
ZADÁNÍ DIPLOMOVÉ PRÁCE​

I. OSOBNÍ A STUDIJNÍ ÚDAJE

465862 Osobní číslo:​Martin Jméno:​Vatrt Příjmení:​

Fakulta informačních technologií Fakulta/ústav:​

Zadávající katedra/ústav: Katedra aplikované matematiky

Informatika Studijní program:​

Znalostní inženýrství Specializace:​

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:​

Optimalizace metod pro separaci tH(bb) signálů s využitím strojového učení

Název diplomové práce anglicky:​

Performance Optimisation of tH(bb) Signal and Background Separation Using Machine Learning

Pokyny pro vypracování:​
The particle accelerator at CERN produces a high number of so-called events, describing the collision products and their​
properties. The task is to recognize the events of interest automatically using the techniques of machine learning, and​
possibly deep learning, and thus increase the ratio of correctly identified events. The project is a part of the effort to analyse​
the properties of the Higgs boson. Simulated data are available for tH(bb) production and background reactions.​
Tasks:​
(1) Familiarise yourself with the existing code of the tH(bb) analysis.​
(2) Develop machine learning algorithms to separate signal and background events.​
(3) Implement and apply the algorithms on the provided data.​
(4) Study the performance of the algorithms and compare them to the original analysis performance.​
(5) Determine the feature importance ranking and study the effect of feature reduction on the performance.​
Bonus task: study the uncertainty on the signal and background separation.​

Seznam doporučené literatury:​
 ​

Jméno a pracoviště vedoucí(ho) diplomové práce:​

doc. Dr. André Sopczak katedra softwarového inženýrství FIT

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:​

Termín odevzdání diplomové práce: _____________​Datum zadání diplomové práce: 13.04.2022

Platnost zadání diplomové práce: _____________​

___________________________​___________________________​___________________________​
doc. RNDr. Ing. Marcel Jiřina, Ph.D.​

podpis děkana(ky)​
Ing. Karel Klouda, Ph.D.​

podpis vedoucí(ho) ústavu/katedry​
doc. Dr. André Sopczak​

podpis vedoucí(ho) práce​

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Master’s thesis

Performance Optimisation of tH(bb) Signal
and Background Separation Using Machine
Learning

Bc. Martin Vatrt

Department of Applied Mathematics
Supervisor: doc. Dr. André Sopczak

February 16, 2023

Acknowledgements

I want to thank my supervisor doc. André Sopczak for his kindness and help
whenever it was needed, over the whole scope of this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on February 16, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Martin Vatrt Vatrt. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Vatrt, Martin Vatrt. Performance Optimisation of tH(bb) Signal and Back-
ground Separation Using Machine Learning. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2023.

Abstrakt

Studium Higgsova boson a jeho interakćı s ostatńımi částicemi bylo v po-
sledńıch letech jedńım z hlavńıch témat částicové fyziky. Od jeho objevu v
roce 2012 byla vykonána řada experiment̊u za účelem bližš́ıho porozuměńı
jeho fyzikálńıch vlastnost́ı.

Tato práce se zaměřuje na interakci Higgsova boson s top quarkem, pravděpodobně
nejhmotněǰśı elementárńı částićı Standardńıho modelu částicové fyziky. Jsou
využity machine-learningové algoritmy k odfiltrováńı všech nežádoućıch pro-
ces̊u zaznamenaných detektorem, aby bylo dosaženo vyšš́ı senzitivity ćılového
procesu.

K tomuto účelu je optimalizována řada machine-learningových model̊u pomoćı
r̊uzných optimalizačńıch strategíı. Poté co je nalezen model s nejlepš́ımi kvali-
tami, je provedena řada statistických test̊u pomoćı TRExFitter frameworku.

Středńı hodnota mediánu intenzity signál procesu se zahrnut́ım statistických
nejistot, byla 3.86. Po zahrnut́ı systematických nejistot byla středńı hodnota
mediánu 6.35.

Kĺıčová slova Machine-learning, CERN, Higgs̊uv boson

vii

Abstract

The study of Higgs boson and its interaction with other particles has been one
of the main topics of particles physics in the last years. Since its discovery
in 2012, many experiments have been carried out in order to understand its
physical properties in detail.

This thesis focuses on an interaction of a Higgs boson with a single top quark,
possibly the heaviest elementary particle of the Standard Model of particle
physics. It uses machine-learning algorithms to filter out all unwanted pro-
cesses recorded by detector to get the highest sensitivity of our target process.

For this purpose, multiple machine learning models are optimized with differ-
ent optimization strategies. After the best quality model is obtained, a serie
of statistical tests is performed with the TRExFitter framework.

The expected median value of signal strength obtained in this thesis with
inclusion of statistical uncertainties was 3.89. After the inclusion of system-
atic uncertainties, the resulting expected median value was 6.35.

Keywords Machine-learning, CERN, Higgs boson

viii

Contents

Introduction 1

1 Standard Model of Particle Physics 3
1.1 Higgs boson . 5

2 Experimental and simulated data 7
2.1 Signal and background events 7
2.2 Experiments at LHC . 7
2.3 Monte Carlo event simulations 8

3 tH(bb) process 11
3.1 Event selection . 12
3.2 Weight calculation . 13
3.3 Process yields for the analysis 14
3.4 Features used for the analysis 15

4 Machine-learning 17
4.1 Bias-variance tradeoff . 17
4.2 Decision trees . 19
4.3 Bagging . 19
4.4 Gradient boosting . 20
4.5 XGBoost . 20
4.6 AdaBoost . 22
4.7 Neural network . 22

5 Frameworks 25
5.1 ROOT Framework . 25

5.1.1 Transformation of ROOT files to csv files 25
5.2 TMVA . 26

5.2.1 TMVA workflow . 26

ix

5.3 Optuna . 27
5.4 TRExFitter framework . 27

5.4.1 Job . 28
5.4.2 Samples . 29
5.4.3 Regions . 29
5.4.4 Running TRExFitter 29
5.4.5 Docker . 30

5.5 Python and other libraries . 30

6 Significance 31
6.1 Poisson distribution . 31
6.2 Central limit theorem and its consequences on Poisson distri-

bution . 32
6.3 Meaning of significance and its estimation 33
6.4 Evaluation of the model . 34

7 Systematical uncertainties 35
7.1 Tests for the presence of signals 35
7.2 Systematic uncertainties for tHq(bb) process 35
7.3 Binned profile likelihood . 36

8 Previous and current analyzes 39
8.1 TMVA analysis with the neural network usage 39
8.2 Compound model analysis . 40
8.3 Current analysis . 40

9 Thesis workflow 41

10 Model selection 43
10.1 Dataset preparation . 43
10.2 Training and testing dataset preparation 45
10.3 Hyperparameters optimization with Grid Search 47
10.4 Performance of different models 48

10.4.1 Source of performance differences 50
10.4.2 AUC and Significance correlation 52
10.4.3 Training on large and small dataset 53
10.4.4 Binary versus multiclassifier performance 54

10.5 Hyperparameters optimization with Optuna framework 56
10.5.1 Adaptive learning rate and stopping criteria with XG-

Boost callback functions 56
10.5.2 Initial Optuna run . 57
10.5.3 Optimization with NSGA-II sampler 60

10.6 Neural network optimization with Optuna framework 61
10.7 Optimization summary and the best model selection 62

x

10.8 Feature importance and correlation matrix 64
10.9 Training on a feature subset . 66

11 TRExFitter evaluation without systematic uncertaintities 69
11.1 Creation of root files from pandas dataframe 69
11.2 Running TRExFitter . 70
11.3 Docker usage . 71
11.4 TRExFitter outputs . 72

12 TRExFitter evaluation with systematic uncertainties 77
12.1 Assigning model outputs to systematic ntuples 78
12.2 Script for multiple ntuple assignment 79
12.3 Production of prefit and systematic plots 79
12.4 Workspace creation and fit results 82
12.5 Creation of ranking plot and calculation of expected median of

signal strength . 85

13 Deployment 87
13.1 Deployment of optimized XGBoost and Tensorflow models . . . 88

Conclusion 89

Bibliography 91

A TRExFitter Stacked histograms 93

B Plots of systematic uncertainties 103

C Contents of enclosed CD 107

xi

List of Figures

1.1 Scheme of elementary particles. 4

3.1 Feynman diagram of the tH(bb) process. 12

9.1 Scheme of different thesis phases. 41

10.1 Signal/background reductions and significance plot for a model
trained with Monte-Carlo weights. 44

10.2 Signal/background reductions and significance plot for a model
trained without weights. 45

10.3 AUC differences for Dy and D rand on test set. 50
10.4 XGBoost evaluated on different test sets. 51
10.5 AUC and significance correlation for different models. 52
10.6 AUC differences for model trained on 70% of all samples and model

trained on 4% of all samples. 54
10.7 Comparison of binary and multiclassifier performances. 55
10.8 Significance boxplots of 10 best performing XGBoost models. . . . 63
10.9 Significance plots on 10 different datasets for 2 different XGBoost

models. 63
10.10Significance plots on 10 different test sets for best performing neu-

ral network model. 64
10.11ROC curves for best performing Neural network and XGBoost model. 65
10.12Feature importances of best performing XGBoost model. 65
10.13Boxplot of average gains for 10 best XGBoost performing models. 66
10.14Correlation matrix of 10 most important variables. 67
10.15AUC and significance comparison of two best performing XGBoost

models trained on a subset of variables. 67
10.16Feature importance of a model trained on the subset of features. . 68

11.1 Model prediction distribution before and after the optimal thresh-
old cut. 73

xiii

11.2 Njets CBT5 - distribution before and after the optimal threshold
cut. 74

11.3 chi2 min tophad m ttAll distribution before and after the optimal
threshold cut. 74

11.4 fwdjets pt distribution before and after the optimal threshold cut. 75
11.5 sphericity distribution before and after the optimal threshold cut. 75

12.1 Distribution of machine-learning model output for signal and back-
ground. The signal (dashed line) is normalised to the background. 80

12.2 Four most impactful uncertainties. 81
12.3 Pruning plot. 82
12.4 Correlation matrix of nuisance parameters. 83
12.5 Fit results for all gammas. 84
12.6 Fit results for nuisance parameters. 84
12.7 Signal strength after fit on Asimov dataset. 85
12.8 Ranking plot of nuisance parameters. 86

xiv

List of Tables

3.1 Summary of the cuts applied to define the pre-selection region. . . 13
3.2 Yields, Monte-Carlo samples and dataset id for each process type. 14

10.1 Number of samples for Dy and Drand datasets. 46
10.2 Results of Grid Search optimization. 49
10.3 Average training times of different algorithms for ntrees = 500. . . 50
10.4 Means of training times in s for differently large datasets. 53
10.5 10 best performing models found with Optuna TPE sampler. . . . 58
10.6 Means and standard deviations of parameters for 20 and 100 best

performing models. 58

11.1 Yields of events before and after an optimal threshold cut is applied. 72

12.1 Yields of the processes for systematic study. 81

xv

Introduction

The European Organization for Nuclear Research, better known as CERN [1]
(derived from Conseil Européen pour la Recherche Nucléaire, translated as
European Council for Nuclear Research in French) is one of the biggest scien-
tific workplaces in the world situated on the Franco–Swiss border northwest
of Geneva. It was founded in 1954 for the purpose of answering some of the
most fundamental questions of physics, like what is the universe made of and
how it works.

One of CERN’s most famous facilities is the Large Hadron Collider [2] (LHC),
which is the largest and the highest-energy particle accelerator in the world.
It is built up to 175 meters below the ground and consists of a circular pipe
with a circumference of 26659 meters where protons are accelerated to speeds
close to the speed of light and then collide inside one of the detectors, where
physical data from the collisions are collected.

The LHC’s biggest detector is called ATLAS [3]. It is a general-purpose de-
tector that investigates a wide range of physics, from the search for the Higgs
boson to particles that could make up dark matter.

In 2012 [3], one of the biggest accomplishments of modern physics was made
using ATLAS when a particle with properties corresponding to the Higgs
boson was observed. Since then, further experiments have been done to in-
vestigate the properties of the Higgs boson to see whether it behaves as it is
described in the Standard Model of physics or if the Standard Model needs to
be extended.

This thesis focuses on the production of Higgs boson inside of the tH(bb)
process. It uses machine-learning algorithms to separate this process from
so-called background processes, that are not the subject of this analysis and
which make up unwanted noise in the recorded data.

1

Chapter 1
Standard Model of Particle

Physics

One of the first things we are taught in physics lessons at school is that, ev-
erything around us consists of very tiny particles called atoms, and that every
atom consists of even smaller particles called protons, neutrons and electrons.
Another concept that we learnt about is the presence of fundamental forces
that surround us in our everyday lives: gravity, which attracts everything
around us to the center of the earth and which holds all the planets in our
solar system together; and electromagnetism, which we can experience when
we for example put two magnets together or when we create an electric charge
while combing our hair.

As our physics knowledge started to grow, we learnt that these electromag-
netic forces are involved in much more - that these are the forces, which hold
everything around us together - molecules in solid objects, atoms inside the
molecules and also electrons and protons to form an atom.

This was some of the basic knowledge we obtained from elementary school
or high school. However, in modern physics, it is already well-known that
there are many more elementary particles to bear in mind. All of them are
described in the Standard Model[4] [5] of Particle Physics, which has been
developed over the second half of 20th century through the collaboration and
hard work of a large number of scientists from different parts of the world.
Main components of this model are summarized in figure 1.1.

3

1. Standard Model of Particle Physics

Figure 1.1: Scheme of elementary particles.

In the Standard Model of Particle Physics, there are two groups of elementary
particles: quarks and leptons. Each group consists of six particles, which are
divided in pairs into three categories (also called generations), based on their
weight. The first generation consists of the lightest and the most stable par-
ticles which make up all of the physical world around us. The second and the
third generation consist of particles that are heavier and less stable. These
particles decay very quickly into more stable ones.

Quarks in the first generation are called Up quarks and Down quarks. These
quarks are combined into protons and neutrons with so called strong nuclear
forces and make up most of the nucleus weight.

Quarks of the second generation are called Charm quark and Strange quark.
These particles can be found in hadrons, which are subatomic particles made
of quarks.

Quarks of the third generation are called Top quark and Bottom quark. Top
quark is the most massive of elementary particles and also stays in the center

4

1.1. Higgs boson

of our analysis.

Leptons are particles which do not undergo strong nuclear force and there-
fore exist as single entities. First generation leptons are electrons, which have
negative electromagnetic charge and make up an electron shell of atom. The
other particle from the first generation is called a neutrino, which, as its name
suggests, is electrically neutral.

Leptons of the second generation are called Muon and Muon neutrino. Lep-
tons of the third generation are called Tauon and Tauon neutrino.

The Standard Model also describes two more elementary forces, besides well-
known gravity and electromagnetic forces - weak and strong nuclear force.
The strong nuclear is very important, because not only that it holds quarks
together to form protons and neutrons, but it also bounds protons and neu-
trons to form atoms nucleus. On the other hand, weak force is involved in
many radioactive effects and also nuclear fusion, which takes place in the Sun.

Another important knowledge is that the weak force, strong and electromag-
netic forces result from an exchange of force-carrying particles called bosons.
These are considered as another group of elementary particles.

The weak nucleus force is carried by W and Z bosons, the strong nucleus
power is carried by gluons and the electromagnetic force is carried by photons.

The forth fundamental force, gravity, should be carried by gravitons, how-
ever this particle has not been found yet. For particle physicists, it is still a
remaining challenge to mathematically fit gravity into the Standard Model.

1.1 Higgs boson

The Higgs boson [6] is a particle form of the Higgs field, which is a fundamental
field from which other elementary particles gain mass. The Higgs field exists
in every point of the entire universe and every particle interacts with the Higgs
field differently. The stronger is the interaction of a particle with the Higgs
field, the heavier the particle is. For example, photon does not interact with
Higgs boson at all and therefore has no mass, while the heaviest elementary
particle, the Top quark, has a strong interaction with the Higgs field. Because
of that, physicists believe that by studying its interaction with the Top quark,
more can be learnt about the properties of the Higgs boson.

5

Chapter 2
Experimental and simulated

data

2.1 Signal and background events

At CERN, any collision of two protons, which is either simulated or detected
in a real experiment, is called event. From machine learning perspective, one
event just simply corresponds to one row in a dataframe.

Among large number of different processes, there are two main categories
we separate them into: signal and background processes. Signals are the pro-
cesses we are interested in and which we want to separate from background
processes. Backgrounds are processes that we want to reduce as much as pos-
sible. In other words, signals correspond to positive class and backgrounds to
negative class in our analysis. Typically, the number of signal events is much
smaller than the number of background events.

There can be also multiple processes considered as signals/backgrounds. In
the case of this thesis, there is only one signal process called tH(bb) (abbrevi-
ated to tH) and multiple background processes.

2.2 Experiments at LHC

At the LHC, experiments are conducted in such a way, that two beams of
protons are accelerated to the speeds close to the speed of light, both in the
opposite directions. When a sufficient speed is achieved, these protons collide
at an interaction point situated in the ATLAS detector.

7

2. Experimental and simulated data

The beams in fact are not one fluent line of protons, but instead are sepa-
rated into small bunches of protons, which collide every every 25 ns. Number
of proton-proton interactions per one bunch crossing is about 50.

When protons collide, they are destroyed and many new particles and antipar-
ticles are created. There is a large number of particles that can be produced
after the proton collision and the products can be even heavier than the orig-
inal protons. Nonetheless, as was mentioned in the previous section, these
newly created heavy particles decay very quickly into lighter particles and
eventually into conventional stable particles, that can be typically observed in
a form of jets, which are a narrow cone of hadrons and other particles (hadrons
are compounds of two or more quarks held together by a strong force 1). There
are also certain particles, that do not dissolve into the stable state before they
are recorded, such as muons and antimuons.

These decay products are then recorded in the detector, followed by a so-
called event reconstruction, which aims to reconstruct the whole sequence of
created and then dissolved particles since the protons collided. This is a very
difficult task, since after the collision, very high energetic particle is almost im-
mediately dissolved into approximately 15 heavy particles, that are eventually
decomposed into about 5000 charged particles visible by a detector.

2.3 Monte Carlo event simulations

For a given experiment at the LHC, there is typically an expected outcome
based on Standard Model predictions. For example, we can estimate how
many proton-proton collisions occur and what will be the frequencies (yields)
of different processes.

So before every experiment, there is a Monte Carlo simulation based on the
Standard Model, which simulates the whole experiment and shows, what out-
come we should expect from an experiment with given parameters. This
includes all the properties of final products that are recorded in detector, fre-
quencies of different signal/background types etc.

After the experiment is performed, we can compare the results we obtained
with results that were predicted by the simulation. For example, as we re-
construct our events and find out what were the frequencies of different sig-
nal/background types, we can make a comparison with what frequencies were
predicted by Standard Model. If there is a big disagreement between the
Standard Model and our results from the experiment, we can assume that the
Standard Model does not describe the process correctly and certain modifica-
tions needs to be done. Such discovered disagreements then attribute to what

8

2.3. Monte Carlo event simulations

is called physics Beyond the Standard Model.

It is also important to note, that because we are working with a simulator,
we can of course generate more samples for the event we are interested in.
This can be useful for the machine-learning model, which typically needs to
work with as many samples as possible in order to have good qualities. To
compensate the fact, that we generated more events than the Standard Model
predicts, we take advantage of the so called event-weighting, where we evalu-
ate the performance of our model on weighted samples.

This will be also the case in our analysis. Because the expected number of our
signal events is only 73.2, this would not be sufficient amount to train a good
machine-learning model. For tt+b jets process, which correspond to produc-
tion of top quark-antiquark pair, that are eventually dissolved into so-called
b-tagged jets (jets originating from bottom quarks), the expected number of
events is 59696, which is about 815 times more than for signal samples. More
details on the event weighting are explained in section 3.2.

9

Chapter 3
tH(bb) process

Since the top quark is the heaviest elementary particle, almost 50% heavier
than Higgs bosson, it is expected to have a strong interaction with the Higgs
field. This interaction with the Higgs boson is also called Yukawa coupling
and has been one of the main research subjects for physicists in recent years.

One of the biggest accomplishments in the Higgs boson research since the
discovery of the Higgs boson was an observation of the top quark pair cou-
pling with the Higgs boson - the ttH process. One of the reasons why this
discovery was so significant is the fact, that this process is very difficult to be
observed.

In fact, the ttH coupling with a Higgs boson is very rare and accounts only
for about 1% of all Higgs productions. Considering that the Higgs boson pro-
duction itself is already very rare and was observed just recently in 2012, it is
easy to imagine, how difficult it is to observe this process.

However, the double top pair is not the only production mode of Higgs boson
associated with top quark. There is also a process, when a single top quark
interacts with the Higgs boson - the tH process.

Beside the presence of top quark and the Higgs boson, the tH event topol-
ogy is characterised also by an occurrence of either the down or up quark
(called spectator quark), and an extra bottom quark [7]. Feynman diagrams
of this process are shown in figure 3.1. Note that the x-axis of this diagram
corresponds to time and the y-axis to space.

11

3. tH(bb) process

Figure 3.1: Feynman diagram of the tH(bb) process.

There are different channels of the tH production depending on the Higgs
boson decay products. Each channel is studied by different scientific groups.

For example, if the Higgs boson decays into bosons or heavy leptons, which
afterward decay into light leptons, it is the case of the tH multilepton channel,
also abbreviated to tH(ML) [7].

If the Higgs boson decays into the pair of bottom quark-antiquark (H → bb),
we talk about the tH(bb) process, which is the main focus of this analysis.

3.1 Event selection

Because in the real experiment there are typically billions of recorded events
and our signal process makes up only a tiny portion of them, it is necessary
to filter out events, which have a very low probability to be a signal.

For this purpose, multiple selection criteria are used. They are typically ap-
plied in a different phase of ntuple production, however, each one of them
should be applied before the machine-learning analysis.

Table 3.1 lists the selection criteria used in the tH(bb) analysis.

12

3.2. Weight calculation

Pre-selection cuts
Exactly 1 tight (PLImprovedVTight) trigger-matched lepton with pT > 27 GeV
No reconstructed hadronic τ

At least 3 b-tagged jets (DL1r tagger at 70% W.P.)
Emiss

T > 25 GeV
Veto for events with ≥ 5 jets and ≥ 4 b-tagged jets (a.k.a., ttHbb veto)

Table 3.1: Summary of the cuts applied to define the pre-selection region.

The first condition means that there needs to be at least one lepton recorded
with a high quality. It is based on the fact, that the top quark always dis-
solves into W -boson, which then dissolves into neutrino and lepton, that can
be recorded in the detector.

The second condition puts a veto on events, that are subject of research for dif-
ferent scientific group that investigates the tH multilepton process (tH(ML)),
so there is no overlap between both analyses.

The third condition means that there needs to be at least 3 recorded jets
coming from bottom quark dissolution. It is because the top quark is dis-
solved into a bottom quark, from which b-tagged jets are created.

Emiss
T is a minimum transverse energy expected for the process.

Similarly to the second condition, the fifth condition is used to ensure or-
thogonality with the ttH(bb) analysis, which is investigated by a different
scientific group.

3.2 Weight calculation

Because the data we use for training are generated by a simulation, they
do not reflect the proportions of signal and background events in the actual
experiment. In reality, there is an expected number of events for each sig-
nal/background type. These expected values can be very different for each
process, because some interactions have a high probability to take place and
some very low. For this reason, event weights are used for evaluation of the
model.

13

3. tH(bb) process

For event weight calculation, following formula is applied:

WE = LXsec
∏

wi

wT
(3.1)

The meaning of the used variables is following:

• L (luminosity) - number of colliding protons.

• Xsec (cross section) - theoretical probability of protons collision.

• w1 ... w5 - correspond to parameters. weight bTagSF DL1r Continuous,
weight pileup, weight jvt, weight forwardjvt, weight leptonSF. These are
additional weight parameters which need to be taken into account.

• wT (totalEventsWeighted) - normalization factor derived from total num-
ber of simulated events in the ntuple.

3.3 Process yields for the analysis

Table 3.2 summarizes all processes used in the analysis - number of samples
before the preselection, number of samples after the preselection, yields and
ntuple ID for each process:

Type Dataset id MC samples Yields
tH 346676 42956 73.2

tt+b jets 410470 495366 59696.8
tt+c jets 410470 266707 33320.7

tt+light jets 410470 848249 105452.9
ttH 346343 1702043 1586.6
ttZ 410156 140704 840.6
ttW 410155 91813 259.0
tZq 410560 18855 169.2
tWZ 412119 2048 2.5

single t+W 410647 36948 5803.4
single t+t 410644 73972 3197.5
single t+s 410645 9668 257.7

WZ 3641XX 82141 4479.9
VV 36425X 9266 283.1

non-prompt – 275569 5084.9

Table 3.2: Yields, Monte-Carlo samples and dataset id for each process type.

14

3.4. Features used for the analysis

The majority of background is made of tt production. This makes sense, be-
cause the top quark in the tt process has exactly the same decay products as
the top quark in the tH process, so they both pass the selection criteria, that
are based on top quark decay products.

It is also obvious, how difficult it is to identify the tH process, as it makes up
only a small portion of the top quark production. And even if we ignore the
other top quark productions, there would still be different types of processes
that can be interchanged with the tH process.

That is why the machine-learning algorithms are used for further background
filtration.

3.4 Features used for the analysis

The list below shows, which variables are used for training and evaluation of
machine-learning model. Each variable name correspond to a name in the
root file, from which it is read:

• njets CBT5

• nnonbjets

• sphericity

• aplanarity

• nonbjets eta

• rapgap top fwdjet

• fwdjets pt

• chi2 min DeltaEta tH

• tagnonb eta

• tagnonb topb m

• nfwdjets

• chi2 min tophad m ttAll

• rapgap maxptjet

• inv3jets

• nbjets

15

3. tH(bb) process

• chi2 min toplep pt

• nonbjets pt

• chi2 min deltaRq1q2

• chi2 min Whad m ttAll

• leptons charge

• foxWolfram 2 momentum

• chi2 min Imvmass tH

• chi2 min bbnonbjet m

• chi2 min higgs m

16

Chapter 4
Machine-learning

4.1 Bias-variance tradeoff

In machine-learning, there is a famous mathematical formulation of expected
error on test set which is called ”bias-variance tradeoff” [8][9]. This formula
applies for any model and helps us better understand what is the source of
inaccuracies we get on our test data.

Let us assume that we use mean of squares for error calculation. Then the
formula is following [10]:

Ex,y,D

[
(hD(x) − y)2

]
︸ ︷︷ ︸

Expected Test Error

= Variance + Noise + Bias2

Variance = Ex,D

[(
hD(x) − h̄(x)

)2
]

Noise = Ex,y

[
(ȳ(x) − y)2

]

Bias2 = Ex

[(
h̄(x) − ȳ(x)

)2
]

hD(x) - output of our machine-learning algorithm h trained on dataset D

h̄ - expected classifier. This is a theoretical model whose ouput and expected
output of our machine-learning algirthm trained on all possible datasets drawn
from a distribution of our input variables. Even though this model assumes
averaging infinitely many classifiers across infinitely many training sets, it
can be estimated by taking large number of instances of our machine-learning

17

4. Machine-learning

model and training each of them on different subset of a training dataset, that
should be large enough to represent the real distribution input variables well.

ȳ - expected value of y. Since the expected value is computed from the real
distribution of variables, in this case the variables from our training dataset,
we typically do not know what is the value of ȳ. This can be however also
estimated by averaging outputs for each datapoint in a dataset which is large
and representative enough to reflect the real distribution of input data.

So we can see, that we can decompose the error on training into 3 compo-
nents. First component is called bias, second is called variance and the third
one is called noise.

Bias is an inherent error, which would be present even with we had infi-
nite number of training data. Bias reflects how flexible the model is and how
complex decision regions it is able to create.

Variance reflects how much the classifier changes for different training datatets.
In other words, it shows how sensitive the model is to changes in training
dataset.

Noise reperesents the deviations in training data from expected values. Be-
cause typically we are not able to take into account everyting, that has an
impact on target variable, this error is present regardless of how good our
machine-learning model.

So the main conclusion of this section is, that the error on our training data
can always have a different cause. When a model has high variance, it typically
learns the training points too precisely, so it has low generalization ability and
therefore a high test data error. This problem is called overfitting. When a
model has a high bias, it is not robust enough to properly learn all the impor-
tant information that is in data and make good predictions. This problem is
called underfitting.

The relationship between bias and variance is, that when we try to decrease
bias the variance increases and vice versa. For this reason, in most of the
machine-learning tasks we are trying to find the best trade-off between bias
and variance. So we want to get a model, which has a sufficient complexity to
learn information from data, but also which does not have stick to the training
data too much and doesn’t lose an ability to generalize. For this goal, there
are two different approaches described in the following sections: bagging and
boosting.

18

4.2. Decision trees

4.2 Decision trees

Decision tree is very simple machine-learning algorithm. It is basically a se-
quence of binary conditions, based on which data points are classified.

Each branch splits on a certain feature and certain threshold which, that
are determined during training. Because finding the best tree minimizing
train error is NP-complete problem, greedy algorithms are most often used
for training instead. One of the most popular, ID3 algorithm, is based on
choosing the feature and the threshold, which after splitting minimize the en-
tropy of target values in resulting sets (for classification).

Decision tree is an example of a model with high variance problem. Train-
ing on two different datasets typically gives two totally different trees. For
this reason, decision tree is more often used as base algorithm for ensemble
methods which are described in next sections.

4.3 Bagging

Bagging is an example of ensemble method, which uses certain number of
models with high variance and tries to combine them to create a low variance
model. As a base model, decision trees are chosen most often, because as it
was mentioned in the previous section, it is a typical example of a model with
very high variance. In this case we speak about model called random forest.

In the formula 4.1 we see that in order to reduce variance, we want our model
to be as close to the average model as possible. Because average model re-
turns expected output of the same classifier trained on infinitely many different
training samples, we can simulate this by creating large number of instances
of the same model (in our case trees) and train each one of them on a different
subset of our training data.

In the datasets creation, there are two randomization techniques used: first
is randomly choosing samples from original dataset with replacement (boot-
strapping) and the second is randomly selecting certain number of features
for each tree. Most common number of features for each tree is

√
2.

When random forest is succesfully trained, we make prediction of the ran-
dom forest simply by averaging outputs of all trees.

19

4. Machine-learning

4.4 Gradient boosting

In gradient boosting, the effort is to make a strong learner from combination
of weak learners. Weak learner is a model whose predictions are a little bit
better than random guessing. This means the task is opposite than in the
case of bagging - we have a very biased model from which we want to build a
model whose bias is very small.

4.5 XGBoost

In XGBoost, the goal is to minimize error on train set with a serie of CART
trees. In each step, new tree ft is constructed to improve prediction previous
prediction ŷ

(t−1)
i and minimize the loss over all training samples for loss func-

tion l. In addition to that, regularization term depending on the structure of
tree ft is added:

obj(t) =
n∑

i=1
l(yi, ŷ

(t−1)
i + ft(xi)) + ω(ft) + constant

In order to get formula suitable for optimization, Taylor expansion of the
loss function up to the second order is used:

obj(t) =
n∑

i=1
[l(yi, ŷ

(t−1)
i) + gift(xi) + 1

2hif
2
t (xi)] + ω(ft) + constant

where gi and hi are:

gi = ∂
ŷ

(t−1)
i

l(yi, ŷ
(t−1)
i)

hi = ∂2
ŷ

(t−1)
i

l(yi, ŷ
(t−1)
i)

Since first and third terms in formula are constants, they do not change a
location of the minimum of the formula, so they can be removed. Then the
objective function has following form:

n∑
i=1

[gift(xi) + 1
2hif

2
t (xi)] + ω(ft)

20

4.5. XGBoost

Since ft is a tree, it can be written in following form (q(x) is a function
assigning a leaf index to data point x):

ft(x) = wq(x)

In XGBoost, regularization term has following form (T is the number of leaves
in a tree):

ω(f) = γT + 1
2λ

T∑
j=1

w2
j

With a new definitions of a tree ft and regularization terms, the objective
can be reformulated as:

obj(t) ≈
n∑

i=1
[giwq(xi) + 1

2hiw
2
q(xi)] + γT + 1

2λ
T∑

j=1
w2

j

=
T∑

j=1
[(

∑
i∈Ij

gi)wj + 1
2(

∑
i∈Ij

hi + λ)w2
j] + γT

where Ij = {i|q(xi) = j} is the set of indices of data points assigned to
the j-th leaf.

If we define Gj = ∑
i∈Ij

gi and Hj = ∑
i∈Ij

hi, then formula (ref) will have
following compressed form:

obj(t) =
T∑

j=1
[Gjwj + 1

2(Hj + λ)w2
j] + γT

To minimize this formula, we need to find an optimal value for each wj in
the sum. This can be done for each addend independently in following way:

w∗
j = − Gj

Hj + λ

Now we know, how to setup the weights of a tree, so the loss is reduced
the most. Remaining task is to find an optimal leaf index for each datapoint.

Theoretically, we could evaluate all possible splits and see, for which one

21

4. Machine-learning

we had the highest loss reduction. This, however, is very computationally
expensive. Instead, the tree is built from the lowest level, where each split is
evaluated with formula(ref) with follwing formula:

Gain = 1
2

[
G2

L

HL + λ
+ G2

R

HR + λ
− (GL + GR)2

HL + HR + λ

]
− γ

First component of the formula is a score of the left leaf, second one is a
score on the right leaf and the third one is a score on current leaf. γ is hyper-
parameter, which is used for regularization. The higher this parameter is, the
more conservative is the algorithm.

4.6 AdaBoost

In this thesis, two boosting algorithms from scikit-learn library [11] are used
- AdaBoost [12] and GradientBoostingClassifier, which implementation is in-
detail described in [?].

AdaBoost is based on iterative reweighing of training samples based on the
previous prediction weak classifier, which is typically a decission tree.

At the beginning of the algorithm, weight of each training sample is set to
1
N , where N is a total number of samples. Then a decision tree is trained on
these weighted samples, after which it assigns a prediction to each one. Then
the weights of these samples are reweighed - if they were incorrectly classified,
their weight is increased, otherwise their weight is reduced. This procedure
continues, until the stopping criteria is met. The final prediction of a trained
is then made by the weighted sum of all weak learners.

4.7 Neural network

Neural networks [13] is a very large category of machine-learning models, that
can be used for many different purposes, from image classification, to music
generation. For classification of tabular data, multi-layer perceptron is one of
the most popular models.

The main entity of multi-layer perceptron is called artificial neuron. It typ-
ically has multiple number of inputs xi with associated weight wi, and one
output. Formula for output of a neuron is:

out = f(
∑

(wixi) + w0)

22

4.7. Neural network

f of is called an activation function. The most commong choices of acti-
vation function are sigmoid, tanh and relu.

Neurons are organized into layers. MLP has 3 types of layers - input layer,
hidden layer/s and output layer. Input layer accepts input features and pass
them into hidden layers. Final outputs are then obtained from output layer.
Neurons between each layers are fully connected - that means that the output
of each neuron from previous layer serves as an input for neurons in next layers.

Neural networks use specific training procedure called backpropagation. When-
ever a set of training samples are evaluated and loss function computed, then
the gradient for each weight is computed from output layer backwards to in-
put layer with the usage of chain rule, which makes the gradient computation
very easy.

23

Chapter 5
Frameworks

5.1 ROOT Framework

ROOT [14] is a dataprocessing framework created at CERN for the purpose
of high-energy physics research. It is daily used by scientists from all over
the world for discoveries which may help us understand the most fundamental
principles of the nature.

In ROOT, data are stored in binary compressed format called ROOT file,
which is also efficient for parallel applications. ROOT also provides many sta-
tistical and mathematical tools for data analysis. It also has its own machine-
learning framework called TMVA, which is described in the next section.

5.1.1 Transformation of ROOT files to csv files

Even though ROOT provides many useful tools for data analysis, it can not
be used together with some other machine-learning libraries, like sci-kit learn
or Optuna, which might be for certain tasks more useful. To be able to an-
alyze data with both ROOT and other machine-learning frameworks, it was
necessary to find a way how to convert ROOT files to csv format.

The basic entity for data storing in ROOT is called tree, which is basically a
dataset stored in a ROOT file. Each tree contains structures called branches,
which correspond to the column of a dataset. In one ROOT file, there can
be multiple trees and also multiple directories where trees are stored, so it
is always necessary to access the right tree before we start working with it.
Functions for opening root files and accessing trees are: TFile::Open and
TFile::Get).

After we access the tree it is necessary to load data from it so we can then
store it in a csv file. To access data in a tree, we first need create an array of

25

5. Frameworks

variables, where each variable will be linked to each branch. Also each variable
data type need to correspond to branch data type. Some branches can also
contain vectors instead of single number per entry, so for these branches, we
need to create an array of vectors. Finally, when we know which branches we
want read from and create variables of the correct type, we link each branch
to the corresponding variable with TTree::SetBranchAddress.

After linking variables with branches, we can access data from each row by
tree->GetEntry(i). This function loads data from entry i and stores them
in variables we defined in previous step. In this way, we can loop over the
whole dataset and save the values from the tree into a csv file.

5.2 TMVA

TMVA (Toolkit for Multivariate Data Analysis) [15] is a framework built in
ROOT created for data preprocessing and machine-learning tasks. It offers
large variaty of machine-learning algorithms for both classification and regres-
sion, like decision trees/forests, SVM, neural networks and much more. Beside
these build-in methods, it is also able to work with Keras neural network mod-
els.

TMVA also provides many algorithms for transformation of input data. Beside
the standard ones, like PCA and normalisation, there are also transformations
that are not so common, like Uniformization and Gaussination. Those trans-
formations are described below.

After finishing the analysis, TMVA also provides many graphical outputs,
which include ROC curve of the classificator, correlation matrix of the input
variables, distribution of data after transformations and more.

Since the work my thesis is based on uses TMVA for data analysis, my first
task was understand how TMVA in the provided code works and how it could
be improved for better classification performance.

5.2.1 TMVA workflow

In TMVA, first a TMVA::Factory object is created, which defines the name of
our analysis, output file and what type of analysis we want to do.

The next we define which variables we want to work with. In the provided
code, this task was done by first creating DataLoader object, where we first
defined train and test trees, which were previously loaded from root files. Then
we define all the variables we want use with AddVariable method. Since a
single tree may contain multiple variables which are not useful for the analysis,

26

5.3. Optuna

this step in necessary.

After this, test and train trees are defined. With DataLoader object created in
the previous step, this can be easily done with PrepareTrainingAndTestTree.

The next step is to book methods which we want to use for the analysis.
This is done with facory. In BookMethod method we define what model we
want to use for the analysis and what data we want to work with. We can
also define which transformations we want to apply for the data.

The final step is to train, test and evaluate all the booked methods. This is sim-
ply done by methods factory.TrainAllMethods, factory.TestAllMethods
and factory.EvaluateAllMethods.

The next section gives a detailed description of most important functions
which were used in the work.

5.3 Optuna

For the purpose of finding hyperparameters of neural networks, framework
called Optuna citeoptuna was used. Optuna is an open source optimization
tool which can be used for any kind of parameters for most of machine-learning
models - from logistic regression to complicated ensemle models. In order to
do so, it uses the following algorithms for hyperparameters sampling:

• TPE sampler - bayesian optimization based on kernel fitting

• NSGA - multiobjective evolutionary algorithm

• CMA-ES - meta-heuristics algorithm for continuous space

• PartialFixedSampler

5.4 TRExFitter framework

TRExFitter is a plotting framework widely used in ATLAS analyses. Its
main feature is a stacked histogram, which provide clear overview of back-
ground composition in a given experiment with associated uncertaintity for
each bin. Another helpful functionality is a calculation of the number of ex-
pected events for each signal/background type based on a given preselection
criteria and per-event weight formula. Its input file format is a root ntuple.

Futhermore, it allows to calculate the significancefor a given signal and back-
ground set based on the machine-learning model output distribution.

27

5. Frameworks

It also calculates the expected uncertaintities of the measurement with re-
spect to the Standard Model expectation.

The TRExFitter script is organized into sections parts:

• Job

• Fit

• Limit

• Sample

• Region

• Systematic

• Norm factor

Job, Fit, Sample and Region sections are mandatory Trex-fitter run, while
systematic and Norm Factor sections are optional.

In the following chapters each section and its most important parameters
are explained. The first parameter is always the name of the block.

5.4.1 Job

In the Job block, parameters for the whole TRExFitter run are defined.

Most important parameters:

• InputFolder: location of the folder with root files

• NtupleName: name of the tree to read from a root file

• ReplacementFile: name and location of the replacement file. Replace-
ment file contatins list of placeholders, which can be used inside certain
config file parameters (for example in Selection parameter) and which
are evaluated during the run of the script based on the replacement file
definition. Placeholders always start with XXX

• Selection: basic selection criteria used for every event

• MCweight: per-event weight formula

• BlindingThreshold: maximum signal/background ratio for which real
experiment data points are displayed. This ratio applies for each bin. If
this value is excedeed, hashed grey area over whole bin is displayed.

28

5.4. TRExFitter framework

5.4.2 Samples

This section defines, which root files should be loaded into the TRExFitter.
This section typically contains multiple blocks, each starting with ”Sample”
parameter, where each block represents one data file and how it should be used.

Parameters:

• Type: defines what kind of data block defines. Most typical values are
SIGNAL, BACKGROUND and DATA for signal, background and real
experiment data.

• Title: title shown in the plots for data loaded in current block.

• NtuplePaths: specific path for root file

• NtupleFiles: names of root files to be loaded. For one block, multiple
root files can be loaded.

• Selection: additional selection criteria for loaded data

5.4.3 Regions

Each block of this section defines one final plot.

Parameters:

• Variable: name of the feature to be plotted. This parameter corresponds
to the name of a branch in a root file. Range and number of bins is also
defined in this parameter.

• Selection: additional event selection criteria. If we want to apply model
output as threshold for events, it is typically used here.

• LogScale: boolean value determining if the Y axis should be logarithmi-
cally scaled

5.4.4 Running TRExFitter

The format or TRExFitter running command is following:

trex-fitter <action(s)> <config file> <options>

• action - sequence of actions which should be executed. For the purpose
of this thesis, only sequence ”nd” was used, where ”n” stands for reading
input root files and ”d” stands for drawing pre-fit plots.

• config file - name of the config to be used

• options - aditional options for plotting, can be left blank

29

5. Frameworks

5.4.5 Docker

For easier setup, TRExFitter was not provided in a form of source files for
compilation, but is available as a docker image in Docker registry. The advan-
tage of this implementation is that it is not needed to install all TRExFitter
dependencies and spend time with compilation, instead it can be easily run
as standalon container with all dependencies already installed.

For obtaining the docker image, it was necessary to login into into the repos-
itory with docker login command and than pull image with docker pull com-
mand. Then I ran the image with docker run command.

5.5 Python and other libraries

The whole machine-learning analysis was done in a Jupyter notebook envi-
ronment with standard machine-learning libraries, like numpy, scipy, pandas,
sci-kit-learn, etc. For the work with neural networks, the TensorFlow 2 library
was used. For the XGBoost library, the last stable release was used over the
whole scope of the thesis.

Deployment of the model into the tHbbskimmer framework was done in C++
language. The whole module was installed with CMake. For the loading and
evaluation of trained models, XGBoost and TensorFlow C APIs were used.
For easier use of TensorFlow C API, the CppFlow wrapper was used. The
whole extension of the framework was carried out with the usage of the Git
version control system.

30

Chapter 6
Significance

Significance is an evaluation metric specific to high energy physics. It is based
on Gaussian approximation of Poisson distribution and is closely related to
statistical proving of signal presence. The higher our significance is, the more
likely we prove a signal presence in the statistical tests, that come as a next
steps of our analysis.

6.1 Poisson distribution

Poisson distribution is a mathematical model, which describes the probability
of number of k occurencies for event with given frequency µ. Real life example
of Poisson model usage could be the calculation of probability, that we say
”Hello” k times during the day, if we know that we typically say ”Hello” with
frequency µ.

Formula of Poisson distribution is:

Pk = µk

k! e−µ

Poisson model is one of the most important probability models for this particle
physics, because it can describe many types of physical quantities. It can for
example describe the number of produced particles from certain interactions,
frequency of energy ranges of detected particles etc.

It is also important to note that the sum of independent Poisson distribu-
tions with parameters µ1, µ2, ...µn also has Poisson distribution with parame-
ter µ = ∑

i µi.

31

6. Significance

6.2 Central limit theorem and its consequences on
Poisson distribution

Let X1, X2, ... Xn be sequence of independent and identically distributed
(i.i.d.) random variables with finite expected value µ and finite variance σ2 >
0. Let’s also put Sn = ∑

i = Xi, then for n → ∞:

Sn − nµ√
nσ2

∼ G(0, 1)

where G(0,1) is a Gaussian distribution with mean equal to 0 and variance
equal to 1 (also called standard normal distribution).

For the mean and variance of lineary transformed random variable Z with
finite expected value, following rules apply:

E(aX + b) = aE(X) + b

var(aX + b) = a2var(X)

This means that for n high enough, we can approximate Sn in following way:

Sn ∼
√

nσ2G(0, 1) + nµ ∼ G(nµ, nσ2)

In other words, sum of n i.i.d. random variables with finite mean µ and
finite variance σ can be approximated with Gaussian distribution with mean
nµ and variance nσ2 (for sufficiently large n).

We already know, that Poisson distribution with given parameter µ can be
understood as sum of Poisson distributions. It can be also considered as a sum
of Poisson distributions with parameter µi = 1 for every i. This means that
for any natural number µ, we can approximate the Poisson P (µ) distribution
with Gaussian distribution G(µ, µ). This simplification will be very useful for
significance calculation in the next section.

In practice, this convergence is obvious even for quite small cases of n. Even
for n=5, the Poisson distribution already has a shape similar to Gaussian dis-
tribution. In the coppies of n = 100, Poisson distribution basically copies the
graph of Gaussian density function.

32

6.3. Meaning of significance and its estimation

6.3 Meaning of significance and its estimation

In high energy physics, the standard methodology of proving new discoveries
is through hypothesis testing. In principle, we test if the hypothesis H0sb of
signal presence in our samples is more relevant than hypothesis H0b of back-
ground only scenario. This means we compare two Poisson models - one with
parameter µB (background only distribution) and the other with µS+B (signal
+ background distribution).

The comparison of models is done with the usage of p-value of an observed
quantity no - if the probability of this observation under H0sb is more likely
than in the case H0b hypothesis, we incline more to the hypothesis of signal
presence.

This basically means, that when we apply the threshold of our machine-
learning model and get number of signal and background events that are
based on the Standard Model expectation, we want to have the composition
of signal and background events such that we reject H0b hypothesis on suffi-
ciently high significance level.

The standard units for significance are percents. However in practice, signifi-
cance is often measured as ”number of standard deviations σs”. This originate
from the property of normal distribution, that distance of a given number of
standard deviations from the mean is approximately equivalent to certain con-
fidence interval for significance α.

We have already shown, that the Poisson distribution P (µB), which describes
the background events, can approximated with Gaussian distribution G(µB, µB).
If we consider the signal events to be the main source of deviation from the
expected value, we can calculate the significance with very simple formula:

σ = s√
b

where s is number of signal events and b is number of background events (un-
derstood as µB - expected number of background events according to Standard
model) after the threshold cut is performed.

Naturally, the distance from the mean value using standard deviation gives
an estimation of significance for two-tailed test, even though in our case we
would be more interested in significance level of one-tailed test for maximum
possible event number, because the number of signal events in our samples is
always a positive value. This however is not a big complication, because in
our case the critical values of one-tailed tests for maximum values are always
less than critical values of two-tailed test, so the actual significance level we

33

6. Significance

estimate is actually higher for one-tailed test, which is always the better case,
than if our estimate would be too optimistic.

6.4 Evaluation of the model

After training the model on a training set, the task was to find an optimal
threshold on which we would get the highest significance and at the same had
a sufficient number of samples.

This was done by gradually reducing the number of samples based on model
threshold thr. For each threshold thr, only samples greater than thr were
considered. This was performed for the full range of thresholds from (0.0)
to (1.0), with a step size of 0.005. On each threshold, the significance was
calculated using s/

√
b formula.

After the significance was calculated on the whole range, the highest value
was used for comparison with other models.

To avoid statistical fluctuations, only the values of significance that was cal-
culated on more than 1000 samples were considered.

34

Chapter 7
Systematical uncertainties

7.1 Tests for the presence of signals

If we want to test the presence of a signal in our samples[16], we typically
construct two Poisson models - one with parameter λb and the other with
parameter λb + λs, where λb is expected background frequency and λs is
signal frequency. Then for an observed value q, we calculate the p-value pb

of this observation for null hypothesis H0b, that q comes from distribution
P(λb). In the same way we construct the hypothesis H0sb for P(λs + λb) and
calculate the p-value psb. If pb is small enough that we can reject H0b on
sufficiently large confidence level α1 and at the same time we do not reject
the H0sb hypothesis for predefined α2, we assume that signal is present in our
sample. The choice of α1 and α2 depends on experiment, for example for the
Higgs boson discovery, 5σ was chosen as sufficient significance level.

7.2 Systematic uncertainties for tHq(bb) process

Beside the statistical uncertaintity, which arises from the imperfect measure-
ments of physical quantity and which is present in all physical experiments, in
LHC experiments there are usually other sources of uncertaintity which need
to be taken into account called systematic uncertaintities. These are related
to the reconstruction of physics objects in the detector, the techniques used
to determine the expected size of the backgrounds and modelling of the signal
and background process [7].

In the case of our experiment, the sources of uncertaintity are for example:

• Luminosity uncertainty - relative uncertantity on luminosity for 2015-
2018 experiments is estimated to be 1.7%. This uncertantity applies for
all processes modelled by Monte Carlo simulation.

35

7. Systematical uncertainties

• Electron and muon efficiency uncertainty - these uncertaintities arise
from the reconstruction, identification and isolation efficiencies of the
detector.

• Uncertainty related to Next Leading Order (NLO) corrections - this
uncertainty comes from the fact, that the theory describing given process
does not give accurate predictions, but only an approximation.

• Final State Radiation (FSR) uncertainty - after the collision of two pro-
tons and production of new particles, there is a chance that one of the
particles radiates a different particle and thus the process does not cor-
respond to casual schema of the process. Such and effect is reflected in
FSR uncertainty

• Initial State Radiation (ISR) uncertainty - similar like in previous case,
the difference is that the radiation occurs before the electrons collide and
because of that, protons do not collide under energy they are expected

The first two cases are examples of uncertainties related to the properties of the
detector, the rest of the uncertainties are related to modelling of the processes.

In our systematic uncertainties evaluation, only data coming from simula-
tion are used, thus the detector uncertainties are not taken into account.

There is also another type of uncertainty that are denoted γ(bin x), that
is associated with low statistics in a given bin due to the low number of sam-
ples. This uncertainty can be removed by rebinning the histogram, so all bins
contain sufficient number of samples.

7.3 Binned profile likelihood

To be able perform statistical testing, we to need have a good estimate on the
signal strength λs described at the beginning of this chapter. This estimate
should also take into account all known uncertaintity sources, that are con-
sidered as nuisance parameters (NP).

For this purpose, TRExFitter provides binned profile likelihood functional-
ity, which finds the best parameters based on the observed events using the
log-likelihood minimization method. The likelihood is optimized over each bin
of the input histogram. The likelihood function for this problem is following
[17]:

L(n, θ0|µ, θ) =
∏

i∈bins

P (ni|µS(θ) + B(θ)) ×
∏

j∈n.p.

G(θ0
j |θj)

36

7.3. Binned profile likelihood

where µ is called the parameter of interest (POI) and expresses the multi-
plication factor for observed data, which correspond to standard model ex-
pectation. θ is the nuisance parameter and G is a Gauss distribution.

37

Chapter 8
Previous and current analyzes

In the next sections, the results of previous and ongoing analyzes are described,
from the oldest to the newest ones. It is however important to note, that the
results of some presented metrics are not directly comparable,

8.1 TMVA analysis with the neural network usage

This analysis was conducted by a 2021 CERN Summer Project attendant [18],
whose goal was to improve prediction accuracy of signal data by testing dif-
ferent neural network configurations.

The chosen framework for this task was Keras combined with TMVA. The
parameters that were used for the optimization were number of layers, num-
ber of neurons in each layer, number of epochs, batch size, activation function
and optimization algorithms.

The performance comparison was done in following way: for each neural net-
work architecture, AUC for different batch sizes and number of epochs was
compared. The batch size values were following: 100, 200, 300, 400, 500, 600,
700, 800, 900, 1000. The number of epochs for each batch size were: 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 20.

Some network architectures were also tested with different optimization al-
gorithms (Adam and SGD) and activation functions (Relu, sigmoid and tanh).

For each training procedure, 7000 signal and 7000 background samples were
used. These training samples were selected randomly with the same random
seed, so there were the same data some for every run. Before each training
loop, both signal and background samples were transformed in TMVA us-
ing the Gaussinization. The output of the network consisted of two output
neurons followed by softmax function.

39

8. Previous and current analyzes

8.2 Compound model analysis

This analysis [19] was the main focus of Joint Institute for Nuclear Research
physicist, who investigated the overall separation power with combination of
multiple machine-learning models.

The methodology used in the project was based on the usage of separated
neural networks, that were pretrained on some subset of variables for each
signal/background type. These pretrained neural networks then served as an
input for another neural network or some other machine-learning algorithm
(for example Boosted decision trees), which provided the final output.

The advantage of this approach was that different feature subsets for each
signal/background type could be used. This approach is generally useful in
cases, when some processes do not share the same set of variables. Besides
that, such a compound machine-learning model can have some interesting
characteristics that can be to worthed study.

8.3 Current analysis

Current ongoing analysis [20] has been conducted by a scientific group in
CERN and is the main subject of comparison for this thesis. It uses XG-
Boost as a classification model and the foam algorithm for finding the optimal
threshold.

Besides determining the AUC and significance, a full analysis with the us-
age of TRExFitter is performed. This includes calculation of statistical and
systematic uncertainties, getting the fit results, ranking of systematic uncer-
tainties etc.

40

Chapter 9
Thesis workflow

Figure 9.1: Scheme of different thesis phases.

Because the base analysis of the tH process was made in TMVA using Neural
Networks, the first step was to utilize the provided code and study, how suc-
cesful are the other TMVA methods.

The TMVA framework however offered very small flexibility, so the next step
was to convert the root files with both simulated and real-experiment data into
csv format, so it would be possible to perform analysis also in other frame-
works.

After the ntuples were converted into csv files, they could be easily loaded
in Jupyter notebook environment using the pandas package and the analysis

41

9. Thesis workflow

using Python libraries could be performed. This included: outliers removal,
hyperparameters optimization, performance comparison of different models
and all the other steps described in chapter 10.

After the model with best performance was found, it was time to to eval-
uate its outputs with TRExFitter framework. This could be carried out with
two different procedures, one with inclusion of systematic uncertainties and
the other without it.

Without the inclusion of systematic uncertainties, it was easier and faster
to evaluate the model on a local computer. This procedure is described in
chapter 11.

However, in order to get the complete analysis results and study how use-
ful our model is for thorough tH analysis, it was necessary to also include the
systematic uncertainties to the analysis. In this case, it was not so efficient to
do the whole computation on local computer for various reasons. One of them
was the size of systematic ntuples which was more than 300 GB. Instead, it
was easier to work remotely on the CERN cluster called lxplus. This approach
is described in detail in chapter 12.

As a final step, after we found an optimal model and explored how useful
it is for tH analysis with TRExFitter framework, it was time to put it into
production. This means deploy it into program called tHbbskimmer, which
has been developed by a scientific team involved in tH process over the last
years and which serves for a full tH analysis with inclusion of all systematic
uncertainties and all background processes on the most recent data. This step
is described in chapter 13.

42

Chapter 10
Model selection

10.1 Dataset preparation

From table 3.2 it is obvious, that the number of simulated events for each pro-
cess is much higher than the yields of each process that correspond to number
of events that actually take place in a real experiment. Beside that, the ratio
between the yields and the number of simulated events is very different for each
process. For example, for ttH process there is 1702043 simulated events, even
though the yields of ttH are 1586.6, so the ratio between yields and simulated
events is 1702043/1586.6 = 1073.17. On the other hand, the ratio between
yields and simulated events for ttL, which is the most important background,
is only 848249/105452.9 = 8.04. Also the total number of simulated events is
lower than for ttH, even when ttH is just a minor background.

For machine-learning model this means, that the main focus is on the back-
grounds with a high number of simulated events, even when their frequency
in real experiment is not necessarily high. It is because correct separation of
these backgrounds decreases the total loss by the biggest amount, which is
what most machine-learning algorithms aim for.

Therefore, it can be beneficial to somehow take into account the actual yields
for training. First, the Monte-Carlo weights are used, from which the yields
are calculated. This however brings some unpleasant effects.

Firstly, Monte-Carlo weights are related to properties of detector and some
of them have negative values, which can not be used for training, only for
testing. Since 36% of signal samples contain negative weights, it can not be
ignored.

Another disadvantage is associated with the training itself and the result-
ing model. When Monte-Carlo weights are used, the chosen model usually

43

10. Model selection

has difficulties to start converging in early phase of the training. This is
inconvenient if for example we want to set a criteria, such that the training
should stop if there was no improvement in the last number of training epochs.

Then, after the training is successfully finished, we face another issue. For
Monte-Carlo weighted training, most of the samples have a model output
very close to zero.

Figure 10.1 shows graphs for an XGBoost model, which was trained with
Monte-Carlo weights. The number of estimators was 500, maximum tree
depth 1000 and learning rate 0.1. You can see that the signal and background
events are rapidly reduced at a very small threshold values, which makes very
unstable and spiky significance plot, which is the result of low statistics on
these thresholds. In fact, if we wanted to apply condition, that there must be
at least 800 background samples for significance calculation, we could work
only on the interval [0.0, 0.01]

Figure 10.1: Signal/background reductions and significance plot for a model
trained with Monte-Carlo weights.

Figure 10.2 shows the same plot for XGBoost model with the same parameters
trained without weights. Signal and background events are reduced much more
slowly and the significance curve with good statistics has a much wider range.
In the previous case, we could of course transform the model output, so the
samples are reduced more slowly, however in general it seems, that training
without weights gives more stable results.

44

10.2. Training and testing dataset preparation

Figure 10.2: Signal/background reductions and significance plot for a model
trained without weights.

The AUC for both models is 0.832. Best significance for first model is 0.361
on threshold 0.01. Best significance for second model is 0.358 on threshold
0.14. This means that the models trained with/without weights have a very
similar performance.

10.2 Training and testing dataset preparation

Even though the training with weights seemed to have many disadvantages
with a zero contribution to performance, using an information about the the
frequency of events in the real experiment in some way still seemed to be a
good idea. Instead of using weights, the decision was to create a dataset, which
contains the events of different processes in the same ratio as their yields. This
means that for a given process type t, the number of samples for training nt

was:
tn = T

ty

Sy
(10.1)

where T is the size of training set, ty are the yields for a given type and Sy is
the sum of all yields used in the analysis. The only exception was for the tH
process, which quantity was set separately in order to enhance the number of
signal samples for training, which otherwise would be very small if calculated
with this formula. A dataset created with this methodology is denoted as Dy.
This notation is also used also in the next section.

The quality of training on such dataset was then compared to a more simple
approach, where training samples are just randomly selected from all gener-
ated Monte-Carlo events. Training dataset created with this methodology is
in the following sections denoted as Drand.

45

10. Model selection

When events are randomly sampled from all generated events, the probability
of selecting a sample of type t simply corresponds to the ratio of generated
Monte-Carlo samples for this type tMC and sum SMC of generated MC samples
each type:

P (t) = tmc

Smc
(10.2)

For a large training dataset of size T , the number samples nt for a given process
t roughly corresponds to probability of selecting such a type multiplied by the
size of training dataset:

nt ∼ TP (t) (10.3)

In order to consistently have the same number of events for each type and
also to avoid statistical fluctuations for low T , instead of random sampling,
the number of samples for each type were calculated deterministically with
the formula:

nt = T
tmc

Smc
= TP (t) (10.4)

Table 10.1 lists the number of samples and corresponding weighted sum of
events for each process for Dy and Drand datasets, with number of back-
ground events set to 100 000 and number of signal events is set to 20 000. The
quality of training on these datasets is described in following sections.

Dy Drand

type samples weighted samples weighted
tH 20000 33.9 20000 33.9
ttb 27257 3289.5 19645 2372.4
ttc 15214 1902.6 10577 1322.0
ttL 48150 5975.6 33640 4177.2
ttH 72 0.1 6750 6.2
ttZ 383 2.2 5580 31.9
ttW 118 0.3 3641 10.2
tZq 77 0.7 747 6.7
tWZ 1 0.0 81 0.2
tW 2649 417.1 1465 228.7

single top-t 1460 64.3 2933 128.1
single top-s 117 3.1 383 10.2

WZ 2045 115.2 3257 189.4
VV 129 4.0 367 11.7

nonp 2321 45.0 10928 181.1

Table 10.1: Number of samples for Dy and Drand datasets.

46

10.3. Hyperparameters optimization with Grid Search

10.3 Hyperparameters optimization with Grid
Search

One of the first steps of the analysis was a comparison of different machine-
learning algorithms and exploration of their properties with a Grid Search
algorithm.

Grid Search is one of the simplest methods for hyperparameters optimization.
It trains and evaluates model for every defined combination of hyperparame-
ters. It is very useful for initial investigation of model qualities, and also to
have some intuition, which hyperparameters are important for training a good
model and in which range their values should be.

Because the Grid optimization has already been done for neural network in
previous analysis, only tree-based algorithms were analyzed with this method.
Specifically, the following models were used:

• XGBoost

• GBDT - Gradient Boosted Decision Trees (scikit-learn implementation)

• AdaBoost (scikit-learn implementation)

• Random Forest (scikit-learn implementation)

All of these models were trained for binary classification problem, because
training of binary classifier was much faster than training of multiclassifier.
The performance comparison with multiclassifier is described in the next sec-
tion.

The hyperparameters chosen for the optimization and their values were fol-
lowing:

• n estimators ∈ [50, 100, 200, 500] - number of trees built by the model

• max depth ∈ [1, 3, 5, 7, 15] - maximum depth of the trees

• learning rate ∈ [1.0, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001] (only for boost-
ing algorithms)

• criterion ∈ [gini, entropy, log loss] - function used to measure the
quality of a split (only for Random forest)

The whole Grid optimization was done for 4 different strategies for training
and testing dataset creations:

47

10. Model selection

• Training on dataset containing 70% of all events created by method
described by 10.4 (30 069 signal events, 1 765 057 background events).
Testing on remaining samples (30% of all events - 12 887 signal samples
and 756 463 background samples).

• Training on dataset containing 120 000 events created by method de-
scribed in 10.4 (Drand - 20 000 signal events, 100 000 background events).
Testing on remaining samples (97% of all events - 22 956 signal samples
and 2 421 527 background samples).

• Training on dataset containing 120 000 events created by method de-
scribed in 10.1 (Dy - 20 000 signal events, 100 000 background events).
Testing on remaining samples (97% of all events - 22 956 signal samples
and 2 421 527 background samples).

The first method corresponds to a standard way of training and testing set
preparation and is also widely used in many analyzes at CERN. The disad-
vantage of this approach however is that the training on such a large set takes
a very long time and is not optimal for hyperparameters optimization, where
model is trained multiples times. Because of this, only XGBoost model was
trained and tested for all setups, as the training took much less time compared
to scikit-learn models.

The motivation for training and testing on different datasets was for example
to compare the performance of a models trained on diffently large datasets.
Another interesting aspect was the comparison of evaluation metrics for model
trained on Dy and Drand

10.4 Performance of different models

Table 10.2 shows an AUC comparison of different models evaluated on the
test set of either Drand dataset (left side) or Dy dataset (right side) type. It
shows the 7 best performances for each model sorted in descending order.

One can see that for boosting algorithms, an optimal maximum tree depth
parameter is in the range of [3, 7]. Also an optimal learning rate is either 0.1
or 0.05. It is also obvious that there is a certain performance threshold, at
which the performance is not significantly increased just by adding more trees
to the model, as the performances for 200 trees and 500 trees models are very
comparable.

For a random forest model, one can see that the best AUC was always achieved
with a tree depth parameter set to maximum. Similarly as for the boosting
algorithms, increasing number of trees to high values does not necessarily lead
to a significant increase of the AUC.

48

10.4. Performance of different models

Drand Dy

XGBoost model
ntrees maxd lr AUC ntrees maxd lr AUC
500 5 0.05 0.836416 500 5 0.05 0.833855
500 3 0.1 0.835999 500 3 0.1 0.833778
200 5 0.1 0.835739 500 5 0.1 0.833333
200 7 0.05 0.835362 200 5 0.1 0.833331
500 7 0.05 0.835218 200 7 0.05 0.832606
500 5 0.1 0.835052 500 7 0.05 0.832526
200 7 0.1 0.834471 200 7 0.1 0.832303

GBDT model
ntrees maxd lr AUC ntrees maxd lr AUC
500 5 0.05 0.835651 500 3 0.1 0.833060
500 3 0.1 0.835392 500 5 0.05 0.832936
200 5 0.1 0.835008 200 5 0.1 0.832153
200 7 0.05 0.834509 500 7 0.05 0.831802
500 7 0.05 0.834327 500 5 0.1 0.831722
500 5 0.1 0.834266 200 7 0.05 0.831627
500 3 0.05 0.833877 500 3 0.05 0.831443

AdaBoost model
ntrees maxd lr AUC ntrees maxd lr AUC
500 3 0.05 0.832706 500 3 0.05 0.830223
200 3 0.1 0.832179 200 3 0.1 0.829952
200 3 0.05 0.829701 500 5 0.01 0.827762
500 5 0.01 0.829677 200 3 0.05 0.826964
100 3 0.1 0.828915 100 3 0.1 0.826661
100 5 0.05 0.827862 50 3 0.5 0.826574
50 5 0.1 0.827273 100 5 0.05 0.825652

Random forest model
ntrees maxd criterion AUC ntrees maxd criterion AUC
500 15 log loss 0.827890 500 15 log loss 0.825749
500 15 entropy 0.827890 500 15 entropy 0.825749
200 15 log loss 0.827197 200 15 log loss 0.824893
200 15 entropy 0.827197 200 15 entropy 0.824893
100 15 log loss 0.825988 100 15 entropy 0.823756
100 15 entropy 0.825988 100 15 log loss 0.823756
500 15 gini 0.824956 500 15 gini 0.822442

Table 10.2: Results of Grid Search optimization.

49

10. Model selection

Another practical aspect to look at, when comparing machine models,
is the time of training. Table 10.3 shows an average training time for all
configurations where ntrees = 500. We can see, that XGBoost training is
significantly faster than training of other models.

XGB GBDT ADA RF
time 56 s 1044 s 1007 s 149 s

Table 10.3: Average training times of different algorithms for ntrees = 500.

10.4.1 Source of performance differences

Another important observation is that the AUC for a model trained on Drand

dataset is always higher than for a model trained on Dy dataset, which is even
more apparent from boxplot graph 10.3.

Figure 10.3: AUC differences for Dy and D rand on test set.

This result makes sense, since the background types in Drand train set are
in the same proportion as background types in test set, because they both
correspond to proportions of background events generated by Monte-Carlo
simulation. This means that the loss minimization on train set is more corre-
lated with the loss reduction on test set, compared to training and evaluation

50

10.4. Performance of different models

for Dy dataset, where the proportions of backgrounds correspond to the pro-
portions of background yields. For example, if we would not reduce the size of
ttH samples, they would be making up around 30% testing samples for both
for both Drand and Dy datasets. However, when the model was trained on
Dy train set, ttH would be making up only 1% of all background samples,
so the model would focus more on correct separation of different backgrounds
and the AUC on the test set would not be as good as in the case of training
on Drand train set, where the ttH would also make up 30% of all background
events.

Even though the number of ttH samples was reduced, the disproportion of
the yields and generated background types is still present and projects into
lower performance on test set for models trained on the Dy train set.

If we want to know, how well is model trained on Dy going to perform on
data recorded from real experiment, we need to create a test set in the same
way as Dy. Following plot shows AUC results for 9 best performing XGBoost
models from the table 10.2 for test set created the same way as Dy are shown
in figure 10.4. The test set is created from remaining samples after the train
set is created, so no samples from the train set are contained in the test set.

Figure 10.4: XGBoost evaluated on different test sets.

51

10. Model selection

10.4.2 AUC and Significance correlation

In the previous sections, models were compared based on their AUC on test
set, as it is a standard metric for comparison of machine-learning models.
AUC however is not the most important metric in this analysis, because it
does not have much of a physical meaning. The most important metric we
want to optimize is the significance.

During the analysis, it became obvious, that models with high AUC tend
to have high level of significance. So it might be interesting to look at the
actual relationship between these values.

In the Grid search hyperparameters optimization, multiple metrics beside the
AUC were evaluated, significance including. Figure 10.5 shows the values of
AUC and significance for different XGBoost models, one data point corre-
sponding to a trained model with different hyperparameters. On the left side
of the figure are models trained on Dy, on the right side of the plot are models
trained on Drand.

Figure 10.5: AUC and significance correlation for different models.

One can see that AUC and significance are very highly correlated. What is
also obvious, is that for higher values of AUC, correlation is even stronger for
models trained on Dy. This also makes sense, as the training is more focused
on correct separation of background types with high yields, which is important
for getting high significance values.This correlation pattern is obvious across
all models used in Grid search.

An important outcome of this section is that with AUC maximization, we
also maximize the significance of the model. This is very useful, because in
the following optimization runs, we can focus mainly on maximization of AUC
and then check, what is the resulting significance. An advantage of AUC max-
imization is that significance can sometimes have inconsistent values because

52

10.4. Performance of different models

of its definition in section 6. Also, in the next experiments, Dy is used as a
primary dataset for model training because of high correlation of AUC and
significance on test set, especially for high AUC values.

10.4.3 Training on large and small dataset

A standard procedure of training a machine-learning model is to take some
percentage of all samples and use them for training and then test them on
remaining samples. Standard ratios for training and testing are for example
50:50, 60:40, 70:30 etc.

In the previous sections however, the training took place on 120 000 sam-
ples, which make up only about 4% of all samples. The main motivation was
the training time, which would take too long if models were trained on dataset
containing 70% of all samples. For demonstration, in the table 10.4 are shown
means of training times for different models, when training on a set containing
4% and 70% of all samples (ntrees parameter is set to 100). We can see that
for example for XGBoost model, training takes almost 11 times longer if its
done on 70% training set.

XGB GBDT ADA RF
4% 5.37 94.71 101.98 13.84
70% 62.28 1732.72 1977.25 284.67

Table 10.4: Means of training times in s for differently large datasets.

To have some overview, how much training on smaller dataset affects the per-
formance, XGBoost model was trained on a set containing 70% of events for
all grid search setups and and evaluated on 30% of all events. The results were
then compared with the same model trained on Dy and tested on remaining
samples (96% of all events).

Results are shown in the figure 10.6. Performances of XBoost models trained
on Dx or sorted in ascending order and to each of them, performance XG-
Boost with same parameters trained on 70% training set is assigned. We can
see that for the best performing models, the AUC on test set is very compara-
ble regardless of how many training samples were used. This basically means,
that 120 000 training samples in Dy dataset is sufficient for training a good
model.

53

10. Model selection

Figure 10.6: AUC differences for model trained on 70% of all samples and
model trained on 4% of all samples.

This is a very important finding, because in the next steps of analysis, there
will be thousands of procedures, which would take unmanageable amount of
time, if they took place on a dataset containing 70% or even 50% of all samples.
Now we know, that such a large training set is not necessary and we can find
the best model by training on a dataset containing only 4% of all samples.

10.4.4 Binary versus multiclassifier performance

In previous analyzes, the whole task of signal separation was treated as a mul-
ticlassification problem, where all events were separated into 5 classes: tH,
ttb, ttc, ttL and ”other” class containing all remaining background types. Ad-
vantage of this approach is that we can see, how well is each class separable
from remaining samples. Disadvantage is that the training of such multiclas-
sifier takes much longer, because for boosting algorithms training is typically
done with One-Vs-The-Rest approach, where binary classifier for each class is
trained. Evaluation is then done by normalizing predictions for each class and
taking the one with highest value.

54

10.4. Performance of different models

If we are not interested in AUC values for different backgrounds, it might
be more beneficial to use binary classifier. It is however important to check,
whether the One-Vs-The-Rest principle of multiclassifier does not improve the
signal separation.

To verify that, following experiments were done - for 5 best performing mod-
els found with Grid Search, corresponding multiclassifier version of the same
model was trained and evaluated on the same datasets. Events were put into
5 classes as described previously.

Results for each model are shown in the figure 10.7. Multiclassifier AUC
for tH class is very comparable with AUC of binary classifier in all cases.

Figure 10.7: Comparison of binary and multiclassifier performances.

Because of the longer multiclassifier training time with no significant contri-
bution to signal separation, only binary classifiers are considered in the next
sections.

55

10. Model selection

10.5 Hyperparameters optimization with Optuna
framework

Grid Search algorithm gives a great overview of how different models perform
and also what are reasonable values of hyperparameters used for the optimiza-
tion.

To fine-tune the performance even further, Optuna framework is used as next
step of hyperparamters optimization.

So far, the focus has been only on 3 hyperparameters - ntrees, maxdepth
and learning rate. In the next sections, other hyperparameters are also taken
into account. This however brings some new challenges, because the more
hyperparameters we try to optimize, the more runs Optuna needs to converge
and give an optimal values. Defining too many hyperparameters for optimiza-
tion and hoping that Optuna find an optimal values in limited number of runs
typically does not work. For this reason, the maximum of 6 hyperparameters
with reasonable ranges were used in each Optuna run.

The following analysis focuses on hyperparameters optimization of XGBoost
model, as it was the best performing model from Grid search analysis with
lowest training time compared to other models.

As a train set, Dy is used because of the high correlation of AUC and sig-
nificance on test set for a trained model. Validation and test sets are created
the same way as train set, only the number of signal samples is 10 000 instead
of 20 000. Also another type of test is created, contaning all samples beside
those used in train set and test set. The first type of test set is in sections
denoted as Test D y, the other is denoted as Test MC.

The following section describes a special approach for stopping criteria, so
there is no need to manually setup ntrees and learning rate hyperparametrs.
In the next sections are described different Optuna runs with different hyper-
parameters and different optimization strategies.

10.5.1 Adaptive learning rate and stopping criteria with
XGBoost callback functions

Because we want to minimize the number of hyperparaments that are used
for the optimization, it would be good if some hyperparameters were set au-
tomatically, especially those, for which it is difficult to find default values, like
learning and the number or number of trees.

A typical approach is to setup a learning rate and stopping criteria, which

56

10.5. Hyperparameters optimization with Optuna framework

usually is the number of rounds, in which the evaluation metric (typically
AUC) has not improved.

The disadvantage of this approach is that there is always a trade-off between
the training time and performance. If we set the learning rate too high, then
training stops after a few rounds, but the performance will not be great. If
we set it too small, then the training will run for a very long time until the
stopping criteria is met.

For this reason, the following approach is used in the Optuna analysis: At
the start of the training, the learning rate is set to 0.1. If there has not been
an improvement on validation set in last 5 rounds, then the learning rate
is reduced and training continues. Training is stopped, if there was not any
improvement in last 5 rounds and learning rate is lower than certain threshold.

This functionality is implemented with usage of TrainingCallback class from
XGBoost callback package.

In most of the cases, training with adaptive learning gave better results than a
training, in which the learning rate was set to a constant value and the training
was terminated after no improvements on validation set in last n rounds.

10.5.2 Initial Optuna run

In the first Optuna run, the following hyperparameters were optimized:

• booster ∈ [gbtree, gblinear, dart]

• max depth ∈ [3, 7]

• scale pos weight ∈ [0.5, 1.0]

• alpha ∈ [0.0, 10.0]

• lambda ∈ [0.0, 10.0]

• gamma ∈ [0.0, 10.0]

booster parameter defines, which model is built in each epoch for prediction
improvement. Default value of this parameter is gbtree.

max depth is a parameter we have already used in Grid optimization and
stays for maximum tree depth. Since the best models from Grid Search had
max depth values in a range from 3 to 7, the same range is used for this pa-
rameter.

57

10. Model selection

scale pos weight defines the scale factor for positive class. Since the pro-
portion of signal and background samples for training is in ratio 1:5, range of
[1.0, 5.0] is chosen for this parameter.

alpha, lambda - L1 and L2 regularization term for weights. Default value for
alpha is 1 for gbtree model and 0 for gblinear model. Default value for
lambda is 0 for all models.

gamma - another parameter for overfitting prevention. Minimum loss reduction
required to make a further partition on a leaf node of the tree.

For this study, TPE sampler with 1000 runs was used.

Table 10.5 shows the best AUC results sorted by an AUC on test set. Table
10.6 shows the means and standard deviations of parameters for 20 and 100
best models.

booster max d s p w lambda alpha gamma Test Dy Test MC
gbtree 5 1.0668 6.6946 9.2985 2.1685 0.8466 0.8340
gbtree 5 1.0790 4.6930 9.7976 1.9686 0.8466 0.8342
gbtree 5 1.0740 5.5907 9.9802 1.6195 0.8465 0.8341
gbtree 5 1.0813 4.9279 9.9993 0.8057 0.8465 0.8345
gbtree 5 1.0025 6.8698 9.4646 3.0867 0.8465 0.8340
gbtree 5 1.1216 5.4283 9.7549 1.3733 0.8465 0.8345
gbtree 5 1.0647 7.0618 8.4867 2.4968 0.8464 0.8340
gbtree 5 1.2731 4.7856 9.6456 2.3640 0.8464 0.8341
gbtree 5 1.1696 4.3730 9.5450 0.3648 0.8464 0.8342
gbtree 5 1.0028 6.8933 9.6063 2.1158 0.8464 0.8342

Table 10.5: 10 best performing models found with Optuna TPE sampler.

max depth s p w lambda alpha gamma
Mean 20 5.0 1.113 5.770 9.517 1.772
Std 20 0.0 0.124 0.932 0.412 0.691

Mean 100 5.0 1.123 5.500 9.512 1.680
Std 100 0.0 0.120 1.015 0.543 0.732

Table 10.6: Means and standard deviations of parameters for 20 and 100 best
performing models.

58

10.5. Hyperparameters optimization with Optuna framework

We can see, that the mean of scale pos weight (s p w) is very close to its
default value of 1.0 with quite a small standard deviation. The value of
max depth is for almost all results equal to 5. The booster for most of the best
models is gbtree, which also correspond to default value of this parameter.
Based on these observations, values of mentioned hyperparameters for the next
runs are set to following values: scale pos weight = 1.0, booster = gbtree,
max depth = 5.

In an initial Optuna, we were able to find an optimal values of 3 hyperpa-
rameters and reduce the search space for the algorithm. Thanks to that, we
can add some more hyperparameters for the next run:

• colsample bytree ∈ [0.5, 1.0]

• min child weight ∈ [0.0, 10.0]

colsample bytree parameters is the ratio of total number columns that are
randomly selected and used for tree creation. min child weight is a mini-
mum sum of instance weight needed in a child. Both of these parameters are
used to reduce the effect of overfitting.

For the next run, ranges of previously used features were updated based on
the previous results:

• alpha ∈ [5.0, 20.0]

• lambda ∈ [0.0, 10.0]

• gamma ∈ [0.0, 5.0]

All of these changes are based on the values of best performing models de-
scribed in the table 10.6. Since values of parameter alpha are very close to
the edge of defined interval for this parameter, the interval for this parameter
is extended. On the contrary, the interval [0.0, 10, 0] seemed to be too large
for parameter gamma, as most of the optimal values were close to 1.5, so in
the next run, range of this interval is reduced. Optimal values of parameter
lambda are around the value of 5, so the same range as in the initial run is used.

In the next hyperparameters optimization run, 1000 trials study with TPE
sampler is used. This study was done twice with two different objectives -
on of them focusing on maximization of AUC on test set and the other on
maximization of significance on test set.

The best obtained AUC on Dy test set across all TPE sampler runs was
0.848, with corresponding value of AUC on Monte-Carlo test set of 0.834.
Best obtained singificance was 0.395.

59

10. Model selection

10.5.3 Optimization with NSGA-II sampler

Another series of Optuna optimizations was done with NSGA-II sampler,
which is based on genetic algorithms. Even though the main usage of NSGA-
II algorithm is multi-objective optimization, it can be profitably used also for
single objective purpose.

Hyperparameters used in NSGA-II analysis and their ranges are same as in
the previous section. Also same as before, two types of optimizations were
performed - one focusing maximization of AUC on test set and the other fo-
cusing on maximization of significance on test set.

Since NSGA algorithm typically requires a higher number of runs for good
results compared to TPE sampler, the number of trials was set to 2500 for
both objectives.

The best AUC on Dy was again 0.848, with corresponding value of AUC on
Monte-Carlo test set of 0.8345. The best significance obtained with NSGA-II
algorithm was 0.389.

60

10.6. Neural network optimization with Optuna framework

10.6 Neural network optimization with Optuna
framework

Since a Grid Search of neural network models has been done in a previous
analysis (section 8.1), it was not subject of this thesis. Instead, optimization
with Optuna framework was chosen as a more advanced tool for this task.

Optimized hyperparameters were following:

• n layers ∈ [1.0, 10.0]

– n units ∈ [1.0, 150.0]
– activation ∈ [tanh, relu, sigmoid]
– dropout ∈ [0.0, 0.5]

• learning rate ∈ [1e−5, 1e−1]

• loss function ∈ [mse, binary crossentropy, binary focal crossentropy]

For each dense layer in n layers, number of units and activation function were
defined individually. Also each dense layer was followed by dropout layer with
droupout rate defined by dropout parameter.

For optimization, both TPE and NSGA-II samplers with 1000 trials were
used. Objective of the optimization was maximization of AUC on the test set.
Both train and test set were created as Dy datasets, with an empty intersec-
tion between two sets (no sample from train set was contained in the test set).

The best AUC on Dy test set was 0.8438, with corresponding value of AUC
on Monte-Carlo test set of 0.8337. The best significance obtained with neural
networks was 0.389

Most of the best results were obtained with a neural network model with
only 2 hidden layers. Mean value of neurons in the first hidden layer for 20
best performing was 123.8. For second hidden layer (before the output layer)
it was 95.1.

For the neural network, most of the best results were obtained with NSGA-II
sampler.

61

10. Model selection

10.7 Optimization summary and the best model
selection

From previous results, we can see that both XGBoost a neural network have
very comparable performance, with XGBoost performing slightly better on
both evaluation metrics. For this reason, XGBoost was chosen as a primary
model in next chapters of this work.

Even though neural network had slightly lower performance compared to XG-
Boost model, it is one of the most common models in high energy physics.
For a good comparison with other analyzes, the decision was to select best
performing neural network and implement it to tHbb skimmer code (section
13) beside the XGBoost model. The selection of neural network model is de-
scribed at the end of this section.

In the previous runs, there were multiple models with significance above 0.39.
To find out, which model has the best significance stability, it was necessary
to run them on different randomly sampled test sets and see, how significance
changes for each set. Then we have a good picture, what significance we most
likely get, when we use the model on data from real experiment.

For this purpose, 10 different test sets of Dy type were created. All of these
sets were created from Monte Carlo samples after exclusion of events used for
training. Boxplots in the figure 10.8 show how significance differs on these
datasets for each model. All models are sorted by their significance perfor-
mance in Optuna run.

We see that Model 0 has consistently highest level of significance. Before
a final decision was made, it was also useful to examine the significance curves
of the models.

Figure 10.9 shows the comparison of significance curves of Model 0 and Model
2 for all test datasets. We see that high significance of Model 0 is caused
by sharp significance increase starting at threshold 0.71. On the other hand,
Model 2 seems to have significance values much more uniform, which can be
advantageous, because we can make threshold cut on different values depend-
ing on how many total events we want to work with, and still have a similar
values of significance. This can be useful for example to see, how systematic
plots change with different number of events, when the significance value is
similar.

62

10.7. Optimization summary and the best model selection

Figure 10.8: Significance boxplots of 10 best performing XGBoost models.

Figure 10.9: Significance plots on 10 different datasets for 2 different XGBoost
models.

However, the significance levels before the sharp elevation for Model 0 is com-
parable for both models, so Model 0 was chosen as final model for next anal-
ysis, as it was the best performing model with consistently high values of
significance.

63

10. Model selection

For selection of the neural network model, the same procedure as for selection
of XGBoost model was performed. Significance plots of best performing model
on different on 10 different test sets are shown in the figure 10.10. AUCs on
the test of selected XGBoost and neural network models are shown in the
figure 10.11.

Figure 10.10: Significance plots on 10 different test sets for best performing
neural network model.

10.8 Feature importance and correlation matrix

Figure 10.12 shows an importance of different features of the best performing
XGBoost model. Feature importances are evaluated based on their average
gain across all tree splits in XGBoost algorithm.

To see how features importance change for different models, average gains
of 10 best performing XGBoost models trained on the same set were obtained
and compared with boxplots in the figure 10.13.

The correlation matrix of 10 important variables are shown in the figure 12.4.

64

10.8. Feature importance and correlation matrix

Figure 10.11: ROC curves for best performing Neural network and XGBoost
model.

Figure 10.12: Feature importances of best performing XGBoost model.

65

10. Model selection

Figure 10.13: Boxplot of average gains for 10 best XGBoost performing mod-
els.

10.9 Training on a feature subset

In the previous section we were able to see the importance of different training
variables. Normally, it would be interesting to know, how well the model per-
forms if trained on a small subset of most important ones. However, recently
it has been recently noted, that the modelling of njets CBT5 and inv3jets
features might be inaccurate. Therefore, it is more interesting to see, how the
model performs if trained without these variables, as njets CBT5 had by far
the biggest separation power compared to other variables.

In order to do so, performances of 2 different XGBoost models trained on
different training sets were compared. First XGBoost model is the one having
best significance results in section 10.7. The other XGBoost had best values
AUC of 0.848 on Dy test set across all Optuna runs.

AUC and significance comparison of these models for 10 different test sets
are shown in figure 10.15.

An updated feature importance plot of the trained model with highest values
of AUC and significance on test set is shown in figure 10.16.

66

10.9. Training on a feature subset

Figure 10.14: Correlation matrix of 10 most important variables.

Figure 10.15: AUC and significance comparison of two best performing XG-
Boost models trained on a subset of variables.

67

10. Model selection

Figure 10.16: Feature importance of a model trained on the subset of features.

68

Chapter 11
TRExFitter evaluation without

systematic uncertaintities

For the tasks such as creation of histograms of yields before and after cut, cal-
culation of statistical uncertainties or calculation of upper limit, there was no
need to work with systematic ntuples located on the CERN cluster. Instead,
local run of TRExFitter framework inside a docker container was chosen as
easier and faster approach.

11.1 Creation of root files from pandas dataframe

After the whole analysis from previous step is performed and the most suitable
model for further analysis is found, it is necessary to convert the evaluated
Pandas dataframe into root files, as this is the main data format TRExFitter
works with.

This needs to be done also for data recorded from the real experiment, because
they are crucial for further analysis.

First, the model is evaluated on all events that pass the preselection and
the model output is written into a new column called pred.

After the evaluation is done, the dataframe is saved into a csv file, which
is then converted into a root file by being loaded as a RDataFrame object and
converted to the root file with MakeCsvDataFrame method.

These steps of conversion are performed for each signal/background type sep-
arately, because the TRExFitter reads each process type individually from
associated root file.

69

11. TRExFitter evaluation without systematic uncertaintities

11.2 Running TRExFitter

In the configuration file it is necessary to define all the regions that will be
used in the produced plots and corresponding paths to ntuples. There can
be also multiple input files defined per region, however one file should not
be used for multiple regions to get correct results. It is also necessary to
keep in mind, that the order of sample definitions correspond to the order in
which they are plotted in stacked histogram, so the backgrounds with large
number of samples should be defined as first and the small-size samples as last.

It is also useful to magnify the size of signal samples by adding the NORMSIG
option to PlotOptions parameter to see the distribution of signal events,
which otherwise would not be visible because of the small signal set size is
compared to the background set.

A special type of background is the non-prompt background, which is cal-
culated from the real experiment data and thus is read from this ntuple.

Also there is no need to define GHOST regions, as they are not needed for the
stat-only calculation. It is however needed to properly define, which samples
correspond to signal, background and data events.

Because in the produced root files, different process types are not mixed to-
gether, it is not necessary to use replacement file and its variables with XXX
prefixes - this would be necessary if multiple process types were put in one
root file and needed to be distinguished using these special variables.

After this, regions for plotting are defined, along with corresponding x and
y axis ranges etc. Since the sizes of different signal/background types vary
significantly, it is useful to use logarithmic scaling to have an overview of how
a distribution for each type looks like.

Selection criteria can be defined on different levels. There can be defined
a global selection criteria in the job block, selection criteria for each loaded
ntuple is defined in Sample block and a selection criteria for each region is
defined in Region blocks.

In the case of this analysis, it is necessary to apply selection criteria described
in section 3.1, that is based on event preselection, and another selection cri-
teria based on the model output. Both of them can be applied globally or
individually per region. Using the criteria in a region block can be useful for
example for comparison of the yields before and after the cut in one TREx-
Fitter run.

70

11.3. Docker usage

Weight calculation for each event is defined in section 3.2. The StatOnly
option needs to be set to True, so no systematic calculation is performed.

It is also not needed to define the Fit block, as the fit step is not performed
in this section.

After all the mandatory fields are defined, TRExFitter is ready to run. The
sequence of parameters used for local run is following: ndwl. The n parameter
is used for ntuple preprocessing and the d parameter for plots production along
with a table describing the yields and statistical uncertainties. w parameter
is used for workspace creation and l is used for calculation of median signal
strength value, when only statistical uncertainties are considered.

11.3 Docker usage

The whole run of the TRExFitter took place inside of the docker container.
This form was chosen as it was the easiest way how to run TRExFitter locally
without installation.

However, a disadvantage of using docker container is, that by default it pro-
vides only command-line outputs, which can not be used for viewing of the
plots. To make the usage of TRExFitter inside the container more convenient,
a bash script was made, which first copies modified config file into docker con-
tainer, runs TRExFitter inside the container and then copies its outputs back
to the working directory. In order to have no overlapping results from different
runs, both the target folders in docker environment and local environment are
deleted in each run.

71

11. TRExFitter evaluation without systematic uncertaintities

11.4 TRExFitter outputs

After a succesful run, TRExFitter creates a folder with all defined region plots,
and a table describing the yields and statistical uncertainties for each sample.
Table 11.1 shows the number of events before and after an optimal cut of 0.74
is applied. All events are sorted by their yields, except for the signal process.

Before cut After cut
tH 73.21 14.07

tt+light jets 105453 448.77
tt+b jets 59696.8 524.95
tt+c jets 33320.7 128.57

non-prompt 5084.89 86.64
WZ + jets 4479.95 56.07
Wt channel 9258.6 153.61

tH 1586.61 12.35
t + Z 840.58 5.07
VV 283.06 2.69

t + W 258.95 0.34
tZq 169.19 13.69
tWZ 2.49 0.04
Total 220508 1446.92

Table 11.1: Yields of events before and after an optimal threshold cut is
applied.

We can also calculate an expected median for signal strength µ by running
TRExFitter with argument ”l”. This value before the cut was 3.89. This is
the median value of µ when only statistical uncertainties are taken into ac-
count. This value slightly declines to 3.76, if 20 bins are used instead of 10.

After the threshold cut is applied, this value increases to 4.56, which could be
possibly lowered by more efficient binning.

The following figures show the stacked histograms for the model prediction
and for the four most important variables. On the left, there are the dis-
tributions before the model threshold cut is applied, and on the right there
are the distributions after it. The red dashed line shows the normalised signal
distribution. Blinding applied for all plots is 0.1 (ratio of signal to background
events in a bin).

The black dots in the histograms correspond to collected data values from the
real experiments at LHC. There is a good agreement between the Monte-Carlo

72

11.4. TRExFitter outputs

simulation and the recorded data, which is a good sign that the simulation
describes well what is happening in the detector during the experiment.

The lower histogram shows the deviations of simulated data and data from
the experiments. Values of statistical uncertainties for each bin are shown
in this graph too. Note that the statistical uncertainties are much higher on
the plots after the cut is performed, which is due to low statistics for these
samples. Plots of the remaining regions are shown in Appendix A.

Figure 11.1: Model prediction distribution before and after the optimal thresh-
old cut.

73

11. TRExFitter evaluation without systematic uncertaintities

Figure 11.2: Njets CBT5 - distribution before and after the optimal threshold
cut.

Figure 11.3: chi2 min tophad m ttAll distribution before and after the optimal
threshold cut.

74

11.4. TRExFitter outputs

Figure 11.4: fwdjets pt distribution before and after the optimal threshold cut.

Figure 11.5: sphericity distribution before and after the optimal threshold cut.

75

Chapter 12
TRExFitter evaluation with

systematic uncertainties

This chapter describes the procedure of obtaining the full analysis results
which include systematic uncertainties. To be able to do that, we need to
extend our configuration file for TRExFitter and also work with ntuples, that
also include the systematic trees beside the nominal one. On the top of that,
we need to include also samples that come from a different Monte Carlo simu-
lation programs, which are defined in the sample blocks as GHOST. This step
is done in order to compare the outputs of different simulation environments.

Since the systematic ntuples with all needed trees and the GHOST ntuples
are all located on CERN cluster called lxplus, it is more convenient to work
remotely on that cluster, instead of copying the files and work with them on
local computers. One of the reasons is the size of the ntuples which exceeds
300 GB, and also that the subsequent calculations take a lot of time and com-
putational power, so it is easier to use lxplus for it.

Another advantage of lxplus usage is, that it has many ROOT-related frame-
works and other useful libraries already installed on it. Some of the useful
tools preinstalled on lxplus is HTCondor [21], which can be useful for batch-
ing and parallelization.

Alternative tool, which can be used for this task, is Panda framework [22]
in combination with Rucio [23] that provide interface to GRID, which is a
huge network of interconnected computers around the world, that are man-
aged by CERN and which are used for CERN-related computations.

77

12. TRExFitter evaluation with systematic uncertainties

12.1 Assigning model outputs to systematic
ntuples

To be able to perform the whole analysis which includes systematic uncertain-
ties, it is necessary to have a model prediction branch in each tree of systematic
ntuples. This can be quite problematic, because the systematic ntuples are
very large (over 300 GB) and assigning model output to each event takes a
very long time. For the scope of this project, appropriate approximations have
been chosen.

The alternative approach leverages the fact, that all the variations of an event
can be found under the same event number in the variation trees. So in-
stead of evaluation of the model for each systematic tree, the evaluation is
performed just once for a nominal tree. Then a predictions csv file is created,
which contains two columns called eventNumber and pred. The pred column
corresponds to a prediction for given event, which is then assigned to all trees
in systematic ntuple.

For this step a root macro was created, which does the following: loads a
csv file and creats a hashmap from it, then all the events in every tree are
iterated and assigned a prediction value into the newly created branch pred
based on its event number. With the hashmap usage, the prediction assign-
ment is almost instant, and the algorithm runs very fast, compared to the
scenario in which we would be evaluating the XGBoost model for each event.

For faster run, the script uses setBranchStatus function, which keeps ac-
tivated only the branches eventNumber and pred during the whole procedure.

It is important to note, that this approach can be used only for ntuples that
come from the same production. This means it could not be used for ntuples
that were produced by PP8 and HP7 simulators (GHOST samples in the con-
figuration file), because they were produced in a separate run and there was
no relationship between the event numbers from these ntuples and those from
the predictions file.

For these ntuples, it was necessary to convert the nominal trees to a csv
file as described in section 5.1.1, perform an evaluation of the model and af-
ter that create the predictions file and use the described macro. Since all
POWHEG+HP7 and POWHEG+PP8 ntuples contained only nominal trees,
this step was not too time-consuming.

78

12.2. Script for multiple ntuple assignment

12.2 Script for multiple ntuple assignment

Since each generated process is typically located in a different root file with
specific id, that is often split into multiple files, it is convenient to use a shell
script which assigns predictions to all defined ntuples, instead of running the
root macro for each ntuple separately. For this purpose, a shell script assign-
Preds.sh was created. Example of a script run:

Parameters of this script are:

• file1 - text file defining all ntuple paths, one path on each line

• file2 - file with event numbers and correspondning predictions

• file3 - root macro described above

This script iterates all ntuples defined in file1. In each iteration it saves the
trees from an ntuple into a text file, which is then loaded by root macro. The
reason for this untypical method is, that there is no ROOT function, which
would return content of a root file as an argument or loaded it into parameter.
The only way of getting the content of a ROOT file is through the ls() func-
tion, which prints the contents on the standard output. This output needs to
be then processed with shell commands in order to filter out unneeded infor-
mation printed by the ls() function. It is also necessary to create a list of
trees for each ntuple, because different ntuples may contain different variation
trees. After this, when the tree list is created, the ROOT macro defined in
previous section is executed.

Afer the whole setup is done, TRExFitter can be executed. The full sequence
of run parameters to produce all necessary outputs is following:

trex-fitter ndwfplr tf.conf

Outputs of each option are presented and explained in following sections.

12.3 Production of prefit and systematic plots

As a first step, it is necessary to load all ntuples and turn them into his-
tograms for further use within the framework. This is done with ”n” option
when running TRExFitter. A new Histograms folder is created which contains
everything we need for the next steps. Note that this is typically the longest
step of the whole systematic uncertainty determination.

79

12. TRExFitter evaluation with systematic uncertainties

After ”n” step finishes, we are ready to run ”d”, where similarly like in section
11.4, pre-fit plots of all defined regions are produced, including the yields of
all processes and statistical uncertainty. Compared to previous results, only
three main background sources are taken into account - ttb, ttc and ttL. The
distribution of signal region is shown in figure 12.1 and the yields with corre-
sponding uncertainties (with inclusion of systematic uncertainties) are shown
in the table 12.1. Note the yields are a bit different than in figure 11.4, be-
cause the systematic ntuples come from different production.

Figure 12.1: Distribution of machine-learning model output for signal and
background. The signal (dashed line) is normalised to the background.

80

12.3. Production of prefit and systematic plots

Yields± Uncertainties
tH 74.2 ±1.3
tt̄ + ≥1c 35000 ±19000
tt̄ + ≥1b 63000 ±12000
tt̄ + light 111000 ±11000
Total 209000 ±25000

Table 12.1: Yields of the processes for systematic study.

Also newly a Systematics folder with histograms is created. Each plot in this
folder correspond to the systematics block defined in our config file. Compared
to previous plots, a confidence interval of one σ size for the given uncertainty
is shown. The bottom plot shows normalized deviations from the nominal
value. Plots of 4 systematic uncertainties with highest impact are shown in
the figure 12.2.

Figure 12.2: Four most impactful uncertainties.

81

12. TRExFitter evaluation with systematic uncertainties

12.4 Workspace creation and fit results

In the next step, the workspace containing the fit model is created. This
step is performed by using ”w” argument in trex-fitter command. All the
informations for building the fit model can be found in the the RooStats folder.

Also the Pruning.png plot was created. This plot shows the effect of system-
atics on each signal/background type. It also shows, whether the systematics
survived pruning or not.

Figure 12.3: Pruning plot.

82

12.4. Workspace creation and fit results

After the workspace is created, we are ready now to run a fit. This is done
with ”f” argument. In this step, following plots are produced:

• CorrMatrix which shows the correlations between nuisance parameters
(fig. 12.4)

• Gammas showing the fit results for all gammas(fig 12.5)

• NuisPar shows the fit results for all nuisance parameters (fig 12.6)

• NormFactor shows the expected 95% confidence level limit for all Norm-
Factors (typically includes the signal process, figure 12.7)

Figure 12.4: Correlation matrix of nuisance parameters.

83

12. TRExFitter evaluation with systematic uncertainties

0.8 0.9 1 1.1 1.2
 SR pred bin 0007γ
 SR pred bin 0008γ
 SR pred bin 0009γ
 tH SR pred bin 0000γ
 tH SR pred bin 0001γ
 tH SR pred bin 0002γ
 tH SR pred bin 0003γ
 tH SR pred bin 0004γ
 tH SR pred bin 0005γ
 tH SR pred bin 0006γ
 tH SR pred bin 0007γ
 tH SR pred bin 0008γ
 tH SR pred bin 0009γ

Figure 12.5: Fit results for all gammas.

Figure 12.6: Fit results for nuisance parameters.

84

12.5. Creation of ranking plot and calculation of expected median of signal
strength

Figure 12.7: Signal strength after fit on Asimov dataset.

It is important to note that we performed a fit on an Asimov dataset [17].
This dataset is built from the exact prediction of signal and background in
every bin, and it is very useful in evaluating our fit model before fitting data.
For the Asimov dataset, the best-fit result for the normalization factors is just
their nominal value. Fit on the Asimov dataset is done by setting FitBlind:
TRUE in a Fit block.

12.5 Creation of ranking plot and calculation of
expected median of signal strength

The last step is to create a ranking plot with ”r” option that shows, which
nuisance parameter has the largest impact on the uncertainty of the signal
strength µ.

For each nuisance parameter, four fits are performed. The specific nuisance
parameter is fixed to one of these configurations per fit [17]:

• pre-fit value + pre-fit uncertainty

• pre-fit value - pre-fit uncertainty

• post-fit value + post-fit uncertainty

• post-fit value - post-fit uncertainty

Resulting ranking plot is shown in figure 12.8.

With ”l” option, we can also calculate the expected median value of sig-
nal strength µ. This very useful for comparison with other analyzes.

The median signal strength value with inclusion of statistical and systematic
uncertainties was 6.346.

85

12. TRExFitter evaluation with systematic uncertainties

Figure 12.8: Ranking plot of nuisance parameters.

86

Chapter 13
Deployment

The final step of this thesis was to integrate trained models into a program
called tHbbskimmer [24], which is one of main tools for the tH analysis. It
has been developed in recent years by a scientific group involved in tH ntuple
production research and is periodically used whenever a new Monte-Carlo or
experiment data are produced. All ntuples which were used for training and
evaluation in thesis were produced with tHbbskimmer.

The main purpose of tHbbskimmer is to process ntuples in raw form and
create ntuples suitable for analysis. Raw ntuples are stored on GRID, which
is a large site of interconnected computers around the world which are used
for CERN data storaging and computing. So in the first phase, tHbbskim-
mer copies these raw files from GRID to lxplus for further processing. In this
stage, first preselections and event filtering are already applied. All of this is
realized with usage Panda [22] and Rucio [23] frameworks. Rucio is a frame-
work for GRID data management and Panda is used for job submissions and
monitoring.

After all preprocessed ntuples are succesfully transfered to lxplus, the sec-
ond phase of ntuple skimming takes place. Here, multiple skimming jobs are
submitted to HTCondor [21], which is another workload management frame-
work widely used on lxplus. In each job, new branches important for tH
analysis are created from existing ones and redundant branches are discarded.
In this phase, also branches for machine-learning models outputs are created.
Outputs of the models are mostly made from newly created branches.

After this stage, new ntuples with reduced size and new branches, including
branches with machine-learning models output, are ready for further analy-
sis. The next step is typically TRExFitter evaluation as described in previous
chapters.

87

13. Deployment

Most of the tHbbskimmer code is written in C++ for fast run of the pro-
gram. Large part of the program is also written in Bash and Python.

Because of the large ntuple sizes and long processing time, complete run of
tHbbskimmer typically takes several weeks. Because of this, any code modi-
fications need to be properly tested before used in production.

13.1 Deployment of optimized XGBoost and
Tensorflow models

Since XGBoost and Tensorflow are both widely used frameworks in CERN
experiments, the decision was to include outputs of both of these models into
the tHbbskimmer code.

The addition of machine-leargning models was done in second stage of ntuple
skimming, where compiled C++ executable was operating on preprocessed
ntuples transfered from GRID and creating a new ones from them. More
specifically, in the C++ code it was necessary to create a new slots for models
outputs and define a function, which accepts variables for evaluation as argu-
ments and returns output of loaded XGBoost/Tensorflow model.

Since Tensorflow model was not used in previous versions of thbbskimmer,
it was necessary to update CMake files and also the installation instructions.
Tensorflow framework was included in the project in form of precompiled dy-
namically linked C API libraries, so no compilation was needed for its run.
For an easier use of Tensorflow C API framework, wrapper called Cppflow [25]
was used.

Before thbbskimmer is launched on lxplus, run environment is switched to
Cent OS 6 environment containing LCG 99 package bundle. This environ-
ment also contains some older Tensorflow library files, so it is also necessary to
update global variables, so the newly installed Tensorflow libraries are loaded
instead of the outdated ones.

Before these changes could be incorporated into the project, it was necessary
to properly install and test updated thbbskimmer code in lxplus environment,
so the danger of bugs in production run is minimized.

The whole extension of thbbskimmer code was done using git version con-
trol system.

88

Conclusion

After series of optimizations and testings of different machine-learning mod-
els, we were able to get a model with mean value of significance over different
testing set of 0.39 along with a reasonably low value of variance. The best
performing model with these results was an XGBoost model.

Beside the XGBoost model, a neural network model with a very compara-
ble performance was also successfully trained.

An expected median value of signal strength µ with inclusion of systematical
and statistical uncertainties was 6.346. Median with inclusion of statistical
uncertainties only was 3.89. All results were obtained with XGBoost model.

89

Bibliography

[1] Standard Model. Available from: https://home.cern/about

[2] LHC. Available from: https://www.space.com/large-hadron-
collider-particle-accelerator

[3] Atlas. Available from: https://atlas.cern/

[4] Standard model, physics page. Available from: https://physics.info/
standard/

[5] Standard Model. Available from: https://en.wikipedia.org/wiki/
Standard_Model

[6] The Higgs boson. Available from: https://home.cern/science/
physics/higgs-boson

[7] Vecchio, V.; Aly, M.; et al. Search for associated production of a Higgs
boson and a single top quark in multi-lepton final states using pp collisions
at 13 TeV with the ATLAS detector. Technical report, CERN, Geneva,
2022. Available from: https://cds.cern.ch/record/2802431

[8] Hastie, T.; Tibshirani, R.; et al. The Elements of Statistical Learning -
Data Mining, Inference, and Prediction. 2017.

[9] Standard Model. Available from: https://home.cern/about

[10] Machine Learning course at Cornell university. Available from:
http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/
lecturenote19.html

[11] Scikit-learn ensemble models. Available from: https://scikit-
learn.org/stable/modules/ensemble.html

91

Bibliography

[12] Machine-learning course at FIT, CTU. Available from: https://
courses.fit.cvut.cz/BI-ML1/

[13] Development, Application and Representation of Algorithms for Discov-
eries with the ATLAS Forward Proton (AFP) Detector at CERN, Martin
Vatrt. Available from: https://dspace.cvut.cz/handle/10467/83229

[14] ROOT framework. Available from: https://root.cern/

[15] TMVA documentation. Available from: https://root.cern/manual/
tmva/

[16] Statistical testing in High energy physics. Available from:
https://atlas-stats-doc-dev.web.cern.ch/atlas-stats-doc-
dev/statisticaltests/

[17] Trex-fitter documentation. Available from: https://trexfitter-
docs.web.cern.ch/trexfitter-docs/settings/

[18] Patzwahl, M. Performance Tests of tH(bb) Signal and Background Sep-
aration Using a Binary Classifier Neural Network. 2021. Available from:
https://cds.cern.ch/record/2789973

[19] Koval, O. A.; Boyko, I. R.; et al. Higgs boson production in association
with a single top quark at the LHC. Proceedings of the 23rd Interna-
tional Scientific Conference of Young Scientists and Specialists (Ayss-
2019), 2019, 10.1063/1.5130094.

[20] Vecchio, V.; Aly, M.; et al. Search for associated production of a Higgs
boson and a single top quark using pp collisions at 13 TeV with the AT-
LAS detector in the tH(bb) final state. Technical report, CERN, Geneva,
2020. Available from: https://cds.cern.ch/record/2713507

[21] Work with HTCondor on lxplus. Available from: https:
//batchdocs.web.cern.ch/local/submit.html

[22] Panda documentation. Available from: https://twiki.cern.ch/twiki/
bin/view/PanDA/PanDAl

[23] Rucio documentation. Available from: https://rucio.cern.ch/

[24] tHbbSkimmer source page. Available from: https://gitlab.cern.ch/
atlasHTop/thbbskimmer

[25] CppFlow - C Api Wrapper source page. Available from: https://
github.com/serizba/cppflow

92

Appendix A
TRExFitter Stacked histograms

93

A. TRExFitter Stacked histograms

94

95

A. TRExFitter Stacked histograms

96

97

A. TRExFitter Stacked histograms

98

99

A. TRExFitter Stacked histograms

100

101

A. TRExFitter Stacked histograms

102

Appendix B
Plots of systematic uncertainties

103

B. Plots of systematic uncertainties

104

105

B. Plots of systematic uncertainties

106

Appendix C
Contents of enclosed CD

README.txt ..
thesis.pdf ... Text of the thesis
TMVA......................................Directory of TMVA analysis
Python Directory of Python analysis
TrexLocal...........................Directory of TRExFitter local run
TrexSyst Directory of TRExFitter systematic analysis
tHbbSkimmer Directory changes pushed to tHbbskimmer project

.

107

