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Abstract

An induced star partition of an undirected graph G = (V,E) is a partition S =
(S1, . . . , Sq) of V (G) such that each set Si induces a star (graph isomorphic to
K1,r for some r ≥ 0). The Induced Star Partition problem asks whether G
admits an induced star partition of size q. This problem was proven to be NP-
complete for each fixed q ≥ 3 [1] and has an exact 3nnO(1) time polynomial
space algorithm [1, 2]. To the best of our knowledge, there are no known
algorithms based on structural parameters for the problem. We present the
following results: (1) The problem is FPT when parameterized by the vertex
cover number of the graph, and there is an exact O(k2k+1n2) time algorithm,
where k is the vertex cover number of the input graph. (2) The problem is
FPT when parameterized by the treewidth of the graph and there is an exact
O(tw(G)2tw(G) · n) time algorithm, where tw(G) is the treewidth of the input
graph. (3) For a fixed q, the problem can be solved linear time on graphs
with bounded cliquewidth. We also provide a simple implementation of our
algorithm parameterized by the vertex cover number in C++ and evaluate its
performance.

Keywords Induced star partition, Exact algorithms, FPT, Vertex Cover,
Treewidth, Cliquewidth
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Abstrakt

Zabýváme se problémem Rozděleńı na indukované hvězdy na neorien-
tovaných grafech. Ćılem je rozdělit graf na q množin S1, . . . , Sq tak, že každá
množina Si indukuje hvězdu (graf izomorfńı grafu K1,r pro nějaké r ≥ 0). Je
známo, že pro každé pevné q ≥ 3 je tento problém NP-úplný [1]. Existuje ale
exaktńı algoritmus, který dokáže rozdělit graf na q indukovaných hvězd v čase
3nnO(1) a použije polynomiálně mnoho paměti [1, 2]. Neńı nám známo, že by
existoval exaktńı parametrizovaný algoritmus pro tento problém. V této práci
předvedeme následuj́ıćı výsledky: (1) Problém patř́ı do tř́ıdy FPT pokud bu-
deme parametrizovat vrcholovým pokryt́ım grafu a existuje exaktńı algoritmus
běž́ıćı v čase O(k2k+1n2), kde k je velikost minimálńıho vrcholového pokryt́ı
grafu. (2) Problém patř́ı do tř́ıdy FPT pokud budeme parametrizovat stromo-
vou š́ı̌rkou grafu a a existuje exaktńı algoritmus běž́ıćı v časeO(tw(G)2tw(G)·n),
kde tw(G) je stromová š́ı̌rka grafu. (3) Pro každé pevné q plat́ı, že problém lze
vyřešit v lineárńım čase na grafech s omezenou klikovou š́ı̌rkou. Také posky-
tujeme jednoduchou implementaci algoritmu parametrizovaného vrcholovým
pokryt́ım grafu v jazyce C++ a vyhodnotili jsme výkonnost implementace.

Kĺıčová slova Rozděleńı na indukované hvězdy, Exaktńı algoritmus, FPT,
Vrcholové pokryt́ı, Stromová š́ı̌rka, Kliková š́ı̌rka
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Chapter 1
Introduction

Graph partitioning is a widely studied topic in the field of computer science.
To give some examples, partitioning a graph into k independent sets can be
seen as finding a k-coloring of the graph and partitioning a graph into k stars
(not necessarily induced) can be tied to the well known dominating set
problem.

Consider the following team formation problem that was introduced in [3]:
Assume that we have a number of agents. Our goal is to form at most q
teams, such that each team contains at least one agent sharing information
with every other team member. This problem can be modeled as partitioning
G into q stars.

Another reason why one would want to study the problem of partitioning
a graph into stars is that the problem can solve optimal shift scheduling of
pharmacies [4].

In this work, we consider a variation on the partitioning problem called
Induced Star Partition, where we want to partition the graph into q
induced star. The main result that sparked our interest is that the problem is
NP-complete for all fixed q ≥ 3 [1]. Other known results will be discussed in
Chapter 3 but our main concern is that there is no efficient exact algorithm
for the problem.

In this thesis, we apply techniques and known results from the parameter-
ized complexity theory on the problem and present the following results: (1)
The problem is FPT when parameterized by the vertex cover number of the
graph and there is an exact O(k2k+1n2) time algorithm, where k is the vertex
cover number of the input graph. (2) The problem is FPT when parameterized
by the treewidth of the graph and there is an exact O(tw(G)2tw(G) · n) time
algorithm, where tw(G) is the treewidth of the input graph. (3) For a fixed q,
the problem can be solved linear time on graphs with bounded cliquewidth.

The structure of the thesis is as follows: In Chapter 2 we give a brief
overview of the notation, definitions and techniques that will be used in this
work. In Chapter 4 and Chapter 5 we present the algorithm parameterized
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1. Introduction

by vertex cover and treewidth, respectively, and give proof of correctness for
the algorithms.

The implementation of the algorithm parameterized by vertex cover will
be discussed in Chapter 6. We not only describe the choices made during the
implementation but also present experimental results.
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Chapter 2
Preliminaries

In this chapter we give an overview of the notations, definitions, and techniques
that will be used in this thesis. We first start with basic definitions and
notation of graphs. Afterwards, we formally define the problem that we will
be working on in this thesis. Finally, we describe the parameterized complexity
tools that were used in our algorithms.

2.1 Graph notation

We define a graph G as an ordered pair (V,E) where V is a set of vertices and
E is a set of edges. We define V (G) as the vertices of a graph G and often, if it
is clear which graph we refer to, we simply use V . Similarly, we use E instead
of E(G) when the context is clear. For an undirected graph G = (V,E) we
define all edges e = {u, v} ∈ E to be an unordered pair of vertices u, v ∈ V .
For a directed graph G = (V,E) we define all edges e = (u, v) ∈ E to be
an ordered pair of vertices u, v ∈ V . All graphs considered in this thesis are
simple and finite, which means a graph does not have more than one edge
between two vertices (multiedges), there are no edges that start and end at
the same vertex (self loops) and V is a nonempty finite set. Often we will be
working with an undirected graph G, thus we will simply refer to it as graph
G. We use the standard notation of n denoting the size of V (G) and m is the
number of edges in E(G).

Let A ⊆ V (G) be a set of vertices of a graph G, then a graph G[A] =
(A,E′) denotes an induced subgraph of G such that for each u, v ∈ A it holds
that {u, v} ∈ E(G) if and only if {u, v} ∈ E(G[A]).

Let B ⊆ V (G) be a set of vertices of a graph G, then G− B = G[V \ B].
If B = {v}, then we also use G− v instead of G− {v}.

We denote NG(v) as the neighborhood of vertex v ∈ V in an undirected
graph G, which means NG(v) = {u ∈ V (G) | {u, v} ∈ E(G)}. We also define
neighborhood for a set: Let S ⊆ V (G), then NG(S) = ∪v∈SNG(v). We define
the degree of a vertex v as the number of adjacent vertices to v and we denote
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2. Preliminaries

this value as degG(v) = |NG(v)|. If vertex v has degG(v) = 1, then we call v
a leaf vertex. If degG(v) = 0 then v is an isolated vertex.

Let k be a positive integer, then [k] denotes a set of integers {1, . . . , k}.
We call a family of sets P = (P1, . . . , Pk) a partitioning of a set V if and only
if the following conditions hold:

1. ∀i, j ∈ [k] : i 6= j =⇒ Pi ∩ Pj = ∅,

2. ⋃k
i=1 Pi = V ,

3. ∅ /∈ P .

We call a set I ⊆ V an independent set if for all pairs u, v ∈ I it holds
that {u, v} /∈ E. For simplicity sake we call a set I independent if I is an
independent set. A graph G is defined to be bipartite if V can be partitioned
into two sets (A,B), such that both A and B are independent and for all
edges e = {u, v} ∈ E(G) it holds u ∈ A, v ∈ B, or u ∈ B, v ∈ A. Let Km,n

denote a complete bipartite graph with partitions (A,B) such that both A
and B are independent sets of sizes m and n, respectively, and for every pair
u ∈ A, v ∈ B it holds that {u, v} ∈ E(Km,n).

We define a path Pi in a graph G as a sequence of vertices (v1, . . . , vi+1)
such that for each j ∈ [i] it holds that {vj , vj+1} ∈ E(G) and no edges repeat
on the path. A path Pi has i vertices and the length of the path is i− 1 (the
number of edges). Often, we will use the symbol Pi as a set of a partitioning,
thus to denote a path in graph, we will explicitly refer to it as a path to avoid
ambiguity. The distance between two vertices u, v ∈ V (G) is defined as the
length of the shortest path between u, v.

We call a graph G a star if G is isomorphic to K1,r for r ≥ 0.

2.2 Problem Definition

The main problem that we will be solving in this thesis is the Induced Star
Partition problem. In this section, we only define the problem. Other
known results will be discussed in Chapter 3. We refer to [1] for the problem
definition.

Definition 2.1. Let G = (V,E) be an undirected graph, an induced star
partition is a partition S = (S1, . . . , Sq) of V (G) such that for each i ∈ [q] the
graph G[Si] is isomorphic to a star.

We say that G admits an induced star partition S of size q if and only
if V (G) can be partitioned into q sets (S1, . . . , Sq) and each set Si induces a
star.

Definition 2.2. The minimum q for which a graph G admits an induced star
partition of size q is called the induced star partition number.

4



2.3. Parameterized Complexity

In [1], the authors presented three associated computational problems:
Induced q-star partition

Instance: A graph G.
Goal: Decide whether G admit an induced star partition of size

q?

Induced star partition
Instance: A graph G and a positive integer q.

Goal: Decide whether G admit an induced star partition of size
q?

Min Induced star partition
Instance: A graph G.

Goal: Find the minimum q for which G admits an induced q-
star partition.

Often not only do we want to find the induced star partition number but
we also want to find the partition S. The pair (Sc

i , S
`
i ) partitions the i-th star

Si in S with a set of centers Sc
i and a set of leaves S`

i . We require the following
conditions:

1. S`
i is independent,

2. |Sc
i | = 1,

3. S`
i ⊆ NG(Sc

i ).

2.3 Parameterized Complexity

One of the main results presented in [1] that sparked our interest is that
the Induced Star Partition problem is NP-complete1 for each q ≥ 3.
One of our main concerns is that there is no known exact polynomial-time
algorithm for NP-complete problems. For Induced Star Partition, there
is a 2nnO(1) time and exponential space algorithm and an exact 3nnO(1) time
and polynomial space algorithm [1, 2].

As we can see, the running time of the previously known exact algorithms
grow exponentially with the number of vertices n. Parameterized approach
to solving problems allows us to extract more information from the problem
using parameters. Usually, such an approach allows us to be more precise
with the analysis or design more efficient algorithms and therefore limit the
exponential factor not with n but by some function related to the parameter.

1Refer to [5] for the definition of NP-complete problems and the implication of compu-
tational complexity of such problems.
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2. Preliminaries

Let us give the precise definitions and a brief overview of techniques used to
analyze problems when a parameter is present. All definitions presented in
this section can be found in [6, 7]. Refer to these books for exact details and
more.

Definition 2.3. A parameterized problem is a language L ⊆ Σ∗×N, where Σ
is fixed, finite alphabet. For an instance (x, k) ∈ Σ∗, k is called the parameter.

Definition 2.4. A parameterized problem L is called fixed-parameter tractable
(FPT) if there exists an algorithm A, a computable function f : N→ N, and a
constant c such that, given (x, k) ∈ Σ∗×N, the algorithm A correctly decides
whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|c. The complexity class
containing all fixed-parameter tractable problems is called FPT.

One of most widely used techniques for parameterized complexity is pre-
processing graphs using reduction rules. The goal is to a set of design algo-
rithms to remove, in some way, uninteresting parts of the graph that can be
solved very quickly. Reduction rules allow us to simplify the graph and shrink
the size of the instance.

Definition 2.5. We say that two instances of Q are equivalent if (I, k) ∈ Q
if and only if (I ′, k′) ∈ Q. A reduction rule for a parameterized problem Q
is a function ϕ that maps an instance (I, k) ∈ Q to an equivalent instance
(I ′, k′) ∈ Q such that ϕ is computable in time polynomial in |I| and |k|.

The whole framework heavily relies on the used parameter and the tech-
niques and known algorithms rely on the choice of parameter. There are
many kind of parameters, such as the size of the solution, structural parame-
ters (vertex cover, treewidth, maximum degree, . . .) or a combination of them.
In this thesis, we will be mainly working with two very important structural
parameters: vertex cover and treewidth.

2.3.1 Vertex cover

Definition 2.6. Let G = (V,E) be a an undirected graph. We call a set
C ⊆ V (G) a vertex cover of G if and only if for each edge e = {u, v} ∈ E(G)
it holds that u ∈ C or v ∈ C.

We call a C a minimum vertex cover if there is no vertex cover C ′ such
that |C ′| < |C|. For graph G we define k the vertex cover number if the size
of minimum vertex cover equals k.

Vertex cover is an essential parameter of graphs and many results are
known for finding the vertex cover of graphs. The problem of finding a min-
imum vertex cover is NP-complete [8] but FPT when parameterized by the
solution size [6]. To the best of our knowledge, the problem has an exact
O(1.2738k + kn) time algorithm [9].

6



2.3. Parameterized Complexity

The graph G \ C has no edges and we will be exploiting this property to
design our algorithm in Section 4.4.

2.3.2 Treewidth

Treewidth is another structural parameter that is often used in parameterized
algorithms. In order to define treewidth, we need to first introduce the concept
of tree decomposition as defined in [6].

Definition 2.7. Let G be an undirected graph. A tree decomposition of
G is a pair T = (T, {Xt}t∈V (T )), where T is a tree whose every node t is
assigned a vertex subset Xt ⊆ V (G), called a bag, such that the following
three conditions hold:

1. ⋃t∈V (T )Xt = V (G).

2. For every {u, v} ∈ E(G), there exists a node t of T such that bag Xt

contains both u and v.

3. For every u ∈ V (G), the set Tu = {t ∈ V (T ) | u ∈ Xt} induces a
connected subtree of T .

Definition 2.8. The width of tree decomposition T = (T, {Xt}t∈V (T )) equals
maxt∈V (T ) |Xt| − 1.

Definition 2.9. The treewidth of a graph G is the minimum possible width
of a tree decomposition of G.

Algorithms based on using tree decomposition usually operate on a nice
tree decomposition, thus we also define it the same way as in [6].

Definition 2.10. A rooted tree decomposition (T, {Xt}t∈V (T )) with root r is
called nice if the following conditions are satisfied:

1. Xr = ∅ and X` = ∅ for every leaf ` of T .

2. Every non-leaf node of T is of one of the following three types:

Introduce node: a node t with exactly one child t′ such that Xt =
Xt′ ∪ {v} for some vertex v /∈ Xt′ ; we say that v is introduced at t.

Forget node: a node t with exactly one child t′ such that Xt = Xt′\{v}
for some vertex v ∈ Xt′ ; we say that v is forgotten at t.

Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2 .

We use Vt to denote the union of all bags Xt′ such that t′ is a node in the
subtree rooted at t. Notice that Vr = V (G). We also use Gt to denote the
graph G[Vt].

The following lemma allows us to compute a nice tree decomposition when
only a tree decomposition is given.

7



2. Preliminaries

Lemma 2.1. If a graph G admits a tree decomposition of width at most k,
then it also admits a nice tree decomposition of width at most k. Moreover,
given a tree decomposition T = (T, {Xt}t∈V (T )) of G of width at most k, one
can in time O(k2 ·max(|V (T )|, |V (G)|)) compute a nice tree decomposition of
G of width at most k that has at most O(k|V (G)|) nodes.

Now we formulate the following lemma that will be pivotal for the proof
of correctness of the algorithm presented in Section 5.2.

Lemma 2.2. Let T be a tree decomposition of graph G and {a, b} be an
edge of T . The forest T − ab obtained from T by deleting edge {a, b} consists
of two connected components Ta (containing a) and Tb (containing b). Let
A = ⋃

t∈V (Ta)Xt and B = ⋃
t∈V (Tb)Xt. Then A ∩ B ⊆ Xa ∩Xb and there is

no edge between (A \B) and (B \A) in G.
We call (A,B) a separation of G with separator Xa ∩Xb.

Let us also formulate a lemma that will be useful for the time complexity
analysis.

Lemma 2.3. Let T be a tree decomposition of a graph G with width at
most k. It is possible to construct a data structure in time kO(1)n that allows
performing adjacency queries in time O(k).

2.3.3 Cliquewidth

Another parameter that will be used in this thesis is called cliquewidth.

Definition 2.11 (Downey, Fellows [7]). Let G be an undirected graph. The
smallest number of colors needed to construct G using the following operations
is called cliquewidth of G.

1. ∅i: create a vertex with color i;

2. join(i, j) : add edge between all vertices of color i and j;

3. (i→ j) : recolor all vertices of color i to color j;

4. ⊔: take a disjoint union of G1 and G2.

This parameter can capture the structural complexity of the graph and
generalizes the treewidth parameter. It has been proven that graphs with
bounded treewidth also have bounded cliquewidth [10].

8



2.4. Flow network

2.3.4 Courcelle’s theorem

Courcelle’s theorem is a frequently used tool to prove that a problem is FPT
when parameterized by treewidth. The precise syntax and semantics of the
formula used in Courcelle’s theorem is fully described in [6, 7]. We only provide
a high level intuition of the theorem and the language used in the theorem
and a brief syntax description.

Definition 2.12 (Downey, Fellows [7]). MSO2—Monadic second-order logic
is a fragment of second-order logic used in order to describe graphs using logic
formulae. The syntax uses

1. logical connectives ∧,∨,¬,

2. variables for vertices, edges, sets of vertices, and sets of edges,

3. quantifiers ∀,∃ that can be applied to variables,

4. binary relations:

a) u ∈ V where u is a vertex variable and V is a vertex-set variable,
b) e ∈ E where e is an edge variable and E is an edge-set variable,
c) inc(e, u), interpreted as edge e is incident on vertex u,
d) adj(u, v) interpreted as vertices u, v are adjacent,
e) equality for variables of same type.

Theorem 2.1 (Courcelle [11]). Assume that ϕ is a formula of MSO2 and
G is an n-vertex graph equipped with evaluation of all free variables of ϕ.
Suppose, moreover, that a tree decomposition of G of width t is provided.
Then there exists an algorithm that verifies whether ϕ is satisfied in G in time
f(||ϕ||, t) · n, for some computable function f .

This meta-theorem will play an essential role proving that our problem
is FPT when parameterized by treewidth. If the problem can be formulated
using MSO2, then the problem can be solved in linear time on graphs with
bounded treewidth.

Furthermore, if the problem does not use quantifiers over sets of edges, then
the formulae is MSO1 and Courcelle et al. [12] proved that such problems can
be solved in linear time on graphs with bounded cliquewidth if a construction
sequence is given.

2.4 Flow network

In this section, we define a flow network in a similar way as in [13]. The
maximum flow algorithm will play an essential role in our algorithm for the
Induced Star Partition problem which will be described in Section 4.4.

9



2. Preliminaries

Definition 2.13. Let N = (V,E) be a directed graph in which each edge
(u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0. Let s ∈ V be a source
vertex and t ∈ V be a target vertex. Then we call an ordered set (N, s, t, c) a
flow network.

Definition 2.14. Let (N, s, t, c) be a flow network. A flow function (or simply
flow) is any function f : E → R+

0 satisfying the following conditions:

• ∀e ∈ E : 0 ≤ f(e) ≤ c(e),

• ∀v ∈ V \ {s, t} : ∑
(x,v)∈E

f(x, v) =
∑

(v,x)∈E

f(v, x).

We call f an integer flow if f is a flow and for each edge e ∈ E it holds
that f(e) ∈ N0.

Definition 2.15. Let f be a flow function, then |f | denotes the value (also
can be called weight) of the flow and

|f | =
∑

(s,x)∈E

f(s, x)−
∑

(x,s)∈E

f(x, s).

For a given network, we define the following problem.

Max flow
Instance: A network (N, s, t, c).

Goal: A flow f such that |f | is maximal.

The famous Ford-Fulkerson’s algorithm [14] proves that this problem can
be solved in polynomial time when all edges of the network have rational
capacity. Edmons-Karp [15] extended these results and showed that the max
flow problem can be solved in O(nm2) time.

Another theorem that will be used in the thesis is about integer flows.

Theorem 2.2. If all edges in a flow network have integer capacity, then there
is a maximum flow f such that for all edges e it holds that f(e) is also an
integer.

Proof. The famous min-cut max-flow theorem [13] shows that the weight of
maximum flow |f | is an integer. Edmons-Karp’s algorithm [15] on such net-
work will improve in each iteration the flow on edges of an augmenting path
by an integer amount, thus the final flow f will also have integer flow on each
edge.

10



Chapter 3
Known Results

In this chapter we give a brief overview of known results for Induced Star
Partition and its variants. We first start with hardness theorems for the
problem on different classes of graphs, then move on to approximation schemes
for the problem and then explore parameterized results. Afterwards we inves-
tigate other relaxed versions of the problem.

In [1] the authors studied a variant of a partitioning problem called In-
duced q-Star Partition which asked if G admits an induced star partition
of size q. The main result that sparked our interest in the parameterized com-
plexity analysis is that the problem is NP-complete when the graph is K4-free
and the number of stars is at least 3.

Theorem 3.1 (Shalu et al. [1]). For each fixed q ≥ 3, the Induced q-Star
Partition problem is NP-complete for K4-free graphs.

Proof. Idea: The authors showed that Induced 3-Star Partition is NP-
complete using reduction from 3-Coloring of triangle-free graphs to
Induced 3-Star Partition. Then, for q ≥ 4 a polynomial time reduction
from Induced q-Star Partition to Induced 3-Star Partition can be
constructed by adding q − 3 isolated vertices.

The theorem shows hardness of the problem for q ≥ 3, but when the
number of partitions is at most 2, the problem can be solved in polynomial
time [1].

Theorem 3.2 (Shalu et al. [1]). There is a polynomial time algorithm to
decide whether a graph can be partitioned into at most 2 induced stars.

Proof. Idea: We can check if G is a star in polynomial time and verify if q = 1.
To check if G can be partitioned into 2 stars, we exhaustively consider all pairs
of vertices x, y ∈ V (G) and set them as centers of each star respectively. Then,
we try to partition V (G) \ {x, y} into two sets (A,B) such that G[A ∪ B] is

11



3. Known Results

bipartite and A ⊆ NG(x) and B ⊆ NG(y). If we succeed to partition the
vertices, then (Sc

1, S
`
1) = ({x}, A) and (Sc

2, S
`
2) = ({y}, B) induce a star.

The technical condition of G being K4-free stems from the fact that if G
is K3-free (G does not have a triangle as subgraph), then the problem of par-
titioning the graph into q induced stars is equivalent to finding a dominating
set of size q in a triangle free graph [1].

Lemma 3.1. Let G be K3-free, then G admits an induced star partition of
size q if and only if the G has a dominating set of size q.

Proof. A dominating set D ⊆ V is such a set that for every v ∈ V it holds that
either v is in D or one of neighbours of v is in D. The graph G is triangle-free,
thus for all v ∈ V it holds that NG(v) is an independent set.

Suppose we have a dominating set D = {d1, . . . , dq} of size q, then we set
centers Sc

i = di for i ∈ [q]. Each vertex v ∈ V \ D has at least one of its
neighbours in D, therefore we can assign v to at least one star.

If we have an induced star partition S of G and |S| = q, then the set
D = ⋃q

i=1 S
c
i is trivially a dominating set, as every vertex is either a center,

or a leaf vertex that is adjacent to a center vertex.

As we can see, the problem is closely related to the dominating set
problem and known results for dominating set can be applied to show some
of the results that will be mentioned in this chapter.

We first return to the NP-hardness of the problem and summarize all
classes of graphs for which such results are known. The decision version of the
Induced Star Partition problem is NP-complete for the following classes
of graphs:

• chordal bipartite graphs [16],

• (C4, . . . , C2t)-free bipartite graphs for every fixed t ≥ 2 [17],

• subcubic bipartite planar graphs [1],

• line graphs [1],

• K1,5-free split graphs [1],

• co-tripartite graphs [1].

The problem is NP-complete, thus we do not expect a polynomial-time de-
terministic algorithm to exist unless P=NP. There are some known exponential-
time exact algorithms for the problem using standard set partitioning tech-
niques: there is an exact 3nnO(1) time and polynomial space algorithm and
an exact 2nnO(1) time and exponential space algorithm [1, 2].

For the following classes of graphs, a polynomial algorithm is known:

12



• trees [18],

• convex bipartite graphs [19],

• cluster graphs [1],

• K1,2-free graphs [1].

In practice, computing the exact optimum of an NP-complete problem
can be very time consuming, thus we often use an approximation of the actual
optimal solution instead. In [1] the authors also studied a variant of the
problem called Min Induced Star Partition and gave the following results.

Theorem 3.3 (Shalu et al. [1]). It is NP-hard to approximate Min Induced
Star Partition to within n

1
2−ε for all ε > 0.

Theorem 3.4 (Shalu et al. [1]). The Min Induced Star Partition problem
has a polynomial time r

2 -approximation algorithm for K1,r-free graphs, where
r ≥ 2.

The Theorem 3.4 also implies that there is a 1.5-approximation algorithm
for line graphs and co-bipartite graphs [1].

Theorem 3.5 (Shalu et al. [1]). The Min Induced Star Partition problem
has a polynomial time 2-approximation algorithm for split graphs.

For triangle free graphs we can apply known results for dominating set
and the following results for Min Induced Star Partition can be obtained:

• there is a greedy algorithm that can compute a O(logn)-approximation
[20],

• there exists a constant c > 0 such that the problem has no c logn-
approximation algorithm unless P=NP [21],

• let ∆ be the maximum degree, then there is a (∆ + 1)-approximation
algorithm [22],

We now move on to the parameterized complexity analysis. From the
parameterized complexity point of view, the problem is W[2]-complete for
bipartite graphs and FPT for graphs of girth at least five when parameter-
ized by the number of induced stars in the partition [23]. To the best of
our knowledge, no other results are known for the problem from the param-
eterized complexity point of view and there seem to be no mention of exact
parameterized algorithms using vertex cover or treewidth.

So far, we have only analyzed the problem when each set in partition S of
G is an induced stars. In [24] the authors analyzed a similar problem called
Constrained Star Partition Problem (CStarP)

13



3. Known Results

CStarP
Instance: A graph G and a positive integer q.

Goal: A star partition of cardinality q.

A star partition is a partition A = (A1, . . . , Aq) of G such that for all i ∈ [q]
it holds that |Ai| ≥ 2 and G[Ai] contains a spanning star (a star as subgraph
that covers all vertices Si). Compared to our problem, the set Ai cannot be of
size one and furthermore, Ai does not have to induce a star—G[Ai] just has
to contain a star as a subgraph.

The main results for CStarP is that it is NP-complete, but a star partition
of size q can be found in polynomial time on graphs with bounded treewidth
and in O(|V |2) time on trees [24]. Unfortunately, there are no known results
of applying these results on the Induced Star Partition problem and to
the best of our knowledge, the proof cannot be easily modified for Induced
Star Partition.

In [3], the authors studied the problem of partitioning the graph into k
mutually disjoint sets of almost same size and such that each set contains a
star (does not have to be induced) for subclasses of perfect graphs.

A more generalized problem called Partition Into H has also been stud-
ied in the past. For a fixed graph H, the question is whether a graph G can
be partitioned into mutually disjoint sets of the same size and such that each
set induces the graph H. This problem has been proven to be NP-complete
for any fixed graph H on at least 3 vertices [25], but has a polynomial time
algorithm for H ≈ K2 [26]. From the parameterized complexity point of view,
it has been proven that for any fixed connected graph H, the Partition Into
H problem can be expressed in an MSO2 formula, therefore it is FPT when
parameterized by treewidth [27].
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Chapter 4
Algorithm parameterized by

vertex cover

In this chapter, we prove that Induced Star Partition is FPT when pa-
rameterized by the vertex cover number of the input graph. We first show a
simple reduction rule for the problem and then show that the parameter q, the
induced star partition number, can be bounded by the vertex cover number.
Then, we show a negative result — it is not possible to design an algorithm
that would first choose the centers of the stars from a vertex cover and then
partition the leaf vertices. Finally, we present an O(k2k+1n2) time algorithm
for the problem and then provide proof of correctness of the algorithm.

4.1 Reduction rule and bounds

Let G = (V,E) be an input graph with |V (G)| = n vertices and q be the
number of stars we want to partition the graph G into. Let C ⊆ V (G) be a
minimum vertex cover of G and |C| = k be the vertex cover number. Also
assume that C was given on the input together with G and q for simplicity.
If the vertex cover is not given, there is an algorithm that can compute C in
O(1.2738k + kn) time [9].

We first introduce a reduction rule that can deal with isolated vertices
(vertex with degG(v) = 0) in G.

Reduction rule 1. If G contains an isolated vertex v, delete v from G. The
new instance is I ′ = (G− v, q − 1).

Observation 4.1. Reduction rule 1 is correct. Vertex v has to be part of
some star in a partitioning. Vertex v has no neighbours, thus it cannot be a
leaf vertex and has to induce a center by itself.
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4. Algorithm parameterized by vertex cover

Theorem 4.1. Let (G, q) be an input instance such that Reduction rule 1 is
not applicable to (G, q) and k be the vertex cover number of G. If q ≥ k, then
(G, q) is a YES-instance.

Proof. Let C = {c1, . . . ck} be the minimum vertex cover of G and k be its
size. We then construct a partition S = (S1, . . . , Ss) of V (G) such that each
Si ∈ S induces a star. Let each Si be a union of the set containing the center
Sc

i 6= ∅ and the set of leaves S`
i .

We first select an arbitrary subset A = {a1, . . . , aq−k} ⊆ (V \ C) of size
q − k. For each star Si+k , where i ≤ q − k, we set (Sc

i+k, S
`
i+k) = ({ai}, ∅).

Each of the set created this way trivially induces a star with 1 vertex.
Now we construct the other k stars in the following way. For i ≤ k, we set

the center Sc
i = {ci}. We know that V \C is an independent set and for each

vertex v ∈ (V \ C) there is an adjacent vertex from C because there are no
isolated vertices. Thus for the rest of unused vertices in V \ (A∪C), we select
any of its adjacent vertex ci ∈ C and add it to S`

i . We claim that each Si

then induces a star. Each Si has a defined center Sc
i , therefore it is not empty.

Furthermore, the leaves S`
i is a subset NG(Sc

i ) as described in the construction.
Finally S`

i indeed is an independent set because S`
i ⊆ (V \ C).

Using Theorem 4.1, we can bound the value q by the vertex cover number
in our algorithm. Whenever an instance where q ≥ k is given on the input, we
construct a solution as described in the proof of Theorem 4.1. Let us assume
from now on that q < k.

4.2 Vertex cover and center of stars

We further explore this technique of setting the center of the star Si as one of
the vertices from the given vertex cover. One might assume that there could
exist an algorithm that would first find the centers of the stars in the vertex
cover and then partition the rest of the vertices as leaf vertices. The following
theorem proves that the idea does not work.

Theorem 4.2. There exists a family of graphs G such that for every q ≥ 3
there exists a graph Gq ∈ G with star partition number q such that for every
possible induced star partition S of size q and for every minimum vertex
cover C of Gq, there exists a star Si ∈ S such that Sc

i ∩ C = ∅.

We first describe a small gadget that we will use in the construction of Gq.

Definition 4.1. Let Rn be a graph on n = |V (Rn)| ≥ 4 vertices. Let us label
two special vertices a, b ∈ V (Rn). The gadget R has the following edges:

1. {a, b} ∈ E(Rn),

2. ∀u ∈ (V (Rn) \ {a, b}) : {a, u} ∈ E(Rn) ∧ {b, u} ∈ E(Rn).
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4.2. Vertex cover and center of stars

a b

1 2 3 4 5

Figure 4.1: Gadget R7 with 7 vertices.

An example of the gadget R7 with 7 vertices is shown in Figure 4.1.

Observation 4.2. The set V (Rn) \ {a, b} is an independent set.

Lemma 4.1. For every n ≥ 4, the vertex cover number of Rn is 2 and the
only minimum vertex cover of Rn is {a, b}.

Proof. We know that a ∈ V (Rn) is adjacent to b ∈ V (Rn), therefore a or b
has to be part of the vertex cover. Without loss of generality assume that
a ∈ C. The edges {b, u} for u ∈ V (Rn) \ {a, b} also have to be covered and
only one vertex from V (Rn) \ {a, b} cannot cover all n− 2 ≥ 4− 2 = 2 edges.
Thus b is also part of the minimum vertex cover.

Lemma 4.2. For every n ≥ 4, the induced star partition number of Rn is 2.

Proof. The graph Rn contains a triangle, therefore it is not isomorphic to
a star and the induced star partition number is at least 2. We now show
that R can be partitioned into 2 sets such that each set induces a star. Let
(Sc

1, S
`
1) = ({a}, V (R) \ {a, b}) and (Sc

2, S
`
2) = ({b}, ∅). The set S2 induces

a star with 1 vertex. The set V (R) \ {a, b} is independent and each vertex
u ∈ V (R)\{a, b} is adjacent to a as defined by the construction. Thus S1 also
induces a star.

We proceed to show the proof for Theorem 4.2.

Proof. To construct Gq, we take a disjoin union of q − 1 previously described
gadgets Rn for n ≥ 2 and add a new special vertex v. We also add edge {v, bi}
for every gadget (meaning we add q− 1 edges) where bi is the special vertex b
from i-th gadget Rn

i . An example of graph Gq for q = 4 is shown in Figure 4.2.
We claim that the induced star partition number of Gq is exactly q and

that the only possible way to partition Gq into q stars is in the following
way. For each i ∈ [q − 1] we have a star (Sc

i , S
`
i ) = ({ai}, V (Rn

i ) \ {ai, bi}) as
in the proof of Lemma 4.2. The last star is (Sc

q , S
`
q) = ({v}, {b1, . . . , bq−1}).

The set S`
q is trivially an independent set and each bi is adjacent to v by the

construction. This proves that the induced star partition number of G is at
most q.

17



4. Algorithm parameterized by vertex cover

v

a1 b1 a2 b2 a3 b3

Figure 4.2: Graph G4 consisting of 3 gadgets R6 and a special vertex v. All
edges of G4 are represented either as dashed or solid line. Solid lines show
induced edges of star Si. Dashed lines represent edges between two different
stars.

Assume towards a contradiction that there is another star partitioning Ŝ
of size ŝ ≤ q. The vertex v has to be part of some set Ŝi ∈ Ŝ because Ŝ is a
partitioning. Without loss of generality assume that i = 1. We distinguish 2
cases, either v ∈ Ŝ`

1 or v ∈ Ŝc
1.

First, assume that v ∈ Ŝc
1 is the center of star Ŝ1. Vertex v is adjacent

only to vertices bi, thus Ŝ`
1 ⊆ {b1, . . . , bq−1}. The graph G − Ŝ1 has q − 1

components, therefore at least q − 1 sets are needed to partition G− Ŝ1 into
induced stars and |Ŝ| ≥ 1 + (q − 1) = q. Assume that there is an index
i ∈ [q− 1] such that bi /∈ Ŝ1. Then the gadget Rn

i is unchanged in G− Ŝ1 and
two sets are needed to cover the gadget. This would imply that |Ŝ| > q and Ŝ
is not minimal. We can conclude that Ŝ`

1 = {b1, . . . , bq−1}. The graph G− Ŝ1
therefore is a union of q− 1 stars. We assumed that n ≥ 4 in each gadget Rn

i ,
thus the center is unambiguously ai and the set of leaves is V (Rn

i ) \ {ai, bi}.
This is exactly the construction of S.

Otherwise let us consider the case v ∈ Ŝ`
1 is a leaf vertex of Ŝ1. Then,

one of its neighbours bi is the center of Ŝ1, let it be b1 ∈ V (Rn
1 ). The only

vertices that are adjacent to b1 are (V (Rn
1 ) \ {bi})∪{v} and we conclude that

Ŝ1 ⊆ V (Rn
1 ) ∪ {v}. The subgraph G[V (Rn

1 ) ∪ {v}] is not a star, therefore Ŝ1
could not have covered G[V (Rn

1 ) ∪ {v}]. Then, the graph G− Ŝ1 is a disjoint
union of q − 2 gadgets Rn and part of the gadget Rn

1 that was not covered
by Ŝ1. The induced star partition number of G−Ŝ1 is q′ ≥ 2(q−2)+1: At least
one set is needed to cover Rn

1−(Ŝ1\{v}) and exactly 2(q−2) sets are needed to
cover the q−2 gadgets (refer to Lemma 4.2). Therefore |Ŝ| = q′+1 ≥ 2(q−1).
We also assumed q ≥ 3, which implies that |Ŝ| ≥ 2(q − 1) > q = |S|.

We also claim that C = ⋃q−1
i=1 {ai, bi} is the only minimum vertex cover

of Gq. Every edge e ∈ E(Rn
i ) for i ∈ [q − 1] is covered because {ai, bi} ⊆ C.

Then, the edges incident to the newly added vertex v is also covered because
bi ∈ C for i ∈ [q − 1].
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4.3. Partitioning the vertex cover

Now consider towards a contradiction that there is another vertex cover
C ′ of size |C ′| ≤ |C|. First, if v /∈ C ′, then all bi are part of C ′ because bi

is adjacent to v. Then, the edges {ai, u} for i ∈ Rn
i \ {ai, bi} also need to be

covered. We want C ′ to be minimal, thus ai ∈ C ′, otherwise |NGq (ai)\{bi}| =
|n − 2| > 1 vertices would have to be included instead. This is exactly the
vertex cover C, thus let us now consider v ∈ C ′. The graph G− v is a disjoint
union of q − 1 gadgets and to cover each gadget, 2 vertices are needed as
proven in Lemma 4.1. Thus 1 + 2(q − 1) = |C ′| > |C| = 2(q − 1) and C ′ is a
not a minimum vertex cover.

We showed that the described construction of S is the only way to partition
the graph Gq in to q stars, where q is the induced star partition number of Gq.
We also showed thatGq has only one minimum vertex cover C. We can observe
that v /∈ C and v ∈ Sc

i which concludes the proof that the center does not
have to be in the vertex cover.

The idea of first finding the centers of the stars (not necessarily from vertex
cover) and then partitioning the rest of the vertices into leaves was used to
show that the Induced Star Partition has a polynomial algorithm for each
q ≤ 2 [1]. For q ≥ 3 this idea cannot be simply extended: Let Sc = (⋃q

i=1{Sc
i })

be the union of all centers of each considered choice of q centers. The goal is
to partition the set V (G) \ Sc into at most q sets, each labeled as S`

i , such
that each S`

i is an independent set and S`
i ⊆ NG(Sc

i ). This approach can
be interpreted as finding a proper coloring of V (G) \ C, where each vertex
v ∈ V (G) \ C has a list of candidates (center Sc

i ) that v can be part of. The
list of candidates can be interpreted as a list of available colors for v. In
other words, for each v ∈ V (G) \C we create a list of colors corresponding to
NG(v) ∩ Sc. The standard list coloring problem when parameterized by the
vertex cover number is W [1]-hard [28], thus it is not very prospective to first
find the centers and then partition the leaves.

4.3 Partitioning the vertex cover

We propose an algorithm that can solve the Induced Star Partition prob-
lem in O(k2k+1n2) time when parameterized by the vertex cover number k.
We first give a high level idea, then describe the algorithm and finally give
proof of correctness for the algorithm.

Our algorithm extends the idea of first working with the given vertex cover
C and then match up the rest of the unused vertices V (G)\C. We first try out
all possible partitioning of C into q sets P = (P1, . . . , Pq), then in polynomial
time try to assign each vertex from V \ C to a partial star Pi ⊆ C as a leaf
vertex or as a center. If we are able to assign every vertex from V \ C, then
we have a solution.
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Lemma 4.3. Let G = (V,E) be an input graph without isolated vertices, C
be a vertex cover of G of size k and q be the induced star partition number of
G. Then there exists a induced star partition S = (S1, . . . , Sq) of V (G), such
Si ∩ C 6= ∅ for all i ∈ [q].

Proof. Assume towards a contradiction that for every valid solution S of the
Induced Star Partition problem on G, there is a star Si such that Si∩C =
∅. Let S be an induced star partition with the least number of sets Si that do
not have a vertex from C.

Let’s analyze an arbitrary Si ∈ S such that Si only contains vertices from
V (G) \ C. The set V (G) \ C is an independent set, thus Si can only contain
one vertex from (V (G)\C), otherwise G[Si] would not be connected and could
not induce a star. Let (Sc

i , S
`
i ) = ({v}, ∅). We assumed that the graph G has

no isolated vertices, therefore v is adjacent to some vertices from C. Let us
distinguish the following cases.

1. If there is a vertex u ∈ NG(v) ⊆ C adjacent to v, such that u ∈ S`
j for

some j 6= i and |Sj | ≥ 3, then we remove u from the star Sj and add u to
Si. To be more precise, we create 2 new sets (Ŝc

i , Ŝ
c
i ) = ({u}, {v}) and

(Ŝc
j , Ŝ

`
j) = (Sc

j , S
`
j \{v}). Then we construct Ŝ = (S \{Si, Sj})∪{Ŝi, Ŝj}.

The set Ŝi trivially induces a star K1,1 and intersects C because u ∈ C.
The set Ŝj also induces a star as we just removed a vertex from K1,r

and now we have K1,(r−1). Furthermore G[Si] was a tree on at least 3
vertices, thus it had at least 2 edges and u could have covered only 1
edge (recall u is a leaf vertex in G[Si]). This all implies that (Ŝj∩C) 6= ∅.
The set Ŝ is an induced star partition of G, but has less sets Ŝi that do
not intersect C than S. This is a contradiction with how we chose S.

2. Assume that v is adjacent to some u ∈ C such that u ∈ S`
j for some

j 6= i and |Sj | = 2. Let (Sc
j , S

`
j) = ({w}, {u}). We distinguish the two

following cases:

w /∈ C : We remove Si and create (Ŝc
j , Ŝ

`
j) = ({u}, {w, v}). Both vertices

w and v are not from the vertex cover C so they cannot be adjacent
and Ŝ`

j is independent. Thus Ŝ = (S \ {Si, Sj})∪{Ŝj} is a solution
of size q− 1 which is a contradiction with q being the induced star
partition number.

w ∈ C : We remove u from Sj and add it to Si. To be more precise,
we create 2 new sets (Ŝc

i , Ŝ
`
i ) = ({u}, {v}) and (Ŝc

j , Ŝ
`
j) = ({w}, ∅).

Then we construct Ŝ = (S \{Si, Sj})∪{Ŝi, Ŝj}. Trivially both new
sets induce a star and both sets intersect C. Thus Ŝ has less sets
Ŝi that do not have a vertex from C. This is a contradiction with
how we chose S.
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4.3. Partitioning the vertex cover

3. Finally assume that for every vertex u ∈ NG(v) ⊆ C it holds that
Sc

j = {u} for some j 6= i. Then we any choose an arbitrary u ∈ NG(v)
such that {u} = Sc

j , remove the set Si from S, and move u into S`
j .

Meaning that we construct (Ŝc
j , Ŝ

`
j) = ({u}, S`

j ∪ {v}). Then we set
Ŝ = (S \ {Si, Sj}) ∪ {Ŝj}. The set Ŝj still induces as a star: The set Ŝ`

j

is an independent set because S`
j by assumption was an independent set

and v is not adjacent to any leaf vertex. The set S`
j was by assumption

a subset of NG(u) and v is adjacent also to the center u. We created a
smaller induced star partition Ŝ of size q − 1 which is a contradiction
with q being the induced star partition number of G.

In all three cases we were able to obtain either a smaller induced star partition
or show that there is an induced star partition with less sets not intersecting
vertex cover.

We can conclude that if G can be partitioned into q stars, where q is
the induced star partition number of G, then there exists an induced star
partition S such that each set Si contains some vertices from the vertex cover.
Our algorithm will be looking exactly for this partition S. Notice that our
previous lemma did not require C to be a minimum vertex cover and any (even
not optimal) vertex cover can be used. This means that just an approximation
of the minimum vertex is enough. On the other hand, our algorithm will have
a multiplicative factor of k2k therefore a small vertex cover is highly favorable.

We know now that the idea of first choosing the centers from the vertex
cover does not work, but how is a vertex cover C partitioned within the
induced star partition S? We now proceed with the analysis of S ∩ C.

Let S be a induced star partition of V (G) of size q that satisfies Lemma 4.3.
Let us label P = (P1, . . . , Pq), where for each i ∈ [q] we set Pi = P c

i ∪ P `
i =

Si∩C and (P c
i , P

`
i ) = (Sc

i ∩C, S`
i ∩C). We first analyze the properties each Pi.

Observation 4.3. Each set Pi = Si ∩C is either an independent set or G[Pi]
induces a star.

Lemma 4.4. Let (P c
i , P

`
i ) = (Sc

i ∩ C, S`
i ∩ C) and P c

i = ∅, then |Si \ Pi| = 1.

Proof. We know that P c
i is empty, which means that the center Sc

i is not part
of the vertex cover and NG(Sc

i ) ⊆ C. We also know that S`
i ⊆ NG(Sc

i ) ⊆ C,
thus P `

i = S`
i ∩ C = S`

i . Then, we have the following equality: |Si \ Pi| =
|Sc

i | = 1.

Observation 4.4. Let (P c
i , P

`
i ) = (Sc

i ∩C, S`
i ∩C) and P c

i 6= ∅, then (Si\Pi) ⊆
S`

i .

Lemma 4.5. Let Pi = Si ∩C. Then, the set Si \ Pi cannot contain both the
center vertex and a leaf vertex of Si.
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4. Algorithm parameterized by vertex cover

Proof. We know that (Si \ Pi) ⊆ (V (G) \ C), thus Si \ Pi is an independent
set. If Si \ Pi contained both the center and a leaf vertex, then there would
be an edge that is not covered by C.

As we can see, there are two main cases that can occur for Pi = Si ∩C. If
Pi does not contain the center Sc

i , then Pi contains all leaf vertices S`
i and we

have some candidates v ∈ V \C that can be the center (v has to be adjacent to
all leaf vertices). Another case that can occur is Pi contains the center vertex
Sc

i and some leaf vertices from S`
i , then a vertex v ∈ V \C can be added to a

partial star Pi only if v is not adjacent to any leaf vertex and v is adjacent to
the center. With this, we are prepared formally to describe the algorithm.

4.4 The algorithm

Let G = (V,E) be a graph without isolated vertices on n vertices, C be
its vertex cover of size k and q be the star partition number of G. Let
C = {vn−k+1, . . . , vn} be the last k vertices of V (G), meaning (V (G) \ C) =
{v1, . . . , vn−k}.

If q ≥ k, then construct and return a solution as described in the proof of
Theorem 4.1.

Otherwise exhaustively try all sets P = (P1, . . . , Pq) that satisfy the fol-
lowing conditions:

1. P is a partition of C, meaning:

a) ∀i, j ∈ [q] : i 6= j =⇒ Pi ∩ Pj = ∅,
b) ⋃q

i=1 Pi = C,
c) ∅ /∈ P .

2. ∀i ∈ [q] : Pi induces a star or is an independent set, meaning:

a) Pi = P c
i ∪ P `

i and P c
i ∩ P `

i = ∅,
b) P `

i is an independent set,
c) |P c

i | ≤ 1
d) P c

i 6= ∅ =⇒ P `
i ⊆ NG(P c

i ).

Without loss of generality, let the first h sets of P be sets that have P c
i = ∅

and for all i > h let P c
i 6= ∅. Then, with the given P , construct a bipartite

graph B(P ) = (A ∪B,E′) where

• A = {a1, . . . , an−k} = V (G) \ C = {v1, . . . , vn−k},

• B = {b1, . . . , bh+1},

• {ai, bj} ∈ E(B(P )) if and only if
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4.4. The algorithm

– j ∈ [h] and Pj ⊆ NG(vi), or
– j = h + 1 and there exists a set Pj′ ∈ P for j′ > h such that

(P̂ c
j′ , P̂ `

j′) = (P c
j′ , P `

j′ ∪ {vi}) induces a star, meaning vj ∈ NG(P c
j )

and P `
j ∪ {vi} is and independent set.

If |B| ≥ |A| then repeat with another set P ′. The current partitioning P
of C cannot be extended to a solution.

For a given bipartite graph B(P ) = (A ∪ B,E′) construct a flow network
(N, s, t, c) the following way:

1. orient all edges from A to B,

2. add a source vertex s and add directed edges (s, a) for every a ∈ A,

3. add a target vertex t and add directed edges (b, t) for every b ∈ B.

4. set the capacity of (x, y) ∈ E(N) as

c(x, y) =
{
|A| − |B|+ 1 x = bh+1, y = t

1 otherwise

Then, find a integer maximum flow f in N. If |f | < n − k, then repeat
with another P ′. Otherwise that a solution exists.

The solution S = (S1, . . . , Sq) is constructed as follows:

1. for j ∈ [h] : (Sc
j , S

`
j) = ({vi}, P `

j ) where f(ai, bj) = 1,

2. for j > h : (Sc
j , S

`
j) = (P c

j , P
`
j ∪ Xj), where Xj = {vi ∈ V (G) \ C |

f(ai, bh+1) = 1}.

Note that for ai there can be more than one Xj that can contain ai. In
this case leave ai in exactly one set Xj and it does not matter in which one.

4.4.1 Intuition for the algorithm

The intuition of the algorithm is as follows: Once we know how to partition
the vertex cover, we try to assign all other vertices from V (G) \ C to some
partial star Pi. Each set Pi is either missing a center vertex or can accept
new leaf vertices, but both types of vertices (center or leaf vertex) cannot
be added to Pi at the same time (refer to Lemma 4.5). On one hand, each
set Pi that still does not have a center must acquire a new center vertex
from V \ C to complete a star. On the other hand, if P c

i 6= ∅, then Pi can
accept new leaf vertices, but it also does not have to accept any. We want to
capture these constraints and match up all vertices in V \ C to some Pi to
create a partitioning and each Pi either accepts 1 vertex (center vertex) or an
unbounded amount (new leaf vertices).
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s t

a1

1 a2

1

a31

a4

1

a5

1

b1

1b2

1

b3 3

1

1

1

1

1

1

1

1

Figure 4.3: Example of a flow network (N, s, t, c) constructed using a bipartite
graph B(P ), where P is a partition of C and |P | ≥ 3. Vertices v1, . . . , v5 are
not part of the given vertex cover and need to be assigned to a set Pj . Vertex
b3 is the dummy vertex that represents all sets Pj for 2 < j ≤ q that have a
defined center. Vertices b1 and b2 represent sets P1 and P2, respectively, and
both P1 and P2 do not have a defined center. The numbers on edges denote
the capacity c(e).

We then model the constraints as an assignment problem. The capacity
c(s, ai) = 1 models that ai can be assigned to at most one set Pj . For j ∈ [h]
we have the following edges: The edges (ai, bj) of the network model that vi

can be added to a partial star P ′j , the capacities on edges (bj , t) set a bound
on how many vertices Pj can accept. The special vertex bh+1 is a dummy
vertex that encapsulates all the sets Pj that can accept new leaf vertices. The
capacity c(bh+1, t) allows us to model that at most |A|−h vertices can become
new leaf vertices and h vertices must become centers.

An example of a network is shown in Figure 4.3.

4.5 Proof of correctness

In this section, we provide proof of correctness of the algorithm proposed in
Section 4.4.

Theorem 4.3. Let G be an input graph without isolated vertices on n ver-
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4.5. Proof of correctness

tices, C be a vertex cover of G of size k and q be the induced star partition
number of G. Let P = (P1, . . . , Pq) be a partition of C. If the weight of a max-
imum integer flow f in the constructed network (N, s, t, c) equals |f | = n− k,
then G admits an induced star partition of size q.

Proof. The construction of a solution S was described in Section 4.4. We first
prove that S is a partitioning, then we prove that each set Si induces a star.

To prove that S is a partition, we first show that ∅ /∈ S: This is true as for
each j ∈ [q] it holds that Pj 6= ∅ (P is a partition) and Pj ⊆ Sj , thus Sj 6= ∅.
Now we show that each v ∈ V (G) is included in exactly one set Sj .

For each v ∈ C, there indeed exists exactly one set Pj that contains v,
because we assumed that P is a partitioning of C. Each Sj extends Pj with
vertices V (G) \ C, thus v is exactly in one set Sj .

Let f be an integer flow with weight |f | = n− k. The source vertex s has
|A| = n− k outgoing edges, each with capacity c(s, ai) = 1, thus f(s, ai) = 1.
Each vertex ai ∈ A has exactly one incomming edge with flow f(s, ai) =
1, therefore there is exactly one outgoing edge with flow f(ai, bj) = 1 (we
assumed f to be an integer flow). This implies that vi ∈ V \ C is included
at least in one set Sj . If j ≤ h, then only the set Sj contains vi ∈ V (G) \ C.
Else if j = h+ 1, then we made sure that vi is in exactly one set Sj′ such that
h < j′ ≤ q. We can conclude that each vertex v ∈ V (G) \ C is included in
exactly one set Sj . Thus S is partition of V (G).

Now we show that Sj induces a star for all i ∈ [q]. We know that that the
sum of capacities of edges incomming to the target vertex t in the network is
h · 1 + (|A| − |B|+ 1) = h+ ((n− k)− (h+ 1) + 1) = n− k. We assumed that
|f | = n− k, which implies that f(bj , t) = c(bj , t) for all bj ∈ B.

First consider sets Sj for j ∈ [h]. Vertex bj ∈ B has exactly 1 outgoing
edge with capacity c(bj , t) = 1 = f(bj , t), therefore there can be only one
incomming edge with flow f(ai, bj) = 1. We assumed for each j ∈ [h] it holds
that P c

j = ∅ and the edge (ai, bj) is added only if Pj ⊆ NG(ai). This implies
that Pj ∪{ai} induces a star: vertex ai is the center and Pj is the set of leaves
of the star.

Otherwise assume that h < j ≤ q. The set Pj by assumption induces a
star and P c

j 6= ∅. In the construction of Sj , we added Xj as new leaf vertices
to Pj . For each pair u, v ∈ Sj = Pj ∪Xj we prove the following two cases:

u, v ∈ Xj : The set V (G)\C is an independent set, therefore Xj ⊆ (V (G)\C)
is also independent and u, v are not adjacent.

u ∈ Xj , v ∈ Pj : Let u be represented by ai in the network. The edge (ai, bh+1)
is present in the network only if Pi ∪ {u} still induced a star.

To sum it up, the constructed S is indeed a partitioning of V (G) and each
set Si ∈ S also induces a star. Therefore what we constructed in the algorithm
is an induced star partition of size q.
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4. Algorithm parameterized by vertex cover

Theorem 4.4. Let G be an input graph without isolated vertices on n ver-
tices, C be a vertex cover of G of size k and q be the induced star partitioning
number of G. If G admits an induced star partition of size q, then there is a
partition P = (P1, . . . , Pq) of C, such that the value of the maximum integer
flow f in the constructed network (N, s, t, c) equals |f | = n− k.

Proof. Assuming thatG can be partitioned into q stars, then using Lemma 4.3,
let us have a partition S′ of V such that each S′i ∈ S induces a star and
S′i ∩C 6= ∅. Let S be a permutation of S′ such that for the first h sets it holds
that Sc

i ∩ C 6= ∅ and for i such that h < i ≤ q it holds that Sc
i ∩ C = ∅.

For each i ∈ [q] we set Pi = Si∩C. Each vertex v ∈ C is included in exactly
one set Si, thus P = (P1, . . . , Pq) is a partitioning of C. Each Pi ∈ P is trivially
an independent set or induces a star as Pi ⊆ Si. This implies that P is a valid
partitioning of C and we can construct B(P ) and flow network (N, s, t, c)
as described in Section 4.4. The weight of the maximum flow through the
network is at most n− k because ∑(s,x)∈E(N) c(s, e) = |A| = n− k. Therefore
for all flows f it holds that |f | ≤ n− k.

Now we show that an integer flow f with weight |f | = n − k can be
constructed. First, we set f(e) = 0 for all e ∈ E(N). Then, for each vi ∈
V (G) \ C we use the relation vi ∈ Sj to increase the flow along the path
s, ai, y, t by 1 (meaning we set f(e) = f(e) + 1). If j ≤ h, then we use y = bj ,
else if h < j ≤ q, then we use y = bh+1. The set A is of size |V (G)\C| = n−k,
therefore |f | = n− vc.

We now verify that the described function f is a flow. First we prove that
the path s, ai, y, t exists. The edges (s, ai) and (y, t) trivially exist. The set Sj

that contains vi induces a star, therefore we distinguish two cases, vi is either
the center or a leaf vertex.

vi ∈ Sc
j : Vertex vi is not part of the vertex cover, therefore NG(vi) ⊆ C. This
implies that P c

i = Sc
i ∩ C = ∅ and j ≤ h. Vertex vi therefore is one of

the considered candidates for Pj and the edge (ai, bj) indeed exists.

vi ∈ S`
j : We know that all leaf vertices in S`

j are adjacent to the center. Vertex
vi is not part of the vertex cover, therefore the center has to be part of
the vertex cover and it holds that h < j ≤ p. The set Pj ∪ {vi} is just
subset of Sj without some leaf vertices, therefore Pj ∪ {vi} also induces
a star. We can conclude that the edge (ai, bh+1) indeed exists.

Finally we show that f(e) ≤ c(e) for all edges in the network. The set
S is a partitioning of V (G), therefore for each vertex vi ∈ V (G) \ C, there
is exactly one set Sj such that vi ∈ Sj . This implies that the flow going
through ai ∈ A is exactly 1 and f(e) ≤ c(e) for all e ∈ E(N) that have ai

as one of its endpoint. For j ≤ h we use Lemma 4.4 to deduce |Si \ Pi| = 1,
therefore the flow going through bj is exactly 1. We know that h vertices from
V (G) \ C are center vertices, thus the other |A| − h vertices are leaf vertices
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4.5. Proof of correctness

and the flow was increased along a path that contained bh+1. This implies
that f(bh+1, t) = |A| − h = |A| − (|B| − 1) = c(bh+1, t).

We conclude that f is indeed a flow, all values f(e) are integers and also
|f | = n− k.

Theorem 4.5. Let G be an input graph on n vertices, C be a vertex cover
of G of size k and q be the induced star partitioning number of G. Then the
Induced Star Partition problem on G can be solved in O(O(k2k+1n2))
time.

Proof. We first reduce the instance (G, q) using Reduction rule 1 to remove
isolated vertices in O(n) time. Let us assume that G is without isolated
vertices. If q ≥ k then we construct a solution in O(n) time as described in
the proof of Theorem 4.1 or else if q < k, then we try out all partitionings P .
In the latter case, we try at most k2k sets P , each vertex is either a center or
a leaf vertex in one of q < k sets. We construct the adjacency matrix to check
if two vertices in G are adjacent in O(1) time.

Not all partitions P can be used to construct a bipartite graph B(P ), thus
we have to check if each Pi is an independent set or induces a star. For each
Pj ∈ P we check if P `

j is an independent set in O(|Pj |2) time. Furthermore,
if P c

j 6= ∅ then we check in O(|Pj |) time if the leaves are adjacent to the
center. In total, checking each Pi takes O(|Pj |2) time and checking P takes
O(∑q

j=1 |Pj |2) = O(|P |2) = O(k2) time.
Now we analyze the construction of B(P ). For each j ∈ [h], finding all

centers that can be added to Pj can be done in fj = O(|Pj | ·n) time: for each
u ∈ P `

j we mark all of its neighbours, if there is a vertex vi ∈ V \ C that was
marked |Pj | times, then we add the edge (ai, bj) into the constructed bipartite
graph. Across all Pj with j ∈ [h], we get the running time

h∑
j=1

fj = O

n · h∑
j=1
|Pj |

 . (4.1)

For each h < j ≤ q, we try to insert ai ∈ V (G) \ C into Pj and check if
Pj ∪{ai} induces a star in f ′j = O(|Pj |) time: we check that vi is not adjacent
to any leaf vertex in O(|Pj |) time and then check if vi is adjacent to the center
in O(1) time. Across all Pj with h < j ≤ q, we get the running time

q∑
j=h+1

(
|A| · f ′j

)
= O

n q∑
j=h+1

|Pj |

 . (4.2)

The set P is a partitioning of C, therefore ∑q
j=1 |Pj | = |C| = k and we

can conclude that the edges of B(P ) can be constructed in O(kn) time.
The construction of the network can be done in linear time with regards

to the size of B(P ): we copy and orient edges in B(P ), then add two new
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4. Algorithm parameterized by vertex cover

vertices and O(|A|+ |B|) = O(n) new edges. The number of edges in B(P ) is
at most |A| · |B| = O(kn).

Then, finding the maximum flow in the network can be done in O(|A|2 ·
|B|) time. We use Edmons-Karp’s algorithm [15] to construct a maximum
integer flow. If |E(B(P ))| < |A| then we know that a desired flow with
weight |f | = n − k cannot be constructed and we can safely assume that
|E(B(P ))| ≥ |A|. We know that for any flow f it holds that |f | ≤ |A|, thus
the number of iterations is at most O(|A|) because the algorithm improves the
flow at least by 1 in each iteration. Each iteration of Edmons-Karp’s algorithm
consists of finding a shortest augmenting path in O(|V (B(P ))| + |E(B(P ))|)
time and then modifying the flow on edges in O(|E(B(P ))|) time, in total
O(|E(B(P ))|) = O(|A| · |B|) time.

The construction of the solution S can be done in O(kn) time: We copy P
in O(n) time, then for each ai ∈ A we find the edge with flow f(ai, bj) = 1 in
O(degB(P )(ai)) = O(|B|) = O(k) time and add the vertex to the corresponding
set.

The total running time then consists of trying all k2k partitions, for each
P we

1. check if P is valid in O(k2) time,

2. construct B(P ) in O(kn) time,

3. construct the network in O(kn) time,

4. find max flow in the network in O(|A|2 · |B|) = O(n2k) time.

5. construct the solution in O(kn) time.

Thus the running time of the algorithm is O(k2k+1n2) time.

4.5.1 Branch-and-bound method

Part of the algorithm described in Section 4.4 has to generate all partitions P
of C. In our implementation, we used a branch-and-bound method to grad-
ually generate all possible sets P . We start with a set P = (P1, . . . , Pq) =
(∅, . . . , ∅) with q empty sets. Then, we iterate over the vertices in C an insert
one vertex c ∈ C into P at a time. Assume that the first j sets of P are
not empty and for all j < i ≤ q it holds that Pi = ∅. We can try to insert
the vertex c ∈ C either (1) into some nonempty set Pi as center or as a leaf
vertex or (2) into an empty set Pj+1 as new center or as a leaf vertex. In total,
the number of partitions is still O(k2k), but the described recursive method
of generating P allows us to implement some branch-cutting optimizations to
remove some recursive branches that generate invalid partitionings P . The fol-
lowing optimizations were used in the implementation to cut of some recursive
branches:

28



4.5. Proof of correctness

• If we insert c as a leaf vertex into P `
i , then we need to make sure that

– P `
i ∪ {c} is an independent set: meaning we check that c is not

adjacent to any vertex u ∈ P `
i ;

– the distance between c and each vertex u ∈ P `
i is exactly 2;

– if P c
i 6= ∅, then we check that c is adjacent to v ∈ P c

i .

• If we insert c as a center vertex into P c
i , then we check that c is adjacent

to all vertices P `
i .
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Chapter 5
Algorithm on graphs with

bounded treewidth

In this chapter, we prove that there exists a linear time algorithm for the
induced star partition problem on graphs with bounded treewidth. We
will first show that there exists a MSO2 formulation for this problem and as
such, we can use Courcelle’s theorem [11] to show the existence of such an
algorithm. Then we give an explicit dynamic programming algorithm on the
tree decomposition of the graph, which can compute the induced star partition
number in O(k2k · n) time, where k is the treewidth of the graph and n is the
number of vertices.

5.1 MSO2 formulation

Theorem 5.1. For every fixed q, there is an algorithm that decides whether
the input graph G on n vertices, given with its tree decomposition, can be
partitioned into q induced stars in f(k) · n time, where f is some computable
function.

Proof. First, we formulate that a graph H is isomorphic to a star, meaning
H ≈ K1,r for some r ≥ 0, using MSO2. The intuition is as follows: we want
to show, that in H there is a vertex u, such that u is adjacent to every other
vertex V (H) \ {u}. This special vertex u is the center of the star. Following
that, we want that every pair of vertices in V (H) \ {u} to not be adjacent.
This implies that V (H) \ {u} is an independent set. These two properties are
enough to fully characterize a star K1,r.

Star(V ) ≡(∃u ∈ V )((∀v ∈ V )(u 6= v =⇒ adj(u, v))
∧ (∀v, w ∈ V )(v 6= w ∧ v 6= u ∧ w 6= u =⇒ ¬adj(v, w)))

(5.1)
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5. Algorithm on graphs with bounded treewidth

We want to partition all vertices of the input graph G into sets of vertices
so that sets are pairwise disjoint, the union of sets contains all vertices of the
graph, and each set induces a star.

(∃S1, S2, . . . Sq ⊆ V )(disjoint(S1, S2, . . . Sq)) ∧ (union(S1, S2, . . . , Sq))
=⇒ S(S1) ∧ S(S2) ∧ . . . ∧ S(Sq)

(5.2)

The disjoint function disjoint(S1, S2, . . . Sq) expands to

(S1 ∩ S2 = ∅) ∧ (S1 ∩ S3 = ∅) ∧ . . . ∧ (Sq−1 ∩ Sq = ∅) (5.3)

and defines sets to be pairwise disjoint for all pairs i, j ∈ [q] such that i < j.
And if we want to be precise, then

Si ∩ Sj = ∅ ≡ (∀u ∈ V )(u ∈ Si ⇐⇒ u /∈ Sj) (5.4)

The function union(S1, S2, . . . , Sq) expands to

(∀v ∈ V )(v ∈ S1 ∨ v ∈ S2 ∨ . . . ∨ v ∈ Sq) (5.5)

The S(Si) function simply takes Equation 5.1 and replaces all occurrences
of x ∈ V with x ∈ Si.

We showed that the Induced Star Partition name can be formulated
using MSO2 when q is fixed. Then, using Courcelle’s theorem [11] we know
that there exists a linear time algorithm for graphs with bounded treewidth
if a tree decomposition is given together with the graph.

5.1.1 Beyond tree width

In Theorem 5.1 we proved that there exists a fixed parameter tractable algo-
rithm for the Induced Star Partition when parameterized by the treewidth.
But from the MSO2 formulation that we provided, we can notice that we did
not use quantification over subsets of edges. Using the same formulation in
the proof and with Courcelle’s theorem [12], we also acquire that the problem
is FPT when parameterized by the cliquewidth of the input graph when the
sequence of operations to construct the graph is given.

5.2 Dynamic programming on tree decomposition

The algorithm that follows from Courcelle’s theorem is FPT when parameter-
ized by treewidth, but the hidden constants are prohibitive. In this section, we
provide an explicit dynamic programming algorithm on graphs with bounded
treewidth with reasonable computation time.

Let T be a nice tree decomposition of graph G with at most O(k · n)
nodes, where |V (G)| = n and k is the treewidth of G. In the algorithm, we
will be filling a dynamic programming table C for each t ∈ V (T ) and valid
partitioning P of Xt. We first define what a valid partitioning is.
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Definition 5.1. For every t ∈ V (T ) we call P = (P1, P2, . . . , Pp) a partition-
ing of Xt if and only if the following conditions hold:

1. ∀i, j ∈ [p] : i 6= j =⇒ Pi ∩ Pj = ∅,

2. ⋃p
i=1 Pi = Xt,

3. ∅ /∈ P .

We will further partition each Pi into three sets: Pi = P 1
i ∪ P 2

i ∪ P 3
i and

P h
i ∩ P h′

i = ∅ for h 6= h′.

Note that we require Pi to be nonempty, but we allow each individual P h
i

to be empty. Just all three subsets of Pi cannot be empty at the same time.

Definition 5.2. We call a partitioning P valid with respect to Xt if and
only if these following conditions hold:

a) Each set Pi is of one of the following types

T0 |P 1
i | = 1 ∧ P 2

i 6= ∅ ∧ P 3
i = ∅,

T1 |P 1
i | = 1 ∧ P 2

i = ∅ ∧ P 3
i = ∅,

T2 |P 1
i | = 0 ∧ P 2

i 6= ∅ ∧ P 3
i = ∅,

T3 |P 1
i | = 0 ∧ P 2

i = ∅ ∧ P 3
i 6= ∅.

b) Additionally, if Pi if of type

T0 then P 2
i ⊆ NGt(P 1

i ) and P 2
i is an independent set;

T2 then P 2
i is an independent set;

T3 then P 3
i is an independent set.

The partition P in some way will represent how an induced star partition-
ing has to intersect the bag Xt and subsequently the subgraph Gt. Some stars
will have a nonempty intersection with Xt, some stars will intersect Vt but not
Xt, and some stars are yet to be discovered—those that intersect V \Vt. Each
set Pi prescribes how the final partitioning should intersect the bag Xt and
the dynamic programming table will help us store the stars that have been
processed but no longer intersect Xt.

There are three cases that we distinguish. The intersection can contain:
the center of the star and some leaf vertices vertex (T0), the center of the star
only (T1), or the leaves of the star without the center (T2 and T3).

The set P 1
i contains the center of the star and the sets P 2

i and P 3
i contain

the leaves of the star. We explicitly define these two types of sets for leaves and
give them a special meaning: The set P 2

i contains vertices that have already

”seen“ the center of the star in the graph Gt and conversely P 3
i contains

vertices that have yet to see the center of the star (meaning the center is in
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5. Algorithm on graphs with bounded treewidth

V \ Vt). With this intention in mind, we want one of the sets P 2
i or P 3

i to be
empty. We cannot have leaf vertices of the same star have seen the center and
wait for the center to be discovered at the same time.

If |P 1
i | ≥ 2, then such a partitioning is invalid. We have too many vertices

as center of a star.
If |P 1

i | = 1, then the star has a center and all leaves can ”see“ the center,
thus leaves vertices are in P 2

i . Additionally, we require that P 3
i = ∅—we

cannot have vertices that have yet to discover the center when the center is
included in the bag.

If |P 1
i | = 0, then we need to have the information, whether the center

has been forgotten or is yet to be discovered in the algorithm. This is why
we introduced 2 types of sets for the leaves, P 2

i and P 3
i . If the set P 2

i is not
empty, then we can be sure that the center is either in the P 1

i or has been
forgotten. Conversely if the set P 3

i is not empty, then we can be sure that the
center is not present in Vt and is yet to be discovered.

For a valid partitioning P of Xt, we want to construct the minimum com-
patible partial solution for t and P .

Definition 5.3. Let t be a node from the tree decomposition and P a valid
partitioning of Xt of size p. We call S = (S1, . . . , Ss) a partial solution com-
patible with P at t if and only if these following conditions hold:

a) S is a partitioning of Vt

i ∀i, j ∈ [s] : i 6= j =⇒ Si ∩ Sj = ∅,
ii ⋃s

i=1 Si = Vt,
iii ∅ /∈ S;

b) ∀i ∈ [s] : Si = Sc
i ∪ S`

i and Si is either isomorphic to a star or is an
independent set:

i S`
i is an independent set in Gt,

ii |Sc
i | ≤ 1 and if Sc

i is not empty, then also S`
i ⊆ NGt(Sc

i );

c) ∀i ∈ [p] : Si ∩Xt = Pi and furthermore if Pi is of type:

T0 then P 1
i = Sc

i ∧ P 2
i = S`

i ∩Xt,
T1 then P 1

i = Sc
i ∧ S`

i ∩Xt = ∅,
T2 then Sc

i 6= ∅ ∧ Sc
i ∩Xt = ∅ ∧ P 2

i = S`
i ∩Xt,

T3 then Sc
i = ∅ ∧ P 3

i = S`
i ;

d) ∀j > p :

• Sj ⊆ Vt \Xt,
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5.2. Dynamic programming on tree decomposition

• |Sc
j | = 1.

The partial solution S compatible with P at t represents how the star
partitioning should look like for the subgraph Gt, while having some of the
stars (the ones intersecting Xt) as prescribed by P . We call the sets Sj that
have an empty intersection with the bag Xt forgotten and they should induce a
star because no other vertices can join them in the future due to the definition
of tree decomposition. The center of the star is stored in Sc

i , while S`
i contains

the leaves of the star.
An example of how a partitioning P of Xt could look like and the impli-

cation for S compatible with P is shown in Figure 5.1.
Now we can finally describe the algorithm. We will be filling a dynamic

programming table C[·, ·] in a bottom up manner on T for each t ∈ V (T ) and
each valid partitioning P of Xt. The value C[t, P ] is defined as the minimum
number of forgotten stars in a partial solution S compatible for (t, P ) on the
graph Gt. The leaf nodes create the base case and for every non-leaf node,
C[t, P ] will compute its values from its children. The result for the whole
graph G is then stored in the root node at C[r, ∅].

5.2.1 Leaf node

If t is a leaf node, then we set C[t, ∅] = 0.

5.2.2 Introduce node

Let t be an introduce node with child t′ such that Xt = Xt′ ∪ {v}. Assume
also that P is a valid partitioning of Xt. The set P is a partitioning, thus the
new vertex v can be in exactly 1 set Pi. We compute C[t, P ] as follows:

C[t, P ] =
{

+∞ v ∈ P 2
i ∧ |P 1

i | = 0
C[t′, P̂ ] otherwise

(5.6)

The construction of P̂ depends on whether v is in P 1
i , P 2

i or P 3
i and the

size of Pi.

1. If |Pi| ≥ 2, then for j ∈ [p] we compute

(P̂ 1
j , P̂

2
j , P̂

3
j ) =


(P 1

j , P
2
j , P

3
j ) j 6= i

(∅, ∅, P 2
i ) j = i ∧ v ∈ P 1

i ∧ P 2
i 6= ∅

(P 1
i , P

2
i \ {v}, ∅) j = i ∧ v ∈ P 2

i ∧ |P 1
i | = 1

(∅, ∅, P 3
i \ {v}) j = i ∧ {v} ( P 3

i

(5.7)

2. If (v ∈ P 1
i ∧ P 2

i = ∅) or ({v} = P 3
i ) , then for j ∈ [p− 1] we compute

(P̂ 1
j , P̂

2
j , P̂

3
j ) =

{
(P 1

j , P
2
j , P

3
j ) j < i

(P 1
j+1, P

2
j+1, P

3
j+1) j ≥ i

(5.8)
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T0 T1

T2

T3

Forgotten Star

Bag Xt

Vt

Figure 5.1: A partition P = (P1, P2, P3, P4) of a bag Xt. Set P1, P2, P3, P4 are
of type T0, T1, T2, T3, respectively. Let Si be compatible set for Pi at t for
i ∈ [4]. Then, S1 has the center and some leaf vertices in Xt, S2 compatible
for P2 at t has only the center in the bag, S3 has some leaves in the bag and
the center has been forgotten, S4 has some leaves in the bag and the center
has yet to be discovered. Vertices below the bag are forgotten, vertices above
the bag are yet to be discovered. Smaller dots represent leaf vertices, bigger
dots represent the center. Dotted lines indicate edges incident with a vertex
that has not been discovered yet, solid lines indicate edges that have been
processed. Edges between different stars are not present in the figure.
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5.2. Dynamic programming on tree decomposition

We now give a brief intuition of the procedure. The vertex v is not present
in Gt′ and is newly introduced in t.

If v ∈ P 1
i , then the leaf vertices can ”see“ the center in Gt and the leaf

vertices are in P 2
i . Conversely, the leaf vertices cannot see the center in Gt′ ,

thus we require the leaf vertices to be in P̂ 3
i in Gt′ .

Else if v ∈ P 2
i , then we introduced a new leaf vertex that is adjacent to

the center, therefore we require the center to also be present in the bag Xt.
Finally if v ∈ P 3

i , then we introduced a new leaf vertex that requires that
the center of the star is yet to be discovered.

We also do not want to include an empty set in P̂ as an invariant. For this
reason we create P̂ of size p− 1 in Equation 5.8 if Pi \ {v} would be empty.

5.2.3 Forget node

Let t be a forget node with child t′, such that Xt = Xt′ \ {v}. Assume also
that P is a valid partitioning of Xt. We try all positions, where v could have
been before it was forgotten and choose the optimal configuration. In t′ the
vertex v could have been part of a partition that still exists in P or it was the
last vertex of a forgotten star in t. Let P̂(P ) be a family of all sets, where v
was part of an existing set, and P̃(P ) be a family of sets, where v is the lone
vertex of a partition. We compute C[t, P ] as follows:

C[t, P ] = min
{

min
P̂∈P̂(P )

C[t′, P̂ ], 1 + min
P̃∈P̃(P )

C[t′, P̃ ]
}

(5.9)

Now we describe the family of sets P̂(P ). Let A =
p⋃

g=1

{
P̂1

g (P ), P̂2
g (P )

}
be a family of sets, where the element P̂`

g(P ) = (P̂1, . . . , P̂p) is a partitioning
of Xt′ and each P̂j was computed as:

(P̂ 1
j , P̂

2
j , P̂

3
j ) =


(P 1

j , P
2
j , P

3
j ) j 6= g

(P 1
g ∪ {v}, P 2

g , P
3
g ) j = g ∧ ` = 1

(P 1
g , P

2
g ∪ {v}, P 3

g ) j = g ∧ ` = 2
(5.10)

The partitioning P̂`
j (P ) contains v within one of its p existing partitions,

furthermore v could have been in P̂ 1
j as a center of a star or as a leaf of a

star. We used the index ` to emphasize these two options. Then, we create
P̂(P ) =

{
P̂`

g(P ) ∈ A | P̂`
g(P ) is valid

}
which filters out invalid partitionings

of Xt′ .
Finally we describe P̃(P ). First, we introduce B = {P̃1(P ), P̃2(P )}, which

has only two elements. The partitioning P̃`(P ) = (P̃1, . . . , P̃p+1) was created
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5. Algorithm on graphs with bounded treewidth

with the following semantics:

(P̃ 1
j , P̃

2
j , P̃

3
j ) =


(P 1

j , P
2
j , P

3
j ) i ≤ p

({v}, ∅, ∅) j = p+ 1 ∧ r = 1
(∅, {v}, ∅) j = p+ 1 ∧ r = 2

(5.11)

Then we create P̃(P ) =
{
P̃`(P ) ∈ B | P̃`(P ) is valid

}
.

We do not try to insert v as a leaf in P̂ 3
g nor into P̃ 3

p+1. The vertices in the
third set have yet to see the center and any compatible solution for t′ would
not be compatible with t as the partial star Si will not be able to induce a
star (v will not have an edge with center).

To compute the forget node, we get the minimum from at most 2(p + 1)
values: at most 2p values for P̂(P ) and at most 2 for P̃(P ).

5.2.4 Join node

Suppose t is a join node with children t̂ and t̃, such that Xt = X
t̂

= X
t̃
. We

compute the solution as follows:

C[t, P ] = min
(P̂ ,P̃ )∈P(P )

{
C[t̂, P̂ ] + C[t̃, P̃ ]

}
. (5.12)

We compute the minimum using all pairs (P̂ , P̃ ) from family of sets P(P ).
Suppose Γ = {i ∈ [p] | Pi is of type T2}. Then, for each I ⊆ Γ there exists
exactly one pair (P̂ , P̃ ) ∈ P(P ) if and only if:

1. ∀i ∈ [p] \ Γ : P̃i = P̃i = Pi,

2. ∀i ∈ I : (P̂ 1
i , P̂

2
i , P̂

3
i ) = (∅, P 2

i , ∅) ∧ (P̃ 1
i , P̃

2
i , P̃

3
i ) = (∅, ∅, P 2

i ),

3. ∀i ∈ Γ \ I : (P̂ 1
i , P̂

2
i , P̂

3
i ) = (∅, ∅, P 2

i ) ∧ (P̃ 1
i , P̃

2
i , P̃

3
i ) = (∅, P 2

i , ∅).

For each Pi ∈ P , such that Pi = (∅, P 2
i , ∅) (Pi is of type T2), we do

not know, if the subtree V
t̂

or V
t̃

contains the forgotten center v. We can
not let the partition have 2 centers, as such we try for each such Pi two
instances. If i ∈ I, then the center is in V

t̂
, otherwise the center is supposed

to be in V
t̃
. All other subsets Pj of type T0, T1 and T3 are unchanged and

(P̂ 1
j , P̂

2
j , P̂

3
j ) = (P̃ 1

j , P̃
2
j , P̃

3
j ) = (P 1

j , P
2
j , P

3
j ).

Note that Γ can be empty, subsequently P(P ) = {(P, P )}. In other words,
the only available partitioning of subtrees t̂ and t̃ is P̂ = P and P̃ = P . This
corresponds to I = ∅.

There are at most p sets in P , therefore the resulting number of combina-
tions we have to try is at most 2p.
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5.3. Proof of correctness

5.3 Proof of correctness

We will now show that the previously described algorithm can correctly return
the minimum number of induced star partitions on graph G by returning
C[r, ∅]. We will prove this in two parts. First we show in Theorem 5.2 that
the dynamic programming table C[·, ·] is filled correctly. Then in Theorem 5.3
we show that the value stored in C[r, ∅] represents the solution for the induced
star partition of the input graph G.

Theorem 5.2. Let t be a node of a tree decomposition T of graph G and
P = (P1, . . . , Pp) be a valid partitioning of Xt of size p. Then for each (t, P ),
the algorithm stores into C[t, P ] the minimum value h, such that there exists
a partial solution S = (S1, . . . , Ss) compatible for (t, P ) and of size s = p+ h.

Proof. We remind the reader that each set Pi in a valid partitioning P of Xt

can be one of the 4 types introduced in Definition 5.1 and a compatible partial
solution has to satisfy the 4 conditions from Definition 5.3.

Leaf node. The subgraph Gt has no vertices, therefore the only valid par-
titioning is P = ∅. The algorithm stores C[t, ∅] = 0 and the only compatible
set is S = ∅. Such a partial solution is compatible for (t, P ).

Introduce node. Let v be the newly introduced vertex. Assume that
C[t, P ] = C[t′, P̂ ] = h is the value computed by the algorithm. By induction
hypothesis there is a partial solution Ŝ compatible for (t′, P̂ ) of size p̂ + h,
where |P̂ | = p̂. We show that a partial solution S compatible for (t, P ) and of
size s = p+ h exists and it simply extends Ŝ.

Let i be the index of the set Pi that contains the newly introduced vertex v.
We split the proof based on the size of Pi.

If |Pi| ≥ 2, then P̂i = Pi \ {v} is not empty. This means that by induction
hypothesis there is a set Ŝi that intersects Xt′ and equals exactly P̂i.

First consider all forgotten stars Ŝj in t′. These stars had an empty inter-
section with Xt′ and still have an empty intersection with Xt = Xt′ ∪ {v} as
v /∈ Vt′ . Thus, we set Sj = Ŝj if Ŝj is a forgotten star. Then consider all sets Ŝj

that have an intersection P̂j with Xt′ . If v /∈ Pj , then S = Ŝj is still compati-
ble for Pj = P̂j . Finally consider the set Ŝi such that Ŝi ∩Xt = P̂i = Pi \ {v}.
We analyze the types of P̂i and Pi and then show that Ŝi can be extended in
a simple manner to be compatible with Pi.

There are 3 cases we need to analyze, distinguished by which subset of
Pi contains v. First, v could have been part of P 1

i : We assumed that P is
valid, thus |P 1

i | ≤ 1 and the set P 2
i has to contain another vertex in order to

satisfy |Pi| ≥ 2. Another case we need to consider is that v could have been
part of P 2

i —for the combination |Pi| = 0 and v ∈ P 2
i the algorithm returns

C[t, P ] = +∞ (the proof for this case is left for the last part of the introduce
node). Therefore we only analyze v ∈ P 2

i ∧ |P 1
i | = 1. Finally, v could have

been in P 3
i : from validity of Pi we know that P 1

i = P 2
i = ∅ and P 3

i has to be
of size at least 2.
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Now we analyze the above mentioned valid cases. For each case we describe
the construction of Si and then prove that Si is compatible for Pi at t in three
steps: (1) we show that the intersection of Si with Xt equals exactly Pi, (2)
we show that Si has the correct structure as prescribed by the type of Pi, (3)
We show that Si is either a star or an independent set.

v ∈ P 1
i ∧ P 2

i 6= ∅ : The algorithm used (P̂ 1
i , P̂

2
i , P̂

3
i ) = (∅, ∅, P 2

i ) as one of the
sets in the partitioning P̂ of Xt′ . On one hand, the set P̂i is of type T3
and by induction hypothesis it holds that Ŝc

i is empty and Ŝ`
i = P̂ 3

i = P 2
i .

On the other hand, Pi is of type T0. We set (Sc
i , S

`
i ) = ({v}, Ŝ`

i ), meaning
we extend Ŝi with a new center.
First, we show the intersection of Si with Xt equals exactly Pi: Si∩Xt =
(Ŝi ∪ {v}) ∩ (Xt′ ∪ {v}) = (Ŝi ∩Xt′) ∪ {v} = P̂i ∪ {v} = Pi.
Second, we know that Pi is of type T0, therefore we need to show that
Sc

i = P 1
i and P 2

i = S`
i ∩ Xt. The center v ∈ Sc

i was introduced and is
the only vertex in P 1

i as Pi is valid (|Pi| ≤ 1) and indeed P 1
i = Sc

i . The
set of leaves S`

i equal P 2
i , thus S`

i ∩Xt = P 2
i ∩Xt = P 2

i .
Finally, we prove that Si induces a star. By induction hypothesis we
know that S`

i = Ŝ`
i = P̂ 3

i = P 2
i is an independent set. Furthermore, all

leaf vertices in S`
i = P 2

i are adjacent to u as prescribed by validity of Pi

(P 2
i ⊆ NGt(v)).

v ∈ P 2
i ∧ |P 1

i | = 1 : Then Pi is of type T0 and subsequently (P̂ 1
i , P̂

2
i , P̂

3
i ) =

(P 1
i , P

2
i \ {v}, ∅) is of type T0 or T1 depending on emptiness of P̂ 2

i . In
both cases, the set Ŝi can be extended to (Sc

i , S
`
i ) = (Ŝc

i , Ŝ
`
i ∪ {v}).

We first need to show the intersection of Si with Xt equals exactly Pi—
this was already proven in the previous case.
The set Pi is of type T0 or T1, which means that we need to prove
that P 1

i = Sc
i and S`

i ∩ Xt equals P 2
i . From the algorithm, we have

that the set P̂ 1
i equals P 1

i and by induction hypothesis it holds that
P̂ 1

i = Ŝc
i . This proves that P 1

i = Sc
i . If P̂ 2

i 6= ∅, then P̂i is of type T0
and subsequently Ŝ`

i ∩Xt′ = P̂ 2
i . Otherwise P̂ 2

i = ∅, then P̂i is of type
T1 and by induction hypothesis we know that Ŝ`

i ∩Xt′ = ∅ = P̂ 2
i . Then

S`
i ∩Xt = (Ŝ`

i ∪ {v}) ∩ (Xt′ ∪ {v}) = (Ŝ`
i ∩Xt′) ∪ {v} = P̂ 2

i ∪ {v} = P 2
i .

Thus the set S`
i has the correct intersection with Xt.

Finally, we prove that Si induces a star. By induction hypothesis it
holds that Ŝ`

i = S`
i \ {v} is independent in Gt′ = Gt \ {v}. The set

S`
i ∩ Xt = P 2

i is an independent set in Gt from validity of Pi, which
proves v is not adjacent to any vertex u ∈ (Si ∩Xt) \ {v}. The vertex v
is also not adjacent to any vertex in Vt\Xt = Vt′ \Xt′ which is a superset
of S`

i \ P 2
i — refer to Lemma 2.2. We showed that v is not adjacent to

any vertices in Ŝ`
i , which implies that Ŝ`

i ∪ {v} = S`
i is an independent
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set. All that is left is to prove that the leaf vertices S`
i are adjacent to

the center in Sc
i = P 1

i . The vertices in S`
i \ {v} = Ŝ`

i were adjacent to
the center by induction hypothesis. The vertex v is also adjacent to the
center Sc

i = P 2
i because Pi is valid, which requires P 2

i ⊆ NGt(P 1
i ).

{v} ( P 3
i : Following the algorithm, we know that P̂i is of type T3 and by

assumption Pi is also of type T3. The pair (Sc
i , S

`
i ) = (∅, Ŝ`

i ∪{v}) is the
solution we are looking for.
The fact that Si ∩Xt = Pi has already been proven and we omit it for
this case.
The set Pi is of type T3, which means that we need to prove that Sc

i = ∅
and P 3

i = S`
i . By induction hypothesis we know all the leaf vertices are

present in P̂ 3
i = Ŝ`

i = Ŝi. Then, S`
i = Ŝ`

i ∪ {v} = P̂ 3
i ∪ {v} = P 3

i proves
that all leaf vertices are also in P 3

i and Si ∩Xt = P 3
i = Pi. The center

Ŝc
i is by induction hypothesis empty and Si also does not have a defined

center.
Finally, we prove that S`

i is independent, but this is true as P 3
i = S`

i is
an independent set due to validity of Pi.

This concludes the description of partial solution S when |Pi| ≥ 2.
Now we analyze the case |Pi| = |{v}| = 1, meaning v is the only vertex in

Pi. The set P̂i = Pi \ {v} would be empty and we want to hold an invariant
that ∅ /∈ P̂ . This case only happens if v is the only vertex in P 1

i or P 3
i . We

again cannot have v ∈ P 2
i ∧ |Pi| = 0.

From the algorithm, the number of sets in P̂ is p−1 while the original P was
of size p. By induction hypothesis Ŝ is a partial solution of size ŝ = (p−1)+h.
Then S = (Ŝ1, . . . , Ŝi−1, {v}, Ŝi, . . . Ŝŝ) of size ŝ + 1 is the partial solution we
are looking for.

For each set Sj such that j < i we simply copied Sj = Ŝj . The intersec-
tion P̂j = Pj is the same in Xt′ and every other property prescribed by the
definition of compatibility stays the same as nothing changed for the sets, nor
the intersection.

Now consider the set Si = {v}. We split the compatibility proof based on
where v is in Pi. As we previously analyzed, there are only 2 cases we need
to consider.

v ∈ P 1
i ∧ P 2

i = ∅ : We create a new set Si = Sc
i = {v} with an empty set of

leaves S`
i . Then for Si to be compatible with Pi of type T1, we only

need to show P 1
i = {v} = Sc

i , which is trivially true. The set Si trivially
is a star with one vertex.

{v} = P 3
i : We create a new set Si = S`

i = {v} with an empty center Sc
i . For

Si to be compatible with Pi of type T3, we only need to show S`
i =

{v} = P 3
i and the center is not defined as required in the compatibility.

The set S`
i with one vertex is trivially independent.
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For every set Sj where i < j ≤ p we have Sj = Ŝj−1. From the algorithm
it holds that P̂j = Pj+1 whenever j ∈ p̂ and j ≥ i. These two facts together
prove that Sj = Ŝj−1 is compatible for Pj = P̂j−1 for i < j ≤ p.

Every forgotten star Ŝj in t′ has an equivalent forgotten star in t because
there is a one-to-one mapping between Ŝj and Sj+1.

This concludes the proof for one of the implications of the join node.
To summarize, for all cases when C[t′, P̂ ] returned a finite value, we just
take a compatible partial solution Ŝ from the child node and add the newly
introduced vertex v as center if v ∈ P 1

i or as a leaf if v ∈ P 2
i or v ∈ P 3

i . We
either extend one of the existing sets Ŝi that existed by induction hypothesis
or create a new set Si if Pi = {v}.

Now we show that if a partial solution S of size s = p+h that is compatible
for (t, P ) exists, then the algorithm stores at most h into C[t, P ]. To prove
this, we slightly modify S and create Ŝ which will be compatible for (t′, P̂ ).
The set Ŝ will be of size |Ŝ| = ŝ = |P̂ | + h = p̂ + h and Ŝ will still have h
forgotten stars. The partial solution Ŝ will be one of the sets considered by
the definition of C[t′, P̂ ] and by induction hypothesis C[t′, P̂ ] ≤ h.

Let i be the index of Pi that contains the newly introduced vertex v. We
again have two cases based on the size of |Pi|.

First consider the case |Pi| ≥ 2. For each Sj such that v /∈ Sj , we set
Ŝj = Sj and either Ŝj has the same intersection Pj = P̂j with Xt′ (then Si is
still compatible with the intersection) or Ŝj still is a forgotten star in t′. Again,
when the set nor the intersection do not change, the proof of compatibility is
straightforward.

We now describe the modification of Si that contains v. We know by
compatibility that Pi is the intersection of a star Si with the bag Xt, thus Si

must contain at least another vertex that is not v. The idea is to create a
set Ŝi by removing v from Si. The set Ŝi is not empty and will still have a
nonempty intersection with Xt′ .

Vertex v could have been in P 1
i or P 2

i or P 3
i . Together with the condition

|Pi| ≥ 2, we again need to analyze three cases. Similarly as in the proof of
the previous implication, for each case we describe the construction of Ŝi and
then prove that Ŝi is compatible for P̂i at t′ in three steps: (1) we show that
the intersection of Ŝi with X̂t equals exactly P̂i, (2) we show that Ŝi has the
correct structure as prescribed by the type of P̂i, (3) We show that Ŝi is either
a star or an independent set.

v ∈ P 1
i ∧ P 2

i 6= ∅ : The set Pi is of type T0 and (P̂ 1
i , P̂

2
i , P̂

3
i ) = (∅, ∅, P 2

i ) from
the algorithm is of type T3. Then (Ŝc

i , Ŝ
`
i ) = (∅, S`

i ) is the set we are
looking for. By compatibility it holds that Sc

i = P c
i = {v}.

First, Ŝi has the correct intersection with Xt′ : Ŝi ∩ Xt′ = (Si \ {v}) ∩
(Xt \ {v}) = (Si ∩Xt) \ {v} = Pi \ {v} = P̂i.
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Second, we prove that Ŝ`
i = P̂ 3

i and Ŝc
i = ∅. The center is indeed empty

by construction and now we only need to show that Ŝ`
i = P̂ 3

i . Due to the
definition of the tree decomposition, it holds that NGt(v) ⊆ Xt because
vertex v was introduced in t. It also holds that S`

i ⊆ NGt(Sc
i ) = NGt(v)

from compatibility, which means all the leaves S`
i are part of Xt. No leaf

vertex u ∈ S`
i can be in Vt \Xt because then u would not be adjacent to

the center v. From compatibility of Si for Pi we know that P 2
i = S`

i ∩Xt.
Therefore P̂ 3

i = P 2
i = S`

i ∩Xt = S`
i = Ŝ`

i .
Finally we Ŝi is an independent set because Ŝi = Ŝ`

i = S`
i was by

assumption an independent set.

v ∈ P 2
i ∧ |P 1

i | = 1 : Then Pi is of type T0 and (P̂ 1
i , P̂

2
i , P̂

3
i ) = (P 1

i , P
2
i \{v}, ∅)

is of type T0 or T1 depending on emptiness of P̂ 2
i . In both cases

(Ŝc
i , Ŝ

`
i ) = (Sc

i , S
`
i \ {v}) is the set Ŝi we need.

The fact that the intersection of Ŝi with Xt′ equals P̂i has been proven
in the previous case.
Now we need to show that Ŝc

i = P̂ 1
i and the intersection Ŝ`

i ∩Xt′ equals
P̂ 2

i . The fact that the center equals P̂ 1
i can be shown trivially. Then,

Ŝ`
i ∩Xt′ = (S`

i \ {v}) ∩ (Xt \ {v}) = (S`
i ∩Xt) \ {v} = P 2

i \ {v} = P̂ 2
i . If

|P 2
i | ≥ 2, then P̂ 2

i 6= ∅ and we proved the compatibility for P̂i of type T0.
Otherwise |P 2

i | = 1, therefore P̂ 2
i = ∅ and we proved that Ŝ`

i ∩Xt′ = ∅
as required by P̂i of type T1.
The set Si induced a star and Ŝi was created by removing a leaf vertex
from a star, which again creates a star.

{v} ( P 3
i : Then both Pi and P̂i are of type T3. We assign (Ŝ,

iŜ
`
i ) = (∅, S`

i \
{v}).
We again omit the proof that Ŝi ∩Xt′ = P̂i.
We know using compatibility of Si with Pi, that S`

i = P 3
i . Therefore

we get a chain Ŝ`
i = S`

i \ {v} = P 3
i \ {v} = P̂ 3

i . By compatibility it
holds that Sc

i = ∅ and Ŝc
i = ∅. Both facts together prove that Ŝi has the

correct structure as prescribed by P̂i of type T3.
The set P̂ 3

i is a subset of P 3
i , which is an independent set, thus P̂ 3

i = Ŝ`
i

is also independent.

To sum it up, if |Pi| ≥ 2, then for each Sj such that v /∈ Sj we copy
Ŝj = Sj , and for Si such that v ∈ Si, we construct Ŝi by simply remove vertex
v from Si.

Now let us move on to the case |Pi| = 1. We have two cases, either
Pi = P 1

i = {v} or Pi = P 3
i = {v} (again, we cannot have the case Pi =

P 2
i = {v}). In both cases, we show that Si = {v} and the set Si cannot have

any other vertices. Thus by removing v from Si, the set Ŝi would become
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empty. Therefore Ŝ will be of size s− 1 but the number of forgotten stars will
stay the same compared to the number of forgotten stars in S. This implies
C[t′, P̂ ] ≤ h as Ŝ is one of the considered sets in the definition of C[t′, P̂ ].

v ∈ P 1
i ∧ P 2

i = ∅ : The set Pi is of type T1 which means that Sc
i = P 1

i = {v}
and S`

i ∩ Xt = P 2
i . The vertex v was newly introduced in t and can

only be adjacent to vertices in Xt. That also implies that S`
i ⊆ Xt

and subsequently it holds that S`
i = P 2

i = ∅. Using all these facts, we
deduced that |Si| = 1.

{v} = P 3
i : The set Pi is of type T3, which means that P 3

i = S`
i = {v} and

Sc
i = ∅. Therefore |Si| = |Sc

i |+ |S`
i | = 1.

This concludes the proof of the implied by direction. We again briefly
summarize the results of the previous proof. Assume that S is compatible
for P at t, then create a Ŝ based on the size of the set Pi that contains v.
If |Pi| ≥ 2, then |Ŝ| = |S| and each set Ŝj = Sj (if v is not part of Sj) or
Ŝi = Si \ {v} if v ∈ Si. Otherwise if |Pi| = 1, then it holds that |Si| = 1
and we can create Ŝ of size s − 1 by removing Si from S. In both cases the
number of forgotten stars still stays the same and C[t′, P̂ ] ≤ h, which implies
that C[t, P ] also is at most h.

There is one special case where v ∈ P 2
i ∧ P 1

i = ∅ and the algorithm stores
C[t, P ] =∞.

Assume towards contradiction that there exists a partial solution S com-
patible for P at t, where v ∈ P 2

i ∧ P 1
i = ∅ (the set Pi is of type T2). The

vertex v was newly introduced in t which implies that NGt(v) ⊆ Xt. Using
compatibility, we know that the set Sc

i containing the center is not empty and
Sc

i ∩ Xt = ∅. On the other hand we also have S`
i ⊆ NGt(Sc

i ) which means
that for all u ∈ S`

i it holds that u is adjacent to the center c ∈ Sc
i . More

importantly, it also implies that v and c are adjacent as v ∈ S`
i . This is a

contradiction, therefore no such S can exist and we indicate this by storing
+∞ into C[t, P ].

Forget node. Let C[t, P ] = h be a finite value that was stored by the
algorithm, we need to prove that a partial solution S compatible for (t, P ) of
size p+ h exists. The value was computed by getting the minimum from one
of two different cases. Either C[t, P ] = C[t′, P̂ ] = h for some P̂ ∈ P̂(P ) or
C[t, P ] = 1 + C[t′, P̃ ] = 1 + h′′ for some P̃ ∈ P̃(P ). Let v be the forgotten
vertex.

If C[t, P ] = C[t′, P̂ ] = h, then by induction hypothesis there is a partial
solution S = (S1, . . . , Ss) compatible for (t′, P̂ ) of size s = p̂+h, where p̂ = |P̂ |.
Let i ∈ [p] be the index of P̂i that contains the forgotten vertex v. From our
algorithm, it holds that |P | = |P̂ | and p = p̂. We now prove that the same S
is also compatible for P at t.
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It can easily be shown that S is a partitioning of Vt = Vt′ and for each
j ∈ [s] it holds that the set Sj still has the correct structure in Gt = Gt′

(induces a star or is an independent set).
For each set Sj such that p < j ≤ s: we know that Sj ⊆ Vt′ \ Xt′ , thus

Sj is a forgotten star in Gt′ . Subsequently Sj is also a forgotten star in Gt as
v /∈ Sj .

For all sets Sj such that j ∈ [p] \ {i}: we know that Sj ∩ Xt′ = P̂j .
Furthermore v /∈ P̂j and for this reason, v is also not in Sj and Sj is still
compatible for Pj = P̂j .

Finally for Si = Sc
i ∪ S`

i such that Si ∩Xt′ = P̂i and v ∈ P̂i, we know that
v ∈ Si. It holds that Pi = P̂i \ {v} and Xt = Xt′ \ {v}. From this fact, we can
conclude that Si ∩Xt = Si ∩ (Xt′ \ {v}) = (Si ∩Xt′) \ {v} = P̂i \ {v} = Pi,
meaning Si has the correct intersection with Xt (and the intersection equals
exactly Pi).

We now proceed to show that Si has the correct structure as prescribed
by the type of Pi. We first analyze the types of P̂i and Pi and then prove that
the conditions as described in Definition 5.3 are satisfied.

1. If the value h was obtained for case v ∈ P̂ 1
i , then the algorithm also

assigned P̂ 2
i = P 2

i and P̂ 3
i = P 3

i . We know that P 1
i = ∅ and P 3

i = P̂ 3
i = ∅

because |P̂ 1
i | = 1 and P̂i is valid. We can conclude that P 2

i 6= ∅ because
(P 1

i , P
2
i , P

3
i ) 6= (∅, ∅, ∅). This implies that Pi is of type T2 and P̂i is of

type T1.
We now show compatibility of Si for Pi of type T2 in Xt, meaning we
show that the center Sc

i is not empty in Gt, the center is not present in
Xt, and P 2

i = S`
i∩Xt. Vertex v is part of P̂ 1

i = Sc
i so the center still exists

in Gt = Gt′ . But the intersection of the center with Xt is now empty:
Sc

i ∩Xt = {v} ∩ (Xt′ \ {v}) = ∅. Finally the set P 2
i was unchanged and

v /∈ S`
i , from this we can conclude that S`

i ∩Xt = S`
i ∩Xt′ = P̂ 2

i = P 2
i .

2. Else if v ∈ P̂ 2
i , then it holds that P 1

i = P̂ 1
i , P

2
i = P̂ 2

i \ {v} and P 3
i =

P̂ 3
i = ∅. The set P̂ 2

i is not empty, therefore P̂i was type T0 or T2.
Assume that P̂i is of type T0. Then Pi is of type T1 if {v} = P̂ 2

i , or T0
if |P̂ 2

i | ≥ 2. In both cases P 1
i = P̂ 1

i is unchanged and it still equals Sc
i .

Furthermore, S`
i∩Xt = S`

i∩(Xt′\{v}) = (S`
i∩Xt′)\{v} = P̂ 2

i \{v} = P 2
i .

Otherwise P̂i could have been of type T2, then because Pi 6= (∅, ∅, ∅)
we can conclude that Pi is of type T2 and |P̂i| ≥ 2. By induction
hypothesis it holds that Sc

i = ∅, thus Sc
i ∩Xt = ∅ ∩Xt = ∅. The proof

that P 2
i = S`

i ∩Xt was given in the previous case.

This concludes the proof that C[t, P ] = C[t′, P̂ ] = h, then a partial solution
S compatible for (t′, P ) is also compatible for (t, P ).

Now we analyze the case C[t, P ] = h = 1+C[t′, P̃ ] = 1+h′′. By induction
hypothesis there is a partitioning S = (S1, . . . , Ss) compatible for (t′, P̃ ) of size
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s = p̃+ h′′, where p̃ = p+ 1 is the size of P̃ and h′′ = h− 1 is the number of
forgotten stars. Let v be the forgotten vertex and P̃p+1 = {v} (as prescribed
by the algorithm). We now prove that S is also compatible for (t, P ) and the
number of forgotten stars in t is h′′ + 1 = h.

For each set Sj such that v /∈ Sj the proof can be given the same way as
in the previous case. We now analyze the case v ∈ Si for i = p+ 1. First, by
induction hypothesis it holds that Si ∩Xt′ = P̃i = {v}. Also Xt = Xt′ \ {v}
and we get Si ∩Xt = Si ∩ (Xt′ \ {v}) = (Si ∩Xt) \ {v} = ∅ which proves that
the star Si no longer has an intersection with the bag Xt. Now we proceed to
show that Si induces a forgotten star in Gt.

By construction of P̃ either v ∈ P̃ 1
i or v ∈ P̃ 2

i , meaning P̃i is of type T1
or T2, respectively. In both cases, for Si to be compatible with P̃i, we must
have Sc

i 6= ∅ and S`
i ⊆ NGt(Sc

i ). Altogether Si indeed induces a star.
To wrap it up, if C[t, P ] = C[t′, P̂ ], then the number of forgotten stars is

still the same, which means the algorithm can safely store the value s − p =
(|P̂ |+ h)− |P | = h. Otherwise for the case C[t, P ] = C[t′, P̃ ] it holds that S
has h′′ = h − 1 forgotten stars in Gt′ by induction hypothesis. But in t, the
corresponding partial solution has h′′ + 1 = h forgotten stars and the stored
value in C[t, P ] = 1 + C[t′, P̃ ] represents a partial solution compatible for P
at t.

Now we get to the second part of the proof for the forget node. We show
that if there is a partial solution S compatible for (t, P ) of size |S| = s = p+h
with h forgotten stars, then the algorithm stores at most h in C[t, P ]. To
prove this, we show that there is a partition P̂ ∈ P̂(P ) or P̃ ∈ P̃(P ) of Xt′ ,
such that S is compatible for (t′, P̂ ) or (t′, P̃ ). This implies that S is one of the
sets considered in the definition of C[t′, P̂ ] or C[t′, P̃ ]. Then, the algorithm
will store a value that is at most h using the value C[t′, P̂ ] or C[t′, P̃ ] + 1.

Let (Sc
i ∪ S`

i ) = Si ∈ S be a partial star, such that v ∈ Si. We have two
cases, either Si ∩Xt 6= ∅ or Si ∩Xt = ∅. Without loss of generality, assume
that if Si ∩ Xt = ∅, then i = p + 1—we just permute the order of forgotten
stars in S.

We know that Gt′ = Gt so S is a partitioning of Vt′ and furthermore if
v /∈ Sj , then either Sj is also compatible for Pj = P̂j = P̃j , or Sj is still a
forgotten star in Gt′ .

Now consider the case v ∈ Si. We have two cases, either Si ∩Xt 6= ∅ as Si

has to have a correct structure as prescribed by Pi, or Si ∩Xt = ∅ and Si is a
forgotten star.

In both cases, we first show that there is a partition P̂ or P̃ such that S
is also compatible for (P̂ , t′) or (P̃ , t). Then, we analyze the types of P̂i or P̃i

and Pi and then prove that S satisfies the conditions prescribed by the type
of P̂i or P̃i.

First, consider the case Si ∩Xt = Pi and Pi 6= ∅.
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a) If Sc
i = {v} ⊆ Vt \ Xt then we know by compatibility of S with (t, P )

that Pi is of type T2. Meaning P 1
i = ∅ and the set of leaves P 2

i is
not empty as the intersection with Xt is not empty. Consider a set
(P̂ 1

i , P̂
2
i , P̂

3
i ) = (P 1

i ∪ {v}, P 2
i , P

3
i ), which is of type T0.

First, we show that Si has the correct intersection with P̂i : Si ∩Xt′ =
Si ∩ (Xt ∪ {v}) = Pi ∪ {v} = P̂i.
Now we prove the compatibility of Si with P̂i of type T0, meaning we
need to show that the center equals to P̂ 1

i and the set P̂ 2
i is the inter-

section of S`
i with Xt′ .

• The set P 1
i is empty by compatibility of Si with Pi which implies

that P̂ 1
i = P 1

i ∪ {v} = {v} = Sc
i .

• The set P̂ 2
i = P 2

i is unchanged and S`
i ∩Xt′ = S`

i ∩ (Xt ∪ {v}) =
S`

i ∩Xt = P 2
i = P̂ 2

i .

Altogether the partitioning P̂1
i (P ) of Xt′ is a valid partitioning of Xt′

and S is compatible for (t′, P̂1
i (P )).

b) If v ∈ S`
i , then we need to distinguish the cases by where Sc

i can be
found.

Sc
i = ∅ : The only type that is compatible with such Si is Pi of type T3.

That implies that S`
i = P 3

i which means that v ∈ P 3
i . Vertex v was

forgotten and v ∈ Xt′ and v /∈ Xt, which means that v /∈ Pi. This
is a contradiction and Sc

i needs to be nonempty.
Sc

i ⊆ (Vt \Xt) : We assumed that Si ∩ Xt 6= ∅, thus at least one leaf
vertex has to intersect Xt. The only type that is compatible with
such Si at t is Pi of type T2, meaning P 1

i = ∅ and P 2
i 6= ∅. The set

Si is compatible for (P̂ 1
i , P̂

2
i , P̂

3
i ) = (P 1

i , P
2
i ∪{v}, P 3

i ) which is also
of type T2. This case corresponds to the partition P̂2

i (P ).
The proof that S has the correct intersection with Xt′ is trivial and
the details are left for the reader to fill in.
The set P̂i is of type T2, which means we have to show that (1)
Sc

i 6= ∅, (2) Sc
i ∩ Xt′ = ∅, (3) P̂ 2

i = S`
i ∩ Xt′ . The conditions (1)

and (2) are satisfied trivially. For the condition (3) we know that
v /∈ S`

i , thus S`
i ∩Xt′ = S`

i ∩Xt = P 2
i = P̂ 2

i .
Sc

i ⊆ Xt : Then Pi is type T0 or T1 by compatibility of Si for Pi and
the set (P̂ 1

i , P̂
2
i , P̂

3
i ) = (P 1

i , P
2
i ∪ {v}, P 3

i ) is of type T0. This case
corresponds to the partition P̂2

i (P ).
We again omit the proof that Si ∩Xt′ = P̂i.
The set P̂i is type T0: We know that Sc

i ∩Xt = P 1
i by compatibility

and v /∈ Sc
i , therefore Sc

i ∩Xt′ = P 1
i = P̂ 1

i . Then for the set of leaf
vertices it holds that S`

i ∩Xt = P 2
i and Xt′ = Xt ∪ {v}, therefore
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S`
i ∩Xt′ = P 2

i ∪ {v} = P̂ 2
i . Altogether we proved that Si has the

correct structure as prescribed by P̂i.

Both valid cases correspond to the partition P̂2
i (P ) and we proved that

S is compatible for (t′, P̂2
i (P )).

We proved that if v ∈ Si and Si ∩ Xt 6= ∅, then he number of forgotten
stars in Gt′ equals to s − p = h. The partial solution S is one of the sets
considered in the definition of C[t′, P̂ ] for some P̂ ∈ P̂(P ), thus C[t′, P̂ ] ≤ h
and subsequently C[t, P ] ≤ h.

Now we analyze the case Si ∩ Xt = ∅. As mentioned in the beginning,
we assume that v ∈ Si for i = p + 1. The number of forgotten stars in t′ is
s − (p + 1) = h − 1 as the only star that changed the number is Si which
was forgotten in t, but has a non empty intersection with Xt′ (it holds that
Si ∩Xt′ = {v}).

The vertex v ∈ Xt′ could have been a center vertex or a leaf vertex in Si.
Then either P̃1(P ) or P̃2(P ) is the set we are looking for.

v ∈ S`
i : Consider a set (P̃ 1

i , P̃
2
i , P̃

3
i ) = (∅, {v}, ∅) of type T2. The intersection

Si ∩Xt′ = Si ∩ (Xt ∪ {v}) = (Si ∩Xt)∪ {v} = ∅ ∪ {v} which shows that
Si now has a non empty intersection with Xt′ . Then, we need to show
that the center is defined, but is not in the bag Xt′ , and the intersection
P̃ 2

i = S`
i ∩Xt′ .

By compatibility we have |Sc
i | = 1 in Gt and the center is still defined in

Gt′ , as the two graphs equal. Additionally, Sc
i ∩Xt′ = Sc

i ∩ (Xt ∪{v}) =
(Sc

i ∩ Xt) ∪ (Sc
i ∩ {v}) = ∅ ∪ ∅. Finally S`

i ∩ Xt′ = S`
i ∩ (Xt ∪ {v}) =

(S`
i ∩Xt) ∪ (S`

i ∩ {v}) = ∅ ∪ {v} = {v} = P̃ 2
i .

v ∈ Sc
i : Then consider a set (P̃ 1

i , P̃
2
i , P̃

3
i ) = ({v}, ∅, ∅) of type T1. As required

by the definition of compatibility, P̃ 1
i = {v} = Sc

i and the fact that
S`

i ∩Xt′ = ∅ is trivial.

Again, the partial solution S is one of the considered sets in the definition
of C[t′, P̃ ] and the value is at most h− 1. The algorithm will store a value at
most (h− 1) + 1 = h into C[t, P ].

Join node. Assume that the value h was stored into C[t, P ] by the algo-
rithm using partitionings P̂ and P̃ for t̂ and t̃, respectively. Also let ĥ = C[t̂, P̂ ]
and h̃ = C[t̃, P̃ ] and h = ĥ+ h̃.

By induction hypothesis there is a partial solution Ŝ of size ŝ = p + ĥ
compatible for (t̂, P̂ ) . The same applies to S̃ of size p+ h̃ which is compatible
for (t̃, P̃ ). We now show that a partial solution S of size p+ h compatible for
(t, P ) exists. The set S is in some way a combination of Ŝ and S̃.

First we analyze forgotten stars in G
t̂

and G
t̃
. We claim that every star

Ŝi ∈ Ŝ, which is forgotten in G
t̂
, has an empty intersection with G

t̃
. Assume
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towards a contradiction that there exists a vertex v ∈ Ŝi which is in V
t̂

and in
V

t̃
. Then vertex v also needs to be present in Xt from the definition of tree

decomposition. Therefore the star Ŝi would have a non-empty intersection
with Xt, meaning it is in fact not a forgotten star. This is a contradiction.
The same proof applies for a forgotten star S̃i ∈ S̃. We set S′ as the union
of all forgotten stars in Ŝ and S̃. Thus |S′| = ĥ + h̃ = h. Then, we set
(Sp+1, . . . , Ss) = (S′1, . . . , S′h) where s = p + h. These stars are indeed also
forgotten in Gt because Xt = X

t̂
= X

t̃
.

Now we analyze the stars that have an intersection with Xt. Due to
compatibility, we know that Ŝi ∩Xt̂

= P̂i and S̃i ∩Xt̃
= P̃i. We can combine

the two stars and create (Sc
i , S

`
i ) = (Ŝc

i ∪ S̃c
i , Ŝ

`
i ∪ S̃`

i ).
We claim that (Sc

i , S
`
i ) is compatible with Pi at t. We prove this in three

stages: (1) we show that Si ∩ Xt = Pi, (2) we show that Si has the correct
structure as prescribed by the type of Pi, (3) we show that Si is either a star
or an independent set.

The fact that Si∩Xt = Pi can be proven easily: Si∩Xt = (Ŝi∪ S̃i)∩Xt =
P̂i ∪ P̃i = Pi.

Then, we distinguish four cases based on the type of Pi. In all four cases,
we first analyze the type of Pi, P̂i and P̃i and then show that Si has all the
correct properties as prescribed by the type of Pi in Definition 5.3. Finally we
also prove that Si induces a star or is an independent set.

Pi = P̂i = P̃i of type T0: The set Pi is of type T1, which means we have to
prove that P 1

i = Sc
i and S`

i ∩Xt = P 2
i .

• By induction hypothesis it holds that Ŝc
i = P̂ 1

i = P 1
i and P 1

i =
P̃ 1

i = S̃c
i . We can conclude that Ŝc

i = S̃c
i = Sc

i , thus Sc
i = P 1

i .
• By induction hypothesis it holds that P 2

i = P̂ 2
i = Ŝ`

i ∩ Xt̂
and

Ŝ`
i ∩ Xt̂

= P̂ 2
i = P 2

i . We also know that Xt = X
t̂

= X
t̃
. Thus,

S`
i ∩Xt = (Ŝ`

i ∪ S̃`
i ) ∩Xt = (Ŝ`

i ∩Xt) ∪ (S̃`
i ∩Xt) = P̂ 2

i ∪ P̃ 2
i = P 2

i .

Now we show that Si induces a star in Gt. By induction hypothesis it
holds that the sets Ŝ`

i and S̃`
i are independent. We show that the union

of the 2 sets also creates an independent set: For every pair of vertices
u, v ∈ S`

i we can have 3 general cases.

1. If u, v ∈ Xt, then both vertices are part of P̂ 2
i = P 2

i and by validity
of Pi we checked that they are not adjacent.

2. Without loss of generality assume that u ∈ Xt and v ∈ V
t̂
\ Xt.

Then the vertices are part of the same Ŝ`
i which is independent.

The same applies symmetrically to u ∈ Xt and v ∈ V
t̃
\Xt.

3. If u ∈ V
t̂
\Xt ∧ v ∈ Vt̃

\Xt, then u and v are not adjacent due to
Lemma 2.2.
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5. Algorithm on graphs with bounded treewidth

Furthermore, each individual leaf v ∈ S`
i was part of Ŝ`

i or S̃`
i which

is by induction hypothesis subset of NG
t̂
(Sc

i ) or NG
t̃
(Sc

i ), respectively.
This implies that the set of leaves S`

i is a subset of NGt(Sc
i ), thus the

leaves are adjacent to the center and Si induces a star in Gt.

Pi = P̂i = P̃i of type T1: The set Pi of type T1 prescribes that P 1
i = Sc

i (the
proof is the same as in the previous case) and the leaf vertices are not
present in Xt: (S`

i ∩Xt) = (Ŝ`
i ∪ S̃`

i ) ∩Xt = (P̂i \ P̂ 1
i ) ∪ (P̃i \ P̃ 1

i ) = ∅.
The fact that Si induces a star can be proven in a similar way as in the
previous case.

Pi = P̂i = P̃i of type T3: Then by induction hypothesis we have Ŝ`
i = P̂ 3

i =
P 3

i = P̃ 3
i = S̃`

i which in turns means all the sets used in the previous
equation also equal S`

i . The set of leaves S`
i is independent as P 3

i was
assumed to be independent. The center Sc

i is empty because by induction
hypothesis it holds that Ŝc

i = S̃c
i = ∅. Altogether, Si is compatible with

Pi of type T3.
We can also conclude that Si = S`

i is an independent set.

Pi of type T2 Assume that the algorithm used (P̂ 1
i , P̂

2
i , P̂

3
i ) = (∅, P 2

i , ∅)
and (P̃ 1

i , P̃
2
i , P̃

3
i ) = (∅, ∅, P 2

i ). Then P̂i is of type T2 and P̃i is of type
T3.
By induction hypothesis we know that |Ŝc

i | = 1 and S̃c
i = ∅, which

implies that Sc
i = Ŝc

i and |S| = |Sc
i | = 1. The set Ŝc

i is by induction
hypothesis not part of the bag X

t̂
, thus it also is not present in Xt which

proves that Sc
i ∩Xt = ∅. Also S̃`

i = P̃ 3
i = P 2

i = P̂ 2
i = Ŝ`

i ∩Xt′ ⊆ Ŝ`
i , and

we can conclude that S`
i = Ŝ`

i ∪ S̃`
i = Ŝ`

i . This implies that S`
i ∩Xt =

Ŝ`
i ∩Xt̂

= P̂ 2
i = P 2

i .

We showed that S̃i ⊆ Ŝi, therefore Si = Ŝi and Si induces a star.
The other case where P̂ is of type T3 and P̃ is of type T2 is symmetric.

Now assume that there is a partial solution S of size s = p+h compatible
for (t, P ), where |P | = p and h is the number of forgotten stars in at t.
Also let (S1, . . . , Sp) be the sets that have a non empty intersection with Xt,
while Sp+1, . . . Ss are stars that are forgotten in Gt. Then we show that the
algorithm will store at most h into C[t, P ].

Consider a set Ŝ = {Si ∩ Vt̂
| Si ∩ Vt̂

6= ∅} such that the relative order
of included elements is the same as in S. The first p sets Si for i ∈ [p]
have a nonempty intersection with Xt. For such Si, we include Si ∩ Vt̂

into
Ŝ because Xt ⊆ V

t̂
. If Si is a forgotten star in G

t̂
then it also is included.

Otherwise the star Si could also have been forgotten in G
t̃
, then such a star

would have an empty intersection with V
t̂

and is not included in Ŝ. For
S̃ = {Si ∩ Vt̃

| Si ∩ Vt̃
6= ∅} we have a symmetrical partial solution.
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5.3. Proof of correctness

We now show that Ŝ is compatible for some P̂ at t̂. First, we show that Ŝ
is a partitioning of V

t̂
. Every vertex v ∈ V

t̂
was part of some set Si because S

was by assumption a partitioning. Then Si ∩ Vt̂
6= ∅ and indeed v is included

in some Ŝi. Also, every vertex v ∈ Vt \Vt̂
is not included in Ŝ because we took

Si ∩ Vt̂
.

Let Si be a forgotten star in Gt. By compatibility we know that |Sc
i | =

1, thus either v ∈ V
t̂
\ Xt or v ∈ V

t̃
\ Xt. Assume that v ∈ V

t̂
\ Xt (the

case v ∈ V
t̃
\ Xt is symmetrical and is omitted). We know by compatibility

that S`
i ⊆ NGt(v). Using Lemma 2.2 and the assumption that v /∈ Xt we

subsequently know that NG
t̂
(v) ⊆ V

t̂
. Together with the fact that S`

i ∩Xt = ∅
we get Si ⊆ (V

t̂
\ Xt). This means that Si ∩ Vt̂

= Si = Ŝi and Ŝi is still a
forgotten star in G

t̂
.

Now consider Si that intersect Xt. Using compatibility, we know that
Si ∩Xt = Pi. Then Ŝi ∩Xt̂

= (Si ∩ Vt̂
) ∩X

t̂
= Si ∩Xt̂

= Si ∩Xt = Pi = P̂i.
We just proved that that each Ŝi still has a correct intersection with X

t̂
(and

symmetrically also for S̃i with X
t̃

too).
In the following part we analyze the type of Si ∩ Xt = Pi and proceed

to show (Ŝ, S̃) is compatible for one of the pair (P̂ , P̃ ) ∈ P(P ). We have in
total four cases. For each case, we show the compatibility of Ŝi for P̂i and the
compatibility of S̃i for P̃i in two steps: (1) we show that Ŝi has the correct
structure as prescribed by the type of P̂i (and symmetrically for S̃i and P̃i),
(2) we show that Ŝi is either a star or an independent set (and symmetrically
for S̃i).

Si ∩Xt = Pi of type T0: Then the algorithm assigned P̂i = Pi and both
are of type T0.
The type T0 prescribes that (1) the center equals P̂1: P̂ 1

i = P 1
i = Sc

i =
Ŝc

i and (2) Ŝ`
i ∩Xt̂

= (S`
i ∩ Vt̂

) ∩Xt = S`
i ∩Xt = P 2

i = P̂ 2
i .

Furthermore, Ŝ`
i ⊆ Si, so Ŝ`

i is still an independent set and the leaves
are still adjacent to the center v ∈ Ŝc

i = P̂ 1
i .

For P̃i and S̃i the proof is symmetrical.

Si ∩Xt = Pi of type T1: Then the algorithm assigned P̂i = Pi and both
are of type T1.
The center Ŝc

i equals to P̂ 1
i trivially. None of the leaves S`

i intersected
Xt = X

t̂
, therefore Ŝ`

i ⊆ S`
i also will not intersect X

t̂
.

Again, Ŝi ⊆ Si and the center Ŝc
i = Sc

i = P̂ 1
i 6= ∅, thus Ŝi indeed still

induces a star.
For P̃i and S̃i the proof is symmetrical.

Si ∩Xt = Pi of type T3: Then the algorithm assigned P̂i = Pi and both
are of type T3.
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5. Algorithm on graphs with bounded treewidth

From compatibility we have S`
i = P 3

i . This implies that Ŝ`
i = S`

i ∩
V

t̂
= P 3

i ∩ Vt̂
= P 3

i = P̂ 3
i . The center was by compatibility empty, so

Ŝc
i = Sc

i ∩ Vt̂
= ∅.

The set Ŝi = Ŝ`
i is trivially an independent set.

For P̃i and S̃i the proof is symmetrical.

Si ∩Xt = Pi of type T2: From compatibility we have Sc
i 6= ∅ and Sc

i is not
part of Xt. This means either Sc

i ⊆ Vt̂
\Xt or Sc

i ⊆ Vt̃
\Xt.

First assume that Sc
i ⊆ Vt̂

\Xt. Then (P̂ 1
i , P̂

2
i , P̂

3
i ) = (∅, P 2

i , ∅) is the set
we are looking for at t̂. The set P̂i is of type T2, therefore we need to
show three properties: (1) The center Ŝc

i 6= ∅ and also (2) Ŝc
i ∩Xt̂

= ∅.
This is true because we assumed that the center is part of V

t̂
\Xt. (3)

The intersection Ŝ`
i ∩Xt̂

= (S`
i ∩ Vt̂

) ∩X
t̂

= S`
i ∩Xt = P 2

i = P̂ 2
i which

proves that the intersection of leaves with X
t̂

is as prescribed by P̂ 2
i .

From the definition of tree decomposition we know that Sc
i ∩(V

t̃
\Xt) = ∅.

Then (P̃ 1
i , P̃

2
i , P̃

3
i ) = (∅, ∅, P 2

i ) is the set we are looking for at t̃. The
set P̃i is of type T3 and we only need to prove two properties: (1) The
center is by assumption empty and the definition requires S̃c

i = ∅. (2)
Also, S̃`

i ∩Xt̃
= (S`

i ∩ Vt̃
) ∩X

t̃
= S`

i ∩Xt = P 2
i = P̃ 3

i .

The case Sc
i ⊆ V

t̃
\Xt is symmetrical. We use (P̂ 1

i , P̂
2
i , P̂

3
i ) = (∅, ∅, P 2

i )
and (P̃ 1

i , P̃
2
i , P̃

3
i ) = (∅, P 2

i , ∅).

We just proved that Ŝ is compatible for P̂ at t̂ and S̃ is compatible for P̃
at t̃ and furthermore (P̂ , P̃ ) ∈ P(P ). Then Ŝ is one of the considered sets in
the definition of C[t̂, P̂ ] and symmetrically for S̃ with C[t̃, P̃ ]. Let ĥ be the
number of forgotten stars Ŝi ∈ Ŝ at t̂ and h̃ be the number of forgotten stars
S̃i ∈ S̃ at t̃. This all implies that C[t̂, P̂ ] ≤ ĥ and C[t̃, P̃ ] ≤ h̃. Each forgotten
star Si is included either in Ŝ or S̃ but not in both of them, thus ĥ + h̃ = h
and therefore C[t, P ] ≤ C[t̂, P̂ ] + C[t̃, P̃ ] = h.

Theorem 5.3. The value at C[r, ∅] equals q, if and only if G admits an
induced star partition of size q.

Proof. First we show that if there exists a partial solution S of size s compati-
ble for (r, ∅), then there exists a way to partition G into q induced stars. From
the algorithm, we know that C[t, P ] returns the number of forgotten stars in
optimal partial solution S compatible for P at t. In this case, we have P = ∅
and |∅| = 0, thus |S| = C[r, ∅] = q. Using compatibility, we know that each
forgotten star Si induces a star and S is a partitioning of Vr = V (G). Each
forgotten star Si create its own partition and we have q of them.

Now we show that if there is a way to partition G into q induced stars,
then C[r, ∅] = q. Let S1, . . . , Sq be the partitioning of vertices V (G) and each

52



5.3. Proof of correctness

Si ⊆ V (G) induces a star in G. We assign Sc
i as the center of the induced

star Si and S`
i = Si \ Sc

i . Then S = (S1, . . . , Sq) is one of the considered
partial solution in the definition of C[r, ∅] because each set Si trivially has an
empty intersection with P = ∅ and each set Si induces a star. The number of
forgotten stars in S is q, thus C[r, ∅] ≤ q.

Theorem 5.4. Let G be a graph on n vertices given together with its nice
tree decomposition T of width at most tw(G). Then the Induced Star
Partition problem on G is solvable in time O(tw(G)2tw(G) · n).

Proof. The dynamic algorithm we just described works on a nice tree decom-
position of width at most tw(G) = k. From the definition of tree width we
get |Xt| ≤ k + 1 for every node t. We also assumed the algorithm only works
with valid partitioning, meaning every vertex v ∈ Xt has to be part of a
Pi and ∅ /∈ P , therefore |P | ≤ |Xt|. Thus at node t we compute at most
|Xt||P | ≤ (k + 1)(k+1) values of C[t, P ].

The computation of C[t, P ] of a leaf node t can be done in O(1) time. We
just set a constant value.

The running time to compute C[t, P ] of an introduce node t using a valid
partitioning P is O(k): Finding where the newly introduced vertex v is in P
takes O(k) time and checking the size of each P `

i is in O(1). The construction
of P̂ can be done in O(|P |) = O(k) time. We just copy the sets P̂j = Pj that
do not contain v and for Pi that contains v, we create P̂i = P \ {v} or omit
the set entirely.

For forget node t with valid P , the value C[t, P ] can be computed in O(k4)
time: The algorithm needs to create 2(|P | + 1) ≤ 2(k + 2) sets and remove
sets that are invalid. The construction of P̂ and P̃ can be done in O(k) time.
We copy the old Pi most of the time and only add a new vertex (the forgotten
one) into one of the sets. The validity check a little bit more complicated.
First, we need to check that each P 2

i and P 3
i is an independent set. This can

be done in O(k3) time. We iterate through all pair of vertices u, v ∈ P 2
i or

P 3
i , depending on whichever one is not empty, and check if they are adjacent

in G in O(k) time (refer to Lemma 2.3). Additionally we need to check that
all leaf vertices u ∈ P 2

i are adjacent to the center c ∈ P 1
i . This can be done

in O(k2) time. In total, the validity check can be finished in O(k3) time.
The value C[t, P ] at a join node t for a valid partitioning P can be com-

puted in O(2k · k) time. We create at most 2|P | pairs (P̂ , P̃ ) and each P̂ and
P̃ can be constructed in O(k) time.

To wrap it up, we compute at most (k + 1)(k+1) values of C[t, P ] and to
compute each C[t, P ] we need O(2k ·k) time. We can assume that the number
of nodes of the given nice tree decomposition is O(k · n). Thus the total
running time is O(tw(G)2tw(G) · n).
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Chapter 6
Implementation, Testing, and

Evaluation

This chapter is dedicated to the implementation details of the algorithm pre-
sented in Section 4.4. We start with the implementation choices, requirements
for installation and usage guide for the program. Then we briefly describe the
included unit tests. Finally we analyze the performance of the implementa-
tion.

6.1 Choice of algorithm and programming
language.

We provide a simple implementation of our algorithm parameterized by the
vertex cover number as described in Section 4.4. The main reason why we
chose to implement the algorithm for vertex cover and not for treewidth is
that the algorithm parameterized by vertex cover is a lot simpler to imple-
ment compared to dynamic programming on tree decomposition. Another
important reason is that the algorithms heavily depend on the given vertex
cover and the tree decomposition, respectively. In practice, these parameters
often also need to be computed. From our experience, implementations for the
minimum vertex cover problem are easier to use, understand, and implement
compared to treewidth decomposition solvers. Refer to PACE challenge [29]
for recent treewidth and vertex cover implementation results. A very powerful
tool for finding minimum vertex cover is gurobi [30]. We leverage gurobi’s
optimization capabilities to find a minimum vertex cover using integer linear
programming, more details will be discussed in Subsection 6.1.3.

The goal was to implement an efficient solver, thus C++ was chosen. The
templated library offers optimized implementation of basic data structures
and we can use gurobi’s C++ API to calculate the vertex cover.
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6. Implementation, Testing, and Evaluation

1 int inducedStarPartitioning_vc(const Graph & g,
2 const std::vector<vertex> & vc,
3 StarPartitions &S);

Listing 1: Signature of solver function.

1 bool isValidStarPartition(const Graph &g,
2 const StarPartitions &S,
3 int solutionSize);

Listing 2: Signature of validator function.

6.1.1 Requirements

The implementation is written in C++ 17 and a standard compiler for C++

is needed, such as gcc or clang. There is a makefile prepared together with
the implementation, therefore we recommend also having the latest version of
make. On our system we used the version GNU Make 4.2.1.

The algorithm is parameterized by vertex cover, thus a vertex cover needs
to be provided. In our implementation, we compute a minimum vertex cover
using gurobi [30], which is a commercial tool. The installation of gurobi
can be omitted, but then a vertex cover needs to be provided on the input.

Together with the implementation we also provide sets of unit tests to
test edge cases. The tests are written using Google test framework. We
recommend version v1.13.0 or higher. The installation process of google
test can be omitted, the tests and the solver are not dependent on each other.

6.1.2 Solver

We provide two important functions: one invokes the solver, the other verifies
that the given partition is indeed an induced star partition.

The function inducedStarPartitioning_vc invokes the solver and is avail-
able in starPartitioning/inducedStarPartitioning.hpp. The signature
of the function is shown in Listing 1. The function accepts a graph g of type
Graph and a vertex cover as a list of vertices from g. The function returns the
induced star partition number q and also provides a certificate—the partition
S = (S1, . . . , Sq) where each Si is a star. The time complexity heavily relies
of the size of the given vertex cover vc as described in the algorithm.

The second important function isValidStarPartition verifies that the
given StarPartitions S has the correct structure. Note that the verifier
does not check if the size is minimal. The signature of the function is shown
in Listing 2. The function accepts a graph g and its induced star partition S
and the size of S.
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6.1.3 External solvers

There are two external solvers used in the implementation. One of them is
gurobi to calculate the exact minimum vertex cover of the graph, the other
is a solver for the max flow problem.

Gurobi [30] is a powerful multi-purpose optimization tool and we use its
capabilities to calculate a minimum vertex cover of the given graph. The
vertex cover problem has an Integer linear programming formulation [6, page
33] that we use to model the problem in Gurobi:

Minimize
∑

v∈V (G)
xv

Subject to: xu + xv ≥ 1 ∀{u, v} ∈ E(G)
xv ∈ {0, 1} ∀v ∈ V (G).

(6.1)

The vertex cover solver is calculated in a function called getVertexCover,
which can be found in externalSolver/vertexCoverSolver.hpp. We wrap
the whole function in GUROBI directive in case gurobi is not installed.

The other external algorithm that we use in the implementation is Dinic’s
algorithm available from KACTL [31]. The main reason why we chose this
implementation is that the implementation is highly optimized and well tested.
The solver can be found in externalSolver/dinic.hpp.

6.1.4 Usage

The first step is the compilation of the executable binary file. We provide a
simple makefile for this purpose. The following expected scenarios are:

1. Just compiling the solver: Use the command make notests and then
the executable can be found in exe/main.

2. Just running the tests: Use the command make tests which will compile
the tests and execute them (note that gTest needs to be installed).

3. Compile without gurobi: The makefile automatically detects if gurobi
is not installed and no further modifications need to be made.

4. Compile with gurobi: The INCLUDES flag needs to be changed
within the makefile. If gurobi is not installed in the correct location,
the include address needs to be changed. The default location is at
˜/gurobi952/linux64/include/. Otherwise no further changes need
to be made.

5. Clean up the folder: Use the command make clean to remove all com-
pilation files.
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1 ./exe/main instances/smallVCInstances/in1.gr \
2 instances/smallVCInstances/vc1.gr

Listing 3: An example of starting the program from command line.

After compiling, the executable file can be found in the exe/ folder. The
solver can be executed from the command line as shown in Listing 3. The
program expects at least one parameter. The first parameter is mandatory and
the program expects a graph in the .gr format (described in Subsection 6.1.5).
The second parameter is optional and is used to pass the vertex cover of the
input graph to the program. The vertex cover file format is also described in
Subsection 6.1.5. If no vertex cover is given, then the program computes one
using gurobi.

6.1.5 Input and output format

The program expects a graph in .gr format as the first argument. The .gr
format is used in the PACE challenge [29], more specifically we use the format
of the 2019 vertex cover challenge2. For completeness we describe the format
again in this thesis. Note that the format is similar to the DIMACS graph
format3.

• Each line is separated by a newline '\n'.

• Lines starting with character c are interpreted as comments.

• Vertices are consecutively numbered from 1 to n.

• The first line (that is not a comment) is the problem description and
has the following structure:

– Line starts with character p,
– followed by the problem descriptor (we ignore this descriptor),
– followed by number n of vertices,
– followed by number m of edges.

No other line may start with p.

• Remaining m lines (that are not comments) indicate edges consisting of
two integers (vertex identifiers) separated by a space.

• Graphs may contain isolated vertices, but self-loops and multiedges are
forbidden.

2https://pacechallenge.org/2019/vc/vc_format/
3http://archive.dimacs.rutgers.edu/pub/challenge/graph/doc/ccformat.tex
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6.2. Testing

The second parameter is optional and is used to pass a vertex cover of
the input graph to the program. The format is also from the PACE 2019
challenge.

• Each line is separated by a newline '\n'.

• Lines starting with character c are interpreted as comments.

• Vertices are consecutively numbered from 1 to n.

• The first line (that is not a comment) is the solution description and has
the following structure:

– Line starts with character s,
– followed by the problem descriptor (we ignore this descriptor),
– followed by number n of vertices,
– followed by number v of vertices in the vertex cover.

No other line may start with s.

• Remaining v lines (that are not comments) indicate vertices consisting
of one integer (vertex identifier).

The output format of an induced star partition S is as follows:

• The first line consists of one integer q—the induced star partition number
of the input graph.

• Then follow 2q lines—the description of each induced star:

– The first line is an integer si—size of the i-th star,
– followed by si integers on second line—the first integer being the

center, followed by si − 1 leaf vertices.

6.2 Testing

The implementation is also accompanied with unit tests to ensure the correct-
ness of the implemented functions. The unit tests were created with the help
of gTEst [32] framework provided by Google.

All tests are included in the tests folder. It is possible to exclude the
tests during compilation using make notests and files without tests will be
compiled.

To run all the tests, we include a command in makefile: make tests.
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6.3 Experimental results

In this section we analyze the performance of the program. To the best of our
knowledge, there is no other known implementation for this problem and we
cannot compare the results with another implementation.

6.3.1 Environment

All measurements were performed on a local machine with an AMD Ryzen 5
CPU, the specifications of the hardware and software as follows:

Environment
CPU AMD Ryzen 5 4600H @ 3.00GHz
RAM DDR4 16 GB @ 2667MHz
OS Windows 10 with WSL2 (Ubuntu-20.04)

g++ (GCC)9.4.0
optimization flags -O2

Table 6.1: Specification of the environment used to perform measuring.

6.3.2 Dataset

Our algorithm has to try in the worst case up to k2k+1 partitions, where k is
the size of the given vertex cover. For this reason, we use graphs with small
vertex cover to ensure that the program will terminate. Unfortunately, there
are no universal datasets with small vertex cover, therefore all of the graphs
we used in the performance evaluation process are generated in the following
way.

Suppose we want to construct a graph g on n vertices with a vertex cover
k and d being the density parameter of the graph. Then we construct g in
using the following steps:

1. generate a graph g on n vertices and no edges,

2. select arbitrary k vertices from the graph g and declare them as the
vertex cover C,

3. add edges in two stages:

a) generate edges between the vertex cover C and V \ C: enumerate
all edges between C and V \ C, the number of such edges is m1 =
k · (n−k), then select m1 ·d of these edges randomly and add them
to g.
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1 Graph generateGraph_VC(size_t vertexCount, size_t VC_size,
2 double edgeRate, int seed,
3 std::vector<vertex> & VC);

Listing 4: Signature of graph generating function.

b) generate edges within the vertex cover C: enumerate all edges be-
tween two vertices in C, the number of such edges is m2 = k(k−1)

2 ,
then select m2 · d of these edges randomly and add them to g.

4. add additional edges to ensure there are no isolated vertices:

a) for each v ∈ V \C such that degg(v) = 0: select an arbitrary vertex
u ∈ C and add edge {v, u} to g,

b) for each v ∈ C such that degg(v) = 0: select an arbitrary vertex
u ∈ C such that degg(u) > 0, then add edge {u, v} to g.

The graphs we constructed using the generateGraph_VC function avail-
able from utility/instanceGenerators.hpp. The signature is shown in
Listing 4. The constructed graph is guaranteed to have a vertex cover of size
at most VC_size and no isolated vertices. Then, we return the selected vertex
set C through the output parameter VC and the graph g as return parameter
of the function.

6.3.3 Methodology

For each instance, we measure only the time of the actual partitioning algo-
rithm. We ignore time needed to load the graph and time spent on outputting
the solution. We also ignore the time needed to load the vertex cover from
memory.

The time is calculated as the difference between two timestamps. The first
timestamp is created before calling inducedStarPartitioning_vc. The sec-
ond timestamp is created immediately after returning from the called function.
The timestamps are created using std::chrono::high_resolution_clock.

The instances we use in the experiments were generated using our genera-
tor as described in Subsection 6.3.2. Then, we pass generated vertex cover to
the algorithm instead of computing a minimum vertex cover.

6.3.4 Results

We start the experiment with small graphs to get a better understanding of
the solver. In our first experiment, we generated graphs with n vertices in
range between 10 and 100, with vertex cover size at most 9, and edge rate
parameter d from 0.1 to 1. We used 900 instances of different combinations of

61



6. Implementation, Testing, and Evaluation

n m edge rate vc q time[ms]

0 100 191 0.2 9 9 21832.2
1 100 262 0.3 9 8 25353.5
2 90 305 0.4 9 7 21164.3
3 100 343 0.4 9 7 20993.4
4 100 427 0.5 9 6 21018.6

Table 6.2: Top five small instances with longest solve time from the first
experiment. The running time is displayed in ms. The column n shows the
number of vertices of the generated graph, m is the number of edges, edge rate
is the parameter d used in the graph generator, vc is the size of the vertex
cover used in the algorithm and q is the induced star partition number of the
graph.

n, vertex cover size and edge rate parameter and show only a fraction of all
measurements can be seen in Table B.1. The full table with all 900 instances
can be found on the included external medium as csv file. The total run time
for all 900 instances was under 10 minutes and the solver successfully computed
a solution for each instance within 30 seconds. We can safely conclude that
for such small instances the program will terminate and produce an optimal
solution in a reasonable time. The instance that ran the longest took 25
seconds and we show 5 instances with the longest solve time in Table 6.2.

In Figure 6.1 we can see the relation of growing number of vertices and the
total runtime. We show the value for various edge rate parameters and can
conclude that the implementation works well for denser graphs (higher edge
rate parameter and subsequently more edges) compared to sparser graphs.

The second experiment we performed was on graphs with bigger vertex
cover, more specifically in range 10 to 15. We wanted to know for which
vertex cover size we can still solve the problem in a reasonable time. We set
the time limit for each instance at 20 minutes.

This experiment ran in two phases. During the initial testing we used
graphs with edge rate between 0.2 and 0.8 and n from 70 to 150. We noticed
the solver was not able to compute the solution within the designated time
for graphs generated with parameters vc = 12 and edge rate d = 0.2. It
seems that for sparse graphs the number of iterations the algorithm has to
go through is very high and our branch cutting optimization does not get
applied very often. We paused the experiment and adjusted the edge rate.
The second phase consists of generating graphs with the same range of n and
vc but edge rate d is between 0.6 and 0.8. The total run time of the experiment
was around 8 hours and we measured 88 instances in total, of which only 76
instances were successfully solved within the designated 20 minutes. We again
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Figure 6.1: Relation between number of vertices and runtime for small in-
stances with vc = 9 and various edge rate d values.

show a fragment of all the measurements in Table B.2 and all 88 instances are
included in the external medium.

The results are as follows:

1. If the edge rate d is small (between 0.2 and 0.5), then we can only solve
for small vertex covers. For vc ≥ 13 the program can no longer compute
a solution within designated 20 minutes.

2. When the edge rate d is between 0.6 and 0.8, then we can still compute
a solution for vertex cover size vc = 15. We can conclude that vc ≤ 15
and n ≈ 100 is the limit of our solver.

So far we have only measured the running time for increasing vertex cover
size. In our final experiment, we focused mainly on having fixed vertex cover
and edge rate d, but increased the number of vertices n drastically. We gen-
erate graphs with vc = 5, edge rate d = 0.6 and number of vertices n in range
1000 to 5000. The total runtime for 21 instances took around 2.5 hours. The
largest instance our solver could still handle was with n = 4750 with running
time 18 minutes. For n ≥ 5000 the program was no longer able compute a
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n m d vc q time[s]

0 2000 6010 0.6 5 5 83.3
1 2250 6760 0.6 5 5 116.7
2 2500 7516 0.6 5 5 159.9
3 2750 8268 0.6 5 5 221.8
4 3000 9016 0.6 5 5 317.8
5 3250 9782 0.6 5 5 448.8
6 3500 10530 0.6 5 5 451.6
7 3750 11286 0.6 5 5 647.0
8 4000 12023 0.6 5 5 723.8
9 4250 12790 0.6 5 5 840.4
10 4500 13536 0.6 5 5 937.7
11 4750 14291 0.6 5 5 1105.1

Table 6.3: Solve time for instances with large number of vertices. Edge rate
parameter d and vertex cover vc size are fixed. Instances with number of
vertices n ≥ 5000 were not solved within the designated 20 minutes and are
not shown in the table.

solution within the designated 20 minutes. We show the complete results in
Table 6.3.

This concludes our experimental results. We now sum up our results. For
small graphs with small vertex cover and low number of vertices (vc ≤ 9 and
n ≤ 100) we conclude that the program will find an optimal solution very
quickly. For vertex cover at most 15 and n ≤ 150 we can only solve on graphs
with edge rate at least 0.6. Lastly, for small vertex cover (at most 5) and edge
rate d ≥ 0.6, our implementation can solve the Induced Star Partition
problem on graphs with n ≤ 5000.
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Conclusion

Goals and results

The goal of this thesis was to study and develop new algorithms for the In-
duced Star Partition problem using structural parameters. We present
three new results for this problem: (1) The problem is FPT when parameter-
ized by the vertex cover number of the graph and there is an exact O(k2k+1n2)
time algorithm, where k is the vertex cover number of the input graph. (2) The
problem is FPT when parameterized by the treewidth of the graph and there
is an exact O(tw(G)2tw(G) · n) time algorithm, where tw(G) is the treewidth
of the input graph. (3) For a fixed q, the problem can be solved linear time
on graphs with bounded cliquewidth.

We also discuss the implementation of the algorithm parameterized by the
minimum vertex cover of the graph as described in Section 4.4. The program
can successfully compute the exact solution in a reasonable time (under 1
minute) for all of our generated instances with small vertex cover (k ≤ 10
and n ≤ 100). The implementation can also solve most of the instances with
vertex cover size at most 15 on sparse graphs with n ≤ 150 vertices within 20
minutes.

Future work

In our work we also proved that the problem can be solved in linear time
on graph with bounded cliquewidth using Courcelle’s theorem [12] if a con-
struction sequence is given together with the graph. A natural continuation is
developing a dynamic programming algorithm on the construction sequence
of operations used in the definition of cliquewidth.

The problem parameterized by the vertex cover number is FPT, therefore a
natural question arises: Does the Induced Star Partition problem admit
a polynomial kernel when parameterized by the vertex cover number? We
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only showed one trivial reduction rule that deals with isolated vertices and we
would be interested in more reduction rules that could improve our algorithm.

Another direction of research could be towards improving our algorithm
or showing that our algorithm is ETH-tight.
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Appendix A
Acronyms

FPT Fixed-parameter tractable

MSO Monadic second order logic
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Measurements
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B. Measurements

n m vc q time[ms]

0 10 12 2 2 1.3
1 30 38 2 2 2.1
2 50 66 2 2 2.1
3 70 91 2 2 4.0
4 90 116 2 2 8.1
5 100 132 2 2 10.4
6 10 13 3 3 3.1
7 30 51 3 3 3.2
8 50 88 3 3 4.3
9 70 124 3 3 6.3
10 90 162 3 3 9.7
11 100 179 3 3 13.0
12 10 17 4 3 1.3
13 30 65 4 3 6.2
14 50 114 4 4 21.3
15 70 162 4 4 16.3
16 90 211 4 4 42.5
17 100 234 4 4 52.6
18 10 21 5 3 1.8
19 30 81 5 4 10.7
20 50 141 5 4 20.8
21 70 203 5 5 54.7
22 90 261 5 4 52.7
23 100 292 5 4 70.0

n m vc q time[ms]

24 10 23 6 3 1.6
25 30 95 6 4 9.2
26 50 167 6 4 19.5
27 70 239 6 4 72.0
28 90 311 6 5 236.8
29 100 347 6 5 249.0
30 10 24 7 3 0.9
31 30 108 7 4 14.4
32 50 193 7 4 24.7
33 70 276 7 5 246.6
34 90 360 7 5 905.6
35 100 402 7 5 438.9
36 10 25 8 3 0.7
37 30 121 8 4 83.0
38 50 218 8 5 310.8
39 70 313 8 5 564.9
40 90 409 8 5 2036.7
41 100 457 8 5 1664.7
42 10 26 9 3 1.1
43 30 134 9 4 26.0
44 50 242 9 5 603.2
45 70 350 9 5 3954.9
46 90 458 9 5 830.8
47 100 512 9 5 3636.4

Table B.1: Selected small instances used in the evaluation process. Graphs
have 10, 40, 70 or 100 vertices and were generated with edge rate parameter
d = 0.6. The upper bound of the vertex cover number is shown in the vc
column and the column q shows the induced star partition number of the
generated graph. The running time is displayed in ms.
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n m d vc time[s]

0 70 132 0.2 10 71.0
1 90 177 0.2 10 105.6
2 110 220 0.2 10 128.4
3 130 263 0.2 10 169.8
4 150 302 0.2 10 236.0
5 70 258 0.4 10 22.7
6 90 338 0.4 10 48.9
7 110 419 0.4 10 145.1
8 130 499 0.4 10 239.3
9 150 579 0.4 10 310.6
10 70 142 0.2 11 432.9
11 90 191 0.2 11 630.8
12 110 236 0.2 11 712.0
13 130 281 0.2 11 1139.1
14 150 329 0.2 11 -
15 70 281 0.4 11 226.7
16 90 369 0.4 11 292.8
17 110 457 0.4 11 607.5
18 130 546 0.4 11 1065.6
19 150 633 0.4 11 1119.7
20 70 153 0.2 12 -
21 90 205 0.2 12 -
22 110 254 0.2 12 -
23 130 304 0.2 12 -
24 150 350 0.2 12 -
25 70 304 0.4 12 315.1
26 90 401 0.4 12 476.1
27 110 496 0.4 12 597.5
28 130 592 0.4 12 -
29 150 688 0.4 12 -

n m d vc time[s]

0 70 387 0.6 10 4.5
1 90 507 0.6 10 20.4
2 110 627 0.6 10 20.1
3 130 747 0.6 10 26.4
4 150 867 0.6 10 47.6
5 70 422 0.6 11 12.6
6 90 554 0.6 11 28.0
7 110 686 0.6 11 59.7
8 130 818 0.6 11 59.9
9 150 950 0.6 11 85.5
10 70 456 0.6 12 33.5
11 90 600 0.6 12 38.6
12 110 744 0.6 12 50.9
13 130 888 0.6 12 398.1
14 150 1032 0.6 12 103.9
15 70 490 0.6 13 36.1
16 90 646 0.6 13 80.5
17 110 802 0.6 13 238.0
18 130 958 0.6 13 216.6
19 150 1114 0.6 13 1047.1
20 70 524 0.6 14 83.6
21 90 692 0.6 14 62.2
22 110 860 0.6 14 338.5
23 130 1028 0.6 14 -
24 150 1196 0.6 14 -
25 70 558 0.6 15 55.9
26 90 738 0.6 15 84.2
27 110 918 0.6 15 304.3
28 130 1098 0.6 15 -
29 150 1278 0.6 15 -

Table B.2: Selected instances with bigger vertex cover used in the evaluation
process. The left column contains data with edge rate parameter d < 0.6 and
vertex cover vc ≥ 12 and the right column contains graphs generated with
d = 0.6. The displayed time is in seconds. Instances that did not terminate
within designated 20 minutes are shown as -.
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Appendix C
Contents of enclosed medium

readme.txt...................the file with medium contents description
src.......................................the directory of source codes
text................... the directory of LATEX source codes of the thesis
extra......................................... tables of measured data
thesis.pdf..............................the thesis text in PDF format
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