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construction ŷ = Xβ̂ (x-axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Bayesian ridge regression parameters dependency graph. The graph is directed

with multiple cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 ω parameter values during 100 iterations using bayesian ridge regression on ETEX

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Comparison of real β from ETEX (red) with β̂ as approximated by a bayesian

ridge regression model (blue) after 100 iterations. . . . . . . . . . . . . . . . . . . 34
4.7 Comparison of measured data y (y-axis) and bayesian ridge regression attained
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Xβ̂ (x-axis) after 100 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Comparison of measured data y (y-axis) and bayesian ridge regression approxi-
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5.16 Comparison of y and ŷ after different number of iterations. . . . . . . . . . . . . 65
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Abstract

Atmospheric pollution is a major environmental issue that has significant impacts on public
health, ecosystems, and climate change. Accurate estimation of atmospheric emissions from
various sources is crucial for effective environmental management and policy-making. The goal
of this thesis is to establish an emission profile (a time series) of a substance and approximate
the total emission of the given substance. Since traditional approaches to parameter estimation,
such as linear regression’s ordinary least squares method fall short due to the number of param-
eters, their approximations and uncertanties introduced by assumptions, approximations and
limitations of both models and data, causing an instability of the model. These shortcoming are
addresssed through a Bayesian approach, by modeling parameters through probabilistic distribu-
tions and capturing these uncertanties and approximations in this fashion. Namely, models from
the Variational Bayes family are developed and examined on both controlled (ETEX) and un-
controlled emissions (Chernobyl fires), producing approximations of emission profiles discretized
in time and total emissions of the substances. The best performing model, LDL with finely tuned
hyperparameters, yields results comparable with existing described models.

Keywords machine learning, Bayesian modeling, variational Bayes, atmospheric dispersion
modeling, emission estimation

Abstrakt

Znečǐstěńı atmosféry je významným ekologickým problémem, který má významný vliv na veřejné
zdrav́ı, ekosystémy a změnu klimatu. Přesné odhadováńı emiśı do ovzduš́ı z r̊uzných zdroj̊u je
kĺıčové pro efektivńı environmentálńı ř́ızeńı a tvorbu politiky. Ćılem této práce je odhadnout
emisńı profil (časovou řadu) uniklé látky a přibližně odhadnout celkovou emisi této látky. Tradičńı
př́ıstupy k odhadováńı parametr̊u, jako např́ıklad metoda obyčejných nejmenš́ıch čtverc̊u v mod-
elu lineárńı regrese, selhávaj́ı kv̊uli počtu parametr̊u, jejich aproximaćım a nejistotě zp̊usobené
předpoklady, aproximacemi a omezeńımi jak model̊u, tak dat, což zp̊usobuje nestabilitu mod-
elu. Tyto nedostatky jsou řešeny bayesovským př́ıstupem, při kterém jsou parametry mod-
elovány prostřednictv́ım pravděpodobnostńıch distribućı zachycuj́ıćıch neurčitosti. Konkrétně
jsou vytvořeny modely z rodiny model̊u založených na variačńı Bayesově metodě a jsou následně
vyhodnoceny na datech ř́ızené (ETEX) a neř́ızené (požáry v Černobylu) emise, kde výstupem
jsou emisńı profily diskretizované v čase a celková emise. Nejvýkonněǰśı model poskytuje výsledky
srovnatelné s existuj́ıćımi popsanými modely.

Kĺıčová slova strojové učeńı, Bayesovské modelováńı, variačńı Bayesova metoda, modelováńı
atmosférické disperze, odhad emise
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Summary

Motivation

Atmospheric pollution is a major environmen-
tal issue that has significant impacts on public
health, ecosystems, and climate change. Accu-
rate estimation of atmospheric emissions from
various sources is crucial for effective environ-
mental management and policy-making. One of
the many issues raised in this domain is the esti-
mation of a time profile of a (usually hazardous)
substance’s emission (a time series) based on an
atmospheric model and a set of measurements.
Acquiring such knowledge could help in risk as-
sessment and further modeling of the substance’s
spread in the atmosphere.

Goals

The goal of the thesis is to research existing
Bayesian models, to develop and evaluate them
firstly on a well-documented and measured ex-
perimental data with ground truth values, to test
these developed models on a real recorded dis-
persion event and to compare them with existing
solutions.

Method

Both traditional methods (linear regression and
ridge regression) and methods based on the
Bayes theorem were applied to this issue to pro-
vide a comparable baseline, with a major focus
on the latter. Namely, Variational Bayes models
were used, from a simple bayesian ridge regres-
sion to a complex LDL model. To further boost

their performance, several heuristic steps were
undertaken, such as positivity enforcement of
models’ normally distributed variables via trun-
cation and softening. To compare models, simple
and widely used metrics were used - mean square
error, mean absolute error and root mean square
error, to estimate the model’s quality. Models
were evaluated using a grid search, with a fur-
ther fine-tuning of the best performing model,
whose results was in the latter part of the the-
sis (Chernobyl data) used to provide result for
comparison with other existing models.

Results

Out of the many models that were examined, im-
plemented and their results compared and inter-
preted, the best performing one’s provides results
comparable with previously described and pub-
lished models, despite the limited scope of the
data utilised.

Structure

This thesis consists of 5 major parts. The
first chapter establishes a baseline knowledge of
terms and knowledge of game theory and ma-
chine learning. The second delves into generative
adversarial networks and their many offshoots,
which are the bulk of this thesis, followed by a
dive into their foothold in the domain of medical
imaging in the third chapter. Following is the
description of implemented models and data op-
erations in chapter 4. The entire thesis is then
concisely summed in last, fifth chapter.

xi



Introduction

Atmospheric pollution is a major environmental issue that has significant impacts on public
health, ecosystems, and climate change. Accurate estimation of atmospheric emissions from
various sources is crucial for effective environmental management and policy-making. One of the
many issues raised in this domain is the estimation of a time profile of a (usually hazardous)
substance’s emission (a time series) based on an atmospheric model and a set of measurements.
Acquiring such knowledge could help in risk assessment and further modeling of the substance’s
spread in the atmosphere.

There are many approaches to the construction of models in this domain, such as the common
ordinary least squares or its modifications, but these solutions are hardly ever tractable or stable
due to the vast number of influences, their approximations and uncertainties present in both at-
mospheric models and the measured data. In general, traditional methods of emission estimation
based on engineering calculations or direct measurements are often expensive, time-consuming,
limited in their spatial and temporal coverage, and unable to model the aforementioned uncer-
tanties.

Bayesian modeling offers a promising approach for atmospheric emission estimation that can
overcome some of these limitations. Bayesian models use statistical inference to combine prior
knowledge with observed data, providing a systematic framework for uncertainty quantification
and decision-making.

The goal of this thesis is to examine the issue posed in modeling of atmospheric emission, to
examine the capabilities of models from the Variational Bayes family, develop and compare select
models and measure tangible results on both controlled and uncontrolled emissions. Results are
two-fold: an approximation of an emission profile discretised in time, and of total emission of
a given substance to determine the model’s practical application to model emissions, such as
hazardous material dispersion.

xii



Chapter 1

Preliminary background

1.1 Atmospheric dispersion modeling

Source-receptor relationship refers to the relationship between the emission source of a pollutant
and the location where the pollutant is detected, also known as the receptor location. This rela-
tionship is important for understanding the transport and fate of pollutants in the environment,
as well as for identifying the sources of pollution and developing effective control strategies [3].

The source-receptor relationship can be affected by a variety of factors, including the emission
rate and location of the pollutant source, the atmospheric conditions, and the distance and
direction between the source and receptor locations. Pollutants can be transported long distances
from their source, and may undergo chemical and physical transformations during transport that
can affect their impact on human health and the environment.

In this text, two datasets will be used: ETEX [4] and Chernobyl 2020 fires dataset, where the
former is, thanks to its nature of being a controlled experiment, a reliable dataset for development
and model fine-tuning, whereas the latter is used to validate the quality of developed models.
Both models consists of actual spatiotemporal measurements at various times in various locations
(measuring stations), and an atmospheric model which encompasses meteorological conditions,
source and receptor characteristics, such as the pollutant concentration, temperature; emission
parameters such as height and location of the source, exic velocity, . . . , physical properties of
the pollutant, terrain properties, etc. [5].

1.2 Chernobyl disaster

The Chernobyl accident[6] in April 1986 was a catastrophe on a hitherto unimaginable level,
resulting in drastic and permanent consequences both locally and globally. The accident was
caused by a combination of incompetent, poorly trained staff and a flawed reactor design1 [8] [9].

More than 9.6 tonnes of radioative material leaked from the power plant as a result. Most
of the material was deposited in close proximity to the site as dust and debris, but some lighter
material was carried by wind over Eurasia, mainly Ukraine, Russia and Europe proper. This event
is considered to be the worst nuclear power plant accident in history, with the only contender
for the spotlight being the 2011 Fukushima meltdown[10].

1Which was luckily unique and as such other nuclear reactors do not have the design flaw in question[7].
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2 Preliminary background

Figure 1.1 Chernobyl exclusion zone. Source: BBC News [11].

1.3 Effect on woods

One of the consequences of the Chernobyl incident was the die-off2 of the flora and fauna, leaving
a large amount of flammable material in the form of tree husks and litter (Layers of leaves and
other material[13]) in the area [14]. This is caused by a combination of absence of forestry in the
restricted areas and difficult decomposition in the altered conditions in the contaminated area.
Further, most of the radioactive material has been deposited into the soil, or has migrated into
soil since the accident, where most of it remains. In the absence of trees, the contaminants would
most likely disperse as dust or dissolve in water.

However, water-soluble salts of cesium and strontium, are taken up by plants’ root systems
instead of potassium and calcium salts, founding the aforementioned litter on the top layer of
the soil [15].

1.3.1 Forest fires
Forest fires can kindle both naturally and through a manmade error or intention3. What causes
them to start naturally, and also spread in either case, are dry areas, a consequence of climate
change. Whether occuring naturally or inadvertenly caused by humans, the number of wildfires
has been increasing with blazing speed in recent history [17], with [18].

According to [19], based on the original report [20] released in 2022, the number of extreme
fires will see an increase of up to 14 % by 2030. Further, not only the number of wildfires is
assumed to increase, but severity of the fires is on the rise as well [18].

Smoke is the ultimate actor in the problem. As fires rage across the contaminated forests,
smoke carries and reintroduces radioactive material originating in the power plant meltdown
from the burning area bound and contained in soil, trees, etc. up into the atmosphere, where
they’re no longer bound and can spread over distances both short and long.

2“A sudden sharp drop in the numbers of plants or animals in a group” per Merriam-Webster dictionary [12].
3Although according to Center for Climate and Energy Solutions [16], 80 % of fires in USA are caused by

people.
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Multiple wildfires have swept across the contaminated regions of both Ukraine and Belarus,
in the years 2003[21], 2008 [22], 2010 [23], [24] and 2020, to name a few [15]; and are expected to
occur with larger impact in the future, as the surface temperature increased in the area, fueling
wildfire in the Chernobyl exclusion zone [15].

The 2020 fires caused a release of about 1 billion (109) lower than the original caused by the
reactor meltdown [25]. Fortunately, due to the large size of the burning particles, long range
transport was minimal, which was confirmed by measuring stations scattered across Europe [25].
Assessments on particular radionuclides were made, such as [26], [13].

Characteristics of the fires, including daily emissions of 137Cs (see [27] for details), 90Sr (see
[28]) and other radioactive material estimated and subsequent source-term scenario is established
and reported by [29].

1.3.2 Other threats
Other concerns include mechanical disturbance of the soil by passing persons and vehicles, as
was the case during the Russian troops movement at the brink of the invasion of Ukraine in late
February 2022[14] through the Red Forest, whose impact on the levels of radiation is disputed
by some [30].

Another threat is the presence of roughly 200 tonnes of inaccessible unburnt fuel at the bottom
of the fourth reactor [31], which poses a potential risk of leaking if unattended or unprotected
from the elements.

1.4 European tracer experiment
If there was another lesson to be learnt and wisdom to be gained from the nuclear tragedy
besides the need for proper design, quality control, construction, safety measures and qualified
personnel4, it is a toolset to deal with the consequences, in the form of failsaves, response teams
and impact assessment and prevention, the hindmost which was the spark to accelerate the
field of atmospheric dispersion modeling. It wasn’t just the threat of (another) breakdown of a
nuclear power plant that motivates the study of this field. [32] provides a detailed breakdown
and timeline of air pollution and show the (figuratively, hyperbolically, not mathematically)
exponential growth of this issue throughout mankind’s history.

Going back, air pollution has been recognised as a threat since at least 400 BC [32], at
which point in time even the most profound philosophers of the time had a very loose grasp
on the nature of matter and the rules and laws that govern them to recognize and address the
threats there imposed. With the industrial revolution on the brink of the 19th century came air
pollutants en masse, further increasing with the growth of the industries[32]. In 1967, the US
Clean Air Act was enacted[33] and air pollution was recognised as an international problem5.

The main obstacle for atmospheric dispersion models was both data and computational power.
Whilst the latter is diminished naturally with progress of time, as technology improves6, data
collection and engineering is domain driven. Data most commonly used was data resulting from
the Chernobyl accident, which lacked standardisation, was not open [36] and lacked quality
control7 to be reliably used to create models, but mainly to compare different models created
by different institutions. To that end, the European Tracer Experiment (ETEX) [4] has been
proposed, undertaken and evaluated.

The main goal of the ETEX was to study the transport and dispersion of pollutants in the
atmosphere, particularly in the case of a large-scale accidental release of hazardous materials,

4Which is quite an extensive list.
5Credit where credit is due, multiple countries have enacted similar bills prior to the US - e.g. the UK Clean

Air Act in 1956 [34], as well as many other acts and bills prior in countries all over the world.
6Even if in such a ”narrow” scope observed as the Moore’s law [35].
7Something software engineering inherited.
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such as radioactive materials or industrial chemicals or caused by resuspension [37] of deposited
hazardous material.

Figure 1.2 Placement of measuring stations partaking in ETEX. Source: [38]

The experiment consisted of emitting a trackable tracer and measuring its concentration at
measuring stations scattered across Europe, plus three aircrafts. The tracer released had to meet
a list of criteria in order to fulfill its purpose:

non-toxicity

non-depositing

non-water-soluble

inert8

environmentally safe
8Chemically inactive.
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easily detectable

A suitable family of compounds was found for long distance transportation - perfluorocar-
bons[4] (PFCs), meeting all the aforementioned constraints. 168 stations partook in the experi-
ment across 18 countries (figure 1.2).

There were two runs of the experiment altogether, first in 1997 and second in late 1997. To
meet the last constraint, ease of detection, the two runs could not risk any sort of interference.
Using the same tracer in the two consecutive emissions could provide false measurements -
during the second emission, particles released in the first could still be present in the atmosphere
and as such give wrong measurements. To that end, a different tracer was used in the second
emission. During both experiments, the emission lasted 12 hours, releasing 340 and 490 kg of
tracer particels, respectively.

During the first run, perfluoromethylcyclohexane (PMCH) (see figure 1.3a) was released,
whilst for the second run worked with perfluoromethylcyclopentane (see figure 1.3b). The sam-
pling stations scattered across Europe worked with a sampling time of 3 hours over 72 hours,
resulting in 23 samples per station.
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(a) Perfluoromethylcyclohexane molecule
(C7F14)
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(b) Perfluoromethylcyclopentane molecule
(C6F12)

Figure 1.3 Molecules of tracers used in the two waves of the European tracer experiment in 1997.
Both tracers are non-toxic, non-water-soluble, inert perfluorocarbons.



6 Preliminary background



Chapter 2

Regression

Regression analysis is a statistical technique for investigating and modeling the relationship
between variables[39].

The goal is to find a functional relationship that can predict the value of a dependent variable
based on the values of a set of independent variables. This relationship is inferred from a limited
subset of data.

The term ”dependent variable” is primarily used in statistics, and is interchangeable with
terms such as response, explained variable, signal, amongst many others. Its counterpart(s),
the dependent variable, is referred to as feature, input variable, regressor, explanatory variable,
estimator, etc. [40].

Let X be the feature space, also called input space [41] or instance space [42], of p dimensions,
Y the label space [41][42]. Points in the feature space are called feature vectors (tuples) of p
dimensions:

x = (x1, x2, . . . , xp)⊺ ∈ Rp. (2.1)

The feature space contains all combinations of the p features, but not all values or combinations
are possible - for instance, if one dimension measures a person’s height, its value cannot be
negative1.

The label space Y is the set of possible values of the output variable Yi. This output
domain determines the possible responses of the model. In the case of a classification task, the
label space Y is discrete, whilst in the case of regression, determined by annotated samples

Y = (Y1, Y2, . . . , Yn). (2.2)

In the language of machine learning, regression belongs to the family of supervised tasks[43]
- the model’s parameters are set based on a set of pairs (Yi,xi). For instance, if the task is to
model (and subsequently, predict) fuel consumption (e.g. liters per 100 kilometers) of vehicles,
the feature vector might consist of parameters such as weight, engine type, engine power, volume,
emission data, type of tyres, car brand, age of car, mileage, average speed, . . . , and the label
(output) would be the average fuel consumption.

Finally, let Ω be a set of observed instances, i.e.

Ω ∈ X × X (2.3)

. The goal of regression is to find a suitable function f : X → X which predicts correct labels
for priorly unknown data [44]. Importantly, the function is not guaranteed to be injective 2.1,
i.e. for two different input feature vectors, the output can be identical.

1Further, a minimal possible height of a person could be measured and determined.
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Figure 2.1 Annotated data sample of a population. The sample is a small subset of the entire
population and is further split into complementary subsets for training, validation and quality assurance
of a given model. Source: [46]

▶ Definition 2.1 (Injective function [45]). A function f : A→ B is called injective (one-to-one),
if ∀x, y ∈ Df , f(a) = f(b) =⇒ a = b.

2.1 Training data

The goal of any model is to capture the nature of a population as closely as possible given a
sample of said population.If the entire population was available as data, then the model could be
created from that and it would be absolutely accurate. However, that is almost never possible
and so the models have to be made with a limited, but hopefully representative sample of the
population. This representative sample is referred to as the training set (or training data). In the
case of linear regression, which belongs to the supervised learning family of algorithms in machine
learning, that training set consists of data points xi annotated with labels Yi. Usually, for the
sake of evaluation of models, their accuracy, and general quality assurance, this representative
set is split into smaller subsets (as depicted in figure 2.1):

1. training set, upon which the model’s parameters are approximated for closest fit of predictions
Ŷi and labels Yi

2. optional validation set

3. testing set, which is used to acquire an unbiased evaluation of the model

The question that naturally arises is in what ratio to split the data into the individual subsets.
There are two competing concerns, both concerned with the variance of either (train and test
set) variance. A trade-off has to be found between the high variance caused by a small size of
the subset [47]. A common rule-of-thumb is to split the data in an 80:10:10 fashion for training
set, validation set and test set. If validation does not take place, the split is in an 80:20 ratio.
In the case of a limited sample size, cross validation is often employed to stabilise the training
and evaluation process [48].
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2.2 Linear regression
Linear regression, much like the parent term regression, bleeds from statistics to machine learning
and the world of artifical intelligence directly.

Linear regression assumes a linear relationship between the dependent variable and the set
of independent variables, i.e. the dependent variable can be modeled by a linear combination of
the independent variables[39].

The value of the dependent variable Y at x = (x1, x2, . . . , xp)⊺ is

Y = w0 + w1x1 + w2x2 + · · ·+ wpxp + ϵ = w0 +
p∑

i=1
wixi + ϵ, (2.4)

where ϵ is a random variable which encompasses the information about Y not explainable by
the p features. As a result, Y is also a random variable. It is assumed that the noise ϵ has an
expected value of 0, E[ϵ] = 0 [49]. This assumption is often much stronger in that the noise ϵi
is assumed to a normal distribution with mean µ = 0 and variance σ2, and is indepedent and
identically distributed, i.e.

ϵi
iid∼ N

(
0, σ2) . (2.5)

In the terminology of statistics, linear regression models the conditional distribution of re-
sponse yi by observed predictor values Xi = xi [50]. Since ϵi is a random variable, and values
(x1, x2, . . . , xp)⊺ and (w0, w1, . . . , wp)⊺ are deterministic, Yi is simply a linear transformation of
the random variable ϵi

Yi ∼ N

(
w0 +

p∑
i=1

wixi, σ
2

)
, (2.6)

and the predicted value Ŷi is the expected value of the distribution, Ŷi = E[Yi] = w0 +
∑p

i=1 wixi.
Design matrix X is gained by placing all entries xi in a matrix in row-wise fashion:

X =


1 x11 x12 . . . x1p

1 x21 x22 . . . x2p

...
...

...
. . .

...
1 xn1 xn2 . . . xnp

 . (2.7)

w0 is called an intercept (or a constant), and represents the mean value of the dependent
variable Y when all the independent variables are 0 - the baseline for the model. The vector
w = (w1, w2, . . . , wp)⊺ is referred to as the weight vector in machine learning technology, or
vector of regressor coefficients in statistics2.

x = (x0, x1, . . . , xp)⊺,w = (w0, w1, . . . , wp)⊺ (2.8)

With that, the equation can be written in vector notation:

Y = w⊺x+ ϵ. (2.9)

2.2.1 Prediction
The goal of a linear regression task is to predict the value Y as precisely as possible.

Given an approximation ŵ of the vector w, the predicted value for point x is

Ŷ = ŵ⊺x. (2.10)
2Where commonly it is denoted with β rather than w [39].



10 Regression

Thanks to the assumption of E[w] = 0 the expected value of Y is

E[Y ] = w⊺x, (2.11)

and therefore the aforementioned prediction Ŷ is a point estimate of E[Y ] at x.

2.2.2 Loss function
Given a prediction Ŷi for the point xi and the label Yi, the error of the prediction can be
calculated using an approriate metric function - the choice of a metric differs case from case, and
is dependent on both the task and the data.

▶ Definition 2.2 (Metric [51]). A metric is any non-negative function f : X × X → R that
satisfies the following conditions for ∀x, y, z ∈ X :

f(x, y) = f(y, x) (symmetry)

f(x, y) = 0↔ x = y (identity)

f(x, z) + f(z, y) ≥ f(x, z) (triangle inequality)

2.2.2.1 Common loss functions

Mean bias error (MBE): L(Y , Ŷ ) = 1
n

∑n
i=1(Yi − Ŷi)

Mean absolute error (MAE): L(Y , Ŷ ) = 1
n

∑n
i=1 |Yi − Ŷi|

Mean squared error (MSE): L(Y , Ŷ ) = 1
n

∑n
i=1(Yi − Ŷi)2

Root mean squared error (RMSE): L(Y , Ŷ ) =
√

1
n

∑n
i=1(Yi − Ŷi)2

Root mean squared logarithmic error (RMSLE): L(Y , Ŷ ) =
√

1
n

∑n
i=1(log(Yi + 1)− log(Ŷi + 1))2

Loss functions can be used as performance metrics, alongside information criteria and other
estimators, such as precision, recall or F1-score in classification tasks.

Usually, for the sake of fitting a model, the mean squared error loss function is used. The
optimisation problem thereby proposed is the minimilisation of the residual sum of squares (RSS)
2.12:

RSS(w) =
N∑

i=1
L2(Yi,w

⊺xi) =
N∑

i=1
(Yi −w⊺xi)2 = ||Y −Xw||2. (2.12)

2.2.3 Partial derivative
▶ Definition 2.3 (Norm [52],[53]). Given a vector space V , norm is a function ∥·∥ : V → R0
such that ∀x, y ∈ V and

1. ∥x∥ = 0 =⇒ x = 0 (positive definiteness)

2. ∥αx∥ = |α| · ∥x∥ (homogenity)

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)

The norm of a mathematical object is a quantity that in some (possibly abstract) sense
describes the length, size, or extent of the object[54]. Commonly used norms are, for x =
(x1, x2, . . . , xn) ∈ Cn,
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∥x∥1 =
∑n

i=1 |xi| (absolute value norm)

∥x∥2 = 2
√∑n

i=1 x
2
i (euclidean norm)

∥x∥∞ = max |xi| i ∈ 1, . . . , n (maximum norm)

▶ Definition 2.4 (Point neighbourhood [52]). Given a norm ∥·∥ on Rn, let x ∈ Rn, δ ∈ R+, a
δ-environment of point x is a set

Hδ(x = {b ∈ Rn| ∥x− b∥ < δ}. (2.13)

▶ Definition 2.5 (Partial derivative[52]). Let f : Rn → R be a function of n variables.
A partial derivative of function f in the direction xi at point b = (b1, b2, . . . , bn) ∈ Df such

that ∃H(b) is
∂f

∂xi
(b) = lim

h→0

f(b1, b2, . . . , bi + h, . . . , bn)− f(b1, b2, . . . , bi, . . . , bn)
h

(2.14)

if such a limit exists.
The partial derivative describes the rate of change in the respective direction, considering

all other variables (directions) constant. This definition describes only partial derivative in the
direction of one of the variables, but there exists a generalised definition for partial derivative in
an arbitrary direction [52]
▶ Definition 2.6 (Gradient of a function [52]). Let f : Rn → R be a function of n variables,
such that all partial derivatives of f are finite in the point b = (b1, b2, . . . , bn). Gradient of
function f at b is defined as a vector of partial derivative in each of the n directions:

∇f(b) =
(
∂f

∂x1
(b), ∂f

∂x2
(b), . . . , ∂f

∂xn
(b)
)
. (2.15)

Akin to the univariate’s first derivative, which describes whether a function is, at a given point,
increasing or decreasing and the rate of thischange, the gradient represents the direction of the
fastest rate of increase of the function f at a given point b. Any point b, for which ∇f(b) = b or
for which the gradient ∇f(b) does not exist, is considered a critical point and can hold a local
extremum, as the function is neither stricly increasing or decreasing on its neighbourhood.

2.2.4 Hessian matrix
Let f : Df → R, Df ⊂ Rn and assuming that all second partial derivations of f in b exist, then
the Hessian matrix of f in b is equal to

∇2f(b) =


∂2f

∂x1∂x1
(b) ∂2f

∂x1∂x2
(b) · · · ∂2f

∂x1∂xn
(b)

∂2f
∂x2∂x1

(b) ∂2f
∂x2∂x2

(b) · · · ∂2f
∂x2∂xn

(b)
...

...
. . .

...
∂2f

∂xn∂x1
(b) ∂2f

∂xn∂x2
(b) · · · ∂2f

∂xn∂xn
(b)

 . (2.16)

The Hessian matrix is the multidimensional counterpart of the one dimensional second deriva-
tive, which describes the concavity/convexity of a given function at a given point.
▶ Theorem 2.7 (Sufficient condition for local minimum). Let f : Rn → R be a function of n
variables and x∗ ∈ Rn such that ∇f(x∗ = 0, and f has all second derivations continuous in some
neighbourhood of x∗.

If ∀s ∈ Rn, s ̸= 0

s∇2f(x∗)s > 0, (2.17)
then the function f attains a strict local minima in point x∗.
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The property described in theorem 2.7 is called the positive semidefinitness of the matrix ∇2f
in x∗. Minimising the residual sum of squares 2.12 analytically gives critical points described by
its gradient

∇RSS = −2
N∑

i=1
(Yi −w⊺xi)xi = −2X⊺(Y −Xw), (2.18)

by setting it to 0 in the form of normal equations

X⊺Y = X⊺Xw. (2.19)

The Hessian matrix ∇2
RSS(w) = 2X⊺X is positively semidefinite for any given w, and as

such, under theorem 2.7, it holds that any point w solving normal equations 2.19 is a local
minimum [52]. If X⊺X is regular, there is a unique solution3

ŵOLS = (X⊺X)−1X⊺Y . (2.20)

2.2.5 Collinearity conundrum
If the matrix X⊺X is not regular, there is a risk of numeric instability and poor approximation
of the inversion. In such a case, different methods are used for minimisation, such as an iterative
gradient descent [55] [56] (not considered in this text) or regularisation via a penalty by ridge
regression 2.2.6.

If the features are independent,X⊺X is regular and there exists exactly one solution (X⊺X)−1X⊺Y ,
otherwise there are infinitely many w and w′ such that w ̸= w′,X(w − w′) = 0. The issue
is also caused when they’re ”nearly” linearly dependent - multicollinearity. This issue can be
tackled by introducing a regularising component, which defines the type of regularisation, with
the most widely used being [57]:

Lasso (L1)

Tichonov (L2)

Elastic-net - a combination of Lasso and Tichonov [58]

Tichonov’s regularisation will be discussed moving forward.

2.2.6 Ridge regression
Ridge regression (also called L2 or Tichonov regularisation4) resolves the issue of matrix singu-
larity by introducing a penalty to the weight vector w in the form of a quadratic norm of the
vector [60]:

RSSλ(w) = ||Y−Xw||2 + λ

p∑
i=1

w2
i , (2.21)

where the parameter λ ∈ R, λ ≥ 0 is the regularisation parameter, determining how much is
the regularisation enforced. With λ = 0, the model simplifies to plain linear regression 2.2. As
the value of λ increases, the pressure on w to minimise increases. It should also be noted that
the intercept w0 is exempt from penalisation. A ridge regression model is typically fit using
an optimization algorithm such as gradient descent or closed-form solutions such as the normal
equation.

3(X⊺X)−1 exists thanks to regularity
4Named after the Soviet mathematician and geophysicist Andrey Nikolayevich Tikhonov[59].
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One of the advantages of ridge regression is that it can handle multicollinearity, a situation
where two or more predictor variables are highly correlated with each other. In this case, the
ordinary least squares (OLS) method can produce unstable and unreliable estimates of the model
coefficients. Ridge regression can overcome this problem by shrinking the coefficients towards
zero and reducing their variance.
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Chapter 3

Bayesian theory

3.1 Bayes theorem
Bayes theorem is nowadays an implicit part of any course relating to probability and statistics,
pitting its approach in juxtaposition with the classic, frequentist approach. Where the frequentist
approach ties the probability of an event happening given by its relative frequency, bayesian
approach bases the probability as a degree of belief, which is updated by gaining more data
[61]. It stems from conditional probability, whereby for two events (in the discrete case, works
analogously for the continuous case described later) A,B the condition of event A occuring given
that event B occurred is defined as

▶ Definition 3.1 (Conditional probability).

P (A|B) = P (A ∩B)
P (B) , P (B) > 0. (3.1)

▶ Definition 3.2 (Partition of a sample space Ω [62]). A set of mutually disjoint (∀i ̸= j =⇒
Bj ∩Bj = ∅) events B1, . . . , Bn is called a partition of the set Ω if

Ω =
n⋃

i=1
Bi. (3.2)

▶ Theorem 3.3 (Law of total probability [62]). Let B1, B2, . . . , Bn be a partition of Ω such that
∀i : P (Bi) > 0. Then for each event A it holds that

P (A) =
n∑

i=1
P (A|Bi)× P (Bi). (3.3)

B1, B2, . . . , Bn are collectively exhaustive, covering the entire sample space Ω. This is graphically
deducible for A and B1, B2, . . . , Bn in figure 3.1.

▶ Theorem 3.4 (Bayes’ theorem for events [62]). Let B1, B2, . . . , Bn be a partition of Ω such
that ∀i : P (Bi) > 0. let A be an event with P (A) > 0. Then it holds that

P (Bj |A) = P (A|Bj)× P (Bj)∑n
i=1 P (A|Bi)× P (Bi)

. (3.4)

Bayes’ theorem formulates the probability that a hypothesis Bj is true, given new evidence (ob-
servation) A. In its fundamental and simple formulation, it gives an incredibly strong apparatus,
which, amongst other capabilities, is easily lenient to online computations.
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Figure 3.1 An example of the law of total probability. Events B1, . . . , Bn are mutually exclusive and
collectively exhaustive.

In the Bayes’ theorem 3.4, P (Bj) is called the prior probability, P (Bj |A) the posterior prob-
ability and P (A|Bj) is the probability of observing new evidence A given the hypothesis Bj is
true - a likelihood.

The aforementioned formulation of Bayes’ theorem 3.4 and its associated definitions and the-
orems (conditional probability 3.1, partition of a sample space 3.3, . . . ) have their counterparts
for the continuous case and work in the same fashion, with the former (for events) defined and
explained as a series of stepping stones to the continuous case used henceforth.

▶ Definition 3.5 (Conditional probability density function [63]). Suppose that X, Y have a
joint continuous distribution and let Y ∈ R such that fY (y) > 0. The conditional density of X
given Y = y is defined for

∀x ∈ R : fX|Y (x|y) = fX,Y (x, y)
fY (y) , (3.5)

where

fX,Y (x, y) is the joint probability density

fY (y) is the marginal distribution of Y .

▶ Theorem 3.6 (Bayes theorem for continuous variables [64]). Let x, θ be random variables
with probability density functions f(x|θ), π(θ), respectively. Then it holds that

π(θ|x) = f(x|θ)π(θ)
f(x) , f(x) > 0, (3.6)

where

π(θ|x) is the posterior conditional density function of X

π(θ) is the prior density function

f(x|θ) is the model (or data likelihood)

f(x) is the marginal density of X (also called evidence).

The denominator f(x) =
∫
f(x, θ)dy =

∫
f(x|θ)π(θ)dθ is independent of the estimated pa-

rameter θ and fills the role of a normalisation factor the posterior density - it can be simplified
using proportionality - neglecting of this normalisation factor
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π(θ|x) ∝ f(x|θ)π(θ). (3.7)

Proportionality ∝, first mentioned in 3.7 and used heavily in the rest of the text, is a binary
operator, indicating that the left value is proportional to the right value (differing only in a con-
stant), i.e. x ∝ y expresses that ∃c, x = cy. Proportionality is often used to ignore cumbersome
normalisation constants independend of a modeled variable, but retaining the same behaviour
as to the change in value of the modeled variable - both values, x, y change in a consistent and
predictable fashion in relation to each other.

The normalisation factor f(x) ensures that the posterior distribution sums to 1 over all
possible values1. Ignoring this factor will make modeling more tractable and computable, as
the computability of integrals is dubious and difficult in the cases where the integral can be
calculated.

Circling back to the likelihood mentioned in 3.4 and 3.6 was not described. A likelihood
function is a function that measures the goodness of fit between a statistical model and observed
data. It is the probability of observing the data, given the model and its parameters.

Here, the main focus will be on the parameters, as the model itself (distributions of variables)
will not be subject to much change, but it will be the parameters that will be estimated for a
good fit. The likelihood function is obtained by treating the observed data as fixed and varying
the parameters of the model. The parameter values that maximize the likelihood function are
considered to be the most likely values of the parameters given the observed data [65] [66].
Likelihood is not a density function, and as such, is not normalised.

3.2 Exponential family of distributions
The exponential family is a widely used family of probability distributions in statistics and
machine learning. It is a special class of probability distributions that has a particular mathe-
matical form that allows for efficient computation and modeling. In this section, we will discuss
the properties and applications of the exponential family.

The exponential family is characterized by a probability density function that has the form:

▶ Definition 3.7 (Exponential family probability density function). Let y be a random variable
conditioned by a random variable x and a parameter θ. Exponential family of distributions
contains distributions with probability density function with the following form

f(y|x, θ) = h(y, x)g(θ) exp (η(θ)⊺T (y, x)), (3.8)

where

η(θ) is a natural parameter

T (y, x) is a sufficient statistics

h(y, x) is a known function

g(θ) is a normalisation function.

The form is chosen for a convenient use and easy algebraic operations, as will become apparent
in further sections.

Non-central 3.9 and central 3.10 moments of a function describe characteristics of a distribu-
tion [67] [63].

1As a random variable distribution should!
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▶ Definition 3.8 (Nth non-central and central moments [62]).

µn = E[Xn] (3.9)
σn = E[(X − E[X])n]. (3.10)

In general, moments define parameters of a distribution, such as location, shape and scale [68].
It is important to keep in mind that moments of a given random variable X do not always exist
- such is the case if the corresponding sum or integral do not converge. Further, the first non-
central moment of random variable X corresponds to expected value E[X], whilst the second
non-central moment corresponds to its variance var .

3.2.1 Normal distribution
Normal (univariate) distribution, also called Gaussian distribution is considered to be the most
important and widely utilised probability distribution [69]. It is a continuous distribution for
real-valued values, defined as follows:
▶ Definition 3.9 (Normal distribution [62]). A random variable X follows a normal distribution
with parameters µ ∈ R, σ2 ∈ R, denoted X ∼ N

(
µ, σ2) if its probability density function is

fX(x) = 1√
2πσ2

exp (− (µ− x)2

2σ2 ) for x ∈ (−∞,∞). (3.11)

The probability density function is symmetric about its mean µ, around which values are spread
according to its variance σ2.
▶ Theorem 3.10 (Standardisation of a normal distribution [62]). Let X ∼ N

(
µ, σ2), then

Z = X − µ
σ

(3.12)

follows a standard normal distribution, i.e. Z ∼ N (0, 1).
Its widespread use is attributed to the Central limit theorem (CLT), which is build on top

of the laws of large numbers described the limit theorems. In essence, per the laws of large
numbers, with increasing sample size from a population, the sample mean approaches the true
population mean. The coined term ”Law of large numbers” can be broken down into a weak and
strong case, which differ only in the strength of their convergence.
▶ Theorem 3.11 (Central limit theorem [62]). Let X1, X2, . . . be a sequence of i.i.d. random
variables with finite expected values E[Xi] = µ, |µ| < ∞ and finite variances varXi = σ2, 0 <
σ2 <∞. Then

X̄n − µ
σ√
n

D−→ N (0, 1) . (3.13)

Normal distribution tends to be the go-to distribution, as natural phenomena are observed
to follow it2, as well as per the central limit theorem, the mean of of a large number of indepen-
dent and identically distributed random variables approaches a normal distribution. Further,
computational benefits of a normal distribution are the ease of tractability, simple characterisa-
tion through only two parameters3 and the ability to infer parameters of a population based on
sample data[70].

In the case of a normal distribution, all its moments are finite - proof via recursive moment
calculation in [71]. Further, the mode and median values are equal to mean value µ.

The first non-central moment is therefore equal to µ, the second central moment is equal to
σ2. As such, their computation is trivial, which will prove useful in posterior parameter shape
inference (see 4).

2Within certain boundaries, which is addressed in 3.2.2
3Which in it of themselves have crystal clear interpretation
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Order Central moment Non-central moment
1 0 µ
2 σ2 µ2 + σ2

3 0 µ3 + 3µσ2

4 3σ4 µ4 + 6µ2σ2 + 3σ4

Table 3.1 Central and non-central moments of a normal distribution.
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Figure 3.2 Standard normal distribution density function

3.2.2 Truncated normal distribution
Where normal distribution falls short of reality is, well, most places. A normal distribution, whilst
being concentrated around its mean value µ in degree based on its variance σ2, is unbound, i.e.
defined for all real numbers. Theoretically, sampling from a normal distribution can result in
any number, but such a sample is extremely improbable as the value deviates further from µ.
In reality, most variables that are modeled with normal distributions cannot physically attain
such values - even though the height of a population can be described by a normal distribution
with given µ, σ2, there is a minimal value (in the very worst case 0), and a maximal value, both
governed by the laws of physics and biology4.

Such behaviour might be satisfactory, following the British statistician George Box’s aphorism
“All models are wrong, but some are useful”[74], describing the limitations of models to capture
complexity. That might not always be a detriment, as many realities can be modeled within a
reason with fairly straightforward, simple, practical models, as compared to models which would
reflect the nature of a given reality perfectly, but would render any use impossible.

With normal distributions, an alternative to accepting the potential shortcomings of attain-
ing non-sensical values (negative height, impossibly high weight, . . . ), is to set bounds for the
distribution. This alters the distribution and shifts probabilities, as will become clear shortly.
A truncated normal distribution 3.12 is derived from a normal distribution by setting (either or
both) lower and upper bounds.

▶ Definition 3.12 (Probability density function of truncated normal distribution [76]). Proba-
bility density function of a truncated normal distribution for a scalar variable x on interval [a, b]
is defined

f(x, µ, σ, a, b) =


0 if x ≤ a;

√
2 exp (− 1

2σ (x−µ)2)
√

πσ(erf ( b−µ√
2σ

)−erf ( a−µ√
2σ

))
if a < x < b;

0 if b ≤ x,

(3.14)

4Such as the square-cube law[72] [73]
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Figure 3.3 Truncated normal distribution’s PDF with µ = −8, σ2 = 2, a = −10, b = 10 (blue)
compared with a standard normal distribution’s PDF (red). Source: [75].

where

erf (t) = 2√
π

∫ t

0
exp (−u2)du,

α = a− µ√
2σ

, β = b− µ√
2σ

.

(3.15)

A visualisation of the truncated normal distribution’s probability density function in tandem
with a standardised normal distribution’s density is plotted in figure 3.3. Due to the truncation,
the density shifts around and results in an increase concentration around the mean value, as
probability of a distribution has to add to 1 (in this case, integrate to 1). Multivariate case of a
truncated normal distribution is usually numerically approximated [77].

Fortunately, in later calculations using conjugate priors (see 3.3), a normal distribution can
be directly substituted by a truncated normal distribution, with a slightly more complex calcu-
lation of moments, of which the first two 3.16, 3.17 are needed later on. Multivariate case is
approximated by [78].

x̂ = µ− σ
√

2(exp (−β2)− exp (−α2))
π(erf β − erf α) (3.16)

x̂2 = σ + µx̂− σ
√

2(b exp (−β2)− a exp (−α2))
π(erf (β)− erf (α)) . (3.17)

3.2.3 Multivariate normal distribution
Normal multivariate distribution is a generalization of the normal univariate distribution (see
3.2.1). The distribution is fully characterized by its mean vector and covariance matrix. The
mean vector specifies the average value of each component of the random vector, and the covari-
ance matrix specifies the degree of linear association between the components. The probability
density function (PDF) of a multivariate normal distribution is given by 3.13.
▶ Definition 3.13 (Multivariate normal distribution). Let µ ∈ Rn and Σ ∈ Rn,n be a posi-
tively semidefinite matrix. A random vector X = (X1, . . . , Xn) follows an n-dimensional normal
distribution with parameters µ,Σ (X ∼ N (µ,Σ)), if for each c ∈ Rn it holds that

c⊺X ∼ N (c⊺µ, c⊺Σc) . (3.18)
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Figure 3.4 Bivariate normal distribution with marginal distributions.
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Figure 3.5 Gamma function graph [1].

The probability density function of a multivariate normal distribution is given by 3.19

fX(x) = (2π)− n
2 |Σ|− 1

2 exp (−1
2(x− µ)⊺Σ−1(x− µ)), (3.19)

and for the bivariate (n = 2) case, the density function is plotted in figure 3.4, alongside both
marginal distributions.

3.2.4 Gamma distribution
▶ Definition 3.14 (Gamma function [63]). Gamma function Γ is defined for any p > 0 by the
relation

Γ(p) =
∫ ∞

0
xp−1 exp (−x)dx. (3.20)

Basic properties of the gamma function are, for p > 0 and n ∈ N
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Figure 3.6 Graph of Gamma distribution’s density function for different combinations of a, b. Adapted
from [2]

Γ(p+ 1) = pΓ(p)

Γ(1) = 1

Γ( 1
2 ) =

√
π

Γ(n) = (n− 1)!

Γ(p) = Γ(p− 1)Γ(p− 1).

As such, the gamma function can be perceived as an interpolation of the factorial function for
non-natural5 parameters [79][63]. To compute, numeric algorithms have to be used in most cases
[79].

▶ Definition 3.15. Non-negative random variable X has a gamma distribution with parametrs
a > 0, b > 0, denoted X ∼ G(a, b), if it has a continuous distribution with probability density

fX(X) = ab

Γ(b)x
a−1 exp (−bx). (3.21)

The two parameters a, b define the scale and shape, respectively, as can be also visible in
figure 3.6. Gamma distribution’s mean value and variance are very simple:

E[X] = b

a
, varX = b

a2 . (3.22)

3.3 Conjugate prior
“Although Bayes’ theorem, the cornerstone of Bayesian Statistics, is mathematically simple, its
implementation can prove troublesome [80]”. This issue has already been mentioned - it is caused
by the normalising denominator, integrating over estimated parameter’s domain, which might
result in the product of a prior distribution and a likelihood function not being integrable. Two
approaches are described by [80], one focused on deriving pairs of likelihood functions and prior
distributions that provide tractable solutions, whilst the other approaches the issue numerically.
The former gives shape to families of the so-called conjugate priors. Both approaches have their
disadvantages, with the former narrowing down possible distributions to use for modeling to
retain the desired properties, whilst the later can be computionally expensive, especially as the
size of the problem grows.

5Natural numbers are positive integers.
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▶ Definition 3.16 (Conjugate prior distribution [81]). Let y|x, θ follow a distribution from
the exponential family of distributions 3.2. Prior distribution θ with hyperparameter Ξ, and the
distribution ν is conjugated to if, if its probability density function has the form

π(θ) = q(Ξ, ν)g(θ)ν exp (η(θ)⊺Ξ), (3.23)

where

ν ∈ R+

q(Ξ, ν) is a known function

g(θ) is a normalisation function.

Conjugate priors are prior probability distributions that belong to the same family as the poste-
rior probability distribution after observing data. When the prior distribution and the posterior
distribution belong to the same family, it makes the mathematical computations for Bayesian
inference more straightforward. In other words, if the prior and posterior distributions are con-
jugate, then the updated posterior distribution can be calculated using a closed-form expression,
rather than numerical integration. An extensive list of conjugate priors is derived and described
by [80]. The table 3.2 records a handful of distributions and their respective conjugate prior
distributions [81], with an extensive list provided by [82].

Data model (likelihood) Conjugate prior distribution
Normal with known variance Normal
Normal with unknown variance Normal inverse-gamma
Normal with known mean µ Gamma
Bernoulli Beta
Poisson Gamma
Multinomial Dirichlet

Table 3.2 Table of selected conjugate priors. Source [81], [82].

The Bayes theorem is commonly interpreted as an inference of unknown parameters based
on prior knowledge and (newly) collected data. To combine the expertise of prior knowledge and
information gathered from observations, a likelihood function is used.

The use of conjugate priors simplifies Bayesian inference because the posterior distribution
can be obtained analytically [83]. Additionally, the resulting posterior distribution has the same
functional form as the prior distribution, which makes it easier to interpret the results. However,
it is important to note that using conjugate priors may not always be the most appropriate
choice, and in some cases, non-conjugate priors may be necessary to model the data accurately.

The exponential family of distributions described in 3.2 contains a large scope of conjugate
priors, of which many are commonly used distributions.

3.4 Methods of inference
There are many different approaches to the problem at hand under the umbrella of Bayesian
modeling. These include [84], but are not limited to:

1. Bayesian Model Averaging [85]

2. Importance sampling

3. Laplace approximation
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4. Markov Chain Monte Carlo (MCMC)

5. Variational Bayes,

and their many variations. Of the extensive list, the focus will be on Variational Bayes, given its
tractability and ease of computability.

3.4.1 Variational Bayes
The goal is to compute the posterior distribution over a set of unknown parameters given some ob-
served data. However, in many cases, the posterior distribution cannot be computed analytically,
and so some form of approximation is necessary. Variational Bayes is one such approximation
method that seeks to find a tractable approximation to the true posterior distribution by op-
timizing a simpler distribution, known as the variational distribution. The idea is to choose a
family of distributions that is simple enough to be tractable but flexible enough to approximate
the true posterior distribution.

The optimisation problem is formulated as the minimisation of the Kullback-Leibler diver-
gence 3.17 between the true posterior distribution and the variational distribution, which is
the expected amount of information lost by substituting the true posterior distribution with its
variational approximation:

▶ Definition 3.17 (Kullback-Leibler divergence for continuous variables[86]). Let p(x) and q(x)
be two probability distributions of a continuous random variable x.

DKL(p||q) =
∫ ∞

−∞
p(xi) ln p(xi)

q(xi)
dx. (3.24)

The Kullback-Leibler divergence is not a metric, as it violates the symmetry prerequisite, i.e.
DKL(p||q) ̸= DKL(q||p) [87].

▶ Theorem 3.18 (Variational Bayes [84]). Let f(θ|D) be the posterior probability density func-
tion of multivariate parameter θ. The parameter θ is partitioned into θ = (θ′

1, θ
′
2, . . . , θ

′
q). Let

weird f̆(θ|D) be an approximate probability density function restricted to the set of conditionally
independent distributions on θ1, θ2, . . . , θq:

f̆(θ|D) = f̆(θ1, θ2, . . . , θq) =
q∏

i=1
f̆(θi|D). (3.25)

Then the minimum of the Kullback-Leibler distance,

f̃(θ|D) = arg min
f̆(.)

DKL(f̆(θ|D)||f(θ|D)), (3.26)

is reached for

f̃i(θ|D) ∝ exp
(
Ef̃(θ\i|y)[ln f(θ1, . . . , θq, y)]

)
, i = 1, . . . , q, (3.27)

where θ\i stands for all variables from a given set (θ), excluding the ith variable (θi), i.e. θ\i :=
θ \ {θi}.

The approximating distribution is usually chosen from a family of distributions that is
tractable, such as a Gaussian distribution. The Variational Bayes algorithm starts by specifying
a prior distribution and a likelihood function, and then derives an expression for the posterior
distribution. The posterior distribution is then approximated by an approximating distribution,
which is usually a Gaussian distribution. The parameters of the approximating distribution are
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estimated under the hood by minimizing the Kullback-Leibler divergence with the true posterior
distribution. This is done using an iterative optimization algorithm.

Further, per [84], the conditionally independent elements of 3.27 are (VB)-marginals. Varia-
tional Bayes attempts to break through with a practical algortihm compared to the application
of sampling techniques and approximation methods in mixture models [88].

Variational Bayes has several advantages over other Bayesian inference methods. It is com-
putationally efficient and can be used to estimate the posterior distribution of large datasets. It
also provides a way to estimate the posterior distribution in cases where the likelihood function
is intractable or difficult to compute [89].

As will become apparent when describing individual models later on, the approximation boils
down to the following approach [90]:

1. Select appropriate models for approximated variables.

2. For each parameter derive a posterior distribution based on the joint probability distribution.

3. Assign non-informative prior values to the variables.

4. Iteratively update approximations within a fixed number of iterations (or, alternatively, spec-
ify a terminating condition - ideally convergence).
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Chapter 4

Controlled emission modeling

4.1 Implementation overview
Models were implemented in Python 3.11 [91], which was chosen due to the author’s familiarity
with the language, as well as the wide range of libraries and packages for computation, machine
learning and modeling, of which the following used are the most noteworthy1:

1. Jupyter notebook [92]

2. SciPy [93], as well as scikit [94]

3. NumPy [95]

4. SymPy [96]

5. Pandas [97]

6. Matplotlib [98]

The project, which is in part described in this thesis, including data manipulation, preprocess-
ing, tests, interactive notebooks for presentation, etc. is publically available from the faculty’s
oficial gitlab at the following link: koristo1/dpr. The repository also includes the ETEX dataset,
but, due to its sheer size, not the data of Chernobyl measurements.

Following sections describe a single model at a time, and can be divided into two groups:
1. frequentist models - linear and ridge regression

2. VB models - bayesian ridge, sparse, smooth regression and LDL,
with the latter following a similar structure:

1. Define prior distributions

2. Infer likelihood function

3. Infer posterior distributions and their shaping parameters

4. Describe shaping parameter functional dependencies

5. Describe calculation as pseudocode

6. Evaluate models on ETEX data.

Finally, all models are compared in table 4.1 on the ETEX dataset.
1in alphabetical order.

27

https://gitlab.fit.cvut.cz/koristo1/dpr
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4.2 Classic regression

4.2.1 Formulation
To provide a contrast to the various bayesian regression methods shown later, classic linear (and
ridge) regression were also evaluated as representatives of the classic, frequentist vanilla methods.

In the case of ETEX data, the matrixX⊺X is singular, and as such does not have an inversion.
This poses an impenetrable barrier for an analytical solution via ordinary least squares. Not all
is lost, introduction of regularisation to the model solves this issue.

Ridge regression introduces a hyperparameter, hereforth referred to as λ, which gauges the
pressure on the size of coefficients β. Given its hyperparametric nature, it is model and data
specific, and requires tuning. One such method to find a well-behaved2 λ is the L-curve method
(figure 4.1, comparing the norm of a regularised solution against the norm of the corresponding
residual norms. The actual value of λ resides in the ”elbow” of the graphs. That is, in layman’s
terms, the point where the curve changes from the vertical segment to the horizontal segment
(roughly (50, 1.55) in the graph 4.1). Through this analysis, the penalty term λ is set to 10−4.

Figure 4.1 L-curve of the ETEX dataset for determining λ penalty of ridge regression.

4.2.2 Performance
Despite its simplicity and non-iterative nature, ridge regression has substantial results. The
activity of the approximated β̂ lies in the correct interval [60, 70] and the value spike to more
than half of the real β values, as can be plainly observed in figure 4.2. However, there is also
significant activity outside of the window, and dips below 0 once or twice.

The reconstruction given by ridge regression with λ = 10−4 is shown in figure 4.3. There is a
general understatement of the values, visible from the upward (in the sense of increasing value)
tendency of the data, as well as two clear outliers. There are also a few points below the red
dotted regression line, which correspond to β̂ being non-zero outside the correct activity window,
as described prior.

The metrics3 measured for this models are

MSE = 7.1020× 10−4

2
3A summary and comparison of all models can be found in table 4.1.
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Figure 4.2 Comparison of real β from ETEX (red) with β̂ as approximated by a ridge regression
model (blue).

Figure 4.3 Comparison of measured data y (y-axis) and linear ridge regression attained reconstruction
ŷ = Xβ̂ (x-axis).

MAE = 65.2597× 10−4

RMSE = 266.4950× 10−4

Performance could be further improved by data preprocessing, standardisation to support
uniform regularisation of each individual feature. A plethora of other approaches related to
linear regression could be applied to the data, such as the method of gradient descent, different
forms of regularisations, random forest regression, etc. However, that is not the goal of the focus
of this thesis.

4.3 Bayesian ridge regression
This model is the entry point to Bayesian regression models, others following expand on it by
adding more variables and parameters. It is the Bayesian counterpart of ”classic” ridge regression,
which models the data followingly
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y = Xβ + ε. (4.1)

The random vector of noise ε is assumed to have a mean value of 04 and to be normally
distributed with variance ω−1 5

ε = (ε1, ε2, . . . , εn), εi
iid∼ N

(
0, ω−1) (4.2)

Consequently, as εi is a random variable, so is y, as it is a linear transformation (addition of
Xβ).

4.3.1 Establishing prior distributions
The target variable y follows a normal distribution conditioned on two parameters, β and ω,
resulting in the model 4.3:

f(y|β, ω) = N
(
Xβ, ω−1Ip

)
= (2π)− p

2 |ω−1Ip|−
1
2 exp (−1

2(y −Xβ)⊺ω(y −Xβ)). (4.3)

Instead of defining β, ω, and their intermediate values and approximations as scalar values,
as is the case in linear regression, they are represented by their respective distributions. Prior
distributions of β and ω are selected from the exponential family, specifically to be conjugate
with the model f(y|β, ω). Distribution of β is chosen as normal distribution, with mean value
µβ = 0 and variance σ2

β = In

f(β) = N (0, In) = (2π)− n
2 |In|−

1
2 exp (−1

2β
⊺Inβ). (4.4)

For ω, the Gamma distribution is selected as the most suitable, with prior shaping parameters
c0, d0 with values set non-informatively to c0 = d0 = 10−10

f(ω) = G(c0, d0) = cd0
0

Γ(d0)ω
c0−1 exp (−d0ω) (4.5)

The joint likelihood (under the previously established assumption of conditional indepen-
dence) is a product of the individual prior probabilities and the model of y

f(y,β, ω) = f(y|β, ω)f(β)f(ω) = (2π)− p
2 |ω−1Ip|−

1
2 exp (−1

2(y −Xβ)⊺ω(y −Xβ))×

(2π)−n 1
2 |In|−

1
2 exp (−1

2β
⊺Inβ)× cd0

0
Γ(d0)ω

c0−1 exp (−d0ω).
(4.6)

This model can be simplified by applying a logarithmic function to it. This step will be later
undone by applying its inverse, the exponential function, resulting in an identity. This allows to
utilise the following selected properties of logarithm

product property: ln (xy) = ln(x) + ln(y)

power property: ln(xa) = a ln(x),

4A very common and weak assumption.
5The variance of εi is denoted ω−1 for the sake of simplification in later equations, and as such is just a

convenient notation.



Bayesian ridge regression 31

ln f(y,β, ω) = ln f(y|β, ω) + ln f(β) + ln f(ω). (4.7)

To finish the logarithmic form of the joint probability 4.6, logarithms of individual functions
are as follows, utilising basic (and linear) algebra

ln f(y) = −p2 ln (2π) + p

2 ln (ω)− 1
2(y −Xβ)⊺ω(y −Xβ), (4.8)

where the second addendum of 4.8 ln (|ω−1Ip|−
1
2 ) is explained in 4.9, exploiting the determi-

nant of a diagonal matrix and the aforementioned logarithmic properties.

ln (|ω−1Ip|−
1
2 ) = 1

2 ln (|ωIp|) = 1
2 ln (

p∏
i=1

ω) = 1
2

p∑
i=1

ln (ω) = p

2 ln (ω) (4.9)

ln f(β) = −n2 ln (2π)− 1
2 ln (|In|)−

1
2(β⊺Inβ) = −n2 ln (2π)− 1

2(β⊺Inβ) (4.10)

ln f(ω) = ln
(

cd0
0

Γ(d0)ω
c0−1 exp (−d0ω)

)
= ln

(
cd0

0
Γ(d0)

)
+ (c0 − 1) lnω − d0ω (4.11)

Altogether, the function 4.7 expanded is as follows:

ln f(y,β, ω) = −p2 ln (2π) + p

2 ln (ω)− 1
2(y −Xβ)⊺ω(y −Xβ)

−n2 ln (2π)− 1
2(β⊺Inβ)

+ ln
(

cd0
0

Γ(d0)

)
+ (c0 − 1) lnω − d0ω.

(4.12)

4.3.2 Deriving posterior distributions
Having the (complex) model of joint likelihood of prior distributions β, ω and model y, the
posterior distributions are derived using the Variational Bayes theorem for each parameter θi:
β, ω.

Using proportionality (∝), it is possible to perceive any term that is independent of param-
eter θi in the expression of f̃(θi|y) as a constant, and ignore any such term in the marginal
distribution. The exponential function is applied to the θi-based proportion of the logarithmic
joint probability, effectively cancelling out the logarithm along the way

f̃(β|y) ∝ exp (−1
2(ω̂(y −Xβ)⊺(y −Xβ))− 1

2(β⊺Inβ)) =

exp (ω̂y⊺Xβ − 1
2 ω̂β

⊺X⊺Xβ − 1
2(β⊺Inβ)) =

exp (−1
2(β⊺(ω̂X⊺X + In)β − 2ω̂y⊺Xβ)).

(4.13)
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As it was established that β follows a multivariate normal distribution, i.e. β ∼ N (µβ,Σβ),
and so its probability density function can be written as

f(β) = (2π)− n
2 |Σ−1

β | exp (−1
2(β − µβ)⊺Σ−1

β (β − µβ)). (4.14)

The argument of the exponential function can be expanded to clearly separate a quadratic,
a linear and a constant term:

f(β) = (2π)− n
2 |Σ−1

β | exp (−1
2(β⊺Σ−1

β β − 2µ⊺
βΣ−1

β β + µ⊺
βΣ−1

β µβ)), (4.15)

from which the shaping parameters µβ,Σβ can be inferred. Under proportionality, any term
that is not in relation with β is considered constant, therefore the equality of the two equations
under proportionality is based on the equality of its quadratic (4.16) and linear (4.17 terms,
respectively

Σ−1
β = ω̂X⊺X + In (4.16)

µ⊺
βΣ−1

β = ω̂yX. (4.17)

Resulting shaping parameters µβ,Σβ of β are just a few adjustments away

Σβ = (ω̂X⊺X + In)−1 (4.18)
µβ = (ω̂X⊺X + In)−1ω̂X⊺y. (4.19)

As for ω, it follows a Gamma distribution, i.e. f(ω) = cd

Γ(d)ω
c−1 exp (−dω), and can be

rewritten in the exponential family’s parametrisation:

f(ω) = exp ((c− 1) ln (ω)− dω + ln (Γ(c)) + c ln (d), (4.20)

and its marginal distribution has the following shape

f̃(ω|y) ∝ exp (ln (|ω−1Ip|−
1
2 )− 1

2ω(y −Xβ̂)⊺(y −Xβ̂) + (c0 − 1) ln (ω)− d0ω) =

exp ((p2 + c0 − 1) ln (ω)− 1
2(yy⊺ − 2y⊺Xβ̂ + ̂β⊺X⊺Xβ + 2d0)ω).

(4.21)

The form 4.21 shows the linear and logarithmic terms, as in the case of β, can be set equal
to the linear and logarithmic terms of 4.20

c− 1 = p

2 + c0 − 1 (4.22)

−d = −d0 −
1
2(yy⊺ − 2y⊺Xβ̂ + ̂β⊺X⊺Xβ). (4.23)

In conclusion, the parameters c, d are updated in the following fashion

c = c0 + p

2 (4.24)

d = d0 + 1
2(yy⊺ − 2y⊺Xβ̂ + ̂β⊺X⊺Xβ). (4.25)

Both posterior distributions have their shaping parameters explicitly stated, and thanks to the
conjugate prior nature of them, the type of prior and posterior distributions does not change. The
shaping parameters define the prior distributions for a subsequent calculation, paving way to an
iterative algorithm. The figure 4.4 shows the dependencies between individual parameters (and
data y,X). It is an oriented graph, where the edge between nodes a→ b represents dependency
of a on b, i.e. the value of b is a part of calculation of a. The graph cannot be topologically sorted
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X
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Σβ
µβ

Figure 4.4 Bayesian ridge regression parameters dependency graph. The graph is directed with
multiple cycles.

Algorithm 1: Bayesian ridge regression algorithm
input : y ∈ Rn,1, X ∈ Rn,p

output: µβ ∈ Rp,1

init
ω ← max(X⊺X)−1

for i← 1 to 100 do
Σ← (ωX⊺X + In)−1

µ← Σ(ωX⊺y)
β,ββ ← Bottom truncated normal distribution’s first two moments(µ,diag(Σ) 1

2 ))
varββ ← ββ − β2

ββ⊺ ← ββ⊺ + varββ

c← c0 + 1
2n

d← d0 + 1
2 ((y⊺y)− 2y⊺Xµβ + Tr(ββ⊺X⊺X))

ω ← c
d

end

as it contains directed cycles, and as such, there is not one way to order the calculations in a
linear fashion. Therefore, initial prior values will have to be set for some, if not all parameters.

With the posterior shaping parameters expressed in relation to the prior distributions; data
y,X and initial prior values, the shaping parameters are updated iteratively according to the
algorithm expressed by pseudocode 1. The order of the parameter calculation approximation is
theoretically arbitrary, as the only change introduced by a different order would be the need for
different initial values. However, as β is the modeled variable6, it is more feasible to follow the
”importance hierachy” of the interdependent parameters.

Previously stated, in the expression of a marginal distribution, the marginal distribution
works with the expected values of all other parameters other than the parameter whose marginal
distribution is being expressed,E[β] = µβ,E[ω] = c

d .
To further boost the model’s quality, two approaches are incorporated. Firstly, normal distri-

butions are replaced with truncated normal distributions, with a lower bound of 0 and no upper
bound. This change is to ensure non-negativity, to better correspond with the theoretical model
under the hood7. This small change brings a cascade of changes, which are luckily isolated into

6technically, ŷ = Xβ is the target variable, however, it is entirely derived from β.
7A similar approach should be employed in the case of any non-negative random variable, such as length or
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the calculation of the relevant mean value and variance as described in 3.2.2. The second change
is the introduction of a slight softening of β.

4.3.3 Performance
The algorithms were implemented, tested, debugged and fine-tuned on data from the European
tracer experiment 1.4, where both the ground truth of the time vector β and the target variable
y are known, and as such it provides a potent framework for development. There were 100
iterations altogether; this number was determined empirically from previous experiments in the
field. The initial value of ω was set to (max (X⊺X))−1, β did not need any initial value as it is
the first to be computed in the algorithm 1, and any initial value would be discarded rightaway.

Figure 4.5 ω parameter values during 100 iterations using bayesian ridge regression on ETEX data.

As can be seen in figure 4.5, the parameter ω, which determines the variance matrix of y,
quickly converges from the initial value to ≈ 1100, within the first 5 iterations of the algorithm.

Figure 4.6 Comparison of real β from ETEX (red) with β̂ as approximated by a bayesian ridge
regression model (blue) after 100 iterations.

weight.
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Figure 4.7 compares the value of the reconstruction ŷ = Xβ̂ on the x-axis against the real
y n on the y-axis. The red dashed line models the perfect regression line, upon which points
(ŷi, yi) would lie if the reconstruction fit the data perfectly. Clearly, that is not the case, as most
reconstructed values are much lower than the real ones, as can also be seen in figure 4.6, where
the main activity between 60 and 80 on the x-axis is a far cry from the reconstructed values. This
simple algorithm managed to grasp the nature of the process, showing a degree of sensitivity in
correct interval, but the values are far from ideal. It is also worth to notice that outside the
activity in the [60, 70] interval, where β = 0, β̂ is slightly8 larger than 0, corresponding to some
deviations in the direction of x-axis in the comparing figure 4.7.

Figure 4.7 Comparison of measured data y (y-axis) and bayesian ridge regression attained recon-
struction ŷ = Xβ̂ (x-axis) after 100 iterations.

The model’s performance is assessed using mean square error, root mean square error and
mean absolute error between the reconstruction ŷ = Xβ̂ and ground truth y:

MSE = 9.2399× 10−4

MAE = 71.2809× 10−4

RMSE = 303.9722× 10−4

and will be useful for comparison with other models.

4.4 Bayesian sparse regression

Sparse regression allows the model to change the variance of the parameter β by replacing the
static covariance matrix In with a diagonal matrix with v = (v1, v2, . . . , vn) on its diagonal,
where vi = G(ai, bi). Certain parts of the model stay the same, whilst others change due to the
propagation of this newly added set of parameters. Parameters v1, . . . , vn are assumed to be
also conditionally independent of all other parameters, and so the joint probability is in fashion
similar to the previous model.

8A very vague description
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4.4.1 Establishing prior distributions
The prior distribution of β is set as follows

f(β|v) = N

0,


v1 0 . . . 0
0 v2 0
...

. . .
...

0 . . . 0 vn


 , (4.26)

the distribution is still zero centered, but now the covariance matrix is parametric and can
change, amplifying or dampening β as set during the latter iterative algorithm. vi is iid having
a prior Gamma distribution with parameters a0, b0:

f(vi) = ab0
0

Γ(b0)v
a0−1
i exp (−b0vi), (4.27)

the covariance matrix V is regular if ∀i : vi ̸= 0, and therefore under that condition has an
inverse V −1. The prior distribution of ω is left unchanged, as is the model y. The two prior
parameters a0, b0 are set to non-informative 10−10.

The joint probability function is, under the assumption of independence,

f(y,β, ω,v) = f(y|β, ω)f(β|v)f(ω)
n∏

i=1
f(vi) = (2π)− p

2 |ω−1Ip|−
1
2 exp (−1

2(y −Xβ)⊺ω(y −Xβ))×

(2π)−n 1
2 |V −1|− 1

2 exp (−1
2β

⊺V β)× cd0
0

Γ(d0)ω
c0−1 exp (−d0ω)×

n∏
i=1

(
ab0

0
Γ(b0)v

a0−1
i exp (−b0vi)

)
.

(4.28)

The newly added term ln f(vi) can be rewritten in the following fashion

ln f(vi) = ln
(

ab0
0

Γ(b0)v
a0−1
i exp (−b0vi)

)
= ln

(
ab0

0
Γ(b0)

)
+ (a0 − 1) ln vi − b0vi, (4.29)

the probability of v is then just a simple product (again, thanks to the conditional independence
assumption)

ln
(

n∏
i=1

f(vi)
)

=
n∑

i=1
(ln (f(vi))) =

n∑
i=1

(
ln
(

ab0
0

Γ(b0)

)
+ (a0 − 1) ln vi − b0vi

)
. (4.30)

The β prior model has gotten slightly more complicated along the way, its probability density
function f(β) changes to

f(β|v) = (2π)− n
2 |V −1|− 1

2 exp (−1
2(β⊺V β)), (4.31)

and its logarithmic form is as follows

ln f(β) = −n2 ln (2π) + 1
2 ln |V | − 1

2(β⊺V β) = −n2 ln (2π) + 1
2

n∑
i=1

ln (vi)−
1
2(β⊺V β). (4.32)

It is of note that the covariance matrix V is diagonal, and as such its determinant is equal
to the product of the diagonal elements and therefore the following holds

ln |V | = ln
n∏

i=1
vi =

n∑
i=1

ln (vi). (4.33)
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f(ω) and f(y) remain unchanged, as do the prior constants c0, d0. The expansion of the
logarithmic form of f(y,β, ω,v) is, put together, described by the following

ln f(y,β, ω,v) = −p2 ln |ω| − 1
2ωyy

⊺ + ωy⊺Xβ + ω(β⊺X⊺Xβ)− n

2 ln (2π)

+1
2

n∑
i=1

ln (vi)−
1
2(β⊺V β) + ln

(
cd0

0
Γ(d0)

)
+ (c0 − 1) lnω − d0ω

+
n∑

i=1

(
ln
(

ab0
0

Γ(b0)

)
+ (a0 − 1) ln vi − b0vi

)
.

(4.34)

4.4.2 Deriving posterior distributions
The marginal distributions of β is near identical to the one in 4.3, with the only difference being
the substitution In → V −1. Making use of proportionality, the marginal distribution is then

f̃(β|y) ∝ exp (−1
2 ω̂(y −Xβ)(y −Xβ)⊺ − 1

2(β⊺V̂ β)) =

exp (ω̂y⊺Xβ − 1
2(ω̂β⊺X⊺Xβ)− 1

2(β⊺V̂ β)) =

exp (−1
2(β⊺(ω̂X⊺X + V̂ )β − 2(ω̂y⊺X)β))).

(4.35)

β still follows a normal distribution, β ∼ N (µβ,Σβ)9, using the form that separates the
linear and quadratic terms of the exponential function exp, and setting the linear and quadratic
terms equal to the linear and quadratic terms of the marginal distribution, the following pair of
equations gives way to the shaping parameters

Σ−1
β = ω̂X⊺X + V (4.36)

µ⊺
βΣ−1

β = ω̂yX. (4.37)

Expressing the two shaping parameters of β yields the following results

Σβ = (ω̂X⊺X + V )−1 (4.38)
µβ = ω̂y⊺XΣβ = (ω̂X⊺X + V )−1ω̂X⊺y. (4.39)

Therefore, in each iteration the covariance is added (in place of iN). As for the marginal
distribution of vi, that is where things get complicated. Given there is no information of whether
v = (v1, v2, . . . , vn) has a joint probability distribution10, they’re modeled individually ∀i. The
marginal for a given vi is

f̃(vi|y) ∝ exp ((a0 − 1 + 1
2) ln (vi)− b0 + 1

2(β̂β⊺
ii)vi, ) (4.40)

as only the ith element of β (βi) is multiplying vi, other elements do not partake in that equation.

f̃(vi|y) ∝ exp ((a0 − 1) ln vi − b0vi + 1
2 ln vi − (β̂β⊺)iivi) =

exp ((a0 − 1 + 1
2) ln vi − (b0 + (β̂β⊺)ii)vi)

(4.41)

9Rinse and repeat, the general flow of each model will be the same, with the only change in the number of
marginal distributions.

10A rather strong assumption would have to be made.
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Figure 4.8 Sparse bayesian dependency graph

From that, as vi is Gamma distributed with parameters ai, bi,

f(vi) = exp ((ai − 1) ln (vi)− bivi + ln (Γ(ai)) + ai ln (bi), (4.42)

the posterior shaping parameters are given as

ai = a0 + 1
2 (4.43)

bi = b0 + 1
2(β̂β⊺)ii). (4.44)

The posterior distribution of ω remains unchanged (see 4.24 and 4.25). Figure 4.8 shows the
addition and incorporation of parameters v, and as no node is removed from the graph, it contains
the previous cycles. Therefore, calculations will require initial values of (some) parameters.

4.4.3 Performance

Figure 4.9 ω parameter values during 100 iterations using bayesian sparse regression on ETEX data.

Even though the estimation of ω has not changed, it acts within the calculation of others
which have - namely the estimation of Σβ and µβ (as can be also deducted from the dependency
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Algorithm 2: Bayesian sparse regression algorithm
input : y ∈ Rn,1, X ∈ Rn,p

output: µβ ∈ Rp,1

init
ω ← max(X⊺X)−1

V ← Ip

for i← 1 to 100 do
Σ← (ωX⊺X + V )−1

µ← Σ(ωX⊺y)
β,ββ ← Bottom truncated normal distribution’s first two moments(µ,diag(Σ) 1

2 ))
varββ ← ββ − β2

ββ⊺ ← ββ⊺ + varββ

c← c0 + n
2

d← d0 + 1
2 ((y⊺y)− 2y⊺Xµβ + Tr(ββ⊺X⊺X))

ω ← c
d

a← a0 + 1
2

b← b0 + 1
2 (ββ⊺)jj

v ← a
b

V ← diag v
end

graph 4.8). It once again converges very quickly, with a minor hiccup after a steep rise during
the first few iterations, ultimately seemingly converging within the first ≈ 5 iterations.

(a) Per iteration value of v−1in sparse bayesian re-
gression on the ETEX dataset.

(b) Per iteration value of v in sparse bayesian re-
gression on the ETEX dataset.

Figure 4.10 Approximate intermediate values of v during 100 iterations of sparse bayesian regression
on the ETEX dataset.

The progress of v is harder to depict, as it consists of n iid random variables. The progress of
each vi is depicted in a shared figure 4.10b. Most of the values stay near zero, which is exactly
the behaviour expected from a sparse solution. Most β values are zero, or near-zero, as the
activity is only in a limited window [60, 70]. Clearly, those values are the ones corresponding to
the rising11 curves in the figure. The important takeaway is the monotonicity of each curve, all
of them are increasing.

Clearly, and especially in comparison with previous, simpler models, the sparse model has
11At various pace
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dramatically better results. It fits the ground truth β very tightly, overshooting the value in a
few instances, and having non-zero values outside the main activity window. This behaviour is
invariant with growing number of iterations - convergence has been, apparently, achieved. The
results are actually rather similar to classic ridge regression, with a visible increase of values in
the activity window.

Figure 4.11 Comparison of real β from ETEX (red) with β̂ as approximated by a bayesian sparse
model (blue) after 100 iterations.

As visible in figure 4.12, there are units of outliers caused by a very low estimation ŷ. Most
of estimations are not too dissimilar of the ground truth, mainly due to the majority of β being
0. Nevertheless, the model marks an increase in performance and fulfills its role, introducing
sparsity, allowing the model to dampen (many) values near 0.

Figure 4.12 Comparison of measured data y (y-axis) and bayesian sparse regression attained recon-
struction ŷ = Xβ̂ (x-axis) after 100 iterations.

The metrics measured for this models are

MSE = 6.8414× 10−4

MAE = 69.3237× 10−4
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RMSE = 261.5601× 10−4

which are lower than that of Bayesian ridge regression. A step12 in the right direction, albeit
there is discussion to be held, whether a model that is contained to the activity proper, but with
lower values, is better than one that fits the activity closer, but with some values exceeding and
exceeding outside the activity.

4.5 Bayesian smooth regression
The smooth regression model is a minor modification of the previously shown sparse model 4.4
by keeping the introduced sparsity, but also forcing adjacent values to have similar values.

Importantly, smoothness is a much stronger assumption about the model than sparsity.
Where sparsity can be completely ignored thanks to how it is incorporated13, and can result in a
non-sparse model, smoothness can be considered as enforced, therefore performance of a smooth
model is very much tied to whether the underlying ground truth data is actually smooth. The
distinction will be made crystal clear when comparing the model’s performance on ETEX 4.5.3
and Chernobyl 2020 fires 5.2.3 data.

4.5.1 Establishing prior distributions
Smooth beta values are modeled using a discrete first derivative, f(∇β|v) ∼ N

(
0,V −1), where

∇ ∈ Rn,n is a diagonal matrix with 1 on the diagonal and -1 on the subdiagonal, i.e.:

∇ =



1 0 . . . . . . 0
−1 1 0 0
... −1 1

...
...

. . . . . .
...

0 . . . . . . −1 1

 . (4.45)

▶ Theorem 4.1 (Linear transformation of a multivariate normal distribution [63]). Given a
multivariate normal distribution X ∼ N (µX ,ΣX), a vector a and a square matrix C of appro-
priate dimensions, it holds that

a+CX ∼ N (a+CµX ,CΣXC
⊺) . (4.46)

Under theorem 4.1 the final form of β’s distribution is derived:

f(∇β|v) ∼ N
(
0,V −1)→ f(β|v) ∼ N

(
0,∇−1V −1(∇−1)⊺

)
= N

(
0, (∇⊺V ∇)−1) . (4.47)

Previously, Σβ was set to V , allowing the variances v1, . . . , vn to change, granting the model
the ability to easily knock values down to 0. The covariance matrix V is superseded by ∇⊺V ∇,
keeping the sparsity capabilities and introducing smoothness. Explicitly stated, the distribution
of β in the smooth model is

f(β|v) = (2π)− n
2 |(∇⊺V ∇)−1|− 1

2 exp (−1
2(β⊺∇⊺V ∇)β)) =

(2π)− n
2 |(∇⊺V ∇)| 12 exp (−1

2(β⊺∇⊺V ∇)β)).
(4.48)

▶ Theorem 4.2 (Determinant of matrix product [99]). Let A1,A2, . . . ,AN ∈ Rn,n, then
|
∏N

i=1 Ai| =
∏N

i=1 |Ai|,
12With a reasonable learning rate!
13Whereby the model sets the values of vi based on the provided training sample
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Using the multiplicative property of square matrices (theorem 4.2), the determinant of ∇⊺V ∇
can be rewritten as noted by the following equation 4.49, as |∇| = |∇⊺| = 1 and the fact that V
is a diagonal matrix:

|∇⊺V ∇| = |∇⊺| · |V ||∇| = |V | =
n∏

i=1
vi. (4.49)

The change of β’s probability density function also naturally causes a different logarithmic
form of said density function:

ln f(β|v) = 1
2 ln |∇⊺V ∇| − 1

2(β⊺∇⊺V ∇β) =

1
2 ln (

n∏
i=1

vi)−
1
2(β⊺∇⊺V ∇β) =

1
2

n∑
i=1

ln (vi)−
1
2(β⊺∇⊺V ∇β).

(4.50)

Put together, the logarithmic joint probability model ln f(y,β, ω,v) is

ln f(y,β, ω,v) = −p2 ln |ω| − 1
2ωyy

⊺ + ωy⊺Xβ + ω(β⊺X⊺Xβ)

+1
2

n∑
i=1

ln (vi)−
1
2(β⊺∇⊺V ∇β) + ln

(
cd0

0
Γ(d0)

)
+ (c0 − 1) lnω − d0ω

+
n∑

i=1

(
ln
(

ab0
0

Γ(b0)

)
+ (a0 − 1) ln vi − b0vi

)
.

(4.51)

4.5.2 Deriving posterior distributions
The marginal distributions have changed.

f̃(β|y) ∝ exp (ω̂y⊺Xβ − 1
2(ω̂β⊺X⊺Xβ)− 1

2β
⊺∇⊺V ∇β) =

exp (ω̂y⊺Xβ − 1
2β

⊺(ω̂X⊺X +∇⊺V ∇)β).
(4.52)

The two shaping parameters, µβ,Σβ are very similar to their previous incarnations

Σβ = (ω̂X⊺X +∇⊺V̂ ∇)−1 (4.53)
µβ = (ω̂X⊺X +∇⊺V ∇)−1ω̂X⊺y. (4.54)

Shifting focus to v by keeping only terms that include V (not specifying for vi just yet), the
following proportional form is yielded

f̃(V |y) ∝ 1
2

n∑
i=1

ln vi −
1
2(β⊺∇⊺V ∇β) = 1

2

n∑
i=1

ln vi −
1
2

n∑
i=1

vi(βi − βi+1)2 =

1
2

n∑
i=1

ln (vi)−
1
2

n∑
i=1

vi(β2
i − 2βiβi+1 + β2

i+1).
(4.55)

▶ Definition 4.3 (Matrix trace [100]). Given a n× n square matrix A, its trace is defined as

TrA =
n∑

i=1
Aii. (4.56)
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β⊺∇⊺V ∇β is a scalar value, and as such is equal to its trace, β⊺∇⊺V ∇β = Trβ⊺∇⊺V ∇β =
Tr∇ββ⊺∇⊺V .

Now, slicing for vi to model its posterior distribution:

f̃(vi|y) ∝ 1
2 ln vi − (b0 + 1

2((ββ⊺)i i − 2(ββ⊺)i i+ 1 + (ββ⊺)i+1 i+1), (4.57)

giving values to the next iteration of a, b

a = a0 + 1
2 (4.58)

b = b0 + (ββ⊺)i i − 2(ββ⊺)i i+1 + (ββ⊺)i+1 i+1. (4.59)

ω’s posterior distribution prevails in its original form 4.24, 4.25. The flow of the algorithm
does not change, nor does the algorithm grow vertically, as shown by pseudocode 3. Parameter
dependency is identical to sparse model’s, and as such is shown in figure 4.8, and therefore still
cannot be topologically ordered.

The previously assigned, non-informative values of prior shaping parameters are kept, i.e.
a0 = b0 = c0 = d0 = 10−10.

Algorithm 3: Bayesian smooth regression algorithm
input : y ∈ Rn,1, X ∈ Rn,p

output: µβ ∈ Rp,1

init
ω ← max(X⊺X)−1

V ← Ip

for i← 1 to 100 do
Σ← (ωX⊺X +∇V ∇⊺)−1

µ← Σ(ωX⊺y)
β,ββ ← Bottom truncated normal distribution’s first two moments(µ,diag(Σ) 1

2 ))
varββ ← ββ − β2

ββ⊺ ← ββ⊺ + varββ

c← c0 + 1
2n

d← d0 + 1
2 ((y⊺y)− 2y⊺Xµβ + Tr(ββ⊺X⊺X))

ω ← c
d

varββ ← µβµ
⊺
β − µ

⊺
βµβ

ββ⊺ ← µβµ
⊺
β + Σβ

a← a0 + 1
2

b← b0 + 1
2 ((ββ⊺)jj − 2(ββ⊺)jj+1 + (ββ⊺)j+1j+1)

v ← a
b

end

4.5.3 Performance
ω has a very different value progression compared to the sparse-only variant, assumedly due to
the interaction with v. It rises incredibly steeply, overshooting what seems to be in hindsight
the convergent value, and settles at nearly the same time as in previous models.

Sparsity parameters v1, . . . , vn reach their convergence incredibly quickly, as is visible in figure
4.14b - after roughly the first 15 iterations, the value stay invariant.

Figure 4.15 shows the main culprit of the previously seemingly good properties of the algo-
rithm. Within the activity window, the behaviour seems to be closely resembling the one in
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Figure 4.13 ω parameter values during 100 iterations using bayesian smooth regression on ETEX
data.

(a) Per iteration value of v−1 in smooth bayesian
regression on the ETEX dataset.

(b) Per iteration value of v in smooth bayesian re-
gression on the ETEX dataset.

Figure 4.14 Approximate intermediate values of v during 100 iterations of smooth bayesian regression
on the ETEX dataset.

sparse model (4.11), including a slight deviation from 0 after the [60, 70] window. The elephant
in the room to address is, however, the incredibly off values preceding the activity. From the very
start, the estimate β̂ is very different from 0, almost at the same level as in the activity window.
At around β17, the values take off to a hitherto unprecedented extreme. The estimated values
are, most likely to support smoothness in other parts, multiple times larger than the values in
the narrow activity window. It is important to keep in mind that outside the activity window, βi

should cling to 0. This is indicative of an improper model for the situation. Increasing the num-
ber of does not have the effect, as can be deduced from the quick convergence of the parameters
and no visible sign of deviation; this model is locked in.

Despite the grim results one could take away from β̂ is that the actual reconstruction ŷ
would carry the same issues. However, that is not necessarily the case. When comparing the
reconstruction and ground truth y (figure 4.16, the values do deviate in either direction - un-
derestimation of the reconstruction ŷ at some points, and overestimation at other points, with
only a few outliers. This seems like a fallacy, but is actually caused by the underlying model
X. The values that would get multiplied (ŷ = Xŷ) by the extremely high values of β̂ are, on
the contrary, miniscule or 0, reducing the impact of the wildly incorrect β̂ at those given points.
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Figure 4.15 Comparison of real β from ETEX (red) with β̂ as approximated by a bayesian smooth
model (blue) after 100 iterations.

Figure 4.16 Comparison of measured data y (y-axis) and bayesian smooth regression attained recon-
struction ŷ = Xβ̂ (x-axis) after 100 iterations.

However, this is not a blanket behaviour and heavily relies on X. This issue will be revisited
on Chernobyl data in 5.2.3. The model had simply made a creative use of the task’s specific
formulation, yielding the following metrics for comparison:

MSE = 7.2237 ∗ 10−4

MAE = 73.4335 ∗ 10−4

RMSE = 268.7701 ∗ 10−4.

4.6 LDL
The LDL algorithm has a promising potential to overtake any of the previous models. It expands
the smooth model 4.5 much like the smooth model expanded the sparse model 4.4 14. In lieu of

14A step closer to a Rube Goldberg machine.
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a constant matrix ∇, it modifies the covariance of β by introducing by matrix L

L =



1 0 . . . . . . 0
l1 1 0 0
... l2 1

...
...

. . . . . .
...

0 . . . . . . ln−1 1

 . (4.60)

The name of the model being LDL stems from the covariance matrix LDL⊺ of β, which in this
case, is V .

D = V =


v1 0 . . . 0
0 v2 0
...

. . .
...

0 . . . 0 vn

 (4.61)

LDL is a generalisation of the previous algorithms, allowing the values l influencing the
smoothness of the model to change. If the values of l = (l1, l2, . . . , ln−1) were to set to fixed
values 0, -115, respectively, then the model would degenerate into a sparse 4.4 or smooth 4.5
model, respectively. The promise of the model is reaching an equilibrium between smoothness
and sparseness through a reasonable value assignment of l.

4.6.1 Establishing prior distributions
LDL changes the prior covariance of β, generalising the approach of smooth bayesian regression
4.5. To avoid confusion, due to previous use of V (sparse 4.4 and smooth 4.5 models) as the
covariance matrix, going forward, it holds that D = V . The changes of parametrising matrix
∇ → L, where

L =



1 0 . . . . . . 0
l1 1 0 0
... l2 1

...
...

. . . . . .
...

0 . . . . . . ln−1 1

 , (4.62)

introduces a new set of parameters l1, . . . , ln−1 on L’s subdiagonal. These parameters are iid.
random variables, following a normal distribution given as follows:

f(li|ψi) = N
(
l0, ψ

−1
i

)
, (4.63)

where l0 is empirically set as -116. The newly added parameters along another set of parameters17

ψ1, . . . , ψn−1 determining the former’s variances with the latter. As was the case of l1, . . . , ln−1,
ψ1, . . . , ψn−1 are identically and indepedently distributed, but following a Gamma distribution,
with prior parameters e0, f0:

f(ψi) = ed0
0

Γ(d0)ψ
e0−1
i exp (−d0ψi). (4.64)

The model of β is changed to the following, denoting the vector of l1, . . . , ln−1 as l:

f(β|v, l) = (2π)− n
2 |(LV L⊺)−1|− 1

2 exp (−1
2(β⊺LV L⊺β)), (4.65)

15Which can be achieved by setting the mean value to 0,-1 respectively and variance to 0, transforming the
normal distribution to a Dirac delta distribution [101].

16The value of l0 is a subject to experiments in 5.2.4.2.
17Parameters within parameters within parameters.
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ln f(β|v, l) = −n2 ln (2π) + ln |LV L⊺| − 1
2(β⊺LV L⊺β). (4.66)

This equation can be further simplified by theorem 4.2. Further, as L’s determinant |L| = |L⊺| =
1, the factor |(LV L⊺)−1|− 1

2 of product 4.66 simplifies accordingly. Finally, given that V is a
diagonal matrix, its determinant is the product of its diagonal elements |V | =

∏n
i=1 vi:

|(LV L⊺)−1|− 1
2 = |LV L⊺| 12 = (|L||V ||L⊺|) 1

2 = |V | 12 =
(

n∏
i=1

vi

) 1
2

. (4.67)

Altogether the logarithm of f(β|v, l) has the following form

ln f(β|v, l) = −n2 ln (2π) + 1
2

n∏
i=1

ln vi −
1
2(β⊺LV L⊺β). (4.68)

Now, for the two newly introduced parameters that have cause this kerfuffle. Starting with the
outer parameter li, li ∼ N (l0, ψi):

ln f(li|ψi) = ln (−1
2 ln (2π) + 1

2 lnψi −
1
2(l2i − 2lil0 + l20)ψi, ) =

(2π)− 1
2 |ψ−1

i |
− 1

2 exp (−1
2(ψ

1
2
i (li − l0))2),

(4.69)

As for the Gamma distributed ψi determining the normally distributed li’s variance

ln f(ψi) = ln
(

ef0
0

Γ(f0)ψ
e0−1
i exp (−f0ψi)

)
= ln

(
ef0

0
Γ(e0)

)
+ lnψi − f0ψi. (4.70)

Once again, it is assumed that all parameters are conditionally independent and thus their
joint probability is equal to the product of their individual probabilities f(y,β, ω,v, l,ψ) =
f(y|β, ω)f(β)f(ω)f(v)f(l)f(ψ) In the same vein as the previous models18, the logarithm of
joint probability function is expressed as

ln f(y,β, ω,v, l,ψ) = −p2 ln |ω| − 1
2ωyy

⊺ + ωy⊺Xβ + 1
2ω(β⊺X⊺Xβ) ln

(
cd0

0
Γ(d0)

)

+(c0 − 1) lnω − d0ω −
n

2 ln (2π) + 1
2

n∑
i=1

ln vi −
1
2β

⊺LV L⊺β

+n ln
(

ab0
0

Γ(b0)

)
+

n∑
i=1

(a0 − 1) ln vi −
n∑

i=1
b0vi

−1
2 ln (2π) +

n−1∑
i=1

1
2 lnψi −

1
2ψi(l2i − 2lil0 + l20)

+(n− 1) ln
(

ef0
0

Γ(e0)

)
+

n−1∑
i=1

(e0 − 1) lnψi −
n−1∑
i=1

f0ψi,

(4.71)

doing the legwork and preparing the ground for posterior distributions’ shape derivations.

18This pattern is getting rather tedious!
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4.6.2 Deriving posterior distributions
The shaping parameters µβ,Σβ are given by the marginal distribution of 4.71 proportionally:

f̃(β|y) ∝ exp (ωy⊺Xβ
1
2ω(β⊺X⊺Xβ)− 1

2β
⊺LV L⊺β) =

exp ((ω̂y⊺X)β − 1
2β

⊺(ω̂X⊺X + L̂V L⊺)β).
(4.72)

Again to infer the posterior distribution, its shaping parameters are derived by setting the
quadratic and linear terms of 4.72 equal to the approximated posterior distribution’s (as-of-now)
unknown Σβ, µβ:

Σβ = (ω̂X⊺X + L̂V L⊺)−1 (4.73)

µβ = (ω̂X⊺X + L̂V L⊺)−1ω̂X⊺y. (4.74)

The LDL matrix 4.75 is a slightly complex matter. Due to approximate nature, using various
distributions, one cannot 19 set for a plain and simple matrix multiplication of matrices LV L⊺.
The resulting matrix, due to multiplication by L and its transposition L⊺, is effectively mul-
tiplying the diagonal matrix V by a square of l, and more precisely, by its second moments.
Therefore, the moments have to be calculated separately and a formula to construct the proper
matrix has to be derived.

LV L⊺ =



v1 l1v1 0 0 · · · 0
l1v1 l21v1 + v2 l2v2 0 · · · 0

0 l2v2 l22v2 + v3 l3v3 · · · 0
0 0 l3v3 l23v3 + v4 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · l2n−1vn−1 + vn


(4.75)

Fortunately, the LV L⊺ matrix 4.75 is tridiagonal, and the leading diagonal, the subdiagonal
and superdiagonal each follow their own, independent formulation. Further, it is of note that
the matrix is symmetric, LV L⊺ = (LV L⊺)⊺, and thus the super- and sub-diagonal (incidental
diagonals to the leading diagonals) of LV L⊺ are identical.

Let Λ be a vector of second non-central moments of normally distributed l1, . . . , ln−1 given
their particular means µli

and variances Σli
, i.e.

Λ = (µ2
l1

+ Σl1 , µ
2
l2

+ Σl2 , . . . , µ
2
ln−1

+ Σln−1)). (4.76)

diag(LV L⊺)i = vi−1l
2
i−1 + vi. This poses an issue for the first element, which is resolved by

defining v0 = 0,Λ0 = 0. Vector-wise, by defining vectors v′,Λ′ based on v and Λ, respectively:

v′ = (0, v1, v2, . . . , vn−1) (4.77)
Λ′ = (0,Λ1,Λ2, . . . ,Λn−1), (4.78)

aligning the dimensions with the dimension of LV L⊺’s diagonal and not upsetting any partial as-
signment of the diagonal vector, resulting in a concise vector representation diag(LV L⊺) = v′Λ′+
v. As for the incidentals, the i-th element is subdiagonal(LV L⊺)i = superdiagonal(LV L⊺)i =
livi. Introducing

v′′ = (v1, v2, . . . , vn−1), (4.79)
i.e. v without the last element, the incidental diagonals of LV L⊺ can be set vector-wise

subdiagonal(LV L⊺) = superdiagonal(LV L⊺) = v′′l. (4.80)
19Unfortunately
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Altogether and with a bow on top, the proper form of LV L⊺ is as follows 4.81:

LV L⊺ =



v1 l1v1 0 0 · · · 0
l1v1 Λ1v1 + v2 l2v2 0 · · · 0

0 l2v2 Λ2v2 + v3 l3v3 · · · 0
0 0 l3v3 Λ3v3 + v4 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · Λn−1vn−1 + vn


(4.81)

A similar inconvenience is caused by β, similarly to the case in smooth regression 4.5, but
turned to 11. The marginal defining the posterior distribution for V is derived from 4.71:

f̃(V |y) ∝ exp (−1
2β

⊺LV L⊺β + 1
2

n∑
i=1

ln vi +
n∑

i=1
(a0 − 1) ln vi −

n∑
i=1

b0vi) (4.82)

Deriving the formulation of the first term − 1
2β

⊺LV L⊺β for vi by plain matrix multiplication.
β⊺LV L⊺β is a scalar, and therefore can equal to its trace. Utilising the invariance of trace under
circular shifts[102], it holds that β⊺LV L⊺β = Tr (L⊺ββ⊺L)V . This gives a straight forward
prescription for the coefficient of any vi, as V is a diagonal matrix.

L⊺ββ⊺L =
n∑

i=1
(ββ⊺)ii + (ββ⊺)i+1 ili + (ββ⊺)i i+1li + (ββ⊺)i+1 i+1Λi, (4.83)

prescribing the coefficient of vi as diag(L⊺ββ⊺L)i. To match dimensions and keep calcula-
tions correct and sane, a supplementary vector Λv is defined as Λv = (Λ1,Λ2, . . . ,Λn−1, 0) and
(ββ⊺)1 0 = (ββ⊺)0 1.

f̃(vi|y) ∝ exp ((a0 − 1 + 1
2) ln vi − (b0 + 1

2((ββ⊺)i i + (ββ⊺)i+1 ili + (ββ⊺)i i+1li + (ββ⊺)i+1 i+1Λv
i , ))vi),

(4.84)

yielding the follow shaping parameters ai, bi for random variable vi:

ai = a0 + 1
2 (4.85)

bi = b0 + 1
2((ββ⊺)i i + (ββ⊺)i+1 ili + (ββ⊺)i i+1li + (ββ⊺)i+1 i+1Λi), (4.86)

and the expected value E[vi] = ai

bi
. Penultimate is the set of random variables l. The distribution

of li is a:

f̃(L|y) ∝ exp (
n−1∑
i=1

(−1
2ψi(Λ− 2l0li)) + Trβ⊺LV L⊺β). (4.87)

β⊺LV L⊺β is a scalar, and therefore equal to its trace, β⊺LV L⊺β = Trβ⊺LV L⊺β. Given
the properties of matrix traces, it holds that Trβ⊺LV L⊺β = TrLV L⊺ββ⊺, and it is given as

TrLV L⊺ββ⊺ ∝
n−1∑
i=1

livi((ββ⊺)i i+1 + (ββ⊺)i+1 i) + Λivi(ββ⊺)i+1 i+1, (4.88)

giving a cut and clear term for li, resulting in the posterior distribution

f̃(li|y) ∝ −1
2(−ψi + (ββ⊺)i+1 ivi)Λ−

1
2(l0ψi + (ββ⊺)i i+1vi + (ββ⊺)i+1 i)li. (4.89)
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The derivation of psii’s posterior distribution is most likely the simplest and most straight-
forward of the bunch, the only (minor) complicatio being the presence of li’s second non-central
moment Λi:

f̃(ψi|y) ∝ exp ((e0 − 1) lnψi − f0ψi + 1
2 lnψi − ψi(Λi − 2l0li + l20)) =

exp ((e0 − 1 + 1
2) lnψi − (f0 + Λi − 2l0li + l20)ψi).

(4.90)

And, as ψi follows a Gamma distribution with unknown parameters ei, fi, the posterior
distribution is shaped with the following

ei = e0 + 1
2 (4.91)

fi = f0 + Λi − 2l0li + l20, (4.92)

and the expected value E[ψi] = ei

fi
. f̃(ω|y) remains unchanged, as is the data model y.

The shaping parameter of the remaining ψ,β’s distributions are derived from these values
and do not require to be initialised. The prior shaping parameters are also set to have a non-
informative nature e0 = f0 = 10−2, allowing li to vary in range −1± 100[76]. Further reducing
the value of these priors tightens the distribution and causes a value development closer to l0,
which is −1 in the current configuration. Having l = −1n−1 corresponds to a smooth bayesian
model 4.5.

The dependency graph of previous models is expanded by the two sets of parameters, l,ψ.
No parameters have been removed from the model, therefore it retains directed cycles and thus
circular dependencies. Consequently the parameter estimation cannot be topologically ordered,
and requires initial values to start. The initial values are following, set to be non-informative:

ω = (maxX⊺X)−1

v = 120

l = −1 per [76]

A small caveat - for correctness’s sake, the pseudocode in 4 refers to the mean value µli and
variance Σli

in a fashion in line with expected vector behaviour, i.e. (µl)i and (Σl)i.

4.6.3 Performance
ω behaves wildly in the first few iterations of the algorithm (figure 4.17). It rises rapidly only to
fall even more rapidly, and then the curve mirrors resembles a logarithmic function, converging
to a value just shy of 1400, all that within the first twenty iterations. Long story short, wild
start with a quick convergence afterwards.

Mean values µl of l show a clear convergence within the first 50 iterations, aside from a few
outliers. Most of them shift from the initial value of −1 to a slighly smaller value ≈ −0.95,
deviating from the absolute smoothness that the the value −1 would enforce. The outliers
converge very quickly to their final value, whilst the bulk of li firstly overshoots (or in a few rare
cases, undershoots) it before reaching it and sticking to it. What is important is that the model
clearly shows that there is ”some” smoothness in the data, but is not absolutely smooth, judging
by the learnt li values.

The approximation β̂ as shown in 4.21 seems to have a very good fit, judging solely the
similarity between the ground truth β and the estimate β̂. Firstly, outside the activity window,
there is but one deviation from 0, around the 80th index. That is most likely caused by the

20A vector of ones, 1 = (−1, −1, . . . , −1).
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Figure 4.17 ω parameter values during 100 iterations using LDL on ETEX data.

(a) Per iteration value of v−1 in LDL on the ETEX
1.4 dataset.

(b) Per iteration value of v in LDL on the ETEX
1.4 dataset.

Figure 4.18 Graphs of the change in value of v during iterations of LDL on the ETEX 1.4 dataset.

exceeding peak before that and the model’s attempt to keep a degree of smoothness. Within the
activity window itself, aside from the narrow peak greatly exceeding the ground truth β at the
right edge of the window and a slight drop. The interval within the window is also narrower -
the steep rise lags behind and returns to 0 earlier than the real β. This deviation might have
dire consequences on the reconstruction’s fit, due to how steep the window’s rise is - any later
calculated error will be determined by the activity and the small spike after the window.

A lot of the reconstructed ŷ = Xβ̂ lies outside the regression line, deviating in both direction
(from the regression line, caused by a larger ŷ or y, respectively). This behaviour is invariant
to an increasing number of iterations and different values of l0, as will be experimentally shown
and discussed in 5.2.4.1.

The resulting model has a slighly worse performance than the sparse model 4.4, in spite of
being able to attain the same form.

MSE = 7.1183 ∗ 10−4

MAE = 67.7541 ∗ 10−4

RMSE = 266.8022 ∗ 10−4
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Figure 4.19 l parameter values during 100 iterations using LDL on ETEX data.

(a) Per iteration value of ψ−1 in LDL on the ETEX
dataset.

(b) Per iteration value of ψ in LDL on the ETEX
dataset.

Figure 4.20 Change in value of ψ during 100 iterations of LDL on the ETEX dataset.

Figure 4.21 Comparison of real β from ETEX (red) with β̂ as approximated by an LDL model (blue)
after 100 iterations.
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Algorithm 4: LDL algorithm
input : y ∈ Rn,1, X ∈ Rn,p

output: µβ ∈ Rp,1

init
ω ← max(X⊺X)−1

V ← Ip

µl ← −1 ∈ Rp−1,1

Σl ← 0 ∈ Rp,p

for i← 1 to 100 do
Σ← (ωX⊺X +LV L⊺)−1

µ← Σβ(ωX⊺y)
β,ββ ← Bottom truncated normal distribution’s first two moments(µ,diag(Σ) 1

2 ))
varββ ← ββ − β2

ββ⊺ ← ββ⊺ + varββ

c← c0 + n
2

d← d0 + 1
2 ((y⊺y)− 2y⊺Xµβ + Tr(ββ⊺X⊺X))

ω ← c
d

v ← empty vector ∈ Rp−1,1

for i← 1 to p do
a← ao + 1

2
b← b0 + 1

2 (ββ⊺
ii − 2ββ⊺ii+ 1 + ββ⊺

i+1i+1)
vi ← a

b

end
Σl ← empty vector ∈ Rp−1,1

µl ← empty vector ∈ Rp−1,1

for i← 1 to p− 1 do
(Σl)i ← (2ψi − ββ⊺

i+1i+1vi)−1

(µl)i ← Σli
(l0ψi − ββ⊺

ii+1vi)
end
ψ ← empty vector ∈ Rp−1,1

for i← 1 to p− 1 do
f ← f0 + 1

2 (l2i − 2l0 + l20)
e← e0 + 1

2
ψi ← ei

fi

end
end

Algorithm MSE (104) MAE (104) RMSE (104)
Linear regression NaN NaN NaN
Ridge regression 7.1020 65.2597 266.4950
Bayesian ridge regression 9.2399 71.2809 303.9722
Bayesian sparse regression 6.8414 69.3237 261.5601
Bayesian smooth regression 7.2237 73.4335 268.7701
LDL 7.1183 67.7540 266.8022

Table 4.1 Metrics of different algorithms on the ETEX 1.4 dataset.
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Figure 4.22 Comparison of measured data y (y-axis) and LDL-attained reconstruction ŷ = Xβ̂ (x-
axis) after 100 iterations.



Chapter 5

Uncontrolled emission modeling

The dataset picked for modeling of an uncontrolled emission is a subset of the 2020 Chernobyl
fires. Following steps were taken to simplify the convoluted model:

1. Single height of particle emission was considered.

2. Single particle size was considered.

3. Data was narrowed down to measurements between April 3rd 2020 and April 27th 2020.

5.1 Blind run
Firstly, the models developed in 4 were used on the new dataset, with the same prior constants
and initial values to get a picture of general performance. Afterwards, experiments through a
grid search of initial values were carried out to determine the best-performing, task-specific set
model.

5.2 Classic ridge regression

(a) Chernobyl classic ridge y reconstruction scatter (b) Chernobyl classic ridge y reconstruction

Once again, X⊺X is singular and does not have the needed inverse to apply the OLS method.
Attempting to generalise it to a ridge regression results in an ill-fitting model, as can deduced
from comparative figures 5.1b and 5.1a, as well as the performance measured by the three metrics

55
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used prior (for comparison with other methods, refer to table 5.5. The L-curve method was used
to determine the most suitable λ penalisation coefficient, but given the nature of the data, the
sought after L-curve does not have the needed curve to determine such a value.

MSE = 3.0122 ∗ 10−2

MAE = 7.9480 ∗ 10−2

RMSE = 17.3557 ∗ 10−2

5.2.1 Bayesian ridge regression

Figure 5.2 Comparison of measured data y (y-axis) and bayesian ridge regression approximated
retrieved ŷ = Xβ̂ (x-axis) after 100 iterations.

Bayesian ridge regression, initialised with the same values as in the ETEX case, performs
incredibly poorly on the Chernobyl dataset. Aside from a handful of values at (0, 0), none of
the measurements y are anywhere near well approximated by the reconstruction ŷ, as shown by
both the figure 5.2 and the metrics.

MSE = 3.0122 ∗ 10−2

MAE = 7.9485 ∗ 10−2

RMSE = 17.3557 ∗ 10−2

5.2.2 Bayesian sparse regression
Figure 5.3a shows that the sparse regression fits the data much better than the simple bayesian
ridge regression 5.2.1. A large number of points (which should be the vast majority, given the
nature of the task) is still correctly sitting at, or near (0, 0), and a plenty of other points near
or on the regression line. There are new outliers in the direction of ŷ (the x-axis), showing
overestimation of some values by the reconstruction. In this case, it might be easier to see
the quality of the fit by plotting both y on top of Xβ̂. The three peaks are overshot by the
reconstruction, but the areas of main activity are detected by the model, aside from a few minor
ones at the start. Overall, it seems only as a matter of scale.



Classic ridge regression 57

(a) Comparison of measured data from Chernobyl
fires y (y-axis) and bayesian smooth regression re-
trieved reconstruction ŷ = Xβ̂ (x-axis) after 100
iterations.

(b) Side by side visualisation of Chernobyl fires’ y
and ŷ = Xβ̂ estimated by a bayesian sparse model
after 100 iterations.

Figure 5.4 ω parameter values during 100 iterations using bayesian sparse regression on Chernobyl
data.

ω shares a similar progress of its value with the ETEX case 4.9 - a slight deviation at the
start, and then a rapid descent within the first few iterations, seemingly reaching convergence at
≈ 50th iteration.

The progress of V −1 (or rather, of v1, v2, . . . , vn) in figure 5.5a, which was selected as an
inverse for convenience in model construction, is impossible to depict in a representative, infor-
mative manner. Even if the massive outlier (nearing 17000) would be removed, the difference
between the next highest value and all the remaining plot lines is so drastic (on a smaller scale),
that one might not even notice any outlier has been removed at all1. As such, it might be more
convenient to observe the inversion’s inversion 5.5b, which shows a convergence of majority of vi

in the first half of the run. There seems to be one or two delayed, which started changing value
in the second half, but that is an exception. Overall, the values seem to have converged within
the 100 iterations runs.

MSE = 3.6516 ∗ 10−2

MAE = 7.0076 ∗ 10−2

1Only the y-axis scale visibly changes!
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(a) Per iteration value of v−1 in sparse bayesian
regression on the Chernobyl dataset.

(b) Per iteration value of v in sparse bayesian re-
gression on the Chernobyl dataset.

Figure 5.5 Approximate intermediate values of v during 100 iterations of sparse bayesian regression
on the Chernobyl fires data.

RMSE = 19.1092 ∗ 10−2

5.2.3 Bayesian smooth regression
The smooth approach applied to Chernobyl data is a great example of things going very, very
wrong, which is visible rightaway from the value progression of its parameters 5.6a, 5.6b, 5.8
alone.

and whilst having features of a picturesque wall decoration, in terms of bayesian modeling,
it is of no practical use. Clearly, adding absolute smoothness is not the way

While the model correctly detects the intervals of emission, it wildly overestimates the actual
values, and that is not even consistently proportional to the ground truth y - the location of the
large peaks of the reconstruction do not match the peaks of the ground truth. What is peculiar is
the troughs. One would expect them to be few and far in between, but there seems to be isolated
activity with a rapid drop in value in between, something that is rather surprising given that a
smooth model was used to model the data. The takeaway is that the assumption of smoothness
of the model is not met by this particular dataset.

ω adheres to the behaviour of sparse model’s ω 5.4 with a slight up at the start before quickly
dropping and converging within the first 50 iterations.

The performance-tracking metrics are, unsurprisingly, the worst by a long shot. Thanks to
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(a) Per iteration value of v−1 in smooth bayesian
regression on the Chernobyl dataset.

(b) Per iteration value of v in smooth bayesian re-
gression on the Chernobyl dataset.

Figure 5.6 Approximate intermediate values of v during 100 iterations of smooth bayesian regression
on the Chernobyl fires data.

(a) Comparison of measured data from Chernobyl
fires y (y-axis) and bayesian smooth regression re-
trieved reconstruction ŷ = Xβ̂ (x-axis) after 100
iterations.

(b) Side by side visualisation of Chernobyl fires’ y
and ŷ = Xβ̂ estimated by a bayesian smooth model
after 100 iterations.

the incredibly large deviation of the reconstruction ŷ (refer to figure 5.7b for a clear visual), the
squared error is also incredinly large. Do keep in mind that the metrics are calculated on the
same data as approximated on, in terms of scaling and units. This should clear some confusion
as to why 100 values, with individual error of at most 0.0175 (highest value of ŷ could sum up
to a mean squared error of 24.65. Nevertheless, the error-rate would be the same on any form of
the data, only scaled. The metrics measured are, as follows (and also included in the summary
table 5.5:

MSE = 2465.2423 ∗ 10−2

MAE = 201.3704 ∗ 10−2

RMSE = 496.5121 ∗ 10−2

5.2.4 LDL
LDL was firstly used to model with configuration 5.1, with values set to be ideally non-informative.

Once again, the initial value of ω was a far cry from its final value, immediately experiencing
a sharp drop. Peculiarly, before dropping further, it rises back, nearly to the same value, before
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Figure 5.8 ω parameter values during 100 iterations using bayesian smooth regression on the Cher-
nobyl fires dataset.

Parameter Initial value
ω (maxX⊺X)−1

µli
−1

Σli
0

vi 1
# of iterations 100
Prior constant Value

a0 10−10

b0 10−10

c0 10−10

d0 10−10

e0 10−2

f0 10−2

l0 −1
Table 5.1 Initial values and prior constants set for the first run of LDL on Chernobyl data, set to be

non-informative.

slowly falling near the convergent, just to lightly meander on the upper bound of 150. A few
more iterations would most likely cause the value to ultimately settle, but the difference would
be in the domain of digits.
v is a prime example of the need to experiment with the number of iterations. The sparsity-

controlling random variables vary in the speed of their convergence (figure 5.10a). Most of them
quickly adapt a value different from the initial non-informative value 1 (see table 5.1, which is
a good sign. However, the issue arises in the roughly 50th iteration, where the major bulk of vi

suddenly rises to a different value and sticks to it. Another set of vi follows this behaviour near
the end of the run. All of this is telling of the need to investigate behaviour on a larger number
of iterations. This task is carried out in 5.2.4.1.

The intermediate values of l1, . . . , ln−1 behave rather erratically. Their range spans covers
[−1,−0.65], where −1 corresponds to smoothness. The resulting interval is narrower, [−1,−0.85],
depicting a degree of smoothness in all values. Where the behaviour differs is the various conver-
gence. Some li converge almost immediately (whether sticking to −1, from whence they started,
or reaching their value swiftly), while the others stabilise in vastly different iterations - and by



Classic ridge regression 61

Figure 5.9 ω parameter values during 100 iterations using LDL on Chernobyl data.

(a) Per iteration value of v−1 in LDL on the Chernobyl
dataset.

(b) Per iteration value of v in LDL on the Cher-
nobyl dataset.

Figure 5.10 Approximate intermediate values of v during 100 iterations of LDL on the Chernobyl
fires data.

the end, some do not seem to be converged yet. This observation sparked a need to experiment
with the number of iterations, described in 5.2.4.1.
ψ, modeling the variance of l, shown in 5.12a has very quick convergence for most ψi; within

the first ≈ 20 iterations. Some values oscillate in the final few iterations, with a few more
iterations potentially allowing them to settle. However, this is not such a strong case as was for
v or l, shown in 5.10a,5.9, respectively.

LDL immediately outperforms the other models. While it does not approximate many of the
smaller activities, it near perfectly fits the activity’s peaks, as visible in figure 5.13b, while the
ignored activity is also clearly visible in the comparison plot of ŷ and y in figure 5.13a.

MSE = 0.6470 ∗ 10−2

MAE = 4.6179 ∗ 10−2

RMSE = 8.0436 ∗ 10−2
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Figure 5.11 l parameter values during 100 iterations using LDL on Chernobyl data.

(a) Per iteration value of ψ−1 in LDL on the Cher-
nobyl dataset.

(b) Per iteration value of ψ in LDL on the Chernobyl
dataset.

Figure 5.12 Approximate intermediate values of ψ during 100 iterations of LDL on the Chernobyl
fires data.

5.2.4.1 Iteration impact
As mentioned in the previous section 5.2.4, the progress of values of certain parameters is in-
dicative of the need for more iterations of the algorithm. The algorithm was run with 100 (the
original, empirically set), 200, 300 and 400 iterations to study the impact of the number of it-
erations on the convergence of parameters. At these points, ŷ was calculated and based on it
the metrics, in the same vein as the previous cases. The progress of parameters is coalesced on
the parameter basis due to overlap of the runs - a run with 200 iterations shares the first 100
iterations with the run of 100 iterations, etc. This progress is depicted in figures 5.14a,5.14b,
5.15b, 5.15a, with vertical lines at 100, 200, 300 and 400 iterations to paint a better picture of
the outcome of each iterations count. Reconstructions were plotted against the ground truth
separately for each checkpoint, shown in figures 5.16a,5.16b,5.16c, 5.16d.

The convergence of ω occurs very early on in the iterative algorithm (figure 5.14a), within
the first ≈ 20 iterations the algorithm reaches its vicinity and then within another 20 or so
iterations it stabilises - the difference is in terms of units. Absolute convergence is achieved after
200 iterations.
v follows a similar behaviour in latter iterations as it did in the first 100 - a lot of the values
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(a) Comparison of measured data y (y-axis) and LDL
retrieved reconstruction ŷ = Xβ̂ (x-axis) after 100
iterations.

(b) Side by side visualisation of Chernobyl fires’ y and
ŷ = Xβ̂ estimated by an LDL model after 100 itera-
tions.

(a) Per iteration value of ω during 400 iterations with
markers at 100, 200, 300 and 400 iterations.

(b) Per iteration value of l during 400 iterations with
markers at 100, 200, 300 and 400 iterations.

are 0 until a certain point, where they sharply rise. This happens primarily on the interval
[60, 200], and continues on a smaller scale onwards. Out of the 175 values, 143 are greater than
0 at the 400th iteration, as compared to 100 at the 100th iteration.

Omega converges quickly, whilst v takes a while to take off and then converges quickly, l
oscillates a bit and psi does not converge within the original 100 iterations. 300 seems to capture
the convergence, also leads to better results.

# of iterations MSE (×104) MAE (×104) RMSE (×104)
100 37.9331 358.4933 615.8982
200 38.0000 358.1226 616.4373
300 37.8754 357.0150 615.4299
400 37.8561 356.8722 615.2730

Table 5.2 Metrics for the LDL algorithm given various number of iterations.

Increasing the number of iterations from 100 to 200 and higher had a positive impact on
parameters’ convergence and results in a lower error up to a point. It seems that increasing the
number of iterations beyond 300 does not improve the results, only (albeit slightly) increases the
algorithm’s runtime in a linear fashion2. For each checkpoint, metrics are recorded in table 5.2,

2With the given data, number of iterations and a mid-range personal computer, the runtime was under 10
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(a) Per iteration value of ψ−1 during 400 iterations
with markers at 100, 200, 300 and 400 iterations.

(b) Per iteration value of v during 400 iterations with
markers at 100, 200, 300 and 400 iterations.

showing that the performance improve as the number of iterations increases. However, there are
diminishing returns, and as such it is not worth chasing this avenue further.

Given these results, the major takeaway is to increase the number of iterations to at least
200, preferably 300, strengthening the belief in the model’s peformance with convergence in
parameters.

5.2.4.2 Configuration consideration
To determine whether the task-agnostic setting of initial values and prior constants 5.1 is optimal
for the task at hand, a grid search was informed with the following values tried in combination:

ω ∈ {(max (X⊺X))−1 ∗ 10i | i ∈ −4,−3,−2,−1, 0, 1, 2, 3, 4, 5}

vi ∈ {10i | i ∈ −4,−3,−2,−1, 0, 1, 2, 3, 4, 5}

li ∈ {−1 ∗ 10i | i ∈ −4,−3,−2,−1, 0, 1, 2, 3, 4, 5}

l0 ∈ {−1,− 1
2 ,−

1
4 ,−

1
8 , 0, 1}

This leads to a large number of runs (6 ∗ 103). The primary focus was to first find the best-
performing combination of initial values for a fixed l0 = −1. Originally, a smaller range of initial
values was considered to get an idea as to which direction is more suitable, was later expanded
to continue in that way. Further increasing the examinedp range does not yield substantially
better results.

From this experimentation and examination, it was deduced that the best initial values are
ω = (max (X⊺X))−1 ∗ 10−3, vi = 10−3, li = −10. Further, to observe whether softening the
pressure of smoothing by the prior constant l0 = −1, various landmarks points were examined
as its potential replacement, resulting in the multiple figures in 5.17, using the previously set
initial values3 .

Table 5.3 holds the result of LDL runs with different values of l0 with same initial values and
300 iterations. Landmark values, from the interval [−1, 0] are extended by 1 just to dissuade
any use of positive values of l0. The goal of LDL (and smooth regression, as an extreme case
of LDL), is to incorporate some degree of smoothness into the model, where l0 = −1 creates a
discrete derivative of the values and l0 = 0 ignores smoothness altogether. Best results in terms
of the mean squared error are achieved for l0 = − 1

2
4.

seconds for 400 iterations.
3One might consider returning to the tuning of initial values after determining the optimal l0, which would

lead to an iterative approach over an iterative approach . . . a metaiteration?
4This is the way.
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(a) # iterations = 100 (b) # iterations = 200

(c) # iterations = 300 (d) # iterations = 400

Figure 5.16 Comparison of y and ŷ after different number of iterations.
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(a) Comparison of measured data y (y-axis) and LDL
retrieved reconstruction ŷ = Xβ̂ (x-axis) after 100
iterations with l0 = −1.

(b) Comparison of measured data y (y-axis) and LDL
retrieved reconstruction ŷ = Xβ̂ (x-axis) after 100
iterations with l0 = −0.5.

(c) Comparison of measured data y (y-axis) and LDL
retrieved reconstruction ŷ = Xβ̂ (x-axis) after 100
iterations with l0 = −0.4. This value was chosen as a
potential improvement of experiments on either side.

(d) Comparison of measured data y (y-axis) and LDL
retrieved reconstruction ŷ = Xβ̂ (x-axis) after 100
iterations with l0 = −0.25.

(e) Comparison of measured data y (y-axis) and LDL
retrieved reconstruction ŷ = Xβ̂ (x-axis) after 100
iterations with l0 = −0.125.

(f) Comparison of measured data y (y-axis) and LDL
retrieved reconstruction ŷ = Xβ̂ (x-axis) after 100
iterations with l0 = 0.

Figure 5.17 Comparison of y and ŷ given different l0 with 300 iterations and empirically set initial
parameters.
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l0 MSE (×104) MAE (×104) RMSE (×104)
-1 0.647 4.618 8.044
-0.5 0.582 4.366 7.631
-0.25 0.606 4.462 7.788
-0.125 0.632 4.533 7.950
0 0.703 4.673 8.384
1 143205962973783 359801 1196687

Table 5.3 Metrics for the LDL algorithm given various prior constant l0.

5.2.4.3 Master model
Given the previous experiments and investigations, a conclusion is drawn as to the best selection
of prior constants and initial values for the LDL algorithm.

Parameter Initial value
ω (maxX⊺X)−1 ∗ 10−3

µli
−10

Σli
0

vi 10−3

# of iterations 300
Prior constant Value

a0 10−10

b0 10−10

c0 10−10

d0 10−10

e0 10−2

f0 10−2

l0 −0.5
Table 5.4 Initial values and prior constants set for the best fit of LDL on Chernobyl data.

Compared to the results of the original run 5.2.4, there is an improvement in all regards.
Do keep in mind that the metrics are calculated on the data used for fitting the model, which
includes scaling and preprocessing. These values are not comparable with results on different
data, such as ETEX 4.1.

MSE = 0.5815 ∗ 10−2

MAE = 4.3589 ∗ 10−2

RMSE = 7.6259 ∗ 10−2

The resulting emissions, after reversing preprocessing, standardising and conversion from Bq
to GBq, are shown for April 2020 in figure 5.19a. There are three estimated emissions of 137Cs
altogether, on the 7th, 9th and 10th of April, resulting in ≈ 450 GBq.

Even though LDL can model the degree of smoothness enforced, it is still enforced. This can
be a potential issue in very sparse models, such as the modeled emissions, as the most of the
values will be 0, forcing other values down near 0 to satisfy the smoothness criteria. To compare
with a model that does not entertain the idea of smoothness, the sparse model is picked. The
resulting emission profile for the same time period (April 2020) is plotted in 5.19b, resulting in
a threefold total emission of ≈ 1434 GBq.

This best performing model approximated the total emission of 450 GBq. The daily profile
is shown in figure 5.19a. This result falls near the results reported by other models on the same
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(a) Best performing model’s comparison of ground
truth y and ŷ = Xβ̂.

(b) Best performing model’s comparison of ground
truth y and estimate ŷ = Xβ̂.

(a) Fine-tuned LDL’s emission estimate of 137Cs. (b) Sparse model’s emission estimate of 137Cs.

Figure 5.19 Daily emissions estimate of 137Cs between 2.4.2020 and 25.4.2020.

dataset, such as [29], [25] and [103], which have estimated the total emission to be 574 GBq, 341
GBq and 650 GBq, respectively. Despite differing wildly, just as the aforementioned models do,
in the day-to-day estimated emissions, the general profile (points of activity) is similar.

Their modeled emissions differ wildly in the day-to-day estimates as well, but capturing the
activity in similar time steps. Within the domain of atmospheric dispersion modeling, due to
the sheer magnitude of variables and the simplifying steps used in modeling, landing the result
within a similar magnitude (±100%) is a good-enough result, but yielding a result not dissimilar
from the others in either direction is a solid indicator of the model’s quality.
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Algorithm MSE (×102) MAE (×102) RMSE (×102)
Linear regression NaN NaN NaN
Ridge regression 3.0122 7.9480 17.3557
Bayesian ridge regression 3.0122 7.9485 17.3557
Bayesian sparse regression 3.6516 7.0076 19.1092
Bayesian smooth regression 2465.2423 201.3704 96.5121
LDL 0.6470 4.6179 8.0436
Fine-tuned LDL 0.5815 4.3589 7.6259

Table 5.5 Metrics of different algorithms on the 2020 Chernobyl fires 1.3.1 dataset.
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Chapter 6

Conclusion

The goal of the thesis was to examine various methods of inference of an emission based on a set
of measurements and to use a select few models from the Variational Bayes family to construct
and compare the models.

The ETEX dataset 1.4 was used to develop and compare the models on a meticulously
constructed dataset and to identify potential both strengths and weaknesses of individual im-
plemented models. The best performing model on this well-documented dataset, based on the
metrics recorded in table 4.1, is the sparse model 4.4, followed by the LDL model 4.6.

The developed models were then experimentally evaluated on a subset of a dataset with
uncontrolled dispersion from the 2020 Chernobyl fires 1.3.1. The dataset was simplified for the
purposes of modeling, taking into account only a single height of dispersion, as well as a single
emitted particle size. These simplifications can cause a major discourse and difference in results
with other established models, such as [29],[25] or [103], which aside from different modeling
techniques have utilised different simplifications.

The best performing model on this dataset was a fine-tuned LDL 5.2.4.3, resulting in a total
emission of 450 GBq, which is comparable to other models. Just as those models differ from each
other in their day-to-day estimates, so does this model, estimating that the emission occurred
within three separate days. Due to the sheer score of variables and the various simplifying steps
used in atmospheric dispersion modeling, the models can differ drastically but still land within
a similar resulting domain, all caused by simplifications of the underlying reality. Without a
ground truth to compare against, it is difficult to determine which model performs the best.
Altogether, this thesis produces a model that is sound, stable and with results on par with
previously developed models.

However, even the best performing models, which have been able to capture the most impor-
tant emissions, have their obvious shortcomings. Further fine-tuning of hyperparameters, such
as prior constants, initial values or even different distributions which the parameters are assumed
to follow might be necessary. In the case of the models presented and developed in this thesis,
they could be further improved in particular by expanding the dataset used, removing a few of
the simplifications utilised, which would require further modeling to encompass these realities.
These would require taking into account other heights of initial emission, rather than the single
one, as well as considering different particle sizes, as well as modeling the relationships between
these different heights, particle sizes and other tangible parameters of the emission.

71
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BI-VZD/lectures/files/BI-VZD-05-cs-handout.pdf]. Thákurova 9, 160 00 Prague 6:
Department of applied mathematics, Faculty of Information Technology Czech Technical
University in Prague, 2022.

50. STEPHENS, David A. Regression Modelling And Least-Squares. Imperial College London,
2005. Available also from: https://www.ma.imperial.ac.uk/˜das01/GSACourse/
Regression.pdf.

51. WEISSTEIN, Eric W. Metric. Wolfram, [n.d.]. Available also from: https://mathworld.
wolfram.com/Metric.html.
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76. TICHÝ, O.; ŠMÍDL, V.; HOFMAN, R.; STOHL, A. LS-APC v1.0: a tuning-free method for
the linear inverse problem and its application to source-term determination. Geoscientific
Model Development. 2016, vol. 9, no. 11, pp. 4297–4311. Available from doi: 10.5194/gmd-
9-4297-2016.
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