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Abstrakt

Detekcia anomálií je dôležitou súčasťou analýzy dát a strojového učenia so
širokým spektrom využitia. V dobe, keď sa údaje spracúvajú v obrovských
množstvách, môžu byť tradičné metódy výpočetne nákladné a nemusia byť
dobre škálovateľné na veľkých, mnohodimenzionálnych dátových sadách. Iso-
lation Forest je unikátny koncept, ktorý je založený na explicitnej izolácii ano-
málnych dátových bodov namiesto profilovania normálnych bodov. Postupom
času boli objavnené niektoré obmedzenia tohto modelu a navrhnuté rozšírenia
na ich odstránenie. V práci sú vybrané rozšírenia skúmané a experimentuje sa
s ich kombináciou. Vybraná metóda je implementovaná do open–source plat-
formy pre strojové učenie, H2O–3. Záver obsahuje vyhodnotenie novo pridanej
implementácie, porovnanie s dvoma existujúcimi a diskusiu výsledkov.

Klíčová slova Detekcia anomálií, nesupervizované učenie, Isolation Forest,
Extended Isolation Forest, Fair Cut Forest, H2O.ai
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Abstract

Anomaly detection is an important part of data analysis and machine learning
with many applications. In an era, where data is being processed in massive
quantities, traditional methods can be computationally expensive and may not
scale well on large, high–dimensional datasets. The Isolation Forest is a unique
concept, which is based on explicitly isolating anomalous data points rather
than profiling normal ones. Over time, some limitations of the model have
been discovered and some extensions have been proposed to address them.
The thesis studies selected extensions and experiments with combining their
approaches. The selected method is implemented into the H2O–3 open–source
machine learning platform. The added implementation is evaluated against
two existing implementations and the results are discussed.

Keywords Anomaly detection, unsupervised learning, Isolation Forest, Ex-
tended Isolation Forest, Fair Cut Forest, H2O.ai
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Introduction

Motivation and objectives

As a part of machine learning techniques, anomaly detection plays an impor-
tant role with many applications. It is a process of identifying patterns in the
data that deviate from the normal or usual behavior. Such methods have var-
ious uses from de–noising data for other data analysis purposes to preventing
failures and disasters and have a great impact on our world. As the amount
of data generated by modern data mining systems continues to grow, so does
the need for effective and efficient anomaly detection methods.

Many traditional methods, mostly based on statistical theory or distance mea-
sures between the observations, may have limitations in terms of data size,
dimensionality, distributional assumptions or other factors. The need for more
efficient, faster, more accurate and easily scalable methods is driving many sci-
entist to explore new possibilities. In 2008, a method based on a new concept
of isolation was proposed, called the Isolation Forest. The method explicitly
separates anomalous points instead of profiling normal ones. The structure
is based on a decision tree, where at each node the data is randomly split
into two partitions recursively until the points are isolated. The idea is that
anomalies should be easier to separate, meaning the depth of such points in
the tree is lower. Many trees are built in this way and the prediction is based
on the average of all the trees. The random aspect of the algorithm is re-
sponsible for very fast training times and the tree structure allows for high
parallelism and scalability.

While it has been shown that Isolation Forest is able to outperform many
of the existing methods with the configuration of hyperparameters being not
very dataset specific, making it a very universal anomaly detection method, it
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Introduction

does have some limitations. Over time, some extensions have been developed
to mitigate these problems. The first limitation is that the Isolation Forest
always splits the data by a single, uniformly randomly selected feature, which
can affect the performance if the class of the data point depends on a relation
between multiple variables. This is addressed by the Extended Isolation For-
est. The second is the random selection of the split point, which may not be
optimal. If the choice of the split point can be guided by some optimization
criteria, the predictions may be more accurate. This idea is explored in the
Optimized Computational Framework for Isolation Forest.

The first objective is to try to combine these two approaches into one method,
build a prototype and test the performance. The second goal is to select
a method and implement it into the open–source machine learning platform
H2O–3. The method should use a split guiding metric that helps to choose
a more relevant split instead of the uniform random selection of splits. The
aim is to improve the results of the methods currently implemented in the
library: the standard Isolation Forest and the Extended Isolation Forest. The
evaluation and comparison with the previous implementations should follow
with a discussion of the results. The H2O–3 is a well–known and widely
used platform by many companies and individuals. The implementation of an
improved anomaly detection algorithm could be a benefit for all the users of
this platform or an incentive for new users to join.

Organization
The thesis is divided into five chapters. The first one provides a basic insight
into anomaly detection in general, the data formats, types of errors, and types
of anomaly detection models. The second chapter presents some of the most
common methods and algorithms. The third chapter discusses the Isolation
Forest algorithm in detail and some of its limitations and extensions to over-
come them: Extended Isolation Forest and Optimized Computational Frame-
work for Isolation Forest. In the fourth chapter, experiments with combining
the two methods and the results of the experiments are presented. Then, two
other methods based on similar idea, the SCiForest and the Fair Cut Forest
are studied, evaluated and compared. The last chapter describes the imple-
mentation of the selected method into the H2O–3. The implementation is
then evaluated and compared to the previous implementations. Finally, some
ways to further improve the implementation are discussed.
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Chapter 1
Anomaly detection

1.1 Definition

Anomaly detection, in the context of data analysis, is a process of identifying
anomalous data points within a given set of data. The term outlier detection
is often used interchangeably. Hawkins defines an outlier as an observation,
which deviates so much from the other observations as to arouse suspicions
that it was generated by a different mechanism [1] (e.g. the data point could
come from different statistical distribution). It can also be defined as an
observation (or subset of observations) that appears to be inconsistent with the
remainder of that set of data [2]. The common assumption about anomalies
in a data set is that they represent only a small part of the whole.

Figure 1.1: Example of outliers in 2–dimensional data [3]
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1. Anomaly detection

There are many ways how outliers can appear in a data set. If the data is
collected from a set of sensors, a failure could occur, giving the measurement
a distorted value. Another factor could be human error if the data is created
or handled manually. Anomaly detection has many applications in today’s
data analysis, some of which are: detecting fraudulent banking transactions,
unauthorised access to computer systems, medical diagnosis or event detection
in sensor networks [4]. This means that in systems that use anomaly detection,
it is important and even critical that these methods work correctly.

Anomalies in a data set can be of different nature and can be classified into
the following categories [3]:

• Point anomalies, also called scattered anomalies, are individual data
points that are anomalous when compared to the rest of the data set.

• Contextual anomalies are data points that are anomalous in a partic-
ular context. For example, a sudden increase in website traffic without
any reason (such as holiday).

• Collective anomalies are groups of data points that are anomalous
when considered together, but may not be anomalous individually.

1.2 Input data and model training

Detection can be performed on a variety of data formats, including numerical
data such as time series or sensor readings, categorical data, text and even
multimedia (e.g. anomaly detection in medical or satellite images). The most
typical data for this task is in tabular form, consisting only of numerical data,
which in principle all formats mentioned above could be converted to. In data
mining, this is usually referred to as a dataset. Formally, the dataset X can be
defined as a matrix where each row represents a single instance (also known
as a sample, example or data point) and each column represents an attribute,
also known as a feature:

X ∈ RN,p,

where N is a number of data points and p is a number of features. The
individual sample is a vector x ∈ Rp.

X =


x1
x2
...
xN

 =


x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

... . . . ...
xN,1 xN,2 . . . xN,p
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1.2. Input data and model training

To find outliers in a dataset, we should find a model that describes the data
and can distinguish between a normal and an anomalous instance. The model
can be thought of as a function where the input is an instance x and the
output can be one of the following [4]:

• Binary label – denotes the class of the data point (e.g. 0 as normal
instance, 1 as anomalous).

• Anomaly score – quantifies the level of “outlierness” of each point.
This allows the data points to be ranked in order of their outlier ten-
dency. Anomaly scores can also be converted to binary values with
thresholding, but are usually preferred because they carry more infor-
mation.

The model can be built using various algorithms and the process of building
a model is called training (or fitting). The input for the training is a training
dataset. The goal is to construct a model that can make predictions that are
as close to reality as possible. In other words, we want to minimize the error
of the model. In anomaly detection we identify two types of errors [5]:

• Masking (type one error) occurs when anomalous data is misclassified
as normal, resulting in a false negative classification. This can happen
when the anomalies are subtle or difficult to distinguish from normal
data, or when the algorithm is not sufficiently sensitive to detect them.

• Swamping (type two error) occurs when normal data is misclassified
as anomalous, resulting in a false positive classification. This may be
caused by the detection algorithm being too sensitive.

The question is, how does the model know which class do the points belong
to, so that it can be evaluated and improved. The answer is that in most cases
it doesn’t because the data doesn’t contain any information about what class
does the data points belong to. From the view of training data (or training
supervision), anomaly detection models can be divided into three categories
[4]:

• Supervised anomaly detection, where the model uses training data
that contains labels for both normal instances and outliers, which can
be used for evaluation and further improvement of the model. These
methods are equivalent to classification in unbalanced datasets and are
designed for application–specific anomaly detection.

5



1. Anomaly detection

• Semi–supervised anomaly detection, where the model has labels
for only part of the data. The labels can be obtained by manual expert
labeling, for example.

• Unsupervised anomaly detection methods are the most typical in
anomaly detection. The model is built without the knowledge of the
data point class and the data is modeled under the assumption that
only a small portion of instances in the input data are anomalous. It
can often produce false positive or false negative results, so it is often
used in an exploratory setting, where the discovered outliers are provided
to the expert for further examination.

1.3 Novelty detection
Novelty detection is closely related to anomaly detection and sometimes the
two fields can be confused. The main goal of novelty detection is to identify
previously unseen patterns in the data available during training, rather than
identifying outliers, that are included in the dataset. Some methods used
for anomaly detection can also be suitable for novelty detection, but their
performance may depend on the specific model being used. Novelty detection
can often be referred to as a one–class classification, where the model is trained
on the normal instances and then identifies the instances, that do not belong
to that class [6].

6



Chapter 2
Common methods and

algorithms

This thesis will mainly focus on unsupervised anomaly detection methods on
tabular multi–dimensional data with continuous numerical features. There
are several different approaches that can be used for this task, some of which
will be presented in this chapter.

2.1 Statistical methods

Most of statistical methods have some assumptions about the data distribu-
tion, the most common being normality of the data, and may have limitations
depending on the size or dimensionality of the data. Advantages are low
computational cost and good interpretability due to well–established theory.

The Z–score, also known as standard score or z–ratio [7], is one of the simplest
methods for detecting outliers. We assume a univariate normal distribution
X with mean µ and variance σ2. For each value, we calculate a difference
from the mean, normalized by its standard deviation:

zscore(x,X) = x− µ
σ

.

In practice, the parameters of the distribution are unknown, but the µ and σ
can be estimated by the sample mean x̄ and the sample standard deviation σ.
The score represents the number of standard deviations by which the value
x is above or below the average. We set a threshold by which we determine
whether the point is anomalous (if it surpasses this threshold) or normal.
This method assumes that the data has a normal distribution, otherwise it

7



2. Common methods and algorithms

may not be as effective. The Z–score is sensitive to extreme values, which
can bias the mean and standard deviation. The multivariate analogy uses
Mahalanobis distance [8], which is a measure of distance that takes into
account the correlation between variables:

dM (x,X) =
√

(x− µ)T Σ−1(x− µ),

where X is a probability distribution on Rp with mean µ = (µ1, µ2, .., µp)
and positive–semidefinite covariance matrix Σ ∈ Rp,p and x = (x1, x2, .., xp)
is a data point.

Statistical methods can also be in the form of tests, where we test a formu-
lated hypothesis H0 against an alternative hypothesis HA by evaluating the
test statistic specific to that test. The evaluation is based on data samples
(population) and the result is a p–value. We decide the result by setting a sig-
nificance level (usually 5%) and comparing it with the p–value of the test.
One such example can be Grubbs’s test [9], defined as follows:

H0 : There are no outliers in the data set.

HA : There is exactly one outlier in the data set.

The test statistic is:
G = maxi=1..N |xi − x̄|

σ̂
,

where xi is i–th data point, x̄ is sample mean and σ̂ is sample standard
deviation. This method, similarly to the z–score, also only works on univariate
datasets with a normal distribution and can also suffers from sensitivity to
extreme values. It detects only one outlier at a time, which can be removed
from the dataset and the test can be repeated again.

There also are other tests like Dixon’s Q test [10], which has limits for
the data size (≤ 30 samples) or Rosner’s test [11], which requires manual
identification of the outliers beforehand. In the age of big data, this is not
very convenient.

2.2 Distance–based methods
Another class of methods that makes no assumptions about the distribution
of the data is based on the distance measures in the vector space of the data
points. The idea behind measuring the distance is that points that are similar
are close to each other. These methods aim to identify points that are far away
from the majority of the data points, which are then considered anomalous.
Various distance metrics can be used, which can be set as a hyperparameter for
a given method. Some examples are: Euclidean distance, Manhattan distance
or cosine similarity [12].

8



2.2. Distance–based methods

The most common method in this category is the k–nearest neighbors
(kNN) algorithm [13]. Its main use is in supervised learning, but it can also
be adapted for unsupervised anomaly detection by assigning each point an
anomaly score, which is computed as the distance between that point and its
k–th nearest neighbor. Based on the scores, we set a threshold that determines
the label of the data point [15].

A drawback of this model is its sensitivity to the choice of hyperparameter k,
which needs to be tuned independently for each dataset. The effect of different
settings is illustrated in Figure 2.1. Another problem common to methods that
use a distance measure is the curse of dimensionality [16] – meaning it is hard
to find meaningful nearest neighbors. In high–dimensional data spaces, the
number of possible combinations of feature values increases exponentially with
the number of dimensions, making it difficult to find relationships in the data,
especially when using Euclidean distance. To mitigate this effect, some kind
of dimensionality reduction technique should be used.

(a) Outlier distance, k = 2 (b) Outlier distance, k = 3

(c) Normal point distance, k = 4 (d) Normal point distance, k = 10

Figure 2.1: k–nearest neighbors and the effect of different values of k [14]
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2. Common methods and algorithms

Algorithm 1 k–nearest neighbors
Input: X = (x1, x2, .., xN )T - input data, k - number of nearest neighbors to

consider, d - distance metric
Output: Y = (y1, y2, .., yN ) - anomaly score for each x ∈ X

for i = 1,2,..,n do
x′

i ← k–th nearest neighbor of xi, according to distance metric d
Yi ← d(xi, x

′
i)

end for
return Y

2.3 Density–based methods
The idea behind density–based methods is that the regions of the vector space
where normal points are located have a higher density of points, while outlier
regions have a much lower density. These methods also use distance metrics,
but in a more complex way.

One such method, called the Local Outlier Factor (LOF) [17], computes
a local density given by the k–nearest neighbors for each point and compares
them between neighbors. The normal data point is expected to have similar
local density as its neighbors, while an anomaly is expected to have a signifi-
cantly lower density than its neighbors. In other words, an anomaly is a point
that is far from its neighbors in terms of density. This method returns an
anomaly score for each data point, in this case called the outlier factor.

Let’s define the k–distance of point xi in dataset X as the distance between xi

and its k–th nearest neighbor xj according to the distance function d(xi, xj),
which is a hyperparameter of this method. The set of k–nearest neighbors of
data point xi, called the k–distance neighborhood, denoted Nk(xi), contains
every object whose distance from xi is not greater than the k–distance [19]. If
some points have equal distance from xi, the size |Nk(xi)| can be greater than
k. Now we define the reachability distance rd(xi, xj) and local reachability
density lrd(xi):

rd(xi, xj) = max(k–distance(xi), d(xi, xj)),

lrd(xi) =

 ∑
xj∈Nk(xi)

rd(xi, xj)
|Nk(xi)|

−1

.

Finally, we define the local outlier factor, which represents the anomaly score
for each data point:

LOF (xi) =
∑

xj∈Nk(xi) lrd(xi)
|Nk(xi)|

∗ lrd(xi)−1.

10



2.3. Density–based methods

Based on the value of LOF (xi):

• LOF (xi) ∼ 1⇒ Similar density than neighbors of xi.

• LOF (xi) < 1⇒ Higher density than neighbors of xi, meaning xi could
be a normal point.

• LOF (xi) > 1 ⇒ Lower density than neighbors of xi, meaning xi could
be an anomaly.

Figure 2.2: Visualization of Local Outlier Factor [18]

This method is able to detect anomalies that are located in low–density regions
even if they are surrounded by normal data points and handle datasets with
non–uniform distributions and different densities. Like the kNN, it is also
sensitive to the choice of the hyperparameters k and the distance function d,
which may require tuning.

Another widely used method that utilizes density is the Density–Based Spatial
Clustering of Applications with Noise, mostly known by its abbreviation, the
DBSCAN [20]. It is a clustering algorithm that can also be used for anomaly
detection. Following is a high–level overview of the algorithm.

11



2. Common methods and algorithms

Algorithm 2 DBSCAN
Input: X – dataset, ε – size of the neigborhood, minPts – neighborhood size

noise threshold
for each unvisited x ∈ X do

Mark x as visited
Nx ←points in the ε-neighborhood of point x
if |Nx| < minPts then

Mark x as noise
Continue with next unvisited x

else
Create a new cluster C and add x and all x′ ∈ Nx to the cluster
Recursively repeat for all x′ ∈ Nx and add to C
Mark all x′ ∈ Nx as visited

end if
end for

Figure 2.3: DBSCAN cluster model [21]

The Figure 2.3 illustrates one example. Parameter minPts was set to 4.
Marked red are core points of the cluster, being directly reachable from point
A. Yellow are the edge points, belonging to the cluster but not directly reach-
able from A. Point N was labeled as noise.

In the case of anomaly detection, we consider outliers to be all the points x
that have been marked as noise. DBSCAN may have hard time clustering
data with large differences in densities between the clusters, since the combi-
nation of hyperparameters may not be appropriate for all the clusters. This
algorithm is again sensitive to the choice of hyperparameters [22] and may
require dimensionality reduction, as in the previously mentioned methods.
There are several extensions of this algorithm, such as the hierarchical version
HDBSCAN [23].
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2.4. One–class support vector machine

2.4 One–class support vector machine
One–class support vector machine (OCSVM) [24] allows unsupervised anomaly
detection. It is based on the support vector machine (SVM) [25], which is a su-
pervised classification method and it works as follows: suppose we have data
set X = (x1, x2, .., xN )T , x ∈ Rp (data point with p features) and a set of
labels Y = (y1, y2, .., yN ) for each of the data points, where y ∈ {−1, 1} are
the data classes. The SVM tries to construct a separating hyperplane defined
as follows:

wTx+ b = 0,

where w ∈ Rp is a normal vector of the hyperplane and b ∈ R is the intercept.
The goal is to find such hyperplane, that:

yi(wTxi + b) ≥ 1,

∀i = 1..N.

If we assume, that the data is linearly separable, meaning that such a hyper-
plane exists, we try to find one that has the largest margin between the data
points belonging to different classes – we search for w and b that minimize
1
2 ||w||

2 under the above constraints. In practice, the linear separability of
the data is very rare. The way to solve this problem is to allow errors ξi of
misclassified data points and introduce new parameter C that quantifies the
penalization. The modified minimization function is:

1
2 ||w||

2 + C
n∑

i=1
ξi,

with constraints:
yi(wTxi + b) ≥ 1− ξi,

ξi ≥ 0,

∀i = 1..N.

The SVM can use Kernel trick to map the data points into a higher dimen-
sional feature space, which helps to separate data that are not linearly separa-
ble in the original space (e.g. when data points have polynomial dependency)
without actually working in the higher dimensional feature space [26].

One–class SVM assumes that all input data points belong to one class. The
goal is to find a boundary between the regions of the data points and the
remaining space. OCSVM uses the origin of the space as the only instance of
the negative class and all the data points represent the positive class. This
way, the binary SVM classification can be applied to the problem of anomaly
detection [27].
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2. Common methods and algorithms

Figure 2.4: One–class SVM separating hyperplane [27]

There is also a variant called Support Vector Data Description (SVDD), which
constructs a hypersphere with a minimum radius R and center a that com-
prises most of the data points [28]. In this case, one minimizes:

R2 + C
n∑

i=1
ξi,

with constrains:
||xi − a||2 ≤ R2 + ξi,

ξi ≥ 0,

∀i = 1..N.

Figure 2.5: Support Vector Data Description [29]
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2.5. Autoencoder

2.5 Autoencoder
The autoencoder [30] is a model based on neural network that can be used for
unsupervised learning. It consists of two main parts: an encoder and a de-
coder. The encoder takes an input, which is transformed to lower–dimensional
representation called a latent space or code. The decoder then takes the com-
pressed representation and reconstructs the original input with the goal of
minimizing the reconstruction error. The error is computed by comparing the
original input to the output of the decoder in various ways, such as mean
squared error (MSE) or binary cross–entropy loss. During training, the au-
toencoder learns to extract the most important features of the input data and
to reconstruct it from the compressed representation. It has various use–cases
like data compression, dimensionality reduction, data denoising and anomaly
detection.

Figure 2.6: Autoencoder [31]

The process of detecting outliers works as follows. First the autoencoder is
trained on the whole data set. Once the model is trained, the reconstruction
error of each data point is calculated by comparing the reconstructed data
point with the original input. Data points that have a high reconstruction
error, i.e. they are difficult to reconstruct compared to the rest, are flagged as
potential anomalies. A threshold for the errors is set and the data is labeled
based on this condition [32]. The advantage of autoencoders for anomaly
detection is their ability to learn complex and non–linear representations of
data.
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Chapter 3
Isolation forest

3.1 Definition
The Isolation Forest algorithm (also known as iForest or IF) [33], created
in 2008, proposes a fundamentally different method that explicitly isolates
anomalies instead of profiling normal points. The term isolation is used in the
context of separating an instance from the rest of the instances. Anomalies are
assumed to be “few and different” therefore they should be easier to isolate.
Note that a slightly different notation is used than the one in the original
paper to be consistent with the rest of this thesis.

The model is based on binary tree structure where each node is either:

• a leaf (or external) node with no child or

• an internal node with one test and exactly two child nodes. The test
consists of selected feature X:,q and split value s ∈ X:,q, which splits the
data points into two sets: Xl = {xi|xi,q < s} and Xr = {xi|xi,q ≥ s}.

The tree is constructed recursively, where each node gets the partition X′ ⊆ X,
X′ being Xl or Xr from its parent, randomly chooses a feature X′

:,q and then
randomly selects a split value (between the minimum and maximum values
of the X′

:,q). The points are again split into the two partitions and passed to
child nodes. The construction can be terminated either by complete isolation
of the given partition (|X′| = 1) or by reaching a depth limit. Each external
node is assigned an anomaly score according to its depth in the tree (will be
discussed later). We assume that outliers require fewer splits to isolate, so
the depth of such a node should be smaller compared to the rest of the points
[33].
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3. Isolation forest

Algorithm 3 iTree
Input: X′ ∈ RN,p – input data, e – current tree height, l – height limit
Output: an iTree

if e ≥ l or |X′| ≤ 1 then
return exNode{Size← |X′|}

else
randomly select feature index q ∈ [1, p]
randomly select a split point s between min and max values of X:,q
Xl ← {xi|xi,q < s}
Xr ← {xi|xi,q ≥ s}
return inNode{Left← iT ree(Xl, e+ 1, l),

Right← iT ree(Xr, e+ 1, l),
SplitAtt← q,

SplitV alue← s}
end if

Figure 3.1: Isolating normal point (xi) vs outlier (xo) [33]

3.1.1 Ensemble

As the name suggests, this algorithm constructs a model composed of multi-
ple trees, also known as a tree ensemble. Ensemble methods in decision trees
combine the results of multiple trees in order to improve their predictive per-
formance. The idea is that many “weak learners” (simpler models) working
together are more powerful than one strong model and also prevent overfit-
ting [34]. In the case of decision trees, the typical way to retain simplicity is
to limit the maximum depth and randomly selecting only a small portion of
the training data for each tree with the goal of creating a forest as diverse as
possible. Finally, in the prediction phase the data point is passed through all
the trees to obtain a result and the prediction is an average of all the trees.
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3.1. Definition

Isolation Forest uses subsampling (random selection without replacement) to
select the data for each tree. The sample size, denoted as ψ, should be kept
small, as it has been shown that smaller sizes produce better iTrees because
the swamping and masking effects are reduced [33]. In the case of iForest, the
paper suggests that 100 trees should be used, the optimal sample size for each
tree should be ψ = 256 and the tree depth should be limited by l = dlog2 ψe,
assuming that this is approximately the average tree height [35]. The idea is
that we are only interested in points with shorter–than–average path lengths,
which are more likely to be outliers. So the hyperparameters of this model
are: t – the number of trees and ψ – the subsampling size.

Algorithm 4 iForest
Input: X – input data, t – number of trees, ψ – subsampling size
Output: a set of t iT rees

Initialize Forest
set height limit l = ceiling(log2 ψ)
for i = 1 to t do

X′ ← sample(X, ψ)
Forest← Forest ∪ iT ree(X′, 0, l)

end for
return Forest

3.1.2 Predictions

The output of the prediction for the data point x is an anomaly score based on
the depth of the external node where the data point x lands after being passed
through the tree. The depth is equivalent to the path length from the root
node to that external node, denoted as h(x). The isolation tree has a limited
depth – therefore the h(x) doesn’t correctly represent the path length, as if it
were fully built. This can be compensated by approximating the value with
the estimate of the unsuccessful search in the binary search tree:

ĥ(x) = h(x) + c(n), (3.1)

where n is the count of training data points |X ′| in the external node and

c(n) =


2H(n− 1)− 2(n−1)

n for n > 2,
1 for n = 2,
0 otherwise.

(3.2)
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3. Isolation forest

The H(.) is the harmonic number estimated as ln(.) + γ, where γ is the Eu-
ler–Mascheroni constant (γ ≈ 0.5772156649) [36]. Using this approximation,
we compute the anomaly score ĥ(x) for each tree in the ensemble. The final
score is calculated as follows:

s(x,N) = 2
−E(ĥ(x))

c(N) , (3.3)

where E(ĥ(x)) is the average ĥ(x) over the trees in ensemble. Based on the
anomaly score, the following conclusion are can be made [33]:

• s(xi, N)→ 1⇒ xi is an anomaly.

• s(xi, N)→ 0⇒ xi is a normal point.

• ∀i = 1..N : s(xi, N) ≈ 0.5 ⇒ the dataset doesn’t contain any distinct
anomalies.

Figure 3.2: Anomaly score evaluation in iForest [37]

Algorithm 5 PathLength
Input: x – an instance, T – an iTree, e – current path length; to be initialized

to zero when first called
Output: path length of x

if T is an external node then
return e+ c(T.size){c(.) is defined in Equation (3.2)}

end if
a← T.splitAtt
if xa < T.splitV alue then

return PathLength(x, T.left, e+ 1)
else

return PathLength(x, T.rigth, e+ 1)
end if
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3.2. Extensions

Isolation Forest is fast, has low memory requirements, is easy to implement and
can handle large datasets with high dimensionality. The algorithm is not as
sensitive to the choice of hyperparameters as most of the other methods. It has
proven to be one of the best all–around methods as measured by aggregated
metrics across benchmarks, where it can outperform other methods on some
types of datasets, but not all of them [38].

3.2 Extensions
Over time, some limitations of the algorithm have been discovered. This
section focuses on surveying the areas where iForest is lacking and potential
ways how the algorithm could be improved.

3.2.1 Non–parallel splits

One downside of Isolation Forest is that each split is done by a single feature.
If we imagine this in the vector space, the data points x ∈ X are being split by
a separating hyperplane, which is always parallel to the axis. The hyperplane
f can be defined by a normal vector n and a intercept b in a linear equation:

f(xi) = xi,1n1 + xi,2n2 + ..+ xi,nnp − b,

where at least one ni is non–zero. The hyperplane splits the vector space into
two subsets:

{xi|f(xi) < 0},

{xi|f(xi) ≥ 0}.

In axis–parallel split, the normal vector of the hyperplane contains the value
1 in one dimension and zeros in all the others, while the intercept represents
the split value of that feature. There is no fundamental reason why these
hyperplanes should be restricted in this way [39]. The class of the points
is often related to combination of multiple variables, which means the axis–
parallel splits cannot isolate these points as effectively. Splitting the vector
space this way can also introduce bias and artifacts in the predicted anomaly
scores (score maps) [39] causing an effect called “ghost regions”, which can be
seen in Figure 3.3c and can cause false negative points in the prediction.

3.2.2 Extended Isolation Forest

The Extended Isolation Forest (EIF in short) [39] proposes that the splits
should be made non–parallel to the axis. Instead of selecting a random feature
and split value, we generate a random slope (equivalent of normal vector) and
a random intercept – which represents a hyperplane in the vector space that
splits it into two parts. This is the new splitting criterion in the isolation tree.
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3. Isolation forest

This idea is based on the Oblique decision tree [40]. The normal vector n ∈ Rp

is chosen randomly over the unit p–sphere, accomplished by drawing each
coordinate of the vector from a normal distribution N (0, 1). The intercept
b ∈ Rp is also a vector instead of a real number – meaning we can shift the
split point of each feature independently. Based on this, we get the split
criteria:

Xl = {xi|(xi − b)Tn < 0},

Xr = {xi|(xi − b)Tn ≥ 0},

∀i = 1..N.

(a) IF axis–parallel splits (b) EIF splits using hyperplanes

(c) IF scoremap (d) EIF scoremap

Figure 3.3: Benefits of using non-parallel splits [39]

Let’s take a closer look at the structure of the normal vector. It consists of
p components, at least one of which is non–zero. The EIF introduces a new
hyperparameter called the extension level, which determines how many of the
vector components are set to non–zero. The extension level can be set in the
range of [0, p− 1] with the recommendation to use the full extension (p− 1).
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3.2. Extensions

As mentioned earlier, the axis-parallel splits used in the standard iForest use
a normal vector that contains one non–zero component. This means that the
iForest is a special case of EIF with extension level set to 0 and EIF is its
generalization.

Figure 3.4: Illustration of various extension levels in EIF [39]

These are the only changes to the original iForest algorithm. The path length
(except the splitting method) and the anomaly score evaluation remain the
same. Here is the full pseudocode for building the tree:

Algorithm 6 EIF Tree
Input: X′ ∈ RN,p – input data, e – current tree height, l – height limit,
extLevel – extension level

Output: an iTree
if e ≥ l or |X′| ≤ 1 then

return exNode{Size← |X′|}
else

randomly select a normal vector n ∈ Rp, drawing each coordinate from
normal distribution N (0, 1)

randomly select an intercept b ∈ Rp in the range of X′

set coordinates of n to zero, according to extLevel
Xl ← {xi|(xi − b)Tn < 0}
Xr ← {xi|(xi − b)Tn ≥ 0}
return inNode{Left← iT ree(Xl, e+ 1, l, extLevel),

Right← iT ree(Xr, e+ 1, l, extLevel),
Normal← n,

Intercept← b}
end if
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3. Isolation forest

3.2.3 Split point guiding criteria

Another important aspect we can study is the randomness of the algorithm.
The Isolation Forests select the split feature and value uniformly at random. If
we could find a way to guide the search of the split criteria to more appropriate
regions, there is a possibility that the results could be improved.

3.2.4 Optimized computational framework for Isolation
Forest

The Optimized computational framework for Isolation Forest (OIF) [41] is
another extension of the Isolation Forest algorithm. It proposes a metric that
quantifies the suitability of the split and an algorithm that searches for the
best split at each step, instead of choosing uniformly at random.

The proposed metric is based on the probability density function (PDF), which
represents the distribution of attribute values. The assumption is that the
corresponding attribute values for each class (anomalous or normal) tend to
cluster together and have some centralized probability density values [41]. The
less these clusters overlap, the more separable they are when we look at their
mixed distribution. This is illustrated in Figure 3.5. On the left plot we
can see that the two distributions overlap heavily, so the mixed probability
density has only one peak. This is much harder to separate, in contrast to the
distributions in the right plot where it’s easy to see that the mixed distribution
consists of two separate distributions.

Figure 3.5: Visualization of separability between normal and anomalous points
on two different mixed distributions [41]
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3.2. Extensions

Based on these assumptions, we aim to find a split point that best separates
the two distributions. The proposed metric that quantifies the separability
for each feature and the split point v is called a separability index and can be
computed as:

sep(Xk, v) = e
√

(E(x|x∈Xk,x<v)−E(x|x∈Xk,x>v))2
var(Xk)2

αvar(x | x ∈ Xk, x < v) + βvar(x | x ∈ Xk, x > v) ,

where Xk is vector of unique values of the k–th feature in dataset X, v is the
split value and:

α = |{x | x ∈ X
k, x < v}|

|Xk|
,

β = |{x | x ∈ X
k, x > v}|

|Xk|
,

are the ratios of the two sets after splitting with respect to the whole Xk.
When maximizing the separability index, we maximize the difference between
the means of the two sets after splitting multiplied by the variance of the
feature values and minimize the sum of their variances weighted by their sizes.
Simply put, we try to get the two clusters of points to be as far apart as possible
and each to have a smallest possible variance.

The paper also proposes an algorithm for fast search of the split point called
gradF indSplit [41]. For a given feature Xk, we first have to get all unique
values of this feature and sort them in ascending order. Then the separability
index is computed for each of the values. This exhaustive search would be slow
if the data set was large, so a gradient search method is used. The gradient
for two adjacent values is defined as:

grad = sep(Xk, xi+1)− sep(Xk, xi)
xi+1 − xi

. (3.4)

The value of grad can indicate whether the current split point is close to the
optimal one – meaning it maximizes the separability index. Based on the
value:

• If grad ≈ 0⇒ separability index is possibly approaching its maximum.

• The more grad deviates zero, the more values can be skipped over.
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3. Isolation forest

To quantify how many values can be skipped over, the method defines a step
variable:

step =


3

1 + egrad∗log10|Xk| ∗
|Xk|
100 , grad < 0

0.7− 1.3
1 + egrad∗log10|Xk| ∗

|Xk|
100 , grad ≥ 0

(3.5)

Here is the detailed description of this algorithm in pseudocode:

Algorithm 7 gradFindSplit
Input: Xk - sorted values of the k–th attribute
Output: bestX - the attribute value having the largest value of the separa-

bility index, bestSep - the largest value of the separability index
step← d|Xk| ∗ 0.01e
bestSep← sep(Xk, x1)
bestX ← (x1 + x2)/2
i← 0
while i < |Xk| do

i← i+ step
currSep← sep(Xk, xi)
if currSep > bestSep then

bestSep← currSep
bestX ← (xi + xi+1)/2

end if
update step following formulas (3.4) and (3.5)

end while
return bestX, bestSep

The method also suggests picking k random features in each step, where for
each one the best split point according to sep is found. Then the combination
of the feature and its split point with the highest sep is selected for the split.
The k becomes the new hyperparameter for this method. By increasing k we
decrease the random aspect of the algorithm (which may not be beneficial in
all cases) and also increase the computation time for each tree.
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Algorithm 8 OIF Tree
Input: X′ ∈ RN,p – input data, e – current tree height, l – height limit,
k ∈ [1, p] – number of features to try at each step

Output: an iTree
if e ≥ l or |X′| ≤ 1 then

return exNode{Size← |X′|}
else

Q← k uniformly randomly selected features
bestSep← −∞
for each q ∈ Q do

x, sep← gradF indSplit(q)
if sep > bestSep then

bestX ← x
bestSep← sep
bestAttr ← q

end if
end for
Xl ← {xi ∈ X′|xi,bestAttr < bestX}
Xr ← {xi ∈ X′|xi,bestAttr ≥ bestX}
return inNode{Left← iT ree(Xl, e+ 1, l, k),

Right← iT ree(Xr, e+ 1, l, k),
SplitAtt← bestAttr,

SplitV alue← bestX}
end if
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Chapter 4
Oblique split guiding metric

The two variations presented each extend the basic Isolation Forest algorithm
in its own direction. The OIF may seem like a step back from the point of view
that it uses the axis–parallel splits. On the other hand, the EIF may benefit
from using a non–uniformly–random splits guided by some criterion. In this
chapter, I present my experiments with combining the two methods together.
All the algorithms in this section use the same method for computing path
length, anomaly score, subsampling, and building the ensemble, as in the
standard Isolation Forest, so the focus is set on algorithms for single tree
building. A summary evaluation and performance comparison of the methods
is provided at the end of the chapter.

4.1 Evaluation method
For prototyping purposes, the Python programming language was used for
all the following implementations along with the NumPy library [42] and the
source codes are included in the attached repository. All implementations
except the standard iForest use parallelism for tree building to speed up the
training time. Since the models are randomized, each evaluation was repeated
5 times and the average of the measurements was used as the result. Each
time the model is fitted to the full dataset and then the predictions are made
on the same data. The measured anomaly scores are then compared to the
labels from the dataset. The experiments were run on an Intel Core i5–4200U
processor with two cores (4 threads) at 1.6 GHz and 8 GB of memory.

4.1.1 Datasets

The datasets for evaluation were obtained from ODDS (Outlier Detection
DataSets) [43] and are commonly used to evaluate anomaly detection models.
They contain labels (ground truth) for each of the data points, which are
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4. Oblique split guiding metric

used for evaluation only, since all the used methods are unsupervised. The
selected datasets differ in types of anomalies they contain, so that the detection
performance can be tested in various scenarios.

Dataset # of samples # of features Anomaly ratio
Annthyroid 7200 6 7.4%
Pima 768 8 34.9%
PenDigits 6870 16 2.3%
Ionosphere 351 33 35.9%

Table 4.1: Properties of datasets used for evaluation

The Annthyroid dataset consists of 3 ordinal classes, where the center class
is considered normal and the two outer as anomalous (clustered outliers).
Most of the outliers can be distinguished by a single high–skew column. The
Pima dataset is an unbalanced binary–classification dataset with minority
class labeled as outliers, which are of scattered type. Ionosphere is a high–
dimensional dataset with scattered outliers. PenDigits dataset is a multi–label
classification scenario where outliers are a single down–sampled class while
inliers are the non–downsampled classes [38].

4.1.2 Metrics

Since the datasets are labeled, we can compare the model predictions with the
ground truth. A commonly used metrics for binary classification, where the
output of the model is in the form of a probability value, were used [44]:

Area under ROC curve (AUROC) – is obtained by calculating the area
under the receiver operating characteristic (ROC) curve, which is a graphical
representation of the trade–off between the true positive rate (TPR) and the
false positive rate (FPR) of the model. The ROC curve is generated by varying
the threshold of the predicted probability values and calculating the TPR and
FPR at each threshold. The AUROC ranges from 0 to 1, with a higher
value indicating better performance of the classification model (AUROC of
1.0 indicates perfect prediction).

Area under Precision–recall curve (AUPR) – the calculation is similar to
AUROC but uses the trade–off between the precision and recall at different
probability thresholds. This metric gives a more informative picture in the
case of unbalanced datasets, which is well–suited for anomaly detection and
may be a better option than the AUROC.
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4.2. Implementation of OIF

4.2 Implementation of OIF
The first task for the experiments was to implement the OIF. The downside
is that the authors did not publish a reference implementation and I didn’t
find any other existing one, so my implementation had to rely solely on the
pseudocodes and description in the paper. I started by implementing the
original Isolation Forest to use as a reference for evaluation and also as a base
for the extensions. I verified the implementation by comparing my results
with those in the paper [33] and they are consistent.

Annthyroid Pima
AUROC AUPR Time [s] AUROC AUPR Time [s]

0.826 0.300 0.178 0.678 0.512 0.204

Ionosphere PenDigits
AUROC AUPR Time [s] AUROC AUPR Time [s]

0.853 0.802 0.286 0.950 0.265 0.374

Table 4.2: Evaluation of iForest implementation

The first prototype of OIF was implemented without the gradF indSplit al-
gorithm, using only the split point guiding criteria, to measure the effect of
the metric on the detection performance. The use of min–max normalization
in the method for finding the split point significantly improved the results.
The authors of the OIF paper [41] don’t specify the parameters used for eval-
uation. The parameters shared with the standard iForest were set to the
recommended values [33]: 100 trees in the ensemble with the subsampling set
to 256. Different settings for the parameter k, which determines the number
of randomly selected features to try at each split, were tested to analyze the
influence on the results.

Annthyroid Pima
k AUROC AUPR Time [s] AUROC AUPR Time [s]
1 0.831 0.257 8.830 0.748 0.589 7.977
5 0.847 0.310 39.036 0.739 0.573 33.714
all 0.846 0.316 46.354 0.738 0.564 53.832

Ionosphere PenDigits
k AUROC AUPR Time [s] AUROC AUPR Time [s]
1 0.831 0.794 11.656 0.941 0.183 11.670
5 0.722 0.675 50.546 0.934 0.163 51.423
all 0.516 0.454 305.466 0.909 0.109 164.503

Table 4.3: Evaluation of OIF implementation
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The results are similar to those of the standard iForest with a small improve-
ment on the Anthyroid dataset and significant improvement in the case of the
Pima dataset. We can observe that the hyperparameter k has only a small
influence on the quality of the model on the Pima and Annthyroid datasets,
while in other cases, the performance can decrease with increasing the param-
eter, which can indicate some bias in the metric and that more randomness
is beneficial in these cases. The standard deviation of the evaluated metrics
doesn’t exceed 0.01 for any of the configurations, meaning that the model is
consistent in its predictions. The authors have also evaluated their implemen-
tation on the Pima and Ionosphere dataset [41] and the results are consistent
with mine with the setting k = 1.

4.2.1 The gradFindSplit method

The gradF indSplit method, which aims to to speed up the process of finding
an optimal split, utilizes the gradient defined in (3.4) for computing a step
variable (3.5), which determines how many data points to skip over. I noticed
that in some of the datasets the gradient can be a large number because of the
small variances in the denominator, which can lead to numerical instability and
overflow in the exponential function. This was the case in my implementation
and had to be solved in order to work correctly. Data normalization can help
a bit, but it is not enough for some datasets. Another solution is to use an
epsilon constant in the denominator, which can slightly affect the results. The
measured times show that finding the split point with the use of gradF indSplit
is about the same as when iterating through all the values.

Time [s]
Dataset exhaustive search gradFindSplit

Annthyroid 8.830 11.441
Pima 7.977 13.253

Ionosphere 11.656 13.401
PenDigits 11.670 15.758

Table 4.4: Single tree training times using gradFindSplit vs exhaustive search

The algorithm may be beneficial when using large subsample sizes, but this
contradicts the statement in [33] saying that the sample size should be kept
small to reduce masking and swamping effects. Nevertheless, I did a small
experiment to test the performance on a larger dataset, where it might make
some sense. I chose the ForestCover dataset from the ODDS [43], which has
286048 rows and 5 columns, with an anomaly point ratio of 0.9%. The training
times were measured on a single tree with different subsampling sizes.
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Time [s]
Subsampling size exhaustive search gradFindSplit

256 0.23 0.28
2048 1.77 2.11
8192 5.64 6.27

32768 22 21.7
131072 60 60
262144 95 91

Table 4.5: Single tree training times using gradFindSplit vs exhaustive search

The times are similar even on a larger dataset. Based on the experiment, I will
not use the gradF indSplit algorithm going further, but it is possible that it
could be faster on certain datasets when using very large sample sizes, so it is
a potential point of future research if there is motivation to further optimize
the Isolation Forest for big data processing.

4.3 Experiments with multi–dimensional
separability index

The separability index proposed in OIF only considers a single feature at
a time. If we want to use the oblique splits, the metric needs to be adapted
to work in multiple dimensions or the feature space has to be projected into
one–dimensional array of values.

My idea to extend the separability index to multiple dimensions was this:
instead of subtracting the means of the feature values after the split, the
distance between the centroids E(Xl) and E(Xr) (vectors of column–wise
means) of the two sets Xl and Xr can be used, taking into account all the
features. The variance can be replaced by a trace of a covariance matrix
ΣX ∈ Rp,p – that means the sum of all the variances of the features. The
modified metric can then be defined:

sep(X′,Xl,Xr) = e
√

(E(Xl)−E(Xr))2
tr(ΣX)2

αtr(ΣXl
) + βtr(ΣXr )

This metric can then be implemented in the Extended Isolation Forest by
replacing the uniformly random split intercept selection with one that maxi-
mizes the metric value. The normal vector n can be randomly sampled in the
same way as in EIF, but the intercept is optimized according to the separabil-
ity index. Since the intercept in EIF is a p–dimensional vector, the problem
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of finding the minimum of a single variable function grows to constrained op-
timization of a multi–variable function, which is much more difficult. The
constraints are the [min,max] in each feature. This split criterion can be
expressed as

(x− b)Tn < 0,

b ∈ Rp,

where x is the data point, b is the intercept and n is the normal vector. To
implement a prototype of this idea, I tried using a function minimize() from
the SciPy library [45] to first test if it would work. Since this optimization
takes place in every split, I used the Truncated Newton method [46], which
can limit the number of iterations, for the price of getting only an approxima-
tion, which should be sufficient. I have evaluated the algorithm with different
extension level settings. The algorithm is able to outperform standard iForest
on some of the datasets, but the computation times are very slow compared
to the iForest and its extensions, so only one attempt to generate the normal
vector was used.

Annthyroid Pima
ext AUROC AUPR Time [s] AUROC AUPR Time [s]
0 0.768 0.329 90.379 0.726 0.598 124.580
1 0.716 0.194 115.487 0.740 0.616 165.031
5 0.676 0.142 138.481 0.728 0.594 181.241
full 0.690 0.182 134.638 0.738 0.595 179.439

Ionosphere PenDigits
ext AUROC AUPR Time [s] AUROC AUPR Time [s]
0 0.875 0.842 643.112 0.965 0.333 334.074
1 0.835 0.748 600.854 0.965 0.338 395.147
5 0.785 0.617 692.706 0.945 0.302 825.031
full 0.799 0.649 582.115 0.944 0.281 720.183

Table 4.6: Evaluation of OIF with p-dimensional intercept optimization

The results indicate that using axis–parallel splits (extension level of 0) with
this metric works best on the Annthyroid and Ionosphere datasets, while for
the other two the setting doesn’t have much impact on the performance. The
parameter also has a direct impact on the training time, as the metric takes
longer to compute and the optimization becomes increasingly difficult.
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After this evaluation, I realized that a simpler solution can be implemented.
The p–dimensional intercept can be replaced by a 1–dimensional one, which
can be used together with the normal vector to create a separating hyperplane.
If the data points were projected onto the hyperplane, the result would be an
array of singular values representing the possible split points, which would
simplify the problem of finding the best split to minimizing a single variable
function. Also, this way the gradF indSplit algorithm or the exhaustive search
could be used on the transformed data, as in the OIF implementation. The
split criterion with this approach can be denoted as:

xTn < b,

b ∈ R.

For testing, I used the same parameters as in the model above. An exhaustive
search is used to find the optimal split point.

Annthyroid Pima
ext AUROC AUPR Time [s] AUROC AUPR Time [s]
0 0.756 0.359 33.165 0.586 0.476 47.688
1 0.794 0.427 32.689 0.581 0.467 48.830
5 0.744 0.303 33.169 0.622 0.480 52.644
full 0.737 0.291 32.922 0.604 0.454 53.910

Ionosphere PenDigits
ext AUROC AUPR Time [s] AUROC AUPR Time [s]
0 0.764 0.629 76.190 0.961 0.335 59.088
1 0.807 0.696 77.423 0.958 0.333 59.740
5 0.829 0.722 77.771 0.943 0.217 61.484
full 0.834 0.745 81.583 0.913 0.176 65.150

Table 4.7: Evaluation of OIF with 1-dimensional intercept optimization

With this approach, the training times were reduced, but the results remained
similar or slightly worse in some cases. The training times are more consistent
across the configurations because the number of used features has little influ-
ence on the optimized metric, so the duration depends only on the dataset
size. The results are not very promising when compared to the standard iFor-
est. This method performs worse in 3 out of 4 cases, while the training times
are much longer.
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After additional research focusing on the split criterion, I found another
method and its variant that is based on the same principle I had in mind:
non–parallel splits along with a split guiding criterion. The difference is that
the method looks on the split metric differently. The new metric considers
only the data points after projection onto the hyperplane and not the data
points in the original vector space. This reduces the processing time and at
the same time improves the results.

4.4 SCiForest

SCiForest stands for Isolation Forest with Split–selection Criterion [47]. The
algorithm replaces uniform random splits by generating a linear combination
of a selected number of features at each step and then finding the best split
point guided by a gain criterion that minimizes the average standard deviation
between the two split sets. The linear combination is equivalent to generating
a random hyperplane and projecting the data points onto it. The paper [47]
defines hyperplane as:

f(x) =
∑
j∈Q

cj
xj

σ(Xj) − b,

where x is the data point, Q is a set of randomly selected feature indices, Xj is
a vector of values of the j-th feature, cj is a random number uniformly sampled
from the interval [−1, 1] and b is the hyperplane intercept, which is equivalent
to the selected split point. To find the split point, we project the all the data
points in the branch onto the hyperplane, obtaining a set Y . The split point
b ∈ Y separates Y into Yl = {y ∈ Y |y < b} and Yr = {y ∈ Y |y ≥ b}, and the
one that maximizes the following gain criterion is selected:

gainaveraged(Y ) =
σ(Y )− σ(Yl)+σ(Yr)

2
σ(Y ) (4.1)

In each step, τ hyperplanes should be generated (the paper [47] suggests 10)
along with finding the best split point for each one and selecting the pair
with the maximum gain. The optimal number of randomly selected features
to create the hyperplane has been empirically found to be 2, specified by the
parameter q. The advantage of this method is that the data projection and
gain computation are fast operations, so the training phase should be much
faster than the previously proposed methods without the need for sorting or
gradient methods (exhaustive search is used here).
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Algorithm 9 SCiForest Tree
Input: X′ ∈ RN,p – input data, e – current tree height, l – height limit, τ –

number of hyperplanes, q – number of features used in the hyperplane
Output: an iTree

if e ≥ l or |X′| ≤ 1 then
return exNode{Size← |X′|}

else
f ← a hyperplane with the best split point b that yields the highest gain

among τ hyperplanes of q randomly selected attributes.
Xl ← {xi ∈ X′|f(xi) < 0}
Xr ← {xi ∈ X′|f(xi) ≥ 0}
return inNode{Left← iT ree(Xl, e+ 1, l, τ, q),

Right← iT ree(Xr, e+ 1, l, τ, q),
SplitP lane← f}

end if

4.5 Fair Cut Forest

Fair Cut Forest (FCF) [48], developed in 2019 originally for missing data
imputation, is a method based on the SCiForest algorithm, but improved in
some areas – mainly the gain used to select the best split point in each step.
The SCiForest model uses an averaged gain, which favors partitions where
only one or a few points are put into a single branch while the majority go
to the other, which isolates extreme values well, but may not produce enough
splits in the non–extreme regions [38]. This can also cause the trees to require
a much higher maximum depth to be able to separate the anomalies correctly.
The effect can be shown on experiment preformed in [38], which visualizes the
difference between the extrapolated depth and the real depth in the case of
standard iForest and SCiForest, and shows that on average the extrapolated
depth by SCiForest can be several times smaller than in the case of iForest.

Figure 4.1: Real vs extrapolated isolation depth in iForest and SCiForest [38]
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The metric in the Fair Cut Forest, called the pooled gain, takes into account
not only the homogeneity of the two split sets, but also the difference in size,
so the average of the standard deviations is weighted. This split criterion pro-
duces splits that work especially well in mixed distributions. The maximum
pooled gain from a split point across different variables is produced by splits
where the separability is clearer or where clusters are more easily formed [38].
It is defined as:

gainpooled(Y ) =
σ(Y )− |Yl|σ(Yl)+|Yr|σ(Yr)

|Yl|+|Yr|
σ(Y ) (4.2)

The comparison between the split points can be seen in the Figure 4.2. On the
left plot, the split point in the data with normal distribution N (0, 1) guided by
the pooled gain is the same as the density estimated center. When the same is
repeated on data with gamma distribution Γ(1, 1), the pooled gain split point
matches the averaged gain one. Finally, if we use a data based on Gaussian
mixture, the pooled gain clearly separates the two mixed distributions, while
the averaged gain attempts to isolate extreme values.

Figure 4.2: A comparison of split points using different guiding criteria [38].

The method randomly selects features for the linear combination one at a time.
If the feature has only rows with one unique value, it can be discarded and
another one selected. If all the features have only one value, the node is labeled
as external and the recursion ends. The FCF also uses a standardization of the
data points by subtracting the mean and dividing by the standard deviation
across the features:

X:,q(standardized) = X:,q − E(X:,q)
σ(X:,q)
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The points are standardized before each split and the E(X:,q) and σ(X:,q)
are a part of the node structure, so the data in the prediction phase could
be standardized using the same parameters. Another slight difference is that
the coefficients of the hyperplane normal vector are sampled from a normal
Gaussian distributionN (0, 1) instead of a uniform distribution. The algorithm
for building a Fair Cut tree is essentially the same as in the SCiForest, with
the differences mentioned above.

4.5.1 My implementation

My implementations share the same codebase because these methods are quite
similar. Both implementations use data point standardization at every step
(as suggested in [38]). The only differences are:

• Distribution of normal vectors – SCiForest implementation uses uniform
distribution U(−1, 1) and FCF uses normal distribution N (0, 1) to sam-
ple normal vector elements from.

• Guiding metric – SCiForest uses the averaged gain (4.1), while FCF uses
the pooled gain (4.2) metric for split point selection.

• Naming of the hyperparameters – Both methods use the same notation
for parameter τ , specifying the number of hyperplanes generated at each
step, where the best one is selected. The difference is in the parameter
that determines the number of features used in the normal vector. The
SCIForest paper [47] denotes it as q, the Fair Cut Forest uses p in [38]
and m in [48]. I decided to use the extension level parameter (ext) as
to stay consistent with the evaluation in the previous experiments. The
extension level parameter is equivalent to q− 1 in [47], p− 1 in [38] and
m− 1 in [48].

• The SCiForest implementation does not use the range penalties at pre-
diction time, as was described in the paper [47]. The prediction phase
is the same as in standard Isolation Forest or the FCF.
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The recommended configuration for SCiForest is 100 trees, subsampling size of
256, using a linear combination of two features (extension level of 1) and τ = 10
attempts to generate the hyperplane. On the tested datasets, we observe that
the performance varies with different configurations: Annthyroid and Pima
benefit from a full extension, in contrast to Ionosphere and PenDigits, where
smaller extension level is preferred. The parameter τ can slightly increase the
accuracy in some cases, at the price of increased training times, mostly visible
on the Ionosphere dataset. From the results it is difficult to find a universal
configuration.

Annthyroid Pima
τ ext AUROC AUPR Time [s] AUROC AUPR Time [s]
1 0 0.643 0.158 10.046 0.551 0.396 9.771

1 0.675 0.198 9.837 0.609 0.425 10.006
5 0.757 0.348 10.152 0.617 0.466 10.162
full 0.757 0.365 10.188 0.608 0.477 10.254

5 0 0.632 0.147 45.127 0.555 0.400 43.023
1 0.701 0.197 45.692 0.612 0.427 46.483
5 0.749 0.334 46.252 0.631 0.480 47.575
full 0.767 0.360 48.367 0.606 0.477 48.023

Ionosphere PenDigits
τ ext AUROC AUPR Time [s] AUROC AUPR Time [s]
1 0 0.878 0.842 9.719 0.933 0.154 9.338

1 0.854 0.812 10.402 0.953 0.272 10.056
5 0.821 0.771 10.265 0.936 0.212 10.309
10 0.830 0.774 10.546 0.920 0.192 10.431
15 0.817 0.764 10.742 - - -
full 0.808 0.751 11.193 0.924 0.176 10.721

5 0 0.878 0.840 42.092 0.950 0.196 40.494
1 0.860 0.818 45.698 0.950 0.235 45.559
5 0.829 0.777 47.421 0.934 0.204 47.538
10 0.840 0.790 47.879 0.929 0.215 48.016
15 0.831 0.778 48.911 - - -
full 0.841 0.794 51.492 0.920 0.193 48.910

Table 4.8: SCiForest hyperparameter evaluation
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The FCF results are an improvement over the SCiForest on all tested datasets.
For the default configuration, it was recommended to use a single try for
generating normal vector (τ = 1) with the extension level of 1. However, my
observations were a little different. Based on the evaluation, I find the best
configuration to be one when using a full extension.

Annthyroid Pima
τ ext AUROC AUPR Time [s] AUROC AUPR Time [s]
1 0 0.896 0.392 10.619 0.737 0.534 10.175

1 0.887 0.403 11.103 0.730 0.540 11.155
5 0.883 0.436 13.497 0.739 0.554 14.201
full 0.885 0.447 14.529 0.737 0.559 14.861

5 0 0.889 0.392 46.507 0.736 0.531 44.466
1 0.891 0.421 48.893 0.732 0.534 49.565
5 0.883 0.430 62.724 0.738 0.554 62.968
full 0.883 0.436 62.224 0.742 0.564 68.280

Ionosphere PenDigits
τ ext AUROC AUPR Time [s] AUROC AUPR Time [s]
1 0 0.819 0.799 10.100 0.958 0.232 9.981

1 0.865 0.850 10.944 0.945 0.218 11.337
5 0.904 0.886 13.511 0.953 0.273 14.049
10 0.911 0.897 15.813 0.943 0.259 17.670
15 0.915 0.901 18.490 - - -
full 0.917 0.902 25.860 0.953 0.258 19.459

5 0 0.824 0.804 43.865 0.950 0.204 42.882
1 0.862 0.847 48.646 0.945 0.213 48.877
5 0.908 0.894 59.853 0.944 0.224 62.341
10 0.913 0.897 71.224 0.939 0.240 79.329
15 0.916 0.902 82.964 - - -
full 0.918 0.903 119.755 0.944 0.258 89.759

Table 4.9: Fair Cut Forest hyperparameter evaluation

41



4. Oblique split guiding metric

4.6 Summary
Here is a summary of all the models presented in this section. In this overview,
each model is evaluated with a single configuration that was found to be the
best fit for that model. The best result in each dataset is highlighted. Times
are not highlighted because the fully random Isolation Forest will always be
faster than methods that use some computation. The method with optimiza-
tion of the p-dimensional intercept from my experiments is labeled as OIF-p
and the 1-dimensional variant as OIF-1.

Model # of trees Subsample size τ ext
IF 100 256 - -
OIF 100 256 1 -
OIF–p 100 256 1 0
OIF–1 100 256 1 1
SCIF 100 256 1 5
FCF 100 256 1 full

Table 4.10: Configuration of selected models used for evaluation

IF OIF OIF–p OIF–1 SCIF FCF

Annthyroid
AUROC 0.826 0.831 0.768 0.794 0.757 0.885
AUPR 0.300 0.257 0.329 0.359 0.348 0.447
Time [s] 0.178 8.830 90.38 32.69 10.15 14.53

Pima
AUROC 0.678 0.748 0.726 0.581 0.617 0.737
AUPR 0.512 0.589 0.616 0.467 0.466 0.559
Time [s] 0.204 7.978 165.0 48.83 10.16 14.86

Ionosphere
AUROC 0.853 0.830 0.875 0.807 0.821 0.917
AUPR 0.801 0.793 0.842 0.696 0.771 0.902
Time [s] 0.286 11.65 643.1 77.42 10.27 25.86

PenDigits
AUROC 0.950 0.941 0.965 0.958 0.936 0.953
AUPR 0.265 0.183 0.333 0.335 0.212 0.213
Time [s] 0.374 11.67 334.1 59.09 10.31 19.45

Table 4.11: Performance comparison of selected models

Based on the evaluation results and also the theoretical analysis, I selected the
Fair Cut Forest model for the final implementation. It was able to outperform
other methods on some datasets and was a very close competitor on others.
Good results were obtained with a single configuration and the model should
be able to deliver even better results when the parameters are configured
according to the dataset properties.
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Chapter 5
Implementation into the H2O–3

platform

5.1 The platform

H2O–3 is an open source, in–memory, distributed, fast, and scalable machine
learning and predictive analytics platform developed by H2O.ai, that allows
users to build machine learning models on big data [49]. Many global or-
ganizations develop their data analysis tools based on this platform [50]. In
addition to the open source platform, the company also offers paid products
such as the H2O Driverless AI [51] – automatic machine learning system or
enterprise support for the open source products.

The open source platform uses a Java computing engine that implements
the machine learning algorithms. The engine works as a server that can be
run locally or in the cloud and provides interfaces for many languages, the
main ones being Python, R and Scala, so that data analysts can use their
favorite language without sacrificing performance and scalability. The H2O–3
supports many data sources besides local such as the Hadoop Distributed File
System (HDFS), SQL or Amazon S3 cloud object storage and more. It also
can also be run on Hadoop or Kubernetes clusters. For distribution, the H2O
uses its own implementation of MapReduce framework and Java Fork/Join
for multi–threading [49].
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Figure 5.1: Architecture of H2O–3 platform [52]

5.2 MapReduce
MapReduce is a programming model and framework that enables distributed
processing of large datasets on clusters. These datasets are split into small
chunks that can be then processed in parallel. As the name suggests, it consists
of two main components: the map function, which takes the input data chunk
and performs some operation on it and the reduce function, which combines
the results of the map function into a final output [58].

Figure 5.2: Example of MapReduce workflow [59]
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5.3 Existing implementation
There are two existing implementations of the Isolation Forest in the H2O–3
library. The first one implements the standard Isolation Forest [53]. It includes
fully distributed tree building and prediction phase, but has some drawbacks.
The estimation of the unsuccessful searches in the binary search tree (3.2)
is absent in this implementation because the distributed binary search tree
structure (DTree [54]) implemented in the H2O doesn’t work with number of
rows in the leaves. This can lead to inaccurate predictions, as was discussed
in [55].

Second, a newer implementation was created as part of a diploma thesis [55],
implementing the Extended Isolation Forest [56]. It is built from scratch
without relying on the previous implementation and the source code is simpler
and cleaner. However, some sacrifices have been made, where the tree building
is not distributed, but it has been shown to be even faster on standard sizes of
sample sizes, such as the recommended 256. For larger sample sizes (10 000+),
it is more efficient to use the distributed computation. There are future plans
to improve the algorithm by implementing a new distributed tree structure
that will enhance the performance on very large datasets.

5.4 Fair Cut Forest implementation
The Fair Cut Forest implementation is based on the Extended Isolation Forest
implementation and shares the same class structure, since the general skeleton
for Isolation Forest and its extensions is the same. This will also simplify future
updates for both algorithms.

The input of the model is specified by a parameter training_frame, the type
of which is an H2O data structure called the Frame. The Frame is a dis-
tributed tabular data storage structure that can be used in MapReduce tasks
[57]. The implementation allows setting a seed parameter – it will consistently
build the same model when using the same seed. A trained model can be ex-
ported as a MOJO (Maven Old Java Object), allowing the model to be used
outside of the H2O cluster. By its nature, the Isolation Forest algorithm sup-
ports only ordinal features. The implementation allows categorical features to
be converted according to a specified schema using the categorical_encoding
parameter.
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The hyperparameters are:

• ntrees – the number of isolation trees in the ensemble. The default value
is 100.

• sample_size – subsampling size (number of randomly chosen data points
without replacement that each tree is built on). The default value is 256.

• extension_level – represents the number of non-zero elements in the
normal vector (number of features used at each split) −1. It is equivalent
to the parameter p− 1 in [38], m− 1 in [48] and q− 1 in [47]. When set
to 0, it is equivalent to axis–parallel split using single feature. The value
can be set in the interval of [0, p− 1], where p is the number of features.
Default value is 1, but it is recommended to use full extension p− 1.

• k_planes – number of tries for generating a hyperplane at each split,
where the one with maximum pooled gain is selected. The default value
is 1. It is equivalent to parameter τ in [48] and [47].

The output of the model prediction is an H2O Frame with columns anomaly_score
(defined in (3.3)) and mean_length (defined in (3.1)).

5.5 Structure
The following is a description of the modified or added files, classes and func-
tions. All the files are included in the attached repository, or in the pull
request [60]. To build and run the algorithm, the entire H2O–3 library has to
be downloaded and built.

h2o -algos/src/main/java/hex/tree/isoforfaircut

class FairCutForest

Represents the training phase of the algorithm. Contains the
buildIsolationTreeEnsemble function, which is responsible for sub-
sampling and building the ensemble, implementing the pseudocode
3.1.1.
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class FairCutForestModel

Defines the model hyperparameters and contains a function score0,
which is used to calculate the anomaly scores score for the given
input (prediction phase).

class FairCutForestMojoWriter

Adds the ability to export the model MOJO.

h2o -algos/src/main/java/hex/tree/isoforfaircut/
isolationtree

class IsolationTree

Represents the tree structure and implements functions used for sin-
gle tree building.

subclass Node – defines the node structure, which contains all the
necessary information: data points, height of the node, number of
rows, split criteria and information whether the node is external.

subclass SplitCriteria – encapsulates all the parameters that define
the split. The normal vector and the intercept are stored to represent
the separating hyperplane used for the prediction. The means and
standard deviation of the features in the subsets are stored so that the
points in prediction can be standardized with the same parameters.
The gain value is stored to determine the best hyperplane among the
hyperplanes generated. Finally, the data points projected onto the
hyperplane are stored for faster splitting (no need to project them
again).

buildTree – the main function for single tree construction.

findSplit – finds the intercept (split point) for a given hyperplane
that maximizes the pooled gain metric.

split – responsible for splitting the subset into two branches based
on a given SplitCriteria instance.
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interface AbstractCompressedNode and classes
CompressedLeaf, CompressedNode and
CompressedIsolationTree

These classes are used to reduce memory usage. The aim is to store
only the data needed for the predictions. Upon branching in the
training function, each node is converted to its compressed form. The
AbstractCompressedNode interface is used to convert the structure
of a particular type of node (leaf of internal node) into a binary
form in FairCutForestMojoWriter. A fully built tree is stored as
a CompressedIsolationTree.

class IsolationTreeStats

Used to store the statistics about the training process. Some exam-
ples are minimum, maximum or average statistics for depth, isolated
and non–isolated points.

h2o -algos/src/main/java/hex/api/

class RegisterAlgos

Added entry for the FairCutForest to generate the APIs.

h2o -algos/src/main/java/hex/schemas

classes FairCutForestModelV3 and FairCutForestV3

Required classes for API generation, containing definitions of the
model input parameters and output.

h2o -algos/src/test/java/hex/tree/isoforfaircut

Java unit tests (based on the tests of H2O EIF [56]).
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5.5. Structure

h2o -genmodel/src/main/java/hex/genmodel/algos/
isoforfaircut

classes FairCutForestMojoModel, FairCutForestMojoReader

Used to import the model MOJO and make predictions using that
model.

h2o -bindings/bin/gen_{python , R}.py

These files are responsible for generating the API for the Python and
R languages, so the entries for the new algorithm have been added here.

h2o -bindings/bin/custom/{python , R}/
gen_faircutforest.py

Custom documentation strings for the Python and R interfaces that are
added to the generated APIs.

h2o -py/tests/testdir_algos/isoforfaircut/

Tests for the Python API (grid search, categorical data and saving/load-
ing a trained model) (based on the tests of H2O EIF [56]).
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5.6 Example
Here is a basic usage of the Fair Cut Forest implementation using a Python
API.

import h2o
from h2o.estimators import H2OFairCutForestEstimator

# Connect to the h2o server
h2o.init()

# Create the Frame from some tabular data (e.g. Pandas
DataFrame or NumPy Array)

trainin_frame = h2o.H2OFrame(training_data)
testing_frame = h2o.H2OFrame(testing_data)

# Define the model
FCF_h2o = H2OFairCutForestEstimator(

model_id = "fcf.hex",
ntrees = 100,
sample_size = 256,
extension_level = training_data.shape[1] - 1,
k_planes = 1)

# Train the model
FCF_h2o.train(training_frame = training_frame)

# Predict on the testing data
pred = FCF_h2o.predict(testing_frame)

5.7 Evaluation
This section discusses the evaluation of the implementation and a comparison
with the co–existing implementations in the H2O–3 library. The evaluation
consists of three parts. First, the implementations are tested on real datasets
with ground truth, where the performance metrics and time are measured in
the same way as in the previous chapter. The scalability tests follow. Finally,
the models are trained on a selection of synthetic toy datasets to visualize the
score maps and discuss the results in the novelty detection scenario.

50



5.7. Evaluation

5.7.1 Anomaly detection performance

The implementations were evaluated according to the same metrics used in
the previous section – AUROC and AUPR. Training and prediction times
were also measured. Each model was trained on the full data (with a limited
subsample size, so the larger datasets are not fully used) and the predictions
were made again on the whole dataset. The evaluation was repeated 5 times
for each dataset. The H2O implementations were tested on a more powerful
hardware: Intel Xeon E3–1245 with 4 cores (8 threads) at 3.7 GHz and 32 GB
of memory.

A wider range of datasets from ODDS [43] were used for the evaluation, most
with larger numbers of samples and features. These datasets are a standard
for evaluating anomaly detection algorithms and are used in many papers.

Dataset # of samples # of features Anomaly ratio
Annthyroid 7200 6 7.4%
ForestCover 286048 10 0.9%
http (KDDCUP99) 567479 3 0.4%
Ionosphere 351 33 35.9%
Mammography 11183 6 2.3%
mnist 7603 100 9.2%
OptDigits 5216 64 3%
PenDigits 6870 16 2.3%
Pima 768 8 34.9%
Satellite 6435 36 32%
Shuttle 49097 9 7%

Table 5.1: Properties of datasets used for final evaluation

The models were built using the following parameters:

ntrees sample_size extension_level k_planes
H2O FCF 100 256 full 1
H2O EIF 100 256 full -
H2O IF 100 256 - -

Table 5.2: Configuration of H2O implementations used for evaluation
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H2O FCF H2O EIF H2O IF

Annthyroid

Train time [s] 0.309 0.239 0.516
Predict time [s] 0.594 0.554 0.224
AUROC 0.888 0.640 0.818
AUPR 0.444 0.167 0.313

ForestCover

Train time [s] 0.440 0.226 4.145
Predict time [s] 6.059 6.480 1.873
AUROC 0.739 0.723 0.883
AUPR 0.021 0.016 0.063

http (KDDCUP99)

Train time [s] 0.299 0.220 4.801
Predict time [s] 5.888 6.529 1.532
AUROC 0.998 0.993 0.981
AUPR 0.380 0.191 0.092

Ionosphere

Train time [s] 0.469 0.265 0.472
Predict time [s] 0.221 0.226 0.227
AUROC 0.915 0.893 0.835
AUPR 0.897 0.857 0.784

Mammography

Train time [s] 0.225 0.235 0.434
Predict time [s] 0.750 0.797 0.214
AUROC 0.804 0.869 0.798
AUPR 0.111 0.190 0.289

mnist

Train time [s] 0.840 0.637 1.047
Predict time [s] 0.635 0.430 0.227
AUROC 0.825 0.806 0.762
AUPR 0.307 0.280 0.227

OptDigits

Train time [s] 0.629 0.470 0.647
Predict time [s] 0.831 1.245 0.226
AUROC 0.645 0.681 0.528
AUPR 0.042 0.045 0.029

PenDigits

Train time [s] 0.440 0.265 0.597
Predict time [s] 0.642 0.675 0.223
AUROC 0.949 0.956 0.908
AUPR 0.277 0.269 0.212
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H2O FCF H2O EIF H2O IF

Pima

Train time [s] 0.216 0.224 0.216
Predict time [s] 0.222 0.231 0.222
AUROC 0.741 0.655 0.602
AUPR 0.558 0.502 0.450

Satellite

Train time [s] 0.469 0.223 0.432
Predict time [s] 0.663 0.619 0.224
AUROC 0.794 0.700 0.665
AUPR 0.716 0.689 0.553

Shuttle       

Train time [s] 0.434 0.231 1.061
Predict time [s] 3.114 3.106 0.842
AUROC 0.997 0.993 0.988
AUPR 0.925 0.812 0.872

Table 5.3: Evaluation of H2O implementations

The Fair Cut Forest implementation was able to achieve the highest value
of AUROC on 7 out of the 11 datasets tested and the highest AUPR on 8
datasets from the three implementations tested.

The training and prediction times are a huge improvement over the prototype
Python implementations in the previous chapter. The EIF is on average faster
than the FCF, but all training times are within a second. The training of the IF
takes longer because it uses the DTree structure for distributed computation,
which is slower on a standard setting of sample size in Isolation Forest [55].
Overall, the training times are relatively low even on the biggest datasets due
to the small subsampling size. As for the prediction phase, the H2O IF is
faster because there is no computation in the tree traversal, unlike the FCF
and EIF, where the points are projected on the splitting hyperplane and in
the FCF also standardized.

Overall, the FCF implementation appears to be the best option of the three
when used on an unlabeled dataset with no option to tune the parameters,
considering both detection and time performance.

5.7.2 Scalability tests

The scalability tests were performed on the ForestCover dataset. Each model
was evaluated 5 times and the results are an average of the run times. The
default configuration was used for each implementation, the same as in the
previous evaluation.
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Figure 5.3: Scalability of prediction phase

The training times of EIF and FCF with the sample size of 256 and 100 trees
are almost constant for all configurations of the number of threads. In the
case of IF, the training times are logarithmically smaller with the number
of threads, as was shown in [55]. In the prediction phase there is a visible
decrease between two and four threads, but then the times remain constant.

These tests should be repeated on more powerful hardware to test the influ-
ence of more threads and test larger subsampling sizes or numbers of trees.
Scalability tests were also performed in [61] on the EIF and IF implementa-
tions. Because the used structures are mostly the same with EIF and FCF,
the results should be similar.

5.7.3 Novelty detection performance on toy datasets

Novelty detection is not a primary goal of this work, however it may be in-
teresting to examine the behavior on previously unseen data and observe the
anomaly score maps that these models produce. The testing involves gener-
ating synthetic data with different patterns representing possible scenarios,
training the model on the data and visualizing the corresponding anomaly
score maps. Evaluation is based purely on the visual representation by ob-
serving how the anomaly scores behave in regions where there are no data
points are present. The anomaly scores are scaled to the interval [0, 1] for
each algorithm for better visibility on the heat maps. The discussion of the
results follows after the score maps visualisations.
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Single blob

Figure 5.4: Anomaly score maps on a single blob
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Double blob

Figure 5.5: Anomaly score maps on a double blob
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Single blob with overlapping anomaly cluster

Figure 5.6: Anomaly score maps on a single blob with overlapping anomaly
cluster
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Moons

Figure 5.7: Anomaly score maps on the moons dataset
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From the heat maps, it is clear that the H2O Isolation Forest implementation
does not produce relevant results and the effect of ghost regions is strongly
present in each of the tested scenarios. What is more interesting is the dif-
ference between the Extended Isolation Forest, where the splits are generated
uniformly at random and the Fair Cut Forest, where the point that maximizes
the pooled gain metric is selected. In the case of Fair Cut Forest, it is apparent
that the splits are almost always performed in the regions with the highest
data density, resulting in good separation between close clusters (e.g. the area
between the two semicircles in the “moons” dataset or the area between the
clusters in the double blob).

On the other hand, the regions without any points have almost no splits, so
the low anomaly score zones are extended outward, creating a similar effect
to the ghost regions. This is most visible on the single blob with overlapping
anomaly cluster. The Extended Isolation Forest is able to create a tight outer
boundary around the distributions, but may have difficulty in the areas be-
tween the clusters of points. This comparison makes the Extended Isolation
Forest perhaps a more favorable option for the use in novelty detection, but at
the same time shows the strength of the splits created by the Fair Cut Forest
in the anomaly detection setting.
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5.8 Possible improvements

5.8.1 Speed

The Isolation Forest is very fast, especially compared to other anomaly detec-
tion methods. This is mainly achieved by the random aspect of the algorithm
with little computation in each step – only finding the minimum and maximum
value of the subset. The method can also be well parallelized and distributed
thanks to the tree ensemble that can be built in parallel.

With adding a function maximization problem to each step of the tree build-
ing, it is no surprise that the training times are significantly prolonged. The
Optimized Computational Framework for Isolation Forest, which was stud-
ied in this thesis proposed the gradF indSplit method. In my tests, training
times using method were similar to those using a exhaustive search. However,
this could be different on very large datasets where there is motivation to use
a large subsampling size, which can be tested in the future if needed. An
alternative approach to speed up the training could be to skip some of some
values. This approach is also used in decision trees to evaluate the gain in case
of continuous variables in the dataset. Another way to speed up the training
on very large datasets could be the use of distributed tree building.

5.8.2 Memory

The extension level parameter determines how many non–zero components
are present in the normal vector – how many features are used in the linear
combination to create the hyperplane. The vector is stored in each of the
tree nodes. In addition, the means and standard deviations of the features
used in the hyperplane, which are used for data standardization, are also
stored. If the extension level is low (e.g. 0, equivalent to the standard Isolation
Forest) but the dimensionality of the dataset is high, the space allocated for
these arrays will remain unused, wasting memory. This can be optimized
to use a sparse representation of the arrays, using only as much space as
necessary to save memory. However, according to my observations, using the
full extension gives the best overall quality of detection as measured by the
AUROC and AUPR metrics. In this case, the sparse representation may slow
down the computation and use even more memory. This can be a point of
future upgrades of the implementation. A possible solution is to use a sparse
representation if the extension level is below a certain limit (e.g. less than half
of the features are used to create the hyperplane) and a dense representation
otherwise.
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5.8.3 Prediction phase

The thesis dealt with the improvement of the Isolation Forest, focusing only
on the training phase, but all discussed algorithms share the procedure for
the predictions of the anomaly score after the tree was built. This may be
an area for future research to further improve the method. There are already
some proposals on how to improve the computation of anomaly score in order
to increase the predictive performance [62][63], but only a few compared to
those dealing with the training of the model.

5.8.4 Novelty detection

As the novelty detection analysis showed, the Fair Cut Forest model is able to
create high anomaly score regions even in between data clusters, unlike other
methods. On the other hand, the splits follow the metric, resulting in too few
splits in areas with no data points and low anomaly scores in those regions.
This would lead to false negative predictions for new data in these regions.

My idea of how to achieve more splits even in these regions is to use a ran-
dom step in the algorithm – similar to the GSAT algorithm. With a given
probability, the algorithm makes a random split similar to the one in the Ex-
tended Isolation forest instead of using the metric guiding. This in result can
combine the two methods and the predictions may benefit from this. The
probability can be constant in each step, but a better option may be to de-
crease the probability as the depth increases, as the data subset is smaller
with increasing depth, reducing the probability of splits targeting the empty
regions. This idea seemed interesting, so I ran a small experiment using the
following equation to calculate the probability of random split for each depth:

P ∗ 1
depth+ 1 ,

where P is a set constant. When using P = 1, the split at depth 0 is always
random, at depth 1 with probability 0.5, at depth 2 with probability 0.25
etc. The decrease in probability is quick, but the sample size has a default
value of 256, which means the maximum tree depth will be log2(256) = 8.
I visualized the effect of different probability settings on the single blob dataset
with overlapping anomaly cluster, which was the most extreme case in the
preceding evaluation.
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Figure 5.8: Anomaly score maps of FCF with random step
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It is clear that as the probability of a fully–random split increases, the re-
gions with lower anomaly scores tighten towards the normal cluster, reducing
the unwanted effect without significantly affecting the boundary between the
anomalous and normal cluster. This also affects the results of anomaly de-
tection (AUROC and AUPR on labeled datasets), where a slight decrease in
detection quality was measured. The conclusion of this experiment is that it
may be relevant to use more randomized models like the Extended Isolation
Forest or the modified Fair Cut Forest with random step for the task of nov-
elty detection. Novelty detection is not the focus of this thesis or the Fair Cut
Forest algorithm. This modification is just an idea how to make the model
more general and usable in different scenarios.
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Conclusion

The goal of this thesis was to select and implement an extension of the Isolation
Forest that replaces the uniformly random selection of the split points with
an optimization criteria.

The first two chapters introduced the problem of anomaly detection in general
and the methods commonly used in this field. The next chapter focused on
the fundamentals of the Isolation Forest algorithm. The weak spots are dis-
cussed, followed by the description of the Extended Isolation Forest, in which
the splits are not made by a single feature, but by using a separating hyper-
plane – a combination of multiple features. Another extension is presented,
being the Optimized Computational Framework for Isolation Forest (OIF),
which proposes a metric to quantify the quality of the split with the idea that
using splits that maximize this metric could lead to better anomaly detection
performance.

The practical part of the thesis starts with the implementation of the OIF for
which no publicly available implementation has been found. The method is
evaluated and the influence of the hyperparameters, the split guiding metric
and the method for fast search of the metric optimum is discussed. Experi-
ments with combining the use of oblique splits from the Extended Isolation
Forest with the split point guiding metric from the OIF follow. The metric
was adapted to work in multiple dimensions instead of single feature, but this
approach was computationally slow and the results did not show a significant
improvement.

I examined and implemented two other methods, the SCiForest and the Fair
Cut Forest, which work on the same principle, but the split guiding metric
works on one–dimensional data, i.e. the data points projected on the separat-
ing hyperplane. This approach is more computationally efficient and results
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in faster training times. These methods were evaluated along with a standard
Isolation Forest, the OIF and the models from my experiments. Based on the
evaluation and also its theoretical properties, the Fair Cut Forest was selected
for implementation into the H2O–3 machine learning platform.

The newly implemented algorithm was able to outperform existing imple-
mentations from the H2O–3 library in an empirical evaluation on datasets
commonly used to evaluate anomaly detection models. The implementation
was also tested in a novelty detection scenario where it was observed that
this is not the primary domain of the method. Finally, some suggestions were
made on how the algorithm can be further improved in the future in various
ways including speed, effective memory usage, improvements in the prediction
phase and also the novelty detection performance.
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Appendix A
Abbreviations

API Application programming interface

AUPR Area under precision–recall curve

AUROC Area under receiver operating characteristic curve

DBSCAN Density–Based Spatial Clustering of Applications with Noise

EIF Extended Isolation Forest

FCF Fair Cut Forest

HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications
with Noise

HDFS Hadoop Distributed FileSystem

kNN k–Nearest Neighbors

LOF Local Outlier Factor

MOJO Maven Old Java Object

ODDS Outlier Detection DataSets

OIF Optimized computational framework for Isolation Forest

OCSVM One–class support vector machine

PDF Probability density function

SCiForest Isolation Forest with Split–selection Criterion

SQL Structured query language
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A. Abbreviations

SVDD Support Vector Data Description

SVM Support vector machine
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Appendix B
Contents of the attached

repository

h2o-implementation...........source code of H2O FCF implementation
jupyter-notebooks...............jupyter notebooks used for evaluation
measurements...................evaluation measurements in .csv format
prototypes...........................Python prototypes from chapter 4
text................................................... text of the thesis

src..................................LATEX source codes of the thesis
thesis.pdf........................the Diploma thesis in PDF format

readme.txt.............................. repository contents description
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