
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

AutoML for anomaly detection in a semi or unsupervised

setting on time series

Bc. Marek Nevole

MSc. Jan Bím, Ph.D.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2023/2024

Instructions

In many industries, there has been a very large increase in volumes of sensoric data.

Often this kind of data comes unlabeled and obtaining labels is usually very costly and or

time consuming, especially in case of anomalies for the task of anomaly detection.

Additionally, due to high demand for solving the problem of anomaly detection in many

particular businesses, AutoML (Automated Machine Learning) techniques are used to

build such a system very frequently. However, it is very difficult in a setting where the

system has no or very little ground truth information. Therefore, the student should

investigate the field of anomaly detection in time series [1] and its evaluation methods

and suggest a viable strategy for application of AutoML to this kind of task [2]. Since

choice of AutoML techniques and composition of the whole pipeline is highly dependent

on the available computational resources, we set the scope of the thesis to an

application within computational budgets commonly available to a small/medium sized

company today. Additionally, this thesis is limited to univariate time series.

Instructions:

1) Conduct a survey of the state of the art in anomaly detection on time series data and

its evaluation in a setting with no and/or few labels and use of AutoML in anomaly

detection on time series.

2) Compose at least 2 AutoML pipelines solving anomaly detection on time series in

unsupervised or nearly unsupervised setting based on existing methods found in 1).

Optionally suggest a new method that can replace a part (e.g. new evaluation metric,

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 27 December 2022 in Prague.

new anomaly detector etc.) or more parts of the AutoML pipeline, based on what will be

expected to bring largest benefit, and implement it, creating a third pipeline.

3) Compare these pipelines on at least 10 datasets suggested in [3] and at least one

common dataset (e.g. [4]) used in evaluation of AD on time series to achieve general

comparability despite it being marked flawed in [3].

4) Analyze and discuss the results in detail.

[1] S. Schmidl, P. Wenig, and T. Papenbrock, “Anomaly detection in time series: a

comprehensive evaluation,” Proc. VLDB Endow., vol. 15, no. 9, pp. 1779–1797, Jul. 2022,

doi: 10.14778/3538598.3538602.

[2] M. Bahri, F. Salutari, A. Putina, and M. Sozio, “AutoML: state of the art with a focus on

anomaly detection, challenges, and research directions,” Int J Data Sci Anal, vol. 14, no. 2,

pp. 113–126, Aug. 2022, doi: 10.1007/s41060-022-00309-0.

[3] R. Wu and E. Keogh, “Current Time Series Anomaly Detection Benchmarks are Flawed

and are Creating the Illusion of Progress,” IEEE Trans. Knowl. Data Eng., pp. 1–1, 2021, doi:

10.1109/TKDE.2021.3112126.

[4] N. Laptev, S. Amizadeh and Y. Billawala, “S5 - A Labeled Anomaly Detection Dataset,

version 1.0 (16M),” Mar. 2015; https://webscope.sandbox.yahoo.com/catalog.php?

datatype=s&did=70.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 27 December 2022 in Prague.

Master’s thesis

AutoML for anomaly detection in a semi
or unsupervised setting on time series

Bc. Marek Nevole

Department of Applied Mathematics
Supervisor: MSc. Jan B́ım, Ph.D.

May 4, 2023

Acknowledgements

My gratitude goes to my supervisor MSc. Jan B́ım, Ph.D. The completion of
this thesis would not have been possible without his guidance, constructive
feedback, and endless encouragement. Furthermore, I am also grateful to
those who in any possible way contributed to the finalization of this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.
I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on May 4, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Marek Nevole. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Nevole, Marek. AutoML for anomaly detection in a semi or unsupervised
setting on time series. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2023.

Abstrakt

Úspěšné použit́ı metod automatizovaného strojového učeńı (AutoML) pro de-
tekci anomálíı v časových řadách, v př́ıpadě, kdy neńı k dispozici téměř žádná
nebo žádná informace vyjadřuj́ıćı anomalitu dat, je náročný problém. Tato
práce poskytuje přehled nejnověǰśıch př́ıstup̊u v oblasti detekce anomálíı, Au-
toML a vyhodnoceńı model̊u pro detekci anomálíı. Provedené experimenty
se zaměřuj́ı na sestaveńı nových AutoML kombinaćı z dostupných metod pro
detekci anomálíı v jednorozměrných časových řadách při částečně supervizo-
vaném a nesupervizovaném učeńı. Hlavńı náplńı experiment̊u bylo vyhodno-
ceńı metrik nesupervizovaného učeńı pro optimalizaci hyperparametr̊u a meta-
learning př́ıstup pro výběr model̊u. Výsledky experiment̊u této práce nab́ıźı
nové poznatky k současným metodám a otev́ıráj́ı směry pro budoućı výzkum.

Kĺıčová slova Detekce anomálíı, Časové řady, Automatizované strojové učeńı,
Nesupervizované učeńı

vii

Abstract

Successfully deploying automated machine learning (AutoML) for anomaly
detection in time series data where little or no ground truth information is
available is a challenging problem that is ever more important. This thesis
provides an overview of state-of-the-art approaches in the fields of anomaly
detection, AutoML, and evaluation of anomaly detection models. The con-
ducted experiments focus on composing new AutoML pipelines from available
methods for anomaly detection in univariate time series data in semisuper-
vised and unsupervised settings. The main focus of the experiments was an
evaluation of unsupervised metrics for hyperparameter optimization and a
meta-learning approach for model selection. The results of this thesis offer
new insight into the methods available and several directions for future work.

Keywords Anomaly detection, Time series, Automated machine learning,
Unsupervised learning

viii

Contents

Introduction 1
Structure . 2
Contributions . 3

1 Anomaly detection in time series 5
1.1 Anomaly . 6
1.2 Time series . 6
1.3 Types of anomalies . 7

2 Models 9
2.1 Anomaly detector . 9
2.2 Taxonomy of models . 10
2.3 Forecasting methods . 10
2.4 Reconstruction methods . 13
2.5 Encoding methods . 15
2.6 Distance methods . 16
2.7 Distribution methods . 18
2.8 Isolation Tree methods . 18

3 Evaluation 21
3.1 Unifying anomaly scores . 21
3.2 Supervised and semi-supervised 22

3.2.1 Point adjusted evaluation scheme 25
3.3 Unsupervised . 25

3.3.1 Mass-Volume metric . 26
3.3.2 Excess-Mass metric . 27

4 Automated Machine Learning 29
4.1 Combined Algorithm Selection and Hyper-parameter tuning . . 29
4.2 Meta-learning . 32

ix

4.3 AutoML for unsupervised anomaly detection 33
4.3.1 MetaOD . 33

4.4 Window size selection . 35
4.4.1 AutoPeriod . 37

5 Research statement 41

6 Experiments 43
6.1 Datasets . 43

6.1.1 Selected datasets . 46
6.2 Setup . 46
6.3 Experiments . 48

6.3.1 Data preprocessing . 49
6.3.2 Importance of window size 49
6.3.3 Design of pipelines . 50
6.3.4 Baseline . 51
6.3.5 Unsupervised metric . 51
6.3.6 Extended unsupervised metric 52
6.3.7 Meta-learning approach 54

6.4 Summary of pipelines . 55
6.5 Results . 57
6.6 Discussion . 66

7 Conclusion 71

Bibliography 73

Contents of the attached media 81

x

List of Figures

2.1 Unrolled recurrent neural network 11
2.2 Transformer architecture . 13
2.3 Euclidean distance and Dynamic time warping visualization 17

4.1 Taxonomy of hyperparameters optimization techniques 31
4.2 Diagram of MetaOD procedure . 36
4.3 Diagram of AutoPeriod method . 39

6.1 Illustration of mislabeled ground truth 45
6.2 NYC Taxi dataset with anomaly score 46
6.3 UCR Time series anomaly archive with highlighted anomaly regions 47
6.4 Statistics of UCR anomaly detection archive 47
6.5 Statistics of selected UCR anomaly detection datasets 48
6.6 Statistics of selected NAB anomaly detection datasets 48
6.7 Concept of controlling the shape of the learned latent space 53
6.8 Performance of models w.r.t. window size 58
6.9 Effect of multiplying obtained periods on the performance of models. 59
6.10 Baseline performance on UCR . 60
6.11 Comparison of Baseline and US pipeline on UCR 60
6.12 Performance of models achieved with unsupervised metrics on UCR 61
6.13 Difference between unsupervised metrics on UCR 61
6.14 Performance of EUS pipeline on UCR 62
6.15 Comparison between EUS-AE and baseline on UCR 62
6.16 Performance upper bounds of pipelines on UCR 63
6.17 Comparison of baseline and META pipelines on UCR 64
6.18 Baseline performance on NAB . 65
6.19 Performance upper bounds of pipelines on NAB 66
6.20 Comparison of baseline and META pipelines on NAB 67

xi

Introduction

We as humanity have been subconsciously collecting sequential data ever since
our origin. Our predecessors collected and recorded information about the
world around them. From monitoring the changing seasons for agricultural
yields to tracking the movements of animals, early humans relied on this data
to survive. In the medieval ages, records were used for a variety of purposes,
such as taxation, trade, and governance. Merchants would keep track of their
sales and purchases to manage their inventory and profits. This information
was often recorded in books that contained rows and columns of data.

As of today, we have developed more sophisticated approaches to collecting
data that enable us to gather more complex and detailed information. Today,
we use advanced technologies and techniques to collect and analyze massive
amounts of data.

However, as the amount of data collected grows, it becomes increasingly diffi-
cult to identify and interpret important patterns and trends. As a result, the
need for anomaly detection is more important than ever. Anomaly detection
is the process of identifying data points or patterns that deviate significantly
from the norm. Detecting anomalies can reveal hidden insights, prevent po-
tential disasters, and improve decision-making processes.

In many industries, there has been a significant increase in the volume of sensor
data. Often this kind of data comes unlabeled, and obtaining labels is usually
very costly and/or time-consuming, especially in case of anomalies for the task
of anomaly detection. The task of anomaly detection has been researched in
many different fields, causing many new methodologies and techniques to be
developed in that specific field of study. To allow the usage of methods across
the field without the need of going deep into the inner workings of the algo-
rithms a process of automated machine learning is on the rise. Automated
Machine Learning (AutoML) solutions have been on the rise in recent years,

1

Structure

as they allow a broader spectrum of AI practitioners to train machine learning
models that perform well in practice with ease and with very little domain
knowledge, which tends to be a limiting factor and is expensive to learn.

The increasing need for the collection of data in recent years has led to an
increase in the number of smaller Internet of Things (IoT) devices connected
to networks. As a result of development and research, these devices are be-
coming more accessible to a wider range of users. However, with the rise of
machine learning and, specifically, deep learning, models are becoming larger
and more expensive to train and infer with. Therefore, there is a growing need
for AutoML pipelines that can deliver both high performance and efficiency
simultaneously.

However, it is challenging to deploy AutoML in a setting where the system has
no or very little ground truth information available. In the current situation,
there is no known go-to approach for the problem of unsupervised automated
machine learning for anomaly detection in time series data.

In this thesis, a survey across fields of automated machine learning, outlier
detection, and anomaly detection in time series is presented is presented.
Specifically, emphasis has been placed on hyperparameter optimization and
model selection to create automated machine learning pipelines in unsuper-
vised/semisupervised settings, where little or no labels of anomalies are pro-
vided. We also limit ourselves to univariate time series where data only come
from one sensor and time series consists only of one channel. As many practical
use cases use univariate data. Limiting makes the task much more manageable
and easier to interpret at no cost to the value brought into the field.

Structure

In the first chapter, the problem of outlier detection and its equivalent in the
time series domain called anomaly detection is presented. The second chapter
is dedicated to surveying the state-of-the-art models of anomaly detection.
As the evaluation of the anomaly detection models is still ongoing research,
the entirety of chapter three is given to it. In chapter four, the process of
combined algorithm selection and hyperparameter optimization is presented as
well as other state-of-the-art techniques of AutoML. In chapter five, an outline
and summary of research questions and expected experimental outcomes are
provided. Chapter Six is dedicated to experiments and a discussion of the
results obtained. Lastly, the content and main insights of this thesis are
concluded in the conclusion, and several research directions are presented.

2

Contributions

Contributions

The main contributions of the work to the field of anomaly detection and
mainly unsupervised anomaly detection are believed by us:

• A survey of three distinct subfields of anomaly detection has been made,
namely models of anomaly detection, evaluation, and automated ma-
chine learning.

• An open-source Python code is provided as a package of various models
and utilities needed for anomaly detection. 1

• Two metrics for unsupervised outlier detection have been thoroughly
tested.

• Experiments were conducted using a meta-learning approach for out-
lier detection model selection to determine if the observed performance
translates to the time series domain. In addition, potential enhance-
ments were explored.

1https://github.com/NevoleMarek/automltsad

3

Chapter 1
Anomaly detection in time

series

In this chapter, we introduce the fundamental concepts and definitions related
to anomaly detection in time series, along with the notation used throughout
this work. The reader is assumed to have a basic understanding of machine
learning, statistics, and mathematics relevant to this field. For those seeking
further knowledge on the topic, Bishop’s ”Pattern Recognition and Machine
Learning” [1] and Hastie et al.’s ”The Elements of Statistical Learning” [2]
are recommended resources.”

As increasingly more data are collected, especially from sensors being imple-
mented into new devices more frequently than ever before, there arises the
problem of accurate anomaly detection of these sensors/time series data. It
is predicted that the number of Internet of Things (IoT) connected devices
will more than double in the next decade [3]. These devices regularly collect
sensor data.

Anomaly detection is being used in various fields. In manufacturing to find de-
fective products, in biology to identify rare viruses, among others, in medicine
to diagnose diseases or to monitor patients and call for help if needed, in fi-
nance to detect fraud, in cybersecurity to look for any system breaches and
suspicious activity, etc.

The latest popular application of anomaly detection in time series on a global
level is in smart watches and phones, where so-called crash detection is being
implemented to read sensor data to call for help whenever the users end up in
danger (e.g., car crash, fall).

5

1. Anomaly detection in time series

1.1 Anomaly

Since the span of anomaly detection across many fields, there arose a variety
of definitions of anomalies also called outliers or novelties in the literature.
Braei and Wagner in [4] went through some of the definitions chronologically
as they appeared in the works. They found that one of the first definitions of
anomalies was proposed by Frank E. Grubbs [5] in 1969. The definition is as
follows. “An outlying observation, or outlier, is one that appears to deviate
markedly from other members of the sample in which it occurs.”

Later in 1980, Hawkins [6] defined them as “An outlier is an observation
which deviates so much from the other observations as to arouse suspicions
that it was generated by a different mechanism.” What all of the definitions
highlighted were two main characteristics of anomalies:

• The distribution of the anomalies deviates considerably from the general
distribution of the data.

• The big majority of the dataset consists of normal data points. The
anomalies form only a very small part of the dataset.

As the final definition in [4] following has been used An anomaly is an ob-
servation or a sequence of observations which deviates remarkably from the
general distribution of data. The set of anomalies forms a very small part of
the dataset.

The previous definitions are mainly concerned with anomalies in some arbi-
trary vector space. Not taking time series into account. In this work, a new
definition of anomalies in time series has been combined from [4, 7] and is
defined as follows:

Definition 1.1 (Anomaly/outlier/novelty) An anomaly in time series is a
point (outlier) or point sequence (irregularity) that deviates w.r.t. a measure,
model, or embedding from the regular patterns of the sequence. The set of
anomalies forms a very small part of the dataset.

The emphasis on having a very small part of the dataset being anomalies is
also related to the risk of losing the meaning of what it means to be anomalous.
When anomalies are too frequent, they may no longer be considered anomalous
and instead become part of the normal patterns in the data.

1.2 Time series

Before defining time series and taxonomy of anomalies, a notation for scalars,
vectors, sequences, and matrices is given as follows. Scalars are denoted as

6

1.3. Types of anomalies

small letters, vectors as small bold letters, sequences as capital letters, and
matrices as capital bold letters. (e.g. x, x, X, X).

Definition 1.2 (Univariate time series) A univariate time series is a se-
quence X = (xt)t∈T of observations xt ∈ R taken at specific time t ∈ T ⊆ N.

Definition 1.3 (Multivariate time series) A multivariate time series is a se-
quence X = (xt)t∈T of observations xt ∈ Rd, where d is a dimension of
observation or a number of channels of the time series, taken at specific time
t ∈ T ⊆ N.

Although not specified majority of time series consist of equidistant time in-
dices. For later use definition of time series subsequences is provided here as
well.

Definition 1.4 (Subsequence) Let X be a time series, a subsequence of length
n ≤ |T | of time series X starting at i-th time index is Si = (xi, . . . ,xi+n−1),
for i, n so that i+ n− 1 < |T |.

Subsequences can be thought of as applying a sliding window over the time
series with a stride of one. This is particularly useful as many of the algorithms
carry over from outlier detection on tabular datasets or the algorithms just
work with local substructures of time series.

1.3 Types of anomalies

Creating a taxonomy of types of anomalies is a subject of interest in anomaly
detection research, and there are relatively few works on this topic [4, 8, 9, 10].
A taxonomy of anomalies can help in defining and categorizing different types
of anomalies, which can lead to the development of more effective anomaly
detection algorithms. The works [4, 8, 9, 10] seem to come to the conclusion
that anomalies are mostly divided into three types as follows:

• Point anomaly - is a data point or a sequence in the time series that
deviates from the normal range of values in an extreme way.

• Contextual anomaly - ”is the individual instance that is anomalous in
a specific context, such as the discord points within the same harmonic
pattern. Contextual outliers usually have relatively larger/smaller values
in their own context but not globally. Identifying contextual outliers is
often considered more challenging.” [8]

• Collective anomaly - ”is a type of anomaly that refers to a set of data
points that should be considered an anomaly because they gradually
show a different pattern from normal data over time. Individual values

7

1. Anomaly detection in time series

within this type of anomaly may seem trouble-free, but collectively, they
raise suspicion.” [9]

Less common types of anomaly categories found in the literature are entire
outlier time series, which can be found when the time series is multivariate,
or subcategories that further divide collective anomalies (e.g. trend anomalies
where a trend is suddenly introduced to data).

Despite the fact that the type of anomaly is important for the development
of new methods of anomaly detection, they are not essential to know for the
field of automated anomaly detection in an unsupervised or semisupervised
setting where no or little to no ground truth is provided. Because of the lack of
information on anomalies, the taxonomy cannot be leveraged. The inclusion
of taxonomy aims to provide the reader with a deeper understanding of the
field.

8

Chapter 2
Models

This chapter provides the reader with a survey of anomaly detection models
from basic statistical approaches to deep learning models. These methods are
categorized according to common taxonomy used in the field. The methods
presented here are not explained in great depth as the focus of the thesis is
the automated selection of these methods rather than the methods themselves.
However, all needed references are given.

2.1 Anomaly detector

The task of anomaly detection can be thought of as a binary classification
task for predicting whether data points are anomalous or not. But in reality,
it is much more valuable to obtain information on how anomalous the data
points are. Hence why a scoring function s is fitted and the output of models
is an anomaly score s(xi) ∈ R for each data point, usually in the range of
real values, with the presumption that the higher the anomaly score the more
anomalous is the point. To go from this regression task to binary classifica-
tion, a threshold t ∈ R is selected in the fitted scoring function and each data
point with an anomaly score greater than s(x) ≥ t is found anomalous.

The process of selecting the threshold is different for each model and usually
requires some prior information about anomalies. One of the prior information
is the contamination rate c of the dataset. The contamination rate simply
indicates the rate of anomalies present in the data. One of the possible ways
to set the threshold t is as a 1 − cth quantile in the range of fitted scoring
function s on the training samples such that P (s(x) ≥ t) = c, where P is
an empirical probability of anomaly score of the fitted function s on training
samples.

9

2. Models

2.2 Taxonomy of models

Recent survey papers [4, 7, 8, 9, 10, 11] seem to find common taxonomies as
there are practically no discrepancies. For this thesis, the same taxonomy as
in the survey from Schmidl et al. [7] on anomaly detection in time series is
used, as this work’s taxonomy is the most complete out of the others. Models
are categorized into 6 distinct groups: Forecasting, reconstruction, encoding,
distance, distribution, and isolation tree methods.

2.3 Forecasting methods

Native to the time series domain, forecasting methods play a major role in
anomaly detection in time series. These models are trained on historical con-
textual windows to be as accurate as possible in predicting future values. To
obtain an anomaly score, the future value is predicted and compared to the
observed one, the anomaly score is then computed as a deviation of these
values from each other. Most models use a window of a specific length with a
stride of one as a context for predicting usually one future value [7].

One of the most recognized models in the time series forecasting domain are
ARIMA [12] models. The abbreviation ARIMA stands for AutoRegressive
Integrated Moving Average and can be split into three basic concepts. The
AutoRegressive (AR) model models the assumption that future values depend
linearly on previous values. The future value xt is predicted as

xt = ϵt + φ1 · xt−1 + · · · + φp · xt−p

where ϵt is white noise, φi are learnable parameters, and p denotes the order of
the AR model. I stands for integrated and indicates the order of differencing
done to the input data before modeling using AR and MA models. Model with
I = 1 denotes that the input is transformed as x′

t = xt − xt−1. Differencing
addresses trend and/or seasonality in time series that is usually preferred to
be removed for models to perform better. Lastly, MA predicts future values
using white noise error terms as

xt = c+ ϵt + θ1 · ϵt−1 + · · · + θq · ϵt−q

where c is a E(xt), and q is an order of MA. Time series tend to drift in time,
i.e. change mean and variance, hence why parameters of ARIMA models tend
to be learned with every new observation [7]. This is a considerable disadvan-
tage and makes these methods exceptionally slow.

Decision trees have been used successfully in many classification and regression
tasks on tabular data [13]. These traditional and popular machine learning
models such as Random forest [14] or Gradient boosted trees [15] can also be

10

2.3. Forecasting methods

Figure 2.1: (Left) Simple visualization of RNN with input x and output h.
(Right) RNNs are commonly visualized as unrolled. Image is from [16].

exploited for time series forecasting. By transforming a dataset via windowing
into subsequences, these models can be learned to predict future values from
the previous context. However, they are not commonly used and can only be
used for univariate time series.

Deep learning is extremely popular and, without a doubt, the most active
research area in the field of machine learning. One of the first architectural
classes for modeling sequential data, such as time series or language, was re-
current neural networks (RNNs). These networks allow for neural connections
to create cycles and the cycles in return allow the information to pass to the
subsequent input.

Early RNNs had a problem of vanishing gradient [17], where gradient infor-
mation is lost (gradients are very small) during backpropagation and weight
values are not updated at all. This was a cause for RNNs not being able to
reliably learn long-term dependencies. As a reaction to this problem, the same
author came up with Long short-term memory (LSTM) [18] neural network
architecture. LSTM is a network made up of 4 layers. Them being cell, forget
gate f , input gate i, and output gate o. The entire LSTM neural network
is usually described in equations of components. Equations for the original
LSTM are as follows:

ft = σg(Wfxt + Ufht−1 + bf)
it = σg(Wixt + Uiht−1 + bi)
ot = σg(Woxt + Uoht−1 + bo)
c̃t = σc(Wcxt + Ucht−1 + bc)
ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ σc(ct)

where σg is a sigmoid function, σc is a hyperbolic tangent function, t a time
index, xt a input, ct a cell state, ht a hidden state, matrices W{f,i,o,c} and

11

2. Models

U{f,i,o,c} weights of the network. The forget gate ft tells what information
can be forgotten in the new cell state ct, the input gate it adds new informa-
tion to the cell state based on the hidden state ht−1 and input state xt, and
the output gate ot controls what part of new cell state is outputted based on
the hidden state ht−1 and input state xt. [18]

The disadvantage of LSTMs lies in the lack of parallelization with their se-
quential nature. They take longer to train, consume more memory, and are
easier to overfit. [19]

Ever since the paper introducing transformer architecture [19] has been pub-
lished, transformer architecture has been under the spotlight. With recent
advancements especially in natural language processing tasks with large lan-
guage models (LLMs), transformers are state-of-the-art for sequential data
modeling. Unlike RNNs, transformers process the entire input at once, al-
lowing for better efficiency and parallelization. The heart of transformer ar-
chitecture is the concept of attention. Attention is defined by the following
formula:

Attention(Q,K,V) = softmax(QKT

√
dk

)V

where Q,K,V are matrices computed by matrix product of input embed-
ding X and learnable matrices WQ,WK ,WV , and dk dimension of K and Q.
Q,K,V stands for query, keys, and values and serves only as an abstraction
of intuition of inner workings. The scaling factor dk is present to keep the
variance at 1 for stability, as the input is usually standardized. The attention
mechanism tries to capture what is important in the input sequence for the
prediction of the output using the softmax function that assigns to each input
term a value from (0, 1) being the importance of the term. The transformer
architecture itself does not know the ordering of the sequence passed in. To
give a transformer a piece of information about the ordering of the sequence,
positional encoding [19] is added to the embedded input. Transformer archi-
tecture can be seen in figure 2.2.

Another direction in deep learning is Graph neural networks (GNNs) [20].
GNNs have been recently getting more attention in the anomaly detection
field as new methods use them to model multivariate time series channels as
nodes and capture relationships between them by assigning edges to the graph.
GDN [21] and GTA [22] are the methods that perform well among the state-
of-the-art methods using GNN architecture [9]. GTA uses a graph convolution
network (GCN) [20] to share information between similar channels and then
deploys Informer [23] the transformer used in the prediction of long-sequence
time series, which is considered a state-of-the-art.

12

2.4. Reconstruction methods

Figure 2.2: Transformer architecture [19].

If possible, these models are preferred to be trained in a semisupervised set-
ting. Where training is done only with nonanomalous data. This would in
theory allow for easier recognition of anomalous behavior when deployed as the
model has never encountered such an anomalous pattern and would probably
mispredict the future values more.

2.4 Reconstruction methods

Reconstruction methods in anomaly detection work by encoding the input,
commonly subsequences of X, to a lower dimension latent space and then
trying to reconstruct the input by decoding from learned latent space. The
error between the original and reconstructed input is used as an anomaly
score. Models are expected to not reconstruct anomalous sequences well as
their presence in the training dataset is minimal or none [7].

This class of methods is dominated by deep learning models. AutoEncoder
(AE) [24] and its variations are the basis of reconstruction models. AutoEn-
coders usually use the notation of two parametrized function families Eϕ and
Dθ, where ϕ and θ are parameters. Encoding function family Eϕ : X → Z and
decoding function family Dϕ : Z → X , where X ∈ Rd is original space and
Z ∈ Rk a learned latent space with k < d, commonly k ≪ d. The networks

13

2. Models

are then built to fulfill these requirements it is common that the decoder is
just a mirrored encoder network. To measure the error a generalized metric
Lp is used Lp(x, x′) = p

√∑d
i=1(xi − x′

i)p, where x is the original and x′ is the
reconstructed sequence and p is usually equal to 1 or 2.

In 2013 Kingma and Welling introduced Variational AutoEncoder (VAE) as
part of their paper on the stochastic gradient variational Bayes estimator [25].
Although similar to AE in name, these two are very different approaches to
achieving the same goal. VAE models the latent space Z by a probability
distribution Q. In almost all cases, the Gaussian distribution is used [26, 27].
Encoder is then trained to predict a mean and a variance of the distribution.
When the mean and variance are predicted in the forward pass, a random
sample is drawn from a unit Gaussian distribution. Using the reparametriza-
tion trick [28], this sample is transformed with the mean and variance and
then decoded in the decoder part of the network. The reparametrization trick
is often said to be used because backpropagation can not go through a random
sampling node. Technically this is not true, theoretically, there is no guar-
antee that the estimate of the gradient will converge. The reparametrization
trick allows for the correct estimation of derivatives during backpropagation
[28]. The loss that is minimized in optimization consists of two terms, Mean
squared error (L2) summed with Kullback-Leibler divergence (KL) between
unit Gaussian N (0, I) and the latent distribution. KL is a measure measur-
ing the distance of distribution Q from probability distribution P . For two
continuous random variables, the Kullback-Leibler divergence is defined as:

DKL(P∥Q) =
∫ +∞

−∞
p(x) log(p(x)

q(x))dx

which can be interpreted as an expectation of logarithmic difference between
P and Q probabilities under probabilities of P . In the case of p(x) = 0 the
contribution of the term 0 log 0

q(x) is zero for all possible values of q(x). When
p(x) > 0 and q(x) = 0, KL is defined as +∞, DKL(P∥Q) = +∞. The inter-
pretation of this loss is that MSE forces the model to learn how to accurately
reconstruct input and KL forces latent space to match unit Gaussian as closely
as possible. A much more rigorous explanation is provided in [25] and [26] is
a great resource for initial understanding. The effect of KL divergence can be
seen in figure 6.7.

Other types of neural networks used for reconstruction in anomaly detection
are transformers, TranAD [29] is among the state-of-the-art with its results.
This transformer uses adversarial two-term loss where one term focuses on
pure reconstruction loss and the latter on accurately predicting errors made
by the first decoder. This approach is called self-conditioning and leads to
smaller errors. LSTMs can be used for reconstruction as well [30]. EncDecAD

14

2.5. Encoding methods

method uses two LSTM networks, one as an encoder and one as a decoder,
where the encoder learns the hidden state and passes it as input to the decoder
that tries to reconstruct the input sequence in a backward fashion.

2.5 Encoding methods

Encoding methods are similar to reconstruction methods as they try to encode
input sequences as well. Assumption close to the reconstruction models is as-
sumed. Anomalous sequences will not be encoded as well as normal sequences.
An anomaly score is then obtained by comparing sequences in learned latent
space. Encoding methods mostly use statistical approaches [7]. However, the
encoder part of a trained AutoEncoder can be used for this purpose as well. In
[7], GrammarViz [31] and Series2Graph [32] were two of the encoding methods
that performed well among the others.

GrammarViz works by performing discretization on subsequences of time se-
ries, turning each subsequence into a word from a finite alphabet using the
SAX algorithm [33]. SAX divides a subsequence into further n equal width
sub-subsequences and computes the mean in each sub-subsequence. With the
means computed one can map these sub-subsequences to an alphabet by a
predefined set of breakpoints in the range of mean values. The next step is to
generate context-free grammar from the string of SAX-generated words. To
compute an anomaly score occurrence of each word in all grammar rules is
counted. The words with the least occurrence count are rarely used and could
be considered anomalous and the original sequence of time points from which
these words came is marked as anomalous.

Series2Graph converts time series into a graph by firstly embedding the sub-
sequences into three-dimensional space using Principal component analysis
[34] then rotating the vector space so that two components are close to each
other and the last one is further away so that two of the components con-
tain the shape related characteristic, and the last one the average value. By
this rotation, a projection is created into a space where subsequences with
similar shapes are clustered together. These two components are taken as a
two-dimensional embedding. In this two-dimensional vector space, nodes are
created in places of higher density of embeddings. Edges for the nodes are
assigned for successive nodes in the sequences of time series, and the weight of
the edge corresponds to the number of times two nodes are in succession. This
allows for distinguishing between normal and anomalous samples by looking
at the edge weights. Where paths between two nodes with lower-weighted
edges are occurring less. [32]

15

2. Models

2.6 Distance methods

Distance methods use various distance metrics and measures to compare be-
tween points or subsequences of time series. The assumption here is that
anomalous samples are more distant from other samples. Nearest neighbor
graph methods rank as one of the most popular in anomaly detection [4, 7,
8, 11, 35]. The simplicity and great intuition allowed many variations of ap-
proaches to be created. All the methods rely on some metric in a metric space.
The Euclidean metric is usually used. Euclidean distance d between two points
a, b in n-dimensional space is then computed as d(a, b) =

√∑n
i=1(ai − bi)2.

With a defined metric the simplest anomaly detection scoring function can be
an average of distances of a test sample to k nearest samples in a training split
set. This approach is an unsupervised nearest neighbor model also known as
k-NN in the field of anomaly detection. In theory, this works best when no
anomalies are present in the training dataset. With an increasing contamina-
tion rate, the performance is expected to be lower. Any arbitrary aggregation
can be used instead of average, like maximum or median, but the average is
preferred as it performed best in [36].

Dynamic time warping (DTW) is a measure created solely for use in the time
series domain. DTW aligns two sequences by warping one sequence in the
time dimension to match the other sequence, allowing for a more flexible com-
parison than other methods that require strict matching of each point in the
two sequences. The algorithm works by calculating the distance between the
corresponding points in the two sequences and finding the optimal alignment
with the smallest overall distance. This measure has shown great results on
various tasks and has been shown to be the best in many domains [37].

Local outlier factor (LOF) [38] is a method based on the concept of local
density. Outliers are points that lie in regions of lower density. To obtain a
density of a point A, first a reachability distance dk to any point B is defined
as dk(A,B) = max(corek(B), d(A,B)), where corek(B) is the core distance
to k-th nearest neighbor of B and d is a distance between A and B. The
maximum has the effect of smoothing the distances to reduce the statistical
fluctuations between all points A close to B [38]. Objects closer to a point
than the core distance are given the reachability distance of the core distance
and objects further away are assigned the true distance. With that, the local
reachability density lrdk can be defined as follows:

lrdk(A) = 1/(
∑

B∈Nk(A) dk(A,B)
|Nk(A)|)

where Nk(A) is a set of points in corek(A) distance of A called neighborhood
of A. lrdk(A) is the inverse of the average local reachability density of points

16

2.6. Distance methods

Figure 2.3: (Top) Distance between series Q and C measured using Euclidean
distance (Bottom) Distance between series Q and C measured using DTW.
Seemingly similar series but out of phase produce large Euclidean distance.
[37].

in the neighborhood of A. Lastly, the Local outlier Factor LOFk of point A
is defined as:

LOFk(A) =
∑

B∈Nk(A) lrdk(B)
|Nk(A)| lrdk(A)

LOFk(A) is an average of local reachability densities of points in the neighbor-
hood of A divided by lrdk of A. Points with higher LOFk can be interpreted
as points in sparser regions of the space. LOFk is then used as anomaly score.

Quite a different approach of using distance is used in One-Class Support
Vector Machine (OCSVM) [39]. OCSVM is an extension of Support Vector
Machines (SVM) [40] to unlabeled data. SVM is a supervised method that
tries to find a hyperplane to separate data of different classes. The hyperplane
is chosen in such a way that it maximizes the margin between the classes,
which means that it maximizes the distance between the nearest points in
each class. These nearest points are known as support vectors, and they
are used to define the hyperplane. SVMs additionally exploit the so-called
kernel trick, where they can learn the hyperplane implicitly in up to infinite
dimension space. OCSVM is an unsupervised version of this algorithm that
assumes that only one class of data is present in the training dataset. The
method learns a function that acts as a tight envelope of the presented data
and scores each point in the envelope with a positive real number and points

17

2. Models

outside the envelope negatively. The fitted function can be interpreted as
a density function or a distance from a hyperplane that can be used as an
anomaly score.

2.7 Distribution methods

Estimating the distribution of data is the concept of distribution methods.
The anomaly score can be obtained as probability, likelihood, or frequency
w.r.t. fitted distribution.

Histogram-based outlier score (HBOS) [41] is an anomaly detection method
based on histograms and is suitable even for multivariate time series data.
For each channel of the time series, a density is estimated by computing a
histogram from dynamic-width bins, where each bin has the same amount of
time points. After obtaining the histogram, normalization is applied so that
the area of the histogram is equal to 1. An anomaly score for a point x in the
multivariate time series is then calculated as:

HBOS(x) =
d∑

i=0
log(1

histi(x))

where histi(x) is a height of a bin where x is located and d is a dimension of
the time series. Anomalous samples are expected to be in the tails of distri-
butions and the height of the bins is expected to be smaller.

In survey [7] DWT-MLEAD [42] is the most efficient algorithm w.r.t. per-
formance metric AUC-ROC. DWT-MLEAD uses multilevel discrete wavelet
transformation (DWT) on time series and fits a Gaussian distribution over
subsequences of the DWT coefficients using maximum likelihood estimation
(MLE). The anomaly score is then computed with the likelihood of a sequence
coming from that distribution.

2.8 Isolation Tree methods

Although isolation tree methods inherently use decision trees, they tend to
be in a group of their own [7]. IsolationForest [43] is an ensemble of random
decision trees. These trees are built recursively by randomly selecting fea-
tures and splitting values as the tree nodes. Based on the assumption that
anomalous samples are easier to separate from normal samples, the average
number of splits to isolate a sample is used as a scoring function. On aver-
age the number of splits is lower for anomalous points. The detection tends
to converge quickly with a growing number of trees. Combined with a small
subsampling size of data for training so that normal samples do not interfere

18

2.8. Isolation Tree methods

with anomalous samples and the fact that most of the tree for normal samples
is not needed, Isolation Forest methods are one of the most efficient methods
[43].

19

Chapter 3
Evaluation

In this chapter, the reader is introduced to the evaluation of anomaly detec-
tion models. First, the procedure of unifying scores across models is shown.
Next, the chapter covers evaluation under every possible label situation start-
ing with supervised and semi-supervised evaluation, where first common evalu-
ation metrics are presented followed by newer and more specialized evaluation
schemes. Lastly, metrics for unsupervised learning are explained in depth as
they are crucial for this work.

3.1 Unifying anomaly scores

As presented in chapter 2 there are various types of models that output an
anomaly score in different forms. For evaluation, there is a need for each time
point x ∈ Rd to have an assigned score s(x) ∈ R. There are types of models
that do not come with an implicit scoring function as an integral part of their
design. For this reason, this section reports on various procedures for unifying
the scores across the models.

The autoregressive and forecasting models evaluate each time point x based
on its deviation from the predicted value. This could be a difference between
two values or whether an observed point is in the confidence interval of the
predicted value. These models require historical data to generate future pre-
dictions. Consequently, they cannot determine the score for the first k time
points where k represents the required length of historical data. Typically, a
score of zero is assigned to these points [7].

Models evaluating subsequences obtained via windowing of time series return
anomaly scores for these subsequences. Each point within a particular window
is assumed to be scored the same. A time series is split into windows with a
stride of 1. Therefore, a time point can be a part of multiple windows. To
obtain the final anomaly score of a point x across all the windows it is part

21

3. Evaluation

of an aggregation is typically applied. In [7], an average has been used as it
performed better than the maximum. Hence why, an average is used in this
thesis. The potential downside of this unifying approach could be that time
points at the beginning and end of a time series are part of fewer windows.

3.2 Supervised and semi-supervised

Supervised anomaly detection methods require annotations for each time point
in the dataset. A dataset with annotation for each element is marked as la-
beled [4]. In terms of anomaly detection, semi-supervised learning tries to
learn from normal behavior, where no anomalies are introduced to the trained
model in the fitting phase [7].

Given a fitted model with a scoring function s, that outputs a real number
for input, and a threshold t ∈ R for the scoring function, so that data points
x with score s(x) ≥ t are found anomalous, anomaly detection resembles bi-
nary classification, where the model decides whether a given time point x in
a dataset D is anomalous or not.

In a binary classification setting, a time point x ∈ Rd can be classified as
either 0 (negative) or 1 (positive). With given ground truth (GT) labels there
are 4 possible combinations in total for classification and ground truth labels.
Them being:

• True positive (TP) - GT label is 1 and classification label is 1.

• True negative (TN) - GT label is 0 and classification label is 0.

• False positive (FP) - GT label is 0 and classification label is 1.

• False negative (FN) - GT label is 1 and classification label is 0.

There are many metrics based on combinations of the previous 4 combinations,
that evaluate a performance of a given model [44]. The important ones for
anomaly detection are Precision, Recall, and False Positive Rate. The follow-
ing performance metrics are interpreted in terms of anomaly detection. Pre-
cision P = TP

TP+FP measures how accurate the model is when raising an alarm
for an anomaly. Recall R = TP

TP+FN quantifies the fraction of anomalies being
correctly found within a dataset. Lastly, False Positive Rate FPR = FP

TN+FP
is the chance of a false alarm being raised for a normal sample of data.

When pairing precision and recall together, they capture the occurrence of
both false positives and false negatives. The goal of models is to minimize
both of these cases. A perfect model would have precision and recall equal to

22

3.2. Supervised and semi-supervised

1, but that is very unlikely to happen, due to large datasets, noisy observa-
tions, imperfect labels, etc. In practice, both metrics almost always cannot be
prioritized together. Usually, the target is one of the two performance met-
rics, because the costs of conducting procedures based on alarms triggered
differ. For example, if an automotive company would halt production for ev-
ery anomaly alarm, then they would probably care more about precision as it
might be less expensive to actually replace a faulty car rather than stop entire
production due to a false alarm. In contrast, when deployed in medicine for
monitoring patients, one would rather prioritize recall to capture all potential
health-related issues. The severity of false alarms, in this case, is not as high
as for example missing a disease in a patient. To combine precision and re-
call into one metric, with the ability to prioritize one of the two, F-measure
Fβ = (1 + β2) P R

β2P +R
, where β is the coefficient to prioritize between the two,

has been introduced more than three decades ago. Papers in the field however
set the β coefficient to 1, so that the results of the experiments are easier to
compare. A F-measure with β = 1 is called F1-score F1 = 2 P R

P +R . F1-score is
a harmonic mean between precision and recall.

As mentioned before, the fitted models return a scoring function s. The task
of selecting a threshold for a function s is a field of its own. It is not trivial
and is usually different for each model [7]. Different models may have dif-
ferent distributions of scores, which can affect the optimal threshold. Also
as mentioned previously, the relative costs of false positives and false nega-
tives may vary depending on the specific application. Therefore, selecting an
appropriate threshold requires careful consideration of the specific problem
at hand. It may require experimentation with different threshold values and
evaluation metrics to determine the optimal threshold for a given application.
Given labels, this can be learned as a hyperparameter, but that is usually not
the case. Since the focus of this work is on unsupervised anomaly detection
this task is not a part of this thesis. However, there are performance metrics
that evaluate a model without the need for selecting the threshold. In this
work, Receiver operating characteristic curve and Precision recall curve are
explained. It has been shown that these threshold-agnostic metrics are more
suitable for time series anomaly detection evaluation [45].

The receiver operating characteristic curve (ROC) is created by plotting the
recall against FPR at different thresholds. To compare across multiple ROC
curves, it is common to compute the area under the curve (AUC). AUC-ROC
can then be used as an evaluation metric. When evaluating a model using
AUC-ROC, one can imagine the performance of the model as how well it can
rank negative and positive classes w.r.t. scoring function. Values of AUC-
ROC lie in a range of [0, 1]. AUC-ROC can be interpreted as a probability
of a uniformly taken sample from a positive class being ranked higher than a
uniformly taken negative sample [46]. A model with AUC-ROC equal to 0.5

23

3. Evaluation

has ranking power as good as a model that would randomly guess the class.
Absolutely perfect model has AUC-ROC of 1.

By the nature of anomaly detection, the problem is very imbalanced, the ra-
tio of anomalies present in data should be very low (≤ 5%), or else with a
higher percentage of minority class the line between anomaly detection and
plain classification blurs and calling an event that occurs so often an anomaly
loses the meaning of being anomalous. In general, in anomaly detection, the
anomalies are of interest, and because of that it is preferred to use the Preci-
sion recall curve instead of ROC [47]. The Precision recall (PR) curve is a plot
of recall against precision. Replacing FPR with precision allows the metric
to focus on positive (rare) class more as there is no TN term in either preci-
sion or recall. Another important difference comes from the interpretation of
AUC-ROC as a probability of a uniformly taken sample from a positive class
being ranked higher than a uniformly taken negative sample. For example in
anomaly detection majority of non-anomalous time points are very easy for a
model to rank, hence why they are the majority as they are easy to collect.
That is why the probability of a uniformly sampled positive class being scored
higher than the uniformly sampled negative class is so high. These easy to
rank negatives are not of interest. What is more interesting are the negatives
that are hard to rank and are on the edge between being anomalous and not.
This is what the PR curve solves. By computing the area under the PR curve
(AUC-PR) one can compress the curve into a single number in a range of
[0, 1], which can be used as a performance metric.

Algorithms tend to create false alarms when nearing the anomaly or slightly
after. The transition from the state of being normal to the state of being
anomalous usually does not happen instantaneously and cannot be captured
by binary labels. For example when using the nearest neighbor models and
scoring by distance to other points. It is expected that the anomaly score could
slowly rise when approaching the anomaly and slowly decrease afterward.
Furthermore, this is more of a case for anomalies spanning over several time
points than for point outliers. This could also be a labeling issue of the dataset
or by the nature of the algorithm. Keogh and Wu in [48] suggest allowing for
algorithms to detect anomalies up to some particular number of points before
and after the anomaly segment and still count it as TP. Paper [45] extends
AUC-ROC and AUC-PR metrics dealing with the same issue by allowing
detection of these points with linearly decreasing penalty before the anomaly
and linearly increasing penalty after. The size of the windows before and after
the anomaly can be made into another parameter of these curves making it
surfaces in three-dimensional space under which volume can be computed.

24

3.3. Unsupervised

3.2.1 Point adjusted evaluation scheme

In recent years papers [22, 49, 50] that evaluate time series anomaly detec-
tion models in any shape or form are likely to use the so-called point-adjusted
(PA) evaluation scheme. The PA scheme [49] makes it so that is sufficient
for a model to detect only one point in a contiguous anomaly segment for a
whole segment to count as detected or as true positive. This simulates a real
scenario where it is acceptable to trigger an alert for any point in a contiguous
anomaly segment if the delay is not too long.

However, it has been shown in [51] that this can overestimate detectors’ per-
formance and even baselines can achieve high performances under this scheme.
They also point out the lack of baselines used in evaluation comparisons in
recent works. Meaning that some of the works could have misleading results.
Together with papers [8, 48] evaluation of anomaly detection models is very
much an open field and effort is being made to unify the benchmark process.

In [51] Point adjusted @ K (PA@K) protocol has been introduced to support
the PA scheme. This protocol fills the gap between traditional and PA eval-
uation. To count contiguous segments as anomalous or true positive by any
model it is required to detect at least K% of the segment as an anomaly.
This scheme can be used by any of the previous metrics and is designed to
be used alongside other metrics not instead of them. Nevertheless, not much
derivative work with these approaches has been carried out.

3.3 Unsupervised

Having access to labeled data is crucial for training accurate and effective mod-
els. However, in reality, it is rare to have all or any labels available. To obtain
those labels there is a need for a domain expert with extensive knowledge to
evaluate the data. This process can be very expensive and/or time-consuming,
which can be impractical. For this reason, the field of unsupervised anomaly
detection has been getting more attention. This approach focuses on identi-
fying anomalies or outliers in data without the need for labeled examples.

As stated in [52] no unsupervised evaluation metric for unsupervised model
selection exists. However, in the literature, there are two metrics that have
been used successfully for unsupervised hyperparameter selection in anomaly
detection. Mass-Volume [53] and Excess-Mass [54] metric. One limitation of
using these methods for time series data is that they require algorithms to
use subsequences, as they were originally designed for anomaly detection in
some hyperspace. This means that the methods need to split the time series
data into subsequences and analyze each subsequence separately to detect
anomalies.

25

3. Evaluation

3.3.1 Mass-Volume metric

Mass-Volume (MV) metric [53, 55] builds on an assumption that anomalies
lie in sparse regions or tails of probabilistic distributions. From a statistical
point of view, the data of n observations x1, . . . ,xn ∈ Rd, d ≥ 1 are an i.i.d.
realizations of some unknown probability distribution P . Under these assump-
tions, the problem of anomaly detection can be formulated as estimating high
density regions. With anomalies being outside of these regions. Looking for
the regions is a problem of estimation of the minimum volume set:

min
B∈B(Rd)

{λ(B), such that P (B) ≥ α},

where B(Rd) is the set of all measurable subsets of Rd and λ the Lebesgue
measure on Rd. To estimate a minimum volume set one first estimates the
density h(x) and then thresholds it at an offset ρ such that the estimated
set has an empirical mass α. In the view of unsupervised anomaly detection
density function is substituted by scoring function s : Rd → R ∈ S. In contrast
to the majority of models, this paper assumes that the lower the anomaly score
the more anomalous the point is. The scoring function is then thresholded
at ρ so that Bα = {x, ŝ(x) ≥ ρ} is an estimation of a minimum volume set.
Threshold ρ is obtained such that Pn(ŝ(x) ≥ ρ) = α, where Pn is an empirical
probability distribution of the observations. With that Mass-Volume (MV)
curve can be defined as follows:

Definition 3.1 (Mass Volume curve[55]) The Mass Volume curve MVs

of a scoring function s : Rd → R is defined as the parametric curve t ∈ R →
(αs(t), λs(t)) where αs(t) = P (s(x) ≥ t) and λs(t) = λ(x, s(x) ≥ t). If αs has
no flat parts, the Mass Volume curve MVs can also be defined as the function

MVs : α ∈ (0, 1) → λs(α−1
s (α))

where α−1
s (α) = inf{t ∈ R, αs(t) ≤ α}.

With MV curve defined, the task of selecting optimal parameters θ∗ ∈ Θ is to
minimize the following distance:

θ∗ = arg min
θ∈Θ

∥MVŝθ
− MV∗∥L1 = arg min

θ∈Θ
∥MVŝθ

∥L1

where MV∗ is an optimal curve, that is known to be smaller or equal at ∀α
[55], and L1 is a distance between the estimated and optimal curve. This
is equivalent to minimizing the area under MVŝθ

over interval I noted as
AMVI(s) and defined over an interval I = [α1, α2] as:

AMVI(s) =
∫ α2

α1
MVs(α)dα

26

3.3. Unsupervised

In practice, the interval I is usually set to [0.9, 0.999] as there is the assumption
that the contamination rate of anomalies does not exceed 10% and that MV
diverges in 1 [56]. The only point left uncovered is the estimation of the λ
measure. This is covered in the next section as the Excess-Mass metric uses
it as well.

3.3.2 Excess-Mass metric

Excess-Mass (EM) [54, 56] metric works with the same assumption as MV
and can be defined without any additional notation as:

Definition 3.2 (Excess Mass curve) The Excess Mass curve EMs of a
scoring function s : Rd → R is defined as the function

EMs : t ∈ [0,+∞] → sup
ρ∈R

{αs(ρ) − tλ(ρ)}

where αs(ρ) = Pn(s(x) ≥ ρ) and λs(ρ) = λs(x, s(x) ≥ ρ) Lebesque measure.

EMs can be viewed as recovering a collection of subsets (B∗
t)t>0 with maximum

mass when penalized by their volume in a linear fashion [54]. Similarly to MV,
the area under the EM curve is computed in the interval I = [t1, t2] with one
difference in that for optimal parameters the area is maximized:

AEMI(s) =
∫ t2

t1
EMs(t)dt.

The interval used in [56] was I = [0,EM−1(0.9)], where EM−1(0.9) = inf{t ≥
0,EMs(t) ≤ 0.9}. EM curve has several theoretical advantages. One of those
being its finite range.

As mentioned in the previous section both of the metrics use λ measure to
compute a volume. The volume is estimated by using Monte Carlo integra-
tion by generating uniform samples in the hypercube enclosing the data. To
uniformly sample with particular granularity it is needed to exponentially in-
crease the number of samples with each additional dimension. This becomes
computationally expensive and can only be done in smaller dimension spaces.
To scale with dimensions a methodology has been introduced in [56]. In this
methodology, a random subsample along the features for both training and
testing dataset splits is taken and training and testing are done only on the
selected features. This procedure is then run multiple times and the average
of the runs is taken as a metric value.

According to paper [56], both the EM and MV metrics can accurately be used
to discriminate between methods w.r.t. PR and ROC curves. However, not

27

3. Evaluation

many experiments have been carried out in this regard, and this is one of the
objectives of our own experiments.

28

Chapter 4
Automated Machine Learning

Overall, this chapter provides the reader with a comprehensive overview of
the various applications of AutoML in unsupervised anomaly detection and
demonstrates how these techniques can help automate and streamline the pro-
cess of model building and optimization. The insights provided can be valuable
to practitioners interested in applying AutoML techniques in this domain and
are used in experiments.

Automated Machine Learning, or AutoML, simplifies the process of building
and deploying machine learning models by automating tasks such as data
preprocessing, feature engineering, model selection, and hyperparameter tun-
ing.[52] This makes it easier for both novice and experienced users to build
models quickly and accurately.

4.1 Combined Algorithm Selection and
Hyper-parameter tuning

Usually, the second form of AutoML (Right after basic hyperparameter opti-
mization) that AI practitioners get in touch with is Combined Algorithm Se-
lection and Hyperparameter tuning (CASH) defined as 4.1. Selecting correct
models is as crucial as tuning hyperparameters for many algorithms to give
good results. This section reviews various techniques, from basic concepts to
state-of-the-art methods using Bayesian statistics, bandit-based optimization,
or a combination of both.

Definition 4.1 (CASH) Given a set of machine learning models M = {M (1)

,M (2), . . . }, and a dataset D divided into training Dtrain and validation
Dvalidation sets. With the goal of selecting a model M (i)∗ where M (i) ∈ M and
M (i)∗ is version with tuned hyperparameters of M (i) that achieves the highest
performance by training on Dtrain and evaluating on Dvalidation. The Com-
bined Algorithm Selection and Hyper-parameter tuning problem can then be

29

4. Automated Machine Learning

defined as:

M (i)∗ ∈ argminM∈ML(M (i),Dtrain,Dvalidation),

where L is a loss function.[57]

The very first AutoML method that is usually introduced to newcomers to
the field is a Grid search[58] Grid search evaluates the model on every com-
bination of values of configuration space. This makes it rather expensive in
practice and often is used only for introduction to AutoML on toy problems.
A simple approach, yet much better for larger problems, is called Random
search. The random search[58] evaluates models on randomly sampled con-
figurations until some set budget is depleted. This budget could be a time
constraint or a number of evaluations. Both of these approaches suffer from
the so-called curse of dimensionality as with each additional hyperparameter
the space grows exponentially, despite the problems, their advantage is in eas-
ier parallelization.[52]

The validation performance of machine learning algorithms can be modeled
as a function f : X → R of their hyperparameters x ∈ X . The function f
is assumed to cannot be observed directly only through noisy observations
y(x) = f(x) + ϵ, where ϵ ∼ N (0, σ2

noise). Bayesian optimization uses a proba-
bilistic model p(f |D) to model the objective function f based on the already
observed data points D = {(x0, y0), . . . , (xi−1, yi−1)}. Acquisition function
a : X → R is then used as a heuristic to select the potentially best next point.
With the probabilistic model and acquisition function in place 3 steps are
repeated iteratively: Acquire a point x∗ that maximizes function a, evaluate
with the function f , and augment already observed data points with point
x∗.[59]

Tree-Structured Parzen Estimator (TPE) [60] is one of the methods of Bayesian
optimization. TPE uses a kernel density estimator to model the densities
l(x) = p(y < α|x,D) and g(x) = p(y > α|x,D) over the input configuration
space instead of modeling the objective function f directly by p(f |D). In this
case, α is a quantile q of observations of y, satisfying p(α > y) = q. To select
the next point x∗ to evaluate, the ratio l(x)

g(x) is maximized.[59] TPE has been
introduced to be used to optimize deep belief networks [60] and since then is
implemented in many AutoML libraries.

Given that many machine learning algorithms are trained iteratively. Hyper-
parameter optimization can be modeled as a multi-armed bandit problem [61].
Imagine a bandit coming to a casino to play slot machines, these slot machines
have an arm to pull to play. The bandit needs to decide which machines to
play to maximize his reward. The analogy of the multi-armed bandit prob-
lem to hyperparameter optimization is a problem where a limited and fixed

30

4.1. Combined Algorithm Selection and Hyper-parameter tuning

Figure 4.1: Taxonomy of hyperparameters optimization techniques from [57].

amount of resources needs to be allocated between available models or indi-
vidual hyperparameter settings with the goal of minimizing loss. This can be
seen as a pruning of unpromising model configurations that seem likely to not
give good results. These methods tend to noticeably speed up the search for
optimal configurations.

One of the recent popular algorithms that employs this concept is called Suc-
cessive Halving (SH) [62]. The idea behind the algorithm is simple: Given an
input budget B, uniformly allocate the budget to a set of arms for a prede-
fined number of iterations, evaluate their performance, throw out the worst
half, and repeat until just one candidate remains. SH needs to know n the
number of configurations in advance. It is not clear how to choose n, whether
to take larger n and train shorter on average or take smaller n and train
longer. Hyperband (HB)[63] deals with this by performing multiple SH runs
over different values of n with the same budget for each run. This approach
is particularly effective for optimizing deep learning models with a large num-
ber of hyperparameters, as it balances the exploration and exploitation of the
hyperparameter space. It has been shown to be magnitudes faster than ran-
dom search to optimize to the same performing models in the early stages of
optimization. But with random search guaranteed to converge to the optimal
model, the advantage shrinks for longer optimizations.

BOHB[59] combines Bayesian optimization and Hyperband to bring together
a strong final performance of BO with strong anytime performance, scalability,
and robustness of HB. In BOHB, HB manages the resources and budget, and
BO is left with the selection of configurations using model-based search.

31

4. Automated Machine Learning

4.2 Meta-learning

Humans learn how to learn across tasks. With every skill learned, learning
new skills becomes easier, requiring fewer examples and less trial-and-error.
We start from skills learned earlier in related tasks, reuse approaches that
worked well before, and focus on what is likely worth trying based on experi-
ence. [64] Likewise, when building machine learning models for a specific task,
we often build on experience with related tasks or use our (often implicit) un-
derstanding of the behavior of machine learning techniques to help make the
right decisions. This approach to learning is called meta-learning.

In machine learning, meta-learning can be categorized into 3 groups based on
[64]:

• Learning from model evaluations.

• Learning from task properties.

• Learning from prior models.

Having P a set of all scalar evaluations Pi,j = P (θi, tj) of configurations θi ∈ Θ
in configuration space and tasks tj ∈ T of known tasks. Here Θ represents
a space of configurations consisting of hyperparameter spaces, pipeline con-
figurations, and/or network architectures. Learning from model evaluations
can be used to recommend configurations θ∗ for unseen tasks tnew by learning
a function f : Θ × T → θ∗. Another approach that uses model evaluations
uses them to learn better configuration spaces Θ∗. This can drastically save
the search time for optimal models[65]. Some of the other concepts of using
model evaluations are transferring configuration spaces for new tasks that are
similar to some of the known tasks, and surrogate models that learn to predict
evaluation performances without the need to evaluate models[66] as that can
be very expensive in some cases.

Learning from task properties uses meta-features as meta-data. Each task
tj ∈ T is described by the vector m(tj) = (mj,1, . . . ,mj,k) of k meta-features.
These features can be used to determine a similarity between tasks. When a
new task tnew is presented, the most similar known task can be used found to
transfer information. Meta-features can represent summary statistics, aggre-
gations, statistics of distributions, or even features of simple models learned
on the tasks. This group is elaborated on in further sections as the concepts
are being used in this thesis.

The last group of concepts is concerned with learning from prior models,
learned hyperparameters, or their structure. Transfer learning[67] takes a
model that is already pre-trained on previous tasks and uses it as a warm start

32

4.3. AutoML for unsupervised anomaly detection

for fine tuning on a new task. Few-shot learning is a part of this group as
well. Few-shot learning deals with training a model with only a few examples
available given a prior experience of training on similar tasks with a large
dataset on hand.

4.3 AutoML for unsupervised anomaly detection

A paper from Bahri et al.[52] from February 2022 surveys recent advance-
ments in the field of AutoML for unsupervised anomaly detection. Section
2.1 of the paper lists current challenges that must be tackled to improve the
state-of-the-art further. Some of the problems stated are defining search space
for hyperparameters being not trivial, an issue with cold starts of models and
spending too much time on wrong models, running time, high dimensional
data, or scalability. Nevertheless, the most critical problem related to this
thesis is evaluation metrics. Evaluation metrics are used primarily to choose
between different models generated by an automated framework. The choice
of these metrics in machine learning is not trivial and depends on many fac-
tors. However, no suitable unsupervised evaluation metric for model selection
in anomaly detection exists [52].

The nonexistence of evaluation metrics is a great limitation as all traditional
AutoML methods are built on them. A popular approach in recent papers
that tries to overcome this issue is meta-learning. MetaOD[68, 69] leverages
information about datasets with known labels. The basic concept is a recom-
mendation system that is trained on labeled datasets (can be seen as users)
with trained models (can be seen as items) and recommends models using
collaborative filtering to a new unseen unlabeled dataset based on meta fea-
tures extracted from the dataset. The method is described in better detail in
section 4.3.1 as it is a part of the experiments of this work.

Another approach, Meta-AAD [70], uses learned meta policy using deep re-
inforcement learning to query anomalous instances. The meta-learning part
is transforming datasets into 6 crafted features that are fed as input in a
streaming fashion to meta-policy that decides whether an instance is normal
or anomalous. After training the policy it can be used on unseen data without
any further tuning.

4.3.1 MetaOD

MetaOD is termed the first data-driven approach to the selection of unsu-
pervised outlier detection models [68]. This data-driven approach leverages
a similarity of tasks and a historic performance of models on known labeled
datasets to recommend promising models for new tasks on unseen nonlabeled
data. Collaborative filtering (CF) is used as a recommendation engine, where

33

4. Automated Machine Learning

datasets represent users and models stand for items. When an unseen dataset
comes best promising model is recommended based on similarity to known
data. This similarity is partially captured by meta-features that are then
projected into a latent space of dataset latent features created by matrix fac-
torization within CF. Unlike the usual recommendation systems, MetaOD is
trained under a Top-1 setting where only the best model matters.

The problem of model selection with a finite pool of models denoted M =
{M1, . . . ,
Mm} can be defined as

Definition 4.2 (Unsupervised Outlier Model Selection) Given a new
input dataset (i.e., detection task) Dtest = (Xtest) without any labels, Select a
model M ∈ M to employ on Xtest. [69]

MetaOD is based on a meta-train database of datasets Dtrain = {D1, . . . ,Dn}
with ground truth labels {Di = (Xi, yi)}n

i=1 and a historical performance of
models M on meta-train datasets Dtrain. Historical performances are inserted
into a performance matrix P ∈ Rn×m. Pi,j corresponds to performance of
model Mj on dataset Di. In the paper [69], Average precision has been used
as a performance metric. Models can be evaluated on train datasets in a
supervised setting as labels are present. The inner workings of the approach
can be split into two phases. Offline training phase and online model selection
phase.

Offline training

To be able to leverage prior results, MetaOD relies on meta-features of datasets.
The extracted features are separated into statistical features and landmark fea-
tures. The former consists of statistical properties of underlying data distribu-
tions, etc. The optimal set of meta-features has been shown to be application-
dependent [64]. Labeled as perhaps more important, the landmark features
are obtained from easy-to-construct outlier detection models. These extracted
features tend to be more problem-specific. A full list of features and elabora-
tion on them can be found in Appendix B in [69]. The process of extracting
meta-features is denoted as ψ(.), then the matrix of all meta-features of all
meta-train datasets can be written as M = ψ(X1, . . . , Xn) ∈ Rn×d.

At this point, the application of a recommender system to unsupervised model
selection is clearer. The performance matrix can be seen as a user-item rating
matrix, where datasets are users and models are items. When a new user
comes, the recommender recommends items that the user would likely rate
higher. This can be done in several ways. MetaOD uses model-based CF
using matrix factorization. The performance matrix P can be factorized into
U ∈ Rn×k user and V ∈ Rm×k item matrix consisting of k features in latent

34

4.4. Window size selection

space. These latent features are captured by leveraging properties of matrix
multiplication, such that P ≈ UV T .

For purposes of model selection, where the ranking of recommended models is
more important than the perfect reconstruction of performance, the matrices
U and V are learned by optimizing the discounted cumulative gain (DCG)[71]
instead of the usual mean square loss. To use the meta-features M the ma-
trix U is initialized using an embedding function ϕ : Rd → Rk, where k < d,
on M . The principal component analysis can be substituted as ϕ(.), then
U (0) = ϕ(M).

The values of matrix U will inevitably change during optimization. This cre-
ates a problem for new testing dataset Dtest because of a need for initializing
Utest using extracted meta-features Mtest. The multi-output regression func-
tion f : Rk → Rk is learned in every optimization step to overcoming this
problem. The function f maps the latent space of meta-features to the latent
space of optimized U .

Online model selection

The output of the training phase are estimated functions ψ(.), ϕ(.), f(.) model
matrix V ∈ Rm×k. Given a new unseen dataset Dtest, prediction consists of
a few steps. Meta-features are extracted Mtest = ψ(Dtest), these are then em-
bedded and regressed into latent space of optimized U , Utest = f(ϕ(Mtest)).
The predicted performances for the set of models are obtained by Ptest =
UtestV

T ∈ Rm. The best-performing model with the highest predicted perfor-
mance from Ptest is selected as the final model.

4.4 Window size selection

Most state-of-the-art algorithms only look at local structures (windows) in
time series [4, 7, 9]. It is crucial for the performance of the algorithms to
find the optimal length of the subsequences. With a poor choice of window
size algorithms tend not to give good results [72]. In a supervised setting,
this length can be optimized as another hyperparameter. However the same
cannot be done in an unsupervised environment. Therefore, the need arises for
a domain-agnostic method for learning the window size. Part of the paper [72]
by Ermshaus et al. surveys these methods specific for anomaly detection. The
methods can be roughly separated into two categories, whole-sequence-based
and subsequence-based. Some of the basic concepts and ideas are presented in
this section. Furthermore, Autoperiod[73] is described in detail as it is later
used in the experiments section of this work.

35

4. Automated Machine Learning

Figure 4.2: Diagram of MetaOD data-driven meta-learning approach for
model selection [68, 69].

Whole-sequence based

When it comes to whole-sequence-based methods, the algorithms usually sep-
arate further into two categories. Methods working in the time domain look at
how time series autocorrelate when shifted by an offset (lag). Methods work-
ing in the frequency domain use one of the Fourier transformation algorithms
to detect frequencies with a high magnitude.

Dominant Fourier frequency (definition 4.3) converts time series to the fre-
quency domain using Discrete Fourier Transform (DFT) and then computes
magnitudes from complex coefficients with the following equation
mk =

√
Re(ck)2 + Im(ck)2, frequency with highest magnitude is chosen as the

most dominant.

Definition 4.3 (Discrete Fourier Transform) The Discrete Fourier Trans-
formation (DFT) of a time series T , |T | = n is a series of complex co-
efficients C := (c0, . . . , cn−1) ∈ Cn, such that ck := ∑n−1

j=0 Tje
−2πi jk

n , for
k = 0, . . . , (n − 1) and i =

√
−1. The corresponding series of frequencies

is defined as F = (f0, ..., f⌈ n−1
2 ⌉), such that fk := k/n , for k = 0, . . . , ⌈n−1

2 ⌉.
[72]

The autocorrelation function (ACF) (definition 4.4) computes the crosscor-
relation between the time series and its copy offset by a delay in time. If a
period appears in the data, the autocorrelation value is high in that lag. The

36

4.4. Window size selection

dominant window size is selected as local maxima in the autocorrelation of
time series, not taking into account lag zero.

Definition 4.4 (Autocorrelation Function) The Autocorrelation Function
(ACF) of a time series T , |T | = n defines the zero normalized cross-correlation

a(l) := 1
n− l − 1

n∑
j=l+1

(Tj − σT)(Tj − l − µT)
σ2

T

for a given lag l and with µT , σT being the mean or, rather, the standard
deviation of T . The series of cross-correlations A := (a(0), ..., a(n− 1)) ∈ Rn,
is the autocorrelation (AC) of T . [72]

There are many hybrids that combine or modify these methods such as Au-
toPeriod described in section 4.4.1 or RobustPeriod [74], which firstly detrends
the time series and then uses the combination of DFT and ACF to select dom-
inant window size.

Subsequence based

Subsequence-based methods extract local features from subsequences and com-
pare statistics with statistics of the whole time series. The assumption is that
windows with statistics that align well with the entire time series statistics
capture a temporal pattern that repeats throughout the time series.

Multi Window Finder (MWF) [75] is based on the hypothesis that, given a
suitable window size, its variance of moving averages is small. For a given
range of candidate sizes, a moving average of a particular size is computed
and then a variance is measured as the distance of the moving average to the
average of moving averages. Suitable window sizes are found as local minima
in variance w.r.t. window size.

Summary Statistics Subsequence (SuSS) [76] compares summary statistics
(standard deviation, mean, range of values) computed over subsequences with
those computed over the entire time series. Again with the assumption that
statistics of windows with suitable size are close to those of the original time
series.

4.4.1 AutoPeriod

AutoPeriod is a non-parametric method that combines two techniques, au-
tocorrelation, and periodogram, for periodicity detection. The periodogram
identifies potential periods from the sequence, whereas the autocorrelation es-
timates possible periodicities. Both the periodogram and the autocorrelation
can be directly computed using the Fast Fourier Transform in O(N logN)

37

4. Automated Machine Learning

time.

AutoPeriod is based on a combination of DFT and ACF. In the first part,
candidate periodicities are found and are validated in the second. A dia-
gram of the algorithm can be seen in Figure 4.3. To find dominant frequen-
cies, one needs to find a power threshold for the periodogram P(fk/N) =
∥F(fk/N)∥2, k = 0, 1, . . . , ⌈N−1

2 ⌉ obtained from DFT. DFT is run 100 times
on permutations of the original time series, each time picking a magnitude of
the most dominant frequency so that a 99% confidence interval can be pro-
vided. The power threshold pT is then simply selected as the 99th percentile
of the magnitudes obtained. All frequencies in the original time series with
a magnitude higher than the selected threshold are considered candidates for
the next part of the algorithm denoted as phint = {N/k : P(fk/N) > pT }.
False positives can be created due to potential spectral leakage or just due to
coarse estimation by discrete frequency bins in DFT. Hence, there is a need
for verification in the second part of the algorithm. Verification is done by
computing the ACF for the original time series and looking at where the can-
didate periods lie on the autocorrelation function. If the candidate’s period
lies at a peak, it indicates that the period is important. The opposite would
be a period lying in a trough, which would indicate a false positive. To decide
whether a candidate point lies on a hill or in a valley in an ideal setting it
could be determined by the curvature of the ACF around that point. The
second derivative would be computed to look at whether a point lies in a con-
cave segment of the ACF. This cannot be done reliably due to the existence
of noise that could invalidate the requirements. A much simpler algorithm
can be used. This can be done by approximating a two-segment linear regres-
sion in a region around the point. The best splitting point t can be found by
minimizing the following equation:

tsplit = argmin
t
ϵ(Ŝt

1) + ϵ(Ŝn
t+1),

where Ŝb
a is a linear approximation between positions a and b and ϵ(Ŝb

a) is an
error introduced by approximation of the segment. Finally, the last remaining
issue to be solved is the width around the point where the segments should be
fitted. Since the periodicity hint might have leaked from adjacent DFT bins
(if it was located near the margin of the bin), half of the adjacent bins are also
examined. Therefore, for a hint at period N/k, the range RN/k of the ACF
is examined for the existence of a hill. RN/k = [1

2(N
k+1 + N

k) − 1, . . . , 1
2(N

k +
N

k−1) + 1]. In the selected region the closest peaks of those candidate periods
can be found in two ways:

• Information about the peak could be derived from previous linear seg-
mentation the peak should be situated either at the end of the first
segment or at the start of the second.

38

4.4. Window size selection

Figure 4.3: Diagram of AutoPeriod [73] method.

• By local search in a manner towards the direction of the positive first
derivation of the autocorrelation function.

Out of all the methods presented earlier, AutoPeriod [73] ranked first in
anomaly detection benchmark in [72]. Although the difference to other meth-
ods has not been statistically significant it performed the same or better than
human annotators. The method has been tested on UCR datasets specifically
made for anomaly detection introduced in paper [48], which points out flaws
in current anomaly detection benchmarking procedures. For this thesis, these
datasets are used in the experiments section, together with AutoPeriod used
for window size selection.

39

Chapter 5
Research statement

The motivation for this chapter is to summarize the research questions that
are attempted to be answered in the experiments chapter of the work. The ex-
perimental chapter contains references to these questions to make navigation
throughout the experiments seamless and easier to comprehend.

The current state of unsupervised anomaly detection requires highly special-
ized data scientists with a significant amount of domain knowledge to correctly
assemble a pipeline to achieve good results. Little research effort has been de-
voted to AutoML in unsupervised anomaly detection [52].

With our experiments, emphasis is placed on two parts of the overall machine
learning pipeline. Them being a hyperparameter selection and model selec-
tion. The overall objective is to provide procedures for solving unsupervised
AutoML for anomaly detection in the time series domain. Currently, there
are no known reliable approaches for solving this task as presented in the In-
troduction and Section 4.3. In this thesis, the new pipelines are made up of
existing methods. The main parts are the mass-volume[55], excess-mass[54]
metrics, as no other metrics exist, and meta-learning approach for automated
model selection for outlier detection from Zhao et al. [68].

Before proceeding with the main experiments, an important step is to de-
termine the optimal size of subsequences for the methods designed to use
them. This is a crucial first step, as choosing the right size allows for optimal
performance of the subsequent components of the pipeline. For this reason,
AutoPeriod mentioned in Section 4.4 has been tested.

Research insights that we would like to gain are:

Q.0 How does AutoPeriod perform as an unsupervised method for suitable
window length selection?

41

5. Research statement

Q.1 1 Can MV and EM metrics be used for reliable hyperparameter se-
lection?

2 If the previous stands to be true, Can MV and EM metrics be used
for model selection?

3 Can MV and EM metrics be extended to allow for some other mod-
els to be used?

Q.2 1 Does meta learning approach for unsupervised anomaly detection
from [68] carry over to unsupervised anomaly detection in time se-
ries?

2 Can it be improved specifically for the time series domain?

42

Chapter 6
Experiments

This chapter introduces the reader to the process of conducting experiments
in this thesis, including selecting datasets, choosing hardware and software
setups, designing training and testing procedures, and creating pipelines. The
thought process behind each step is also discussed. The chapter ends with
presented results and a thorough discussion.

6.1 Datasets

In this section, frequently used datasets for univariate time series anomaly de-
tection are presented and described. Eventually, the selection of the datasets
for own experiments is discussed.

The terminology for data used in the field can be confusing. To avoid misun-
derstandings, it is explicitly stated for this thesis that the terms dataset and
time series are used interchangeably and mean the same thing. A collection
of data that is used to train a model. It is common that when new data are
introduced it is a collection of datasets (time series) and models are trained
separately for each dataset and the performance is aggregated or the models
are ranked on all of them.

In a paper from Yahoo [77] datasets comprised of a mixture of 50/50 real and
synthetic time series are introduced, as well as a synthetic time series genera-
tion tool, allowing users to generate data with specific parameters like length,
magnitude, anomaly density, anomaly type, etc. The real part of the dataset
comes from Yahoo’s membership logins and contains roughly 1400 data points
representing 3 months’ worth of data. However, a limitation of these datasets
is that they are provided only for academic purposes and are locked behind
a registration process.

43

6. Experiments

Numenta2 created Numenta Anomaly Benchmark (NAB) [78] with the goal to
provide a labeled data stream from real-world applications, scoring methodol-
ogy, a set of constraints designed for streaming applications, and a controlled
open repository for researchers to evaluate and compare anomaly detection
algorithms for streaming applications. Part of a NAB are datasets with the
purpose of presenting anomaly detection algorithms to real-world scenarios.
The NAB datasets contain anomalies covering the taxonomy presented, clean
and noisy data, and time series with evolving statistics over time. The first
version contains 58 data streams, each with 1000 – 22000 records, for a total
of ∼ 360000 data points.

Another popular set of datasets comes from NASA where Hundman et al. [79]
introduced Soil Moisture Active Passive (SMAP) satellite and the Mars Sci-
ence Laboratory (MSL) expertly-labeled datasets and successfully presented
recurrent neural networks as anomaly detectors in overcoming the issues of the
burden placed on operations engineers and operational risk. These datasets
are comprised of 55 SMAP and 27 MSL time series. Contamination of the
datasets is around 13% and 11% and the data are already split into training
and testing sets for better comparability of results. The contamination rate
seems to be on the edge of what is still acceptable.

In a paper [80] proposing a new stochastic recurrent neural network for mul-
tivariate time series anomaly detection called OmniAnomaly authors used
earlier cited NASA datasets in combination with newly introduced Server Ma-
chine Datasets (SMD) consisting of 28 time series, for a total of ∼ 1400000 data
points with anomaly ratio of approximately 4.1%.

Despite the popularity of these datasets, in 2020 Wu and Keogh [48] pub-
lished a paper discussing the flaws of these datasets and suggested that future
research uses the newly introduced UCR Time series anomaly archive. The
main flaws pointed out in the paper were as follows:

• Triviality - 86% of the datasets are solvable by one line of MATLAB3

code consisting only of primitive vectorized functions such as mean, max,
std, diff, etc. With this issue, authors tried to prove a point that if a
dataset can be solved with a simple function it strongly suggests no need
for much more complex approaches to be tested and developed on those.

• Unrealistic anomaly density - Some of the samples have more than
half test data consisting of contiguous regions marked as anomalies.
There are many regions marked as anomalies. In some datasets, the
anomalies are very close to each other. In extreme cases, two anomalous

2www.numenta.com/
3www.mathworks.com/products/matlab

44

6.1. Datasets

Figure 6.1: A figure from [48] illustrating mislabeled ground truth where
an algorithm would be penalized for predicting point B as an anomaly even
though it’s on the same line as point A.

regions surround one normal data point. With such unrealistic anomaly
density, the line between classification and anomaly detection is blurred.

• Mislabeled ground truth - All of the benchmark datasets appear to
have mislabeled data, both false positives and false negatives. In figure
6.1 detector that points to B will be penalized as having a false positive,
but point A is a part of the same constant line. Figure 6.2 illustrates
New York Taxi dataset from NAB with anomaly score. For this dataset,
only 5 ground truth labels are provided. After careful analysis, more
than 5 additional labels being equally worthy as the provided could be
found [48]. Additionally, the ground truth label for marathon in figure
6.2 is in reality caused by daylight saving time.

• Run-to-failure bias - Many real-world systems are run-to-failure, mean-
ing that in many cases there are no data after the last anomaly. This
seems to be the case at least for Yahoo datasets. The issue is that a naive
algorithm labeling the last data point as an anomaly could have a good
probability of being correct.

With the flaws in mind, the goal of the paper [48] was to create new datasets.
The authors created datasets that are synthetic but highly plausible and come
from various fields. Only one anomaly region is present in a single dataset to
ensure low anomaly density to reflect real-world scenarios. The complexity
of the problems is on a spectrum ranging from a small fraction of one-liners
to very hard problems. The datasets are already split into training and test-
ing sets so that the results obtained using these data are comparable across
different works. UCR archives are widely used and popular for time series
classification datasets that are being used mainly to compare state-of-the-art
models in the field.

45

6. Experiments

Figure 6.2: NYC Taxi dataset with discord/anomaly score (in blue) of the
dataset. Red annotated peaks are the given ground truth labels. After careful
analysis, more than 5 additional labels (black annotated peaks) being equally
worthy as the provided could be found [48].

6.1.1 Selected datasets

The primary focus of this work regarding the data was on the UCR Time series
anomaly archive. The archive is comprised of 250 time series. For experiments,
time series were chosen according to their length for computational budget
reasons. Some of the datasets were enormous in length compared to the rest
as can be seen in figure 6.4. By continuously lowering the length threshold
100 time series were discarded. The final value of the threshold was 50000
data points. Out of those remaining 150 time series 50 were randomly chosen
as test time series and the remaining 100 were put aside as they are used for
training of MetaOD approach. The statistics of selected UCR datasets can be
seen in figure 6.5. For illustration purposes, randomly chosen time series with
highlighted anomaly regions are displayed in figure 6.3.
The flaw of these datasets is in their lack of anomalies in the training split.
This makes the datasets semi-supervised and some of the detectors work bet-
ter in this setting. In practice, it often happens that not much information
is given on labels and therefore there is a need for additional datasets to be
used to thoroughly evaluate the designed pipelines. For this purpose, the ex-
periments were also run separately on the NAB dataset.

NAB datasets do not come with a predefined train test split. For this reason, a
split in a 50/50 ratio was done, where the first half was used in training and the
second for evaluation. After the split, datasets that had no anomalies either
in the training or testing split were discarded. To avoid a semi-supervised
setting or no anomalies to be detected. As a result, 33 out of 58 datasets were
discarded. The same statistics as for UCR datasets can be seen in figure 6.6.

6.2 Setup

In recent years, the demand for data collection has increased, leading to a
rise in the number of devices connected to networks. These devices are be-
coming more accessible to a wider range of users due to development and

46

6.2. Setup

Figure 6.3: Anomaly regions colored in red for randomly sampled time series
from UCR Time series anomaly archive.

Train Test

0

200000

400000

600000

L
en

gt
h

0 500 1000 1500

Anomaly Length

Figure 6.4: Statistics of all UCR anomaly detection datasets. (Left) Boxplot
describing the length of the training and testing sets. (Right) Boxplot of
anomaly regions in test split.

47

6. Experiments

Train Test

0

10000

20000

30000

L
en

gt
h

0 100 200 300 400

Anomaly Length

Figure 6.5: Statistics of selected UCR anomaly detection datasets. (Left)
Boxplot describing the length of the training and testing sets. (Right) Boxplot
of anomaly regions in test split.

5000 10000 15000 20000

Length

Train Test

0

500

1000

A
n

om
al

y
L

en
gt

h

Figure 6.6: Statistics of selected NAB datasets. (Left) Boxplot describing the
length of anomaly regions in the training and testing sets. (Right) Boxplot
describing the length of datasets.

research. However, as machine learning, particularly deep learning, is on the
rise, models are becoming larger and more costly to train and infer with. Con-
sequently, the need for AutoML pipelines that can provide high performance
and efficiency simultaneously is increasing. Moreover, to make these pipelines
more accessible to small and medium-sized companies, the hardware setup
was designed with their scope in mind. For this work, a computational cluster
consisting of 4 processors Intel Xeon Processor E5-2650 v4 @ 2.20 GHz, for
a total of 48 processor cores and 2 GPU cards Nvidia Tesla V100 16GB were
used. All of the code was written in Python4 3.10.2.

6.3 Experiments

The structure of the experiments has been foreshadowed in Chapter 5. The
main overall objective of the experiments was to thoroughly test the presented

4www.python.org

48

6.3. Experiments

unsupervised metrics and AutoML approaches to create new unsupervised
AutoML anomaly detection pipelines. Two main directions have been ex-
plored. Namely, AutoML using Mass-Volume and Excess-Mass metrics, and
AutoML using a meta-learning approach. Under both directions, various dif-
ferent compositions of pipelines have been used. These are described in the
following subsections. The experiments can be divided into 2 segments, where
firstly the pipelines were evaluated on UCR datasets, representing semisuper-
vised learning, followed by the same procedures ran on NAB datasets, where
anomalies are present in the training data split.

For all following experiments, firstly a motivation is given, followed by a tech-
nical description of the experimental design. Finally, Results are presented in
a later separate section.

6.3.1 Data preprocessing

To ensure stability and faster convergence in the training of deep learning
models and other models such as SVMs, all datasets were normalized using
the min-max scaling technique. This technique transforms each time point xt

of the time series X using the following equation:

xt = xt − xmin
xmax − xmin

where xmin and xmax denote the minimum and maximum values, respectively.

6.3.2 Importance of window size

Motivation

As was mentioned before in section 4.4, selecting the appropriate window size
is crucial for algorithms to achieve good results. Because of this, an auto-
mated window size selection algorithm should be considered the first part of
an automated pipeline. In this thesis, AutoPeriod was chosen as an automated
window size selection algorithm as it has been shown to perform well in the
task of anomaly detection in [72]. One of the collections of datasets used in
their experiments has been the UCR archive that is used in this thesis as well.
Before using the algorithm for the rest of the experiments observation of how
it performs relative to all possible values in a selected range of values.

Design

To obtain the window size, AutoPeriod was used on training splits of 10 ran-
dom datasets from training UCR datasets. Not all datasets contain a period.
Therefore, for datasets that AutoPeriod could not find a periodicity, a default
value of 16 has been used. As to not run into computationally intractable

49

6. Experiments

problems, the periods spanning more than 512 time points were clipped to
512, as the time and space complexity of several algorithms is dependent on
window size. Models of k-NN, LOF, and Isolation Forest were fitted with de-
fault parameters on the training splits using window size from 16 to 512 with
a step of 16. Models were evaluated on test splits using F1-score and F1-score
under Point adjusted evaluation scheme.

6.3.3 Design of pipelines

The upcoming sections cover the selection of anomaly detection models, the
composition of methods that form automated pipelines, and the evaluation
metrics employed. Firstly, the motivation and thought process behind the
creation of these pipelines are outlined, followed by the technical details of
the design and the training and evaluation process.

Models

This subsection introduces models selected for the following experiments. The
selected models are divided into four types based on the reason for selection
as follows:

• k-NN, LOF, OCSVM, and IF are well-known, simple yet effective meth-
ods for detecting anomalies that are commonly used as despite the sim-
plicity they keep good performance in practice.

• VAE and LSTM EncDec could be considered as basic deep learning
models for anomaly detection.

• TranAD and GTA are state-of-the-art deep learning models using the
latest architecture styles of transformers and graph neural networks.

• DWTMLEAD is a distribution method that was found to be the most
effective w.r.t. performance in large evaluation survey [7].

This selection covers models across the taxonomy presented in section 2.2.
These are models that performed well in the literature and are reasonably
computationally expensive to train and make predictions with. With the
selection, it is believed by us that it covers the currently available spectrum
of anomaly detection methods applicable to our setting.

Non-changing parts of a pipeline

Few of the parts of a pipeline composition stayed the same for all pipelines.
Data were always preprocessed using min-max normalization to a range from
0 to 1. Next, where needed, a size of a window was determined using the
AutoPeriod method. In case AutoPeriod did not find any seasonality in the
data a default size of 16 was used.

50

6.3. Experiments

6.3.4 Baseline

Motivation

To not repeat mistakes of some works pointed out in [51], a baseline is pre-
sented for the reason of comparison. Having a baseline is essential because it
provides a reference point for comparing and evaluating the performance of
new methods. Without a baseline, it is challenging to determine whether a
new method is actually an improvement.

Design

As a baseline, all selected methods were fitted and evaluated on a training
split of testing datasets with default parameters. And then to evaluate the
baseline, F1-score, F1-score under point adjusted evaluation scheme, AUC-
ROC, AUC-PR metrics were used.

Although four metrics were used for baseline, AUC-ROC and F1-score under
PA evaluation scheme are not used in further experiments. For the reason
that AUC-PR better suits the task of anomaly detection and F1-score under
PA evaluation scheme can severely overestimate performance as shown in [51],
where randomly generated anomaly score from uniform distribution achieved
better PA F1-score than some of the models that were regarded to as state-
of-the-art.

6.3.5 Unsupervised metric

Motivation

Paper [52] states that no unsupervised evaluation metric for anomaly detection
exists. Conversely, in [56] Goix et al. conclude they were able to recover which
algorithm is better w.r.t. AUC-ROC and AUC-PR than the other using EM
and MV metrics in 80% of cases. With this experiment, the main objective is
to answer the questions Q 1.1 and Q 1.2.

Design

The MV and EM metrics were computed using a methodology proposed in
[56], which only supports methods specifically designed to operate on subse-
quences. Consequently, only k-NN, LOF, OCSVM, and IF were chosen be-
cause the Monte Carlo (MC) method is used for integration within the metrics.
MC generates samples to approximate the integral and this is exponentially
more expensive with increasing dimensions. Hence why, there is a limitation to
using only 5 features. Thus, training models like VAE, LSTM, etc. on only 5
randomly selected features of subsequences would not yield meaningful results.

51

6. Experiments

The selected methods were trained using the previously mentioned approach.
Each method was trained 30 times on 5 distinct randomly selected features of
subsequences, and the final MV and EM values were obtained by calculating
the average MV and EM values across the 30 runs.

The hyperparameters were fine-tuned based on the metric values, using a Tree-
structured Parzen estimator to sample hyperparameters. However, since these
methods cannot be trained iteratively, a pruning algorithm was not utilized. A
computational budget of 20 minutes or 30 trials was allocated for each method
on every dataset. Once either of these limits was reached, another training
procedure would begin. The evaluation was performed using the F1-score and
AUC-PR, and in the experiment, this combination is denoted as US.

6.3.6 Extended unsupervised metric

Motivation

Given the two main drawbacks of the unsupervised metrics: the randomness
associated with feature sampling and the restriction on the types of models
that can be employed. Possible solutions are focused on in the following ex-
periments.

First, the focus was shifted to the randomness aspect. By randomly sampling
a small number of features, the metrics search for smaller dimension space, in
which the anomalous points would still follow the metrics’ assumption of an
anomaly being present in tails and sparse regions of an underlying probabil-
ity distribution. As this procedure is repeated multiple times, it is expected
that anomalous points are more probable to end up in those regions more fre-
quently than normal points. However, training the methods that many times
can be expensive. With this in mind, a dimensionality reduction method could
be used in place of randomly selected features. If the method could learn a
latent space of the subsequences without losing any information on anomalies,
it would be expected that the anomaly would follow the same assumption in
the learned latent space.

The usage of a dimensionality reduction method could potentially solve the
first limitation. Similarly, the second limitation could also be addressed using
a comparable approach. If an AutoEncoder could be trained to accurately
reconstruct the subsequences, it is plausible to assume that the anomaly in-
formation could be captured in the learned latent space. The proposal is to
train the anomaly detection models using complete subsequences, which en-
ables the use of various models, and then measure the metric values in the
latent space. Addressing the second issue is question Q 1.3.

52

6.3. Experiments

3
2

1
0

1
2

3
4

20

10

0

10

20

4

2

0

2

4

(a) Arbitrary latent space generated by an
Autoencoder.

4

2

0

2

4 4

3

2

1

0

1

2

3

4

3

2

1

0

1

2

3

4

(b) Latent space forced to be close to a unit
Gaussian.

Figure 6.7: Figure shows the concept of controlling the shape of the learned
latent space using a Variational Autoencoder (VAE) by enforcing it to conform
to a unit Gaussian distribution, as opposed to an AutoEncoder.

Additionally, it could be advantageous to have control over the shape of the
learned latent space. Monte Carlo integration within the unsupervised metrics
samples from a multivariate uniform distribution where the bounds are set as
a hypercube enclosing the data points. For example, if the learned latent
space forms a manifold of a torus many of the drawn samples will not cover
the data points and therefore be of no use. One possible solution is to replace
an AutoEncoder with a Variational Autoencoder, where the KL term in the
VAE loss function enforces the latent space to conform to a unit Gaussian
distribution. Uniformly sampling in a hypercube enclosing the hypersphere
formed by a multivariate unit Gaussian could be more efficient at covering the
data points and therefore to better estimate the metrics. Figure 6.7 illustrates
this concept.

Design

Three different pipeline compositions were tested in order to conduct experi-
ments incorporating the previous ideas. These compositions are described in
the following list:

• EUS - First, an AutoEncoder was trained for each dataset. Next, k-
NN, LOF, OCSVM, and IF were fitted on a 5-dimensional latent space
learned by AE, and their hyperparameters were optimized using MV
and EM metrics. For a sampling of hyperparameters, a Tree-structured
parzen estimator was applied. Additionally, a computational budget
of 20 minutes or 30 trials was set for each method on each dataset.

53

6. Experiments

Whenever either one was depleted, another training procedure would
begin. Finally, F1-score and AUC-PR were used for evaluation.

• EUS-AE - Similarly to the previous composition AE was firstly trained
for each dataset. Then, all selected models except for DWTMLEAD
were trained on full-length subsequences. Next, AE was used to obtain
a latent space of a dataset to uniformly sample points in that space.
After that, AE was used to decode the samples into the original space,
where these samples were scored using the learned anomaly detection
model. Having scored samples, the metrics could be computed. For
a sampling of hyperparameters, Tree-structured parzen estimator was
applied and where possible Successive Halving was utilized to prune
unpromising configurations. Additionally, a computational budget of 20
minutes or 30 trials was set for methods trained on CPU and 5 minutes
or 50 trials was set for deep learning models that were trained on GPUs
on each dataset. As deep learning models can utilize the pruning more
trials were allowed. Whenever either one was depleted, another training
procedure would begin. Finally, F1-score and AUC-PR were used for
evaluation.

• EUS-VAE - This composition is identical to EUS-AE with the only
difference being a replacement of AE with VAE to control the shape of
the learned latent space.

6.3.7 Meta-learning approach

Motivation

Even though previous experiments were done with the hope of finding such
metric, we acknowledge the findings of [52], that there is currently no unsuper-
vised metric available for selecting the models. Therefore, new approaches had
to be developed. The MetaOD approach, based on meta-learning [68], lever-
ages information about the performance of models trained in a supervised
setting, along with meta features that capture the dataset characteristics.
This information is used to recommend a model that would likely perform
the best on a new, unseen dataset, similar to how a recommendation system
works. Question Q 2.1, whether the performance carries over to the time se-
ries domain is one of the objectives of this experiment. It is also believed that
features better suited for time series could be found and will be the subject of
the experiments.

Design

The first step in the approach was to train and optimize all models in a su-
pervised setting using the AUC-PR metric on the 100 training UCR datasets

54

6.4. Summary of pipelines

with the same time constraints as in previous experiments. The resulting
performance information was used to create a performance matrix, which
was then subjected to matrix factorization into the dataset matrix and the
model matrix. The first matrix was initialized with 200 computed dataset
meta-features, and matrix factorization was optimized for the discounted cu-
mulative gain using stochastic gradient descent, as the ranking of models is
more important than the reconstruction error. A grid search for the learn-
ing rate and dimension of both latent spaces was performed. As a result, a
latent space of models and a regressor for the latent space of datasets were
obtained. The performance of the recommender was then evaluated on test-
ing datasets, using the performance obtained in the unsupervised EUS-AE
experiment to avoid training the predicted models again. This approach is
referred to as META, but it should be noted that the meta features com-
puted in the original experiment were not specialized for time series data, as
the approach was originally designed for outlier detection. To address this,
an additional experiment was conducted using over 700 time series specific
features extracted by the tsfresh5 package. This approach is referred to as
META-ts and this experiment sought to answer question Q 2.2. To conduct
a more thorough comparison, another two pipeline compositions, referred to as
META base and META-ts base, were tested, where recommended models
obtained performance from the baseline. This simulates a recommendation
process followed by training using the default hyperparameters.

6.4 Summary of pipelines

Brief summary of tested pipelines is given in this section. Presented pipelines
and their differences can be mostly summarized in four categories: Hyperpa-
rameters optimization (HPO), model selection (MS), models used, and other
differences.

• Non-changing parts of the pipelines:

– Data normalization using min-max scaling
– AutoPeriod used for window size selection

• Baseline

– HPO and MS
∗ Default HPs

– Models
∗ k-NN, LOF, OCSVM, IF, VAE, LSTM EncDec, TranAD, GTA,

and DWTMLEAD
5https://tsfresh.com/

55

6. Experiments

• US, EUS, EUS-AE/VAE

– HPO and MS
∗ Optimization using MV and EM metrics
∗ Tree-structured Parzen Estimator used for HP sampling
∗ Successive Halving utilized when suitable

– Models
∗ US, EUS - k-NN, LOF, OCSVM, and IF
∗ EUS-AE/VAE - k-NN, LOF, OCSVM, IF, LSTM EncDec,

VAE, and TranAD
– Others

∗ US uses methodology for computing EM/MV metrics from
[56]. Five randomly selected features of subsequences are used
to fit models and to compute metrics value. This process is
repeated 30 times and metric values are averaged to obtain the
final value.

∗ EUS replaces random sampling of features from subsequences
used in US by employing AutoEncoder as a dimensionality re-
duction technique for each dataset

∗ EUS-AE/VAE models are trained on entire subsequences.
Then AE/VAE trained for each dataset is used to obtain the
latent space of the given dataset. Uniform samples are drawn
from a hypercube enclosing the latent space and are decoded to
the original space of the dataset. Next, the samples are scored
using the fitted model in the original space. Lastly, the metric
value is computed on the samples in the latent space scored in
the original space.

• Meta-learning

– HPO
∗ META base, META-ts base - None
∗ META, META-ts - using EM/MV metrics under the EUS-

AE approach, TPE and SH used when appropriate
– MS

∗ META base, META - Recommendation based on original
meta features

∗ META-ts base, META-ts - Recommendation based on time
series specific meta features

– Models - k-NN, LOF, OCSVM, IF, VAE, LSTM EncDec, TranAD,
GTA, and DWTMLEAD

56

6.5. Results

6.5 Results

The Results section is divided into three subsections: Results of the impor-
tance of window size experiment, semi-supervised experiments conducted on
UCR datasets, and unsupervised experiments conducted on NAB datasets.
The design of the latter two experiments is the same.

Importance of window size

First, the verification of the statement that selecting an optimal window size is
critical for algorithms was attempted. The significance of selecting the correct
window size can be seen in figure 6.8, where the performance varies consid-
erably across the range of window sizes. For some datasets, the algorithms
only show optimal performance within a small range of tested window sizes.
For example, on the 006DISTORTEDCIMIS44AirTemperature2 dataset, k-
NN achieved an almost perfect F1-score of 1 with a window size < 100, but
the performance dropped by more than 80% when trained on subsequences of
length > 150.

The main objective of this experiment was to answer the question Q 0, how
does AutoPeriod perform as an unsupervised window size selection algorithm?
Before a comparison of the performance is presented, a disclaimer is given that
it is not fair to compare the AutoPeriod against the evaluations under super-
vision as the method was designed to select window sizes with no ground
truth information available. Despite the unfairness, the experiment is pro-
vided to compare how does AutoPeriod do against the supervised selection
of the window. The models with AutoPeriod detected seasonality achieved a
mean F1-score of 0.44 which is around 19% less than the mean of the best
possible F1-scores equal to 0.54. Relative performance w.r.t. best possible
F1-scores across all 3 models and 10 datasets was 75.6% when using AutoPe-
riod. For a more fair comparison, the experiments were run again with window
sizes set to 16, 32, 64, and 128. AutoPeriod achieved better results than these
default values by 29%, 11%, 2%, and 14% in the same order. The little gain
of 2% when setting the windows to a size of 64 could be explained by a mean
of AutoPeriod periods on the datasets being 68.7. The gain over other values
supports the need for correct size selection.

AutoPeriod is used to find seasonality in the data by the frequency with the
largest magnitude. It is possible that anomalies could stretch across one pe-
riod. Therefore, giving the methods more context could help discover anoma-
lous patterns. A question immediately arose if the performance of the models
could be significantly improved by multiplying the obtained period with some
constant. The results for this question can be seen in figure 6.9. When mul-
tiplying all the periods by 1.59 a gain of 9% was observed in the mean of

57

6. Experiments

0 200 400

0.0

0.5

1.0

k-NN

0 200 400

0.0

0.5

1.0

Local Outlier Factor
006DISTORTEDCIMIS44AirTemperature2

0 200 400

0.0

0.5

1.0

Isolation Forest

F1

F1 Point Adjusted

AutoPeriod seasonality

0 200 400

0.0

0.5

1.0

0 200 400

0.0

0.5

1.0
155PowerDemand4

0 200 400

0.0

0.5

1.0

0 200 400

0.0

0.5

1.0

0 200 400

0.0

0.5

1.0
159TkeepSecondMARS

0 200 400

0.0

0.5

1.0

0 200 400

Window size

0.0

0.5

1.0

0 200 400

Window size

0.0

0.5

1.0
128GP711MarkerLFM5z2

0 200 400

Window size

0.0

0.5

1.0

Figure 6.8: The performance of models changes significantly w.r.t. size of
windows. The rows represent chosen UCR datasets and the columns represent
fitted methods. Performance was measured using F1-score and Point Adjusted
F1-Score. From the plots, it can be clearly seen why it is important to dedicate
time to correctly choosing window size. The dotted lines represent the window
size suggested by the AutoPeriod method. The datasets for the plots were
chosen as an example.

F1-scores from 0.44 to 0.48. Nevertheless, no significant conclusion can be
drawn from the results, as the number of datasets used in this experiment
was small, and further investigation and testing would be needed. For the
following experiments based on these results and the literature reviewed, Au-
toPeriod is used to select the window size, and the multiplying constant is set
to 1.

UCR

Firstly, a review of baseline performance is presented. The results can be seen
in figure 6.10. There are a few key takeaways from the results. LOF and
k-NN both perform significantly better than other methods. Two suggestions
for this phenomenon could be the methods not being very sensitive to hy-
perparameter settings and that the methods benefit from no contamination
in the training split. DWTMLEAD performs the best under Point Adjusted

58

6.5. Results

1 2 3 4 5

Multiplication coefficient a

0.0

0.2

0.4

0.6

0.8

1.0 F1

F1 Point Adjusted

Best constant w.r.t. F1

Default

Figure 6.9: Effect of multiplying obtained periods on the performance of mod-
els. When multiplying by the constant of 1.59 (red line) the models gain 9%
in F1-score. Nevertheless, no significant conclusion can be drawn.

evaluation scheme but falls behind the previously mentioned methods in other
metrics. It seems that DWTMLEAD is superior to others in marking only a
couple of points in anomalous sequence. It is no surprise deep learning models
performed poorly as they were trained only with default hyperparameters.

To answer questions Q 1.1 and Q 1.2, the results of the US pipeline were
compared to the baseline. Figure 6.11 shows the comparison between the two.
The performance of k-NN and LOF did not show any significant changes. On
the other hand, OCSVM showed the largest improvement, with a mean per-
formance increase of around 15% in both F1 and AUC-PR. In contrast, IF
showed the highest decrease in performance out of all four methods. However,
the results do not allow for any significant general conclusions to be drawn.

The authors of [56] concluded that it was possible to recover the best-performing
method in terms of AUC-ROC and AUC-PR in 80% of cases using EM and
MV metrics. However, the same results could not be obtained in our exper-
iments. Out of the 50 datasets tested, the best model in terms of AUC-PR
could only be recovered 16 times with the EM metric and 17 times with the
MV metric, resulting in a recovery rate of 32% and 34%, respectively. Figure
6.12 shows the performance of models selected using these metrics compared
to the optimal ones. Based on these results, it can be concluded that the
metrics are not reliable and should not be used for model selection.

59

6. Experiments

LOF
k-N

N

DW
TMLEAD

LSTM
EncD

ec
GTA

OCSVM IF

TranAD
VAE

0.0

0.5

1.0

F1

DW
TMLEAD

LOF
k-N

N
GTA

LSTM
EncD

ec

OCSVM IF

TranAD
VAE

0.0

0.5

1.0

F1 Point adjusted

k-N
N

LOF

DW
TMLEAD

LSTM
EncD

ec
GTA IF

OCSVM

TranAD
VAE

0.0

0.5

1.0

AUC PR

k-N
N

LOF

DW
TMLEAD

LSTM
EncD

ec

OCSVM IF
GTA

VAE

TranAD

0.0

0.5

1.0

AUC ROC

Figure 6.10: UCR: Baseline performance of selected anomaly detection models
with default hyperparameters. A horizontal line inside a boxplot marks a
median and the mean is marked with a black triangle. The boxplots are
sorted by the median. LOF and k-NN perform significantly better across all
metrics. DWTMLEAD performs the best under Point Adjusted scheme but
not as well in other metrics. GTA being the latest SOTA performs only under
the PA scheme. This could be because it was developed and tested using this
scheme.

k-NN LOF OCSVM IF

0.0

0.5

1.0

F1

k-NN LOF OCSVM IF

0.0

0.5

1.0

AUC PR

exp
Base

US

Figure 6.11: UCR: No significant differences were observed comparing baseline
against models trained in the US pipeline. The performance of models in the
US pipeline was achieved using the MV metric. OCSVM showed the largest
improvement, with a mean performance increase of around 15% in both F1
and AUC-PR. In contrast, IF showed the highest decrease in performance out
of all four methods.

60

6.5. Results

Best AUCPR w.r.t. metric Best AUCPR

0.0

0.2

0.4

0.6

0.8

1.0

metric
EM

MV

Figure 6.12: UCR: Models cannot be reliably selected using the unsupervised
metrics. The performances that could be achieved with perfect model selection
are considerably higher than those recovered by the metrics. The performances
were achieved by hyperparameter optimization using unsupervised metrics.

EM MV

AUC PR

0.0

0.2

0.4

0.6

0.8

1.0

EM MV

F1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.13: UCR: While no significant difference was observed between the
EM and MV metrics, an insignificant performance gain was noticed for the
MV metric. For simplicity and given the similarity of the results, only the
MV metric was used in the subsequent experiments.

To evaluate whether the EM or MV metric performs better for hyperparameter
optimization, a comparison between the two was conducted before address-
ing question Q 1.3. Figure 6.13 shows that no significant conclusion can be
drawn from the comparison. However, a small improvement is observed for
the MV metric over the EM metric in terms of AUC-PR. For simplicity and
given their similarity, only the MV metric is used in the following experiments.

The objective of question Q 1.3 was to see if possible improvements to MV and
EM metrics could be made to improve performance and usability. Based on the
results presented in figure 6.14, it can be concluded that placing an AutoEn-

61

6. Experiments

LOF k-NN OCSVM IF

0.00

0.25

0.50

0.75

1.00

F1

LOF k-NN IF OCSVM

0.00

0.25

0.50

0.75

1.00

AUC PR
EUS

Figure 6.14: UCR: Severe decrease in performance was observed across all
models when using AutoEncoder instead of randomly sampling features.

LOF
k-N

N

LSTM
EncD

ec

OCSVM
VAE

TranAD IF

0.0

0.5

1.0

F1

LOF
k-N

N

LSTM
EncD

ec

OCSVM IF

TranAD
VAE

0.0

0.5

1.0

AUC PR

exp
Base

EUS-AE

Figure 6.15: UCR: The EUS-AE and EUS-VAE didn’t perform better than
the baseline but offered advantages over the US pipeline. The gained usability
in the ability to allow the use of other models didn’t improve performance.
EUS-AE is chosen as representative as EUS-VAE performed very similarly.

coder instead of randomly sampling features did not improve the performance
of the models. Instead, a severe decrease in performance was observed across
all models. The idea of why that could be is an inability to map anomalies to
latent space as was expected.

The purpose of the EUS-AE and EUS-VAE pipelines was to improve usabil-
ity by allowing all models that use subsequences to be optimized using the
metrics. Figure 6.15 shows a comparison of EUS-AE and the baseline. The
performance does not significantly differ from the performance observed in
the US pipeline. The advantage over the US pipeline is that there is no need
to compute the metrics under the sampling methodology, but it comes at the
cost of training an AutoEncoder over each dataset. The ability to use other
types of models could be seen as a benefit, but optimizing them did not bring
any relevant performance gain. Consequently, controlling the distribution of
the latent space using VAE did not lead to any improvement compared to the
use of a AE.

62

6.5. Results

EUS-A
E

EUS-V
AE

Base US
k-N

N
EUS

Experiment

0.0

0.2

0.4

0.6

0.8

1.0

A
U

C
P

R

Potential upperbounds

Figure 6.16: UCR: Figure compares the performance upper bounds of differ-
ent pipelines with perfect model selection (grey colored boxes). k-NN alone
could achieve a median AUC-PR of 0.8. The US and EUS pipelines are not
recommended. The slight improvements of EUS-AE and EUS-VAE could be
explained by a slight improvement in OCSVM performance.

The potential performance upper bound of pipelines that could be achieved
if a perfect model selection was available with EM and MV metrics used for
hyperparameters optimization was examined before moving to meta-learning
experiments, and the results are presented in figure 6.16. The figure shows
that even with default parameters, at least half of the datasets could almost
achieve AUC-PR close to 1. Among the selected methods, k-NN is the best-
performing, and using this method alone with default parameters would pro-
duce a median AUC-PR of approximately 0.8. It can be drawn from the
figure that the US and EUS pipelines should not be considered, even if a per-
fect model selection was possible.

In this section, a discussion regarding the results of meta-learning model selec-
tion methods is presented. Four different pipelines were tested. Surprisingly,
the recommendation model with time series meta-features performed worse
than the recommendation model with the meta-features originally used by
the authors for non-time series-related problems. This finding provides an
answer to question Q 2.2, as no improvement was achieved by focusing on the
time series domain. As expected, training the recommended models with de-
fault hyperparameters resulted in the worst performance. Nevertheless, none
of the pipelines could outperform the baseline of using k-NN for every dataset,
answering the question Q 2.1. Results can be seen in figure 6.17.

63

6. Experiments

Base
k-N

N
META

META-ts

META-ts
base

META
base

Experiment

0.0

0.2

0.4

0.6

0.8

1.0

A
U

C
P

R

Figure 6.17: UCR: Comparison of performance for different meta-learning
model selection pipelines, showing that none of the tested pipelines outperform
the baseline of using k-NN for every dataset. Grey-colored boxplot represents
the baseline upper bound if a perfect model selection was available.

NAB

NAB datasets were selectively chosen to simulate a fully unsupervised setting
where anomalies were present in training splits of all datasets. The design of
the pipelines remained the same. Except for meta-learning experiments where
cross-validation was used to train the recommendation model as the number
of NAB datasets is small. Lastly, the results are reported in a similar fashion
to the results obtained on UCR datasets.

Before reviewing the results, the labeling process of the NAB datasets is pre-
sented as it affects the results of the experiments. To obtain ground truth
labels for NAB datasets a group of human annotators labeled the datasets
according to a given guideline. As a result of the process of aggregating the
labels, datasets contain single-point anomalies (anomalies of length 1). These
single-point anomalies were then converted into anomaly windows. The rea-
sons are: anomalous data often occur over time and anomaly windows allow
models to not be penalized for slightly early or late detection. The width of
an anomaly window was calculated so that the total amount of window length
in a single dataset is 10% of the dataset length.

Initially, a review of baseline performance is presented. The results can be
seen in figure 6.18. The anomaly window labels added to NAB datasets lead
to significant improvements when evaluating using the PA evaluation scheme.
GTA model achieved near-perfect performance across all datasets. However,
it ranked the worst when using other evaluation metrics. GTA is the lat-

64

6.5. Results

VAE
k-N

N

LSTM
EncD

ec
LOF

OCSVM

TranAD IF

DW
TMLEAD

GTA

0.5

1.0

F1

GTA

OCSVM

DW
TMLEAD

VAE

LSTM
EncD

ec
k-N

N

TranAD
LOF IF

0.0

0.5

1.0

F1 Point adjusted

VAE
k-N

N

LSTM
EncD

ec

DW
TMLEAD

TranAD

OCSVM
LOF IF

GTA

0.0

0.5

1.0

AUC PR

LSTM
EncD

ec
VAE

k-N
N

TranAD
LOF IF

OCSVM

DW
TMLEAD

GTA

0.5

1.0

AUC ROC

Figure 6.18: NAB: Baseline performance of selected anomaly detection models
with default hyperparameters. A horizontal line inside a boxplot marks a
median and the mean is marked with a black triangle. The boxplots are sorted
by the median. Results of the GTA model seem to illustrate the influence
of developing a model under the recent settings where slightly early or late
detection is allowed with a combination of a setting where only a fraction of
time points is needed to be marked as anomalous.

est SOTA method and the influence of being developed under PA evaluation
scheme could be the reason for the results. As it stands, it seems that GTA
excels in slightly early or late detection and only labels a small fraction of
time points within an anomaly window. Compared to UCR results, k-NN and
LOF did not outperform other models, yet they seem to be among the better
ones. The performance of these models is expected to lower with increasing
contamination rate.

In figure 6.19 a summary of the performances of all pipelines using the MV
and EM metrics can be seen. Similarly to UCR results the metrics could not
be used for model selection (Q 1.2). The recovery rate of the best model w.r.t.
AUC-PR and F1 using the unsupervised metrics was around 17%, being even
lower than in UCR results. Even if the perfect model selection was possi-
ble, none of the pipelines outperformed the baseline (Q 1.1). As a result of
this, the unsupervised metrics can not be deemed as metrics for hyperparam-
eter optimization. Extending the metrics in EUS-AE and EUS-VAE pipelines
led to insignificant performance gains over the US but not outperforming the
baseline (Q 1.3).

65

6. Experiments

Base

EUS-V
AE

EUS-A
E US

VAE
k-N

N
EUS

Experiment

0.2

0.4

0.6

0.8

1.0

A
U

C
P

R

Potential upperbounds

Figure 6.19: NAB: Figure compares the performance upper bounds of differ-
ent pipelines with perfect model selection (grey colored boxes). None of the
pipelines led to an improvement over the baseline. Suggesting that the un-
supervised metrics cannot be reliably used for hyperparameter optimization
and model selection.

As mentioned before, a cross-validation had to be used as the number of se-
lected NAB datasets was 25 which is considerably low. The datasets were
split into 5 folds. The training of the recommendation system was done on
4 folds and 1 remaining fold was used for prediction. This was repeated for
each individual fold.

Figure 6.20 shows a comparison of meta-learning pipelines. Using the time
series-specific meta features did not lead to any improvement, on the contrary,
it has led to a severe decrease in performance (Q 2.2). Pipelines META and
META base achieved comparable performance to simply using VAE or k-NN
with default parameters at a many-folds larger computational expense which
is not considered satisfactory (Q 2.1).

6.6 Discussion

Two different AutoML approaches and many variations of pipeline composi-
tions were thoroughly tested in two different learning settings.

Firstly, experiments using AutoPeriod as a window size selection algorithm
were conducted. According to the literature, AutoPeriod achieves the best
performance in selecting a window size for unsupervised anomaly detection
tasks. In our experiments, a comparison was made between AutoPeriod and

66

6.6. Discussion

Base

META

META
base

VAE
k-N

N

META-ts

META-ts
base

Experiment

0.0

0.2

0.4

0.6

0.8

1.0

A
U

C
P

R

Figure 6.20: NAB: Figure shows a comparison of performance for different
meta-learning model selection pipelines. Grey-colored boxplot represents the
baseline upper bound if a perfect model selection was employed. META
pipelines using the original meta features performed similarly to baselines
of VAE and k-NN which were the two best-performing models in the baseline
experiment. Using time series-specific meta features led to significantly worse
performance.

the supervised learning procedure. A mean F1-score of 0.44 was achieved
by the models using AutoPeriod-sized windows, which is approximately 19%
lower than the mean of the best possible F1-scores of 0.54. This indicates the
potential for improvement. AutoPeriod’s task is to find seasonality in pro-
vided time series and a question arose if using windows larger than one period
would on average improve models’ performance. For this reason, a test was
conducted on whether a coefficient for multiplying the period exists. With a
coefficient equal to around 1.5 an improvement of 10% was seen. The mean
f1-score of models improved to 0.48. The test was carried out on 10 datasets
using 3 models. With such a small sample, any significant conclusion could
not be drawn, and further investigation is needed.

Next, the proposed pipelines were tested in a semisupervised setting on UCR
datasets. Experiments conducted using the unsupervised metrics of EM and
MV have shown that they cannot be reliably used for either model selection
or hyperparameter optimization. None of the pipelines could achieve better
performance than using the k-NN method with default parameters. However,
a possible explanation for this could be that the performance of the k-NN
together with LOF was significantly better than other models and simply
choosing one of the two models would be highly probable to result in a good
performance. The reason for such performance of the two algorithms could

67

6. Experiments

be possibly explained by the UCR datasets being semisupervised and by the
fact that their contamination is extremely low. Which could favor them.

Next, placing an AutoEncoder instead of randomly sampling features within
the EM and MV metrics in EUS pipeline significantly worsened the perfor-
mance of the models, possibly indicating an inability to map anomalies to
latent space which is the opposite of what was expected. Alternatively, the
dimension of the latent space is likely too small to preserve all the informa-
tion. If the latter is true, then Monte Carlo integration would be a limitation
of the metrics as it requires an exponentially growing number of samples to
allow for the same relative error of approximation. With higher dimensions,
this becomes computationally infeasible. Additionally, replacing Monte Carlo
is a difficult problem, given that not much is known about the properties of
the learned latent space or about the manifold where the points lie when us-
ing AutoEncoder. Thorough research has been done on computing volume in
high dimensional convex bodies [81]. To this end, VAE forcing latent space
to conform to multivariate unit Gaussian would seem like a plausible solution
as successfully trained VAE would map data points into a hypersphere. How-
ever, when using a scoring function of a model to select points in this latent
space there are again no guarantees of the shape of the body of the points. A
potential solution could be finding a convex hull around the points and com-
puting its volume. However, this would assume that all the points lie in one
cluster for the approximation to be close to real volume. Overall, these are
pure speculations and a more detailed examination is needed. Leaving this an
open question.

In this thesis, VAE has been used with Monte Carlo integration under the
assumption that anomalous points would be mapped to points lying in the
sparse regions (tails) of the multivariate unit Gaussian distribution, and a
scoring function optimizing the unsupervised metrics would score these points
more anomalous. On the contrary, if this assumption would hold a simple scor-
ing function of distance from the center of the distribution would perform well.

Subsequently, EUS-AE and EUS-VAE approaches allowed for a wider range
of models to be used but no significant improvement over the baseline was
recorded. Additionally, using VAE instead of AE performed similarly. Seem-
ingly invalidating previous assumptions. Meta-learning pipelines also per-
formed worse than the baseline of using only k-NN. In addition, all meta-
learning pipelines performed similarly. To conclude, improvement was not
observed even when using time series-specific meta features.

Lastly, the unsupervised setting was created and tested by specifically choosing
NAB datasets so that anomalies are present in both training and testing splits.
The NAB datasets are labeled so that early or late detection of anomalies is

68

6.6. Discussion

allowed. This led to a significant increase in F1-score under the PA evaluation
scheme across all models. GTA is a model that was near perfect for all the
NAB datasets when evaluated using the PA scheme but was the worst when
other metrics were used. Which is a result of being developed with the PA
scheme in mind. Nevertheless, none of the pipelines outperformed the base-
line using unsupervised metrics, further indicating that these metrics cannot
be reliably used for hyperparameter optimization or model selection. Meta-
learning pipelines using time series-specific meta-features did not lead to any
improvement and even resulted in a severe decrease in performance. When
utilizing the original features performance comparable to the baseline of VAE
and k-NN was seen but at a much higher computational cost. The failure
of time series-specific meta features in the improvement of the performance
could be attributed to the loss of the mentioned landmark meta features.
These would be the features obtained from easy-to-construct outlier detection
models. These extracted features are said to be more problem-specific [64].
Whether these landmark features in combination with time series-specific fea-
tures would lead to a gain in performance is an open question.

69

Chapter 7
Conclusion

In this thesis, an effort has been made to address the challenge of anomaly
detection in univariate time series data using AutoML techniques. In partic-
ular, the emphasis was placed on creating new pipelines that can handle both
semisupervised and unsupervised settings. Currently, there are no reliable
approaches to solve the task.

Before the main experiments were conducted, a side experiment on an unsu-
pervised window size selection was carried out. Tested AutoPeriod method
[73] showed good results w.r.t. supervised selection but the results suggest
that improvements are still possible.

Mass-Volume [53] and Excess-Mass [54] metrics were thoroughly tested and
extended to allow a wider range of models to be used. However, the experi-
ments showed their inability to be used in hyperparameter optimization and
model selection. Next, the meta-learning approach for unsupervised model
selection introduced in [68] was tested in the time series domain using time
series-specific meta features. Nevertheless, no significant performance gain
has been measured.

The most important direction for future work to solve the problem is believed
by us to be evaluation. For the reason that many various methodologies of
evaluation are currently being used. Resulting in works with incompatible
results. A single general procedure for evaluation is needed. Also, a general
guideline for labeling datasets would help, as some datasets allow for detection
near the anomalies, while others do not.

As seen in the results the nine selected methods could solve at least half of
the datasets nearly perfectly with default hyperparameters if given a perfect
model selection procedure. Indicating that model selection is more important
than hyperparameter optimization and should be prioritized.

71

7. Conclusion

In conclusion, the results of this thesis offer new insights into available meth-
ods. The task of leveraging AutoML for unsupervised anomaly detection in
time series is a crucial area that demands continuous effort in research. The
current state of evaluation leaves a feeling of being fragmented and incomplete,
leaving room for innovative ideas and new perspectives. Moving towards a
more comprehensive and unified approach to AutoML-based anomaly detec-
tion in time series is called for. The possibilities are endless, and the future is
exciting.

72

Bibliography

1. BISHOP, Christopher M. Pattern Recognition and Machine Learning.
New York: Springer, 2006. Information Science and Statistics. isbn 978-
0-387-31073-2.

2. HASTIE, Trevor; TIBSHIRANI, Robert; FRIEDMAN, Jerome. The ele-
ments of statistical learning: data mining, inference and prediction. Springer,
2009. Available also from: http://www-stat.stanford.edu/˜tibs/
ElemStatLearn/.

3. Current IOT forecast highlights. [N.d.]. Available also from: https://
transformainsights.com/research/forecast/highlights.

4. BRAEI, Mohammad; WAGNER, Sebastian. Anomaly Detection in Uni-
variate Time-series: A Survey on the State-of-the-Art. arXiv, 2020. No.
arXiv:2004.00433.

5. GRUBBS, Frank E. Procedures for Detecting Outlying Observations in
Samples. Technometrics [online]. 1969, vol. 11, no. 1, pp. 1–21 [visited
on 2023-03-14]. issn 00401706. Available from: http://www.jstor.org/
stable/1266761.

6. HAWKINS, D. M. Identification of outliers. London [u.a.]: Chapman
and Hall, 1980. Monographs on applied probability and statistics. isbn
041221900X. Available also from: http://gso.gbv.de/DB=2.1/CMD?
ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+02435757X&sourceid=fbw_
bibsonomy.

7. SCHMIDL, Sebastian; WENIG, Phillip; PAPENBROCK, Thorsten. Anomaly
Detection in Time Series: A Comprehensive Evaluation. Proceedings of
the VLDB Endowment. 2022, vol. 15, no. 9, pp. 1779–1797. issn 2150-
8097. Available from doi: 10.14778/3538598.3538602.

8. LAI, Kwei-Herng; ZHA, Daochen; ZHAO, Yue; WANG, Guanchu; XU,
Junjie; HU, Xia. Revisiting Time Series Outlier Detection: Definitions
and Benchmarks. [N.d.].

73

http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
https://transformainsights.com/research/forecast/highlights
https://transformainsights.com/research/forecast/highlights
http://www.jstor.org/stable/1266761
http://www.jstor.org/stable/1266761
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+02435757X&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+02435757X&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+02435757X&sourceid=fbw_bibsonomy
https://doi.org/10.14778/3538598.3538602

Bibliography

9. CHOI, Kukjin; YI, Jihun; PARK, Changhwa; YOON, Sungroh. Deep
Learning for Anomaly Detection in Time-Series Data: Review, Analysis,
and Guidelines. IEEE Access. 2021, vol. 9, pp. 120043–120065. issn 2169-
3536. Available from doi: 10.1109/ACCESS.2021.3107975.

10. BLÁZQUEZ-GARCÍA, Ane; CONDE, Angel; MORI, Usue; LOZANO,
Jose A. A Review on Outlier/Anomaly Detection in Time Series Data.
arXiv, 2020. No. arXiv:2002.04236.

11. ZHANG, Yuxin; CHEN, Yiqiang; WANG, Jindong; PAN, Zhiwen. Unsu-
pervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals.
arXiv, 2021. No. arXiv:2107.12626.

12. KOZITSIN, Viacheslav; KATSER, Iurii; LAKONTSEV, Dmitry. Online
Forecasting and Anomaly Detection Based on the ARIMA Model. Ap-
plied Sciences. 2021, vol. 11, no. 7. issn 2076-3417. Available from doi:
10.3390/app11073194.

13. CHEN, Tianqi; GUESTRIN, Carlos. XGBoost. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2016. Available from doi: 10.1145/2939672.
2939785.

14. BREIMAN, Leo. Random Forests. Machine Learning. 2001, vol. 45, no. 1,
pp. 5–32. issn 1573-0565. Available from doi: 10.1023/A:1010933404324.

15. FRIEDMAN, Jerome H. Greedy function approximation: A gradient
boosting machine. The Annals of Statistics. 2001, vol. 29, no. 5, pp. 1189–
1232. Available from doi: 10.1214/aos/1013203451.

16. OLAH, Christopher. Understanding LSTM networks. 2015. Available also
from: https://colah.github.io/posts/2015-08-Understanding-
LSTMs/.

17. HOCHREITER, Sepp. The Vanishing Gradient Problem During Learn-
ing Recurrent Neural Nets and Problem Solutions. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems. 1998, vol. 06,
no. 02, pp. 107–116. Available from doi: 10.1142/S0218488598000094.

18. HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long Short-Term Mem-
ory. Neural Computation. 1997, vol. 9, no. 8, pp. 1735–1780. issn 0899-
7667. Available from doi: 10.1162/neco.1997.9.8.1735.

19. VASWANI, Ashish; SHAZEER, Noam; PARMAR, Niki; USZKOREIT,
Jakob; JONES, Llion; GOMEZ, Aidan N.; KAISER, Lukasz; POLO-
SUKHIN, Illia. Attention Is All You Need. 2017. Available from arXiv:
1706.03762 [cs.CL].

20. KIPF, Thomas N.; WELLING, Max. Semi-Supervised Classification with
Graph Convolutional Networks. 2017. Available from arXiv: 1609.02907
[cs.LG].

74

https://doi.org/10.1109/ACCESS.2021.3107975
https://doi.org/10.3390/app11073194
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1214/aos/1013203451
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907

Bibliography

21. DENG, Ailin; HOOI, Bryan. Graph Neural Network-Based Anomaly De-
tection in Multivariate Time Series. arXiv, 2021. No. arXiv:2106.06947.

22. CHEN, Zekai; CHEN, Dingshuo; ZHANG, Xiao; YUAN, Zixuan; CHENG,
Xiuzhen. Learning Graph Structures with Transformer for Multivariate
Time Series Anomaly Detection in IoT. IEEE Internet of Things Jour-
nal. 2022, vol. 9, no. 12, pp. 9179–9189. issn 2327-4662, issn 2372-2541.
Available from doi: 10.1109/JIOT.2021.3100509.

23. ZHOU, Haoyi; ZHANG, Shanghang; PENG, Jieqi; ZHANG, Shuai; LI,
Jianxin; XIONG, Hui; ZHANG, Wancai. Informer: Beyond Efficient Trans-
former for Long Sequence Time-Series Forecasting. arXiv, 2021. No.
arXiv:2012.07436. Available from doi: 10.48550/arXiv.2012.07436.

24. KRAMER, Mark A. Nonlinear principal component analysis using au-
toassociative neural networks. AIChE Journal. 1991, vol. 37, no. 2, pp. 233–
243. Available from doi: https://doi.org/10.1002/aic.690370209.

25. KINGMA, Diederik P.; WELLING, Max. Auto-Encoding Variational Bayes.
arXiv, 2013. No. arXiv:1312.6114.

26. DOERSCH, Carl. Tutorial on Variational Autoencoders. arXiv, 2021. No.
arXiv:1606.05908.

27. COZZATTI, Michele; SIMONETTA, Federico; NTALAMPIRAS, Stavros.
Variational Autoencoders for Anomaly Detection in Respiratory Sounds.
arXiv, 2022. No. arXiv:2208.03326.

28. GUNDERSEN, Gregory. The Reparameterization Trick. 2018. Available
also from: https : / / gregorygundersen . com / blog / 2018 / 04 / 29 /
reparameterization/.

29. TULI, Shreshth; CASALE, Giuliano; JENNINGS, Nicholas R. TranAD:
Deep Transformer Networks for Anomaly Detection in Multivariate Time
Series Data. 2022. Available from arXiv: 2201.07284 [cs.LG].

30. MALHOTRA, Pankaj; RAMAKRISHNAN, Anusha; ANAND, Gaurangi;
VIG, Lovekesh; AGARWAL, Puneet; SHROFF, Gautam. LSTM-based
Encoder-Decoder for Multi-sensor Anomaly Detection. arXiv, 2016. No.
arXiv:1607.00148.

31. SENIN, Pavel; LIN, Jessica; WANG, Xing; OATES, Tim; GANDHI, S.;
BOEDIHARDJO, Arnold P.; CHEN, Crystal; FRANKENSTEIN, Su-
san. Time series anomaly discovery with grammar-based compression.
In: International Conference on Extending Database Technology. 2015.

32. BONIOL, Paul; PALPANAS, Themis. Series2Graph. Proceedings of the
VLDB Endowment. 2020, vol. 13, no. 12, pp. 1821–1834. Available from
doi: 10.14778/3407790.3407792.

75

https://doi.org/10.1109/JIOT.2021.3100509
https://doi.org/10.48550/arXiv.2012.07436
https://doi.org/https://doi.org/10.1002/aic.690370209
https://gregorygundersen.com/blog/2018/04/29/reparameterization/
https://gregorygundersen.com/blog/2018/04/29/reparameterization/
https://arxiv.org/abs/2201.07284
https://doi.org/10.14778/3407790.3407792

Bibliography

33. PATEL, P.; KEOGH, E.; LIN, J.; LONARDI, S. Mining motifs in massive
time series databases. In: 2002 IEEE International Conference on Data
Mining, 2002. Proceedings. 2002, pp. 370–377. Available from doi: 10.
1109/ICDM.2002.1183925.

34. JOLLIFFE, Ian T.; CADIMA, Jorge. Principal component analysis: a
review and recent developments. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences. 2016, vol. 374,
no. 2065, p. 20150202. Available from doi: 10.1098/rsta.2015.0202.

35. HAN, Songqiao; HU, Xiyang; HUANG, Hailiang; JIANG, Mingqi; ZHAO,
Yue. ADBench: Anomaly Detection Benchmark. 2022. Available from
doi: 10.48550/ARXIV.2206.09426.

36. HARMELING, Stefan; DORNHEGE, Guido; TAX, David; MEINECKE,
Frank; MÜLLER, Klaus-Robert. From outliers to prototypes: Ordering
data. Neurocomputing. 2006, vol. 69, no. 13, pp. 1608–1618. issn 0925-
2312. Available from doi: https://doi.org/10.1016/j.neucom.2005.
05.015. Blind Source Separation and Independent Component Analysis.

37. RAKTHANMANON, Thanawin; CAMPANA, Bilson; MUEEN, Abdul-
lah; BATISTA, Gustavo; WESTOVER, Brandon; ZHU, Qiang; ZAKARIA,
Jesin; KEOGH, Eamonn. Searching and Mining Trillions of Time Series
Subsequences under Dynamic Time Warping. In: Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining - KDD ’12. Beijing, China: ACM Press, 2012, p. 262. isbn
978-1-4503-1462-6. Available from doi: 10.1145/2339530.2339576.

38. BREUNIG, Markus M.; KRIEGEL, Hans-Peter; NG, Raymond T.; SANDER,
Jörg. LOF: Identifying Density-Based Local Outliers. In: Proceedings of
the 2000 ACM SIGMOD International Conference on Management of
Data. Dallas, Texas, USA: Association for Computing Machinery, 2000,
pp. 93–104. SIGMOD ’00. isbn 1581132174. Available from doi: 10 .
1145/342009.335388.

39. SCHÖLKOPF, Bernhard; WILLIAMSON, Robert; SMOLA, Alex; SHAWE-
TAYLOR, John; PLATT, John. Support Vector Method for Novelty De-
tection. In: 1999, vol. 12, pp. 582–588.

40. CORTES, Corinna; VAPNIK, Vladimir. Support-vector networks. Ma-
chine Learning. 1995, vol. 20, no. 3, pp. 273–297. issn 1573-0565. Avail-
able from doi: 10.1007/BF00994018.

41. GOLDSTEIN, Markus; DENGEL, Andreas. Histogram-Based Outlier
Score (HBOS): A Fast Unsupervised Anomaly Detection Algorithm. In:
2012.

42. THILL, Markus; KONEN, Wolfgang; BÄCK, Thomas. Time Series Anomaly
Detection with Discrete Wavelet Transforms and Maximum Likelihood
Estimation. In: 2019.

76

https://doi.org/10.1109/ICDM.2002.1183925
https://doi.org/10.1109/ICDM.2002.1183925
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.48550/ARXIV.2206.09426
https://doi.org/https://doi.org/10.1016/j.neucom.2005.05.015
https://doi.org/https://doi.org/10.1016/j.neucom.2005.05.015
https://doi.org/10.1145/2339530.2339576
https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
https://doi.org/10.1007/BF00994018

Bibliography

43. LIU, Fei Tony; TING, Kai; ZHOU, Zhi-Hua. Isolation Forest. In: 2009,
pp. 413–422. Available from doi: 10.1109/ICDM.2008.17.

44. POWERS, David. Evaluation: From Precision, Recall and F-Factor to
ROC, Informedness, Markedness Correlation. Mach. Learn. Technol.
2008, vol. 2.

45. PAPARRIZOS, John; BONIOL, Paul; PALPANAS, Themis; TSAY, Ruey
S.; ELMORE, Aaron; FRANKLIN, Michael J. Volume under the Sur-
face: A New Accuracy Evaluation Measure for Time-Series Anomaly
Detection. Proceedings of the VLDB Endowment. 2022, vol. 15, no. 11,
pp. 2774–2787. issn 2150-8097. Available from doi: 10.14778/3551793.
3551830.

46. HANLEY, J A; MCNEIL, B J. The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology. 1982, vol. 143,
no. 1, pp. 29–36. Available from doi: 10 . 1148 / radiology . 143 . 1 .
7063747. PMID: 7063747.

47. SAITO, Takaya; REHMSMEIER, Marc. The Precision-Recall Plot Is
More Informative than the ROC Plot When Evaluating Binary Classifiers
on Imbalanced Datasets. PLOS ONE. 2015, vol. 10, no. 3, pp. 1–21.
Available from doi: 10.1371/journal.pone.0118432.

48. WU, Renjie; KEOGH, Eamonn. Current Time Series Anomaly Detection
Benchmarks Are Flawed and Are Creating the Illusion of Progress. IEEE
Transactions on Knowledge and Data Engineering. 2021, pp. 1–1. issn
1041-4347, issn 1558-2191, issn 2326-3865. Available from doi: 10.1109/
TKDE.2021.3112126.

49. XU, Haowen; FENG, Yang; CHEN, Jie; WANG, Zhaogang; QIAO, Honglin;
CHEN, Wenxiao; ZHAO, Nengwen; LI, Zeyan; BU, Jiahao; LI, Zhihan;
LIU, Ying; ZHAO, Youjian; PEI, Dan. Unsupervised Anomaly Detection
via Variational Auto-Encoder for Seasonal KPIs in Web Applications. In:
Proceedings of the 2018 World Wide Web Conference on World Wide Web
- WWW ’18. ACM Press, 2018. Available from doi: 10.1145/3178876.
3185996.

50. SU, Ya; ZHAO, Youjian; NIU, Chenhao; LIU, Rong; SUN, Wei; PEI,
Dan. Robust Anomaly Detection for Multivariate Time Series through
Stochastic Recurrent Neural Network. In: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery amp; Data
Mining. Anchorage, AK, USA: Association for Computing Machinery,
2019, pp. 2828–2837. KDD ’19. isbn 9781450362016. Available from doi:
10.1145/3292500.3330672.

77

https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.14778/3551793.3551830
https://doi.org/10.14778/3551793.3551830
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1109/TKDE.2021.3112126
https://doi.org/10.1109/TKDE.2021.3112126
https://doi.org/10.1145/3178876.3185996
https://doi.org/10.1145/3178876.3185996
https://doi.org/10.1145/3292500.3330672

Bibliography

51. KIM, Siwon; CHOI, Kukjin; CHOI, Hyun-Soo; LEE, Byunghan; YOON,
Sungroh. Towards a Rigorous Evaluation of Time-Series Anomaly Detec-
tion. Proceedings of the AAAI Conference on Artificial Intelligence. 2022,
vol. 36, no. 7, pp. 7194–7201. issn 2374-3468, issn 2159-5399. Available
from doi: 10.1609/aaai.v36i7.20680.

52. BAHRI, Maroua; SALUTARI, Flavia; PUTINA, Andrian; SOZIO, Mauro.
AutoML: State of the Art with a Focus on Anomaly Detection, Chal-
lenges, and Research Directions. International Journal of Data Science
and Analytics. 2022, vol. 14, no. 2, pp. 113–126. issn 2364-415X, issn
2364-4168. Available from doi: 10.1007/s41060-022-00309-0.

53. CLÉMENÇON, Stephan; THOMAS, Albert. Mass Volume Curves and
Anomaly Ranking. arXiv, 2018. No. arXiv:1705.01305. Available from
doi: 10.48550/arXiv.1705.01305.

54. GOIX, Nicolas; SABOURIN, Anne; CLÉMENÇON, Stéphan. On Anomaly
Ranking and Excess-Mass Curves. arXiv, 2015. No. arXiv:1502.01684.
Available from doi: 10.48550/arXiv.1502.01684.

55. THOMAS, Albert; FEUILLARD, Vincent; GRAMFORT, Alexandre;
CLÉMENÇON, Stéphan. Learning Hyperparameters for Unsupervised
Anomaly Detection. In: ICML, Anomaly Detection Workshop. 2016.

56. GOIX, Nicolas. How to Evaluate the Quality of Unsupervised Anomaly
Detection Algorithms? arXiv, 2016. No. arXiv:1607.01152.

57. ELSHAWI, Radwa; MAHER, Mohamed; SAKR, Sherif. Automated Ma-
chine Learning: State-of-The-Art and Open Challenges. 2019. Available
from arXiv: 1906.02287 [cs.LG].

58. LIASHCHYNSKYI, Petro; LIASHCHYNSKYI, Pavlo. Grid Search, Ran-
dom Search, Genetic Algorithm: A Big Comparison for NAS. 2019. Avail-
able from arXiv: 1912.06059 [cs.LG].

59. FALKNER, Stefan; KLEIN, Aaron; HUTTER, Frank. BOHB: Robust
and Efficient Hyperparameter Optimization at Scale. 2018. Available from
arXiv: 1807.01774 [cs.LG].

60. BERGSTRA, James; BARDENET, R.; KÉGL, Balázs; BENGIO, Y. Al-
gorithms for Hyper-Parameter Optimization. In: 2011.

61. KATEHAKIS, Michael N.; VEINOTT, Arthur F. The Multi-Armed Ban-
dit Problem: Decomposition and Computation. Mathematics of Opera-
tions Research. 1987, vol. 12, no. 2, pp. 262–268. Available from doi:
10.1287/moor.12.2.262.

62. JAMIESON, Kevin; TALWALKAR, Ameet. Non-stochastic Best Arm
Identification and Hyperparameter Optimization. 2015. Available from
arXiv: 1502.07943 [cs.LG].

78

https://doi.org/10.1609/aaai.v36i7.20680
https://doi.org/10.1007/s41060-022-00309-0
https://doi.org/10.48550/arXiv.1705.01305
https://doi.org/10.48550/arXiv.1502.01684
https://arxiv.org/abs/1906.02287
https://arxiv.org/abs/1912.06059
https://arxiv.org/abs/1807.01774
https://doi.org/10.1287/moor.12.2.262
https://arxiv.org/abs/1502.07943

Bibliography

63. LI, Lisha; JAMIESON, Kevin; DESALVO, Giulia; ROSTAMIZADEH,
Afshin; TALWALKAR, Ameet. Hyperband: A Novel Bandit-Based Ap-
proach to Hyperparameter Optimization. 2018. Available from arXiv: 1603.
06560 [cs.LG].

64. VANSCHOREN, Joaquin. Meta-Learning. In: HUTTER, Frank; KOT-
THOFF, Lars; VANSCHOREN, Joaquin (eds.). Automated Machine Learn-
ing. Cham: Springer International Publishing, 2019, pp. 35–61. isbn 978-
3-030-05317-8 978-3-030-05318-5. Available from doi: 10.1007/978-3-
030-05318-5_2.

65. DE SÁ, Alex; PINTO, Walter; OLIVEIRA, Luiz Otávio; PAPPA, Gisele.
RECIPE: A Grammar-Based Framework for Automatically Evolving Clas-
sification Pipelines. In: 2017, pp. 246–261. isbn 978-3-319-55695-6. Avail-
able from doi: 10.1007/978-3-319-55696-3_16.

66. WOLPERT, David; MACREADY, William. No Free Lunch Theorems
for Search. 1996.

67. THRUN, Sebastian; PRATT, Lorien Y. Learning to Learn: Introduction
and Overview. In: Learning to Learn. 1998.

68. ZHAO, Yue; ROSSI, Ryan; AKOGLU, Leman. Automatic Unsupervised
Outlier Model Selection. In: Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2021, vol. 34, pp. 4489–4502.

69. ZHAO, Yue; ROSSI, Ryan A.; AKOGLU, Leman. Automating Outlier
Detection via Meta-Learning [online]. arXiv, 2021 [visited on 2022-12-12].
Available from: http://arxiv.org/abs/2009.10606. arXiv:2009.10606
[cs, stat].

70. ZHA, Daochen; LAI, Kwei-Herng; WAN, Mingyang; HU, Xia. Meta-
AAD: Active Anomaly Detection with Deep Reinforcement Learning. 2020.
Available from arXiv: 2009.07415 [cs.LG].

71. JÄRVELIN, Kalervo; KEKÄLÄINEN, Jaana. Cumulated Gain-Based
Evaluation of IR Techniques. ACM Trans. Inf. Syst. 2002, vol. 20, pp. 422–
446. Available from doi: 10.1145/582415.582418.

72. ERMSHAUS, Arik; SCHÄFER, Patrick; LESER, Ulf. Window Size Se-
lection Innbsp;Unsupervised Time Series Analytics: A Review Andnbsp;Benchmark.
In: Advanced Analytics and Learning on Temporal Data: 7th ECML PKDD
Workshop, AALTD 2022, Grenoble, France, September 19–23, 2022, Re-
vised Selected Papers. Grenoble, France: Springer-Verlag, 2023, pp. 83–
101. isbn 978-3-031-24377-6. Available from doi: 10.1007/978-3-031-
24378-3_6.

79

https://arxiv.org/abs/1603.06560
https://arxiv.org/abs/1603.06560
https://doi.org/10.1007/978-3-030-05318-5_2
https://doi.org/10.1007/978-3-030-05318-5_2
https://doi.org/10.1007/978-3-319-55696-3_16
http://arxiv.org/abs/2009.10606
https://arxiv.org/abs/2009.07415
https://doi.org/10.1145/582415.582418
https://doi.org/10.1007/978-3-031-24378-3_6
https://doi.org/10.1007/978-3-031-24378-3_6

Bibliography

73. VLACHOS, Michail; YU, Philip; CASTELLI, Vittorio. On Periodicity
Detection and Structural Periodic Similarity. In: Proceedings of the 2005
SIAM International Conference on Data Mining. Society for Industrial
and Applied Mathematics, 2005, pp. 449–460. isbn 978-0-89871-593-4
978-1-61197-275-7. Available from doi: 10.1137/1.9781611972757.40.

74. WEN, Qingsong; HE, Kai; SUN, Liang; ZHANG, Yingying; KE, Min;
XU, Huan. RobustPeriod: Time-Frequency Mining for Robust Multiple
Periodicities Detection. CoRR. 2020, vol. abs/2002.09535. Available from
arXiv: 2002.09535.

75. IMANI, Shima. Multi-Window-Finder: Domain Agnostic Window Size
for Time Series Data. In: MileTS, 2021. Available also from: https :
//kdd-milets.github.io/milets2021/papers/MiLeTS2021_paper_
9.pdf.

76. ERMSHAUS, Arik; SCHÄFER, Patrick; LESER, Ulf. ClaSP: parameter-
free time series segmentation. Data Mining and Knowledge Discovery.
2023. Available from doi: 10.1007/s10618-023-00923-x.

77. LAPTEV, Nikolay; AMIZADEH, Saeed; FLINT, Ian. Generic and Scal-
able Framework for Automated Time-Series Anomaly Detection. In: Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. New York, NY, USA: Association for
Computing Machinery, 2015, pp. 1939–1947. KDD ’15. isbn 9781450336642.
Available from doi: 10.1145/2783258.2788611.

78. AHMAD, Subutai; LAVIN, Alexander; PURDY, Scott; AGHA, Zuha.
Unsupervised real-time anomaly detection for streaming data. Neuro-
computing. 2017, vol. 262, pp. 134–147. issn 0925-2312. Available from
doi: https://doi.org/10.1016/j.neucom.2017.04.070.

79. HUNDMAN, Kyle; CONSTANTINOU, Valentino; LAPORTE, Christo-
pher; COLWELL, Ian; SÖDERSTRÖM, Tom. Detecting Spacecraft Anoma-
lies Using LSTMs and Nonparametric Dynamic Thresholding. CoRR.
2018, vol. abs/1802.04431. Available from arXiv: 1802.04431.

80. SU, Ya; ZHAO, Youjian; NIU, Chenhao; LIU, Rong; SUN, Wei; PEI,
Dan. Robust Anomaly Detection for Multivariate Time Series through
Stochastic Recurrent Neural Network. In: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery amp; Data
Mining. Anchorage, AK, USA: Association for Computing Machinery,
2019, pp. 2828–2837. KDD ’19. isbn 9781450362016. Available from doi:
10.1145/3292500.3330672.

81. SIMONOVITS, Miklos. How to compute the volume in high dimension?
Math. Program. 2003, vol. 97, pp. 337–374. Available from doi: 10.1007/
s10107-003-0447-x.

80

https://doi.org/10.1137/1.9781611972757.40
https://arxiv.org/abs/2002.09535
https://kdd-milets.github.io/milets2021/papers/MiLeTS2021_paper_9.pdf
https://kdd-milets.github.io/milets2021/papers/MiLeTS2021_paper_9.pdf
https://kdd-milets.github.io/milets2021/papers/MiLeTS2021_paper_9.pdf
https://doi.org/10.1007/s10618-023-00923-x
https://doi.org/10.1145/2783258.2788611
https://doi.org/https://doi.org/10.1016/j.neucom.2017.04.070
https://arxiv.org/abs/1802.04431
https://doi.org/10.1145/3292500.3330672
https://doi.org/10.1007/s10107-003-0447-x
https://doi.org/10.1007/s10107-003-0447-x

Contents of the attached media

README.md..................Brief description of attached media contents
src

automltsad.................Implemented anomaly detection module
experimentsFile containing experiment scripts and Jupyter notebooks

text
thesis.pdf..................................Thesis in PDF format

81

	Introduction
	Structure
	Contributions

	Anomaly detection in time series
	Anomaly
	Time series
	Types of anomalies

	Models
	Anomaly detector
	Taxonomy of models
	Forecasting methods
	Reconstruction methods
	Encoding methods
	Distance methods
	Distribution methods
	Isolation Tree methods

	Evaluation
	Unifying anomaly scores
	Supervised and semi-supervised
	Point adjusted evaluation scheme

	Unsupervised
	Mass-Volume metric
	Excess-Mass metric

	Automated Machine Learning
	Combined Algorithm Selection and Hyper-parameter tuning
	Meta-learning
	AutoML for unsupervised anomaly detection
	MetaOD

	Window size selection
	AutoPeriod

	Research statement
	Experiments
	Datasets
	Selected datasets

	Setup
	Experiments
	Data preprocessing
	Importance of window size
	Design of pipelines
	Baseline
	Unsupervised metric
	Extended unsupervised metric
	Meta-learning approach

	Summary of pipelines
	Results
	Discussion

	Conclusion
	Bibliography
	Contents of the attached media

