
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Design of System On Chip with RISC-V processor for USI

graphical pen controller

Bc. Martin Stahl

Ing. Tomáš Novák

Informatics

Design and Programming of Embedded Systems

Department of Digital Design

until the end of summer semester 2023/2024

Instructions

1. Familiarize yourself with USI Pen Controller SoC requirements, with the existing

platform based on CoolRISC and with available IP blocks.

2. Analyze differences between RISC-V and CoolRISC CPU platform and prepare system

level design for System On Chip controller based on RISC V.

3. Implement the design at the RTL level and demonstrate its correct operation.

4. Validate the designed system on the FPGA circuit.

5. Estimate the power consumption and compare it with the CoolRISC processor

implementation.

Electronically approved by prof. Ing. Hana Kubátová, CSc. on 3 January 2023 in Prague.

Master’s thesis

Design of System On Chip with RISC-V
processor for USI graphical pen controller

Bc. Martin Stahl

Department of Digital Design
Supervisor: Ing. Tomáš Novák

May 3, 2023

Acknowledgements

I would like to thank my supervisor Ing. Tomáš Novák for his guidance and
project leadership during my work on this Master’s thesis. Furthermore, I
would like to thank my colleagues Ing. Tomáš Tuček, Ing. Michal Skiba, Ing.
Radek Hájek, and Ing. Petr Jašek, for their great help and expertise. Lastly, I
would like to thank my partner Domen Stropnik for his great mental support
during my entire Master’s Degree studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I further
declare that I have concluded an agreement with the Czech Technical Univer-
sity in Prague, on the basis of which the Czech Technical University in Prague
has waived its right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act. This
fact shall not affect the provisions of Article 47b of the Act No. 111/1998 Coll.,
the Higher Education Act, as amended.

In Prague on May 3, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Martin Stahl. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Stahl, Martin. Design of System On Chip with RISC-V processor for USI
graphical pen controller. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2023.

Abstrakt

Tato diplomová práce se zabývá RTL návrhem a implementaćı systému systému
na čipu na procesorové platformě RISC-V pro USI ovladač grafického pera.
Současný SoC ovladače pera založeného na CoolRISC je analyzován a na
základě této analýzy je vytvořen systémový návrh pro nové SoC ovladače
pera založeného na RISC-V. RTL návrh nového SoC je implementován do
180 nm technologie a jeho systémová spotřeba energie je měřena v simulaci
a poté porovnána se stávaj́ıćım systémem na bázi CoolRISC. Práce se také
zabývá technickým srovnáńım procesorových platforem CoolRISC a RISC-V.

Kĺıčová slova Systém na čipu, RISC-V, CoolRISC, systémový návrh, RTL
implementace, FPGA validace, analýza spotřeby

vii

Abstract

This diploma thesis covers the RTL design and implementation of System On
Chip based on the RISC-V processor platform for USI graphical pen controller.
The current CoolRISC-based pen controller SoC is analysed and based on
this analysis new system design for the RISC-V-based pen controller SoC
is created. The RTL design of the new SoC is implemented into 180 nm
technology, and its system power consumption is measured in simulation and
then compared to the existing CoolRISC-based system. The thesis also covers
the technical comparison between CoolRISC and RISC-V processor platforms.

Keywords System On Chip, RISC-V, CoolRISC, system design, RTL im-
plementation, FPGA validation, power analysis

viii

Contents

Introduction 1

1 Goal 3

2 USI Pen Controller SoC requirements 5
2.1 Existing CoolRISC pen controller SoC 5

2.1.1 Block description . 6
2.1.2 Power modes . 8
2.1.3 Reset structure . 8
2.1.4 Power domains . 9
2.1.5 Clock structure . 9
2.1.6 Peripherals . 10
2.1.7 Software . 11

2.2 CoolRISC CR816L overview . 12
2.2.1 Harvard RISC-like architecture 12
2.2.2 Register-memory architecture 12
2.2.3 Memory sizes . 12
2.2.4 Three-stage pipeline . 12
2.2.5 8bx8b multiplier . 12
2.2.6 Stand-by mode . 12
2.2.7 Data and peripheral bus 12
2.2.8 Instruction set . 13
2.2.9 Double-latch design . 13

2.3 RISC-V overview . 14
2.3.1 Simplicity and modularity 14
2.3.2 Extendability . 14
2.3.3 Open source . 14
2.3.4 RISC-V Foundation . 14
2.3.5 ISA architecture . 14

ix

2.3.6 CV32E40P core . 15
2.4 CR816L and CV32E40P difference analysis 17

2.4.1 Code and data storage in the same memory 17
2.4.2 General Purpose Registers 17
2.4.3 Instruction set . 17
2.4.4 Multiplication/Division accelerator 19
2.4.5 Interrupts . 19
2.4.6 Double latch vs. edge-based design 19
2.4.7 System clock speed vs MIPS 22
2.4.8 Software support . 22
2.4.9 Area and power consumption 23

2.5 Requirements for the new RISC-V pen controller SoC 23

3 System design of RISC-V pen controller SoC 25
3.1 System design . 26

3.1.1 Top interface . 27
3.1.2 Memorry address mapping 30
3.1.3 Peripheral address mapping 30

3.2 FPGA vs ASIC implementation 31
3.2.1 FPGA’s clocking resources 31
3.2.2 FPGA LookUp Tables 31
3.2.3 FPGA register asynchronous set and reset 32

4 Implementation 33
4.1 mcu top . 34
4.2 dig core . 34

4.2.1 Peripherals . 34
4.2.2 AHB2CR bridge . 35

4.3 dig top . 39
4.3.1 GPIO . 39
4.3.2 PML . 39

5 Verification 41
5.1 Test bench structure . 41
5.2 Test bench implementation . 42
5.3 Software compilation . 43

5.3.1 CoreMark . 44
5.4 List of tests . 45

5.4.1 penriscv crc 01 . 45
5.4.2 penriscv custom 01 . 45
5.4.3 penriscv gpio 00 . 45
5.4.4 penriscv gpio 01 . 45
5.4.5 penriscv i2c 01 . 45
5.4.6 penriscv long timer 01 45

x

5.4.7 penriscv pml 01 . 45
5.4.8 penriscv timer 00 . 45
5.4.9 penriscv uart 00 . 46
5.4.10 penriscv wdt 00 . 46
5.4.11 penriscv wdt 01 . 46
5.4.12 penriscv usi 01 . 46
5.4.13 penriscv wut 00 . 46
5.4.14 penriscv coremark 01 46

6 FPGA validation 47
6.1 FPGA platform . 47
6.2 FPGA design changes . 47

6.2.1 GPIO Debouncer . 47
6.2.2 Removing clock multiplexors from WDT and WUT . . 49
6.2.3 Replacing buffers on clock sources in PML 49
6.2.4 Replacing system clock multiplexor in PML 49
6.2.5 Emulating POWER DOWN mode by dig core reset . . 49

6.3 FPGA implementation . 50
6.3.1 FPGA top . 50
6.3.2 Constraints . 51
6.3.3 PCB for high-voltage pentip driver 52

6.4 Patching ROM contents in bitstream 58
6.5 Validation scenarios . 58

6.5.1 LED control by GPIO 58
6.5.2 UART communication with the PC 58
6.5.3 I2C Master communication with an I2C Slave device . . 59
6.5.4 Coremark run longer than 10 seconds 59
6.5.5 Transmission on pentip 0 60
6.5.6 Reception on pentip 0 60

7 Physical implementation 63
7.1 Technology . 63
7.2 Synthesis . 63

7.2.1 Design Constraints . 64
7.2.2 UPF . 64
7.2.3 RAM and ROM technology cells 65
7.2.4 Outputs . 65
7.2.5 Area results . 66

7.3 Place-and-route . 66
7.4 Static Timing Analysis . 66
7.5 Gate-level simulations . 66

8 Power simulations and comparison 67
8.1 Scenarios . 67

xi

8.1.1 penriscv coremark 01 67
8.1.2 penriscv usi 01 . 68

8.2 Switching activity . 68
8.3 Average power consumption calculations 68
8.4 Methodology . 68

8.4.1 Power consumption across hierarchy 69
8.4.2 Corrections . 71

8.5 Results . 72
8.5.1 penriscv coremark 01 72

8.5.1.1 RAM access 73
8.5.2 penriscv usi 01 . 74
8.5.3 Power measurement conclusion 77

Conclusion 79

Bibliography 81

A List of abbreviations used 85

B Contents of the attachments 87

xii

List of Figures

2.1 CoolRISC SoC block diagram . 6
2.2 CoolRISC SoC power domains . 9
2.3 CoolRISC SoC clock structure . 10
2.4 CV32E40P block diagram [4] . 15
2.5 RISC-V Pseudo Instructions [8] . 18
2.6 Non-overlapping clock example waveform 19
2.7 General D-Latch structure in CMOS [9] 20
2.8 More efficient D-Latch structure in CMOS [10] 20
2.9 General D-Flip-Flop structure in CMOS [11] 21
2.10 More efficient D-Flip-Flop structure in CMOS [12] 21
2.11 Latch time borrowing example . 22

3.1 Changes in PENRISCV SoC compared to previous SoC. Green
outline = new module, Red outline = modified existing module . . 25

4.1 New RISC-V pen controller SoC - PENRISCV 33
4.2 AHB-lite basic transfers [17] . 37
4.3 AHB2CR bridge transaction example 38

5.1 PENRISCV test bench structure 42

6.1 GPIO debouncer used in the CoolRISC-based system 48
6.2 GPIO debouncer adjusted for FPGA 49
6.3 HV pentip driver PCB . 55
6.4 HV pentip driver PCB FPGA interface 56
6.5 Connected HV pentip driver PCB to the FPGA board 57
6.6 CoreMark result from PENRISCV run on the FPGA 59
6.7 Transmission on pentip 0 measured with an oscilloscope 60
6.8 Reception on the pentip 0 from DELL laptop touch screen 61

8.1 Power consumption distribution across the hierarchy in CoreMark 70

xiii

8.2 Average power and total energy consumption during CoreMark . . 72
8.3 Power consumption distribution across the hierarchy in transmis-

sion/reception scenario . 74
8.4 Average system power consumption during transmission and recep-

tion . 76
8.5 Total system energy consumption during transmission and reception 76

xiv

List of Tables

3.1 PENRISCV top interface - generics 27
3.2 PENRISCV top interface - Main signals 28
3.3 PENRISCV top interface - USI Control Logic signals 29
3.4 PENRISCV top interface - GPIO signals 29
3.5 Memory address mapping . 30
3.6 Peripheral address mapping . 30

4.1 CoolRISC data bus interface . 35
4.2 AHB-lite bus interface . 36

5.1 Virtual interfaces . 42

8.1 Summary of the corrections to the total PENRISCV power 71
8.2 Final results relative to the CoolRISC-based system 77

xv

Introduction

Modern pens for graphic tablets are not just pieces of plastic with a hard
tip which makes contact with the tablet to make the contact for drawing in
resistive displays. Today most graphic pens are much more complex. They
can measure pen pressure, the angle at which the pen is held against the tablet
and the precision is far better. They also feature buttons and a battery which
requires charging.

Furthermore, these graphic pens shall work according to the Universal
Stylus Initiative (USI) which defines the industry standards for graphic pens
communication protocols. This is to enable these pens to work with a large
variety of touch screens in devices such as phones, tablets, and other platforms.

These functionalities require a digital controller module which also needs
to be ultra-low-power to last long on a very small battery. ASICentrum s.r.o
has been developing pen controller SoCs for these graphical pens for several
years. They have been using the CoolRISC CPU platform as the brain of the
controller, however, it is only an 8-bit CPU and it is increasingly becoming a
bottleneck in the system’s performance.

They want to move to a new CPU platform for better performance but
they do not know how much the new CPU is going to affect the overall power
consumption of the system. The ultra-low power consumption of the system
is a requirement.

They have tasked me with implementing their CoolRISC-based pen con-
troller SoC with a modern RISC-V CPU to simulate and estimate the power
consumption of the system with the new CPU and compare it to the exist-
ing CoolRISC-based system. Part of this will be the creation of an FPGA
environment where the customer can test their software.

The result of this thesis will be the pen controller SoC implemented with
the RISC-V CPU platform. It will be simplified in some ways to make the
development faster while still keeping the core functionality necessary for valid
power comparisons. The basic functionality of the system will be verified and
then customer-required functionality will be validated on an FPGA. 180 nm

1

Introduction

technology will be used for physical implementation which is then going to be
used for power consumption simulations.

Part of the analysis will be also the comparison of CoolRISC and RISC-V
CPU platforms to highlight the differences, advantages and disadvantages of
each platform which go beyond just the power consumption.

2

Chapter 1
Goal

The goal of this thesis is to analyse the existing CoolRISC-based pen controller
SoC and implement it with the RISC-V CPU platform in RTL and estimate
the power consumption using simulation measurements of its physical imple-
mentation.

The RISC-V CPU, which is going to be used for the new implementation,
is the CV32E40P developed by the OpenHW group and is fully open source.
The newly implemented system will be simplified in some ways to make the
implementation faster while keeping the core functionality necessary for valid
power comparisons. The basic functionality of the system will be verified in a
test bench simulation environment and then customer-required functionality
will be validated on an FPGA. After the system is verified and validated, syn-
thesis and placement into 180 nm technology will be performed. This physical
implementation will be used for the power consumption simulations and esti-
mations and the results will be compared with the results from the existing
CoolRISC-based system.

The goal of the USI Pen Controller SoC requirements chapter is to analyse
the existing CoolRISC-based system to identify the key components and fea-
tures of the system. These findings will be used to create requirements for the
new RISC-V-based implementation called ”PENRISCV”. Those requirements
will be used to make a system design for the new implementation. Part of this
chapter is also the analysis of both CPU platforms and their comparison.

The goal of the implementation is to use the system design from the pre-
vious chapter and based on it implement PENRISCV in RTL.

The goal of the verification and validation is to verify PENRISCV’s basic
functionality and to check the correct behaviour of the system. Validation
on FPGA is intended to check customer-required functionality for software
testing.

The goal of physical implementation and power simulations is to implement
PENRISCV into 180 nm process technology and then estimate the theoretical
power consumption simulated and estimated in selected scenarios. The results

3

1. Goal

of these estimations will be then compared to the results from the CoolRISC-
based system.

4

Chapter 2
USI Pen Controller SoC

requirements

In this chapter, I analyse the existing system, which utilized the CoolRISC
CR816L CPU core, its features and characteristics. I focus on the digital
part of the system (dig top) because it is the core of the system and the main
focus of power comparison. Analogue parts will stay the same in both systems.
Then I compare the CoolRISC CPU platform to the RISC-V platform.

Based on the features of the existing system and the differences between
both CPU platforms I create requirements for the new system that utilizes a
new RISC-V CPU core.

2.1 Existing CoolRISC pen controller SoC

The pen controller is a multi-chip system built into a graphical pen used for
drawing on touch screens and graphic tablets. It is the main control unit of
the graphical pen.

The main functionality of the pen controller is to transmit and receive
signals on its two pentips1 from the electrostatic field generated by a touch
screen or a graphic tablet.

Those signals represent the data communication stream between the tablet
and the pen controller. In the real environment, there is a lot of electrostatic
noise during communication, therefore, computation algorithms are required
for reliable communication. This is managed by the pen controller hardware
and software. The pen controller also handles other functionality of the graph-
ical pen such as battery charging.

The pen controller consists of two chips. The first chip is the low-voltage
SoC which contains the CPU, memory, power management, peripherals and

1A pentip is a wire connected to a pen controller IO pad which is designed for high
voltages

5

2. USI Pen Controller SoC requirements

low-voltage analogue parts. It is the main control unit of the system which
runs the software.

The second chip is the high-voltage pentip driver which contains voltage
control logic, DCDC and other high-voltage analogue parts for transmitting
and receiving high-voltage signals on the pentips.

These two parts of the system communicate together through a specific
interface and a custom SPI. The manufactured implementation consists of
both chips connected together in a single package.

Figure 2.1: CoolRISC SoC block diagram

2.1.1 Block description

Here I briefly described the function of each block in the CoolRISC implemen-
tation. Each block is visible in the system block diagram in Figure 2.1.

1. Central Processing Unit (CPU): The CR816L CPU core is responsi-
ble for running compiled software. It accesses the RAM, ROM and Flash
memory through the MMU. Peripherals are accessed through CR816L’s
data bus. Each peripheral has its own defined address space.

2. Random Access Memory (RAM): Memory for runtime data while
the software is being executed on the CPU.

3. Read-Only Memory (ROM): Contains boot software and other mi-
nor procedures needed for the system before the CPU starts fetching
from the Flash memory.

6

2.1. Existing CoolRISC pen controller SoC

4. Memory Management Unit (MMU): Serves as an arbitrer of the
address space. Multiplexed devices are accessed based on the address
from the CPU. Address space for RAM, ROM and peripherals is defined
during implementation. It also features an NVM controller for Flash
memory.

5. Power Management Unit (PML): Is mainly responsible for man-
aging system clock switching, reset synchronization and distribution,
reset synchronization from WDT, and system power mode transitions.
It also features DCDC control, Switch control, LED control and battery
charging control.

6. WatchDog Timer (WDT): To prevent deadlock situations a watch-
dog timer is available to monitor embedded firmware activity. Watchdog
is controlled by the CPU and generates a system reset upon a time-out.

7. Wake-Up Timer (WUT): 8-bit programmable down counter from
512 us to 2 ms. It is used to switch the running system from SLEEP or
POWER-DOWN mode to ACTIVE mode.

8. General-Purpose Input/Output (GPIO): Configurable 3-bit input
and output pads that can be controlled through software. Contains
debouncers and edge/level detectors. Two pads are also used for the
I2CM interface. Also manages the selection of UART interface on two
GASP pads.

9. Interrupt Controller: Control unit to enable, mask and give priority
to interrupts which are generated by peripherals.

10. UART: Standard UART interface with TXD and RXD interface. The
frame structure is: start bit / 8 bits data / 1 stop bit. Parity may be
even / odd / no (default). Supported baud rates are 9 600 Bd, 14 400 Bd,
19 200 Bd, 28 800 Bd, 38 400 Bd, 57 600 Bd, 115 200 Bd.

11. I2CM: Standard I2CM interface. Implements the standard mode with
a baud rate of up to 100 kHz and the Fast mode with a baud rate of
up to 400 kHz. It can operate as a single master-receiver or master-
transmitter.

12. Timer: 16-bit down counter with auto-reload mode or single shoot
(stopped when 0x00 value is reached)

13. CRC: Hardware acceleration for cyclic redundancy check. Allows to
define polynomials for CRC calculation.

14. Custom Logic: Hardware acceleration for specific bitwise operations.

7

2. USI Pen Controller SoC requirements

15. Multiplication/Division accelerator (MULTDIV): Multiplication
performs 16-bit x 8-bit operation. The duration is a maximum of 9
clocks. The division performs 16-bit / 8-bit operations. The duration is
a maximum of 18 clocks.

16. USI2 Control Logic: Custom control logic IP which implements the
USI pen protocol. It sends and receives data from the HV pentip driver.

17. GASP: Custom debugging interface.

2.1.2 Power modes

To help the CoolRISC system to save power, several power modes are imple-
mented.

1. ACTIVE:

• All parts of the dig top are active.

• CPU is running and executing code.

2. SLEEP:

• CPU is in sleep mode and not executing code.

• System clock is switched to a lower frequency oscillator.

• System can be switched back to ACTIVE mode upon interrupt or
event or system reset.

3. POWER-DOWN:

• VDD1 power domain is switched off.

• System clock is switched to a lower frequency oscillator.

• System can be switched back to ACTIVE mode upon GPIO or
Wake-up Timer event or by a system reset.

2.1.3 Reset structure

The SoC has two external negative reset sources, power-on reset and battery
charger reset. Internally there are other reset sources such as WDT, GASP and
switching off VDD1 domain reset. The PML is responsible for synchronizing
these reset sources and distributing them in the system.

2Universal Stylus Initiative (USI) defines communication standards for graphic pens

8

2.1. Existing CoolRISC pen controller SoC

2.1.4 Power domains

The CoolRISC implementation features two power domains to be able to
switch the second one off and save power when all functions of the system
are not needed at the moment. These domains are VDD0 and VDD1.

• VDD0 domain stays switched on and powers PML (Power Management
Logic), GPIO, Watchdog, Wake-up timer and the USI Control Logic.

• VDD1 domain is switched off when the system enters POWER-DOWN
mode. It stays on during other power modes. It powers the remaining
blocks (for example CPU, peripherals, memory, etc.) of the system.

The voltage supplied to both power domains should be between 0.85-1.4 V.

Figure 2.2: CoolRISC SoC power domains

2.1.5 Clock structure

There are three main clock sources in the CoolRISC implementation.

• RC oscillator: Main clock source which is always running. It can
provide 2 MHz, 4 MHz and 6 MHz frequencies for the system clock which
can be selected by software through the PML.

9

2. USI Pen Controller SoC requirements

• PLL: 8 MHz clock source which is internally divided by two (creating
a 4 MHz clock) when PLL is selected as the system clock source. This
clock source is generated by an external PLL. The PLL is not active at
all times, it may be enabled and disabled as needed.

• XTAL oscillator: Secondary slower 32 kHz clock used in SLEEP and
POWER-DOWN mode of the system as a system clock as well as a clock
source for Watchdog timer, Wakeup timer, Long timer and GPIO.

These clock sources are then distributed through the system and controlled
by the PML.

PLL 8 MHz clock source is present in the system to be able to supply
8 MHz to the USI Control Logic.

The reason for the slower XTAL oscillator clock source is to allow larger
time-out intervals for timers without using large clock dividers or counters. A
slower clock is also used during sleep mode to lower switching activity. Both
use cases for the slower clock are to save power.

Figure 2.3: CoolRISC SoC clock structure

2.1.6 Peripherals

The current CoolRISC implementation features various peripherals which will
be also re-used in the new RISC-V implementation. These peripherals are ac-
cessible by the CPU on the system bus in a specified address range. Those
peripherals are PML, GPIO, Wakeup-timer, Watchdog, UART, I2CM, Timer,
Custom Logic, CRC, Interrupt controller, Long-timer, MultDiv and USI Con-
trol Logic.

10

2.1. Existing CoolRISC pen controller SoC

2.1.7 Software

Software running on the CPU is the ”brain” of the system. It is present in the
Flash which is located outside of the system. The Flash is accessed through the
NVM controller implemented in the MMU. Boot code and smaller procedures
are hard-wired into the ROM.

11

2. USI Pen Controller SoC requirements

2.2 CoolRISC CR816L overview

The CR816L core is a member of the CoolRISC [1] family of 8-bit micro-
controller CPUs developed by the Swiss Center for Electronics and Microtech-
nology (CSEM) [2]. In this section, I describe the key features of the CoolRISC
platform based on its documentation.

2.2.1 Harvard RISC-like architecture

Instructions are stored in the instruction memory whereas general-purpose
data and peripherals are stored in separate data memory. The advantage of
this architecture is that it gives the CPU the capability to read instruction
operands in the data memory simultaneously with one instruction fetch.

2.2.2 Register-memory architecture

Instructions can operate with operands stored either in registers or in the data
memory.

2.2.3 Memory sizes

Maximum data memory size is 64 Kbytes. The maximum program memory
size is 64 Kinstructions, where one instruction is 22-bit wide.

2.2.4 Three-stage pipeline

One instruction enters the pipeline every clock cycle and it takes at most
three clock cycles to execute. The pipeline does not feature branch prediction
therefore it remains relatively simple.

2.2.5 8bx8b multiplier

The CR816 includes an 8-bit multiplier unit which executes one 8-bit multi-
plication in one clock cycle.

2.2.6 Stand-by mode

The HALT instruction can switch the core to halt mode in which the internal
clock is stopped. The processor can be woken up using either events, interrupts
or a reset. This minimizes power consumption.

2.2.7 Data and peripheral bus

The CPU features its own custom 8-bit data bus for data memory and pe-
ripherals. The bus does not feature any additional decoder. Each peripheral

12

2.2. CoolRISC CR816L overview

is connected to the data bus directly and decodes the address on the data bus
in its own register map.

2.2.8 Instruction set

The ISA offers both RISC and CISC instructions to achieve a very dense
program code. Each instruction is 22-bit wide.

2.2.9 Double-latch design

The CPU uses two non-overlapping clock sources with shifted phases and the
CPU is made entirely made out of D-Latch registers. This reduces the area,
power consumption and STA timing requirements of the CPU.

13

2. USI Pen Controller SoC requirements

2.3 RISC-V overview

RISC-V [3] is an open-source, royalty-free ISA designed for computer proces-
sors. It was first introduced in 2010 at the University of California, Berkeley,
and has since gained significant attention in the technology industry. It is
a simplified and streamlined ISA that emphasizes simplicity and modularity,
making it ideal for use in embedded systems and low-power devices.

2.3.1 Simplicity and modularity

One of the key features of RISC-V is its simplicity. It has a reduced number
of instructions compared to other ISAs, making it easier to understand and
implement. Additionally, RISC-V is modular, allowing designers to choose
the specific instructions and features they need for a particular application.
This modularity also makes it easier to customize and optimize the ISA for
specific use cases.

2.3.2 Extendability

RISC-V is also designed to be extensible, meaning that new instructions and
features can be added without breaking compatibility with existing software.
This makes it easier to incorporate new technologies and innovations into the
ISA without requiring significant changes to existing software and hardware.

2.3.3 Open source

Another advantage of RISC-V is that it is open-source and royalty-free. This
means that anyone can access and use the ISA without paying licensing fees,
making it a cost-effective choice for many applications.

2.3.4 RISC-V Foundation

To make the ISA stable and well defined the RISC-V Foundation was created
in 2015 to own, maintain and publish current RISC-V ISA specifications.

“More than 3,100 RISC-V members across 70 countries contribute and
collaborate to define RISC-V open specifications as well as convene and govern
related technical, industry, domain, and special interest groups.” [3]

2.3.5 ISA architecture

The RISC-V ISA is a load-store little-endian architecture supporting 32-bit
or 64-bit address space. It features 32 general-purpose registers which are
32-bit wide. It does not require data to be properly aligned for the load and
store instructions. In other words, any value may be stored at any address.

14

2.3. RISC-V overview

However, if data is not word-aligned then the load-store unit takes extra cycles
to complete an instruction.

2.3.6 CV32E40P core

Figure 2.4: CV32E40P block diagram [4]

The CV32E40P [4] is a high-performance, low-power, 4-stage in-order 32-bit
RISC-V processor core designed for embedded and IoT applications. Like
CoolRISC, it uses Harvard architecture and has separate memory for instruc-
tions and data. The ISA of CV32E40P has been extended to support multi-
ple additional instructions including hardware loops, post-increment load and
store instructions and additional ALU instructions that are not part of the
standard RISC-V ISA. The core also includes a debug interface and support
for trace and profiling, making it easy to debug and optimize system perfor-
mance.

The core is maintained by the OpenHW group [5] and it is fully veri-
fied by them which is one of the reasons why this core was selected for the
implementation.

The RISC-V instruction sets supported by this core are RV32IMAC [6].

• RV32I: Base integer instruction which includes instructions for arith-
metic, logical, and data transfer operations.

• RV32M: Extension to RV32I that adds instructions for integer multi-
plication and division.

• RV32A: Extension to RV32I that adds instructions for atomic memory
operations.

• RV32C: Extension to RV32I that provides compressed 16-bit instruc-
tions to reduce code size and improve performance.

15

2. USI Pen Controller SoC requirements

The RV32A is not needed and will not be used for the new SoC implemen-
tation to save the area and power consumption of the CPU.

The core uses Open Bus Interface (OBI) [7] protocol for instruction and
data memory access. OBI is a point-to-point bus interface request-grant-
based protocol developed by the OpenHW group. It is compatible with other
industry bus protocols such as AMBA AHB and AMBA AXI developed by
ARM.

16

2.4. CR816L and CV32E40P difference analysis

2.4 CR816L and CV32E40P difference analysis

There are many differences between the CR816L core and the CV32E40P core.
The first major difference is the data/instruction/address width. The CR816L
features 8-bit data operations and 22-bit instructions compared to CV32E40P
which has larger width of 32 for both. This gives the CV32E40P an advantage
when it comes to larger address space and a performance advantage when it
comes to operations with larger data types.

2.4.1 Code and data storage in the same memory

In the CoolRISC-based system, Flash memory is used for storing both code
and data which means storing together 8-bit data and 22-bit instructions. This
either causes poor memory utilization or requires additional logic to manage
data alignment in the memory.

In comparison, the CV32E40P is 32-bit for both data and instructions.
This means there are neither of these issues. Furthermore, the CV32E40P
supports 16-bit compressed instructions which can be tightly packed in the
memory along with 32-bit instructions because the CPU features hardware
support for this.

2.4.2 General Purpose Registers

The CR816L features 16 8-bit data registers which are used during code execu-
tion. In comparison, the CV32E40P (and the RISC-V ISA in general) features
32 32-bit data registers. This gives the CV32E40P an advantage in being able
to store more temporary data in itself instead of storing and fetching data
from memory.

2.4.3 Instruction set

Comparing both instruction sets it comes clear that there are several differ-
ences between them. Arithmetic and logical operations are similar and present
in both, however, the CV32E40P lacks any kind of ”carry” flags in arithmetic
operations.

CR816L also features a hardware stack which CV32E40P does not imple-
ment at all.

More differences are present in the branching instructions and instructions
for specific comparison and bit manipulation instructions. CV32E40P does not
have a direct counterpart to some of them however those instructions can be
emulated by pseudo instructions which are performed by different CV32E40P
instructions with specific values in operands. Such pseudo instructions can be
seen in Figure 2.5

Additional instructions, which the CV32E40P offers compared to CR816L,
are mainly integer division instructions and custom instructions built into the

17

2. USI Pen Controller SoC requirements

core on top of the standard RISC-V instruction sets. However, the custom
instructions will not be used in the new system to save area and power as
their functionality is not needed.

Figure 2.5: RISC-V Pseudo Instructions [8]

18

2.4. CR816L and CV32E40P difference analysis

2.4.4 Multiplication/Division accelerator

The CR816L supports multiplication with 8-bit operands and 16-bit result.
This multiplication takes one clock cycle to execute. The core does not feature
division operation.

In comparison, the CV32E40P supports multiplication with 32-bit operands
and gives lower 32-bit result while also supporting multiplication operation for
the upper 32-bit result. Together this can provide 64-bit result. The lower
half of the result takes one clock cycle to execute while the upper half takes
five clock cycles to execute.

The core does support division operation which accepts 32-bit operands
and is able to calculate the result in 3-35 clock cycles.

2.4.5 Interrupts

CR816L supports 24 interrupts divided into 3 levels of priority. In comparison,
the CV32E40P supports up to 1008 interrupts each with up to 255 levels of
priority.

2.4.6 Double latch vs. edge-based design

CV32E40P is a fully synchronous rising edge design. Meaning it is nearly
fully made out of D-Flip-Flop registers. In comparison, CR816L is the direct
opposite. The core is a latch-based design (or double-latch design) meaning
that the core is made out of just D-latch registers.

Such a system works on a principle of two separate non-overlapping clock
sources and D-latch registers being clocked by one or the other clock source.

Figure 2.6: Non-overlapping clock example waveform

Data between registers is transferred in two phases. First CK1 clocked
latches open for new data when CK1 is at ‘1’, then they close when CK1 is
at ‘0’, and then CK2 clocked latches open for new data from CK1 clocked
registers which are closed and stable at that moment when CK2 is at ‘1’.

In the pipeline, the first phase clock covers instruction prefetch and operand
prefetch for ALU. The second phase clock covers the instruction decode and
ALU execution.

In comparison in the edge design new data is loaded into registers on the
rising (or falling) edge of the clock, and there is only one clock source for all
registers (assuming the design is fully synchronous). Registers in such design
are generally edge-triggered D-Flip-Flop type.

19

2. USI Pen Controller SoC requirements

This gives the CR816L advantage in area and power consumption com-
pared to RISC-V because latches are approximately half the size of normal
D-Flip-Flop.

A D-Latch register generally consists of one inverter gate (2 transistors),
two AND gates (2x6 transistors) and two NOR gates (2x4 transistors). In
total, this accounts for 22 transistors. The structure of a D-Latch register is
shown in Figure 2.7.

Figure 2.7: General D-Latch structure in CMOS [9]

However, in practice, there is a more efficient implementation used for
the D-Latch register which is built out of fewer transistors. Such D-Latch is
built using Tri-State buffers in structure in Figure 2.8. This is the D-Latch
structure which was used in the 180 nm technology for PENRISCV.

Figure 2.8: More efficient D-Latch structure in CMOS [10]

20

2.4. CR816L and CV32E40P difference analysis

This structure consists only of two inverter gates (2x2 transistors) and two
tri-state buffers with inverted outputs (2x4 transistors). In total this accounts
for 12 transistors.

In comparison, an edge-triggered D-Flip-Flop is made out of two D-Latch
structures with an additional inverter gate (meaning extra 2 transistors to the
total count of 46 transistors). An example of an edge-triggered D-Flip-Flop
can be seen in Figure 2.9.

Figure 2.9: General D-Flip-Flop structure in CMOS [11]

The 180 nm process technology, which was used for the CoolRISC-based
system and is going to be used for PENRISCV, uses a patented structure of
an edge-triggered D-Flip-Flop.

This structure, in Figure 2.10, consists of 6 NAND gates (6x4 transistors)
and one inverter gate (2 transistors). This accounts for 26 transistors in
total. This is the DFF structure which was used in the 180 nm technology for
PENRISCV.

Figure 2.10: More efficient D-Flip-Flop structure in CMOS [12]

21

2. USI Pen Controller SoC requirements

If we compare both register types then the D-Latch structure consists of
less than half of the number of transistors of the D-Flip-Flop structure.

The other advantage (design-wise) of the double-latch design approach is
that thanks to D-Latch registers, the CPU has better timing characteristics.
This means that (in theory) the clock tree does not need to be so strictly
balanced because it is expected that paths from CK1 to CK2 and backwards
are not open at the same time. This reduces the number of required cells for
the clock tree.

Better timing characteristics are thanks to latch time borrowing be-
cause latches are level sensitive. This can be defined as: “Time borrowing is
the property of a latch by virtue of which a path ending at a latch can borrow
time from the next path in the pipeline such that the overall time of the two
paths remains the same. The time borrowed by the latch from the next stage
in the pipeline is, then, subtracted from the next path’s time.” [13]

Figure 2.11: Latch time borrowing example

2.4.7 System clock speed vs MIPS

One disadvantage of the double-latch design is that it makes the system run
only at half of the MIPS relative to the system clock frequency. In standard
rising-edge design, a CPU executes an instruction in the pipeline every clock
cycle. In comparison, the CR816L requires positive pulses on both CK1 and
CK3 to execute an instruction in the pipeline. This effectively means that the
number of MIPS the CPU can offer equals roughly half the number of MHz
of the system clock.

2.4.8 Software support

As CR816L was developed in 2001, meaning there is very little continuous
software/compiler support for it today. There is only one compiler which is
not actively developed. The only modern tool for the CoolRISC CPU platform
is Ride7 IDE [14] developed by Raisonance.

22

2.5. Requirements for the new RISC-V pen controller SoC

In comparison, RISC-V ISA is supported by a variety of modern compilers
(such as GNU GCC, CLANG and more), modern IDEs (GNU MCU Eclipse,
PlatformIO and more) as well as simulators and other useful tools. These and
other new tools are in active development by the RISC-V community. [15]

2.4.9 Area and power consumption

In terms of area, CR816L has an advantage compared to CV32E40P. From
internal measurements, CR816L has a size of around 4 000 standard gate cells
whereas CV32E40P ends up at around 40 000. This difference will result in
higher theoretical total power consumption on the CV32E40P in exchange for
twice the MIPS/MHz, more instructions in the ISA and 32-bit data/instruc-
tion width.

To know if CV32E40P is a feasible alternative to CR816L in this system
in terms of power and area, the system needs to be re-implemented with
the new CPU and the power consumption estimated in post-layout gate level
simulation.

If the CV32E40P turns out to not be a feasible alternative, the SoC im-
plementation can still be used for testing other more efficient RISC-V cores.
This is the advantage of the RISC-V ecosystem because it is the same ISA
with many open-source (or even licensable) cores out there. With the same or
similar interface, the CV32E40P is easily swappable for another RISC-V CPU.
One that is currently being explored is the IBEX [16] RISC-V core which has
a size of only around 15 000 standard gate cells.

2.5 Requirements for the new RISC-V pen
controller SoC

Based on the analysis of the existing CoolRISC-based system and the differ-
ences between CR816L and CV32E40P cores I compiled the following require-
ments for the new RISC-V-based implementation of the SoC:

1. Perform transmission and reception of data on the pentips. Run software
like CoreMark on the CPU.

2. Utilize the CV32E40P CPU core and minimize its area.

3. Use the ROM instead of Flash for software fetching. Memory Interface
does not feature an NVM controller and this Flash memory will not be
used for future projects anymore.

4. Feature the same power modes as the CoolRISC SoC.

5. Feature the same power domain structure as the CoolRISC SoC.

23

2. USI Pen Controller SoC requirements

6. Feature the clock structure without the RC oscillator clock source. The
main clock source shall be the 8 MHz PLL with a 4 MHz system clock.
This is to simplify the development of the system to do the power con-
sumption simulations because only one clock source is active during the
majority of the system’s operation.

7. Use the AHB-lite as a data bus for peripherals.

8. Reuse the following peripherals: PML, GPIO, Wakeup-timer, Watch-
dog, UART, I2CM, Timer, Custom Logic, CRC, Interrupt controller,
Long-timer, and USI Control Logic. If any peripheral is too difficult to
reuse for any reason, it shall be replaced with a peripheral with similar
functionality.

9. Use the existing high-voltage pentip driver chip which was used for the
CoolRISC SoC. For FPGA validation, use a manufactured sample.

10. DCDC control, Switch control, LED control and battery charging control
do not need to be implemented in the system for power consumption
results because analogue parts will be the same in both systems and will
not affect the power consumption.

24

Chapter 3
System design of RISC-V pen

controller SoC

In this chapter, I create a system design with the necessary changes for the
new RISC-V-based pen controller SoC utilising the CV32E40P core. I name
the new SoC ”PENRISCV”.

Figure 3.1: Changes in PENRISCV SoC compared to previous SoC. Green
outline = new module, Red outline = modified existing module

25

3. System design of RISC-V pen controller SoC

3.1 System design

• The new SoC will implement enough functionality to be able to perform
transmission and reception of data on the pentips as well as run software
like CoreMark on the CPU.

• The new SoC will share the same power modes and power domains.

• The clock structure will be reduced to PLL and XTAL oscillator clock.
The PLL clock will replace the RC oscillator clock as the main clock
source for the system. The RC oscillator is not necessary for power
estimations of the digital part of the SoC and omitting it is going to
make the implementation of the new SoC faster.

• The external reset structure will be reduced to just a power-on reset
source as the battery charger functionality will not be implemented in
the new SoC for power estimations.

• The CV32E40P core will be configured in its smallest configuration pos-
sible. Such configuration disables all custom CV32E40P instruction ex-
tensions which are not part of the standard RISC-V ISA, it sets the
number of debug performance counters inside the CPU to zero and uses
the latch-based version of the CV32E40P register file. This is to save
as much area and power as possible as the core is expected to be much
bigger than the CR816L core. The core will be placed into a new design
block along with the memory interface, RAM, ROM and debug module
to better structure the system hierarchy.

• Software will be fetched from the ROM instead of the Flash. The ROM
will have a size of 32768 bytes. RAM will have a size of 8192 bytes.

• The memory interface is a new design block which will replace the Mem-
ory Management Unit from the previous SoC. Because CR816L and
CV32E40P use different data/instruction interface the original MMU
cannot be reused.

• The system bus for peripherals in the new SoC will be AMBA AHB-
lite [17]. AHB-lite was chosen because it is one of the compatible bus
protocols the CV32E40P supports and internally in the company AHB-
lite already has various generating scripts to speed up integration.

• Power Management Logic will be reused and simplified/adjusted to fit
in the new SoC design. Elements such as non-overlapping clocks for
CoolRISC will be removed as the new SoC will be mainly a rising edge-
based design. DCDC control, Switch control, LED control and battery
charging control logic inside the PML will not be implemented.

26

3.1. System design

• A new bus interface for peripherals means that each peripheral needs
to have its register map replaced by one that is AHB-lite compliant.
However, the USI Control Logic cannot be modified, it does not feature
a standard register map which would be easily replaceable. It is also
an externally made IP. An interface converter from AHB-lite to the
CoolRISC data interface will be needed for this block.

• Current I2C Master will be replaced by a new I2C Master which is
AHB-lite compliant. The previous I2C Master is not compatible with
AHB-lite and new system clock structure therefore it was decided to
replace it with a new I2C Master IP.

• AHB-lite requires a dedicated AHB Decoder which will manage access
to peripherals based on a given address. The decoder will be created to
fit the defined address space and peripherals used in the SoC.

• The previous interrupt controller will be replaced by a new one because
CV32E40P and CR816L have different interfaces for interrupts. All
interrupts in the system will be considered asynchronous. Interrupt
sources are UART, I2CM, GPIO, WDT, WUT, and USI Control logic.

• The GASP interface and custom CoolRISC debug module was used for
debugging in the previous SoC. The GASP interface will be replaced by
JTAG and the debug module will be replaced by RISC-V specific debug
module.

• UART interface will be connected directly to the top and not through
GPIO. This is to make the debugging easier.

3.1.1 Top interface

Top interface signals are described in tables 3.1, 3.2, 3.3 and 3.4.

Table 3.1: PENRISCV top interface - generics

Generic name Description
G ACTIVE EDGE LVL Active edge level (rising/falling) of the system
G ACTIVE EDGE LVL N Negative edge level (rising/falling) of the system
G IO ADDR WIDTH Address width of AHB
G IO DATA WIDTH Data width of AHB
G REG ADDR OFFSET Register offset of AHB peripherals
G TARGET TECH Target technology. ’0’ for ASIC, ’1’ for FPGA

27

3. System design of RISC-V pen controller SoC

Table 3.2: PENRISCV top interface - Main signals

Signal name Description
clk i Main 8 MHz clock from PLL
clk 32khz i 32 kHz clock from XTAL oscillator
rst ni Power-on negative asynchronous reset
test en i Test mode enable
idcode i IDCODE for JTAG TAP
tck i JTAG test clock pad
tms i JTAG test mode select pad
trst ni JTAG test reset pad
td i JTAG test data input pad
td o JTAG test data output pad
tdo oe o Data out output enable
DoC and core acc dis i disable all access except for SBA
uart rxd RXD pad of UART
uart txd TXD pad of UART
core busy o Indicator signal that CPU is not in sleep mode
dmi req active o DMI Clock Request
vdd1 sleep ack n Acknowledge signal for VDD1 switching
pml xtalosc en XTAL oscillator enable

28

3.1. System design

Table 3.3: PENRISCV top interface - USI Control Logic signals

Signal name Description
pp data Pen pressure data
pp rdy Pen pressure ready
usi pp cpmd Pen pressure compare
usi pp oe Pen pressure output enable
usi pp ck 32k Pen pressure 32 kHz clock
usi pll en PLL enable
usi pp run Pen pressure run
usi pp double Pen pressure double run
sw data Switch data
pll rdy PLL ready
pll err PLL error
hv spi cs SPI chip select for HV pentip driver
hv spi ck SPI clock for HV pentip driver
hv spi do SPI data to from dig top to HV pentip driver
hv spi do oe SPI data output enable for HV pentip driver
hv spi di SPI data input from HV pentip driver to dig top
hv es rx0 Data from pentip 0
hv es rx1 Data from pentip 1
hv p0en Pentip 0 enable
hv p1en Pentip 1 enable
hv ulen Uplink enable
hv es tx0 Data to pentip 0
hv es tx1 Data to pentip 1
hv reset n HV pentip driver reset

Table 3.4: PENRISCV top interface - GPIO signals

Signal name Description
pa in GPIO pads input
pa in en GPIO pads input enable
pa out GPIO pads output
pa pu GPIO pads pull-up enable
pa oe GPIO pads output enable
pa i2c pu en GPIO I2C pull-up enable
pa i2c od GPIO I2C open-drain enable
pa i2c q GPIO I2C output signals

29

3. System design of RISC-V pen controller SoC

3.1.2 Memorry address mapping

Addresses for each memory can be found in Table 3.5.

Table 3.5: Memory address mapping

Memory Base address (hexadecimal)
ROM 0x00008000
RAM 0x00010000
Debug Module 0x00015000
Peripherals (AHB) 0x00020000

3.1.3 Peripheral address mapping

Addresses for each peripheral can be found in Table 3.6.

Table 3.6: Peripheral address mapping

Peripheral Base AHB address (hexadecimal)
IRQ Ctrl 0x0000
UART 0x0400
I2CM 0x0800
Timer 0x0C00
Custom Logic 0x1000
CRC 0x1400
WDT 0x1800
WUT 0x1C00
Long Timer 0x2000
GPIO 0x2800
USI Control Logic 0x2C00
PML 0x3000

30

3.2. FPGA vs ASIC implementation

3.2 FPGA vs ASIC implementation

In this section, I describe the differences and limitations between FPGA and
ASIC and how they affect the design implementation.

3.2.1 FPGA’s clocking resources

FPGAs are limited in some ways for implementing digital designs. One of the
limiting factors is the limited number of clock tree resources. In an ASIC, a
clock tree is created and balanced in the place-and-route step of the design.
However, FPGA only has a set number of pre-balanced clock trees and cor-
responding buffers for its registers. This limits the number of separate clocks
in the design and other constructs such as clock gating or clock multiplexing.
[18]

3.2.2 FPGA LookUp Tables

Another limiting factor of FPGAs is the fact that when a design is placed onto
the FPGA, it is not made out of standard gates as it would be on an ASIC. The
design will be implemented onto the FPGA using its Lookup Tables (LUTs),
Flip-Flop registers, Block RAM modules, etc.

“The LUT is the basic building block of an FPGA and is capable of im-
plementing any logic function of N Boolean variables.” [19]

For normal synchronous designs without any special constructs, this is not
an issue. However, when a design features specific structures made out of
basic gates to ensure required behaviour, issues may arise in the design.

For example, a design may feature some specific logic constructs which are
made out of specific basic gates to ensure glitch-free output (for example clock
gates). Another example may be a debouncer structure.

In an ASIC you can simply hand-build these structures using basic gates
and you can be (almost) sure that the structure will be present in the design
after synthesis exactly as you designed it.

In an FPGA there are no basic gates. There are only LUTs configured to
give desired output based on the boolean function that is defined by the RTL
code. Since this is a LUT and not a basic gate, it cannot be guaranteed that
the output will have the same glitch-free characteristics as the basic gate on
ASIC.

Furthermore, the FPGA synthesis tool may optimize the design and the
boolean functions and the final implementation may have different character-
istics while giving the same output.

31

3. System design of RISC-V pen controller SoC

3.2.3 FPGA register asynchronous set and reset

Another limitation of an FPGA is that a design cannot use both asynchronous
sets and reset at the same time. Only one may be implemented at the time.

“The flip-flops in Xilinx FPGAs can support both asynchronous and syn-
chronous reset and set controls. However, the underlying flip-flop can natively
implement only one set / reset / preset / clear at a time.” [20]

This is not an issue when implementing a fully synchronous design on an
FPGA, however, it may be an issue when specialized constructs are being im-
plemented, which require this both set and reset. This is for example a register
which has its value loaded into it asynchronously. Then this implementation
needs to utilise both asynchronous set and reset.

32

Chapter 4
Implementation

In this chapter, I describe the RTL implementation of the new pen controller
SoC with RISC-V CPU. I also describe the implementation of the test bench
for its verification.

Before beginning the RTL implementation, I studied how the CoolRISC-
based system was implemented in detail. This helped me when creating the
new implementation. The old implementation served as a reference when
creating the new implementation.

Figure 4.1: New RISC-V pen controller SoC - PENRISCV

33

4. Implementation

4.1 mcu top

I decided to use a combination of SystemVerilog and VHDL for the implemen-
tation. This was not a problem as modern simulators support mixed language
simulation.

To start the implementation, I first created the mcu top module from
the SoC block diagram4.1 which contained the CPU, Debug Module, JTAG,
Memory Interface, RAM and ROM. I reused a module which contained the
CPU and Debug Module. This module was provided to me by the company.

Next, I modified an XML file for the script that generated the Memory
Interface. This script was provided to me by the company. In the XML
file, I defined the interface properties for the module, as well as the address
ranges for RAM, ROM, Debug Module, and peripheral access. Based on this
definition, the script generated a Memory Interface module in SystemVerilog
that included interfaces for the CPU and the interfaces defined in the XML
file.

RAM and ROM were implemented in the form of a SystemVerilog RTL
model. These models were also generated by the company’s script using an
XML definition. These modules were replaced by actual technology cell models
later in the Physical implementation chapter.

4.2 dig core

After creating the mcu top module I moved to the dig core module which
contained the mcu top, AHB-lite decoder, UART, I2C Master, Custom Logic,
CRC, Timer, Long Timer and IRQ Ctrl.

For the AHB-lite decoder and the IRQ Ctrl, I used another script provided
to me by the company to generate them. AHB-lite decoder was defined by
an XML similarly to Memory Interface. Each peripheral had a specified base
address and range in the XML. Based on this definition the decoder was
generated as a SystemVerilog module.

The IRQ Ctrl also had an XML definition with required interrupt sources
and the type of each interrupt. All interrupts in this design were considered
asynchronous.

4.2.1 Peripherals

The remaining peripherals are going to be reused (I2CM is going to be reused
from a different project). However, first, peripherals needed to have their
register maps and data interface adjusted to be AHB-lite compliant.

To do this I used the company’s scripts for register map generation. The
script can receive a PERL register map definition and generate a register map
block in VHDL based on given register templates.

34

4.2. dig core

For each peripheral, I created its own PERL register map definition. When
creating each definition I tried to keep the same register structure as in the
CoolRISC SoC implementation. Because of the move from an 8-bit to a 32-bit
system, I decided to merge some registers into one where it made sense and
would not affect functionality.

After generating new register maps for all peripherals, I integrated them
into each peripheral.

I did this process for peripherals located outside of the dig core block as
well. The only exception is the USI Control Logic which cannot be modified
with a new register map.

Some reused peripherals feature CK3 clock input even after the register
map adjustments. That is because those peripherals may be using the CK3
clock internally. I connected the standard system clock to this clock source
after verifying that it will not affect the functionality of the peripheral.

4.2.2 AHB2CR bridge

To connect the USI Control Logic, which still uses the CoolRISC data bus
interface, to the AHB-lite bus, I needed to create an interface converter. After
studying both AHB-lite and CoolRISC data bus protocol I came up with a
solution.

Table 4.1: CoolRISC data bus interface
Signal name Description
ck1 Phase 1 system clock
ck3 Phase 2 system clock
dm e Active transaction on the bus
read nwrite ’1’ for the read transaction, ’0’ for the write transaction
dm addr Address from the CPU to peripheral
wdata Data from the CPU to peripheral
rdata Data from peripheral to CPU

The CoolRISC data bus protocol executes a transaction in two steps. The
first step is the start of a transaction by asserting the dm e, read nwrite,
data out and dm addr signals. Because this is a double latch-based design
the dm e, read nwrite, data out and dm addr signals are latched when CK1 is
high.

The second step is data access. A write access can start on the falling edge
of the CK1 signal and for read access, the read data is latched when CK3 is
high.

35

4. Implementation

In PENRISCV there was only a single clock source for the system clock.
This means that the first step described above would happen on the first rising
edge of the clock. The write access would happen on the second rising edge
of the clock. Read access data would be available on the third rising edge of
the clock.

Table 4.2: AHB-lite bus interface
Signal name Description
hclk System (bus) clock
hsel Decoded peripheral bus select
hwrite Bus transfer direction indication. ’0’ for read transaction, ’1’ for write transaction
haddr Address from the AHB master to peripheral
htrans Transfer type
hsize Transfer size per clock
hready in Bus ready (from bus multiplexer, indicates CPU bus is in a wait state)
hwdata Write data bus
hready out Ready output (used to insert bus wait states based on peripheral response rate)
hrdata Read data bus
hresp Bus transfer response (0 = OK, 1 = ERROR)

AHB-lite works similarly but allows for higher data throughput because
it can overlap transactions. What this means is when the data phase of the
transaction is being executed the address of the next transaction is already on
the bus for the slave device to sample. Like this, each transaction only takes
two clock cycles.

36

4.2. dig core

Figure 4.2: AHB-lite basic transfers [17]

AHB-lite also features a hready signal which is used by slave devices to
indicate to the master whether they are ready to complete the data access.
The hready signal is to be asserted after sampling the address from the master.

I used this feature when implementing the AHB2CR bridge by creating a
wait cycle during the transaction to comply with the CoolRISC data interface
protocol. The AHB-lite decoder implementation which is generated by the
company’s script has its interface outputs registered which creates one clock
delay in their assertion towards the slave. This means that the AHB2CR
bridge has to assert hready low immediately when the peripheral is selected
by hsel high signal.

37

4. Implementation

In summary, the final transaction flow of the AHB2CR bridge is as follows:

1. Phase 0 (Idle): While no transaction is ongoing, no signals are asserted
for the CoolRISC slave.

2. Phase 1 (Address): When a transaction is being started on the AHB
side (hsel going high), the AHB2CR bridge immediately responds to
the AHB master by setting hready low to request a wait state. At the
same time, the bridge sets dm e signal to the CoolRISC slave high to
indicate an incoming transaction to the slave. The read nwrite signal in
the CoolRISC slave interface is an inverted hwrite signal from AHB.

3. Phase 2 (Data): The slave writes the data into the register selected by
address or gives out data to be read by the master. At this time the
bridge sets hready high and dm e low. Afterwards, the bridge returns to
Phase 0, or Phase 1 if there is another transaction right after.

Figure 4.3: AHB2CR bridge transaction example

Another difference between AHB-lite and CoolRISC bus is that AHB-lite
(in the case of PENRISCV) is 32-bit while CoolRISC bus is 8-bit. This has
two effects on implementation:

1. AHB can read/write up to 4 bytes per transaction, however only LSB
byte is considered for read/write to CoolRISC slave in this implemen-
tation. (Regardless if the AHB transaction is 1, 2, 3 or 4 bytes at a
time)

38

4.3. dig top

2. AHB register addresses are incremented by 4 whereas CoolRISC register
addresses are incremented by 1. This is simply solved by taking the AHB
address which is given to the slave and divided by 4.

4.3 dig top

The top module of the digital part of the SoC is the dig top. In this module,
I placed the dig core along with the remaining peripherals. Those peripherals
are the WDT, WUT, USI Control Logic, PML and GPIO.

4.3.1 GPIO

Aside from replacing the register map with a new one that is AHB-lite com-
pliant, I needed to make further adjustments to the GPIO to fit the new
requirements. In the CoolRISC-based system, the GPIO was responsible for
selecting the I2CM interface on two of the GPIO pads and selecting the UART
interface on two of the GASP pads. In PENRISCV however, the GASP is no
longer present and it is replaced by JTAG which is routed directly outside to
the top and not through the GPIO. This means the switching functionality
inside GPIO for GASP and UART will be removed and GPIO will only switch
between standard GPIO operation and the I2CM interface.

4.3.2 PML

PENRISCV does not feature DCDC, LED, Switch and battery charger logic
which means I needed to adjust PML to function correctly. Inside PML I
carefully removed functionality for the previously mentioned components.

RC oscillator clock is not used in PENRISCV, therefore I needed to remove
RC oscillator-related functionality from the clock controller inside PML. I also
removed the clock functionality for the (now removed) DCDC logic.

39

Chapter 5
Verification

To verify that the PENRISCV implementation functions correctly I had to
build a test bench environment. To do this I re-used some components from
the CoolRISC SoC test bench environment which was provided to me by the
company.

As a simulation environment, I used the ”run sim” script which was pro-
vided to me by the company. This script uses the Cadence Xcelium [21]
simulator which is used for the compilation and simulation of the design as
well as the test bench environment. The script also gathers all necessary de-
sign files, configuration switches and paths necessary for compilation. It is
run from a command line and it can be configured to select between specified
designs (RTL, gate simulation, post-layout simulation, etc.), select a specific
test, open the GUI of Xcelium, and more.

5.1 Test bench structure

The test bench environment used Universal Verification Methodology (UVM).
It is a standardized methodology for digital design verification. The main
components of the test bench are UVM TEST and TB TOP.

UVM TEST is the main module which contains everything UVM-related
and the test sequence. Inside the UVM TEST there is also the UVM ENV
which contains UART agent and I2CM agent modules which serve as an au-
tomatic driver, monitor and checker for the corresponding peripherals.

TB TOP is the module which contains the Design Under Test (DUT)
which is in our case dig top of PENRISCV. It also contains the high-voltage
pentip driver model and IO pad models.

There are several virtual interfaces which are used for communication be-
tween the TB TOP and the UVM environment.

The test bench environment features ”C2T” functionality. It is a set of test
bench procedures which are used to communicate with the software running
on the CPU during a test. It uses specific places in RAM for writing and

41

5. Verification

reading values which are used for data transfer and synchronization with the
test sequence.

Figure 5.1: PENRISCV test bench structure

Table 5.1: Virtual interfaces

Interface Description
tb clk if Generating clocks for the DUT
cpu2tb if C2T functionality
hv if Specific signals inside HV pentip driver model
gpio if GPIO interface emulation
slave i2c if Interface for I2C slave agent
uart if Interface for UART agent
mirror if Mirroring some signals inside DUT to the TB

5.2 Test bench implementation

I implemented the test bench using the UVM library and SystemVerilog. I
created the tb top module and placed the PENRISCV DUT (dig top) in it
along with the high-voltage pen tip driver model, IO pad models, instantiated
interfaces and procedures.

42

5.3. Software compilation

UVM TEST is implemented by penriscv base test.sv which extends the
uvm test class. UVM ENV is implemented by the penriscv env.sv which ex-
tends the uvm test class.

I reused the penriscv base test.sv and penriscv env.sv implementation from
the previous test bench environment as well as the UART and I2CM agent
modules.

I reused the virtual interfaces for communication with the TB TOP and
made minor adjustments to them to fit the PENRISCV test bench.

The C2T functionality was reused from the previous test bench. I needed
to modify most of the procedures to correctly work with the RISC-V CPU.
That included adjusting the RAM access because there is now a new RAM
structure and procedures. After all, each memory address is now incremented
by four instead of one as it was in the CoolRISC SoC.

Each test has its own test sequence which is implemented in the form of a
class which extends the penriscv base test. These test sequences were reused
from the previous test bench and I made minor modifications where needed
to make them work with the new test bench. Along with this sequence, there
is also software to be compiled for each test case. I used the previous software
for each test case as a reference but I needed to rewrite/adjust it for the new
RISC-V CPU.

5.3 Software compilation

Part of the test bench was also the software compilation for each test case.
The compilation is implemented using a Makefile and the OpenHW RISC-V
compiler for the CV32E40P CPU.

The compiler also needs a linker script file which defines the base address
and size for individual sections (ROM, RAM, stack, bss, etc.) which I imple-
mented into file cpu sw.ld.

The source code which is compiled for each test consists of the startup
assembler and C code for the CPU, interrupt vector table, C2T functionality
implemented in C code, C header files with register access macros register
maps of each peripheral, RISC-V header and the source code of the test itself.

The headers for peripheral register access macros are generated from the
register map script described in the previous chapter along with the register
maps themselves. I created a perifs.h header file which includes all of the
other header files for all peripherals.

The C2T functionality described in the previous section has its software
implementation in the form of C functions a c2t.h and c2t.c. I also needed to
adjust these functions to work with the RISC-V CPU.

The final compiled software for each test is in the form of an ELF file
which is then converted into a MIF file by elf2mif script. The ELF file is
a binary file representing the compiled binary, whereas the MIF file is a text

43

5. Verification

hexadecimal representation of the ROM contents (instructions and data). The
CPU executes the software from the ROM.

The MIF file is then loaded into the ROM model during simulation com-
pilation. SystemVerilog offers the readmemh function for that.

5.3.1 CoreMark

CoreMark [22] benchmark was used for power and performance measurement
between PENRISCV SoC and the CoolRISC-based SoC. It is a widely used
benchmark designed for measuring the performance of microcontrollers and
processor cores used in embedded systems. It supports 8-bit to 64-bit CPU
architectures therefore it can be used to compare RISC-V and CoolRISC (8-bit
vs 32-bit).

This benchmark comes in the form of several C source files and headers. I
created a test case which contains CoreMark software as the main application.
To compile it I created a separate Makefile which includes the CoreMark source
files. This way I was able to simulate the CoreMark run and check if everything
works in simulation and then simply use the same software compilation flow
for later.

I modified the in the core portme.c and core portme.h CoreMark files to
fit the PENRISCV design. That mainly included start/stop time functions
which control the timer and define correct data types which CoreMark uses
for its calculations.

CoreMark comes with an ee printf.c print function implementation for
embedded systems. I modified it so it prints the string to the PC terminal
using the UART peripheral. This function is used by CoreMark to print
information and results during the benchmark run.

44

5.4. List of tests

5.4 List of tests

The goal of the thesis was to simulate the power consumption of the system
and not to manufacture it yet. Therefore it was not necessary to test every
part of the system and every functionality and make it fully verified. It was
decided to have at least one test for each major component of the system
(aside from CPU debug features).

5.4.1 penriscv crc 01

Compares the CRC result of every input data to every polynomial configura-
tion to a CRC result calculated by the test bench.

5.4.2 penriscv custom 01

The test bench sends data into the CPU as input data for Custom Logic and
compares it to its results. It tries every combination of data.

5.4.3 penriscv gpio 00

Checks the input and output functionality of each GPIO pad.

5.4.4 penriscv gpio 01

Checks each edge and level detection functionality together with the debouncer
functionality of each GPIO pad.

5.4.5 penriscv i2c 01

Uses the I2C UVM agent to emulate an I2C Slave device. Test writes and
reads data to the device and checks if data matches.

5.4.6 penriscv long timer 01

Tests various time durations and checks if Long Timer values correspond with
them.

5.4.7 penriscv pml 01

Switches between system power modes. First from ACTIVE to SLEEP mode
and then from ACTIVE to POWER DOWN mode. Checks system clock
frequency after each switch.

5.4.8 penriscv timer 00

Sets value to Timer to count down from and after time-out checks if it occurred
in the expected time.

45

5. Verification

5.4.9 penriscv uart 00

Uses the UART UVM agent to send and receive various data. UART agent
automatically checks data and protocol correctness in various settings.

5.4.10 penriscv wdt 00

A basic test for watchdog time-out. Sets value to watchdog and checks if
time-out occurred in the expected time.

5.4.11 penriscv wdt 01

More advanced test for watchdog timer which checks the time-out occurrence,
system reset and with and without auto-reload of watchdog value.

5.4.12 penriscv usi 01

In this test, USI Control Logic is first configured for transmitting on pentip 0.
After a short transmission of ones and zeros on the pentip 0, it is configured
for receiving. A square wave sequence is forced on pentip 0 by the test bench
for the USI Control Logic to detect. If detection is successful then the software
will check this bit of the USI Control Logic status register.

5.4.13 penriscv wut 00

Test configures the wake-up timer at various durations in ACTIVE mode and
SLEEP mode and checks the duration in each configuration. It also checks if
the wake-up from SLEEP mode functionality of the system works correctly.

5.4.14 penriscv coremark 01

Test case containing the CoreMark software compilation and simulation of a
single run. By default, CoreMark is configured with the data size set to 1600
to correspond with the CoolRISC-based system configuration and the number
of iterations set to 2 to be able to finish the simulation in a reasonable time.

46

Chapter 6
FPGA validation

In this chapter, I describe the steps that I had taken in the implementation
of PENRISCV on an FPGA. The main purpose of an FPGA environment for
PENRISCV is to enable the customer to test their software in the new system
in real-time.

6.1 FPGA platform

I used the Xilinx FPGA platform for validation. It is already being used in
the company and I could set it up quickly.

The company provided me with an FPGA board with an already inte-
grated Xilinx FPGA chip. It is a Xilinx Atrix-7 family model xc7a100tcsg324-2
FPGA.

I used Xilinx Vivado 2019.1 [23] for synthesis, placement and bitstream
generation and Xilinx Vivado Lab 2022.2 [24] for bitstream upload to the
FPGA.

6.2 FPGA design changes

To implement PENRISCV on the FPGA I needed to make several design
changes which are specific to an FPGA. I implemented these changes on the
RTL level using parametrization. On the top level of each RTL module, there
is a target tech parameter which selects if the design is meant for FPGA or
ASISC. When FPGA is selected, the changes described in this section are
applied.

6.2.1 GPIO Debouncer

The function of a debouncer is to filter out short glitches on the input asyn-
chronous signal. The current implementation of the debouncer used in the

47

6. FPGA validation

CoolRISC-based system requires the signal to be stable for at least one clock
period of the 32 kHz XTAL clock.

As mentioned previously, the FPGA does not support having the asyn-
chronous set and reset connected and used at the same time. Only one of
them is available on each register. The current implementation of each de-
bouncer in the GPIO uses a structure that utilises both asynchronous set and
reset. This means that for it to function properly on the FPGA, it needs to
be adjusted.

Figure 6.1: GPIO debouncer used in the CoolRISC-based system

I decided to implement the GPIO debouncer which uses more registers but
no longer requires any register to utilise both asynchronous set and reset. The
structure of this debouncer can be seen in Figure 6.2.

48

6.2. FPGA design changes

Figure 6.2: GPIO debouncer adjusted for FPGA

6.2.2 Removing clock multiplexors from WDT and WUT

As I mentioned in the previous chapter about FPGA limitations, there are
fewer clocking resources on an FPGA than on an ASIC. For this reason, it
was decided to remove the clock multiplexors inside WDT and WUT and
hard-wire one source selection.

While this reduced the functionality of WDT and WUT, it did not affect
the ability to test the software on the FPGA implementation.

6.2.3 Replacing buffers on clock sources in PML

Inside the clock controller in the PML, there are three buffers for WDT, WUT,
and GPIO on the XTAL clock source. This is for the clock tree synthesis.
These three buffers needed to be replaced by FPGA clock buffer cells for
FPGA implementation.

6.2.4 Replacing system clock multiplexor in PML

System clock switching between PLL and XTAL clocks is handled by a clock
multiplexor inside the clock controller inside the PML. This multiplexor could
not be removed therefore it was replaced by an FPGA clock multiplexor.

6.2.5 Emulating POWER DOWN mode by dig core reset

On FPGA there was not going to be an actual implementation for turning
off the VDD1 domain in POWER DOWN mode. To emulate the functional

49

6. FPGA validation

behaviour of the design, the VDD1 enable signal was used to hold the dig core
module in reset and thus emulating the power down state.

In the dig top module, I placed an AND RTL module with system reset
and VDD1 switch from the PML as its inputs and the output is then used as
a reset signal for the dig core.

6.3 FPGA implementation

The FPGA implementation used the same RTL design files as the ASIC im-
plementation, but it used FPGA directives and parametrization to implement
the design changes described above.

6.3.1 FPGA top

The dig top module would not work on FPGA on its own. It needs to have
emulation for the GPIO pads, 8 MHz and 32 kHz clock source, reset generation,
etc.

For this purpose, I created the penriscv fpga top module. This module
contains the instance of PENRISCV dig top.

The GPIO pads are emulated on the RTL level, the FPGA synthesis was
able to apply the RTL logic to its internal IO pads.

Listing 6.1: Pads emulation in FPGA top
pa gen : FOR i IN 0 TO 1 GENERATE

i p a d a q (i) <= pa (i) WHEN (i p a d a i e (i) = ’1 ’) ELSE ’ 0 ’ ;

PROCESS (i pad i 2 c od , i pad a d , i p a d a o e) IS
BEGIN

IF i p a d i 2 c o d (i) = ’1 ’ THEN
pa (i) <= ’Z ’ WHEN (i pad a d (i) = ’1 ’) ELSE ’ 0 ’ ;

ELSE
pa (i) <= i pad a d (i) WHEN (i p a d a o e (i) = ’1 ’) ELSE ’Z ’ ;

END IF ;
END PROCESS;

END GENERATE;

i p a d a q (2) <= pa (2) WHEN (i p a d a i e (2) = ’1 ’) ELSE ’ 0 ’ ;
pa (2) <= i pad a d (2) WHEN (i p a d a o e (2) = ’1 ’) ELSE ’Z ’ ;

−− PortA p u l l −up and pu l l −down emulat ion
pa upn <= NOT (i pad a pu OR (’ 0 ’ & i p a d i 2 c p u)) ;
pa dn <= i pad a pd ;

50

6.3. FPGA implementation

The FPGA features a 100 MHz clock source. However, for PENRISCV
I needed 8MHz and 32 kHz clock. To achieve this I used Vivado’s Clocking
Wizard [25] tool to generate a parametrized RTL module which generates
an 8 MHz clock. The RTL module utilises the FPGA’s PLL module and
configures it to get an 8 MHz clock in the design.

The PLL module has a limited clock frequency range and cannot generate
a 32 kHz clock. To achieve the 32 kHz clock I implemented a simple syn-
chronous clock divider clk div fpga and placed it into the penriscv fpga top.
This divider generates 32 kHz out of the 8 MHz clock provided by the PLL and
it contains one FPGA clock buffer so that synthesis assigns this clock source
to the clocking resources.

It takes some time at the power up of the system for the PLL to be locked
and generate specified clock frequencies. The PLL has a ”locked” signal which
indicates whether the PLL is ready. This signal is used as a reset source for
the PENRISCV system. Essentially the whole system is held in reset until
PLL is ready and provides correct clocks.

I also decided to route the GPIO output signals from dig top to the pen-
riscv fpga top interface and connected them to the three LEDs on the FPGA
board for debugging purposes.

6.3.2 Constraints

Constraints are needed for the FPGA synthesis of the design. I created two
XDC constraint files. penriscv top fpga tim.xdc for timing constraints where I
defined clocks, generated clocks and IO delays, and penriscv top fpga loc.xdc
where I defined the properties for each IO port.

51

6. FPGA validation

6.3.3 PCB for high-voltage pentip driver

As written in the chapter USI pen controller requirements, the pen controller
consists of two chips. Low-voltage SoC with CPU and second high-voltage
chip. The FPGA implements only the low-voltage SoC and the HV pentip
driver chip had to be connected externally to the FPGA’s IO pads.

The FPGA board (as it was designed) only supports 3.3 V voltage levels
on the IO pads. But the HV pentip driver chip required 1.2 V and 2 V voltage
levels and additional components. This meant I needed to design a PCB which
features voltage level shifters, voltage regulators, HV pentip driver chip socket
and other components required by the HV pentip driver.

To create the schematic for the PCB I used the KiCad 6.0 [26] tool. I
defined which pins on the FPGA board will be used for the interface to connect
it with the PCB and based on that created a symbol in KiCad to use in the
schematic. I called this symbol fpga if.

The main part of the PCB is the voltage regulators and level shifters. For
voltage regulators, I used the AP7331-20WG-7 for 1.2 V and AP7331-20WG-7
for 2 V. For level shifters, I used the SN74LXC2T45.

The HV pentip driver needs additional components to work correctly. Such
as the TBT-402820NX1 transformer. I created the circuitry schematic for the
HV pentip driver based on its company specification.

When the schematic was completed, I sent it to a layout engineer to handle
PCB layout design, manufacturing in Prague Board and installing individual
components on the board.

The manufactured PCB can be seen in figure 6.3. The pins used for the
interface between the FPGA board and the HV pentip driver PCB can be
seen in figure 6.4. The final setup featuring the HV pentip driver in the DIL
package socketed in the HV PCB which is connected to the FPGA board can
be seen in figure 6.5.

The next two pages feature the HV pentip driver PCB schematic from
KiCad.

52

6.3. FPGA implementation

Figure 6.3: HV pentip driver PCB

55

6. FPGA validation

Figure 6.4: HV pentip driver PCB FPGA interface

56

6.3. FPGA implementation

Figure 6.5: Connected HV pentip driver PCB to the FPGA board

57

6. FPGA validation

6.4 Patching ROM contents in bitstream

Each synthesis run in Vivado takes around 15 to 20 minutes. This is a very
long time to wait each time there is a change to the software inside the ROM.
To avoid this I used the data2MEM tool from Xilinx which allows me to
change the contents of the ROM inside the generated bitstream.

Because the ROM is a large continuous block of data the Vivado synthesis
and placement tool maps it to its built-in Block RAM modules inside the
FPGA. Thanks to this it is possible to identify these blocks of BRAM inside
the synthesized design and use the data2MEM tool to change their contents.

This allows for instant software change inside the ROM and no need to run
the entire synthesis-placement-bitstream flow unless there is a design change.

To automate this process I created the generate rom bmm.tcl script which
is used by Vivado during the bitstream generation flow. This script is used to
generate the Block Memory Map (BMM) file for the data2MEM tool.

The final bitstream patching flow starts with software compilation where
the output is an ELF file. This ELF file is converted to a MEM file which is a
text hexadecimal representation of the ROM contents. Then the data2MEM
tool is used to patch the bitstream contents. It takes the bitstream, the MEM
file and the BMM file as inputs and outputs the patched bitstream.

6.5 Validation scenarios

To enable the customer to test their software on the FPGA PENRISCV imple-
mentation, only selected functionality needed to be validated. That included
the software running correctly on the CPU, UART/I2C peripherals operating
correctly for debugging and receiving/transmitting data on the pentips using
the USI Control Logic. It was decided to validate the following scenarios to
demonstrate to the customer that the FPGA platform works and can be used
for software testing.

6.5.1 LED control by GPIO

As I mentioned in previous sections, I connected GPIO output pads to three
LEDs which are built into the FPGA board. I used these LEDs this way
for debugging software on PENRISCV when running it on the FPGA. First
I checked that LEDs are correctly controlled by software by writing different
output values to the GPIO pads and watching LEDs change their state.

6.5.2 UART communication with the PC

Aside from LEDs, I wanted to use UART for more detailed debugging. To
connect PENRISCV UART pins to the PC I used an FTDI TTL-232R-3V3

58

6.5. Validation scenarios

USB converter cable and the Putty tool to send and receive ASCII data from
PENRISCV over UART.

I created a software test case where the software configures UART to the
standard 9600 baud rate and without parity bit and then sends a short message
over the UART to the PC. The software then waits for UART transmission
from the PC to PENRISCV and sends it back to the PC.

This way I tested both send and receive functionality of UART. After-
wards, I used UART to output debug and information messages when working
on other scenarios.

6.5.3 I2C Master communication with an I2C Slave device

To test the I2C master peripheral I used the NCD2400MTR [27] I2C slave
device. For this scenario, I created software for PENRISCV which configures
the I2CM peripheral to the supported standard I2C speed. The device I2C
address of NCD2400MTR is 0x60.

The software then writes to some registers inside the NCD2400MTR and
then reads them and then compares both values to check if they are matching.

6.5.4 Coremark run longer than 10 seconds

CoreMark considers the final score valid only if the benchmark runs for more
than 10 seconds. To make the run last longer than 10 seconds, I needed to
adjust the data size and the number of iterations. The data size was set to
1600, the same value used in benchmarking the CoolRISC-based system, and
the number of iterations was set to 200 which makes it last longer than 10
seconds.

A screenshot of the CoreMark result from PENRISCV run on the FPGA
can be seen in figure 6.6.

Figure 6.6: CoreMark result from PENRISCV run on the FPGA

59

6. FPGA validation

6.5.5 Transmission on pentip 0

To test the transmission on the pentip 0 it was decided to use 100 kHz 20 V
square wave mode that the USI Control Logic can configure the HV pen
controller driver to generate. I created a software test case for simulation
which configures the USI Control Logic and HV pen controller to do that.
I used the validation script from a validation engineer as a reference when
creating the C software for this test case.

Firstly I simulated this test case to see if the software and the system
behave as expected. When everything worked in simulation I patched the
bitstream with the compiled software and ran it in real time on FPGA. To
check the correct behaviour on the pentip 0 I used an oscilloscope to check
that it generates the 100 kHz 20 V square wave.

A photo of the oscilloscope measurement of the transmission on pentip 0
can be seen in figure 6.7.

Figure 6.7: Transmission on pentip 0 measured with an oscilloscope

6.5.6 Reception on pentip 0

To test the reception on the pentip 0 it was decided to use a DELL Latitude
5320 laptop which generates an electromagnetic wave sequence on its touch

60

6.5. Validation scenarios

display. This sequence is one of those which the USI Control Logic can detect
by correlation.

I used a validation script from a validation engineer as a reference when
writing the software for this scenario. This software configures the USI Control
Logic and HV pentip driver for reception and then waits in a loop until the
expected sequence is detected.

When the sequence is detected a message is sent over UART to the PC
terminal which also contains the correlation value from the USI Control Logic
result register.

I emulated the pentip 0 by attaching a short wire to the pentip 0 pin on
the HV pentip driver PCB and during the test, I was moving the end of the
wire closer and further to the touch screen of the laptop.

It was already detecting the touch screen roughly 1.5 cm away from the
screen with a correlation value in the range of 20-25. When I moved the pentip
closer the correlation value got higher with a maximum of 32 when the end
of the wire was touching the screen. 32 is the highest possible value of the
correlation.

A photo of the reception scenario can be seen in figure 6.8.

Figure 6.8: Reception on the pentip 0 from DELL laptop touch screen

61

Chapter 7
Physical implementation

When I finished the RTL implementation and checked the functionality of the
system through test bench simulation and FPGA validation, the next step
was to implement the design into actual logic gates using selected technology.

7.1 Technology

It was important to keep the same properties for physical implementation as
close to the ones used in the CoolRISC-based system. That is why I used
the same 180 nm process technology and corner3 developed by EM Microelec-
tronic.

The corner I used for the physical implementation was SS 0v88 85C. That
translates to slow-slow type cells at 0.88 V and 85 C temperature. This corner
was used for the max4 corner.

7.2 Synthesis

The first step in the physical implementation is the synthesis of the design
from RTL to actual logic gates. To do this I used the Design Compiler Ultra
[28] synthesis tool from Synopsys. For this tool, I used TCL synthesis scripts
which were provided to me by the company but I modified them to fit the
PENRISCV design.

These scripts load the RTL design files and the required technology li-
braries into the Design Compiler and provide specified configurations and
corners for the synthesis.

3A corner is a set of conditions that the chip is expected to operate in. Mainly voltage,
temperature and type of cells. This decides the physical characteristics of the cells used in
the corner.

4Max corner is a scenario where each cell in the technology features the slowest switching
speeds resulting in the largest delays on paths.

63

7. Physical implementation

I used the Design Compiler Ultra in ”topographical mode” when running
the synthesis. Normally the synthesis uses a ”wire load model” to estimate
wire length (capacitance and resistance). The values used for these estimations
are provided by the library files for the technology. Topographical mode is
more aware of the estimated physical size of each cell and uses a rough floor
plan for the wire length calculations instead of just using the ”wire load model”.

The synthesis goes through two phases. The first phase translates the
design from RTL to logic gates and does various optimisations on the de-
sign while following the specified design constraints. In the second phase,
additional design constraints are applied to the physically implemented de-
sign and an incremental synthesis run is executed which further optimizes the
implemented design based on newly defined design constraints.

7.2.1 Design Constraints

For synthesis to implement the design correctly into logic gates, it needs design
constraints which define the physical and timing properties of the design.
These constraints are given to the Design Compiler in the form of Synopsys
Design Constraints (SDC) [29].

I defined the physical constraints in constr phy.tcl. This specifies the driv-
ing cell and the capacitance of each IO port of the design. These are applied
to the entire synthesis run.

I reused some timing constraints from the synthesis flow of the CoolRISC-
based system. I needed to adjust the clock definitions and remove the rules
which were no longer fitting for PENRISCV. These constraints are split into
two sets of constraints.

The first set of constraints is defined in the constr tim 4m.tcl. These
constraints define main input clocks and generated clocks as well as delays on
the IO ports of the design. There are also false path constraints which define
which timing paths in the design should not be considered for timing analysis.
This is because the timing analysis tool considers all paths and all scenarios
and may detect a violation where it cannot happen by design.

The second set of constraints is defined in the constr tim post syn 4m.tcl
and it is applied after the first synthesis run before the incremental synthesis
run. These constraints mostly contain false path rules for endpoints which are
created only after the first synthesis run.

On top of the reused constraints, I also added some PENRISCV-specific
false paths that I identified when analysing timing reports.

7.2.2 UPF

The synthesis also needs to know the power supply structure of the design. I
used the Unified Power Format (UPF) [30] for this. UPF defines the power
supply sources, voltages, power domains and isolation for signals.

64

7.2. Synthesis

I reused the UPF from the CoolRISC-based system as PENRISCV shares
the same power domain structure. I made minor adjustments to the signal
isolation control as some additional signals needed to be isolated when crossing
power domains.

7.2.3 RAM and ROM technology cells

So far I used simple RAM and ROM RTL models in PENRISCV. However, this
would not be a good practice to do for physical implementation. Synthesis
would attempt to translate the models into actual registers and logic gates
but this would be very inefficient. The more efficient way is to use pre-made
ROM/RAM cells from the technology library. These cells are going to be
smaller in the area and more efficient.

However, there was simply no 32-bit RAM and ROM cell available in this
technology library. This forced me to create a RAM wrapper which combines
4 2048-byte 8-bit (data) wide RAM cells and create a RAM block which has
32-bit data width. I implemented this block in ram 4x2kx8 box.sv which was
also used as a model in the RTL simulations.

Finding a workaround for ROM was more complicated. Not only was there
no 32-bit ROM available, but the closest ROM available was the one used in
the CoolRISC-based system and that ROM cell had 22-bit data width. The
final workaround was to modify the library files for this ROM cell to feature
32-bit data width. This was done with the help of another digital design
engineer in the company.

This modified ROM cell will not physically work. It was just modified to
have a 32-bit data interface. The main purpose of this was to be able to do
place-and-route and gate-level simulations (which are still possible with the
modified RTL model of the cell) and then use the switching activity for power
calculations which use this modified library cell.

7.2.4 Outputs

The outputs of synthesis are mainly the synthesized design represented by a
netlist in a single Verilog file. Along with it is the written-out SDC file with
all constraints which applied to the netlist.

There are also reports generated by Design Compiler Ultra. These reports
contain information about the synthesized design. I checked those for any
errors or missing constraints. Part of these reports was also a basic static
timing analysis which provided information about possible timing setup and
hold violations. These reports are limited because there is no clock tree in this
synthesized design. A more detailed STA was done after the place-and-route
step.

65

7. Physical implementation

7.2.5 Area results

The total area of dig top ended up 2.25x larger in comparison to the CoolRISC
system. The difference was mostly made out of the CPU being 9 times the
size of CoolRISC and the RAM being 4 times the size of the RAM in the
CoolRISC system.

7.3 Place-and-route

I gave the synthesis outputs to a place-and-route engineer who created a square
floorplan for the design and placed it. I was helping him with any timing
violations and my insight into the design so he could have a better idea of
how to balance the placed clock tree.

7.4 Static Timing Analysis

The place-and-route engineer was able to successfully balance the clock tree so
that the design did not contain any setup and hold violations. I received the
post-layout netlist as well as the Standard Parasitic Exchange Format (SPEF)
[31] file which is used for representing parasitic data of wires in the design.

I used the PrimeTime [32] tool made by Synopsys to run my own STA on
the post-layout netlist that I was given by the engineer. To load the netlist
into the tool along with technology libraries, SPEF and SDC I used scripts
given to me by the company. I checked the reports for timing violations and
any other issues and generated a Standard Delay Format (SDF) [33] file which
I needed for gate-level simulations.

7.5 Gate-level simulations

To verify the correct functionality of the post-layout netlist I used the same
verification tests that I used for RTL simulations. It is important to do this
step even if RTL simulations pass all tests because issues may occur once gate
delays are introduced into the design. Especially with asynchronous elements
in the design.

I added the gate-level configuration to the run sim simulation script and I
ran all tests with the max corner on the post-layout netlist using the generated
SDF.

Not all tests were passing initially and some minor fixes had to be imple-
mented. The design with applied fixes went through place-and-route flow and
afterwards, all tests passed in the post-layout gate simulation.

66

Chapter 8
Power simulations and

comparison

To estimate the average power consumption of the system I used the Prime-
Power [34] tool which is part of the PrimeTime suite made by Synopsys. I
selected scenarios which were also simulated on the CoolRISC-based system.

8.1 Scenarios

The first step in the power estimations was to select scenarios which were
applicable for both PENRISCV and the CoolRISC-based system to get the
most accurate idea of the difference between power consumption between both
systems. I selected CoreMark and the penriscv usi 01 test case as power
estimation scenarios.

I chose the 6 MHz system clock mode for the CoolRISC system power
estimations to perform the comparisons with PENRISCV. This is because
this mode provides the highest CPU performance possible in the CoolRISC
system. The CPU performance in this mode is at 3 MIPS. PENRISCV’s
system clock is 4 MHz and the CPU runs at 4 MIPS.

8.1.1 penriscv coremark 01

CoreMark is dependent on the CPU performance and the duration of its run
changes based on how fast the calculations are performed. That means it is
a good way to measure overall energy consumed by the calculation because
even if the overall power consumption of the system is higher the total energy
consumed during the run may be lower depending on the duration.

The CoreMark settings used for power simulations feature the data size set
to 1600 to correspond with the CoolRISC-based system configuration and the
number of iterations set to 2 to record the switching activity in a reasonable
time. The recorded activity during the run ranges from Long Timer enable is

67

8. Power simulations and comparison

set to ’1’ to when it is set to ’0’. This represents the section of the CoreMark
run where the actual benchmark is executed.

8.1.2 penriscv usi 01

I selected this test because it represented the main functionality of the whole
PENRISCV system (transmitting and receiving on the pentips). It also be-
haved differently from the software perspective because here the software did
not perform many calculations and instead mostly consisted of register reads,
writes and waiting for an event. This means the duration of this scenario was
similar in both systems.

I decided to simulate the power consumption of transmitting and receiving
separately.

The simulation of the transmitting phase begins at the first rising edge of
the pentip 0 and ends on the last falling edge of the pentip 0.

The simulation of the receiving phase begins at the first rising edge of the
pentip 0 and a register write into the IRQ Ctrl peripheral indicating the end
of the receiving phase by software.

8.2 Switching activity

To calculate the power consumption from simulations I needed to generate
the switching activity of the post-layout netlist in these scenarios. I achieved
this by running the test bench simulations in Xcelium and enabling the Value
Change Dump (VCD) generation. This file contains all switching activity in
the design during the simulation run.

8.3 Average power consumption calculations

I used the PrimePower tool for the average system power consumption which
was calculated by the tool based on the provided switching activity (VCD),
the post-layout netlist and the SPEF.

To run the tool I used scripts provided to me by the company. These
scripts load necessary files into the tool and provide specified scenarios for the
calculation. I created scenarios (start time, end time, VCD file) which were
used by the tool to do the calculations. I obtained the start time and the end
time manually from the waveform in a simulation of these scenarios.

8.4 Methodology

To assess the power consumption results correctly, it was important that I first
analyse the power consumption across the hierarchy of both systems. PEN-
RISCV is simplified in some ways which are described in previous chapters.

68

8.4. Methodology

That is why I needed to apply necessary corrections to the power consumption
calculations to make the results from both systems more comparable. This
is to more accurately estimate the power consumption of the theoretical fully
featured system.

8.4.1 Power consumption across hierarchy

Analysing the CoolRISC-based system I identified the major contributors to
the total power consumption during the CoreMark run. Those were the
CR816L CPU (27.3 %), PML (13.6 %), MMU (10.7 %), RAM (9.6 %), In-
terrupt Controller (5.3 %), UART (4.4 %). A detailed write-down of power
consumption results across the hierarchy can be seen in Figure 8.1.

Looking at the major contributors which should not be ignored, I observed
that PML and MMU are among them and those are modules which had been
simplified in PENRISCV. This means that full implementation of these mod-
ules would increase the total power consumption of the system.

The rest of the major contributors are either present in the system in their
original form or they are replaced by a module with equivalent functionality.

The rest of the modules in the system have only a minor impact on the total
power consumption. Those can be simply considered valid in the PENRISCV
estimations if they are present in the system in their original or equivalent
implementation. Those that are not present in PENRISCV will be considered
in corrections.

When I compared the distribution of power consumption between both
systems I observed that the distribution is very similar with the CV32E40P
CPU being more dominant in the power consumption relative to the rest of
the system. The differences that I observed were mainly the ROM and the
Debug Module.

69

8. Power simulations and comparison

Figure 8.1: Power consumption distribution across the hierarchy in CoreMark

In the CoolRISC-based system, ROM has nearly no power consumption
because there is simply no activity on it during the CoreMark run. That is
because, in the CoolRISC system, the software is being fetched from the Flash
memory outside of the system. Whereas PENRISCV fetches software from
ROM and therefore ROM in PENRISCV has higher power consumption.

The second difference I observed was the Debug Module accounting for
15 % of the total system power consumption. This was very odd and after
investigation, I discovered that it is a design issue which caused this high
power consumption. Under normal circumstances, the power consumption
of the Debug Module should be near zero. This will be also considered in
corrections.

70

8.4. Methodology

8.4.2 Corrections

Based on the power consumption analysis across the hierarchy between both
systems, I came up with the following corrections for the total PENRISCV
power consumption calculations.

• Subtract the PML from total power consumption and add power con-
sumption of the PML from the CoolRISC system. PML is simplified
in PENRISCV. To make the comparison closer to reality I decided to
consider the power consumption of the full PML implementation from
the CoolRISC-based system.

• Subtract the Memory Interface from total power consumption and add
the power consumption of the MMU from the CoolRISC-based system.
The Memory Interface in PENRISCV lacks the Flash memory controller
which contributes to the power consumption of this module.

• Subtract the ROM from total power consumption. The CoolRISC-based
system fetches software from the Flash which is not accounted for in the
measurements. Whereas PENRISCV fetches it from ROM and it is
accounted for. Therefore I subtracted the ROM from the total power
consumption to make it equal.

• Subtract the Debug Module from the total power consumption. The De-
bug Module under normal circumstances should draw near no power. To
make this comparison more accurate I added the DoC module from the
CoolRISC-based system to the PENRISCV total power consumption.

• To account for the modules which are present in the CoolRISC-based
system but not in PENRISCV, I decided to add them to the total power
consumption if they showed some impact on the total system power in
the CoolRISC-based system.

Table 8.1: Summary of the corrections to the total PENRISCV power

Applied corrections to the total PENRISCV power
+ –

i test (coolrisc) i pml top (penriscv)
i pml top (coolrisc) i memory interface (penriscv)
i crc16 (coolrisc) i rom (penriscv)
i mmu top (coolrisc) i dm top (penriscv)
i doc (coolrisc)
i rand gen (coolrisc)

71

8. Power simulations and comparison

8.5 Results

I compared the final power calculations between both systems separately for
CoreMark and for the transmission/reception scenario. Comparisons were
made for the average power consumption (in Watts) and total energy con-
sumed (in Joules) during each scenario. The energy was calculated by mul-
tiplying the average power consumption by the duration of the scenario (in
seconds).

The results are presented as the power/energy of PENRISCV relative to
the CoolRISC-based system. For example, 0.5x means half the CoolRISC-
based system’s power/energy and 2x means twice as much power/energy.

These comparisons are made with the previously defined corrections ap-
plied.

8.5.1 penriscv coremark 01

In this scenario, the total power consumption of PENRISCV ends up being
1.75x that of the CoolRISC-based system. The total energy consumed ends
up being only 0.54x. This is mainly because PENRISCV was able to complete
the CoreMark run nearly three times faster than the CoolRISC-based system.

Figure 8.2: Average power and total energy consumption during CoreMark

72

8.5. Results

8.5.1.1 RAM access

One interesting observation I made is that the difference in CPUs used also
affected the results of the other parts of the system. One of those is the RAM
average power consumption. The RAM in PENRISCV has less than half of the
power consumption of the RAM in the CoolRISC-based system even though
it is four times the size.

Detailed analysis of this revealed that the CoolRISC-based system has to
access the RAM far more often than PENRISCV. During the CoreMark run
CoolRISC made close to a million RAM read/write accesses whereas PEN-
RISCV only made around 110 000. This is most likely due to the overall
shorter run of CoreMark on PENRISCV as well as the fact that CoolRISC
has fewer general-purpose registers and has to access the RAM more to store
temporary data.

73

8. Power simulations and comparison

8.5.2 penriscv usi 01

For this scenario, I applied the same corrections as defined previously but I
used the hierarchy measurements for transmission and reception. The distri-
bution of power consumption across the hierarchy remained similar with the
only noticeable difference being the USI Control Logic having higher power
consumption of 41 % and 16 % of total system power for reception and trans-
mission respectively. A detailed write-down of measured power consumption
across the hierarchy can be seen in Figure 8.3.

Figure 8.3: Power consumption distribution across the hierarchy in transmis-
sion/reception scenario

74

8.5. Results

During transmission, the average power consumption and energy consumed
ended up at 1.56x and 2.28x respectively of the CoolRISC-based system. I
investigated the significantly higher energy consumed by PENRISCV.

I found out that the length of the transmission phase is dependent on the
register reads and writes of the USI Control Logic. Because the USI Control
Logic uses the AHB2CR bridge every register access takes two clock cycles
instead of one. The increased length of the transmission phase increases the
overall total energy consumed. In the final product, the USI Control Logic
IP will be re-designed to be AHB-lite compliant therefore I decided to make
a correction to the duration of the test case by subtracting the duration of
the wait cycle of the AHB2CR bridge multiplied by the number of wait cycles
during transmission.

By applying this correction the total energy consumed by PENRISCV
decreased to 1.72x of the CoolRISC-based system.

During the reception, PENRISCV ended up at 1.53x average power con-
sumption and 1.46x energy consumed of the CoolRISC-based system.

75

8. Power simulations and comparison

Figure 8.4: Average system power consumption during transmission and re-
ception

Figure 8.5: Total system energy consumption during transmission and recep-
tion

76

8.5. Results

8.5.3 Power measurement conclusion

Looking at the results it is apparent that PENRISCV average system power
consumption is around 1.50x-1.80x of the CoolRISC-based system in all sce-
narios. This comes as no surprise considering the CV32E40P CPU is nearly
10x larger than the CR816L.

However, when looking at the energy consumed results the situation changes
significantly and the comparison starts being heavily dependent on the sce-
nario. PENRISCV benefits from a more capable CPU in compute-heavy ap-
plications because it can complete the task much faster saving total consumed
energy. During CoreMark PENRISCV consumed only 0.54x of the CoolRISC-
based system’s energy.

In applications which only consist of register reads/writes or waiting for an
event PENRISCV is put at a disadvantage. During such operations, there is no
way to utilize the performance of the CV32E40P CPU and save time. Meaning
the runtime is going to be similar while the average power consumption is
higher the whole time.

If such a system is implemented into a graphical pen there would be higher
power supply requirements for it due to the higher average power consumption.
However, the energy consumed during the operation of the system is more
important for the battery life. This gives the RISC-V a chance to be a feasible
alternative to CoolRISC if the application is properly tailored for it to utilise
its potential.

Table 8.2: Final results relative to the CoolRISC-based system

PENRISCV/CoolRISC
Scenario Power Energy
CoreMark 1.75 0.54
Transmission 1.56 1.72
Reception 1.53 1.46

77

Conclusion

The goal of this thesis was to analyse the existing CoolRISC-based pen con-
troller SoC, create a system design of a pen controller with the RISC-V CPU
platform and then implement it in RTL. The basic functionality of the new
implementation was to be verified in a test bench and validated on an FPGA.
Then it was to be implemented into 180 nm technology and the physical
implementation was used for measurements and estimation of the power con-
sumption of the system. The results of the measurements were to be compared
to the existing measurements of the previous CoolRISC-based system. All of
these goals were achieved.

Firstly the existing CoolRISC-based pen controller SoC was analysed and
core features of the system were identified. Based on this analysis, a system
design for the new RISC-V-based system called ”PENRISCV” was created
which was then used for the RTL implementation. Part of the analysis was
also a detailed comparison of both CoolRISC and RISC-V CPU platforms.

A test bench environment using UVM was created for the verification
of basic system functionality. Then the system was implemented onto an
FPGA with appropriate design changes to make it functional. Validation was
performed on an FPGA. The result of the FPGA validation was a successful
pentip reception using a real touch screen.

Physical implementation was performed into 180 nm technology provided
by EM Microelectronics. The post-layout netlist was used to simulate the
power consumption of the system in simulations.

The power consumption results estimates were compared to the existing
results of the CoolRISC-based system. The results show that PENRISCV ends
up having higher average power consumption in all tested scenarios but ends
up being more energy efficient in compute-heavy scenarios. In scenarios which
consist of just register reads/writes and waiting for an event, PENRISCV ends
up being less energy efficient.

This thesis will serve as a deciding factor for the next generation of pen
controller SoCs when considering the power characteristics of RISC-V in such

79

Conclusion

a system. If RISC-V is selected as the next CPU platform PENRISCV will also
serve as a base for building a fully featured SoC. After all, the only remaining
design elements not implemented in PENRISCV are the RC oscillator clock,
Flash controller, some peripherals and PML functionality related to analogue
parts of the system.

80

Bibliography

1. XEMICS SA. CoolRISC 816 8-bit Microprocessor Core [online].
2001. [visited on 2023-04-26]. Available from: https : / / www .
datasheetarchive.com/pdf/download.php?id=ffbdc36fbf4dc0d29fd1c730dd8933625e8153&
type=M&term=CoolRISC816.

2. Swiss Center for Electronics and Microtechnology (CSEM). csem.ch [on-
line]. 2023 [visited on 2023-04-26]. Available from: https://www.csem.
ch/.

3. RISC-V. riscv.org [online]. 2023 [visited on 2023-04-26]. Available from:
https://riscv.org/about/.

4. OpenHW Group CORE-V CV32E40P RISC-V IP. github.com [online].
2023 [visited on 2023-04-26]. Available from: https://github.com/
openhwgroup/cv32e40p.

5. About Us. openhwgroup.org [online]. 2023 [visited on 2023-04-26]. Avail-
able from: https://www.openhwgroup.org/about-us/.

6. ANDREW WATERMAN, KRSTE ASANOVI, SIFIVE INC. The RISC-
V Instruction Set Manual [online]. 2017. [visited on 2023-04-26]. Avail-
able from: https://riscv.org/wp-content/uploads/2017/05/riscv-
spec-v2.2.pdf.

7. SILICON LABS, INC. OBI 1 [online]. 2022. [visited on 2023-04-26].
Available from: https : / / github . com / openhwgroup / obi / blob /
188c87089975a59c56338949f5c187c1f8841332/OBI-v1.5.0.pdf.

8. RISC-V Instruction-Set Cheatsheet. itnext.io [online]. 2022 [visited
on 2023-04-26]. Available from: https : / / itnext . io / risc - v -
instruction-set-cheatsheet-70961b4bbe8.

9. The D Latch. allaboutcircuits.com [online]. 2021 [visited on 2023-04-26].
Available from: https : / / www . allaboutcircuits . com / textbook /
digital/chpt-10/d-latch/.

81

https://www.datasheetarchive.com/pdf/download.php?id=ffbdc36fbf4dc0d29fd1c730dd8933625e8153&type=M&term=CoolRISC816
https://www.datasheetarchive.com/pdf/download.php?id=ffbdc36fbf4dc0d29fd1c730dd8933625e8153&type=M&term=CoolRISC816
https://www.datasheetarchive.com/pdf/download.php?id=ffbdc36fbf4dc0d29fd1c730dd8933625e8153&type=M&term=CoolRISC816
https://www.csem.ch/
https://www.csem.ch/
https://riscv.org/about/
https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cv32e40p
https://www.openhwgroup.org/about-us/
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://github.com/openhwgroup/obi/blob/188c87089975a59c56338949f5c187c1f8841332/OBI-v1.5.0.pdf
https://github.com/openhwgroup/obi/blob/188c87089975a59c56338949f5c187c1f8841332/OBI-v1.5.0.pdf
https://itnext.io/risc-v-instruction-set-cheatsheet-70961b4bbe8
https://itnext.io/risc-v-instruction-set-cheatsheet-70961b4bbe8
https://www.allaboutcircuits.com/textbook/digital/chpt-10/d-latch/
https://www.allaboutcircuits.com/textbook/digital/chpt-10/d-latch/

Bibliography

10. Design of Low Voltage D-Flip Flop Using MOS Current Mode Logic
(MCML) For High Frequency Applications with EDA Tool. research-
gate.net [online]. 2015 [visited on 2023-04-26]. Available from: https:
//www.researchgate.net/figure/D-Latch-design_fig5_318295016.

11. D Flip-Flop (edge-triggered). barrywatson.se [online]. 2000 [visited on
2023-04-26]. Available from: http://www.barrywatson.se/dd/dd_d_
flip_flop_edge_triggered.html.

12. CENTRE SUISSE DELECTRONIQUE ET MICROTECHNIQUE
SA CSEM. D-type master-slave flip-flop. Christian Piguet, Jean-Marc
Masgonty, Claude Arm. May. 1999. U.S. Patent 6323710B1. United
States. Available also from: https://patents.google.com/patent/
US6323710B1/en?oq=US6323710.

13. Time borrowing in latches. vlsiuniverse.blogspot.com [online]. 2019 [vis-
ited on 2023-04-26]. Available from: https://vlsiuniverse.blogspot.
com/2016/08/time-borrowing-in-latches.html.

14. Ride7. raisonance.com [comp. software]. 2023 [visited on 2023-04-26].
Available from: https://www.raisonance.com/ride7.html.

15. RISC-V Software Ecosystem. wiki.riscv.org [online]. 2022 [visited on
2023-04-26]. Available from: https://wiki.riscv.org/display/HOME/
RISC-V+Software+Ecosystem.

16. Ibex RISC-V Core. github.com [online]. 2023 [visited on 2023-04-26].
Available from: https://github.com/lowRISC/ibex.

17. ARM LIMITED. AMBA 3 AHB-Lite Protocol Specification [online].
2006. [visited on 2023-04-26]. Available from: https : / / www . eecs .
umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-
Lite_SPEC.pdf.

18. XILINX, INC. 7 Series FPGAs Clocking Resources [online]. 2018. [visited
on 2023-04-26]. Available from: https://docs.xilinx.com/v/u/en-
US/ug472_7Series_Clocking.

19. XILINX, INC. LUT [online]. 2018. [visited on 2023-04-26]. Available
from: https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_
doc/yeo1504034293627.html.

20. How do I reset my FPGA? eetimes.com [online]. 2011 [visited on 2023-
04-26]. Available from: https://www.eetimes.com/how-do-i-reset-
my-fpga/.

21. Xcelium Logic Simulator. cadence.com [comp. software]. 2023 [visited
on 2023-04-26]. Available from: https://www.cadence.com/en_US/
home/tools/system-design-and-verification/simulation-and-
testbench-verification/xcelium-simulator.html.

82

https://www.researchgate.net/figure/D-Latch-design_fig5_318295016
https://www.researchgate.net/figure/D-Latch-design_fig5_318295016
http://www.barrywatson.se/dd/dd_d_flip_flop_edge_triggered.html
http://www.barrywatson.se/dd/dd_d_flip_flop_edge_triggered.html
https://patents.google.com/patent/US6323710B1/en?oq=US6323710
https://patents.google.com/patent/US6323710B1/en?oq=US6323710
https://vlsiuniverse.blogspot.com/2016/08/time-borrowing-in-latches.html
https://vlsiuniverse.blogspot.com/2016/08/time-borrowing-in-latches.html
https://www.raisonance.com/ride7.html
https://wiki.riscv.org/display/HOME/RISC-V+Software+Ecosystem
https://wiki.riscv.org/display/HOME/RISC-V+Software+Ecosystem
https://github.com/lowRISC/ibex
https://www.eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf
https://www.eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf
https://www.eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf
https://docs.xilinx.com/v/u/en-US/ug472_7Series_Clocking
https://docs.xilinx.com/v/u/en-US/ug472_7Series_Clocking
https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_doc/yeo1504034293627.html
https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_doc/yeo1504034293627.html
https://www.eetimes.com/how-do-i-reset-my-fpga/
https://www.eetimes.com/how-do-i-reset-my-fpga/
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html

Bibliography

22. CoreMark. eembc.org [comp. software]. 2018 [visited on 2023-04-26].
Available from: https://www.eembc.org/coremark/.

23. Vivado 2019.1. xilinx.com [comp. software]. 2019 [visited on 2023-04-26].
Available from: https://www.xilinx.com/support/documentation-
navigation/design-hubs/2019-1/dh0013-vivado-installation-
and-licensing-hub.html.

24. Vivado Lab 2022.2. xilinx.com [comp. software]. 2022 [visited on 2023-
04-26]. Available from: https://www.xilinx.com/support/download.
html.

25. Clocking Wizard. xilinx.com [comp. software]. 2022 [visited on 2023-
04-26]. Available from: https : / / www . xilinx . com / products /
intellectual-property/clocking_wizard.html.

26. KiCad 6.0. kicad.org [comp. software]. 2023 [visited on 2023-04-26]. Avail-
able from: https://www.kicad.org/.

27. IXYS INTEGRATED CIRCUITS DIVISION. NCD2400M [online].
2018. [visited on 2023-04-26]. Available from: https://www.ixysic.
com/home/pdfs.nsf/www/NCD2400M.pdf/$file/NCD2400M.pdf.

28. Design Compiler Ultra. synopsys.com [comp. software]. 2023 [vis-
ited on 2023-04-26]. Available from: https : / / www . synopsys .
com / implementation - and - signoff / rtl - synthesis - test / dc -
ultra.html.

29. Synopsys Design Constraints — SDC File in VLSI. teamvlsi.com [online].
2020 [visited on 2023-04-26]. Available from: https://teamvlsi.com/
2020/05/sdc-synopsys-design-constraint-file-in.html.

30. Unified Power Format (UPF) and Beyond: How to Expand Low-Power
Signoff. blogs.synopsys.com [online]. 2021 [visited on 2023-04-26].
Available from: https://blogs.synopsys.com/from- silicon- to-
software/2021/10/05/unified-power-format-low-power-design/.

31. Standard Parasitic Exchange Format. wikipedia.org [online]. 2023 [visited
on 2023-04-26]. Available from: https://en.wikipedia.org/wiki/
Standard_Parasitic_Exchange_Format.

32. PrimeTime. synopsys.com [comp. software]. 2023 [visited on 2023-04-26].
Available from: https://www.synopsys.com/implementation-and-
signoff/signoff/primetime.html.

33. Standard Delay Format. vlsi.pro [online]. 2013 [visited on 2023-04-26].
Available from: https://vlsi.pro/standard- delay- format- sdf-
file/.

34. PrimePower. synopsys.com [comp. software]. 2023 [visited on 2023-04-
26]. Available from: https://www.synopsys.com/implementation-
and-signoff/signoff/primepower.html.

83

https://www.eembc.org/coremark/
https://www.xilinx.com/support/documentation-navigation/design-hubs/2019-1/dh0013-vivado-installation-and-licensing-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/2019-1/dh0013-vivado-installation-and-licensing-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/2019-1/dh0013-vivado-installation-and-licensing-hub.html
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support/download.html
https://www.xilinx.com/products/intellectual-property/clocking_wizard.html
https://www.xilinx.com/products/intellectual-property/clocking_wizard.html
https://www.kicad.org/
https://www.ixysic.com/home/pdfs.nsf/www/NCD2400M.pdf/$file/NCD2400M.pdf
https://www.ixysic.com/home/pdfs.nsf/www/NCD2400M.pdf/$file/NCD2400M.pdf
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://teamvlsi.com/2020/05/sdc-synopsys-design-constraint-file-in.html
https://teamvlsi.com/2020/05/sdc-synopsys-design-constraint-file-in.html
https://blogs.synopsys.com/from-silicon-to-software/2021/10/05/unified-power-format-low-power-design/
https://blogs.synopsys.com/from-silicon-to-software/2021/10/05/unified-power-format-low-power-design/
https://en.wikipedia.org/wiki/Standard_Parasitic_Exchange_Format
https://en.wikipedia.org/wiki/Standard_Parasitic_Exchange_Format
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
https://vlsi.pro/standard-delay-format-sdf-file/
https://vlsi.pro/standard-delay-format-sdf-file/
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html

Appendix A
List of abbreviations used

CPU Central Processing Unit

SoC System on Chip

FPGA Field Programmable Gate Array

RTL Register Transfer Level

DCDC Direct Current to Direct Current conversion

SPI Serial Peripheral Interface

CRC Cyclic Redundancy Check

PLL Phase-Locked Loop

ISA Instruction Set Architecture

ALU Arithmetic Logic Unit

MIPS Million Instructions Per Second

IDE Integrated Development Environment

LED Light Emitting Diode

ASIC Application Specific Integrated Circuit

IO Input/output

PCB Printed Circuit Board

GUI Graphical user interface

XML Extensible markup language

85

Appendix B
Contents of the attachments

readme.txt..........................Summary of attachments contents
src

penriscv....................PENRISCV implementation source files
design .4 ipgen........XML definition scripts for IPGEN script

mcu...............................RTL for mcu top and CPU
periphs..................................RTL for peripherals
pml..RTL for PML
top......................................dig top and dig core

fpga .4 bin .. Scripts
constraints...............................FPGA constraints
src..FPGA source files

sw .4 comp....................................Compilation files
coremark Coremark sources
periphs...............................Sources for peripherals
riscv...............................RISC-V control functions

syn..Synthesis constraints
tb..Test bench source files

thesis..................................Thesis source files in LATEX
text .. Thesis text

thesis.pdf.....................................Thesis text in PDF

87

	Introduction
	Goal
	USI Pen Controller SoC requirements
	Existing CoolRISC pen controller SoC
	Block description
	Power modes
	Reset structure
	Power domains
	Clock structure
	Peripherals
	Software

	CoolRISC CR816L overview
	Harvard RISC-like architecture
	Register-memory architecture
	Memory sizes
	Three-stage pipeline
	8bx8b multiplier
	Stand-by mode
	Data and peripheral bus
	Instruction set
	Double-latch design

	RISC-V overview
	Simplicity and modularity
	Extendability
	Open source
	RISC-V Foundation
	ISA architecture
	CV32E40P core

	CR816L and CV32E40P difference analysis
	Code and data storage in the same memory
	General Purpose Registers
	Instruction set
	Multiplication/Division accelerator
	Interrupts
	Double latch vs. edge-based design
	System clock speed vs MIPS
	Software support
	Area and power consumption

	Requirements for the new RISC-V pen controller SoC

	System design of RISC-V pen controller SoC
	System design
	Top interface
	Memorry address mapping
	Peripheral address mapping

	FPGA vs ASIC implementation
	FPGA's clocking resources
	FPGA LookUp Tables
	FPGA register asynchronous set and reset

	Implementation
	mcu_top
	dig_core
	Peripherals
	AHB2CR bridge

	dig_top
	GPIO
	PML

	Verification
	Test bench structure
	Test bench implementation
	Software compilation
	CoreMark

	List of tests
	penriscv_crc_01
	penriscv_custom_01
	penriscv_gpio_00
	penriscv_gpio_01
	penriscv_i2c_01
	penriscv_long_timer_01
	penriscv_pml_01
	penriscv_timer_00
	penriscv_uart_00
	penriscv_wdt_00
	penriscv_wdt_01
	penriscv_usi_01
	penriscv_wut_00
	penriscv_coremark_01

	FPGA validation
	FPGA platform
	FPGA design changes
	GPIO Debouncer
	Removing clock multiplexors from WDT and WUT
	Replacing buffers on clock sources in PML
	Replacing system clock multiplexor in PML
	Emulating POWER DOWN mode by dig_core reset

	FPGA implementation
	FPGA top
	Constraints
	PCB for high-voltage pentip driver

	Patching ROM contents in bitstream
	Validation scenarios
	LED control by GPIO
	UART communication with the PC
	I2C Master communication with an I2C Slave device
	Coremark run longer than 10 seconds
	Transmission on pentip 0
	Reception on pentip 0

	Physical implementation
	Technology
	Synthesis
	Design Constraints
	UPF
	RAM and ROM technology cells
	Outputs
	Area results

	Place-and-route
	Static Timing Analysis
	Gate-level simulations

	Power simulations and comparison
	Scenarios
	penriscv_coremark_01
	penriscv_usi_01

	Switching activity
	Average power consumption calculations
	Methodology
	Power consumption across hierarchy
	Corrections

	Results
	penriscv_coremark_01
	RAM access

	penriscv_usi_01
	Power measurement conclusion

	Conclusion
	Bibliography
	List of abbreviations used
	Contents of the attachments

