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Abstract

Programmers often need to inspect the state of their programs at runtime. A special tool
called a debugger exists precisely for this purpose. Despite its widespread use, very few
know how exactly this tool works. This is partly because it must be supported at multiple
layers, like the CPU, the operating system, and the compiler. Most of the courses that
teach about these do not delve into debugging.

This thesis explores what support must be provided by the CPU and operating system
to enable native-level debugging. A small debugger implementation is demonstrated on the
x86-64 architecture and the Linux operating system. Focus is then shifted onto compiler
support for source-level debugging.

Using this knowledge, the thesis presents a debugger for the T86 architecture and
the TinyC language, both of which are used by the NI-GEN compilers course at FIT,
CTU. This debugger is fully functional, making it easier for students to work with the
T86. Additionally, the thesis presents a design and implementation of a novel format
of debugging information that keeps the interesting concepts from real-world debuggers
while being extremely simple to use on both machine and human level, which is ideally
suited for its intended classroom use.

Keywords Debugging, Debugger, Debug, Debugger implementation, Compiler, LLVM,
Linux, Windows, Tiny x86, Debugging support, Errors in programs

Abstrakt

Programátoři často potřebují kontrolovat stav svých programů za běhu. Právě pro tento
účel byl vytvořen speciální nástroj zvaný debugger. Přestože je tento nástroj velmi
rozšířen, málokdo ví, jak přesně funguje. Částečně je to proto, že musí být podporován
na více úrovních, jako je procesor, operační systém a překladač. Většina kurzů, které o
nich vyučují, se debugováním nezabývá.

Tato práce zkoumá, jakou podporu musí poskytovat procesor a operační systém, aby
bylo možné provádět debugování na nativní úrovni. Implementace malého debuggeru je
demonstrována na architektuře x86-64 a operačním systému Linux. Pozornost je poté
přesunuta na podporu překladače pro debugování na úrovni zdrojového kódu.

Na základě těchto poznatků je v práci představen debugger pro architekturu T86 a
jazyk TinyC, které jsou využívány v kurzu překladačů NI-GEN na FIT ČVUT. Tento
debugger je plně funkční a usnadňuje studentům práci s architekturou T86. Kromě toho
práce představuje návrh a implementaci nového formátu debugovacích informací, který
zachovává zajímavé koncepty z reálných debuggerů a zároveň je jeho použití extrémně
jednoduché na strojové i lidské úrovni, což je ideální pro jeho zamýšlené použití ve výuce.

Klíčová slova Debugování, Debugger, Překladač, Implementace debuggeru, LLVM,
Linux, Windows, Tiny x86, Podpora pro debugování, Chyby v programech
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Chapter 1

Introduction

At the core of every computer program lies the Central Processing Unit (CPU), which
is responsible for executing programs. The CPU excels at performing very primitive
operations very fast. These operations, called instructions, perform simple arithmetics,
move values from and to memory, and change the control flow of the program. They are
encoded as a sequence of binary numbers, which are easy for the CPU to understand, but
are rather incomprehensible for humans.

To help programmers better understand written programs, a text mapping was created
called assembly language. Each instruction is assigned a text representation, as are the
operands of the instruction. The control flow instructions do not have to jump to an
address offset but can instead use labels. An example of a simple program in both an
assembly language and a machine code can be seen in figure 1.1. If a programmer is
familiar with the instruction set architecture of the processor, they can easily recognize
the instructions the program is made of.

However, as computers became increasingly more powerful, so did the programs be-
came bigger and more complex. When programming in the assembly language, the pro-
grammer must have extensive knowledge of the processor’s internal workings.

To spare the programmers from this, high-level programming languages were created.
These are designed to abstract from the specific machine the program will run on, allowing
programmers to focus more on their tasks. As shown in figure 1.1c, even a simple program
written in the C programming language [1], one of the oldest programming languages
around, provides a clear understanding of the functionality. In contrast, examining the
equivalent program in assembly language, as seen in figure 1.1b, requires knowledge of
the specific architecture of the machine. High-level languages also introduce control flow
statements, which makes the code easier to follow compared to assembly jumps [2].

But processors only understand machine code and high-level languages are far from it.
Therefore, a translation of a high-level language program into a machine code program
is necessary. This is a task for a compiler. The compiler is a program that reads source
code of a high-level language and produces machine code. Compilers are highly complex
software; we will discuss them in detail in chapter 2.3. For now, it is crucial to understand
that the computer cannot directly run the source code of a high-level language and that
it is translated into machine code. Additionally, compilers often take advantage of unique
features of the architecture to make the programs faster [3].

1
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01010101 01001000
10001001 11100101
10001001 01111101
11111100 10000011
01111101 11111100
00000000 01111110
00000111 10111000
00000001 00000000
00000000 00000000
11101011 00000101
10111000 00000000
00000000 00000000
00000000 01011101
11000011

(a) A machine code program.

positive:
push rbp
mov rbp, rsp
mov -4[rbp], edi
cmp -4[rbp], 0
jle neg
mov eax, 1
jmp pos

neg:
mov eax, 0

pos:
pop rbp
ret

(b) An assembly program.

bool positive(int n) {
if (n > 0) {

return true;
} else {

return false;
}

}

(c) A program in the C language.

Figure 1.1 An example of a program that checks if a number is positive, shown in an assembly
language, in a machine code, and in the C programming language.
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1 int binary_search(int* arr, int len, int n) {
2 int lo = 0;
3 int hi = len;
4 while (lo < hi) {
5 int i = (lo + hi)/2;
6 if (arr[i] < n) {
7 lo = i;
8 } else if (arr[i] > n) {
9 hi = i;

10 } else {
11 return 1;
12 }
13 }
14 return 0;
15 }

Figure 1.2 A possible implementation of the binary search algorithm written in the C program-
ming language.

1.1 Debugging
In figure 1.2, we present a more complicated example of a program written in a high-

level programming language. This is an implementation of the binary search algorithm.
As an input, it receives a sorted sequence of numbers and a number n. The algorithm
then checks whether the number n is in the sequence. This algorithm is widely used when
searching in sorted sequence because of its O(log2(n)) complexity [4].

Programs are mostly written by humans, who tend to make mistakes [5]. We are no
exception, as we have also made a mistake in the binary search program. Let us try to run
the program with a [1,2,3] sequence and search for the number 4. This number is not in
the sequence, so the expected output would be 0. Instead, if we ran the program, it would
run forever because of a mistake we made in the source code. Such mistakes are called
bugs1. The process of finding these mistakes and correcting them is called debugging [6].

There are several approaches to debugging. We could try to look at the source code
and find the mistake this way2. Here we could assume that the condition lo < hi never
comes to be since it is the most obvious place where we could get stuck forever. Now, it
would be helpful if we could see the states of lo and hi in each iteration of the cycle. We
could resort to print statements, but that is not very flexible. If we changed our minds
and wanted to also see the value of variable i, we would have to recompile the program
and rerun it. The output can also quickly get overwhelming, especially in an infinite loop.
A different approach is to use a debugger, which is a special tool fitted exactly for this
purpose.

Debugger is able to inspect the state of another program, like the values of its variables.
It is also able to control the flow of the program. They allow breakpoints to be set at each

1The term bug actually comes from an actual bug that got stuck in relays back when computers
were made from relays. They literally had to debug the machine by taking the bug out.

2Do note that this approach does not scale well with bigger programs.
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3 int hi = len;
4 while (lo < hi) {
5 int i = (lo + hi)/2;

-> 6 if (arr[i] < n) {
7 lo = i;
8 } else if (arr[i] > n) {
9 hi = i;

Target 0: (a.out) stopped.
> p lo
(int) $0 = 0
> p hi
(int) $1 = 3

Figure 1.3 Debugging session in the LLDB [7] debugger, showing breakpoint hit report and
printing variable values.

line of the source code3. When the program is about to execute the line of code with the
breakpoint, the control is passed back to the debugger, and the user can inspect the state
of the program at that line. There are also conditional breakpoints, which only trigger
when some condition holds. An example of such a condition can be that the breakpoint
gets activated only when i == 3.

Finally, debuggers also allow stepping. There are several kinds of steps:

step-in - Executes the current statement and stops on the next one. If the current
statement is a function call, it will be executed, and the program will be paused on
the first statement in that function.

step-over - Same as a step-in, but if the current statement is a function call, the
program will be paused on the next statement after the call.

step-out - Executes as much as needed to return from the current function. Stops
on the next statement that should be executed after the function returns.

To illustrate the workings of the debugger, let us look back at the program in figure 1.2.
We will place a breakpoint on line 6 after i is set and we will monitor how the values in
variables lo and hi change. If the program is run with the debugger attached, an output
similar to what is displayed in figure 1.3 will be seen. Here, it is possible to see the line
on which the execution was stopped. It is also possible to print the state of variables.
In each loop, we could print the value of a variable and then continue execution until
another breakpoint is hit. If we continue, the execution will again be stopped on line 6.
The value of hi will not change, which is expected. Variable lo will gain the following
values: 0, 1, 2, 2, 2, . . . It apparently gets stuck at 2. The value of variable i is computed
as i = (lo + hi)/2 = (2 + 3)/2 = 2, because division in C rounds the value down. The
fix is to change the line 7 to lo = i + 1. With the debugger, it was simple to find out
where the error came from, and we did not have to recompile the program.

We previously mentioned that processors themselves only understand machine code.
Hence, the question arises as to how the debugger can know about lines, variables, and

3Advanced debuggers allow breakpoints to be set inside expressions. This is especially important
for functional languages, as their functions often consist of one big expression.
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-> 0x100003e3c <+112>: b 0x100003e78 ; <+172>
0x100003e40 <+116>: ldr x8, [sp, #0x20]
0x100003e44 <+120>: ldrsw x9, [sp, #0xc]
0x100003e48 <+124>: ldr w8, [x8, x9, lsl #2]

Figure 1.4 Example of debugging a program in the LLDB debugger without debugging infor-
mation generated by the compiler.

similar traits of the source code when the program itself is just machine code. The
compiler has to lend a hand here. It embeds information about the source code, either
into the executable itself or into a separate file. For example, it maps lines of source code
to machine code instructions. Thanks to this mapping, the debugger knows that line x
corresponds to instruction y in the machine code and can put a breakpoint there. If the
compiler does not emit any information into the executable, the debugger would only
work with assembly, as seen in figure 1.4. This can be very difficult for the programmer
to work with compared to debugging the source code directly.

1.2 Teaching Compilers
Many schools about computer science have a compiler course, and the Faculty of Informa-
tion Technology, CTU, is no exception. The course is called Code Generators (NI-GEN).
In this course, students are tasked to build a simple compiler from a C-like language called
TinyC. The target of the compiler is the Tiny x86 (T86) architecture. This architecture
does not have a processor that implements it. Instead, a virtual machine, a program that
reads the assembly and executes it, was created for it. The architecture is supposed to
ease the code generation and let the students focus on the more interesting parts of the
compiler, like register allocation or optimization, instead of the uninteresting details of
real CPU architectures.

There is, however, a problem with using T86, as it has almost non-existing debugging
support. So if a compiler of some student generates the code badly, which is frankly
inevitable, it takes a non-trivial amount of effort to find the error. T86 has some very
light debugging capability, but it is far from real debugging. Also, compiling debugging
information is not taught in the NI-GEN course because there is no reason to as of now.
If a debugger was provided to the students, it might be incentivizing to compile such
information to ease their lives later when they need to find errors in their compilers. This
way, they will also learn how and what information the compiler needs to embed for the
debugger to work.

1.3 Goals of the Thesis
The primary goal is to add debugging support to the T86 and create a debugger that
supports debugging both on the machine and source code levels. The debugger should be
extensible enough to also work with an intermediate representation. The debugger should
be similar to real-world debuggers in terms of how it works. This will require non-trivial
changes in the T86 virtual machine source code. The students’ compilers will also have
to generate debugging information. The format of the debugging information should be
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so that it is not discouraging for students to generate but also comparable to debugging
information generated by real compilers.

1.4 Structure of the Thesis
1. The Introduction is the motivation behind the thesis and introduces basic terms with

which should the reader be familiar.

2. Debugging Techniques describes how are debuggers implemented and what support is
required on various levels (OS, processors, compilers) to make their implementation
possible.

3. Tiny x86 describes the T86 architecture and discusses some of the parts of the virtual
machine, mainly its existing debugging capabilities.

4. Implementation focuses on extending the T86 instruction set and adding a debugging
interface to the virtual machine. It also describes the implementation of the debugger
and the chosen format of the debugging information.

5. Evaluation evaluates the performance of the debugger and its ease of use.

6. Conclusions summarizes the result of the thesis and speaks of possible future work.



Chapter 2

Debugging Techniques

Debugging is twice as hard as writing the code in the first place. Therefore,
if you write the code as cleverly as possible, you are, by definition, not smart
enough to debug it.

Brian W. Kernighan

We need the compiler to emit debugging information to debug a program written in a
high-level programming language. Without this information, we can debug the program
at the assembly level. This can still be useful, for example, for reverse engineering. Fur-
thermore, without assembly-level debugging, there is no source-level debugging since it
builds upon it. This chapter describes at which level and what kind of debugging support
is provided. First, we will mention what kind of mechanism the CPU itself offers. Go-
ing one step higher, we will talk about the API that various operating systems provide.
Finally, we will discuss how compilers and debuggers can allow us to debug source code,
although the program we debug was compiled into a machine code program.

2.1 CPU Level Support
The CPU can only execute machine code which is made of instructions. It also has several
registers to help with computations. Which instructions and registers the CPU has can
differ from CPU to CPU. This is specified by an Instruction Set Architecture (ISA) [8].
It is an abstract interface between the hardware and the lowest-level software (machine
code). It contains all information needed to write a program in machine code. In general,
ISA specifies the following:

Set of machine code instructions - Specifies instructions the ISA has and what
operands each instruction has.

Register set - Which registers the ISA has1.

Addressing modes - Possible methods to refer to memory or register.
1Strictly speaking ISA does not have to use registers. It is possible to use only stack or accumulator,

but most used ISAs use registers, so we will ignore those architectures.

7
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This list is not exhaustive, but for our purposes, it suffices. For each instruction and
operand, it is specified how they should be encoded into binary. CPU then implements
some ISA. If two different CPUs implement the same ISA, then they should be able to run
the same machine code program. For example, personal computers often use the x86-64
while mobile devices like smartphones or tablets use the ARM architecture [9]. The ARM
architecture is also beginning to find its way into the computer space. For example, Apple
Silicon is based on the ARM architecture.

The x86-64 architecture is an example of the so-called Complex Instruction Set Archi-
tecture (CISC). The CISC instructions often perform many actions at once, have varying
lengths, and take multiple clock cycles to complete [10]. On the other hand, the ARM
architecture is an example of the Reduced Instruction Set Architecture (RISC). The num-
ber of instructions is smaller. They are intended to be small building blocks from which
complex operations may be created by using many of them. Each instruction in RISC
also has the same length. Both architectures have their pros and cons, although some
literature suggests that in modern days the choice of architecture is irrelevant if one is
only considering performance and power consumption [11, 9]. Unless specified otherwise,
the rest of this chapter will be talking about x86-64. This is because the T86 architecture,
described in section 3, is loosely based on x86-64, so it is most relevant for us.

In the first chapter, we briefly mentioned that machine code programs could be writ-
ten in assembly language instead. Assembly is almost a one-to-one mapping to machine
code. When showing programs, we will show them in assembly so that they are readable.
In figure 2.1, we present another example of a program written in the C programming
language that was compiled into an assembly for the x86-64 architecture. As seen, instruc-
tions have various operands. Most often registers (rbp, rsp, eax), memory ([rbp-4]),
or labels (like L2). Labels are not part of machine code; instead, a memory address has to
be provided. This is a small part where assembly and machine code differs. For a detailed
overview of the x86-64 instruction set, see [10].

Registers
The main advantage of registers is that they are much faster to access than the main
memory. The x86-64 architecture has a set of general purpose registers. Some of these
are

rax - Accumulator for operands and results data,

rcx - Counter for string and loop operations,

rsp - Stack pointer,

rbp - Pointer to data on the stack.

The rsp and rbp registers are used for pointing at the top of the stack, respectively to
the base of the stack. Stack is a special part of program memory with LIFO semantics. It
can be used to store the intermediate result, arguments to functions, return address, etc.

The instruction pointer register (rip) contains the address of the current instruction
to be executed. Programs are executed sequentially from top to bottom, with particular
instructions having the ability to change the control flow. When an instruction gets
executed, the size of the instruction will be added to the value in the rip register. This will
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max:
push rbp
mov rbp, rsp
mov QWORD PTR [rbp-24], rdi
mov DWORD PTR [rbp-28], esi
mov rax, QWORD PTR [rbp-24]
mov eax, DWORD PTR [rax]
mov DWORD PTR [rbp-4], eax
mov DWORD PTR [rbp-8], 1
jmp .L2

.L3:
mov eax, DWORD PTR [rbp-8]
cdqe
lea rdx, [0+rax*4]
mov rax, QWORD PTR [rbp-24]
add rax, rdx
mov eax, DWORD PTR [rax]
cmp DWORD PTR [rbp-4], eax
cmovge eax, DWORD PTR [rbp-4]
mov DWORD PTR [rbp-4], eax
add DWORD PTR [rbp-8], 1

.L2:
mov eax, DWORD PTR [rbp-8]
cmp eax, DWORD PTR [rbp-28]
jl .L3
mov eax, DWORD PTR [rbp-4]
pop rbp
ret

Figure 2.1 An example of an assembly program that was compiled from a program written in
the C programming language using the GCC compiler.
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advance the instruction pointer to the next instruction. Alternatively, if the instruction
changes the control flow, the value in the instruction pointer will be changed to the
instruction’s destination. The register can also be changed directly.

Another interesting register is the eflags register. The register is made up of various
flags, which can alter the CPU behavior, or the CPU itself sets them as a result of some
instruction. For example, the instruction cmp compares its two operands, and if they are
the same, the zero flag in the eflags register will be set.

2.1.1 Interrupts
An interrupt is a special request to the CPU to stop the execution of the current program
and to quickly react to the reason that caused the request [12]. An example of such an
event can be a keyboard press or an error in a program (division by zero). There are two
main categories [10]:

An interrupt is an asynchronous2 event that is typically triggered by an Input/Out-
put (IO) device.

An exception is a synchronous event that is generated when the processor detects
one or more predefined conditions when executing an instruction. These are further
divided into three classes: faults, traps, and aborts.

For the rest of this thesis, we will use the word interrupt interchangeably for both
interrupt and exception, although we will mainly talk about exceptions. This is to dis-
ambiguate the exceptions at a programming language level (like C++) and Microsoft
structured exceptions, which are the subject of section 2.2.3. When an interrupt (or ex-
ception) happens, the processor halts the execution of a current program and switches to
a specific interrupt handler. An interrupt handler is just a sequence of instructions that
gets executed when the interrupt happens.

An example of an exception is the int3 instruction. When this instruction is executed,
an interrupt is generated. This instruction is specifically meant to be used as a breakpoint.
In theory, we could supply code that will be responsible for handling the breakpoint as the
interrupt handler. We could then set the int3 instruction where we want the breakpoint
to occur and inspect the code through the interrupt handler. However, on modern PCs,
an Operating System (OS) governs the PC and consequently is responsible for setting
interrupt handlers. Alas, we cannot touch the interrupt handler directly. Instead, the OS
will have to provide another layer of support for debugging.

Recall the EFLAGS register mentioned in section 2.1. There is a special flag called the
trap flag. When it is set, the CPU will issue an interrupt after every executed instruction.
This could be useful if we wanted to inspect execution instruction by instruction.

The CPU may also contain special debug registers. The x86-64 architecture has six
of them, named dr0 to dr7, with dr4 and dr5 being synonyms for dr6 and dr7 on most
CPUs, otherwise, they are reserved anyway and cannot be used. The CPU provides special
breakpoints through these registers. Each of the first four registers contains an address
of the breakpoint. The debug status register dr6 contains debug conditions that were
sampled at last debug interrupt. Lastly, the debug control register dr7 is used to enable

2Meaning that the interrupt may happen when another instruction is being processed, and not at
the CPU clock edge. However, The handling of the interrupt happens at the clock edge.
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and disable breakpoints for each of the address registers and set breakpoint conditions.
The conditions are either instruction execution on a specific address or a memory read or
write. When the breakpoints are hit, for example, the address stored in dr0 is written into,
the breakpoint is enabled, and the condition is set to memory write in the dr7 register,
an interrupt is issued by the CPU and the dr6 register contains information about which
register caused the interrupt [10].

2.1.2 Superscalar CPUs
Modern CPUs do not execute instructions strictly one by one. They instead use pipelines
and out-of-order execution [8, 12]. This means that they can execute several instructions
at once and can execute them in non-sequential order. The observable behavior of the
program has to be the same as if it was run sequentially. The CPU has to be careful
about which instructions it can run in parallel and out of order. The execution of an
instruction consists of several stages, which together form an execution pipeline. The
stages can be Fetch, Decode, Execute, Memory, and Writeback; this may vary depending
on the architecture. However, the general ideas behind it are the same. The instruction
must pass all these stages to be successfully executed. To maximize efficiency, all stages
are occupied by an instruction. This means that when instruction x leaves the fetch stage,
it goes to the decode stage, and instruction y is put into the fetch stage.

However, when the next instruction is a conditional jump, there may be no way to
be sure if the jump will be taken. CPUs deal with it in various ways and try to predict
the right branch. Sometimes, however, the prediction fails, and the whole pipeline needs
to be flushed. The same action must be taken when an interrupt occurs. The execution
changes to the interrupt handler, and the pipeline must therefore be flushed because it
contains instructions from the previous location before the control flow was switched to
the handler. Also, if we hit the breakpoint, we want to make sure that instructions before
it were all executed and that none were executed after. Otherwise, it would be very
confusing for the user that tries to debug the program.

2.2 Operating System Support
An operating system is a layer between computer components (CPU, memory, input/out-
put devices, etc.) and software. It is responsible for handling all the resources so pro-
grammers do not have to think about it [13, 14]. Managing resources is not only to make
writing programs easier but to make sure that the programs are safe from each other.
Modern operating systems allow running multiple programs at once (or at least offer the
illusion that they can), and they make sure that one program cannot overwrite data or
otherwise interfere with other programs. The kernel runs in the so-called kernel space. It
has full access to the hardware of the computer, can use all instructions, can permit or
mask interrupts, and so on. On the other hand, regular programs run in the user space,
where they have limited capabilities.

However, if programs were kept in user space all the time, they would be very limited.
Sometimes, they need to escape the confinement of the OS, for example, to read a file or
communicate with other processes. Operating systems provide an interface through which
the user space program can leverage a small part of the kernel in the form of system calls.
They offer a way of requiring some service from the OS. This API is often in the form of
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C and C++ functions [14]. A part of these functions is a special instruction, like SYSCALL
on x86-64 [10], that switches the mode to kernel space.

The most used operating systems today are Microsoft Windows, Linux, and MacOS.
Linux and MacOS systems are somewhat similar, but Windows is very different. To debug
programs, we need to be able to read and modify the state of a running program. This
is in direct conflict with the encapsulation the operating system is trying to achieve. As
such, the operating system must provide an API through which we can do these operations
that are needed for debugging.

2.2.1 Linux
Linux offers a special system call which is very handy for debugging. It is called ptrace [15]
- process trace. It has the following signature: ptrace(request, PID, void* addr,
void* data). The request is a PTRACE_COMMAND, which specifies the behavior of the
function (for example PTRACE_SINGLESTEP), process id (PID) of some process (presum-
ably the debuggee) and two other parameters, whose meaning change depending on the
PTRACE_COMMAND that was chosen. It allows one to observe and control the execution of
another process; this process will be the debuggee. In the context of this chapter, we
will sometimes use the word tracee for the debuggee, and tracer for the debugger, to be
consistent with ptrace documentation.

The ptrace function has many commands, here are some of the most important:

PTRACE_PEEKTEXT, PTRACE_PEEKDATA - Read tracee’s memory.

PTRACE_POKETEXT, PTRACE_POKEDATA - Write into tracee’s memory.

PTRACE_GETREGS - Read tracee’s register values.

PTRACE_SETREGSET - Modify tracee’s register values.

PTRACE_GETSIGINFO - Retrieve information about the signal that caused tracee to
stop.

PTRACE_CONT - Restart the stopped tracee process.

PTRACE_SINGLESTEP - Restart the stopped tracee but stop it after executing one
instruction.

Linux, however, needs some way of notifying the debugger that the tracee encountered
a breakpoint or that some other event requiring debugger attention happened. To this end,
signals are used. They serve as an abstraction on top of the CPU interrupts. Interrupts
are sent by the CPU and processed by the operating system kernel. Signals are sent by
the operating system kernel and received by processes. They can also be sent by a process.
That, however, happens via system calls and the kernel is the one who sends the signal.

A signal is used in UNIX and Linux systems to notify a process that a particular
event has occurred [14]. When a process receives a signal, it stops its execution and
starts the execution of a signal handler. There are various signal types. Most signals
can have a custom signal handler defined by the process. If no handler is defined, then
the OS provides a default one. However, handlers for SIGKILL and SIGSTOP cannot be
changed [16].
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The reason for sending a signal to a process can, for example, be a CPU interrupt
(like division by zero or breakpoint hit) or a system call (kill(pid, signal)). One such
signal is the SIGTERM, which can be sent to a process to ”ask it” to exit. The process
can handle this request, for example, to save some state before exiting. It can also be
entirely ignored. To prevent this, a signal SIGKILL can be used, which cannot be handled,
ignored, or blocked.

To begin tracing a command PTRACE_ATTACH may be used for an already existing
process, or a fork followed with a child calling PTRACE_TRACEME and typically execve.
When the tracee is being traced, it will stop each time a signal is delivered to it, even
if it chooses to ignore said signal. The tracer will be notified that the tracee received a
signal at its next call to the waitpid function. When the tracee is stopped, the tracer
can initiate various ptrace requests listed above to inspect and change the state of the
tracee [15].

In chapter 2.1.1, we mentioned that the debug instructions cause an interrupt. The
Linux kernel, however, does not permit us to work with interrupt handlers. Instead, it
translates those interrupts into signals. So when the tracee executes the int3 instruction,
it will receive a signal that we will catch with the waitpid function.

2.2.1.1 Debugger implementation
Now, we have all the necessary building blocks to build a simple debugger on the Linux
operating system running on the x86-64 platform. Running a program under the debugger
is simple. Figure 2.2 shows the initialization of the debugger. It uses the fork-exec idiom.
The fork system call creates an exact copy of the process as a child except the following:
process ID (PID) of the child is different. In the parent process, fork returns the PID of
the child. In the child, 0 is returned. The child initiates the PTRACE_TRACEME call, which
indicates that this process is to be traced by its parent. Then it calls the execve system
call, which replaces this program with the one we want to debug. The execve causes a
SIGTRAP signal on completion because the process is being traced [17].

The parent first issues a waitpid system call. This waits for the child execve to finish.
The debugger then has a chance to debug the child immediately because it is stopped.
The while loop can then request input from the user and act accordingly. The tracee can
be continued by PTRACE_CONT command.

The PTRACE_PEEKTEXT and PTRACE_POKETEXT commands can be used for reading and
writing into tracee’s memory. This call reads or writes a word (32 or 64 bits, depending
on the Linux variant) into the tracee’s memory. However, if we want to write an arbitrary
amount of bytes, we have to work around the word limitation. We need to write by blocks,
and for the last one, we have to pad the write with already existing data if the block size
does not divide the word size. Figure 2.3 shows how to read and write precisely one byte
of memory at a given address, which is simpler to implement but not ideal for writing
many bytes.

Registers are similar to a memory in regards to how to read them. Linux contains a
predefined structure user_regs_struct, which maps all registers on the current archi-
tecture. The command PTRACE_GETREGS then fills up this structure with the values in
registers. To save registers, PTRACE_SETREGS can be used. One has to pass the whole
structure, so if we want to modify only some registers, we first need to fetch the structure,
fill the registers we want with values, and then finally use SETREGS. An implementation
can be seen in figure 2.4, the get_register functions maps the structure members to the
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pid_t pid = fork();
if (pid == 0) {

// Begin tracing
ptrace(PTRACE_TRACEME, 0, NULL, NULL);
// Replace the code with the intended tracee code
execve(executable, argv, NULL);

} else {
int w;
waitpid(pid, &w, 0);
while(...) {

// Main debugger loop
}

}

Figure 2.2 Linux debugger implementation - Initialization of the tracee process.

uint8_t read_memory(pid_t pid, uint64_t address) {
uint64_t data = ptrace(PTRACE_PEEKDATA, pid, address, NULL);
return (uint8_t)data;

}

void write_memory(pid_t pid, uint64_t address, uint8_t data) {
uint64_t old = ptrace(PTRACE_PEEKDATA, pid, address, NULL);
uint64_t new_data = (old & ~0xFF) | data;
ptrace(PTRACE_POKEDATA, pid, address, new_data);

}

Figure 2.3 Reading and writing one byte to debuggee memory using ptrace.



Operating System Support 15

void set_register(pid_t pid, const char* name, uint64_t data) {
struct user_regs_struct regs;
ptrace(PTRACE_GETREGS, pid, NULL, &regs);
uint64_t* reg_data = get_register(&regs, name);
*reg_data = data;
ptrace(PTRACE_SETREGS, pid, NULL, &regs);

}

Figure 2.4 Setting debuggee register value using ptrace.

01 d0 add eax,edx
88 45 fd mov [rbp-0x3],al
ff e0 jmp rax

01 d0 add eax,edx
cc 45 fd int3
ff e0 jmp rax

Figure 2.5 Code with and without a breakpoint. The breakpoint is highlighted by the blue
color. The red color shows invalid instruction.

register’s name. Since the address of the current instruction to be executed is also stored
in a register (rsp), we now have access to it.

Breakpoints are more interesting. Debuggers often allow to enable and disable a
breakpoint, so we will distinguish between setting a breakpoint and enabling it. Setting a
breakpoint just means that the debugger needs to keep track of where the breakpoint was
set and if it is enabled or disabled. Enabling a breakpoint means writing into the program
memory the debug instruction (we will use the x86-64 int3 instruction with opcode 0xCC).
Figure 2.5 shows how code looks with and without enabled breakpoint. The blue color
shows the new breakpoint. On line 2, the opcode changes from 0x83 to 0xCC. Since the
breakpoint is set via the PTRACE_POKEDATA, which only works with words, one has to pad
the breakpoint opcode with already existing data. Also, the rewritten data (in this case,
the 0x88) has to be kept so that the breakpoint may later be deactivated. Abbreviated
implementation can be found on 2.6.

When a breakpoint is hit, the control is passed to the debugger. At this point, the
instruction pointer would point to the next instruction, which has opcode 0x7D, not 0xFF
(the jmp instruction) as might be expected. This is because int3 is an instruction with size
1. It gets executed, the instruction pointer is advanced by the size (1), and an interrupt is
issued. However, after the int3, there were operands to the mov instruction (the red text in
the figure). We definitely do not want to interpret them as instruction. Because of this, we
need to move the instruction pointer before the breakpoint instruction. Additionally, we
found out that on some architectures, advancing PC does not happen when an instruction
that issues an interrupt is executed, such as the ARM BKPT instruction. This was later
confirmed by looking at the LLDB code, as it only moves back the program counter for a
few architectures [18].

If we resumed the program after moving back, we would again hit the breakpoint,
which is still set. We need to temporarily unset it, move one instruction forward and set
it again. The general idea behind it can be found in figure 2.7. With breakpoints, we
essentially gained the ability to single step as well.

However, putting a breakpoint on the instruction that will be executed next is more
challenging than it might appear. Due to the varying sizes of instructions on CISC ar-
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void enable(pid_t pid, struct breakpoint* bp) {
if (bp->enabled) {

return;
}
bp->backup = read_memory(pid, bp->address);
write_memory(pid, bp->address, BP_OPCODE);
bp->enabled = true;

}

void disable(pid_t pid, struct breakpoint* bp) {
if (!bp->enabled) {

return;
}
write_memory(pid, bp->address, bp->backup);
bp->enabled = false;

}

Figure 2.6 Enabling breakpoints, abbr.

0x01
add 0xd0 0xcc

int3 0x45 0xfd
0xff
jmp 0xe0

Just before hitting a break-
point.

0x01
add 0xd0 0xcc

int3 0x45 0xfd
0xff
jmp 0xe0 After software breakpoint is

executed.

0x01
add 0xd0 0x88

mov 0x45 0xfd 0xcc
int3 0xe0

Move instruction pointer back,
replace the int3 instruction
with the original one and set a
breakpoint at the next instruc-
tion.

0x01
add 0xd0 0xcc

int3 0x45 0xfd
0xff
jmp 0xe0

Resume the execution, remove
the newly set breakpoint and
restore the old one.

Figure 2.7 A diagram of how a continue operation might be performed. The arrow signalizes
an instruction pointer.
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void step_over_bp(pid_t pid) {
uint64_t loc = read_register(pid, "rip");
struct breakpoint* bp = find_bp(loc);
if (bp == NULL || !bp->enabled) {

return;
}

disable(pid, bp);
ptrace(PTRACE_SINGLESTEP, pid, NULL, NULL);
// Waits until debuggee finishes singlestepping
wait_for_debuggee(pid);
enable(pid, bp);

}

Figure 2.8 Stepping over an active breakpoint. The wait_for_debuggee is a wrapper function
around the waitpid function.

chitectures, even determining the instruction that follows the current one in the code
is challenging. RISC architectures facilitate this because all instructions have the same
length. Finding the next instruction to be executed may still pose a challenge if the in-
struction is a conditional jump. Accurately determining where the jump will go can be
an arduous task. To achieve this, some debuggers use instruction emulators. Fortunately,
some architectures have built-in hardware support for single stepping, like the trap flag
we mentioned in section 2.1.

The ptrace library contains a special PTRACE_SINGLESTEP command, which executes
one instruction in the tracee before sending the SIGTRAP signal. The Linux kernel (as of
v6.1.8) uses the previously mentioned trap flag for x86-64 [19]. The call will return an
error if the architecture does not provide a hardware-supported single stepping. In lieu
of the breakpoint dance mentioned earlier, the singlestep command will be used in our
implementation because x86-64 supports it. Implementation is described in figure 2.8. We
presume that the instruction pointer was moved when the breakpoint was hit, eliminating
the need to return one byte backward. This is more reasonable anyway, since we want
to show the user at which address the breakpoint hit happened. The LLDB [7] debugger
uses hardware support if there is one, else it uses an instruction emulator. For instance,
for the ARM architecture, LLDB uses an instruction emulator, whereas, for the x86-64,
it uses the trap flag.

To perform a step-in, the PTRACE_SINGLESTEP command can be used. However, in the
case where the current address contains an active breakpoint, the debugger would treat it
as a breakpoint hit, reverting the program counter back before the breakpoint, rendering
it impossible to step over. Therefore, a check for the presence of an active breakpoint must
be performed prior to the execution of the single step ptrace call. If a breakpoint exists,
the code from figure 2.8 will be used. Otherwise, the PTRACE_SINGLESTEP command will
suffice.

Next in the line is the step out, which allows one to jump out of the current function.
When a procedure is entered using the call instruction, the address immediately after the
call instruction is put onto the stack. Upon entry into the function, the value of the rbp
register is pushed onto the stack, and then the register is updated to reflect the current
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value of the stack pointer. As a result, the return address is located at rbp + 8. We
can set a breakpoint at that address, continue execution, wait for the debuggee to hit the
breakpoint, and then disable and remove it. This has its flaws. For example, it will not
work if the step out is used before the rbp is set or if some library completely bypasses
the call instruction.

This concludes the implementation of a very basic assembly-level debugger for Linux
on the x86-64 platform. The proof of concept implementation is provided as an extension
to this thesis and can be found in the linux-debugger/ folder. The implementation was
partially inspired by [20] and [7]. It demonstrates the feasibility of building a very basic
debugger with the ptrace API.

Hardware versus Software breakpoints
The presented implementation has used software breakpoints, which are implemented
by modifications to the actual code. In section 2.1, we mentioned that the CPU also
supports breakpoints. These are called hardware breakpoints. The difference between these
two is mostly felt when conducting reverse engineering, which involves studying compiled
programs in machine code because they do not have access to the source code of the
programs, often in order to identify potential malicious activity. However, the programs
may try to defend themselves from being debugged. Software breakpoints change the
actual code, so a checksum of instruction opcodes can detect them. Hardware breakpoints,
on the other hand, do not modify the code and are, therefore, more difficult to detect.
Additionally, they can also be used to break on memory access, which is not possible with
software breakpoints. However, only a limited amount of hardware breakpoints can be
set, with only four available on the x86-64 architecture [10].

2.2.2 UNIX systems
There are other systems based on UNIX, however, the implementation is very similar
to the Linux one. For example, MacOS, FreeBSD, and OpenBSD also have the ptrace
system call. The call itself is a little different on each operating system, but it can be
used to achieve the same functionality as on the Linux operating system.

2.2.3 Windows
The Microsoft Windows operating system also offers built-in support for debugging. It is
provided at the Win32 API layer [21, 22]. It builds on debug events and debug functions.
Unlike POSIX systems such as Linux, Windows uses a different approach for signaling
abnormal conditions, such as breakpoint hits or just interrupts in general. We will explore
this mechanism before getting to the debugging API.

Structured Exception Handling
Instead of signals, Windows uses Structured Exceptions (SEH) [23]. An exception is an
event that requires the execution of code outside the normal flow of control. There are
software exceptions, like throwing an exception explicitly or by the operating system, and
hardware exceptions that are caused by the CPU (e.g., interrupts). SEH unifies both of
these things into one, just like signals do.
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When an exception is triggered, control is transferred to the system. It saves all
necessary information that can later be used to continue execution from the point where
the exception was thrown. It also contains information about which type of exception was
thrown, if the execution can continue after handling the exception, the address where the
exception occurred, and more3. The system then searches for an exception handler that
will handle the exception. The search is performed in this order:

1. If the process is being debugged, the debugger is notified.

2. If the process is not debugged or the debugger does not handle the exception, the
frame-based exception handler is to be found4.

3. If no frame-based handler can be found, or no handler handles the exception, but
the process is being debugged, then the debugger gets notified a second time.

4. The system provides a default handler, which often is the termination of the program
via ExitProcess.

The debugger has two opportunities to handle the exception. The first-chance is before
the exception gets to the debuggee. This is intended for exceptions for which the de-
bugger is responsible, for example, breakpoint or single stepping. The debugger should
handle these because it is responsible for them, while the debuggee is not. The sec-
ond opportunity, called last-chance, is when a debuggee does not have an appropriate
frame-based handler to handle the exception. If no debugger were attached, the system
would have already used the default exception handler, which is often program termi-
nation. An example of an exception the debugger should not handle on first chance is
EXCEPTION_INT_DIVIDE_BY_ZERO. It should pass it along to the debuggee. If the debuggee
does not have any appropriate handler, the debugger will have a last chance to look at
the program’s state before it is killed [24].

Two important exception types for debugging, both of which should be handled on
first-chance:

EXCEPTION_BREAKPOINT - Raised when a breakpoint was encountered.

EXCEPTION_SINGLE_STEP - Raised when a hardware-supported single step was com-
pleted.

Debugging Events and Functions
Now that we have explained how a breakpoint may be signaled, let us look at other
tools that the Windows API gives us to allow debugger implementation. On Linux, we
had a single function called ptrace. The behavior of this function changed based on its
arguments. Windows, on the other hand, provides us with many functions, some of which
are:

DebugActiveProcess - Attaches the debugger to an active process.

DebugBreakProcess - Causes a breakpoint exception to occur in the specified pro-
cess. This passes control of the process to the debugger, if there is one.

3Refer to [23] for a full list.
4For detailed information about the handlers, see [23].
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Debugee Win32 API Debugger

CreateProcess

Create

CreateProcess returns

ContinueDebugProcess

WaitForDebugEvent
Exception

WaitForDebugEvent returns true

Debugger actions

ContinueDebugProcess

WaitForDebugEvent
Exception

Figure 2.9 A diagram representing the communication between the debuggee, the Windows
operating system, and the debugger [25].

WaitForDebugEvent - Waits for new debugging events (on Linux, we used waitpid,
which is more of a general-purpose function).

ContinueDebugEvent - Continue the process execution after processing a debugging
event (on Linux, we used the PTRACE_CONT).

OutputDebugString - Sends a string from the debuggee to the debugger.

ReadProcessMemory and WriteProcessMemory - Read and modify process virtual
address space. On linux we used PTRACE_PEEKTEXT and PTRACE_POKETEXT.

FlushInstructionCache - Flushes the instruction cache of the process. This should
be used when modifying the process text section because the old instructions may
still be cached.

The figure 2.9 depicts how a communication between the debugger, the Windows
operating system, and the debuggee can look. The debugger waits for debug events via
function WaitForDebugEvent. This function has a timeout parameter, so the debugger
can also do other things while it is waiting, like GUI updates.

Debugging Events
Debugging events are various incidents in the debuggee that causes the system to notify
the debugger [26]. These are stored in special DEBUG_EVENT structure, which is received
in WaitForDebugEvent call initiated from the debugger. This structure contains various
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typedef struct _DEBUG_EVENT {
DWORD dwDebugEventCode;
DWORD dwProcessId;
DWORD dwThreadId;
union {

EXCEPTION_DEBUG_INFO Exception;
CREATE_THREAD_DEBUG_INFO CreateThread;
CREATE_PROCESS_DEBUG_INFO CreateProcessInfo;
EXIT_THREAD_DEBUG_INFO ExitThread;
EXIT_PROCESS_DEBUG_INFO ExitProcess;
LOAD_DLL_DEBUG_INFO LoadDll;
UNLOAD_DLL_DEBUG_INFO UnloadDll;
OUTPUT_DEBUG_STRING_INFO DebugString;
RIP_INFO RipInfo;

} u;
} DEBUG_EVENT, *LPDEBUG_EVENT;

Figure 2.10 A structure that contains information about a debugging event.

information about the event. The internals can be seen in figure 2.10. These events include
loading and unloading a DLL, creating and exiting a process, sending debug strings via
the OutputDebugString, and last but not least, exception occurrence. Exceptions include
the EXCEPTION_BREAKPOINT and EXCEPTION_SINGLESTEP mentioned previously, which are
vital to the debugger.

Tying it all together

Now we have all the necessary building blocks to create a tiny Windows debugger. The
implementation itself would be very similar to the Linux one we presented in section 2.2.1.
To provide at least some idea, figure 2.11 contains an abbreviated main loop of the de-
bugger [27]. We need to handle all of the debugging events if we want the debugger to be
robust. For example, thread creation should be handled so that we may trace all threads
spawned by the debuggee.

2.3 Source Level Debugging

If we want to debug at the source code level, we must provide the debugger with additional
information because otherwise, it can only work with the generated machine code. For
instance, we somehow need to tell the debugger that the instruction at address 0xABCD
belongs to line 5 in the source code so that we may properly set a breakpoint at this line.
We also need to provide information about where some variable is located so that we may
display its value to the user. All this information is passed to the debugger together with
the executable, whose format we will describe next.
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void EnterDebugLoop(const LPDEBUG_EVENT DebugEv)
{

DWORD dwContinueStatus = DBG_CONTINUE; // exception cont.
for(;;)
{

WaitForDebugEvent(DebugEv, INFINITE);
switch (DebugEv->dwDebugEventCode)
{

case EXCEPTION_ACCESS_VIOLATION:
// First chance: Pass this on to the system.
// Last chance: Display an appropriate error.
break;

case EXCEPTION_BREAKPOINT:
// First chance: Display the current
// instruction and register values.
break;

// Other exception types like singlestep ...
...

}
// Other debug events
...

}
ContinueDebugEvent(DebugEv->dwProcessId,

DebugEv->dwThreadId,
dwContinueStatus);

}
}

Figure 2.11 An abbreviated example of a Windows Debugger loop, taken from [27].
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2.3.1 Executable File Formats
ELF is one of the executable file formats. The abbreviation ELF means Executable and
Linkable format. The file itself consists of sections, some of which are

.text - the executable code.

.data - allocated space and values of initialized static5 variables and other objects.

.bss - allocated space for uninitialized static variables.

.rodata - data that do not change for the entirety of the program lifetime, like
strings literals in the C language.

various debug sections like .debug_info, .debug_line etc.

For inspecting the ELF files, commands readelf [28] and objdump [29] may be used on
Linux systems. The ELF format also has a header, and all sections have their header
too. This contains information like the name of the section, the size of the section, etc.
The ELF format is not only used for executables but also for relocatable file, executable
file, and shared object file [30]. The sections themselves are often protected. For example,
the .text section can only be read and executed but cannot be written into. The .data
section can be read and written to but cannot be executed. The ELF also contains various
debug sections, so the debugging information is embedded in the executable itself.

ELF is not the only executable format. Others include the COFF and PE format,
which are used by Microsoft Windows, or the Mach-O, which is used by the MacOS
operating system. All of these formats use some kind of encoding for the debugging
information. ELF and Mach-O use the DWARF encoding.

2.3.2 DWARF
DWARF [31] is a debugging information format used to describe programs written in
procedural languages. It is primarily associated with the ELF file format. It aims to
support all different types of information that may be needed while debugging. It also
strives to encode this information in as much space efficient manner as possible [31]. This
can make it somewhat complex.

There are five versions of the standard. We will mostly talk about version 2 since
the others mainly add features to accommodate newer language features. The complete
changelog can be found in the text describing DWARF version 5 [32]. We provide many
examples of the information that DWARF encodes. For reading the DWARF informa-
tion from object files, we used the llvm-dwarfdump [33], objdump [29], and readelf [28]
tools to construct these examples. The information DWARF encodes is stored in vari-
ous debug sections if used in conjunction with the ELF standard. The Mach-O format
stores debugging information in a separate file. This file is still, however, split into several
sections.

5In this context, static means that the variable exists for the entire lifetime of the program.
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2.3.2.1 Line Number Information
Line number information needs to convey which line of code corresponds to an address
of a machine code instruction. The DWARF standard [31] mentions that encoding this
information would be possible in a matrix, with one row for each instruction. The columns
of the matrix would contain

the source file name,

the source line number,

the source column number,

whether this instruction is the beginning of a source statement,

whether this instruction is the beginning of a basic block6.

They, however, argue that such a matrix would be very big. The matrix is therefore
stripped of redundant information. For instance, an instruction whose row would be the
same as the previous one is not saved into the matrix. This still was not enough. Instead
of a matrix, they provide a virtual machine specification and a bytecode language that
one has to interpret to reconstruct this matrix and, consequently, to get the necessary
debugging information.

The virtual machine consists of following registers: address, file, line, column,
is_stmt, basic_block, and end_sequence. The program itself begins with a prologue.
This prologue contains the length of the program, version, length of the prologue, length
of instructions (so that it may be better compressed), and similar pieces of information.

Then the Standard opcodes are provided, which are instructions for the virtual machine.
These are mostly used for manipulating the registers of the machine or for creating a new
row from the values in the registers and appending it to the matrix [31].

It also has several Special opcodes, each of which does all of the following operations:

Add a signed integer to the line register.

Multiply an unsigned integer by the smallest length of an instruction and add the
result to the address register.

Append a row to the matrix consisting of the current values in registers.

Set the basic_block register to false.

All of these special opcodes always do these four operations. They only differ in what
values they add to the line and address register [31]. Those values are calculated from
the instruction opcode, which ranges from 10 to 255 in DWARF version 2. This is the
most common series of operations the virtual machine must do. Encoding it into a single
opcode makes the program extremely size efficient.

Observe the program in figure 2.12. A simple greeter-like program that displays the
name given to it as an argument. With the readelf utility program, we can inspect the
DWARF bytecode language describing the locations, which is shown in figure 2.13. The

6Basic block is a sequence of instructions that is entered only at the first instruction and exited
only at the last instruction [31]. In other words, all of the instructions in the basic block are executed
sequentially.
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first few lines of the example are explained below. We ignore the set column operations,
which are only used to make the location more precise.

0x41 - Jump to the beginning of the main function (i.e. 0x1139).

0x4c - Special opcode - Increment line by 1 and advance address by zero. Although
the advance address was essentially a noop, it was still more space efficient to use
special opcode because the advance_pc instruction DWARF offers would take up at
least two bytes (the opcode and the operand), whereas the special opcode occupies
only one.

0x4f - Special opcode - Increment line by 2 to 3 and advance address by 15 to
0x1148. This essentially skips the function prologue and advances to instruction
cmpl, which represents line if (argc < 2) of the program.

0x52 - Special opcode - Increment line by 1 to 4 and advance address by 6 to 0x114e.
This is the return 1; line of the program.

Remember that each of the special opcodes also creates a line in the matrix. As said, this
is extremely space efficient. DWARF stores this encoded information in the .debug_line
section.

2.3.2.2 Debugging Information Entry
The Debugging Information Entries, or just entries, are the building blocks of debugging
information in DWARF. Each entry has a tag and a series of attributes. The tag specifies
the class to which an entry belongs, like DW_TAG_subprogram, which is used for functions,
or DW_TAG_variable, which is used for variables. A complete list can be found in [31].
Those entries can be found in the .debug_info section [31].

The attributes themselves then convey some property of the entry, like the name and
the type of a variable or starting and ending address of a function. The entries form
a tree-like structure. Each entry is owned by one parent (excluding the top entry) and
can own multiple entries. These relations somewhat mimic the relations of the program
structures. For instance, a variable is owned by a function in which it was defined. There
are also other relations among the entries, not only ownership. With those relations in
place, the relation is a graph, not just a tree.

An example of DWARF entries can be seen in figure 2.14. The DW_TAG_pointer_type
is simple. Its attributes are only the size of the type and which type it points to. This is
encoded as an address to another entry. The type it points to is another entry. It only
contains information that its a const type, and again has a link to another entry. Finally,
the entry at 0x6b has a base type. It contains the size of the type, name, and encoding.

We also have the DW_TAG_SUBPROGRAM, which represents a function. It has many
attributes, like name, a path to the file where it was declared, on which line and column it
is located, at which machine code address the function begins and ends, and so on. This
entry also owns some other entries (indicated by indentation). Here, the children are the
parameters and variables of the function. Important information about variables is where
they are stored so that we may look up their value. We can also see that the variable
name has an attribute type, which points to the entry at address 0x8f, which is the entry
we were talking about previously when examining types.



26 Debugging Techniques

#include <stdio.h>
int main(int argc, char* argv[]) {

if (argc < 2)
return 1;

const char* name = argv[1];
printf("Hello, %s!\n", name);
return 0;

}

0000000000001139 <main>:
1139: 55 push %rbp
113a: 48 89 e5 mov %rsp,%rbp
113d: 48 83 ec 20 sub $0x20 ,%rsp
1141: 89 7d ec mov %edi,-0x14(%rbp)
1144: 48 89 75 e0 mov %rsi,-0x20(%rbp)
1148: 83 7d ec 00 cmpl $0x1,-0x14(%rbp)
114c: 7f 07 jg 1155 <main+0x1c>
114e: b8 01 00 00 00 mov $0x1,%eax
1153: eb 2c jmp 1181 <main+0x48>
1155: 48 8b 45 e0 mov -0x20(%rbp),%rax
1159: 48 8b 40 08 mov 0x8(%rax),%rax
115d: 48 89 45 f8 mov %rax,-0x8(%rbp)
1161: 48 8b 45 f8 mov -0x8(%rbp),%rax
1165: 48 89 c6 mov %rax,%rsi
1168: 48 8d 05 95 0e 00 00 lea 0xe95(%rip),%rax
116f: 48 89 c7 mov %rax,%rdi
1172: b8 00 00 00 00 mov $0x0,%eax
1177: e8 b4 fe ff ff call 1030 <printf@plt >
117c: b8 00 00 00 00 mov \$0x0,%eax
1181: c9 leave
1182: c3 ret

Figure 2.12 A program in the C programming language and the same program compiled into
x86-64 assembly via the GCC compiler.
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0x3f: Set column to 34
0x41: Extended opcode 2: set Address to 0x1139
0x4c: Special opcode 6: advance Address by 0 to 0x1139 and Line by 1 to 2
0x4d: Set column to 8
0x4f: Special opcode 216: advance Address by 15 to 0x1148 and Line by 1 to 3
0x50: Set column to 16
0x52: Special opcode 90: advance Address by 6 to 0x114e and Line by 1 to 4
0x53: Set column to 17
0x55: Special opcode 104: advance Address by 7 to 0x1155 and Line by 1 to 5
0x56: Set column to 5
0x58: Special opcode 174: advance Address by 12 to 0x1161 and Line by 1 to 6
0x59: Set column to 12
0x5b: Advance PC by constant 17 to 0x1172
0x5c: Special opcode 146: advance Address by 10 to 0x117c and Line by 1 to 7
0x5d: Set column to 1
0x5f: Special opcode 76: advance Address by 5 to 0x1181 and Line by 1 to 8
0x60: Advance PC by 2 to 0x1183
0x62: Extended opcode 1: End of Sequence

Figure 2.13 A DWARF description of mapping source lines to addresses for the program in
figure 2.12.

2.3.2.3 Locations of Variables
Locations are one of the most complicated types of debugging information in the DWARF
standard. Like with line mapping, described in section 2.3.2.1, a virtual machine is needed
to decode this information. Variables are generally stored in one place. This can be a
memory, register, or stack. Sometimes, however, the location of an object can change
throughout its lifetime, it may not be present at all since it was optimized away, it can be
split into several locations, or it might be a reference to some other object. The fact that
an object changes location throughout its lifetime seldom happens [34], but DWARF is
nevertheless prepared for it [31].

Contrary to the virtual machine described in the line encoding section, which was
register-based, this one is stack-based. This means that most operations take their
operands from the stack and push the result back onto the stack. More about stack-
based virtual machines can be discovered in [35]. DWARF calls those instructions expres-
sions [31]. The last value on the top of the stack after the VM runs is considered to be
the resulting value (this can be an address of an object, the value of an array bound, the
length of a dynamic string, and so on) [31].

For example, in the figure 2.12, there is the DW_OP_fbreg -24, this pushes value at
offset −24 by the register specified by a descriptor in DW_AT_frame_base, which often is
a base pointer to the stack. Since there are no more expressions, the computed value on
the top of the stack is the resulting location of the variable that the debugger will get to
use.

There are many types of expressions, like arithmetic operations, stack manipulation,
control flow operations, and last but not least, the specifications of the location. We have
already provided the example with the base pointer to the stack, let us look at some more
examples, mostly taken from [31]:

DW_OP_reg3 - The value is in register 3.
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0x6b: DW_TAG_base_type
DW_AT_byte_size (0x01)
DW_AT_encoding (DW_ATE_signed_char)
DW_AT_name ("char")

0x72: DW_TAG_const_type
DW_AT_type (0x0000006b "char")

0x8f: DW_TAG_pointer_type
DW_AT_byte_size (8)
DW_AT_type (0x00000072 "const char")

DW_TAG_subprogram
DW_AT_external (true)
DW_AT_name ("main")
DW_AT_decl_file ("/home/gregofi1/tmp/main.c")
DW_AT_decl_line (2)
DW_AT_decl_column (0x05)
DW_AT_prototyped (true)
DW_AT_type (0x00000058 "int")
DW_AT_low_pc (0x0000000000001139)
DW_AT_high_pc (0x0000000000001183)
DW_AT_frame_base (DW_OP_call_frame_cfa)
DW_AT_call_all_tail_calls (true)
DW_AT_sibling (0x000000e0)

DW_TAG_formal_parameter
DW_AT_name ("argc")
DW_AT_decl_file ("/home/gregofi1/tmp/main.c")
DW_AT_decl_line (2)
DW_AT_decl_column (0x0e)
DW_AT_type (0x00000058 "int")
DW_AT_location (DW_OP_fbreg -36)

DW_TAG_formal_parameter
DW_AT_name ("argv")
...

DW_TAG_variable
DW_AT_name ("name")
DW_AT_decl_file ("/home/gregofi1/tmp/main.c")
DW_AT_decl_line (5)
DW_AT_decl_column (0x11)
DW_AT_type (0x0000008f "const char *")
DW_AT_location (DW_OP_fbreg -24)

Figure 2.14 A part of DWARF debugging information entries for the program in figure 2.12.
The indentation of the entries shows a hierarchy.
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DW_OP_addr 0xABCD - The value of a static variable is at address 0xABCD.

DW_OP_bregx 54 3; DW_OP_deref - Adds 54 to value in register 3. This should yield
an address. The value at the location to which the yielded address points is then
pushed onto the stack. This can be used for recording information about references
and pointers.

DW_OP_reg3; DW_OP_dup; DW_OP_add - Fetches value from register 3 and pushes it
onto the stack. This value is then copied and the copy is pushed onto the stack.
Finally, it pops two values from the stack, adds them together, and pushes them
back onto the stack7.

With this computational power, we can save any information we need. There are many
more expressions, all of which can be found in [31]. An example of an interpreter for this
can be found in the LLDB source code [36].

2.3.2.4 Call frames
Debuggers often need to know through which function calls the executed program went
to arrive at a certain state [31]. For each function call, there is a stack frame saved on the
stack. A Stack frame is a part of the stack memory that contains information relevant to
the function invocation. An example of a stack frame can be seen in figure 2.15.

Return address
(8B) BP backup (8B) Potential backup

of other registers
Allocated space
for variables

Figure 2.15 Basic stack layout after function prologue, disproportional.

Stack frames mostly consist of the following:

Return address - This contains the location from which the program was called so
that after the function finishes, it may properly return to that location. This fact
was also used in our step-out implementation described in section 2.2.1.

Base pointer backup - Backup of the value in the base pointer, which was set by the
previous function. This register needs to be preserved between calls, which is why a
backup is made. Other registers might need to be saved for the same reason.

Allocated space for variables - A space for local variables.

Stack frames are described in more detail in [3], where they are called activation records.
We also provide an example of how a function prologue and epilogue look in figure 2.16,
so that one may get a better feel about how such a stack frame comes to fruition.

Debuggers need to do a so-called stack unwinding. Unwinding essentially means going
to a state where the previous stack frame is the most recent. This needs to be done
several times to get the whole chain of function calls which led to the current state of
the program. We can get the last stack frame by looking at the current value of the base
pointer. But to get to the penultimate one is not as easy. We need to know exactly where

7Artificial example just to show the power of the language.
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0000000000001183 <foo>:
0x1183: push rbp ; Save old stack frame pointer
0x1184: mov rbp, rsp
0x1187: sub rsp, 0x18 ; Allocate space on the stack

<body ...>
0x11b1: leave ; deallocate and restore regs
0x11b2: ret

Figure 2.16 A prologue and epilogue of a function, shown in assembly.

was the backup of the base pointer stored so that we may simulate the unwinds [31]. We
might also need the values of other registers at various points throughout the program.

DWARF proposes a table. In each row, there is an address of a location in the program,
a location of a stack frame, and values of other registers for that location. However, such
a table would be very large, so DWARF again uses a virtual machine for the construction
of the table, since many columns in one row would have the same values in the following
rows [31]. The location of a stack frame can be described either by a register and a signed
offset which are added together, or a DWARF expression may be used (the ones used to
describe variable locations).

Figure 2.17 contains an example of the encoding of this information and also the
decoded values for the program in figure 2.16. The advance_location adds a new row to
the matrix, with the only thing changing from the previous row being the location value.
The def_cfa_offset specifies that the CFA (current stack frame) is at the provided offset
from the same register it was offseted in the previous row. We can see that in the example
on line 2, the offset changes from 8 to 16, but the register stays the same. This is apparent
in the decoded information where on the address 0x1184, the CFA changed from RSP + 8
to RSP + 16. This happened because the push rbp advanced the stack pointer by eight
bytes.

On the contrary, the def_cfa_register changes the register but keeps the offset.
This happens when the instruction mov rbp, rsp is executed. From that point, the stack
frame is at sixteen byte offset from the base pointer. This holds until the epilogue, where
the old stack pointer is restored. In the example in the decoded information, many more
registers are missing. This is because their value did not change across the function, so
there was no need to save information about them.

DWARF offers more instructions for manipulation, for a complete overview and an-
other example consult [31]. With this information, DWARF can describe a way to simulate
a stack unwinding without touching the state of the debuggee.

2.3.2.5 Other Debugging Information
The DWARF standard has information about compilation units since object files may be
derived from multiple compilations units [31]. It also has information about subroutines
and inlined subroutines, lexical blocks, try-and-catch blocks, and many other constructs.
These are not special in any way. We have seen a small example in figure 2.14. They
mainly store the beginning and end and some other information. They also contain various
information about macros so that the debugger can work with the original code before
the macro expansion.
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... FDE cie=00000000 pc=00001183...000011b3
DW_CFA_advance_loc: 1
DW_CFA_def_cfa_offset: +16
DW_CFA_offset: RBP -16
DW_CFA_advance_loc: 3
DW_CFA_def_cfa_register: RBP
DW_CFA_advance_loc: 43
DW_CFA_def_cfa: RSP +8

0x1183: CFA=RSP+8: RIP=[CFA-8]
0x1184: CFA=RSP+16: RBP=[CFA-16], RIP=[CFA-8]
0x1187: CFA=RBP+16: RBP=[CFA-16], RIP=[CFA-8]
0x11b2: CFA=RSP+8: RBP=[CFA-16], RIP=[CFA-8]

Figure 2.17 A DWARF stack frame information about the program in 2.16. Top part con-
tains the encoded program for virtual machine, bottom part contains the decoded table from
interpreting the program. Abbreviated.

It also contains many type entries. Those are split into different categories. We present
some of the most common:

Base types - Provided by the language, like int, char.

Modifier types - Modifies some existing type, like type qualifiers from C (const,
volatile and mutable), or pointers.

Array types - A sequential storage space containing objects of the same type. Mul-
tidimensional arrays are considered a special type. An interesting attribute that a
multidimensional array has is ordering - either column-wise or row-wise. This is not
relevant to C, since it has no notion of a multidimensional array.

Structure, Union, and Class types - User-defined types that pack together several
different types. Information is provided about the members, especially the bit offset
at which they reside in the structure and in which order they were declared. In
addition, the size of the type is specified - if it can be determined at compile time
(In C, it cannot be determined for forward declarations). For C++, information
about inheritance, like deriving, accessibility, and if the inheritance is virtual, is
provided.

Enumeration type.

Subroutine type - Used for types of functions in C. However, for the functions them-
selves, their type is specified as return type. Types of their parameters are specified
in the parameters themselves since they are DIEs and are children of the function.
We showed this in figure 2.14. This subroutine type is, for example, used if one
creates a pointer to a function. Then the type of that is a pointer to the subroutine
type. An abbreviated example can be seen on 2.18.

We have described the most interesting parts of the DWARF standard. But all this
information must be created by a compiler so that the program may be debugged at the
source level. In the next section, we will briefly explore compilers and how they handle
debugging information.
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0x138: DW_TAG_subroutine_type
DW_AT_type (0x00000131 "int")
DW_AT_sibling (0x14c)

0x141: DW_TAG_formal_parameter
DW_AT_type (0x131 "int")

0x146: DW_TAG_formal_parameter
DW_AT_type (0x14c "double")

0x153: DW_TAG_pointer_type
DW_AT_byte_size (8)
DW_AT_type (0x138 "int (int, double)")

0x124: DW_TAG_variable
DW_AT_name ("xx")
DW_AT_type (0x153 "int (*)(int, double)")
...

Figure 2.18 Example of a subroutine type and a pointer to function type in DWARF, abbrevi-
ated.

2.4 Compilers
A compiler is a program that transforms the source code into some other form, most often
into machine code or assembly. Compilers are very complicated pieces of software. Often,
they are made of several parts, the general structure can be seen in figure 2.19. We will
briefly explore these stages.

It all starts with the lexical analysis, which groups separate symbols into groups called
tokens. For example the code

foo = bar(1 + 2);

might be translated into tokens like this
<id:"foo"> <assignment -operator> <id:"bar">
<left-bracket> <int-number:1> <plus-operator>
<int-number:2> <right-bracket> <semicolon >

The Syntactic analysis then works with these tokens and transforms them into some
other representation. This is most often an abstract syntax tree (abbr. AST, figure 2.20).
It also checks that the source code complies with the language’s grammar. With AST, we
already lose the locations of the language constructs in the source code, so for debugging
information to work, it needs to be kept in the AST together with the nodes.

The Semantic analysis then checks that the program is semantically consistent. For
example, that used variable has been declared before. Additionally, it gathers type infor-
mation and saves it for later use during the IR generation [3].

After that, intermediate code generation comes into play. It converts the AST into
some other representation, most commonly called IR, which means intermediate repre-
sentation. IR should be closer to the machine code to be easily translated but is still
machine independent. It also should retain some high-level properties that make it easier
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Lexical Analyzer

Syntactic Analyzer

Semantic Analyzer

Intermediate Code Generator

Machine-Independent
Optimizations

Code Generator

Machine-Dependent Optimizations

Symbol Table

Figure 2.19 Simplified structure of a compiler [3].

=

id:foo call:bar

+

1 2

lhs rhs

expr

rhslhs

Figure 2.20 Simplified example of an abstract syntax tree.
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define dso_local i32 @_Z6squarei(i32 %0) {
%2 = alloca i32, align 4
store i32 %0, i32* %2, align 4
%3 = load i32, i32* %2, align 4
%4 = load i32, i32* %2, align 4
%5 = mul nsw i32 %3, %4
ret i32 %5

}

Figure 2.21 Simplified example of LLVM IR, showing a function that calculates a square of two
numbers.

to work with, like types and functions, but should be language-independent. There are
many types of IR. One of the most popular compilers, LLVM, uses single static assign-
ment (SSA) and satisfies all of the above [37]. An example of LLVM IR can be found in
figure 2.21. Compilers perform most optimizations on this intermediate representation.

Finally, IR is translated directly to the target machine code or possibly assembly. This
stage is called code generation. Even though IR can seem very similar to assembly, there
are still some things to take care of. For example, SSA IR does not have registers. It uses
an unlimited number of variables. Other architectures might have some other traits that
differentiate them from the IR, and they all have to be accounted for when generating
code.

2.4.1 Modular Design
The main advantage of using an IR is that there is a common ground for every language.
Imagine we write a compiler for the C language. We need to write all five parts from
figure 2.19. If we later decided that we also wanted to create a compiler for Haskell, we
just need to write everything up to the IR translation. Once we can translate Haskell
into the IR, we can reuse the previous part of the compiler to compile to machine code.
This also works the other way around. If we compile IR to the machine code that works
with the x86-64 architecture and we want to compile to ARM, we need to create the code
generation part for the ARM architecture. There is no need to write the whole compiler.
Also, most optimizations are done on the IR level, saving a lot of development time. The
parts of the compiler which are dependent on the source language are called frontend
(Syntax, Semantic, and IR translation), and the parts that are dependent on the target
are called backend (Code generation).

This is widely used in practice. The LLVM [37] project is a compiler backend. It
uses its own IR (as was mentioned in figure 2.21). It can compile this IR into many
targets, including x86-64, ARM, and Spark. The Clang project is a compiler frontend
for C, C++, and Objective-C languages. It translates these languages to the LLVM IR.
Other frontends for LLVM also include ghc, which is a Haskell compiler, or rustc, which
is a Rust compiler. With LLVM, creating a new programming language comes down to
just writing the front end.
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2.4.2 Preserving Debugging Information
With IR translation, some of the information from the AST is stripped away. The IR
must encode how some of the properties of the AST map onto the IR. We will give a
glimpse of how LLVM IR handles this.

Since the LLVM IR is transformed into many existing architectures and many very
different existing programming languages are compiled into it, LLVM debug information
does not put any restrictions on the flavor of the programming language. A high priority of
the LLVM debugging information (LDI) is to make it interact well with optimizations [38].
The LDI guarantees the following:

1. LDI always provides information to accurately read the source-level state of the
program regardless of which LLVM optimizations have been run [38]. Emphasis has
been put on the word read, because it is not always possible to, for example, change
the value of a variable because it might have been completely optimized away.

2. LDI does not prevent optimizations from happening.

3. LLVM optimizations may be upgraded to be aware of debugging information. This is
sometimes necessary, especially if the optimizations are aggressive [38]. LLVM pro-
vides a guide for developers of optimization passes specifying how to handle certain
situations [39]. For example, an accurate stack trace is desired even though inlining
or tail call optimization was applied [38].

4. The LDI is optimized with the rest of the program (e.g., unused information is
removed).

If one compiles the code with optimizations and with debugging information, the same
optimizations must be applied that would be applied if no debugging information was
generated (running clang -O3 -g and clang -O3 must result in the same optimizations
applied). The code must also be debuggable with optimizations enabled and provide
correct information. For example, suppose a variable is completely optimized out. In that
case, the debugger may present the message optimized out, which reduces the amount
of debugging information available to the developer. However, the information is still
correct and not misleading. Displaying an invalid value must not happen, even with
optimizations [38].

In figure 2.22, we provide an example of LLVM IR with debugging information. It is
encoded in the form of metadata, starting with an exclamation mark. LLVM IR also con-
tains intrinsic functions to record debug information pertaining to variables. The function
from the example llvm.dbg.declare receives the address of the variable, the description
of the variable, and its location in the form of a complex expression. Complex expressions
are similar to the DWARF expressions used for locations described in section 2.3.2.3.
There is also the llvm.dbg.address, which has the same role but can be used multi-
ple times for one variable. This is primarily used after optimizations to describe how a
variable’s address changes throughout the program.

The debugging information in the figure is otherwise mostly self-explanatory. The
variables and locations also have their scope included because LLVM IR does not have
any notion of scoping. Finally, LLVM provides consumers, which are able to transform
the LLVM IR debugging information into some other format, like DWARF.
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There are some more nuances that need to be dealt with, especially considering oper-
ations like instruction scheduling and register selection. This is beyond the scope of this
thesis and is described in [38].

2.5 Existing Debuggers
In this section, we will focus on existing debugger implementations and what each brings
to the table. We will not be discussing every feature of said debuggers since even some
of the manuals are longer than this thesis8, but point out the ones that were interesting
to this thesis. Each debugger discussed here implements, at the very least, breakpoints,
single-stepping, reading and writing into program memory and registers.

2.5.1 LLDB
The LLDB [7] debugger is part of the LLVM tools collection [37]. We will describe it
more thoroughly than the other ones, mainly because it is a modern piece of software
compared to the GDB debugger, and we are most familiar with it. Supported languages
for debugging are the C, Objective-C, and C++ languages (LLVM tools support mainly
those three languages) on desktop and iOS devices. It works closely with the Clang
compiler, which is also part of LLVM, and the LLVM disassembler. Thanks to this, it
stays very up-to-date with current C++ standards. The source code is kept modular with
a plug-in architecture. It is both a source and instruction-level debugger.

LLDB offers a C++ API through which one can interact with the debugger. For
instance, the command line application through which one can utilize the debugger uses
this API. The API also offers a bridging interface for Python. Thanks to this, one can use
LLDB not only as a debugger but also, for example, as a library to disassemble machine
code [7].

LLDB provides a command line interface (CLI) through which one can use the debug-
ger directly. The CLI provides a variety of commands that one can use. Some examples
include

process launch - Starts the debuggee.

process attach --pid 123 - Attaches to the process with PID 123.

thread step-in - Source level single step in currently selected thread.

thread step-inst - Instruction level single step in currently selected thread.

thread until 12 - Run until line 12 is hit or the current function returns in cur-
rently selected thread.

breakpoint set --name foo - Set breakpoint on all functions named foo.

breakpoint enable 1 - Enable breakpoint 1.

watchpoint set variable x - Watch a variable x for any writes.

All commands are of the following structure:
8Most notably the GDB manual [40].
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define dso_local i32 @main() #0 !dbg !10 {
%1 = alloca i32, align 4
%2 = alloca i32, align 4
%3 = alloca i32, align 4
store i32 0, ptr %1, align 4
call void @llvm.dbg.declare(metadata ptr %2,

metadata !15, metadata !DIExpression()), !dbg !16
store i32 2, ptr %2, align 4, !dbg !16
call void @llvm.dbg.declare(metadata ptr %3,

metadata !17, metadata !DIExpression()), !dbg !19
store i32 1, ptr %3, align 4, !dbg !19
%4 = load i32, ptr %2, align 4, !dbg !20
%5 = load i32, ptr %3, align 4, !dbg !21
%6 = add nsw i32 %4, %5, !dbg !22
ret i32 %6, !dbg !23

}

declare void @llvm.dbg.declare(metadata , metadata , metadata) #1

!0 = distinct !DICompileUnit(language: DW_LANG_C99 ,
file: !1, producer: "clang version 15.0.7",
isOptimized: false, runtimeVersion: 0,
emissionKind: FullDebug , splitDebugInlining: false,
nameTableKind: None)

!1 = !DIFile(filename: "main.c", directory: "/home/gregofi1/dev",
checksumkind: CSK_MD5,
checksum: "408b866a5672c0f12dbc2c9bf3baaa58")

!2 = !{i32 7, !"Dwarf Version", i32 5}
!3 = !{i32 2, !"Debug Info Version", i32 3}
!10 = distinct !DISubprogram(name: "main", scope: !1,

file: !1, line: 1, type: !11,
scopeLine: 1, spFlags: DISPFlagDefinition ,
unit: !0, retainedNodes: !14)

!11 = !DISubroutineType(types: !12)
!13 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
!15 = !DILocalVariable(name: "x", scope: !10, file: !1, line: 2, type: !13)
!16 = !DILocation(line: 2, column: 9, scope: !10)
!17 = !DILocalVariable(name: "y", scope: !18, file: !1, line: 4, type: !13)
!18 = distinct !DILexicalBlock(scope: !10, file: !1, line: 3, column: 5)
!19 = !DILocation(line: 4, column: 13, scope: !18)
!20 = !DILocation(line: 5, column: 16, scope: !18)
!21 = !DILocation(line: 5, column: 20, scope: !18)
!22 = !DILocation(line: 5, column: 18, scope: !18)
!23 = !DILocation(line: 5, column: 9, scope: !18)

Figure 2.22 An example of LLVM IR with debugging information. The lines beginning with
exclamation mark are metadatas.
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<noun> <verb> [-options [option-value]] [argument [argument...]]

Some of the commands have shorter forms, like step for thread step-in. Using an
unambiguous prefix works as well, like br s -M foo for breakpoint set --name foo.

The debugger also has an expression parser. While debugging, one can write an
expression, and the debugger interprets that expression and prints the result back. An
example of usage can be to look at some value in an std::map structure, which can be
achieved by using the frame variable map_var["Value"] command. The debugger uses
Clang, the C++ compiler, for parsing expressions. This can be used in conjunction with
backticks in commands. For example, the register write rax `loc` command will
write the value of variable loc into the register rax.

2.5.2 GDB
The GNU Project Debugger (GDB) [40] is a source and instruction-level debugger. It is
very similar to the LLDB debugger. It, however, supports more languages, like C, C++,
D, Fortran, Go, Objective-C, Pascal, Rust, and some others. GDB is written in C/C++.
Like LLDB, it offers a CLI application and also has an API for Python. It is one of the
oldest debugging software and, from our experience, the most reliable one on the Linux
systems.

An interesting feature GDB offers is reverse debugging. This allows us to go back in
the execution flow. For example, the command reverse-next returns to the previous line.
A command to record executed instructions must be explicitly invoked. GDB then sets
the state of the program depending on the record. It still is not fully supported, and from
our limited testing, cannot handle even some basic statements, like the usage of printf
function in a program written in the C language.

2.5.3 IDA Free
The primary role of IDA is to be an interactive disassembler, but it also offers some
instruction-level debugging capabilities. It is a tool that is mainly used for reverse engi-
neering. An example of interactivity is that it is possible to rename a location like [RBP
+ 4] to counter to make the assembly more readable. It can also follow references (like
jumps or calls), create a control flow graph from the assembly, and much more. We show
an example of an iterative factorial function disassembled via IDA in figure 2.23. In the
figure, the variable locations were renamed to represent their semantic meaning. This has
to be done by hand. IDA itself can sometimes know that a variable is stored in some
location but it does not know its semantic meaning. IDA is an invaluable asset in reverse
engineer’s toolkit for static analysis.

2.5.4 Microsoft Visual Studio Debugger
Microsoft Visual Studio is an Integrated Development Environment. It packs together
many tools that help develop programs for the Windows Operating System. It mainly
supports the C# and C++ languages. It also has a built-in debugger. It is both a source
and assembly-level debugger.

In figure 2.24, we show an example of how the GUI looks. On the left side, we can see
the program’s source code. The red points are the breakpoints. The arrow signalizes the
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Figure 2.23 An example of a factorial program disassembled with IDA.
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Figure 2.24 An example of debugging factorial program with MSVC debugger.

current point in the execution. On the right side, we can see the corresponding assembly.
The assembly contains the lines from the source code to make the mapping between them
more apparent. The value and type of every variable in the scope are displayed on the
bottom left. A call stack is shown in the middle, currently only having main and factorial
calls and locations from where those calls happened. On the right side, values in registers
can be seen. This is only a basic overview of the features, as there are many more [41].



Chapter 3

Tiny x86

At the FIT CTU, in the NI-GEN course, students have to write a compiler. The Tiny x86
(T86) architecture was created to make code generation easier. This allows the students
to focus on more interesting parts of compiler design, such as optimizations. To be able to
execute programs written using this architecture, a virtual machine was created. This was
all done as a part of a master’s thesis made by Ivo Strejc [42]. This chapter explores said
architecture and the virtual machine. It also delves into the existing debugging capabilities
of said virtual machine.

3.1 The T86 Instruction Set Architecture
The primary goal of the T86 architecture is to be an educational one. The Virtual Machine
made for the ISA allows configuring the number of registers, the RAM size, or the length
of each instruction. This allows the students to develop their compilers incrementally.

The T86 uses a Harvard architecture, meaning the data and instructions are physically
separated. Memory is addressable by 64-bit blocks, not by 8-bit blocks, as is the custom
in modern computers. It shares some of the registers we saw on x86-64: the program
counter (IP), the stack pointer (SP), the base pointer (BP), and the flags register. The
intended roles for these registers are the same as on x86-64 architecture. It also has other
general-purpose registers. As previously said, the amount of these is configurable. The
registers stores 64-bit values. It also has float registers, which can store 64-bit float values.
These are separated from the standard registers, similarly to x86-64.

The addressing modes, or what kind of operands instructions can have, include im-
mediate values, registers, and memory accesses. They can also be combined in various
ways, like [R0 + R1 * 2], or [R0 + 10 + R1 * 2]. The addressing modes are, however,
not arbitrary, [R0 + R1 + R2] is not a correct addressing mode for any instruction in
the T86 architecture. The allowed addressing modes also change for each instruction.
For example, the MOV instruction allows a vast range of addressing modes, while the PUSH
instruction only allows a register and an immediate number. For a full list, refer to [42].
The instructions that are taken over from x86-64 often have more restrictive addressing
modes than in x86-64. For example, the add instruction can take a memory offset as a
destination operand in x86-64, but in T86, it can only take registers.

Other than that, the ISA is mainly a subset of the x86-64 most used instructions,
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MOV R0, 1
MOV R1, 50
ADD R0, R1
MUL R0, 5
HALT

Figure 3.1 A small example of a program in the T86 architecture.

many of which we have already seen in various examples throughout the thesis. Interesting
exceptions are the IO instructions - PUTCHAR and GETCHAR, which allow for very primitive
input and output handling. Also, a DBG and BREAK instructions are defined. These are
used for debugging, but in a very different way than we have seen in previous sections.
We will touch upon them when discussing the virtual machine implementation since they
are very much tied to it. A small sample of a T86 program can be seen in figure 3.1.

3.2 T86 Virtual Machine
The primary objective of the virtual machine is to replicate the CPU as accurately as
possible without prioritizing execution speed. For instance, the virtual machine simulates
the out-of-order technique briefly described in section 2.1.2. The purpose of the virtual
machine is to allow the students to gain a deeper understanding of the effects of pipeline
stalls and similar events on program speed. The virtual machine is able to generate
statistics that provide information about these factors and how much they influenced the
speed of the generated program.

The virtual machine (VM) is implemented in C++, using the newer standards up to
C++17. The VM offers only a single interface, and that is the ProgramBuilder. This
is a class through which one may construct a program for the T86 VM. An example of
how to use this class is in figure 3.2. Currently, there is no other way for users to run
programs in the VM. This means that the students are tied to the C++ language, or use
some bindings if they want to use another language.

The Cpu class is the backbone of the interpreter. It is responsible for running the pro-
gram. It has a halted function, which returns true if the Cpu executed a HALT instruction.
The tick performs one tick of the CPU. This does not mean that one instruction gets
executed. The Cpu simulates a superscalar CPU, so one tick is one move in the pipeline.
The while loop in the figure 3.2 shows to run a T86 program via the Cpu class.

3.2.0.1 Debug Instructions
The VM offers some limited debugging capabilities. It has the DBG and BRK instructions.
The DBG instruction takes as an operand a function. The function has the following
signature: void fun(Cpu&). This function then gets executed when the instruction is
hit. This can prove helpful in inspecting the internal state of the CPU. In figure 3.3, we
show a possible usage of this instruction. The BRK instruction works similarly. It, however,
has no operand. Instead, a function must be provided before execution to the CPU itself.
BRK then always runs this function when hit.

Such debugging capabilities can be helpful but quickly prove insufficient. For example,
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ProgramBuilder pb;
pb.add(MOV{Reg(0), 50);
pb.add(PUTCHAR{Reg(0)});
pb.add(HALT{});
auto program = pb.program();
Cpu cpu;
cpu.start(std::move(program));
while (!cpu.halted()) {

cpu.tick();
}

Figure 3.2 Simple example of how to create and run a simple program using the T86 virtual
machine.

pb.add(DBG{[](Cpu& cpu) {
if (cpu.getRegister(Reg{0}) == 0) {

std::cerr << "Register 0 is set to zero!\n";
}

});

Figure 3.3 Adding a DBG instruction into the T86 program using the ProgramBuilder.

when a step-by-step inspection is sought, a debug instruction must be placed at every
second line of the program. Also, interactivity is not present. However, this function can
accept input, so one could create a robust enough to handle register and memory writing.
An idea of how this could be done is illustrated in 3.4 via the BRK instruction.

This still leaves much to be desired. Not to mention placing the debug instruction can
prove very bothersome.
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cpu.connectBreakHandler([](Cpu& cpu) {
char command;
std::cin >> command;
if (command == 'c') return; // continue
else if (command == 'r') { // Read register

int num;
std::cin >> num;
int regval = cpu.getRegister(num);
std::cerr << std::format("Register {} = {}\n",

num, regval);
} else if (command == 'w') { // Write register

int num;
int val;
std::cin >> num >> val;
cpu.setRegister(Reg{num}, Reg{val});

}
... // Other commands

});

Figure 3.4 Small debugger implementation using T86 BRK instruction, abbreviated.
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Implementation

In this chapter, we describe how we went about the implementation of the debugger and
reason about the design choices we made. Also, we describe which parts of the virtual
machine were modified or added to allow the implementation of the debugger.

4.1 T86 ISA Extensions
In chapter 3.2, we showed how to build a program for the T86 VM with the existing
builder interface. To allow the usage of other programming languages, we have created
an ELF-like format for the T86 executables. The format is a text one, making it easy to
use. An example of a program in said format is shown in figure 4.1. It is very similar to
the assembly we have shown in previous sections. Thanks to this, students can implement
their compiler in any programming language they want and emit the T86 program in this
format as a text file. An unfortunate side effect is that we can no longer use the DBG
instruction. However, the debugger we will later present will be much more powerful than
the said instruction.

As can be apparent from the example, we also use sections. The .text section is the
only mandatory one. It contains the instructions that will be executed. Another one is
the .data section. Here, either raw numbers or strings can be written. The contents of
this section are then loaded by the VM and stored into the memory, beginning at memory
cell 0 and upwards. There are also debug sections, which we will present when discussing
debugging information.

We will also add two new instructions. First is the PUTNUM instruction, which prints
the numerical value in the register and a newline. This is intended as a very primitive
debug instruction and to ease the automated testing of the compiler. The only other
way of output was to print a char which was represented by the ASCII value. With this
instruction, students can bootstrap and test the basic implementation of their compiler
more easily.

Another one is the BKPT instruction. This instruction is similar to the INT3 instruction
from x86-64 or the BKPT instruction from ARM. It is a software breakpoint. The virtual
machine has no support for interrupts, which are needed for debugging to work. This will
be the focus of the next section.
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.data
"Hello, World!\n"

.text
0 MOV [BP - 1], 0
1 JMP 8
2 MOV R0, [BP - 1]
3 MOV R1, [R0]
4 PUTCHAR R1
5 MOV R0, [BP - 1]
6 ADD R0, 1
7 MOV [BP - 1], R0
8 MOV R0, [BP - 1]
9 CMP R0, 13
10 JLE 2
11 HALT

Figure 4.1 Example of an T86 program which prints ”Hello, World!”.

4.2 T86 Debugging Support
We could bake the debugger into the virtual machine itself, which would likely be the
simplest way to implement it. However, the goal of the debugger is not only to ease the
code generation part but to be a learning point so that students might grasp how a real
debugger works1. Because of this, we aim to simulate the real-world debuggers as closely
as possible. The compilers may also have more targets in the future, not just the T86
VM. If we made the debugger part of the T86 VM, we could not use it for a possible new
virtual machine. In conclusion, the virtual machine and the debugger will be two entirely
different programs and, as such, two completely different processes.

In the debugger implementation for Linux, the subject of section 2.2.1, we described
how an operating system’s kernel allows the debugger’s implementation via a specific API.
There is no operating system between the virtual machine and the program. Still, we will
strive to make the API similar to the ptrace API. The debugger and the VM will have to
communicate together somehow.

Both the VM and the debugger use an abstract class representing an interface that
provides two methods, Send and Receive. The implementation of this interface then
handles the concrete way of communication. The debugger and VM do not care about
it; they merely use these two methods. There are currently two implementations of this
interface. One is using network communication through sockets. This way, the debugger
may attach to an existing process, even on an entirely different computer. It, however,
has a disadvantage. The messages sent are often short and we need to send a lot of them.
This proved too slow, even with few messages being sent. The second implementation is
via threads. The debugger runs the VM in another thread, and they communicate via
shared queues. This is much faster and allows the debugger to run the process by himself,
making it easier to use and behave like real-world debuggers.

The format of the communication is a text one, merely because of the ease of use as
opposed to binary format. It is also clearer to see what is happening. The commands

1The VM followed the same philosophy.
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that the debugging API of the virtual machine offers are

PEEKREG x - Return values of all normal registers.

POKEREG x y - Set the value in register x to y.

PEEKFLOATREG - Return values of all float registers.

POKEFLOATREG x y - Set the value in float register x to y.

PEEKDEBUGREG - Return values in all debug registers.

POKEDEBUGREG x y - Set the value in debug register x to y.

PEEKDATA x cnt - Return values in memory at addresses x to x+ cnt− 1.

POKEDATA x y - Write a value y into memory at address x.

PEEKTEXT x cnt - Return instructions from x to x+ cnt− 1.

POKETEXT x ins - Rewrite the instruction at address x with the newly supplied
instruction.

CONTINUE - Continue the execution.

TERMINATE - Stop the execution, terminating the virtual machine.

REASON - Return the reason why the program stopped.

SINGLESTEP - Do a native level single step.

TEXTSIZE - Return the size of the program.

An example of how those commands can be used for communication between the
virtual machine and the debugger is shown in figure 4.2. The interface is similar to basic
ptrace commands. If the command should not return anything, the VM sends back an
OK message. We separate the memory and instruction writing because T86 uses Harvard
architecture, whereas Linux does not separate text and data address spaces [15], so the
two requests were equivalent there. The API is made to be simple on purpose. Anything
more complex should be handled in the debugger itself.

The Cpu class, which we have described in section 3.2, has no support for interrupts.
The halted method is kind of similar to interrupts but only allows for signaling the HALT
instruction execution. We need more than that.

We added another manager-like class called OS. This class will take care of running
the program via the Cpu class. We also added an interrupt capability to the Cpu. To
check if and which interrupt happened, the Cpu now provides a function similar to the
halted function. The OS calls the tick method periodically, and after every tick, it
checks if a halt or interrupt occurred. If it did, then it passes it to some handler. When
an interrupt happens, unrolling must be done to display proper values in registers and
memory. This was described in section 2.1.2. The unrolling mechanism was fortunately
already implemented by the T86 VM author. It was used for the DBG and BRK instructions,
and we can use the same mechanisms for our addition of interrupts.

The BKPT instruction we added is used for software breakpoints. Executing this in-
struction causes an interrupt 3 to occur. It is also possible to set a special flag that causes
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DebuggerVirtual machine

Initializes connection

Accepts connection

"PEEKTEXT 5 1"

"MOV R0, 1"

"POKETEXT 5 BKPT"

"OK"

"CONTINUE"

"OK"

"STOPPED"

"REASON"

"SW_BKPT"

"CONTINUE"

"OK"

"STOPPED"

"REASON"

"HALT"

"TERMINATE"

"OK"

Figure 4.2 A sequence diagram for the communication between the virtual machine and the
debugger. If the label is enclosed in quotes, it is the actual text message that is being sent.
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the Cpu to send the interrupt 1 after every executed instruction. When an interrupt that
is caused by some debugging features happens, the OS calls a method in the Debug class.
This class is also a new addition and is responsible for communication with the debugger.
It uses the text protocol we mentioned previously.

We also added debug registers. These are a special type of registers designed for
triggering breaks on memory access. There are a total of five debug registers, with the first
four containing the memory cell addresses. The fifth register, called the control register,
contains information about the debug registers. The first four bits of this register indicate
the state of each of the first four registers. If the bit is set to one, then the register is
active. If a register is active and the program writes to a memory cell with the same
address as is stored in the register, an interrupt 2 is generated. Furthermore, the control
register’s bits from 8 to 11 reveal which register caused the interrupt. For instance, if bit
10 is set to 1, the third register is responsible for the interrupt, and the address stored in
that register is the one that was written into.

4.3 Native Debugger
The implementation was done in the C++ language. It uses newer standards up to the
C++20 standard. The debugger is implemented as a library. We will call this the backend
of the debugger. A command line interface was also developed, through which the users
might interact with the debugger. This will be called the frontend of the debugger.

The implemented debugger consists of two main parts. The first one aims to support
native (instruction) level debugging. This part works without any debugging information
whatsoever, ensuring it can be used by the students immediately. The second part focuses
on source-level debugging and is described in section 4.4.

The native debugger is split into two additional layers to make it more modular. The
first layer is called a Process. It is an interface representing the debuggee process. The
implementation of this interface is responsible for dealing with the concrete architecture,
the API of that architecture, and the communication with the debuggee. One imple-
mentation is provided for the T86 VM. For instance, it has a method called ReadText
and WriteText. The internals of these methods use the PEEKTEXT and POKETEXT API
we described. Outside of this class, the communication API is never used. If, in the
future, another virtual machine is made, for whichever architecture, it is only needed to
implement this interface. The rest of the debugger can be used as-is.

Another layer is the Native class, which implements the complicated logic behind a
debugger, like setting a breakpoint, handling single-step, and so forth. It is the primary
bread and butter of the native part of the debugger. Most algorithms are similar to the
Linux debugger implementation presented in section 2.2.1. For illustration, in figure 4.3
we show a snippet of code used to create a breakpoint. It first reads the text at the
address where we want to set the breakpoint. The breakpoint opcode then rewrites this
text, and the backup of the text is stored.

When we arrive at the breakpoint and want to continue further, we need to unset the
breakpoint, i.e., replace the breakpoint opcode in the T86 program with the backup we
saved, do a native-level single step, and write the breakpoint back.

Since breakpoints change the underlying code of the debuggee, we need to be careful
when presenting information to the user. If we printed the text that we get from the
debuggee, it might contain the BKPT instructions we set earlier. We need to mix it with
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SoftwareBreakpoint CreateSoftwareBreakpoint(uint64_t address) {
auto opcode = GetSoftwareBreakpointOpcode();
// Read the text at the breakpoint address
auto backup = process->ReadText(address, 1).at(0);
// Rewrite it with the breakpoint opcode
std::vector<std::string> data = {std::string(opcode)};
process->WriteText(address, data);
// Check that it was truly written
auto new_opcode = process->ReadText(address, 1).at(0);
if (new_opcode != opcode) {

Error(...);
}
// Create a breakpoint object which keeps the text backup
return SoftwareBreakpoint{backup, true};

}

Figure 4.3 Debugger code in the Native class to enable a breakpoint.

the backup code stored in breakpoints to show the assembly of the program correctly.
The debugger also has a step-out and step-over functionality. The step-over sets a

breakpoint at the next instruction if the current instruction is a call instruction. There
is, however, one big problem with this approach, and that is a recursive function. If a
function is recursive, the recursive call might hit this breakpoint. To prevent that, we look
at the current value of the BP register. The value of this register should be different in the
recursive calls because it is set in each function prologue. If the value of the register is the
same when the break happens, we consider the step-out procedure complete. Otherwise,
we will ignore the breakpoint hit and continue the program execution.

With the step-out, we do single steps until we find a RET instruction. We cannot use
normal single steps but must use the step-over functionality. Normal steps would cause
us to enter a function and execute the RET instruction there, which would mess with the
algorithm.

The Native class uses a DebugEvent structure which indicates what caused the VM to
stop. It is implemented as a variant object consisting of multiple structures, for instance,
the BreakpointHit or the WatchpointTrigger structure. It is a variant because the
watchpoint also needs to convey information about an address that caused the break, as
do breakpoints. It could also signal if the break was caused by reading or writing to the
memory cell, although for now, the T86 VM only interrupts on writing.

Here is a summarization of the features the native debugger offers:

Breakpoints - Can set, unset, enable and disable software breakpoints.

Watchpoints - Can set and unset watchpoints on memory writes.

Single stepping - Can do native level step into, which executes current instruction,
out, which runs the program until it leaves current function and over, which treats
function calls as a single instruction.

Text manipulation - Can read and write into the debuggee text area, effectively
allowing to overwrite the running code.
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Data manipulation - Can read and write into the program memory area.

Register manipulation - Can manipulate with normal, float and debug registers.

4.4 Debugging Source Code
With the solid foundation represented by the native part of the debugger, we can extend
it by providing some form of source-level debugging. For this part, we need to remember
that the debugger will only be used by students. As such, we ought to have a somewhat
simpler debugging information format than DWARF, but we certainly can take inspiration
from it.

As we previously mentioned, the executable with T86 code is separated into sections.
The .text and .data sections are for the VM. We will introduce new sections where
debugging information will be stored. All those sections will have .debug_ prefix. The
simplest new section is .debug_source, which should contain the original source code
which was compiled into this executable. This later allows us, with the combination of
other information, to display the source code lines.

The main philosophy of the source-level debugger is to allow an arbitrary amount of
debug information. For instance, the user can generate information about one function
only, and for that function, source debugging capabilities will work, but not for any other.
This means that users can generate debugging information incrementally.

In the NI-GEN course, students are creating compilers from the TinyC language. This
is a small subset of the C language. It has simpler grammar and only the following types:
int, double, char, pointers, structured types, and static arrays. We aim to support all
of the TinyC language in our source layer of the debugger.

The debugger is, however, not only limited to TinyC language. Any imperative lan-
guage that can be encoded with the following debugging information is suitable to be
debugged at the source level. We show an example of this in a provided test case for the
debugger where we debug the LLVM IR. It can be found as an attachment to the thesis
on path impl/src/dbg-cli/tests/sources/llvm.ir. We also provide documentation
for developers who wish to generate this debugging information in the thesis attachment
on path impl/docs/source-info.md.

The logic behind the source level debugging is mostly handled by the Source class. It
also stores all of the source level mapping, which we are about to describe below. Some of
the methods work closely with the Native class to achieve functionality. That should not
come as a surprise, as we said, source-level debugging is built upon native-level debugging.

4.4.1 Line Information and Source Code
The line information is encoded in a table, where every row is: <line>:<address>. This
is far simpler than the DWARF way, described in section 2.3.2.1. We do not care about
being space efficient, so we did a table instead of a virtual machine specification. We
also feel like this should be entry-level debugging information so that students are not
discouraged outright. It misses some information that DWARF had, like columns. It still,
however, proves quite sufficient for most cases. The information should be stored in the
.debug_line section.

With this information, we are able to do source-level breakpoints. It is not necessary
to specify every line in the program. The debugger will refuse to put a source-level
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DIE_compilation_unit: {
DIE_function: {

ATTR_name: main,
ATTR_begin_addr: 0,
ATTR_end_addr: 10,
DIE_scope: {

ATTR_begin_addr: 0
ATTR_begin_addr: 10
DIE_variable: {

ATTR_name: d,
},

}
}
}

Figure 4.4 Debugging function information for the T86 debugger.

breakpoint on some line if it does not have the necessary information. If the source code
is also provided, we can show the user on which line is the debugged program currently
paused. The source code should be under the .debug_source section, which must be the
last section in the executable.

4.4.2 Debugging Information Format
In the line information, we provided a straightforward format. However, we will need a
more sophisticated structure to describe some advanced constructs of the source code.
We will draw inspiration from the DWARF debugging information entries. Take a look
at figure 4.4, which shows an example of such debugging information. It has a tree-like
structure which, in some ways, mimics the original program. The nodes of this tree are
also called debugging information entries (DIEs). Those entries can have other entries
as their children, and each entry has a tag that is part of its name (for example, the
compilation_unit tag). They can also have attributes that describe their properties. As
can be seen, this is very similar to the DWARF debugging information format. Unlike
DWARF, it will be a text format. This allows us to generate the format easily and to
spot mistakes quickly. We do not want the students to debug their generated debugging
information.

For instance, the tag DIE_function represents a function. As attributes, it has a
name, beginning address, and end address. With this additional information, we can set
a breakpoint on a function name. We can also display in which function we are located
when a break happens.

It also has one direct child, a DIE_scope. The scope entry is mainly used for keeping
track of which variables are currently active because the T86 (or any other assembly
language in general) has no notion of scopes. In the scope entry in the example, only one
variable called d exists. Thanks to those entries, we can list currently active variables.
We, however, often need to examine the value of a variable. To achieve this, information
about the location and the variable type is needed. Global variables should be outside of
a function, as descendants of the compilation_unit entry.

The type information is encoded as a standalone entry. Currently, four type entries
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DIE_primitive_type: {
ATTR_name: int,
ATTR_id: 0,
ATTR_size: 1,

},
DIE_pointer_type: {

ATTR_type: 0,
ATTR_id: 1,
ATTR_size: 1

},

Figure 4.5 Debugging type information for the T86 debugger, showing an int primitive type
and a pointer to int type.

are present, one for primitive types (int, double, or char), one for pointers, one for
structured types (struct or class in C++), and one for static arrays. Other types can
be easily added in the future. The types are saved as separate entries, and as such, we
need some way to link them together with the variables. We will use the ATTR_id attribute
to achieve this. This attribute should be unique for every entry, having a similar role to
the id attribute of HTML elements [43]. The variables themselves have the ATTR_type
attribute, which will have an id of the type as its value. An example of a pointer type
that points to an int type is in figure 4.5. If we had a variable that is a pointer to an int
type, it would need to have the ATTR_type: 1 attribute because the id of a pointer type
to integer is one.

The primitive types need to have their size. For T86, this is the number of memory
cells it occupies, which will almost always be one since one memory cell is 64 bits. It also
has a name for its primitive type. Currently, three are supported:

int - A signed integer.

float - A floating point number.

char - A number representing an ASCII character.

Additionally, we also support pointer types (including pointers to pointers), static
arrays, and structured types, which are a bit more complicated. They need to have a
list of members which are stored in the structure. For each member, an offset from the
beginning of the structure must also be specified. It also must provide a size because the
compiler might align it, and it may be larger than the sum of the size of its members.

With this information, we can show the type of a variable. Nevertheless, the most
valuable thing is its value. Variables are either stored in memory, registered, or opti-
mized out completely. We will follow DWARF’s footsteps and provide a virtual machine
specification.

The virtual machine is a stack-based one. After all instructions are executed, the value
at the top of the stack represents the resulting location. It can either be a register or a
memory offset. We offer several examples of programs for the virtual machine:

PUSH R0 - Pushes the register R0. No instructions remain, so the resulting location
is the R0 register.
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PUSH BP; PUSH -2; ADD - Pushes the BP register and the -2 offset onto the stack.
The ADD instruction pops two values from the stack and adds them together. If the
value is a register, the value that is stored in that register is taken. The result from
the addition is pushed back onto the stack.

BASE_REG_OFFSET -2 - Does the exact same chain of operations as the previous
example. Since the variables are often stored in memory at some offset from the
base pointer, we provide this short hand.

There is also a dereference instruction, which dereferences a value in memory. That can
be useful for tracking the location of pointed variables. This virtual machine is also easily
extendable. With this kind of power, the location of variables can almost be arbitrary and
not only tied to a register or an offset from the base register. This information is stored
in a variable entry attribute called ATTR_location. If all this information is provided,
we know where the variable is stored and may look up its value. Together with the type
information, we might also properly interpret the value and report it to the user.

4.4.3 Source Expressions
We could make a very straightforward implementation of getting variable value by its
name. It is only a matter of finding the variable entry with the correct name and inter-
preting its location and type. However, we often need to inspect some more complicated
expressions. For example, we may want to display some struct member or a value at
which pointer points.

The debugger has a built-in interpreter for such expressions. It builds an AST from
the expression and interprets it using an AST walk [35]. The AST interpreter leverages
the Native class to fetch variable values. The interpreter supports almost all C operators,
including the assignment operator. It, however, has stricter typing than C. An example
of such an expression is foo[2]->bar + 3. This is a very powerful feature, as it allows
one to easily inspect or modify various variables or expressions. If a user wishes to modify
part of an array, there is no need to use the raw memory or register setters. Instead, it is
possible to write array[x] = y.

The AST nodes are distinguished by types. They also need to store the location of the
expression if it is an expression that can appear on the left-hand side of the assignment
operator. Examples of expressions that must store the location: a, *(a + 1), a[5], while
the following expressions do not have any locations because they cannot appear on the
left side of the assignment operator: a + 1, 5, array[0] * y.

4.5 Frontend
We provide two command-line interface programs. The first one is for the T86. It
runs the given T86 program on the virtual machine. The second application leverages
the debugger library to create a command line interface for the debugger. It provides
many commands, and its manual can be found in the thesis attachment under path
impl/docs/debugging.md. Additionally, table A.1 shows examples of usage of the CLI
compared to the GDB debugger.

The main priority of the CLI is to make the debugger easy to use. It consists of several
commands, one of them is breakpoint set 5, which will set a source-level breakpoint on
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Process stopped, reason: Software breakpoint hit at line 11
function main at 7-18; active variables: a, b

9: int b = 6;
10: swap(&a, &b);

@-> 11: print(a);
12: print(b);
13:}

Figure 4.6 Example of the debugger CLI reporting a breakpoint hit.

the fifth line of the program. It is, however, not necessary to write the whole command.
Any prefix will do, like b s 5. The CLI leverages the linenoise [44] library to make the
REPL satisfying to use.

The CLI also displays various information on program stop, like why the program
stopped, on which address or line, and prints the surrounding lines of assembly or source.
The CLI can also list breakpoints and display their locations in the disassembly or the
source code. Figure 4.6 provides an example of a breakpoint hit report. The debugger had
all debugging information available here. It can show the line in the source code where
the breakpoint happened, name the offending function, and variables in scope.

When variable values are printed, the format tries to accommodate their type. For
example, variables that are arrays or pointers to the char type print the value of the
variable as a string literal.



56 Implementation



Chapter 5

Evaluation

This chapter aims to assess the effectiveness of the debugger. Speed is measured to
evaluate whether the debugger has any performance impact when debugging standard
and computative demanding programs. We also evaluate its feature richness and ease of
use, comparing it to state-of-the-art debuggers like the GDB.

5.1 The Development Process
The development of the thesis was done in a GitHub repository. The power of GitHub
was leveraged not only for keeping history but also for recording issues, planning the
development, or ensuring that the repository is in a consistent and working state via
GitHub actions, which runs tests before a pull request is accepted. The actions run on
two operating systems, Ubuntu and MacOS, ensuring the project works on both.

The project itself contains numerous tests. The code is tested via unit tests using the
GoogleTest [45] framework. These tests cover almost all parts of the code. It also has
integration tests for T86 CLI and the debugger CLI. Martin Prokopič created a TinyC to
T86 compiler as part of his thesis [46]. He was kind enough to send the implementation to
us so that we could generate various tests more easily. As a result, most of the integration
tests were generated by the said compiler. The integration tests for the T86 CLI run the
program and check if its output is the same as the expected one. The debugger CLI is also
checked against the expected output. Its input, however, is not only the file that will be
debugged but also the series of commands that will be executed. The tests can be found
in the thesis attachment on path impl/src/dbg-cli/tests.

5.2 Ease of Use and User Testing
We followed the interface of the GDB closely so that the users were familiar with the
debugger before even running it. However, we choose to diverge on some of the features.
For example, the GDB uses the stepi command for single stepping. This form has a
common prefix with the step command. We, however, expect our users to use assembly-
level debugging more often than source-level debugging, so we choose the istep command
instead. The two commands have no shared prefix, so typing is is enough.
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The program is run via run, this starts the VM, but the program is paused. In GDB,
one has to use the start command to get equivalent behavior, run runs the program
without stopping at the beginning. When we did a brief user testing, it was not very clear
to the user. However, renaming the command run to start would cause it to have the
same prefix as step. Considering this, we have decided to leave the command as run.

There are other minor changes; most of them come from the fact that we prioritize
assembly-level debugging, whereas GDB focuses more on the source level. We provide a
short list of examples of commands that have different syntax in GDB and in our debugger
in the appendix A.1.

One student already tested the debugger and said the experience was ”quite pleasant.”
There were a few minor things that he did not like and offered solutions for (for exam-
ple, the usage message can only be displayed after the debuggee program is executed,
meaning the run command must be invoked first), most of which we took to heart and
corrected. Additionally, Martin Prokopič, who provided us with the TinyC compiler, used
the debugger to debug the code his compiler generated. The NI-GEN students also use
the repository, although no official feedback was collected because it is too early in the
semester.

5.3 Performance
In this section, we will measure how much the performance can suffer if the program is be-
ing debugged. We will also look at which debugging features hurt performance most. The
benchmarking will be performed on two programs: a quicksort [47] algorithm and a naive
prime number checker. Both of these programs were generated by the previously men-
tioned TinyC to T86 compiler [46]. The compiler performed no optimizations. The code
for benchmarking can be found in the thesis attachment on path impl/src/benchmarks.

We scaled the data the programs work with so that their runtime without the debugger
is similar. The main difference is that the prime number checker is loop-based, while the
quicksort one uses recursion. This will make a difference since some of the algorithms are
making decisions based on the CALL instruction, like step over.

We will measure the speed on the following cases:

No debugger - Run the T86 Virtual machine without the debugger.

Connected - Connect the debugger and let the program continue.

Breakpoint - Connect the debugger and set a breakpoint at a hot spot of the program.
For quicksort, this will be the main recursive function. For primes, it will be the
body of the loop. When a breakpoint is hit, the program is continued, and no further
action is taken.

Breakpoint and memory - Same as before, but at every breakpoint hit, read a 100
cells of memory and the IP register.

Step over - Step over a computationally expensive function. For quicksort, it is the
quicksort function; for primes, it is the is_prime function.

Step out - Set a breakpoint in the most expensive function and run the program.
Remove the breakpoint on the first hit and step out of the function. The expensive
functions are the same as in the previous test.
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Test Case Quicksort Prime numbers
Time Slowdown Time Slowdown

No debugger 7.91s − 10.51s −
Connected 8.89s 1.12 12.33s 1.17
Breakpoint 8.73s 1.10 30.32s 2.88
Breakpoint and memory 9.98s 1.26 31.85s 3.03
Step over 8.91s 1.12 11.53s 1.09
Step out 8.36s 1.05 130.81s 12.37

Table 5.1 Performance comparison when using various features of the debugger. Each case was
run five times, and the average was taken. The time is in seconds.

The results are in table 5.1. It is apparent that just having the debugger connected
introduces a minor slowdown. The breakpoints, however, do cause a significant slowdown
on the first glance. In the quicksort case, the program had 641 breakpoint hits, while in
the prime numbers, it had 101265 hits. With this amount of breakpoint hits, the slowdown
is acceptable because such an amount of breakpoint hits will very rarely be experienced.
Additional reading of memory and registers did not cause any significant slowdown.

The step-over result is not very surprising. It puts a breakpoint after the call and
runs the program, so the result should be roughly the same as case number one. Step
out is stepping over until a return is encountered. This works well in the recursive func-
tion because it skips a large part of the program. However, in the prime case, which is
implemented via a loop, it severely slows down the program because it essentially single
steps through the entire function. This is something that could be improved in the future
because the presented case here might happen in production usage. Besides that, most
debugger features did not cause significant slowdowns, so the debugger is suitable for use.

We tried to debug the prime numbers case with the GDB debugger. The program
was compiled by the GCC compiler without any optimizations. The program was the
same, except we used a much larger prime number to make the running time similar to
T86. Trying the last two cases (step-over and step-in), the GDB introduced almost no
slowdown compared to when running the program without the GDB debugger attached.
This shows that there is definitely room for improvement.
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Chapter 6

Conclusion

6.1 Summary
We explored debugging capabilities of modern CPU architectures. We also described how
debugging is supported at various layers, from operating systems to compilers. Then,
we discuss the T86 architecture and its insufficient debugging support. We remedy this
by adding a debugging API inspired by modern architectures. We also created a native
and source-level debugger, which is production ready and already used in the NI-GEN
course at FIT CTU. This debugger is extensible enough that if a new architecture, virtual
machine, or source language comes into play, it should be fairly easy to add support for
it into the debugger.

The debugger encourages students in the NI-GEN course to investigate how the de-
bugger works, the connection between the generated machine code and the source code,
and to emit information about those connections so that the debugger can work at the
source level. It can also make their lives easier since the debugger works at the native
level without additional work, allowing them to debug the code their compiler generated.

The tool is, along with the enhanced T86 virtual machine, openly available at
https://github.com/Gregofi/t86-with-debug.

6.2 Future Work
There are many possible improvements to be made. We have created a new executable
text format for T86 ISA and, consequently, a parser for that format. Students, however,
have to generate this text, which includes not only the instructions themselves but also
the debugging information. A builder interface could go a long way, especially for the
most commonly used languages in the NI-GEN course.

The native part of the debugger is fairly complete. It can always be extended for new
architectures and virtual machines should they emerge. The expression command, which
evaluates a TinyC expression, cannot handle function calls. There is also no way to format
the output (for instance, to print an integer as a hexadecimal number). The expression
interpreter can always be extended to handle other languages.

New types can always be added to the debugging information. For example, we are
missing enums, qualifiers like const and mutable, or more advanced types that are in the
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C++ standard library. Those types are not in the TinyC language that is being taught in
the NI-GEN course, but the debugger is not strictly tied to the language. Some parts of
the program could be optimized, like the step out, which can prove slow, as demonstrated
in section 5.3.

The debugger currently does not handle frame information in any way. This could be
a helpful addition so that it displays call frames and allows one to step out of them. This
would require a new section, which would have to contain enough information to simulate
an unwind. The exact mechanism was described in section 2.3.2.4.

The T86 VM generates statistics about the program execution. It records things like
pipeline stalls. Since the debugger has the capability to connect the source to the assembly,
it could display the code hot spots in the source code directly.

Last but not least, a graphical user interface could be created for the debugger. Cur-
rently, it only offers a command line interface. A graphical interface could be more pleasant
to work in. Alternatively, it could be hooked to an existing editor, like the Visual Studio
Code, which allows the usage of other debuggers like LLDB or GDB.



Appendix A

GDB to T86 Debugger
Command Map

Usecase GDB T86 DBG
Set a breakpoint at line 5 br 5 br s 5
Run the process and immedi-
ately stop

start run

Do an instruction level single
step stepi

istep
is

Set a breakpoint on a function
named main

break main br s main

List all breakpoints info break br list
Show the contents of a
variable named a p a

p a
expr a

Disable a breakpoint disable <bp-id> br disable <bp-addr>
List values of registers info registers register
Display value stored in the in-
struction pointer

info registers rip reg get IP

Table A.1 List of examples of how some actions can be achieved in the GDB debugger and in
the debugger presented by this thesis.
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