked to be correct.

These programs were often written to better understand how x86-64 assembly works. They
showcase things such as accessing function arguments which didn’t fit into registers and had to
be put onto the stack. They’re commented with explanations with the hope they’ll be useful to
students.

Tests like these also provide a quick and easy way to put together a few assembly instructions,
calling them with arbitrary arguments and checking the result which is helpful when learning
assembly.

1This might make implementing boolean operations difficult.
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Performance

High-performance was explicitly not a goal1, instead the focus was on readability. Nonetheless,
the implementation should be reasonably fast and should showcase the perf difference between
interpreting bytecode and executing machine code directly.

Several FML programs available in the repository were benchmarked using the following
commands:

hyperfine --warmup 2 "./fml run $PATH"

hyperfine --warmup 2 "./fml run --jit --debug opt-disable $PATH"

hyperfine --warmup 2 "./fml run --jit $PATH"

The following graphs compare the results.
Sum.fml and collatz.fml contain functions which satisfy the requirements needed to be com-

piled into pure native code without calls back into the interpreter. Such a program is then 5-8
times faster.

Most programs still benefitted from the JIT compiler, even if only the main interpreter loop
was replaced and saw a roughtly 20% improvement.

Brainfuck.fml is an outlier and shows slightly worse performance with JIT.

1The author was told, and has to concur, that students find it motivating when their implementation is faster
than the reference one.
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Interpreter JIT simple JIT optimized
sum.fml 44.0 33.2 5.7
ackermann.fml 59.0 49.5 49.7
collatz.fml 39.4 31.5 7.8
brainfuck.fml 27.0 28.3 28.4

Interpreter JIT simple JIT optimized
langtons_ant.fml 2221.0 1713.0 1701.0
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Chapter 6

Conclusions

In this thesis, we aimed to provide a high-quality reference implementation of the FML program-
ming language that includes a garbage collector and a JIT compiler. We started by introducing
the FML language and x86-64 assembly language. Then we described the design and imple-
mentation of the garbage collector and the JIT compiler. For the garbage collector, we chose
to implement a mark-and-sweep algorithm with support for compaction. We also discussed the
challenges of fragmentation and explained how our approach addressed this problem. For the
JIT compiler, we developed a custom assembler and described how it translated FML bytecode
into x86-64 machine code.

Finally, then evaluated how the JIT compiler affects the performance of our implementation.
Most of the time spent working on this thesis was dedicated to the custom assembler. It is

unfortunate that we were not able to implement a more sophisticated JIT compiler which would
properly use all the implemented instructions.

Overall, our implementation represents an large improvement over the original. We have
addressed some of the shortcomings of the previous reference implementation, and provided a
cleaner and more accessible codebase with additional features.
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Contents of the Enclosed Medium

readme.txt...............................short description of the contents of the medium
exe...............................................directory with the executable program
src

impl...............................................source code of the implementation
thesis...................................... source code of the thesis in LATEX format

text
thesis.pdf..........................................text of the thesis in PDF format

33


	Acknowledgments
	Declaration
	Abstract
	List of Abbreviations
	Introduction
	Description of the FML Language
	Language Elements
	Basic Syntax
	Types
	Scoping
	Example

	The Bytecode Virtual Machine
	Bytecode Format Overview
	The Virtual Machine's State
	Opcodes


	Description of x86-64 Assembly and Machine Code
	Calling Conventions
	Microsoft x64 Calling Convention
	System V AMD64 Calling Convention

	Memory Addressing
	Instruction Encoding
	Special Cases


	Design of the Garbage Collector and JIT Compiler
	Garbage Collector
	JIT Compiler
	Assembler
	Calling Convention
	Replacing the main interpreter loop
	Optimizing integer-only functions


	Implementation
	Garbage Collection
	x86-64 Assembler
	JIT Memory
	JIT Compiler
	Testing

	Performance
	Conclusions
	Contents of the Enclosed Medium

