
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Analysis of Multi-Stage Recommendation Systems

Bc. Bruno Kraus

Ing. Petr Kasalický

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2023/2024

Instructions

Explore the topic of Recommendation Systems with a focus on a multi-stage

recommendation. Describe the role of each stage of the multi-stage recommendation

system. Examine commonly used methods as well as state-of-the-art methods used for

each stage.

Propose an experiment to compare different retrieval and ranking models and study how

they influence each other and contribute to the final recommendation. Design a multi-

stage recommender system with implemented prototypes of described algorithms.

Select suitable non-trivial input data (e.g., Dressipi Recsys Challenge 2022) and perform

the described experiment. Evaluate results and discuss possible future improvements of

the suggested approach.

Literature:

Industrial Solution in Fashion-domain Recommendation by an Efficient Pipeline using

GNN and Lightgbm: https://dl.acm.org/doi/abs/10.1145/3556702.3556850

Deep Neural Networks for YouTube Recommendations: https://dl.acm.org/doi/

10.1145/2959100.2959190

Fashion Recommendation with a real Recommender System Flow: https://dl.acm.org/

doi/abs/10.1145/3556702.3556792

Building and Deploying a Multi-Stage Recommender System with Merlin: https://

dl.acm.org/doi/pdf/10.1145/3523227.3551468

Related Pins at Pinterest: The Evolution of a Real-World Recommender System: https://

arxiv.org/abs/1702.07969

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 15 February 2023 in Prague.

Master’s thesis

Analysis of Multi-Stage Recommendation
Systems

Bc. Bruno Kraus

Department of Applied Mathematics
Supervisor: Ing. Petr Kasalický

May 4, 2023

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Ing. Petr
Kasalický, for his invaluable expertise and guidance throughout the work on
this thesis. Additionally, I would like to thank Recombee, s.r.o. for providing
me with the hardware, which I utilized while working on this thesis, and
for introducing me to the exciting area of real-world recommender systems.
Last but not least, I am deeply grateful to my girlfriend and my parents for
their unwavering support, love, and encouragement throughout my academic
journey.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular the fact that the Czech Technical University in Prague has the
right to conclude a licence agreement on the utilization of this thesis as a
school work pursuant of Section 60 (1) of the Act.

In Prague on May 4, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Bruno Kraus. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kraus, Bruno. Analysis of Multi-Stage Recommendation Systems. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2023.

Abstrakt

Tato práce provád́ı studii doporučovaćıch systémů se speciálńım zaměřeńım
na multi-stage doporučovaćı systémy. Práce zkoumá komplexńı problematiku
těchto systémů a zkoumá motivace, které stoj́ı za použit́ım čtyř-fázového
př́ıstupu. Práce zkoumá r̊uzné retrieval algoritmy a př́ıstupy pro následné
řazeńı. V práci je navržen a implementován multi-stage doporučovaćı systém
pro datovou sadu Dressipi. Práce vyhodnocuje řadu implementovaných re-
trieval algoritmů s ćılem vytvořit robustńı retrieval fázi. Pro řazeńı je pak
využita implementace gradient-boosted rozhodovaćıch stromů, přičemž nej-
lepš́ıch výsledk̊u se dosáhlo ensemblem listwise a pointwise přistup̊u. Vyhod-
noceńı doporučovaćıch systémů ukazuje, že využit́ı multi-stage př́ıstupu pro
doporučováńı překonává použit́ı jednotlivých doporučovaćıch algoritmů nebo
jejich ensembl̊u. Na závěr jsou diskutována možná budoućı vylepšeńı a směry
daľśıho výzkumu.

Kĺıčová slova Doporučovaćı systémy, multi-stage doporučovaćı systémy,
retrieval algoritmy, řad́ıćı algorithmy, LightGBM, Dressipi dataset, Recsys
Challenge

vii

Abstract

This thesis provides a comprehensive study of recommender systems, with
a specific focus on multi-stage recommender systems. The work investigates
the complex nature of such systems and examines the motivations behind
the use of a four-stage pipeline. The study covers various retrieval algo-
rithms and approaches employed in the ranking stage. A tailored multi-stage
recommender system for the Dressipi dataset is designed and implemented,
with a range of retrieval models evaluated to create a robust retrieval stage.
The state-of-the-art implementation of gradient-boosted decision trees is em-
ployed for ranking, with the best results obtained by ensembling multiple
approaches. The importance of utilizing various features is examined, and
the pointwise and listwise ranking approaches are compared. The performance
evaluation demonstrates that utilizing a multi-stage pipeline for recommenda-
tion outperforms using single recommendation algorithms or their ensembles.
Finally, future improvements and work are discussed.

Keywords Recommender systems, multi-stage recommender systems, re-
trieval algorithms, ranking algorithms, LightGBM, Dressipi dataset, Recsys
Challenge

viii

Contents

Introduction 1

1 Analysis of Multi-Stage Recommender Systems 3
1.1 Introduction to Recommender Systems 3
1.2 Stages of Multi-Stage Recommenders 6

1.2.1 Retrieval stage (candidate generation) 7
1.2.2 Filtering stage . 7
1.2.3 Ranking stage . 8
1.2.4 Reordering stage . 8

1.3 Analysis of Retrieval Models 9
1.3.1 Rating Matrix . 9
1.3.2 Measuring user and item similarity 11
1.3.3 User-based k-Nearest Neighbour 12
1.3.4 Item-based k-Nearest Neighbors 13
1.3.5 Items to item recommendation with ItemCF 14
1.3.6 Swing algorithm . 14
1.3.7 Two towers . 15

1.4 Analysis of Ranking Models . 16
1.4.1 Introduction to Learning to Rank 17
1.4.2 Learning to Rank methods 18
1.4.3 Introduction to Gradient Boosting 19

1.4.3.1 Boosting . 19
1.4.3.2 Gradient Boosting 20

2 Problem Statement 23
2.1 Challenge task . 23
2.2 Dataset . 23
2.3 Evaluation methodology . 25
2.4 Related work . 26

ix

3 Proposed Approach 29
3.1 Design of our solution . 29
3.2 Implementation architecture . 31
3.3 Training, validation, and testing data split 32
3.4 Retrieval stage . 33

3.4.1 Metrics for retrieval models 34
3.4.2 Popularity-based model 35
3.4.3 Content-based model . 35
3.4.4 ItemKNN . 36
3.4.5 UserKNN . 37
3.4.6 Items-to-item models . 37

3.4.6.1 Swing . 38
3.4.6.2 ItemCF . 38
3.4.6.3 Rating similarity 39
3.4.6.4 Word2vec . 39
3.4.6.5 Factorization 39
3.4.6.6 Similarity-based ensemble model 40

3.5 Ranking Stage . 40
3.5.1 Ranker Training . 40
3.5.2 Features for ranking algorithms 41
3.5.3 Hyperparamer tuning 42

4 Experiments 43
4.1 Retrieval Models . 43
4.2 Selecting retrieval models . 48
4.3 Ranking algorithms . 53
4.4 Evaluation on the testing datasets 54
4.5 Discussion . 54

Conclusion 57

Bibliography 59

A Acronyms 67

B Contents of enclosed CD 69

x

List of Figures

1.1 An illustration of multi-stage pipeline in different domains [13] . . 9
1.2 Two towers architecture [24] . 17

2.1 Modification of sessions with multiple purchased items [45] 24

3.1 High-level inference flow from a session to recommended items . . 30
3.2 Heatmap of Jaccard coefficients between sets of purchased items

in different months . 33
3.3 Dataset organization for validation and testing 34

4.1 HitRate@N and MRR@N for retrieval models based on similarity
to the last viewed item . 45

4.2 HitRate@N and MRR@N for different retrieval models on valida-
tion data . 46

4.3 Bump graph for HitRate@N in % for retrieval models on validation
data . 47

4.4 Bump graph for MRR@N for retrieval models on validation data . 47
4.5 HitRate@200 in % heatmap when combining 100 candidates from

two retrieval models . 49
4.6 HitRate@400 in % heatmap when combining 200 candidates from

two retrieval models . 50
4.7 HitRate@300 in % when ItemKNN, Content-based model, and an-

other retrieval model each retrieve top-100 items 50
4.8 Average size of the candidate set when ItemKNN, Content-based

model, and another retrieval model each retrieve top-100 items . . 50
4.9 HitRate@600 in % when ItemKNN, Content-based model, and an-

other retrieval model each retrieve top-200 items 51
4.10 Average size of the candidate set when ItemKNN, Content-based

model, and another retrieval model each retrieve top-200 items . . 51
4.11 HitRate@400 in % when ItemKNN, Content-based, Popularity-

based, and another retrieval model each retrieve top-100 items . . 51

xi

4.12 Average size of the candidate set when ItemKNN, Content-based,
Popularity-based, and another retrieval model each retrieve top-
100 items . 51

4.13 HitRate@800 in % when ItemKNN, Content-based, Popularity-
based, and another retrieval model each retrieve top-200 items . . 52

4.14 Average size of the candidate set when ItemKNN, Content-based,
Popularity-based, and another retrieval model each retrieve top-
200 items . 52

4.15 MRR@100 of the ranking models on validation sessions 52
4.16 Gain-based feature importance on a logarithmic scale of a single

pointwise LightGBM model . 55
4.17 Gain-based feature importance on a logarithmic scale of a single

listwise LightGBM model . 55
4.18 Final MRR@100 for different recommendation algorithms on test-

ing datasets . 56
4.19 Vizualization of MRR@100 for different recommendation algorithms

on leaderboard and final sessions 56

xii

Introduction

In today’s world, recommender systems play a vital role on online sites by pro-
viding users with relevant content tailored to their preferences and taste in real
time. These systems can enhance the user experience by providing more per-
sonalized and engaging content, help users find searched items by navigating
them through large item catalogs, and ultimately increase conversions for
online businesses. The objectives of real-world recommender systems go be-
yond predicting suitable items for users. It is often essential to incorporate
various business rules, optimize the entire pipeline for low latency, and main-
tain the flexibility to adapt the system as needed. Multi-stage recommender
systems utilize a paradigm in which the system is divided into subsequent
modules, each serving a distinct purpose. These modules work together to
fulfill the requirements of a real-world recommendation system, ensuring its
effectiveness and adaptability.

The primary objective of the chassis part of this thesis is to present
the challenges associated with recommender systems and explore how mul-
ti-stage recommenders address these issues. We aim to provide an analysis
of each stage within multi-stage recommenders, delving into the motivations
and techniques employed in recommendation systems, particularly focusing
on item retrieval and ranking stages that determine recommendation quality.
In the practical segment, we aim to design and implement a multi-stage rec-
ommender for the Dressipi dataset. This will involve discussing the decision-
making process during the development of the recommendation system, ex-
perimenting with retrieval methods, comparing the two-stage recommenda-
tion paradigm against traditional recommendation algorithms, and evaluating
the overall performance of the implemented recommendation system.

The structure of this work is organized into four chapters. The first chap-
ter provides an in-depth analysis of the multi-stage recommendation pipeline,
while the second chapter introduces the task of the RecSys2022 challenge,
presents the dataset, and outlines the multi-stage approaches employed by
top-performing solutions. The third chapter proposes the design and im-

1

Introduction

plementation of our multi-stage recommender for the introduced task and
dataset, detailing the retrieval and ranking algorithms utilized. The fourth
chapter showcases the experiments conducted to evaluate the performance of
our recommender system.

2

Chapter 1
Analysis of Multi-Stage
Recommender Systems

1.1 Introduction to Recommender Systems

In today’s digital age, the average internet user spends hours on a daily basis
consuming online content [1]. Websites that provide us with content range
from media sites featuring news articles and e-Commerce stores presenting us
their products to apps and platforms serving us media such as videos, movies,
or music. The content we encounter online is usually not random, and al-
though sometimes it can be based on its general popularity, most frequently,
it is tailored to our specific interests. We refer to the systems responsible for
using the collected user data and delivering personalized content as recom-
mender systems.

A recommender system can help us find relevant products more efficiently
on e-Commerce websites by guiding us through large catalogs of items, in-
creasing the likelihood that we will discover products that fit our needs and
tastes. Without this assistance, we might become discouraged while searching
for such a product or get distracted and start doing another activity instead.
Furthermore, a recommender system on a media website can also provide us
with more interesting and engaging articles, keeping us on the website longer
and exposing us to more ads and commercials. Better, more personalized con-
tent could lead to higher client satisfaction and to higher website revenues at
the same time.

Every content-providing platform has a collection of items that can be
shown to its users. These items could be articles on news sites and blogs,
products on e-commerce websites, or videos, movies, and songs on streaming
platforms. Such a complete set of items that a platform has available is called
an item catalog.

A recommender system selects a subset of items from the item catalog that
it identifies as the most relevant to a user. Items in this subset are referred

3

1. Analysis of Multi-Stage Recommender Systems

to as recommendations and are typically displayed on the user’s feed page or
some dedicated part of the website or app. the placement of recommenda-
tions may vary depending on whether the site or app is entirely driven by
the recommendation system or if it has specific scenarios and locations for
recommendations to pop up. Often personalized recommendations are pre-
sented in a row or a column of items labeled ”Recommended for you” or with
other context-based labels such as ”Because you liked X” or ”People also liked
the following”.

The exact metrics and KPIs (key performance indicators) used to eval-
uate the quality of a recommender system and its recommendations often
depend on the domain, business objectives, and even website implementation.
Common examples of such metrics include the click-through rate (CTR) and
the cart conversion rate (CCR). CTR measures the number of clicks on rec-
ommendations out of all recommendations displayed, which is essential when
we want to optimize the number of page clicks and views for ad revenue. For
e-Commerce sites, CCR is an interesting metric since it shows how many of
the displayed recommended products are being added to the cart, with higher
values of CCR indicating that the recommender system is able to recommend
searched products faster or even more relevant products per recommendation
in general.

One significant advantage of online stores over physical stores is that they
do not have to be limited to a certain number of products that fit into the phys-
ical space of the store. For example, the number of books available in an online
bookstore is much larger than in a physical bookstore. Physical stores typically
deal with their capacity limitations by offering mainly items frequently pur-
chased or popular items. Online stores with large item catalogs and help from
recommender systems enable people to find more niche items that better fit
their tastes and preferences. Interestingly, items that do not fit in the popular
category, given their large amount, can ultimately form a significant portion
of sales. This phenomenon is known as the long-tailed economy and was de-
scribed in [2]. To ensure that the recommender system generally recommends
a diverse set of items and does not limit itself to a particular cluster of items,
we can measure a metric called catalog coverage. Catalog coverage is the ra-
tio between the number of different items recommended by a recommender
system and the size of the item catalog.

The evaluation of the effects of applying a recommender system in a pro-
duction environment is known as online evaluation. It is the best way to assess
the influence of the recommendation system on business performance. To com-
pare the performance differences between the current and testing versions of
the recommender system in live traffic, A/B testing is used [3].

However, before we expose live users to recommendations from a new rec-
ommender system, estimating or comparing its performance to other versions
via offline experiments is often crucial. Off-line evaluation involves evaluat-
ing recommendation algorithms used in a recommender system on collected

4

1.1. Introduction to Recommender Systems

historical interaction data, which simulates the behavior of users that inter-
act with the recommender system [4]. Although offline metrics do not always
necessarily correlate with online results [5], they are essential to identify ob-
vious flaws, give a first estimate of performance, and provide a sanity check
before a deployment of the new system. Next to evaluating recommendation
quality on historical data, it is also important to consider the system’s com-
putational efficiency and performance, which can be measured with metrics
such as queries per seconder (QPS) or return time (RT). These metrics can
also indicate the difference in costs of computational power between different
recommendation systems [6].

We mentioned that recommender systems utilize collected user data. In
the theory and literature of recommender systems, we distinguish between
two types of user data that a recommender system might rely on: explicit and
implicit feedback [7, 8]. Explicit feedback, also known as explicit ratings, is
a logged action in which a user rates an item with some score. In contrast,
implicit feedback is based on logged interactions between users and items, such
as item views or item purchases indicating the item’s relevance for a given user.

Examples of explicit feedback in recommender systems could include giving
an item a score out of 10, a number of stars out of five, or simply liking or
disliking an item. However, there are several issues associated with explicit
ratings, which limit their usefulness in practical recommender systems. For
instance, it can be time-consuming for users to rate each item they encounter,
and they may not always remember to do so. In addition, users may have
different rating habits. While some users could take their time to leave only
negative ratings, other users could be biased towards giving only the highest
ratings [9]. These challenges can make it more difficult to find similarities
in the preferences of such different users.

Implicit ratings are typically logged user actions such as clicking on an item
thumbnail to view its details, adding an item to the cart, and purchasing an
item. For certain types of content, such as songs or videos, it might be useful to
track how much of the given content the user went through [10]. For example,
if a user skips to another song after 15 seconds, it might suggest that they did
not enjoy the initial song at that moment. Similarly, if a user only watches
a few minutes of a two-hour movie, it could indicate to the recommender
system that the movie was not a good fit for their interests. On the contrary,
listening to a whole song or seeing a video from start to finish could suggest
that the user enjoyed that item.

As already hinted, implicit feedback is the standard in real-world recom-
mender systems since the user does not have to go through the extra effort
of creating an explicit rating for an item. Implicit feedback allows the rec-
ommender systems to improve their recommendations from a user’s first item
click. Still, if the site allows users to give explicit ratings to items, this informa-
tion is likely to be used by the recommender system since a rating matrix, one
of the primary data structures used by the recommendation algorithms, can

5

1. Analysis of Multi-Stage Recommender Systems

incorporate many different interaction types. Its exact definition, notation,
and usage by recommendation algorithms will be explained later in the chap-
ter.

Recommender systems gain insight into users’ preferences from their inter-
actions, and generally, the more interactions a user has with different items,
the better the recommendations they receive. However, what happens when
a new user has not yet interacted with the items? This situation is known
as the cold-start problem [7]. A cold-start user might encounter a diverse set
of non-personalized recommendations, meaning that the recommended items
are not yet based on their tastes and preferences. Often, the recommenda-
tion might be based on the popularity of those items in the last few days or
hours. Such non-personalized recommendations will serve as a starting point
for the recommender system to explore the user’s likes and dislikes. On such
a fresh feed, users may notice that recommended items change drastically after
just a few first interactions or even one click of an item.

The cold-start problem can also apply to new items that have not yet
been interacted with by users, making it difficult to recommend such items
for the recommender system since it does not yet know which users might
like those items. In recommender systems that work with constantly changing
item catalogs, such as news sites, it is common to use bandit methods [11] [12],
which address the uncertainty around the new items and allow exploration of
the cold-start items.

In this thesis, we will focus on multi-stage recommender systems. This de-
sign pattern is commonly seen in practical recommender systems [13]. These
recommender systems operate in multiple stages, the most notable being can-
didate generation (also known as the retrieval stage) and ranking stage. This
order of stages is useful for recommenders that handle large item catalogs
that might contain hundreds of millions of items. The retrieval stage narrows
down the items from the catalog to only hundreds of possible candidates based
on user interactions. Then, the ranking stage expands the candidate items by
various features, based on which the recommender system ranks the generated
candidates by their relevance. Using such features on all items in the cata-
log instead of the retrieved candidates may not be feasible since the time
needed for recommendation computation should be in the low hundreds of
milliseconds. A longer computation time would result in delay and waiting
for the recommendations to load on the user’s website, which could negatively
impact user experience and ultimately result in lower conversions [14].

1.2 Stages of Multi-Stage Recommenders

At the end of the last section, we introduced the readers to the two-stage rec-
ommender paradigm consisting of candidate generation and ranking stages.
In real-world recommender systems, it is often necessary to incorporate some

6

1.2. Stages of Multi-Stage Recommenders

business rules and constraints into the recommendations. This can be ac-
complished through two additional stages of filtering and reordering, resulting
in a four-stage pipeline. Thus, a general multi-stage recommender system
could, according to [13], have the four following stages:

1. retrieval (candidate generation) stage,

2. filtering stage,

3. ranking stage, and

4. reordering stage.

In the following sections, we will discuss the motivation and purpose behind
each stage in more detail. Figure 1.1 illustrates the differences in the usage of
the pipeline stages in different domains.

1.2.1 Retrieval stage (candidate generation)

At the retrieval stage, candidates, typically in the order of hundreds, are
selected from the item catalog. Commonly used recommender algorithms
in this stage take advantage of approaches such as collaborative filtering or
even neural networks for candidate retrieval, as described in [15]. Specific
retrieval algorithms, with their details, will be covered in the following sec-
tion. It is worth noting that these algorithms can generate recommendations
without the need for additional ranking, as they typically calculate scores for
items they deem relevant. Thus, when using a single recommendation algo-
rithm, the recommender system can simply recommend the top-N items with
the highest scores. However, this approach would not fully leverage the ben-
efits of the retrieval and ranking pattern. In the ranking stage, the algorithm
can use the output scores from the retrieval algorithms and improve the rank-
ing with many more features, as it is more computationally convenient to do
so on a limited subset of items rather than on the entire item catalog for every
real-time recommendation.

1.2.2 Filtering stage

The filtering stage is responsible for the removal of any unwanted items from
the candidate set. E-Commerce or media sites may have blacklists of items
they do not wish to present as a recommendation on their front pages. For
example, e-commerce would not want to recommend out-of-stock products,
a grocery delivery site might not want to recommend alcoholic beverages to
users, a media platform might choose not to recommend any borderline con-
tent, or a movie streaming platform might choose not to recommend R-rated
films to children’s accounts. In some domains, it makes sense not to recom-
mend items that the user has already interacted with. For instance, if the user

7

1. Analysis of Multi-Stage Recommender Systems

has a product already in their cart or if the user has already read an article,
recommending the same item again would likely be pointless and could lead
to lower exploration of the item catalog.

1.2.3 Ranking stage

The ranking stage sorts the retrieved item candidates according to their rel-
evance. The process of ranking candidates might be modeled as a classifi-
cation task, where each item is assigned a score representing the probability
that the user will interact with it and ranked accordingly. Other ranking ap-
proaches might model the relative ordering of the retrieved candidate items
or optimize ranking metrics, such as normalized discounted cumulative gain
(NDCG) or expected reciprocal rank (ERR) [16]. The machine learning task,
where items are ordered by their relevancy for a given context, is known as
Learning to Rank and will be covered further in this chapter.

In this stage, ranking algorithms can utilize a variety of data types to
rank items based on their relevance. The features used for ranking candi-
date items may be based on the items themselves, the target user receiving
the recommendations, or the context in which the recommendations are being
served. User-based data could include demographic information such as age
and region, details about the device and platform used to access the content,
or features based on the user’s interaction history. Item-based features can
include attributes or statistics related to the items. Attributes might involve
names, descriptions, categorizations, tags, or features extracted from images,
videos, or audio associated with the candidate items. Examples of item statis-
tics include the number of views or purchases within the last few hours or days.
Additionally, the context, such as the time of the day, can play a role. Gener-
ally, features must be converted from their raw form into numerical values or
vector representations that can be used as input for the ranking algorithm.

1.2.4 Reordering stage

The last stage is the reordering stage. Once we know how the candidate items
are rated, we are ready to present recommendations to the user, typically as
a row, column, or grid of items. The most obvious order of the items would
be to sort them by relevance. However, this stage allows for the reorder-
ing of items according to specific domains, business, or UI needs. For some
e-Commerce sites, it might make sense to first show products with higher
margins. Alternatively, a diversity of items can be enforced at this stage so
that the recommended items next to each other are not too similar, possi-
bly leading to a greater exploration for the user [17, 18]. For example, fashion
e-Commerce might ensure that recommended articles are not all from the same
brand. Furthermore, some platforms might need to reorder relevant items and
split them into rows of items with the same category or genre.

8

1.3. Analysis of Retrieval Models

Figure 1.1: An illustration of multi-stage pipeline in different domains [13]

1.3 Analysis of Retrieval Models

In this section, we will cover recommendation algorithms that can be used
in the retrieval stage of the multi-stage recommender system. The algorithms
we will use for candidate generation in this thesis are known recommendation
algorithms, meaning that they can be used on their own in order to recommend
items to users. These algorithms mainly fall into the collaborative filtering
(CF) recommendation algorithms category. Collaborative filtering is a method
based on evaluating items based on other people’s opinions [7]. Collaborative
filtering resembles real life, where we might listen to suggestions from people
with similar tastes. Next to the cold-start problem, an issue of collaborative
filtering methods, the grey sheep problem is a situation where a user has such
a unique taste that recommending items using CF methods may be inaccurate.

In contrast to collaborative filtering, content-based filtering evaluates items
based on their item attributes rather than interaction data. Collaborative
filtering methods face the challenges with the cold start problem, which in
contrast content-based filtering effectively handles. On the other hand, con-
tent-based filtering does not leverage interaction patterns between users and
items. Hybrid collaborative filtering [19] approaches aim to overcome the short-
comings of collaborative and content-based filtering by combining both ap-
proaches.

1.3.1 Rating Matrix

Before we get to User-based and Item-based k-Nearest Neighbors, which are
examples of collaborative filtering algorithms, we need to define a rating ma-
trix, a data structure used by these algorithms. Having collected implicit

9

1. Analysis of Multi-Stage Recommender Systems

interactions between users and items,

• let U = {u1, u2, . . . um} be a set of all users,

• let I = {i1, i2, . . . in} be a set of all items (item catalog),

• let Ui denote a set of all users that interacted with item i,

• let Iu denote a set of all items with which user u interacted, and

• let X be a set of all user-item interactions.

In the experimental part of the thesis, we will be using two types of interac-
tions: item views and item purchases. Therefore,

• let Xv ⊆ X denote a set of all view interactions and

• let Xp ⊆ X denote a set of all purchases.

As we use only these two types of interactions and each interaction can be of
only one type, it follows that X = Xv ∪ Xp and Xv ∩ Xp = ∅.

Furthermore, since every interaction involves a user and an item with which
the user interacted,

• let Xu denote a set of all interactions made by the given user u, and

• let Xi denote a set of all interactions involving the given item i.

In cases where this notation is used, it will always be clear from the context
whether the value in the subscript refers to a user or an item. Finally, we
need a function that assigns a positive weight to each interaction type. Let
w : X → R+ be the function that is defined as follows:

w(x) =
{

cv x ∈ Xv

cp i ∈ Xp.

The exact constants used in our work will be covered in a later chapter. For
now, note that we want to give greater weight to the purchase of an item com-
pared to a view since a purchase might provide more certainty that the item
is relevant for the user. Therefore, note that cp > cv > 0.

With these notations in place, we are ready to formally define a rating
matrix as a matrix R ∈ Rm,n with values defined as:

Rui,ij = min

cmax,
∑

a∈Xui ∩Xij

w(a)

 ,

where cmax is the higher bound for the values in the rating matrix. The reason
for such a bound is to prevent high outlier values that may occur due to
repeated views or purchases by some users.

10

1.3. Analysis of Retrieval Models

1.3.2 Measuring user and item similarity

When assessing the similarity between users, we can consider using the user
attributes, such as demographics or the device used, if they are available. Sim-
ilarly, when determining the similarity between items, using item attributes
as descriptions and categorizations is a valid approach. However, it should
be noted that two users of the same demographic group do not necessarily
share the same tastes and preferences. Instead of comparing user attributes,
we can compare users’ tastes and preferences by looking at the items with
which they interact. Then, the similarity between two users can be charac-
terized by interacting and engaging with many of the same items. Similarly,
items can be described by the groups of people who interact with them. To
measure similarity in this manner, we can utilize the rating matrix defined
in the previous section.

Given a rating matrix, we can look at individual users or items as their
corresponding rows or columns in the rating matrix. Users would be vectors
of size n denoted as Ru,:, and items would be vectors of size m denoted as
R:,i. Then, to compute the similarity between users or items, we can compute
the cosine similarity between their corresponding vectors. The formula for
cosine similarity between users u and v follows:

simcos(u, v) =
Ru,: · RT

v,:
∥Ru,:∥∥Rv,:∥

=
∑n

i=1 Ru,i · Rv,i√∑n
i=1 R2

u,i ·
√∑n

i=1 R2
v,i

.

The cosine similarity generally gives a result in the [−1, 1] range. However,
since we might consider only positive values in the rating matrix, given implicit
feedback, we can expect a value between zero and one. Zero, in case the users
did not interact with the same items, and one when their vectors in the rating
matrix are the same or proportional.

Another function that we can use to compute the similarity of items or
users is the Pearson correlation coefficient. Let Ru,: and Rv,: denote an average
rating given by users u and v. The formula for computing Pearson similarity
on users follows:

simpearson(u, v) =
∑n

i=1 (Ru,i − Ru,:) · (Rv,i − Rv,:)√∑n
i=1(Ru,i − Ru,:)2 ·

√∑n
i=1(Rv,i − Rv,:)2

.

Similarly to cosine similarity, the Pearson coefficient can be in the [−1, 1]
range. However, this measure makes sense mainly on explicit ratings with
a sufficient variance of the rating values [20]. In the thesis, since we use
implicit feedback for rating matrix creation, we will use cosine similarity for
the computation of similarity based on interactions between users or items.

The following sections will cover two algorithms that recommend items to
users using the rating matrix and similarities between users or items. These

11

1. Analysis of Multi-Stage Recommender Systems

algorithms are called in short UserKNN and ItemKNN. In addition to rec-
ommending items to users, it is also possible to recommend items relevant to
a given item. This kind of recommendation is called an items-to-item recom-
mendation. One scenario where such recommendations might be helpful is
when a user is looking at an out-of-stock product, and we might want to rec-
ommend similar items to the user. How items-to-item recommendations are
accomplished by algorithms like ItemCF and Swing will be covered further
in this chapter.

1.3.3 User-based k-Nearest Neighbour

User-based k-Nearest Neighbours, or UserKNN shortly, is a straight-
forward algorithm with great interpretability that utilizes ideas of collabora-
tive filtering. Applying a user similarity function, we can identify the k most
similar users to a target user. Since users with similar interactions are likely
to share similar tastes, we can recommend items for a target user that sim-
ilar users enjoyed and that the target user has not yet encountered. Given
a similarity function sim : U × U → R, let NNk(u) denote a set of the k
most similar users to the user u. We will refer to the users in NNk(u) as
the nearest neighbors of a user u. A set of recommendable items RI(u) ⊂ I
produced by the UserKNN algorithm for a user u ∈ U can be expressed using
the following formula:

RIUserKNN(u) =

 ⋃
v∈NNk(u)

Iv

 \ Iu.

Note that in this thesis, we are dealing with implicit interactions, and higher
values in the rating matrix correspond to higher levels of positive engagement
with the corresponding items. To rank the recommendable items according to
their relevancy to a user u, each of the items is assigned a score the following
way:

scoreUserKNN(u, i) =
∑

v∈NNk(u)∩Ui

Rv,i.

A high score by UserKNN of an item is achieved when the item has been
interacted with by many users similar to the target user u or when some
of the similar users have shown a great deal of engagement with the item,
resulting in high values in the rating matrix R for that item.

Some users in the nearest neighbors are more similar to the target user than
others. Those users’ preferences might better resemble the tastes of the target
user and thus should influence the final score more than the preferences of
less similar users. To take this into account, we can weigh contributions to

12

1.3. Analysis of Retrieval Models

the score from individual users by their similarity to the target user. The fol-
lowing is the scoring formula of a weighted version of UserKNN:

scoreUserKNN(u, i) =
∑

v∈NNk(u)∩Ui

sim(u, v) · Rv,i.

Finally, for completeness, let us point out that when dealing with explicit
ratings in the rating matrix, as opposed to implicit ones, normalization of
the score needs to be added. Without normalization, numerous low ratings
could result in a high UserKNN score. For explicit ratings, the formula
should be adjusted in the following way:

scoreUserKNN(u, i) =

∑

v∈NNk(u)∩Ui
sim(u, v) · Rv,i∑

v∈NNk(u)∩Ui
sim(u, v) NNk(u) ∩ Ui ̸= ∅

? NNk(u) ∩ Ui = ∅.

1.3.4 Item-based k-Nearest Neighbors

The item-based k-nearest neighbors, known as ItemKNN, is another items-
to-user recommendation algorithm. The ItemKNN assumes that users might
be interested in items similar to those with which they have already interacted
with. Instead of the user similarity function used in UserKNN, we will use
the item similarity function sim : I × I → R. Let NNk(i) denote the k most
similar items to the item i, and we will refer to these items as the nearest
neighbors of item i. Similarly to Section 1.3.3, let us first describe the set of
items that can be recommended by ItemKNN to a user u in a more formal
way:

RI(u) =

 ⋃
i∈Iu

NNk(i)

 \ Iu.

The items that ItemKNN recommends the most are often very similar to
the items with which the user was highly engaged. From the formula men-
tioned above, we can see that each recommendable item belongs to the near-
est neighborhood of at least one item that is interacted with by the target
user. Each such occurrence contributes to the score of the recommendable
item. Specifically, let j ∈ Iu be an item, whose nearest neighborhood con-
tains item i, or more formally i ∈ NNk(j). Then, a contribution to the score
of the item i for the target user u occurs, and it holds that the size of this
contribution is significant when the rating of the item j by the user u is high
and when the similarity between the items i and j is high. The formula for
calculating the score is as follows:

13

1. Analysis of Multi-Stage Recommender Systems

scoreItemKNN(u, i) =
∑

j∈{a ∈Iu|i∈NNk(a)}
Ru,j · sim(i, j).

1.3.5 Items to item recommendation with ItemCF

ItemCF [21], a slightly modified version of which can also be found in the ar-
ticle [22], is a simple example of an items-to-item collaborative filtering rec-
ommendation algorithm. Unlike UserKNN and ItemKnn, which are user-
to-item collaborative filtering algorithms that recommend relevant items to
a given user, ItemCF recommends items related to a specific item. Some of
the key ideas behind this algorithm include the idea that the co-occurrence of
items in user interactions indicates their similarity. Moreover, when a user has
many interactions, the indication of similarity between the interacted items
should be smaller since that user might be more open to many different kinds
of items. Furthermore, many users interact with popular items, and thus,
they have to be penalized since they could end up being very similar to many
niche items. The relevance score for an item j given an item i is computed
using the following formulas:

wi =
∑

u∈Ui

1
| Iu |

,

scoreItemCF(i, j) =

∑
u∈Ui∩Uj

1
| Iu |

√
wi · wj

.

In this case, the scoring function for item-to-item relevance is symmetrical,
but note that, generally, this is not the rule. In the practical part of this
thesis, we will use a modified version of ItemCF, which further adds time
and some positional information to the equation.

1.3.6 Swing algorithm

Swing is an items-to-item recommendation algorithm introduced in [21], cre-
ated with the purpose of capturing substitution relationships between items.
The equation used to calculate the Swing score for an item j given an item
i is

scoreSwing(i, j) =
∑

a∈Ui∩Uj

∑
b∈Ui∩Uj

1
α+ | Ia ∩ Ib |

,

where α is a smoothing coefficient. The idea behind it is that when two
different users interact with the same pair of items, it might indicate that
those two items are somehow relevant to each other. Furthermore, the less
similar the preferences of two users who interacted with the same pair of items
are, the stronger the indication of actual relevance between the two items.

14

1.3. Analysis of Retrieval Models

1.3.7 Two towers

With advancements in deep learning, neural approaches are now being applied
in item retrieval for recommendation [15, 23] and retrieval in online advertising
as the ad click prediction also leverages a similar cascading paradigm, which
includes retrieval and ranking stages [6, 24].

A two-towers neural network is an approach for information retrieval origi-
nating in the area of web search [25]. In the context of recommender systems,
this retrieval approach was applied for video recommendation at Youtube,
where it showed improvement in user engagement during A/B testing [23].
Moreover, many new neural retrieval approaches improve on the two-tower
architecture to achieve state-of-the-art (SOTA) performance in the recom-
mendation and ad prediction tasks.[6, 24]

Let {ui}M
i=1 be a set of users and {ij}N

j=1 be a set of items defined by their
corresponding feature vectors. User and item feature vectors are composed of
various encoded user and item features, respectively. Note that ui and ij can
both have very high dimensions.

The neural model consists of two parallel DNNs (deep neural networks)
called towers. The input for the neural network is a pair of user and item
feature vectors. Each of the towers takes an assigned type of the feature
vector (item or user) as input and maps it through L fully connected layers
into an embedding space of lower dimension Rd. Both embeddings then go
through the L2 normalization layer, and the network’s final output is their
inner product. In other words, the model’s output is the cosine similarity
between the final user and item embeddings. Figure1.2 depicts the two towers’
architecture.

More formally, by choosing, e.g., the user part of the network, we can
define the fully connected hidden layers of the user tower and the final user
embedding using the following formulas:

h1 = ReLU(W1 · u + b1)
hi = ReLU(Wi · hi−1 + bi), ∀i ∈ {2, . . . , L}

eu = hL

∥hL∥2
.

Let ℓi denote the number of neurons in the user tower’s ith hidden layer,
the Wi ∈ Rℓi,ℓi−1 from the above formulas is a weight matrix of ith hidden
layer and bi ∈ Rℓi is the bias vector of ith hidden layer in the user tower.
The item tower has the same structure and can be defined similarly, with
the difference being the item feature vector as input into the first hidden
layer. Further, let ei denote the output item embedding from the item tower.
Finally, the output of the model is ŷ = eT

u · ei.
Let (uj , ij , yj)n

j=1 be the training data based on implicit feedback, where yj

is a rating or a positive value indicating a level of interaction of the user uj with

15

1. Analysis of Multi-Stage Recommender Systems

the item ij . Furthermore, for each user-item pair uj and ij from the training
data, multiple negative samples are retrieved, e.g., items with which the user
uj chose not to interact. Let D− denote a set of feature vectors of the sampled
non-interacted items and D = D− ∪ {ij}. The probability that the item ij

is the one interacted item from items in D by the user uj can be based on
the following softmax function:

P (ij | uj ; θ) =
∑

ik∈D

eT
uj

· eij

eT
uj

· eik

.

Then the model parameters can be optimized by using gradient descent on
negative log-likelihood weighted by the ratings:

L(θ) = −
n∑

j=0
yj · log(P (ij | uj ; θ))

Once the model is trained, the item embeddings can be precomputed offline
and therefore do not need to be computed for each recommendation query.
During inference, only the user embeddings are computed and then compared
to the precomputed item embeddings to find the most similar items. To
find the most similar item embeddings given a user embedding, approximate
nearest neighbors (ANN) algorithms are employed [26].

1.4 Analysis of Ranking Models

Once candidate items are generated by retrieval models and unwanted items
are removed from the candidates in the filtering stage, what follows in multi-
stage recommenders is to employ a model that orders the candidate items by
their relevance. The task of training machine learning models using supervised
learning to sort candidate objects according to their degrees of relevance,
preference, or importance is known as Learning to Rank [27].

Ranking algorithms often found in real-world multi-stage recommender
systems can be implemented as gradient-boosted decision trees (GBDT) as
in Related Pins from Pinterest [28], or even as deep neural networks, which
were used for app recommendation in Google [29] or are used for video rec-
ommendation in YouTube [15].

Even though DNNs are capable of learning complex interactions between
features and reducing the need for task-specific feature engineering, whether
they are the most efficient approach for practical tasks remains a question [30].
In recent recommendation challenges, approaches that used the multi-stage
paradigm with ranking via GBDT applied to manually crafted, practical, and

16

1.4. Analysis of Ranking Models

Figure 1.2: Two towers architecture [24]

low-level features, achieved first place in Recsys Challenge 2022 [31], the H&M
Kaggle Competition1 [32], and the WSDM Cup 2022 [33].

The following sections will provide a more detailed theoretical background
for Learning to Rank and Gradient Boosting, which will be utilized for ranking
in the practical part of this thesis.

1.4.1 Introduction to Learning to Rank

Learning to Rank is a widely studied area of machine learning within the field
of information retrieval, with important applications such as search engines [34].
The ranking problem, in its original context, involves a query and a set of
documents, with the goal of ranking the documents based on their relevance
to the given query. Similarly, in recommendation systems, we can approach
the ranking problem as the task of ranking items according to their rele-
vance for a given user. However, while covering this subsection will adhere to

1An overview of the first place solution can be found here:
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-
recommendations/discussion/324070

17

1. Analysis of Multi-Stage Recommender Systems

the traditional document-query context. More formally, the Learning to Rank
problem consists of the following:

• a set of queries Q = {q1, q2, . . . , qn} of size n,

• a set of documents Di = {di
1, di

2, . . . , di
mqi

} for each query qi ∈ Q, and

• a set of labels Li = {li1, li2, . . . , limqi
} for each set of documents Di, where

a label lki ∈ Li corresponds to a document dk
i ∈ Di.

The labels represent the level of relevance of documents for a given query.
The values assigned to labels could capture more degrees of relevancy by
being elements of an ordinal set such as {highly relevant, relevant, marginally
relevant, irrelevant}, or they can even be simply binary, stating whether a doc-
ument is relevant or irrelevant.

Furthermore, let us note that Learning to Rank models work with document-
query pairs, which are represented by their feature vectors. Let Φ be a feature
extractor function. Given a query qi ∈ Q and a document di

k ∈ Di, their
corresponding feature vector can be defined as xk

i = Φ(qi, di
k). Such a feature

vector can usually be divided into the following three parts:

• a part that depends only on the given query,

• a part dependent only on the document, and

• a part dependent on a combination of the query and the document [34].

With notation already defined, a training set for Learning to Rank tasks
can be represented as {(xk

i , lki) : 1 ≤ i ≤ n, 1 ≤ k ≤ mqi}, a set of feature
vectors and their corresponding labels.

The following section will introduce the categorization of Learning to rank
methods.

1.4.2 Learning to Rank methods

According to [27], Learning to Rank methods can be categorized into the fol-
lowing three approaches: point-wise approach, pairwise approach, and listwise
approach.

Pointwise methods work with one document-query feature vector at
a time and aim to predict the degree of relevance of the document for the given
query. Unsurprisingly, pointwise methods can be modeled as regression or
multi-class or binary classification depending on the form of given relevance
judgment. For a trained pointwise model, a computation of a relevance score
for a document is independent of other documents in the list. It is also good
to note that computing relevance scores as pointwise methods do might not
be necessary to end up with a ranked list.

18

1.4. Analysis of Ranking Models

Pairwise methods solve ranking by evaluating pairs of documents and
predicting the relative order of the documents according to relevancy for
a given query. The goal is to do binary classification for document pairs and
minimize the number of classifications that do not match the ground truth.
This approach models ranking in a slightly more natural way than pointwise
methods due to the focus on the relative order in pairwise methods. However,
as [16] points out, minimizing the number of pairwise errors does not always
correlate with Learning to Rank metrics such as NDCG or ERR. An example
algorithm of this approach is RankNet [35].

Listwise methods in comparison with the methods mentioned above, do
not train only on documents one at a time or by pair, but add considera-
tion for the list of documents as a whole. This approach permits the final
order to result from more complex interactions between documents in the list.
An algorithm that introduced this approach is Listnet [36]. Other examples
of this approach are LambdaRank and LambdaMart, which improve the pair-
wise method RankNet by considering listwise metrics [16]. An ensemble of
LambdaMart algorithms won the Yahoo! Learning To Rank Challenge [34].

Such categorization might be interesting further in the thesis when we
try out and evaluate ranking algorithms utilizing different Learning to Rank
approaches.

1.4.3 Introduction to Gradient Boosting

Gradient Boosting, especially Gradient Tree Boosting, also known as Gradi-
ent Boosting Decision Tree (GBDT), is a powerful machine learning method
used for various machine learning tasks, including Learning to Rank [16].
State-of-the-art implementations of GBDT include XGBoost [37], LighGBM
[38], and CatBoost [39]. These GBDT implementations have achieved success
in many recommender systems competitions, where they typically outperform
other deep learning methods [40]. To explain Gradient Tree Boosting, we will
start with a short introduction to boosting ensemble technique and continue
with a review of Gradient Boosting and Gradient Tree Boosting.

1.4.3.1 Boosting

Instead of focusing on training a single strong predictive model, ensemble
methods employ a combination of relatively weaker models, also known as
weak learners, to achieve better and more robust predictions.

Well-known ensemble algorithms include Random Forests, an example of
the bagging ensemble approach. In the bagging approach, weak learners are
trained independently on their respective datasets, which consist of boot-
strapped samples from the original training dataset. The final result is then
obtained by averaging (for regression tasks) or using majority voting (for clas-
sification tasks).

19

1. Analysis of Multi-Stage Recommender Systems

Boosting is another category of ensemble algorithms that uses a slightly
different approach to bagging. Unlike bagging, boosting methods rely on
a more dependent relationship between weak learners. In boosting, new weak
learners are trained sequentially based on the errors of the collective prediction
of previously trained weak learners. This approach aims to iteratively improve
its predictions on the training dataset.

1.4.3.2 Gradient Boosting

Gradient Boosting, introduced in [41], given a training dataset {xi, yi}n
i=1,

where xi ∈ Rm stands for an input variable and yi ∈ R is its corresponding
output variable or label, tries to estimate the dependencies between the in-
put variables and the output variable with an estimated function f̂(x) = ŷ
in a way that minimizes arbitrary differentiable loss function Ψ(y, f). To ad-
dress the optimization in the function space, Gradient Boosting constrains f̂
to an additive form:

f̂(x) =
M∑

m=0
f̂m(x).

The functions fm are defined in an iterative manner using basis functions
h(x; θ) from some family of parameterized functions and a step size parameter
ρ as in the following equation:

f̂m =
{

c i = 1,
f̂m−1 + ρm · h(x, θm) otherwise.

The minimization of the cost function Ψ is approached by taking a negative
gradient step approximated by the h(x, θ), parameterized in a way that for
the given training samples, it is the most correlated to −gm(x), where gm(x)
is defined as

gm(xi) = ∂Ψ(y, f̂m−1(xi))
∂f̂m−1(xi)

.

Therefore, each base learner h(x, θm) is fitted to the gm(x) values referred to
as ”pseudo”-responses in [41] or ”pseudo”-residuals as in [42]. The param-
eterization of the base learner function can be attained from the following
equation:

θm = arg min
θ,ρ

n∑
i=1

(−gm(xi) − ρ · hm(xi, θ))2

And finally, having the parameterization the ρm parameter is chosen to opti-
mize the loss function over the training data:

20

1.4. Analysis of Ranking Models

ρm = arg min
ρ

n∑
i=1

Ψ(yi, f̂m−1 + ρ · hm(xi, θm)). (1.1)

Gradient Tree Boosting is a specification of Gradient Boosting where
the base learner functions are regression trees. In mth boosting iteration,
a regression tree with J terminal nodes (also known as leaves) splits the input
space into J disjoint regions {Rm,i}J

i=1. The regression tree predicts the same
constant value for all the region’s input data points. The predicted value can
be set to the average of ”pseudo”-residuals gm,j of all training data points
in the given region

gm,j =
N∑

i=1

1x∈Rm,j · gm(xi)
1x∈Rm,j

,

and the formula for such a base learner can be expressed as

h(x, {Rm,j}J
1) =

J∑
j=1

1x∈Rm,j · gm,j ,

where 1x∈Rmj
is an indicator function equal to 1, when x belongs to Rmj

and 0 otherwise. The parameters of the regression tree are the splitting rules,
defined by a splitting variable and the corresponding splitting value, that are
evaluated in the non-terminal nodes in the tree. The structure of the tree
and its rules in the non-terminal nodes ultimately determines to which region
an input data point belongs and is built in a greedy, best-first manner [43].
For each currently non-terminal node, which has not reached the specified
maximal depth, an optimal splitting rule is computed. And from those nodes
and rules combinations, one with the most significant value of a tree build
criterion is then chosen for splitting. This is repeated until the number of
terminal nodes is reached.

For better experimental results, additional regularization is usually ap-
plied to help to prevent the model from overfitting on the training data.
A well-established method is to use a shrinkage parameter in the range (0, 1],
also known as learning rate, which limits the effects of new base learners by
multiplying the multiplication of output from the base learner and step size
[41]. Another method of regularization, which also leads to faster computa-
tion, is using a random subsample of the training data at each iteration for
training for fitting a base learner [42] or using a column subsample, where for
each tree consider only a random subsample of features for splitting [44].

21

Chapter 2
Problem Statement

This chapter provides an overview of the Recsys 2022 Challenge2 task and its
associated dataset. Moreover, we will discuss the evaluation methodology used
in the challenge and examine the strategies employed by the top-performing
teams. In the following chapters, we will develop and evaluate a solution using
a multi-stage recommender system specifically tailored to the presented task
and dataset.

2.1 Challenge task

The Recsys 2022 Challenge was organized in partnership with Dressipi, a plat-
form specializing in recommendations for the fashion domain. The challenge
focuses on the recommendations based on session-based interactions, and its
task is to predict ultimately purchased items. The decision behind using solely
implicit feedback from anonymous sessions for the recommendations is rooted
in the fact that, on average, 51% of the Dressipi visitors are new with no avail-
able historical data. In addition, the fashion domain is known for fast shifts in
trends, causing historical interactions to quickly lose relevance in representing
current user preferences, further highlighting the importance of session-based
recommendations.

2.2 Dataset

The challenge dataset consists of over a million shopping sessions sampled over
an 18-month period. Each session is labeled with a unique ID, and although
multiple sessions could be made by the same user, this information is not
present in the data. Most importantly, each session consists of a sequence of
viewed items and is assigned exactly one purchased item. The sequence of
item views in a session ends just before the first view of the purchased item.

2http://www.recsyschallenge.com/2022/

23

2. Problem Statement

If multiple purchases were made in a session, only one purchase was chosen
randomly, and the sequence of item views was truncated accordingly. This
method, which changes a session of multiple purchases to a session with one
purchase is illustrated in Figure 2.1

Figure 2.1: Modification of sessions with multiple purchased items [45]

Furthermore, the dataset contains 23,000 items and their corresponding
item attributes. The item attributes are provided as pairs of values, where
the first value encodes a feature category, and the second value encodes a fea-
ture value. The feature categories are not provided with descriptions or de-
scriptive names and are labeled as numbers. A feature category can take
a value from some corresponding range of feature values, which are also la-
beled with numbers and do not include further descriptions. To illustrate with
an example: an item might be assigned item properties (5,1) and (7,1), where
the first attribute pair might correspond, e.g., to the color category and value
blue, and the second attribute pair might correspond to the size category and
value medium.

The sessions from the dataset were divided by the authors of the chal-
lenge into training and testing sessions. The training data contains 1 million
sessions from the first 17 months of the dataset. The testing data consist of

24

2.3. Evaluation methodology

100,000 sessions from the last month of the dataset, with the finally purchased
items excluded. Moreover, the sessions from the testing data were randomly
divided into two sets of equal size: leaderboard sessions and final sessions.
The leaderboard data was used during the challenge to evaluate solutions and
rank them on the public leaderboard, while the final sessions were used to
evaluate the final solutions and determine the final standings. Additionally,
the sequences of item views in the testing sessions were randomly truncated
to include only 50-100% of the first views. The purpose of the random trun-
cation of the session was to motivate the recommender systems to predict
the final purchase as soon as possible. Finally, a subset of 5,000 items eligible
for the purchase prediction in the leaderboard and final sessions was provided.

2.3 Evaluation methodology

For every session in the leaderboard and the final session sets, the task was to
submit an ordered list of 100 items most likely to be purchased. The evaluation
metric chosen to rate the quality of the recommendations was MRR (mean
reciprocal rank). The value of the reciprocal rank of an item recommended
at position p is 1

p . Therefore, if a purchased item is recommended at the first,
second, or third place, the reciprocal rank values would be 1, 1/2, and 1/3.

Let us define the MRR score for our use case formally. Let S = {s1, . . . , sN }
be a set of testing sessions and let I be a set of candidate items. For each
i ∈ {1, 2, . . . , N},

• let Ci be a set of recommended items for a session si such that | Ci | ≤ 100,
and

• let posCi
: Ci → {1, 2, . . . |Ci|} be a bijection assigning items from Ci

their positions.

Let reciprocal rank(x) : I → R be a function defined as:

reciprocal ranki(x) =

1

posCi(x) x ∈ Ci

0 x /∈ Ci.

We can now define the MRR as:

MRR = 1
N

·
N∑

i=1
reciprocal ranki.

To provide some intuition behind MRR values, if the purchased item is
recommended at the first position 50%, 20%, or 10% of the time, we will
receive MRR greater than or equal to 0.5, 0.2, or 0.1. In a scenario where
the recommender system would recommend the purchased item uniformly at

25

2. Problem Statement

the first 10, 15, or 20 positions, the MRR score would equal approximately
0.29, 0.22, and 0.18.

Considering situations where a multi-stage recommender fails to generate
the purchased candidate in the retrieval stage. To obtain better approxi-
mations of the final MRR score, we could multiply the example scores above
with the ratio α with which the recommender is able to retrieve the purchased
items, for example, α = 0.8.

2.4 Related work

Many of the best solutions [31, 46–49], including the winning solution, in
the RecSys2022 challenge used the multi-stage recommender approach consist-
ing of candidate retrieval and ranking paradigm, supported by feature extrac-
tion and feature engineering. Other teams that did not use the multi-stage rec-
ommender employed a variety of neural approaches. Namely, the second-place
solution [50] was based on the transformer architecture, the fourth-place team
[51] utilized heterogeneous graph neural networks (GNN) with side informa-
tion, or another successful solution [52] employed an ensemble of LSTM neural
networks with other probabilistic methods. Since the topic of interest in this
thesis are multi-stage recommender systems, we will mainly focus on reviewing
techniques and observations from the solutions that employ this approach.

The strategy behind the first-place solution is discussed in the paper called
Industrial Solution in Fashion-domain Recommendation by an Efficient Pipe-
line using GNN and LightGBM [31]. The team behind this solution created
a fast multi-stage recommender pipeline, trained on the last three months of
the dataset. The retrieval stage used a combination of collaborative filter-
ing and popularity-based models, and the ranking stage utilized LightGBM
[38] trained with lambda rank objective. The best-performing features were
based on collaborative filtering similarities such as ItemCF enriched with time
and position information, Swing, and similarity between GNN (graph neural
network) based embeddings, which the team designed specifically for the chal-
lenge dataset.

The third-place solution [46] chose an approach with a three-stage recom-
mender system, where the first stage is the retrieval stage, and the second
and third stages both deal with ranking. In contrast to the winning solution,
which applied data clipping to use only recent training data, the team behind
this solution used augmentation of the training dataset to increase the number
of training sessions by 5-10 times. The candidate generation stage employed
various diverse algorithms based on conditional popularity, Session k-Nearest
Neighbors, LightGBM, RNNs, MLP, and transformer networks. The second
stage of the pipeline employed ranking using an optimized weighted aver-
age of item retrieval scores, LightGBM trained with lambda rank objective,
and XGBoost trained with binary classification logistic regression objective.

26

2.4. Related work

The ranking algorithms were then ensembled together in the last stage of
the pipeline using a weighted average of item rankings from the second stage.
Similarly, the tenth-place solution [48] leveraged an ensemble of ranking al-
gorithms, including LightGBM, CatBoost, and XGBoost pointwise rankers,
LambdaMart, and deep interest network (DIN) [53].

The fifth-place solution [47] used a two-stage pipeline quite similar to
the first-place solution. The training data for the final prediction contained
sessions from two months before the final testing month. Similarly to the first-
place solution, LightGBM with the lambda rank objective trained with 500
features for each item was used for ranking. Candidates were retrieved based
on ItemCF, the similarity between item embeddings, and item popularity.

Interestingly, variants of ItemCF, which utilized positional and time dif-
ferences between co-occurring items, were employed in [31, 46, 47]. A strategy
re-occurring in the retrieval stage was to develop a diverse set of algorithms
to generate a diverse set of candidate items for the ranking stage. One of
the main motivations behind such a goal was to be able to cover purchased
items. Since missing a purchased item in the list of candidates for a test sam-
ple would negatively impact the final MRR score. Furthermore, since, in some
cases, collaborative filtering algorithms might not even be able to come up with
personalized candidates (sessions containing cold items), popularity-based al-
gorithms often complemented collaborative filtering as in [31, 47, 48] or also
content-based algorithms were employed as in [47–49].

27

Chapter 3
Proposed Approach

In this chapter, we will cover our approach regarding the design and im-
plementation of a multi-stage recommender system specifically developed for
the Dressipi dataset described in the last chapter. Sections in this chapter will
cover the systems architecture and a discussion of implementation decisions.
Further, we will propose the data splitting methodology to perform valida-
tion of the used retrieval and ranking algorithms. Finally, we will describe
the implementation of the individual retrieval and ranking algorithms.

3.1 Design of our solution

Our approach will use a multi-stage recommender flow as described in Sec-
tion 1.2, similar to the top solutions of the Recsys Challenge 2022, in order to
achieve better recommendations compared to using individual recommenda-
tion algorithms or their ensembles. The recommender system inference flow,
the process of generating predictions for given sessions, is depicted in Fig-
ure 3.1 and consists of the following phases:

1. retrieval stage for generating item candidates for a user (defined by its
session),

2. filtering stage for removing items already viewed by the user and items
that are not in the candidate whitelist,

3. ranking stage that ranks the candidates based on constructed features,
and

4. reordering stage, which in our case, keeps the order from the previous
stage and only crops the top-100 candidates.

The retrieval stage will be realized by employing various retrieval algo-
rithms introduced in Section 1.3 to generate the item candidates set. Candi-
date generation should be sufficiently robust since the testing interval is one

29

3. Proposed Approach

Word2vec model

Swing

ItemCF

Retrieval
Ensemble Model

Popularity-based
model

CANDIDATE GENERATION

FILTERING
INTERACTED

ITEMS

RANKING STAGE
CROPPING

TOP 100
CANDIDATES

LightGBM
lambdarank

LightGBM
classification

Feature
preparation

Candidate
items

Final items

Session log

Figure 3.1: High-level inference flow from a session to recommended items

month long and trends in the fashion domain change quickly, as illustrated
in Figure 3.2, and therefore relying only on collaborative filtering methods
might not be effective as new items do not necessarily need to have interac-
tions in the training data.

The filtering will be enforced by passing a whitelist containing possible
candidates described in Section 2.2 and a blacklist for already-seen items
in the session to the retrieval models.

In the ranking stage, we will employ pointwise and listwise ranking ap-
proaches implemented in the gradient-boosting library LightGBM. LightGBM
was the library of choice in multiple top solutions for the Recsys Challenge
2022. Based on the results of the two ranking approaches, we may further
consider creating an ensemble ranking model that combines their outputs for
the final ranking.

An explanation of how the training dataset will be used for training and
validation of the retrieval and ranking algorithms will be covered in dedicated
sections. The following section will describe our realization of the recom-
mender system.

30

3.2. Implementation architecture

3.2 Implementation architecture

Our recommender system implementation comprises the following classes:

• RetrievalModel,

• RetrievalModelFactoy,

• ItemSimilarityAlgorithm,

• ItemSimilarityPrecomputer,

• ItemSimilarityStore,

• ItemFeatureGenerator,

• FeatureRetrievalModule,

• RankingModel, and

• Evaluator.

Initialized with a set of testing sessions and a candidate set of items,
Evaluator can evaluate the performance of instances of RetrievalModel and
RankingModel. One instance of Evaluator component will evaluate the re-
trieval and ranking algorithms on the validation dataset, and two further
instances will perform final testing on the final and leaderboard datasets.

The ItemSimilarityAlgorithm is an interface for algorithms that cal-
culate the similarity scores between items, such as cosine similarity between
item vectors in the rating matrix or relevance scores between items, such
as Swing or ItemCF score. The ItemSimilarityPrecomputer employs
the item similarity algorithms to precompute the item similarities for later
usage. The resulting precomputed item similarities are accessible for other
components through the ItemSimilarityStore. A parameter count of simi-
larity ItemSimilarityPrecomputer, by default set to 1000, defines how many
of the most similar items for each item are stored together with the correspond-
ing similarity scores in ItemSimilarityStore.

RetrievalModel defines a common interface for candidate item retrieval
based on a given session. Thus, the implementations of the RetrievalModel
are the retrieval algorithms whose implementations will be further covered
in a separate section. The initialization of the retrieval models is handled
by the RetrievalModelFactoy. This component is helpful since different in-
stances of the RetrievalModelFactoy handle the creation of retrieval models
trained for validation and final testing.

RankingModel is a class encompassing the whole retrieval and ranking
stage. The ranking model is initialized with a set of retrieval models and
corresponding counts of how many items should each retrieval model retrieve.

31

3. Proposed Approach

Different subclasses of the RankingModel employ different ranking methods.
During inference and training, the ranking model receives the candidate items
for a session from its retrieval models. These candidate items are then en-
riched with features from FeatureRetrievalModule to form corresponding
item feature vectors. The item feature vectors of the candidate items are
then used for training or are ranked by the already trained ranking algorithm.
FeatureRetrievalModule contains features for fast access that we created by
ItemFeatureGenerator and also includes item-to-item similarities that were
stored in ItemSimilarityStore.

As a language of our choice for implementing the multi-stage recommender
system, we chose Python as it has well-established libraries for many machine
learning tasks and data manipulation and analysis libraries such as pandas
[54]. The environment that enabled us fast iteration during the development
of our components and reproducible testing of the recommender system was
Jupyter Notebook [55].

3.3 Training, validation, and testing data split

The testing sessions for the Recsys Challenge 2022 are split into final and
leaderboard datasets as outlined in Chapter 2. During the competition, 100
items were predicted for each testing session, and after submission to the Rec-
sys server, the scores were determined based on actual items purchased. With
the purchased items now publicly accessible, we can independently compute
the final and leaderboard scores. With the testing set already defined in Sec-
tion 2.2, a validation set still has to be created to compare various algorithm
variants before obtaining the final performance estimates on the final and
leaderboard datasets.

As all available sessions from June 2021 are already in the testing datasets,
we had to validate our recommender system using data prior to June 2021
in order to identify the best-performing algorithms and their hyperparameters.
We opted to assess our recommender system and algorithms using data from
May 2021, the closest month to June, and to use the entire month to evaluate
the algorithms over a comparably lengthy future period. The retrieval and
ranking algorithms in the validation phase will be trained on the months
preceding May 2021. Furthermore, based on the best-performing algorithms
on validation data, the recommender system would subsequently be trained
on data that includes May 2021 and finally tested on the testing dataset.

Following the approach of the winning solution in the competition, we
trained our models using data from the three months immediately before
the validation and testing months. This strategy reduces memory require-
ments and training time while ideally not compromising performance, as do-
main trends tend to shift over time—an aspect illustrated in Figure 3.2. Fig-
ure 3.3 depicts the organization of datasets by month and usage.

32

3.4. Retrieval stage

Figure 3.2: Heatmap of Jaccard coefficients between sets of purchased items
in different months

Since a subset of items could be predicted for the testing sessions was
provided by the challenge authors as described in Chapter 2.2. We created
a whitelist containing items that were purchased in the validation month. This
whitelist was then passed to the retrieval models to perform filtering during
their evaluation on validation sessions or when generating candidate items for
the ranking models during validation.

3.4 Retrieval stage

This section will discuss the retrieval models implemented in this thesis.
The implemented retrieval models will serve as algorithms in the retrieval
stage for candidate generation, and their candidate scores can be utilized as
features during the ranking stage. The performance metrics assessed for each
retrieval model are the mean reciprocal rank and hit rate [56]. The mean
reciprocal rank indicates the quality of the model’s performance when used
as a single recommendation algorithm solution or as a feature for the ranking
algorithm. The hit rate measures the model’s ability to retrieve the items that
are eventually purchased. In the following chapter, a subset of retrieval algo-
rithms will be experimentally chosen to generate candidates in the retrieval
stage, as running all implemented retrieval models might be inefficient and
computationally expensive.

33

3. Proposed Approach

Jun 2021May 2021Apr 2021Mar 2021Feb 2021

Discard Training Testing

May 2021Apr 2021Mar 2021Feb 2021

Training ValidationDiscard

Jan 2021

Figure 3.3: Dataset organization for validation and testing

3.4.1 Metrics for retrieval models

To define the metrics we will employ for retrieval algorithms more formally,
let m denote a model and let S be a set of evaluating sessions. For each
s ∈ S, let ps denote the purchased item for the session s, and let Cn

m,s denote
a set of n retrieved candidates by model m for the session s. The formula for
HitRate@N follows:

hitn
m(s) =

{
1, if ps ∈ Cn

m,s

0, otherwise
,

HitRate@N(S, m) =
∑

s∈S hitN
m(s)

|S|
.

Similarly, given a bijection posn
m,s : Cn

m,s → {1, 2, . . . , n}, assigning candi-
date items their rank, we can formulate MRR@N in the following way:

reciprocal rankn
m,s(i) =

1

posn
m,s(i) i ∈ Cn

m,s

0 otherwise
,

MRR@N(S, m) =
∑

s∈S reciprocal rankN
m,s(ps)

|S|
.

Note that given a set of session S and a model m, both metrics MRR@N and
HitRate@N are non-decreasing for increasing values of N .

34

3.4. Retrieval stage

3.4.2 Popularity-based model

Popularity-based models are non-personalized recommendation algorithms,
which recommend items based on their overall popularity. One straightfor-
ward approach to measuring an item’s popularity is to count the number of
purchases or views of that item in the training data. However, since our goal is
to predict purchased items, it is more sensible to primarily consider purchases,
as the distribution of item purchases may not necessarily align with the dis-
tribution of item views. For instance, an expensive item may be frequently
viewed but rarely purchased.

In our study, we attempted to incorporate both the number of purchases
and views by giving purchases more weight compared to views. However,
the highest HitRate and MRR scores during validation were achieved by fo-
cusing solely on purchases. The model was further improved by incorporating
time decay to give more weight to more recent trends. To implement the time
decay, we would multiply each purchase x by 1

log(1 + day delta(x)) , where

day delta(x) is the number of days between the purchase x and the last date
in the training data. Thus, the popularity score could be calculated as:

scorepopularity(i) =
∑

x∈Xp
i

1
log(1 + day delta(x)) .

3.4.3 Content-based model

Each item in the data set has assigned a set of attributes in the form of
(category_id, value_id). Two different items do not have to share an at-
tribute of the same category, and one item can be assigned multiple attributes
with the same category and different values.

We measured the similarity between two items based on these item at-
tributes using the Jaccard similarity coefficient in two ways. Let C be a set
of all attribute categories in the dataset, let Vc be a set of all values for a cat-
egory c ∈ C, and let Ai = {(c, v) | c ∈ C ∧ v ∈ Vc} be a set of all attributes
assigned to an item i. The equations for the Jaccard similarity index between
two items using attribute categories and attributes follow:

Jcategories(i, j) =
∣∣{c | (c, v) ∈ Ai} ∩ {c | (c, v) ∈ Aj}

∣∣∣∣{c | (c, v) ∈ Ai ∪ Aj}
∣∣ ,

Jattributes(i, j) = |Ai ∩ Aj |
|Ai ∪ Aj |

.

Using the formulas mentioned above, we can precompute similarities between
all pairs of items for quick access during inference. Since most of the items
are quite different — they have a small Jaccard similarity coefficient — to

35

3. Proposed Approach

be more memory efficient, it makes sense to for each item only save a certain
number of most similar items and their corresponding scores. As already
stated in Section 3.2, we store the 1000 most similar items for each item.

The content-based retrieval algorithm in our solution uses these computed
similarities to calculate which items are the most similar to the items in a given
session. The algorithm calculates the average similarity of an item to items
in the session. We achieved an improvement in the MRR score on the valida-
tion data when we used the weighted average and only considered the n last
items in each session. Note that sessions in our dataset correspond to se-
quences of item views. Let nth last item : S × N → I be a function that,
given a session s ∈ S and a position m ∈ N returns the mth last viewed item
in the session s. A score for an item i, given a session s, is computed using
the following formula:

w(s, p, i) =
{

Jattributes(i, nth last item(s, p)) |s| ≥ p

0 otherwise
,

scorecontent-based(s, i) =

n∑
p=1

w(s, p, i)
p

n∑
p=1

1
p

.

The Jaccard similarity on attributes performed much better than the Jaccard
similarity on categories and was used in our content-based model. The hy-
perparameter n = 5 received the highest MRR score in the validation data.
The advantage of the content-based model (and popularity-based model) over
collaborative filtering retrieval models is that, given a session, it can always
generate a set of candidate items since all items have some attributes based on
which we can calculate similarity to other items. In collaborative filtering al-
gorithms, in cases where the user interacted with cold items — items without
interactions in training data — we end up with an empty candidate set.

3.4.4 ItemKNN

In our implementation of the ItemKNN, to calculate a similarity between
items, we use a cosine similarity and rating matrix created from the training
dataset as in Section 1.3.1. To speed up the ItemKNN computation, the 1000
most similar items for each item are precomputed and stored for fast access
as described in Section 3.2.

When creating a user vector for the target user, we do not assign viewed
items the same rating value for being the same type of interaction. In our task,
a session corresponds to a user interaction history represented by a chrono-
logically ordered sequence of item views. We can consider the more recently

36

3.4. Retrieval stage

viewed items as more similar to the purchased item for being closer in the ses-
sion to the purchased item. We give a viewed item i by the target user a rating
of value 1/p, where p is the first position in a reverse session item view sequence
of the target user. E.g., p is one for the last viewed item in the sequence, two
for the second last viewed item, and so on. Also, before we create the ratings,
we truncate the session to the last n item views, where n is a hyperparameter.
The formulas by which we compute ItemKNN scores follow:

w(s, p, i) =
{

simcos(i, nth last item(s, p)) session s contains p item views
0 otherwise

,

scoreitemKNN(s, i) =

n∑
p=1

w(s, p, i)
p

n∑
p=1

1
p

.

The hyperparameter n was fine-tuned to 6. Note that the k determining
the size of the rated item neighborhoods is set to 1000 since we store 1000 of
the most similar items and their similarities.

3.4.5 UserKNN

The UserKNN algorithm is well described in Section 1.3.3. In contrast to our
ItemKNN implementation, we created the user vector by setting all the rat-
ings of the viewed items, which were seen in the training dataset and thus have
a corresponding column in the rating matrix, to cv = 1, as used in the rating
matrix.

To find the most similar users in the rating matrix using cosine similarity
to the target user’s rating vector, we utilized the NearestNeighbors class from
the scikit-learn [57] open-source library for machine learning in Python.

3.4.6 Items-to-item models

An approach that proved effective in the candidate generation stage was
the usage of items-to-item algorithms to recommend items somehow similar
or relevant to the most recent items in a given session. The intuition behind
this candidate generation approach is that often just before the user finds
the wanted item they might be viewing another similar item.

Let us explain the method more formally. Let session s = (i1, . . . , ins) be
a vector of ns items, which were viewed before the purchased item, ordered by
their corresponding view timestamps. Let Ic be a set of all candidate items
and let Rs ⊂ Ic be a set of recommended candidate items recommended by
our approach. It holds that

37

3. Proposed Approach

i ∈ Rs =⇒ |{j ∈ Ic | score(ins , j) > score(ins , i)}| < |Rs|,
where the function score : I × I → R given items x and y as an input returns
a relevancy value for the item y given the item x.

An advantage of generating candidates based on one item is fast inference
since it consists of querying the pre-computed list of the most similar items
for the given item. The item-to-item score computing methods used were
primarily based on collaborative filtering and pair co-occurrence in the training
sessions. An issue during inference occurs when the last item in the session
has not appeared in the training set. As a fallback in such a situation, we
would generate candidates based on the second last viewed item, if available.

In the following parts of this subsection, different item-to-item score func-
tion that we used to find the most relevant candidates will be covered.

3.4.6.1 Swing

We used the Swing score function described in Section 1.3.6, with only mod-
ification that penalizes long item sessions based on [31]. The original formula
was changed by adding the following weights to the nominator:

wu = 1
| Iu |

,

scoreSwing(i, j) =
∑

a∈Ui∩Uj

∑
b∈Ui∩Uj

wa · wb

α+ | Ia ∩ Ib |
.

3.4.6.2 ItemCF

The algorithm, which achieved the highest MRR on validation sessions, if we
do not consider an ensemble that uses this algorithm, is the similarity-based
model using ItemCF scores. The implementation is based on a modification
of the ItemCF from [31].

The algorithm leverages the co-occurrence of items in session, indicating
some similarity or mutual relevance. The degree of the mutual relevance
of such co-occurrence in a session depends on the session length, which is
mentioned in Section 1.3.5, and it further depends on how close the items
are in the session interaction sequence and how much time separates the two
item interactions. We further add consideration for the order of the items
in a session and whether an item in a session was purchased, which further
improved the MRR of this retrieval model on validation sessions. The intuition
behind the consideration of the order of the items in the session is that items
viewed after a particular item are more likely to be purchased as a result of
seeing that item than those items seen before it.

Let Si ⊆ S denote a subset of sessions containing an interaction with
an item i, let Pi,s ⊂ N denote a set of positions of interactions of the item

38

3.4. Retrieval stage

i in the session s, and let time : N × S → N be a function with returns
a timestamp in seconds of an interaction on a given position in a given session.
The equation for computing ItemCF score follows:

wpos(pi, pj) = 1
log2(|pi − pj | + c1)

wt(s, pi, pj) = 1
log4(| time(s, pi) − time(s, pj)| + c2)

wlen(s) = 1
log2(|s|)

wb(s, pj) =

β pj = |s|
α pi < pj < |s|
1 otherwise

score(i, j) =
∑

s∈Si∩Sj

∑
pi∈Pi,s

∑
pj∈Pj,s

wb(pi, pj) · wlen(s) · wt(s, pi, pj) · wpos(pi, pj),

where α, β are hyperparameters set to 2 and 3, and where c1 = 1 and c2 = 5.

3.4.6.3 Rating similarity

By rating similarity, we refer to the cosine similarity between item rating
vectors from the rating matrix, as defined in Section 1.3.1. In order to identify
the users in the rating matrix that are most similar based on cosine similarity,
we employed the NearestNeighbors class from scikit-learn [57], which was also
utilized in the UserKNN.

3.4.6.4 Word2vec

To predict the most similar items that appear in similar contexts to the last
item in a session, we utilize word2vec [58] embeddings through the open-source
Python library Gensim [59]. We experimented with different vector sizes and
window sizes and found that combining a vector size 64 and a window size 4
gave the best results on the validation data.

3.4.6.5 Factorization

Another approach for recommending similar items utilizes a matrix factoriza-
tion using alternating least squares. The item similarity score is then calcu-
lated as cosine similarity between item factor vectors. The Python library that
we employed for factorization was Implicit [60]. We achieve the best results
we tuned the number of factors and regularization on validation data.

39

3. Proposed Approach

3.4.6.6 Similarity-based ensemble model

Since we have implemented multiple score or similarity functions to predict
the items most relevant to the last item in the session, we explored the idea
of creating an ensemble of these individual models. To do this, we had to
scale all the output scores and similarities with min-max scaling into a similar
range. The range for a model was specified with a min value that was the same
for all models and a max value, which we refer to as weight. The ensemble
achieved the best performance when better-performing models were assigned
higher weights than worse-performing models. Given m different methods,
where each method has its scorea function and weight wa, and a min value
cmin such that ∀a ∈ {1, · · · , m} : cmin < wa, the equation for computing
ensemble similarity follows:

max
a

(i) = max{scorea(i, j) | j ∈ I}

min
a

(i) = min{scorea(i, j) | j ∈ I}

scalea(i, j) =

scorea(i, j) − mina(i)

maxa(i) − mina(i) maxa(i) > mina(i)

0 maxa(i) = mina(i)

scoreensemble(i, j) =
m∑

a=1
scalea(i, j) · (wa − cmin) + cmin.

3.5 Ranking Stage

To address the ranking task, we chose to try pointwise and listwise approaches
utilizing the gradient-boosting library LightGBM. In this section, we discuss
the creation of the training dataset for our ranking model and the features
that might aid the ranking model to achieve better performance.

3.5.1 Ranker Training

The training dataset for the ranking model is created from training sessions
no older than one month from the start of the validation or testing month
in the following manner. For each such training session, we employ retrieval
algorithms from the retrieval stage to generate candidate items. On average,
the number of candidates per session can be in the hundreds, e.g., around
500 candidate items. If the candidate items do not contain the corresponding
purchased item for the training session, we discard the session and continue
to the following session sample.

A situation when the candidate items do not include the purchased item
might occur when the purchased item is not included in the provided whitelist

40

3.5. Ranking Stage

(described in Section 3.3) and thus is filtered out. Furthermore, it can happen
when the retrieval models fail to retrieve the purchased item. In the latter
case, adding the purchased item to the candidate set for training could be
possible. However, this did not show improvement in the overall performance
of the model on the validation data, and it increased the training time, so we
omitted to do so.

Therefore, a candidate item set for a training session contains a correspond-
ing purchased item. The purchased items are then labeled as 1, and the other
items are labeled as 0. In case a listwise model is trained, item candidates
from the same training session are labeled with the same group id; for this,
session-id can be used. One may notice that most target labels are zeroes, and
the dataset is imbalanced. However, we do not handle this imbalance since,
to rank the items, we are mainly interested in the relative order of the target
variables. Finally, the training dataset consists of the feature vectors, labels,
and possibly group ids of all generated candidate items. The features we can
use to create the feature vectors will be covered in the following section.

3.5.2 Features for ranking algorithms

In the ranking stage, it is essential to create features that allow the ranking
algorithm to rank items well. A ranking algorithm receives as input a set of
candidate items represented by their feature vectors. As described in Section
1.4, features in this recommendation scenario can either entirely depend on
the candidate item, entirely depend on the session and its context, or a com-
bination of both.

Examples of features we can use that depend solely on the candidate item
include:

• number of purchases in the last month,

• ratio between purchases and views in the last month,

• difference of purchases in the last two weeks of last month, or

• a score from the time-decay popularity model trained on the last month.

This category of features can be precomputed and accessed during training
and inference. Let us highlight that we do not include interaction statistics
of the current month, e.g., last week’s purchase count, because the task of
the final model is to predict purchases for the whole next month and thus
cannot have such features available.

Even though the sessions are anonymous and no user attributes are avail-
able, it is still possible to create session-dependent features. The examples of
features that we used are

• number of item views in the session,

41

3. Proposed Approach

• day of the week, or

• average time between item views.

We compute the session-dependent features at inference time.
The last category of features is based on the combination of the target

user and the candidate item, and we will refer to them as cross-features.
Specifically, similarities between the last item seen by the user and candidate
items, which are the output scores of some of our retrieval models, fall into
this category. Some examples in this category of features include:

• average attribute similarity between the item and the session items,

• ItemKNN score, or

• similarity to the last viewed item (Swing, Rating similarity, ItemCF,
Ensemble similarity).

The cross-features are either computed during inference, as the first two ex-
amples are, or they can be precomputed during training and only retrieved
during inference according to the information in the session. This is the case
for the similarity to the last item in the session.

3.5.3 Hyperparamer tuning

To optimize the hyperparameters of the LightGBM models, we used the Op-
tuna [61] hyperparameter optimization framework. The LightGBM model
includes classical GBDT parameters such as the number of trees, max depth
of trees, and the number of leaves, as well as hyperparameters that enforce
regularization, some of which were described in Section 1.4.3.2. Specifically,
L1 and L2 regularization coefficients and the bagging fraction and feature
fractions that determine the size of randomly selected subsets of features and
data samples that are used for building each tree. From the mentioned hy-
perparameters, we manually set the number of trees to 250 and max-depth to
10 and tune the rest from specified intervals. To speed up the computation
of validation MRR for each hyperparameter combination, we used a random
subsample of validation data containing 8,000 sessions.

42

Chapter 4
Experiments

In this chapter, we present an evaluation of the multi-stage recommender
system proposed in the previous chapter. We begin by analyzing the per-
formance of the retrieval models individually on validation data. Next, we
explore how the retrieval models complement each other to create a robust
retrieval stage. With the retrieval stage in place, we apply ranking algorithms
and compare their performance against the validation data. Additionally, we
evaluate the importance of the features used by the ranking algorithms. More-
over, we compare all the algorithms on the leaderboard and final sessions to
determine their overall performance. Finally, we discuss further possible im-
provements to the recommender system to further enhance its performance,
as well as potential research directions for future work.

4.1 Retrieval Models

Firstly, we studied the qualities of the retrieval models to see their strengths
when used individually. The metrics used were MRR@N and HitRate@N for
chosen values ranging from 1 to 200. In the context of the retrieval stage, Hi-
tRate can be viewed as the more critical metric since the goal of this stage is to
retrieve possible candidates. However, the ranking stage can use the retrieval
models’ output for candidate ranking. Therefore, both metrics should be con-
sidered. The evaluation results of implemented retrieval algorithms are dis-
played in Figure 4.1 and Figure 4.2. The relative comparisons of HitRate@N
and MRR@N results of different retrieval algorithms are illustrated in Fig-
ure 4.3 and Figure 4.4.

From Figure 4.4, it is apparent that relative rankings of different algorithms
did not change for MRR@N at different values of N , unlike for the HitRate@N
scores. This is mainly due to the definition of the MRR@N metric, where items
ranked at higher positions do not contribute significantly to the overall MRR
score.

43

4. Experiments

To evaluate the MRR results, Figure 4.4 shows that the ensemble of sim-
ilarities (ItemCF, Swing, rating similarity and word2vec, with weights 2,
2.5, 1, and 1 for the listed models in given order) was the best-performing
model for the given metric. The model’s great MRR performance hints that
the ensembled similarity to the last item in the session might be a valuable
feature for the ranking algorithms. The second and third places also belong
to ItemCF and Swing, which are also algorithms that recommend based
on the similarity to the last item and are included in the best-performing
ensemble. Furthermore, ItemKNN placed fourth, and the rating similarity
to the last item placed fifth. This shows that the ItemKNN that leverages
the rating similarity but considers more items from the session outperforms
a solution based only on the last item. Furthermore, the sixth place belongs to
UserKNN despite it having the longest inference time. The popularity-based
algorithm expectedly finished in last place, given the non-personalized nature
of the algorithm, which always recommends the same items. Content-based
algorithm placed second-to-last with an MRR@100 score four times higher
then the popularity-based model score and almost half the MRR@100 score
compared to the best-performing algorithm.

In relation to the HitRate@N scores of the items, we would like to highlight
that the rankings of the implemented retrieval algorithms for HitRate@N,
with N equal to 1, 3, and 5, correspond to the rankings of MRR@N. This
connection stems from the definition of MRR, which is affected the most by
the algorithm’s ability to recommend the ultimately purchased items in the top
positions. Regarding the HitRate@N, we will be primarily interested in higher
values of N , such as 100, 150, and 200, since our goal in the retrieval stage is to
retrieve hundreds of relevant candidate items, ideally including the ultimately
purchased item.

For the N of 100, 150, and 200, the most significant HitRate@N is achieved
by ItemKNN, which performs better than all other retrieval models from
N = 25. Its HitRate@100 is 48.3%, and HitRate@200 is 54.1%. In that order,
the following top positions belong to the last item similarity-based models:
ensemble, ItemCF, word2vec, rating similarity, and Swing. Interestingly,
the word2vec last item similarity-based model improves its HitRate@N with
higher N much better than rating similarity and Swing models, which leads
to it outperforming the mentioned algorithms. The next position belongs to
the content-based model, which improves its hit rate well with larger values
of N compared to other models and finishes with a HitRate@200 of 48.3%.
The least performing last item similarity-based model is factorization regard-
ing both HitRate and MRR scores. The UserKNN model does not improve
its HitRate@N after N = 100, and it stops at 38%, which is caused by its in-
ability to generate large numbers of candidates. Similarly to results regarding
MRR scores, the popularity-based model achieves the lowest HitRate scores,
with HitRate@200 at 28%.

44

4.1. Retrieval Models

N HitRate (%) MRR
1 5.2721 0.0527
3 10.7047 0.0761
5 14.0337 0.0838
10 18.7385 0.0900
25 25.2408 0.0942
50 31.0422 0.0958
100 36.2494 0.0966
150 39.7327 0.0968
200 42.2113 0.0970

(a) Factorization

N HitRate (%) MRR
1 6.8430 0.0683
3 14.2848 0.1000
5 18.2166 0.1090
10 24.1282 0.1169
25 32.2919 0.1221
50 38.7243 0.1239
100 45.1396 0.1248
150 49.1570 0.1252
200 51.8536 0.1253

(b) Word2vec

N HitRate (%) MRR
1 8.2813 0.0828
3 16.5258 0.1180
5 21.2429 0.1289
10 26.8642 0.1365
25 33.8663 0.1409
50 38.9755 0.1424
100 44.1104 0.1431
150 47.2592 0.1434
200 49.5319 0.1435

(c) Rating similarity

N HitRate (%) MRR
1 9.5102 0.0951
3 17.9299 0.1310
5 22.6715 0.1419
10 28.4337 0.1496
25 35.8095 0.1543
50 41.1025 0.1558
100 46.0119 0.1565
150 48.6082 0.1567
200 50.2941 0.1568

(d) Swing

N HitRate (%) MRR
1 10.2820 0.1028
3 18.5155 0.1382
5 23.0317 0.1485
10 28.6652 0.1561
25 35.9663 0.1607
50 41.2691 0.1622
100 46.6502 0.1630
150 49.8223 0.1633
200 52.0780 0.1634

(e) ItemCF

N HitRate (%) MRR
1 10.7011 0.1070
3 19.0963 0.1431
5 23.5181 0.1531
10 29.0108 0.1605
25 36.0411 0.1649
50 41.3487 0.1664
100 46.7764 0.1672
150 50.0564 0.1675
200 52.3855 0.1676

(f) Ensemble

Figure 4.1: HitRate@N and MRR@N for retrieval models based on similarity
to the last viewed item

45

4. Experiments

N HitRate (%) MRR
1 0.6972 0.0073
3 1.9064 0.0124
5 2.9246 0.0148
10 4.5676 0.0170
25 8.1930 0.0193
50 13.3929 0.0207
100 19.1000 0.0216
150 24.4358 0.0220
200 27.9595 0.0222

(a) Popularity-based model

N HitRate (%) MRR
1 4.4757 0.0448
3 9.4562 0.0663
5 12.3441 0.0728
10 16.6556 0.0785
25 24.4542 0.0833
50 31.3999 0.0853
100 39.5648 0.0864
150 44.6372 0.0868
200 48.3214 0.0871

(b) Content-based model

N HitRate (%) MRR
1 7.5118 0.0751
3 14.6156 0.1058
5 18.4077 0.1144
10 23.3502 0.1211
25 29.3293 0.1250
50 33.6592 0.1262
100 38.0002 0.1268
150 38.0002 0.1268
200 38.0002 0.1268

(c) UserKNN

N HitRate (%) MRR
1 8.7493 0.0875
3 17.5072 0.1251
5 22.3909 0.1363
10 28.6224 0.1447
25 36.6206 0.1498
50 42.5041 0.1515
100 48.2982 0.1523
150 51.6491 0.1526
200 54.1229 0.1527

(d) ItemKNN

Figure 4.2: HitRate@N and MRR@N for different retrieval models on valida-
tion data

46

4.1. Retrieval Models

Figure 4.3: Bump graph for HitRate@N in % for retrieval models on validation
data

Figure 4.4: Bump graph for MRR@N for retrieval models on validation data

47

4. Experiments

4.2 Selecting retrieval models

In this section, we will study how the retrieval models perform when used
together in order to select a subset of retrieval models that will be employed
together to generate a candidate set with a high hit rate. The motivation
behind choosing a subset of retrieval models is mainly to save computational
resources and increase the recommendations throughput, as including retrieval
algorithms in the retrieval stage that do not contribute much to the final can-
didate set or do not help to improve the hit-rate set is inefficient. Furthermore,
the more items are recommended in the retrieval stage, the more computation-
ally intensive the following ranking stage. Therefore, to assess this tradeoff,
we will aim to generate a retrieval stage with a high hit rate but still consider
the number of total retrieved candidate items.

To evaluate how the individual retrieval models complement each other,
trying all combinations of retrieval models and comparing their hit rates might
take a lot of time and computational resources. Therefore, instead, we employ
a more gradual approach. We start by studying how pairs of different retrieval
models complement each other. We let each model recommend 100 and 200
candidates and then use the combined sets of candidates to measure HitRate.
Depending on the number of the same items recommended by both algorithms,
each set of candidates in the first variant contains between 100-200 items, and
200-400 items in the second variant. The HitRate@200 and HitRate@400 for
pairs of retrieval models are depicted in Figure 4.5 and Figure 4.6. The col-
umn and row corresponding to the content-based model appear to contain
the highest HitRate values. This means that the content-based model can
retrieve candidates that other models do not, likely because the model uses
content-based filtering while other models mainly use collaborative filtering
methods.

ItemKNN and content-based model pair achieve the highest values in both
variants. This combination of content-based and collaborative filtering models
will be the base for candidate generation in the retrieval stage. The valida-
tion data shows that the HitRate is 62.9% when each of the two algorithms
retrieves 200 candidates. To improve this, we will greedily try to add one
more model to the selected retrieval models to see which combination re-
sults in the highest hit rate. Figure 4.7 shows HitRate@300, where item
candidates are generated by combining ItemKNN and Content-based model
with other implemented retrieval models, each recommending 100 candidates.
Thus, the combined number of candidates is up to 300. Figure 4.9 shows
HitRate@600 of the same combinations of retrieval algorithms, where each
model recommends 200 candidates.

The results show that the highest scores in both variants are achieved
by combining the popularity-based model with ItemKNN and the content-
based model, which increases the total HitRate to 61.7% when each model
recommends 100 candidates and 67% when each model recommends 200 items.

48

4.2. Selecting retrieval models

Figure 4.5: HitRate@200 in % heatmap when combining 100 candidates from
two retrieval models

Furthermore, Figures 4.8 and 4.10 show the average counts of recommended
items by different combinations. We can observe that the models that generate
together a more diverse set of items achieve a higher hit rate.

To try to further improve the hit rate, we repeat once again the previous
step. This time, we take the ItemKNN, content-based and popularity-based
models as the base ensemble and compare the remaining algorithms with
HitRate@400 where each model recommends 100 items and HitRate@800 for
each model recommends 200 items. The resulting hit rates do not increase
dramatically. The best hit rates are achieved by adding word2vec, factoriza-
tion, and ensemble. Even though the ensemble has the lowest hit rate out
of the three, since it has the lowest number of average recommendations, we
choose it as our final combination of retrieval models. To conclude this sec-
tion, we picked 4 retrieval models, each of which we will recommend top-200
in the retrieval stage. This method results in a total HitRate of 71% on
validation sessions and on average 540 items in the generated candidate set.

49

4. Experiments

Figure 4.6: HitRate@400 in % heatmap when combining 200 candidates from
two retrieval models

Figure 4.7: HitRate@300 in % when ItemKNN, Content-based model, and
another retrieval model each retrieve top-100 items

Figure 4.8: Average size of the candidate set when ItemKNN, Content-based
model, and another retrieval model each retrieve top-100 items

50

4.2. Selecting retrieval models

Figure 4.9: HitRate@600 in % when ItemKNN, Content-based model, and
another retrieval model each retrieve top-200 items

Figure 4.10: Average size of the candidate set when ItemKNN, Content-based
model, and another retrieval model each retrieve top-200 items

Figure 4.11: HitRate@400 in % when ItemKNN, Content-based, Popularity-
based, and another retrieval model each retrieve top-100 items

Figure 4.12: Average size of the candidate set when ItemKNN, Content-based,
Popularity-based, and another retrieval model each retrieve top-100 items

51

4. Experiments

Figure 4.13: HitRate@800 in % when ItemKNN, Content-based, Popularity-
based, and another retrieval model each retrieve top-200 items

Figure 4.14: Average size of the candidate set when ItemKNN, Content-based,
Popularity-based, and another retrieval model each retrieve top-200 items

Ranking model MRR@100 validation data
Pointwise LighGBM 0.1829
Listwise LighGBM 0.1844

Ensemble of above approaches 0.1850

Figure 4.15: MRR@100 of the ranking models on validation sessions

52

4.3. Ranking algorithms

4.3 Ranking algorithms

The ranking algorithms we employed were the pointwise LightGBM model
trained as a binary classifier and the LightGBM model trained with the lambda
rank objective. In both cases, inspired by the approach in [49], to achieve
robust ranking predictions, we combine the output of 5 models. We split
the training data into five folds and train each of the models on different four
of those folds. The final ranking would than be based on the sum of predicted
values by each of those models. Furthermore, we created an ensemble of
the pointwise and listwise LightGBM models by applying a weighted average
rank for the outputs of the two approaches.

The evaluation results on validation data are depicted in Figure 4.15.
The pointwise model achieves MRR@100 of 0.1844, outperforming the listwise
model that scored MRR@100 of 0.1829. And the employment of the ensemble
of both models, where the pointwise model has an assigned weight of 0.65
and listwise a weight of 0.35, leads to the best MRR on validation data with
an MRR@100 score of 0.185.

By observing Figures 4.16 and 4.17, we analyze the importance of the dif-
ferent features used by the listwise and pointwise models for the ranking of
the items represented by their feature vectors. The gain-based feature impor-
tance for a given feature is the sum of gains from the splits that the feature
is used for during the construction of the trees. Let us note that the feature
importance is always based on one randomly chosen model from the five mod-
els that form the final rankings. When comparing the feature importance of
the same models trained on different folds, we found them to be quite similar,
mainly regarding the best-performing features. On the contrary, the impor-
tance of low-performing features varied much more.

The most essential feature of the listwise LightGBM was the ItemCF score
and the ensemble similarity for the pointwise LightGBM. The overall best
three features on all models turned about to be from the cross-feature cat-
egory. The best item-based feature in both models was the conversion rate
from the last month of the training data. We can observe that the session-
based category of our features did not perform well as the pointwise used only
three out of 5 session-based features, and the listwise did not use any of them.
The most important category of features turned out to be the cross-feature
category, in which the features depend on the combination of the candidate
item and the target user. These can often be the most computationally re-
quiring. However, we mostly utilized the item similarities and queried them
according to the items in the given session. Furthermore, in the cross-feature
category, the features based on collaborative filtering performed better than
those based on feature similarities, such as average feature similarity between
the candidate items and the target user’s session.

53

4. Experiments

4.4 Evaluation on the testing datasets

To get the final performance estimate of the recommendation quality of im-
plemented individual retrieval models and multi-stage recommender systems,
we use the versions of retrieval and ranking models parameterized by the best-
performing hyperparameters on validation data. And we train those models
on the training dataset that includes the validation sessions. Now, we will
evaluate their MRR@100 on the leaderboard and final sessions.

Results of individual recommendation algorithms used as retrieval methods
and multi-stage recommenders utilizing different ranking methods on the test-
ing datasets are presented in Table 4.18, which is visualized in Figure 4.19.
It is clear that the multi-stage recommender systems outperform the retrieval
models. The rankings of the retrieval models match the order on the validation
dataset, with the exception being UserKNN which improved and performed
even better than ItemKnn. The rankings of the multi-stage recommenders
with different ranking approaches are equivalent to those on validation data.
In summary, the best performance out of the retrieval models was achieved
by the ensemble, which utilized multiple similarity functions, and based on
them recommended the items most similar to the last item in a given session.
Regarding the ranking algorithms, the pointwise approach performed better
than the listwise approach. Furthermore, the best MRR result 0.1947 on the
final and leaderboard datasets, was achieved by the ensemble that applied
a weighted average of the rankings predicted by the pointwise and listwise
GBDT rankers.

4.5 Discussion

One way to potentially further improve the performance of the Dressipi rec-
ommender system would be to focus on feature engineering and creating more
features. It is worth noting that we used a total of 33 features compared to
around 500 features used by the 5th placed team in the Recsys Challenge.
Additionally, experimenting with different sampling approaches for training
the ranker models could be beneficial. Currently, we generate item candi-
dates for testing sessions based on the retrieval stage, but exploring different
sampling strategies for the items with labels of 0 could be worth investigating.

In addition, it would be interesting to explore the use of graph neural
networks (GNN) for feature creation and compare them with existing cross-
features based on collaborative filtering. Furthermore, another potential av-
enue for exploration is the use of neural networks for ranking instead of the ap-
plied gradient-boosted trees.

54

4.5. Discussion

Figure 4.16: Gain-based feature importance on a logarithmic scale of a single
pointwise LightGBM model

Figure 4.17: Gain-based feature importance on a logarithmic scale of a single
listwise LightGBM model

55

4. Experiments

Model name MRR score leaderboard MRR final
Rating similarity 0.1505 0.1504

Content-based 0.0786 0.0793
Popularity-based 0.0221 0.0214

ItemCF 0.1764 0.1758
Word2vec 0.1367 0.1391

Factorization 0.1077 0.1087
ItemKNN 0.1570 0.1585
UserKNN 0.1583 0.1611

Swing 0.1745 0.1730
Ensemble similarity 0.1831 0.1839
Multi-stage listwise 0.1915 0.1921

Multi-stage pointwise 0.1929 0.1926
Multi-stage ensemble 0.1947 0.1947

Figure 4.18: Final MRR@100 for different recommendation algorithms on test-
ing datasets

Figure 4.19: Vizualization of MRR@100 for different recommendation algo-
rithms on leaderboard and final sessions

56

Conclusion

In this thesis, we have presented a comprehensive study of recommender sys-
tems, with a particular focus on multi-stage recommender systems. Our work
aimed to provide a thorough understanding of the challenges and complexities
involved in building such systems. We have examined the four-stage pipeline of
the multi-stage recommender systems, and we dived into each of the stages to
explain its responsibilities and motivation behind it. We have also provided an
overview of various recommendation and retrieval algorithms, including state-
of-the-art neural network architecture for retrieval. For the ranking stage,
we introduced the concept of Learning to Rank and discussed the approaches
used in this stage. We discuss in further detail the approach of employing
gradient-boosted trees trained on feature vectors containing item, user, and
cross features.

In the practical part of the thesis, we designed and implemented a mul-
ti-stage recommender tailored for the Dressipi dataset, using a range of re-
trieval models and LightGBM, the state-of-the-art implementation of gradient-
boosted decision trees, for the ranking task. We carefully designed, imple-
mented, and evaluated the retrieval models to achieve a high hit rate. On
top of the retrieval stage, we trained and employed pointwise and listwise
ranking algorithms to form the complete multi-stage recommender system.
Moreover, we ensembled pointwise and listwise approaches using a weighted
ranking average to achieve even better performance. We covered the impor-
tance of different kinds of features and evaluated all the algorithms on testing
data. The results demonstrated that the multi-stage approach improves on
using single recommendation algorithms or their ensembles.

57

Bibliography

[1] Simon Kemp. Digital 2022: Global Overview Report. May 2022. url:
https://datareportal.com/reports/digital-2022-global-overview-
report.

[2] Chris Anderson. The Long Tail. Oct. 2004. url: https://www.wired.
com/2004/10/tail/.

[3] Alexandre Gilotte et al. “Offline A/B Testing for Recommender Sys-
tems”. In: Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining. WSDM ’18. Marina Del Rey, CA,
USA: Association for Computing Machinery, 2018, pp. 198–206. isbn:
9781450355810. doi: 10.1145/3159652.3159687. url: https://doi.
org/10.1145/3159652.3159687.

[4] Guy Shani and Asela Gunawardana. “Evaluating Recommendation Sys-
tems”. In: Recommender Systems Handbook. Ed. by Francesco Ricci et
al. Boston, MA: Springer US, 2011, pp. 257–297. isbn: 978-0-387-85820-
3. doi: 10.1007/978-0-387-85820-3_8. url: https://doi.org/10.
1007/978-0-387-85820-3_8.

[5] Joeran Beel et al. “A Comparative Analysis of Offline and Online Eval-
uations and Discussion of Research Paper Recommender System Eval-
uation”. In: Proceedings of the International Workshop on Reproducibil-
ity and Replication in Recommender Systems Evaluation. RepSys ’13.
Hong Kong, China: Association for Computing Machinery, 2013, pp. 7–
14. isbn: 9781450324656. doi: 10.1145/2532508.2532511. url: https:
//doi.org/10.1145/2532508.2532511.

[6] Zhe Wang et al. COLD: Towards the Next Generation of Pre-Ranking
System. 2020. arXiv: 2007.16122 [cs.IR].

[7] J. Ben Schafer et al. “Collaborative Filtering Recommender Systems”.
In: The Adaptive Web: Methods and Strategies of Web Personalization.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, 291–324. isbn: 978-

59

https://datareportal.com/reports/digital-2022-global-overview-report
https://datareportal.com/reports/digital-2022-global-overview-report
https://www.wired.com/2004/10/tail/
https://www.wired.com/2004/10/tail/
https://doi.org/10.1145/3159652.3159687
https://doi.org/10.1145/3159652.3159687
https://doi.org/10.1145/3159652.3159687
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1145/2532508.2532511
https://doi.org/10.1145/2532508.2532511
https://doi.org/10.1145/2532508.2532511
https://arxiv.org/abs/2007.16122

Bibliography

3-540-72079-9. doi: 10.1007/978- 3- 540- 72079- 9_9. url: https:
//doi.org/10.1007/978-3-540-72079-9_9.

[8] Kim Falk. Practical recommender systems. Manning Publications, 2019.
[9] Yehuda Koren, Robert M. Bell, and Chris Volinsky. “Matrix Factoriza-

tion Techniques for Recommender Systems”. In: Computer 42 (2009).
[10] Ramin Ebrahim Nakhli, Hadi Moradi, and Mohammad Amin Sadeghi.

“Movie Recommender System Based on Percentage of View”. In: 2019
5th Conference on Knowledge Based Engineering and Innovation (KBEI).
2019, pp. 656–660. doi: 10.1109/KBEI.2019.8734976.

[11] Ziyou Yan. “Bandits for Recommender Systems”. In: eugeneyan.com
(May 2022). url: https://eugeneyan.com/writing/bandits/.

[12] Nı́collas Silva et al. “Multi-Armed Bandits in Recommendation Sys-
tems: A survey of the state-of-the-art and future directions”. In: Expert
Systems with Applications 197 (2022), p. 116669. issn: 0957-4174. doi:
https://doi.org/10.1016/j.eswa.2022.116669. url: https://www.
sciencedirect.com/science/article/pii/S0957417422001543.

[13] Karl Higley et al. “Building and Deploying a Multi-Stage Recommender
System with Merlin”. In: Proceedings of the 16th ACM Conference on
Recommender Systems. RecSys ’22. Seattle, WA, USA: Association for
Computing Machinery, 2022, pp. 632–635. isbn: 9781450392785. doi:
10 . 1145 / 3523227 . 3551468. url: https : / / doi . org / 10 . 1145 /
3523227.3551468.

[14] Jake Brutlag. Speed matters for google web search. June 2009. url:
https://services.google.com/fh/files/blogs/google_delayexp.
pdf.

[15] Paul Covington, Jay Adams, and Emre Sargin. “Deep Neural Networks
for YouTube Recommendations”. In: Proceedings of the 10th ACM Con-
ference on Recommender Systems. RecSys ’16. Boston, Massachusetts,
USA: Association for Computing Machinery, 2016, pp. 191–198. isbn:
9781450340359. doi: 10.1145/2959100.2959190. url: https://doi.
org/10.1145/2959100.2959190.

[16] Christopher JC Burges. “From ranknet to lambdarank to lambdamart:
An overview”. In: Learning 11.23-581 (2010), p. 81.

[17] Mark Wilhelm et al. “Practical Diversified Recommendations on YouTube
with Determinantal Point Processes”. In: Proceedings of the 27th ACM
International Conference on Information and Knowledge Management.
CIKM ’18. Torino, Italy: Association for Computing Machinery, 2018,
pp. 2165–2173. isbn: 9781450360142. doi: 10.1145/3269206.3272018.
url: https://doi.org/10.1145/3269206.3272018.

60

https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1109/KBEI.2019.8734976
https://eugeneyan.com/writing/bandits/
https://doi.org/https://doi.org/10.1016/j.eswa.2022.116669
https://www.sciencedirect.com/science/article/pii/S0957417422001543
https://www.sciencedirect.com/science/article/pii/S0957417422001543
https://doi.org/10.1145/3523227.3551468
https://doi.org/10.1145/3523227.3551468
https://doi.org/10.1145/3523227.3551468
https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/3269206.3272018
https://doi.org/10.1145/3269206.3272018

Bibliography

[18] Pablo Castells, Neil J. Hurley, and Saul Vargas. “Novelty and Diver-
sity in Recommender Systems”. In: Recommender Systems Handbook.
Boston, MA: Springer US, 2015, 881–918. isbn: 978-1-4899-7637-6. doi:
10.1007/978-1-4899-7637-6_26. url: https://doi.org/10.1007/
978-1-4899-7637-6_26.

[19] G Geetha et al. “A Hybrid Approach using Collaborative filtering and
Content based Filtering for Recommender System”. In: Journal of Physics:
Conference Series 1000.1 (Apr. 2018), p. 012101. doi: 10.1088/1742-
6596/1000/1/012101. url: https://dx.doi.org/10.1088/1742-
6596/1000/1/012101.

[20] Tomáš Řehořek. “Manipulating the Capacity of Recommendation Mod-
els in Recall-Coverage Optimization.” PhD thesis. Czech Technical Uni-
versity in Prague, 2019. url: https : / / dspace . cvut . cz / handle /
10467/81823.

[21] Xiaoyong Yang et al. Large Scale Product Graph Construction for Rec-
ommendation in E-commerce. 2020. arXiv: 2010.05525 [cs.IR].

[22] Ziyou Yan. “Real-time Machine Learning For Recommendations”. In:
eugeneyan.com (Jan. 2021). url: https://eugeneyan.com/writing/
real-time-recommendations/.

[23] Xinyang Yi et al., eds. Sampling-Bias-Corrected Neural Modeling for
Large Corpus Item Recommendations. 2019.

[24] Xiangyang Li et al. IntTower: the Next Generation of Two-Tower Model
for Pre-Ranking System. 2022. arXiv: 2210.09890 [cs.IR].

[25] Po-Sen Huang et al. “Learning Deep Structured Semantic Models for
Web Search Using Clickthrough Data”. In: Proceedings of the 22nd ACM
International Conference on Information & Knowledge Manage-
ment. CIKM ’13. San Francisco, California, USA: Association for Com-
puting Machinery, 2013, pp. 2333–2338. isbn: 9781450322638. doi: 10.
1145/2505515.2505665. url: https://doi.org/10.1145/2505515.
2505665.

[26] Alim Virani et al. Lessons Learned Addressing Dataset Bias in Model-
Based Candidate Generation at Twitter. 2021. arXiv: 2105.09293 [cs.IR].

[27] Tie-Yan Liu. “Learning to Rank for Information Retrieval”. In: Found.
Trends Inf. Retr. 3.3 (Mar. 2009), pp. 225–331. issn: 1554-0669. doi:
10.1561/1500000016. url: https://doi.org/10.1561/1500000016.

[28] David C. Liu et al. Related Pins at Pinterest: The Evolution of a Real-
World Recommender System. 2017. arXiv: 1702.07969 [cs.IR].

[29] Heng-Tze Cheng et al. Wide & Deep Learning for Recommender Sys-
tems. 2016. arXiv: 1606.07792 [cs.LG].

61

https://doi.org/10.1007/978-1-4899-7637-6_26
https://doi.org/10.1007/978-1-4899-7637-6_26
https://doi.org/10.1007/978-1-4899-7637-6_26
https://doi.org/10.1088/1742-6596/1000/1/012101
https://doi.org/10.1088/1742-6596/1000/1/012101
https://dx.doi.org/10.1088/1742-6596/1000/1/012101
https://dx.doi.org/10.1088/1742-6596/1000/1/012101
https://dspace.cvut.cz/handle/10467/81823
https://dspace.cvut.cz/handle/10467/81823
https://arxiv.org/abs/2010.05525
https://eugeneyan.com/writing/real-time-recommendations/
https://eugeneyan.com/writing/real-time-recommendations/
https://arxiv.org/abs/2210.09890
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665
https://arxiv.org/abs/2105.09293
https://doi.org/10.1561/1500000016
https://doi.org/10.1561/1500000016
https://arxiv.org/abs/1702.07969
https://arxiv.org/abs/1606.07792

Bibliography

[30] Ruoxi Wang et al. Deep & Cross Network for Ad Click Predictions. 2017.
arXiv: 1708.05123 [cs.LG].

[31] Zzh, Wei Zhang, and Wentao. “Industrial Solution in Fashion-Domain
Recommendation by an Efficient Pipeline Using GNN and Lightgbm”.
In: Proceedings of the Recommender Systems Challenge 2022. RecSysChal-
lenge ’22. Seattle, WA, USA: Association for Computing Machinery,
2022, pp. 45–49. isbn: 9781450398565. doi: 10.1145/3556702.3556850.
url: https://doi.org/10.1145/3556702.3556850.

[32] Carlos Garćıa Ling et al. H&M Personalized Fashion Recommenda-
tions. 2022. url: https://kaggle.com/competitions/h- and- m-
personalized-fashion-recommendations.

[33] Hamed Bonab et al. “Cross-Market Product Recommendation”. In: Pro-
ceedings of the 30th ACM International Conference on Information &
Knowledge Management. CIKM ’21. Virtual Event, Queensland, Aus-
tralia: Association for Computing Machinery, 2021, pp. 110–119. isbn:
9781450384469. doi: 10.1145/3459637.3482493. url: https://doi.
org/10.1145/3459637.3482493.

[34] Olivier Chapelle and Yi Chang. “Yahoo! Learning to Rank Challenge
Overview”. In: Proceedings of the 2010 International Conference on Ya-
hoo! Learning to Rank Challenge - Volume 14. YLRC’10. Haifa, Israel:
JMLR.org, 2010, pp. 1–24.

[35] Chris Burges et al. “Learning to Rank Using Gradient Descent”. In:
Proceedings of the 22nd International Conference on Machine Learning.
ICML ’05. Bonn, Germany: Association for Computing Machinery, 2005,
pp. 89–96. isbn: 1595931805. doi: 10.1145/1102351.1102363. url:
https://doi.org/10.1145/1102351.1102363.

[36] Zhe Cao et al. “Learning to Rank: From Pairwise Approach to List-
wise Approach”. In: Proceedings of the 24th International Conference on
Machine Learning. ICML ’07. Corvalis, Oregon, USA: Association for
Computing Machinery, 2007, pp. 129–136. isbn: 9781595937933. doi:
10 . 1145 / 1273496 . 1273513. url: https : / / doi . org / 10 . 1145 /
1273496.1273513.

[37] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting
System”. In: Aug. 2016, pp. 785–794. doi: 10.1145/2939672.2939785.

[38] Guolin Ke et al. “LightGBM: A Highly Efficient Gradient Boosting Deci-
sion Tree”. In: Proceedings of the 31st International Conference on Neu-
ral Information Processing Systems. NIPS’17. Long Beach, California,
USA: Curran Associates Inc., 2017, pp. 3149–3157. isbn: 9781510860964.

[39] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. CatBoost:
gradient boosting with categorical features support. 2018. arXiv: 1810.
11363 [cs.LG].

62

https://arxiv.org/abs/1708.05123
https://doi.org/10.1145/3556702.3556850
https://doi.org/10.1145/3556702.3556850
https://kaggle.com/competitions/h-and-m-personalized-fashion-recommendations
https://kaggle.com/competitions/h-and-m-personalized-fashion-recommendations
https://doi.org/10.1145/3459637.3482493
https://doi.org/10.1145/3459637.3482493
https://doi.org/10.1145/3459637.3482493
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/2939672.2939785
https://arxiv.org/abs/1810.11363
https://arxiv.org/abs/1810.11363

Bibliography

[40] Dietmar Jannach, Gabriel Moreira, and Even Oldridge. “Why Are Deep
Learning Models Not Consistently Winning Recommender Systems Com-
petitions Yet?: A Position Paper”. In: Sept. 2020, pp. 44–49. doi: 10.
1145/3415959.3416001.

[41] Jerome H Friedman. “Greedy function approximation: a gradient boost-
ing machine”. In: Annals of statistics (2001), pp. 1189–1232.

[42] Jerome H. Friedman. “Stochastic gradient boosting”. In: Computational
Statistics & Data Analysis 38.4 (2002). Nonlinear Methods and Data
Mining, pp. 367–378. issn: 0167-9473. doi: https://doi.org/10.
1016/S0167-9473(01)00065-2. url: https://www.sciencedirect.
com/science/article/pii/S0167947301000652.

[43] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “Additive Lo-
gistic Regression: A Statistical View of Boosting”. In: The Annals of
Statistics 28 (Apr. 2000), pp. 337–407. doi: 10.1214/aos/1016218223.

[44] Tin Kam Ho. “The random subspace method for constructing decision
forests”. In: IEEE Transactions on Pattern Analysis and Machine In-
telligence 20.8 (1998), pp. 832–844. doi: 10.1109/34.709601.

[45] Nick Landia et al. “RecSys Challenge 2022 Dataset: Dressipi 1M Fashion
Sessions”. In: Proceedings of the Recommender Systems Challenge 2022.
RecSysChallenge ’22. Seattle, WA, USA: Association for Computing Ma-
chinery, 2022, pp. 1–3. isbn: 9781450398565. doi: 10.1145/3556702.
3556779. url: https://doi.org/10.1145/3556702.3556779.

[46] Benedikt Schifferer et al. “A Diverse Models Ensemble for Fashion Session-
Based Recommendation”. In: Proceedings of the Recommender Systems
Challenge 2022. RecSysChallenge ’22. Seattle, WA, USA: Association
for Computing Machinery, 2022, pp. 10–17. isbn: 9781450398565. doi:
10 . 1145 / 3556702 . 3556821. url: https : / / doi . org / 10 . 1145 /
3556702.3556821.

[47] Jiangwei Luo et al. “LightGBM Using Enhanced and De-Biased Item
Representation for Better Session-Based Fashion Recommender Sys-
tems”. In: Proceedings of the Recommender Systems Challenge 2022.
RecSysChallenge ’22. Seattle, WA, USA: Association for Computing Ma-
chinery, 2022, pp. 24–28. isbn: 9781450398565. doi: 10.1145/3556702.
3556839. url: https://doi.org/10.1145/3556702.3556839.

[48] Qi Zhang et al. “Fashion Recommendation with a Real Recommender
System Flow”. In: Proceedings of the Recommender Systems Challenge
2022. RecSysChallenge ’22. Seattle, WA, USA: Association for Com-
puting Machinery, 2022, pp. 4–9. isbn: 9781450398565. doi: 10.1145/
3556702 . 3556792. url: https : / / doi . org / 10 . 1145 / 3556702 .
3556792.

63

https://doi.org/10.1145/3415959.3416001
https://doi.org/10.1145/3415959.3416001
https://doi.org/https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/https://doi.org/10.1016/S0167-9473(01)00065-2
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1109/34.709601
https://doi.org/10.1145/3556702.3556779
https://doi.org/10.1145/3556702.3556779
https://doi.org/10.1145/3556702.3556779
https://doi.org/10.1145/3556702.3556821
https://doi.org/10.1145/3556702.3556821
https://doi.org/10.1145/3556702.3556821
https://doi.org/10.1145/3556702.3556839
https://doi.org/10.1145/3556702.3556839
https://doi.org/10.1145/3556702.3556839
https://doi.org/10.1145/3556702.3556792
https://doi.org/10.1145/3556702.3556792
https://doi.org/10.1145/3556702.3556792
https://doi.org/10.1145/3556702.3556792

Bibliography

[49] Pietro Maldini, Alessandro Sanvito, and Mattia Surricchio. “United We
Stand, Divided We Fall: Leveraging Ensembles of Recommenders to
Compete with Budget Constrained Resources”. In: Proceedings of the
Recommender Systems Challenge 2022. RecSysChallenge ’22. Seattle,
WA, USA: Association for Computing Machinery, 2022, pp. 34–38. isbn:
9781450398565. doi: 10.1145/3556702.3556845. url: https://doi.
org/10.1145/3556702.3556845.

[50] Yichao Lu et al. “Session-Based Recommendation with Transformers”.
In: Proceedings of the Recommender Systems Challenge 2022. RecSysChal-
lenge ’22. Seattle, WA, USA: Association for Computing Machinery,
2022, pp. 29–33. isbn: 9781450398565. doi: 10.1145/3556702.3556844.
url: https://doi.org/10.1145/3556702.3556844.

[51] Chendi Xue et al. “SIHG4SR: Side Information Heterogeneous Graph
for Session Recommender”. In: Proceedings of the Recommender Systems
Challenge 2022. RecSysChallenge ’22. Seattle, WA, USA: Association for
Computing Machinery, 2022, pp. 55–63. isbn: 9781450398565. doi: 10.
1145/3556702.3556852. url: https://doi.org/10.1145/3556702.
3556852.

[52] Costas Panagiotakis and Harris Papadakis. “Session-Based Recommen-
dation by Combining Probabilistic Models and LSTM”. In: Proceed-
ings of the Recommender Systems Challenge 2022. RecSysChallenge ’22.
Seattle, WA, USA: Association for Computing Machinery, 2022, pp. 39–
44. isbn: 9781450398565. doi: 10.1145/3556702.3556846. url: https:
//doi.org/10.1145/3556702.3556846.

[53] Guorui Zhou et al. Deep Interest Network for Click-Through Rate Pre-
diction. 2018. arXiv: 1706.06978 [stat.ML].

[54] The pandas development team. pandas-dev/pandas: Pandas. Version lat-
est. Feb. 2020. doi: 10.5281/zenodo.3509134. url: https://doi.org/
10.5281/zenodo.3509134.

[55] Thomas Kluyver et al. “Jupyter Notebooks – a publishing format for
reproducible computational workflows”. In: Positioning and Power in
Academic Publishing: Players, Agents and Agendas. Ed. by F. Loizides
and B. Schmidt. IOS Press. 2016, pp. 87–90.

[56] Mukund Deshpande and George Karypis. “Item-Based Top-N Recom-
mendation Algorithms”. In: ACM Trans. Inf. Syst. 22.1 (Jan. 2004),
pp. 143–177. issn: 1046-8188. doi: 10 . 1145 / 963770 . 963776. url:
https://doi.org/10.1145/963770.963776.

[57] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Jour-
nal of Machine Learning Research 12 (2011), pp. 2825–2830.

[58] Tomas Mikolov et al. Efficient Estimation of Word Representations in
Vector Space. 2013. arXiv: 1301.3781 [cs.CL].

64

https://doi.org/10.1145/3556702.3556845
https://doi.org/10.1145/3556702.3556845
https://doi.org/10.1145/3556702.3556845
https://doi.org/10.1145/3556702.3556844
https://doi.org/10.1145/3556702.3556844
https://doi.org/10.1145/3556702.3556852
https://doi.org/10.1145/3556702.3556852
https://doi.org/10.1145/3556702.3556852
https://doi.org/10.1145/3556702.3556852
https://doi.org/10.1145/3556702.3556846
https://doi.org/10.1145/3556702.3556846
https://doi.org/10.1145/3556702.3556846
https://arxiv.org/abs/1706.06978
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1145/963770.963776
https://doi.org/10.1145/963770.963776
https://arxiv.org/abs/1301.3781

Bibliography

[59] Radim Řeh̊uřek and Petr Sojka. “Software Framework for Topic Mod-
elling with Large Corpora”. English. In: Proceedings of the LREC 2010
Workshop on New Challenges for NLP Frameworks. http://is.muni.
cz/publication/884893/en. Valletta, Malta: ELRA, May 2010, pp. 45–
50.

[60] Ben Frederickson. Implicit: Fast Collaborative Filtering for Implicit Feed-
back Datasets. https://github.com/benfred/implicit. 2018.

[61] Takuya Akiba et al. “Optuna: A Next-Generation Hyperparameter Opti-
mization Framework”. In: Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining. KDD
’19. Anchorage, AK, USA: Association for Computing Machinery, 2019,
pp. 2623–2631. isbn: 9781450362016. doi: 10.1145/3292500.3330701.
url: https://doi.org/10.1145/3292500.3330701.

65

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://github.com/benfred/implicit
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701

Appendix A
Acronyms

ANN Approximate nearest neighbors

CCR Click-through rate

CF Collaborative filtering

CTR Click-through rate

DIN Deep interest network

DNN Deep neural network

ERR Expected reciprocal rank

GBDT Gradient boosted decision trees

GNN Graph neural network

KNN K-nearest neighbors

KPI Key performance indicator

LSTM Long short-term memory

MPL Multi-layer perceptron

MRR Mean reciprocal rank

MS Multi-stage

NDCG Normalized discounted cumulative gain

QPS Queries per second

RT Return time

SOTA State-of-the-art

67

Appendix B
Contents of enclosed CD

readme.md description of the project structure
multistage recommender.ipynb notebook with the experiments
visualizations.ipynb....................notebook with visualizations

69

	Introduction
	Analysis of Multi-Stage Recommender Systems
	Introduction to Recommender Systems
	Stages of Multi-Stage Recommenders
	Retrieval stage (candidate generation)
	Filtering stage
	Ranking stage
	Reordering stage

	Analysis of Retrieval Models
	Rating Matrix
	Measuring user and item similarity
	User-based k-Nearest Neighbour
	Item-based k-Nearest Neighbors
	Items to item recommendation with ItemCF
	Swing algorithm
	Two towers

	Analysis of Ranking Models
	Introduction to Learning to Rank
	Learning to Rank methods
	Introduction to Gradient Boosting
	Boosting
	Gradient Boosting

	Problem Statement
	Challenge task
	Dataset
	Evaluation methodology
	Related work

	Proposed Approach
	Design of our solution
	Implementation architecture
	Training, validation, and testing data split
	Retrieval stage
	Metrics for retrieval models
	Popularity-based model
	Content-based model
	ItemKNN
	UserKNN
	Items-to-item models
	Swing
	ItemCF
	Rating similarity
	Word2vec
	Factorization
	Similarity-based ensemble model

	Ranking Stage
	Ranker Training
	Features for ranking algorithms
	Hyperparamer tuning

	Experiments
	Retrieval Models
	Selecting retrieval models
	Ranking algorithms
	Evaluation on the testing datasets
	Discussion

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

