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Abstract

We study the following model of opinion spread in a social network. In the beginning, some individuals
in the network adopt a concrete opinion (for example, they are bribed to adopt it). Next, in discrete
rounds, the opinion spreads throughout the network in the following way. An individual that has not yet
adopted the opinion, adopts it if a sufficient number of its direct neighbors possess the opinion. The task
is to initially influence a small number of individuals such that the opinion floods the entire network.
This model corresponds to a notorious hard problem called Target Set Selection. In this work,
we address geometric graphs, in particular, unit disk graphs. We show that even in this class Target
Set Selection remains NP-hard, even if maximum degree of the underlying graph is 4 and thresholds
are at most 2. We also show NP-hardness of Target Set Selection in the majority and unanimous
threshold settings. En route, we show similar hardness results for related classes of graphs such as disk
contact or grid graphs.

Keywords influence spread, Target Set Selection, geometrical graph classes, unit disk graphs,
intersection graphs, computational complexity

Abstrakt

V této práci se zabýváme následujícím modelem šíření názoru v sociální síti. Na začátku někteří jedinci
přijmou jistý názor (například tak, že jsou uplaceni). Poté se názor v síti šíří v diskrétním smyslu podle
následujících pravidel. Jedinec, který ještě tento názor nemá, jej přijme, pokud dostatečné množství jeho
přímých sousedů už názor má. Úkolem pak je ovlivnit malé množství jedinců tak, aby názor zaplavil
celou síť. Tento model odpovídá notoricky těžkému problému Target Set Selection. V této práci
řešíme tento problém v geometricky motivovaných grafových třídách, konkrétně ve třídě unit disk grafů.
Ukazujeme, že i pro tuto třídu je problém Target Set Selection NP-těžký i když má vstupní graf
maximální stupeň 4 a hodnota prahové funkce je nanejvýš 2. Také ukazujeme NP-těžkost v případě, kdy
je prahová funkce nastavena na majoritu. Po cestě ukazujeme podobné výsledky pro související třídy
grafů jako jsou disk contact grafy nebo mřížkové grafy.

Klíčová slova síření názoru, Target Set Selection, geometrické grafové třídy, unit disk grafy,
průnikové grafy, výpočetní složitost
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Chapter 1

Introduction

Imagine you are working in a marketing department of a company. Suppose your firm created a brand
new product and you want the public to adopt it. A natural question arises: Which individuals in the
population should one target (for instance, these individuals could be given the product for free or with
a discount) such that a sufficiently large portion of the whole society adopts the new product? The
answer to this question necessarily depends on the structure of the society (i.e., the underlying social
network) we are dealing with.

The previous scenario is an example of diffusion, which turns out to be a natural phenomenon in many
real-world networks. Except for the spread of influence, ideas, or opinion, one could model the spread
of rumors in an online social network [6], the propagation of a virus, the spread of diseases in a human
contact network [63], wormhole in a computer network [40], and many more real-world scenarios.

A simple way of modeling these situations is to assign each individual v in the network a thresh-
old t(v). Each individual is either active (influenced, infected) or inactive (not influenced, healthy).
Each individual v in the network has some set of individuals (e.g., close friends, family, his boss at work,
etc.) who directly influence him. Those are his neighbors. If at least t(v) of his neighbors become
active, then he will become active. The activation is, for simplicity, assumed to be symmetrical for all
individuals. That is, if u can influence v, then v can influence u. We stress out, that an individual, after
he becomes active, remains active for the rest of the diffusion process. For example, there is no notion
of getting healthy after being infected by a virus.

Returning to the original motivation, if a threshold of an individual v is equal to 2, it is sufficient
that only 2 of his neighbors adopt the new product, and this automatically convinces v to adopt it too.
On the other hand, if a threshold of an individual is large (say, half of the population), it might be of
consideration to convince him to adopt the new product in a different way rather than forcing too many
of his direct neighbors to adopt it. Suppose we insist that everyone in the population adopts our new
product. We could, for example, give out the product for free to individuals with large threshold values.
Well, we could as well give out the product for free to all individuals. However, this is impractical,
since we can’t afford to give out the product for free to everyone. Instead, we would like to look for
the smallest number of individuals that we have to influence in a different way (say, by giving them the
product for free) such that the entire population adopts our new product. Another approach could be to
fix the number of products we want to give out for free and look to maximize the number of individuals
that will eventually buy our new product. We could as well combine these two approaches and look for
a set of (at most) k individuals to whom we will give the product for free such that at least ` individuals
eventually buy the product. In our work, we deal with the first scenario – i.e., we aim to minimize the
initial set and influence the whole population.

We represent the network as an undirected graph G in a natural way. The vertices of G correspond
to the individuals and two individuals share an edge if they can influence each other in the modeled
process. The threshold values of the individuals correspond to a function t : V (G) → N. The task then
translates to activating a (small) set of vertices, such that all vertices in G eventually become active
in the activation process (refer to Section 1.2 for a formal definition). We refer to the sets that cause
activation of the entire network as target sets.
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This model corresponds to the Target Set Selection problem (or TSS for short), introduced by
Domingos and Richardson [62] in the context of viral marketing on social networks. In their work [62],
they originally came up with a probabilistic model and heuristic solutions. Kempe, Kleinberg, and
Tardos [45, 46, 47] later refined the model in terms of thresholds, which is the model we follow in
this work. They also showed that the problem is NP-hard. They originally considered a model with
probabilistic thresholds, called the linear threshold model and focused on a slightly different task. For
a fixed k, they wanted to find an initial set S of size (at most) k that would maximize the expected
number of active individuals at the end of the process.

There are several other notions equivalent to target sets. The term dynamic monopolies (or dynamos)
is used by several authors [10, 33, 65]. Dynamic monopolies are motivated by the spread of fault
in majority-based network systems arising in the study of distributed computing and communication
networks [1]. These networks have been used to model the spread of fault to a certain node in a distributed
system by checking for faults within a majority of its direct neighbors. This corresponds to Target Set
Selection where the threshold of an individual v is equal to

⌈
deg v
2

⌉
.

Another similar notions include irreversible k-conversion processes or irreversible k-threshold pro-
cesses [29, 51, 64, 65] which correspond to Target Set Selection with threshold values set to k for all
individuals. An equivalent notion to the latter is that of k-neighborhood bootstrap percolation, as studied
in [7, 57].

Known results
Target Set Selection is known to be computationally very hard from both exact computation and
approximation points of view. In the decision variant, the task is to decide whether the input graph
admits a target set of size at most k (see Section 1.2 for a formal definition). In the optimization variant,
the task is to minimize the size of the target set. The decision variant is NP-hard in the general case as
it generalizes the well-known Vertex Cover problem (we include a proof of this fact in Section 1.2).

Restriction of the threshold function
As Target Set Selection is NP-hard in the general case, it was first attempted to tackhle the
problem’s complexity by restricting the threshold function. There are three main settings or restrictions
of the threshold function commonly studied:

Unanimous thresholds – t(v) = deg v for all vertices v,

Constant thresholds – t(v) ≤ c for all vertices v, and some fixed constant c,

Majority thresholds – t(v) =
⌈
deg v
2

⌉
for all vertices v.

The unanimous threshold setting resembles the well-known Vertex Cover problem.
Dreyer and Roberts [29] showed that Target Set Selection remains NP-hard even if the threshold

function is bounded by a constant c ≥ 3. Chen [17] extended this result and showed NP-hardness even in
the case where thresholds are at most 2. The problem is trivial when the thresholds are at most 1 since it
suffices (and is also necessary) to target exactly one vertex in each connected component (not containing
a vertex of threshold 0) of the input graph. Optimization variant of Target Set Selection cannot be
approximated within a polylogarithmic factor, unless NP ⊆ DTIME(npolylogn), even in constant degree
graphs with thresholds equal to 2 [17].

NP-hardness of the majority setting is originally due to Peleg [61].
One could also consider exact thresholds, i.e., not t(v) ≤ c for some constant c, but t(v) = c for all v.

In Chapter 3, we show that there is a slight difference in the latter two settings for c = 2. A generalization
of the three settings (unanimous, exact, and majority) is to make the threshold function only depend on
the degree of a vertex (also known as degree-dependent thresholds [60]). In other words, t(v) = f(deg v)
for some (computable) function f . The unanimous setting corresponds to the case when f is the identity
function, exact corresponds to the case when f is constant, and majority corresponds to the case when
f(x) =

⌈
x
2

⌉
. This generalization of the threshold function was considered in multiple works [19, 30].

2



Restriction of the graph structure
As natural restrictions of the threshold function turned out to be either trivial or still NP-hard, attempts
were made to restrict the underlying graph structure.

The problem is solvable in polynomial time if the underlying graph has diameter one (i.e., it is
a complete graph) but becomes NP-hard on graphs of diameter two [60]. Diameter of a graph G is
the length of the longest path among all shortest paths between any two vertices in G. In graphs of
diameter d every vertex can be reached from any other vertex by a path of length at most d. It is quite
common that large social networks tend to have small diameter [60].

The polynomial-time algorithm on complete graphs can be described as follows. Sort the vertices
according to their thresholds from largest to smallest, and for each i ≥ 0 activate the first i vertices and
simulate the activation process. It is not hard to see that the smallest i for which the set of first i vertices
activates the entire graph is an optimal target set. The sorting part can be accomplished in linear time
because we can assume t(v) ≤ deg(v) < n (see Lemma 3.1), and the second part can be optimized to
run in linear time using dynamic programming [60].

Another tractability result is due to Chen [17] who showed a simple linear-time algorithm for trees,
also based on dynamic programming. This result was further generalized to the class of block-cactus
graphs. A cactus graph is a graph in which all 2-connected components consist of a cycle or a single
edge. Another equivalent characterization is that any two cycles share at most 1 vertex. A block-cactus
graph is a graph in which each 2-connected component is either a cycle or a complete graph. Chiang
et al. [18] proposed a linear-time algorithm for the class of block-cactus graphs, generalizing the linear-
time algorithm for trees. In the same work, they also proposed a linear-time algorithm for the class of
chordal graphs and thresholds at most 2. A graph is chordal if and only if it does not contain a cycle
on k ≥ 4 vertices as an induced subgraph. They also determined the size of an optimal target set for
Hamming graphs. A graph is a Hamming graph if and only if it is a cartesian product (see Section 1.1
for a formal definition) of nontrivial complete graphs. In this context, a nontrivial complete graph is
a complete graph on at least 2 vertices.

Parameterized complexity
Restriction of the underlying graph structure was further investigated in several works using the frame-
work of parameterized complexity. Parameterized complexity aims to study the computational complex-
ity of problems according to their inherent difficulty with respect to one or more parameters of the input
or output. This allows for a finer analysis of NP-hard problems than in classical complexity. In classical
complexity the input of a problem is a string x ∈ Σ∗, whereas in parameterized complexity the input
is a pair (or more generally an r-tuple for r − 1 parameters) (x, κ) ∈ Σ∗ × N, where κ is referred to as
the parameter. A parameterized problem is thus a subset of Σ∗ × N. It turns out that many NP-hard
problems are efficiently solvable if a suitable parameterization is found. A parameterized problem L
is said to be fixed-parameter tractable or (in the class) FPT if it can be solved in f(κ) · nO(1) time for
some computable function f , where κ is the parameter and n is the size of the input. A parameterized
problem is (in the class) XP if it can be solved in nf(κ) time for some computable function f . The classes
FPT and XP are analogs to the classes P and EXP from classical complexity. Central to parameterized
complexity is the W-hierarchy of classes, defined by the closure of particular parameterized problems
under fpt-reductions (see for instance the monograph of Cygan et al. [25] for formal definitions and
other details). These classes are:

FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[P] ⊆ XP.
All inclusions are believed to be strict, however, we only know that FPT 6= XP by a diagonalization
argument. The statement FPT 6= W[1] is true, assuming the so-called exponential-time hypothesis.
Exponential-time hypothesis (ETH) asserts that the 3-Sat problem cannot be solved in time O(2εn)
for any ε > 0 [42]. Similarly, as we assume P 6= NP, we assume ETH to be true. However, ETH is a
stronger claim than P 6= NP. In other words, ETH implies P 6= NP but not vice versa. The class W[1]
is a parameterized analog of the class NP from classical complexity. The major goal in the theory of
parameterized complexity is to distinguish between parameterized problems that are in FPT and those
which are W[1]-hard. If a problem is shown to be W[1]-hard, it is very unlikely that it admits an FPT
algorithm.
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Parameterizations
A very natural parameterization for many computational problems is parameterization by the size of the
solution. For example, while the Vertex Cover problem is NP-hard, deciding whether a graph has a
vertex cover of size at most k can be accomplished in FPT time with respect to k. For Target Set
Selection, parameterization by the size of the target set is, unfortunately, W[2]-hard even on graphs
with diameter 2 [60].

Another natural parameterization is the distance to a particular class of graphs. More precisely, the
parameter is the minimal number of vertices (or edges) that must be removed from the input graph
to obtain a graph from a particular class. More generally, one could also consider addition operations,
or contractions, and so on. If a problem is solvable for a particular class G, there is a hope for an
efficient algorithm if the graph is “not too far” from being in the class G (e.g., the number of vertices
or edges to be removed or added to obtain a graph from class G is small). This approach is also known
as parameterization by distance to triviality [2, 35]. These parameterizations with known results about
Target Set Selection include:

the feedback vertex set number and the feedback edge set number – the minimal number of vertices
(edges) that one has remove from the graph to obtain a graph without cycles (i.e., a forest),

the cluster edge deletion number – the minimal number of edges that must be deleted from the graph
to obtain a cluster graph (i.e., a graph which is a disjoint union of cliques),

the vertex cover number – the minimal number of vertices that have to be removed from the graph
to obtain a graph without edges,

the size of minimal degree-k modulator – a subset M of vertices in a graph G is called a degree-k
modulator if removing M from G results in a graph with maximum degree k. Degree 0-modulators
are precisely the vertex covers of the graph.

Many of the above parameters coincide with parameters that are optimal solutions to particular
optimization problems. For example, the vertex cover number is the size of a minimum vertex cover
(see Section 1.1 for a precise definition) of the input graph, i.e., an optimal solution to the optimization
variant of the Vertex Cover problem. Another such parameter is the twin cover number which is the
size of a minimum twin cover of the input graph (see [30] for a definition of this parameter).

It turns out that parameterization of Target Set Selection by the feedback vertex set number is
W[1]-hard [9]. On the other hand, Target Set Selection is fixed-parameter tractable when parame-
terized by any of the following: vertex cover number [8, 60], cluster edge deletion number [60], feedback
edge number [60], and degree-1 modulator [8]. In addition, Target Set Selection admits a linear ker-
nel (see [25] for a formal definition of kernels) with respect to the parameter feedback edge number [60].
In the majority and constant threshold settings Target Set Selection is fixed-parameter tractable
parameterized by the twin cover number but W[1]-hard when the threshold function is unrestricted [30].

Notice that it makes a huge difference if the distance to a particular class is measured via removal
of the vertices or the edges. For example, there are graph classes with bounded feedback vertex set
number, while having unbounded feedback edge set number. The parameterized complexity of Target
Set Selection with respect to these two parameters also differs drastically. While Target Set
Selection is W[1]-hard parameterized by the former parameter, it has a linear kernel with respect to
the latter parameter.

Among other parameterizations, it is important to mention structural parameterizations. Struc-
tural parameterizations capture various structural properties of the graph. For example, a very simple
structural parameter can be the maximum degree of a graph. For Target Set Selection this param-
eterization cannot admit even an XP algorithm, unless P = NP, because the problem is NP-hard even on
graphs with maximum degree 3. We include a proof of this result in Chapter 3.

A very famous structural parameter is treewidth (denoted by tw). Roughly speaking, the treewidth
of a graph expresses its “tree-likeness”. Refer to [25] for a formal definition. Many NP-hard optimization
problems can be solved even in linear time if the input graph has bounded treewidth. These include
Dominating Set, Vertex Cover, Independent Set, and Longest Path, to name a few. We refer
the reader to [25] for formal definitions of these problems and the corresponding algorithms.
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Ben-zwi et al. [9] showed that Target Set Selection can be solved in nO(tw) or cO(tw)nO(1) time,
where c is an upper bound on all threshold values. In other words, they showed that Target Set
Selection is fixed-parameter tractable in the constant threshold setting and in XP if the threshold
function is unrestricted. They also showed that Target Set Selection is W[1]-hard parameterized
by treewidth, and there is no algorithm with running time no(

√
tw), unless FPT = W[1]. Another way

of interpreting the result of Ben-zwi et al. is to say that the Target Set Selection problem is FPT
with respect to the combined parameter treewidth and maximum threshold.

An interesting structural parameterization for Target Set Selection is the parameter neighbor-
hood diversity (first introduced by Lampis [53]) which, roughly speaking, measures how many distinct
neighborhoods the vertices have in the graph (see [30, 53] for definitions). In the context of the Target
Set Selection problem, two vertices u and v with the same neighborhood, i.e., N(u) = N(v), should
be indistinguishable in the activation process if their threshold t is the same i.e., t(u) = t(v). Dvořák
et al. [30] showed that Target Set Selection admits an FPT algorithm with respect to the parameter
neighborhood diversity if the threshold function satisfies t(v) = f(deg v) (they call such setting Uniform
Target Set Selection). In fact, they consider the scenario where the threshold function is a func-
tion of the neighborhood (i.e., if t(v) = f(N(v))) and not necessarily of the degree, which is a slightly
weaker assumption. To see this, note that any function f depending only on the degree of a vertex v
can be turned into a function f ′ depending on the set of neighbors of v. The function f ′ is given by
f ′(N(v)) = f(|N(v)|). On the other hand, if the threshold function is unrestricted, they show that the
problem becomes W[1]-hard parameterized by neighborhood diversity.

The structural parameter cliquewidth (denoted by cw) captures the complexity of the input graph
in terms of certain algebraic expressions (see [22, 23]). It is similar to treewidth in some sense, but
unlike treewidth, cliquewidth may be bounded even for some dense graph classes (see Section 1.1 for
a definition of a dense graph class). It is known that cw ≤ 2tw+1 + 1 [24]. Hartmann [36] showed that
Target Set Selection is fixed-parameter tractable when parameterized by the combined parameter
cliquewidth and the maximum threshold of the input graph, generalizing the previous result for the
parameters treewidth and maximum threshold of Ben-zwi et al. [9]. As stressed by Hartmann in [36],
the dependence of the parameters on the complexity of their algorithm is surprisingly well-behaved.

Other restrictions of graphs
When attempting to restrict an input for a graph problem there are several other natural approaches
to consider. One option is to forbid certain structures inside the graph. For example, trees are defined
as connected graphs that do not contain any cycles. Chordal graphs are defined as graphs that do not
contain any induced cycle on 4 or more vertices. Another interesting graph class arising from forbidding
a structure is the class of claw-free graphs. In claw-free graphs, there is no induced star with three leaves,
i.e., a K1,3. This very simple restriction yields surprising results concerning tractability of otherwise
NP-hard problems [59].

Another way of restricting the structure of a graph is to impose bounds on some structural parameters.
We could, for example, upper-bound or lower-bound the maximum or minimum degree of a vertex in
the graph or impose restriction on the treewidth of the graph.

Further restrictions include forbidding minors. A graph H is a minor of a graph G if it can be
obtained from some subgraph of G by contracting edges (refer to [28] for a formal definition). Trees
can be equivalently characterized by specifying that G is a tree if and only if the cycle graph C3 is not
a minor of G.
Decompositions

Instead of forbidding a certain structure, one could consider a slightly opposite approach and prescribe
the building blocks of the graph. An example could be the algebraic expression related to the parameter
cliquewidth mentioned in the previous section. Another known graph class defined in such a way is the
class of cographs. Cographs are defined recursively by the following three rules (refer to Section 1.1 for
formal definitions of used terms):

i) The graph K1 is a cograph.

ii) If G is a cograph, then its complement is also a cograph.
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iii) If G and H are cographs, then their disjoint union is a cograph.

When the graph belongs to a certain class defined like this it usually comes with a corresponding
decomposition or other similar notion which captures the building blocks of the graph. For example,
there is a notion of tree decompositions related to the parameter treewidth. A cliquewidth decomposition
would be equivalent to the algebraic formula describing the graph. A cograph is usually represented by
its corresponding cotree. These decompositions of graphs often yield interesting algorithmic applications
(refer to [25] for algorithms on tree decompositions and refer to [21] for a survey about cographs).
Intersection graph classes

Another way of specifying the building blocks of a graph is the concept of intersection graphs or
intersection graph classes. Given a family of sets A = {A1, A2, . . . , An}, one can construct a graph with
vertex set A and connect two sets Ai and Aj (i 6= j) with an edge if and only if Ai ∩ Aj 6= ∅ (see
Definition 1.2). It is not hard to observe that any graph can be constructed as an intersection graph (see
Observation 1.3). The key idea is to impose restrictions on the family A from which the graph is built.

This gives rise to a well-known class of interval graphs, where the family A is restricted to be a family
of closed intervals with real endpoints. Bessy et al. [10] showed that Target Set Selection can be
solved in polynomial time in the class of interval graphs when the threshold function is bounded by
a constant.

It turns out to be interesting when the intersection graphs arise from a family of geometrical objects [5,
16, 34, 50]. Recognition of some classes may even be NP-hard. On the other hand, if the representation of
the graph is given as an input, the geometric structure of the graph provides interesting algorithmic results
for some computationally hard problems. We have seen one such example in the previous paragraph
– the interval graphs. Apart from Target Set Selection, many other NP-hard problems can be
solved efficiently (even in linear time) in interval graphs. These include Dominating Set [15] and
Hamiltonian Cycle [44], to name a few. Interval graphs may also be recognized in linear time [12].

Central to our work are the classes of disk and unit disk graphs. A disk graph is an intersection graph
arising from a family of closed disks in the Euclidean plane, and unit disk graph arises from a family of
closed disks in the Euclidean plane with equal diameter. We discuss basic properties of these classes in
Section 1.1.

To the best of our knowledge, there are very few results on Target Set Selection regarding
intersection graph classes, in particular, classes that possess a geometric structure. We focus on the class
of (unit) disk graphs, which further includes a real-world motivation in the context of the Target Set
Selection problem.
Unit disk graphs

Unit disk graphs were initially used as a natural model for a topology of ad-hoc wireless commu-
nication networks [41]. Interestingly, it is NP-hard to recognize this graph class. More precisely, for
a given graph G, the problem of deciding whether G is a unit disk graph is NP-hard [14, 37, 43]. The
same hardness result holds for unit disk contact graphs [13], where the disks may only touch at one
point, as well as for disk graphs [49]. However, if the disks only touch and are allowed to have arbitrary
diameter (i.e., the graph is a disk contact graph), the recognition problem is solvable in linear time [38].
This is because the latter class is equivalent to the class of planar graphs (see Theorem 1.4). Refer
to Section 1.1 for formal definitions of unit disk, disk contact, and disk graphs. On the other hand,
many computationally hard problems, such as Independent Set or Fractional Coloring, can be
efficiently approximated for the class of unit disk graphs [58] even without the disk representation on
the input. In contrast, Independent Set cannot be approximated in general graphs within a factor of
n1−ε for any ε > 0, unless P = NP [69], and Fractional Coloring cannot be approximated in general
within a factor of n1−δ for some δ > 0, unless P = NP [55]. The Clique problem (which essentially
shares the same approximation hardness as Independent Set in the general case) can be solved even
exactly in polynomial time if the disk representation is given as part of the input [20]. As Target Set
Selection is NP-hard in general graphs even with restricted threshold function, it is natural to explore
whether restricting the input graph to be a (unit) disk graph provides any tractability result.

Except for purely theoretical motivation, there is also a real-world scenario where Target Set
Selection restricted to the class of disk graphs may be identified. Imagine that the activation process
simulates a spread of a virus or infection through the network. Initially, the set S is infected by the virus,
and threshold values t(v) correspond to immunity values of the individuals. The lower the immunity
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value of an individual v, the higher the chance that the individual v will become infected (i.e., only t(v)
of his infected neighbors will make him infected). The task in the Target Set Selection problem
then translates to infecting a group of size at most k such that the whole network becomes eventually
infected. Inspired by the actual restrictions in the epidemic of coronavirus, especially by social and
physical distancing requirements, it is reasonable to model each individual with their personal space
which can be, for simplicity, a closed disk. In this sense, two individuals exchange the virus with each
other whenever they are “too close” to each other. In other words, their personal spaces intersect. As
we model the personal spaces with disks, the underlying graph representing the network will be a disk
graph.

In fact, we are specifically addressing unit disk graphs. As we will show, even if all disks have the
same diameter (i.e., the graph is a unit disk graph), Target Set Selection remains NP-hard. Thus,
the problem cannot be easier on disk graphs as disk graphs is a superclass of unit disk graphs.

Our contribution
Our main focus is on the class of unit disk graphs. We extend the hardness results for the constant
threshold setting of Target Set Selection and show that Target Set Selection is NP-hard even
when restricted to the class of grid graphs and the thresholds are at most 2. This implies NP-hardness
for the class of unit disk graphs even with ∆G ≤ 4 and thresholds at most 2. En route, we also prove
NP-hardness for the class of planar graphs with ∆G ≤ 4 and thresholds at most 2.

By a simple modification of our reductions, we also obtain NP-hardness for the majority threshold
setting in the classes of grid, planar, and unit disk graphs even when ∆G ≤ 4.

We complete the complexity picture by observing how the unanimous threshold setting behaves in
these graph classes, namely, grid graphs, planar graphs, and unit disk graphs. We show a tractability
result for the class of grid graphs and observe NP-hardness for planar and unit disk graphs.

Lastly, we show that Target Set Selection is NP-hard in the general case when thresholds are
at most 2 and ∆G ≤ 3. This complements the known tractability result when thresholds are exactly 2
and ∆G ≤ 3 [51]. We demonstrate that the tractability result cannot be extended even in the class of
unit disk graphs. We show that Target Set Selection remains NP-hard in the classes of unit disk
and planar graphs even when ∆G ≤ 4 and the thresholds are exactly 2.

We complete the analysis for bounded degree graphs by showing how to compute an optimal target
set in graphs with ∆G ≤ 2, i.e., cycles and paths.

As an auxiliary result, we show that for r ∈ N satisfying r = −1 mod 4 or r = −1 mod 5, the
Independent Set problem is NP-hard even when restricted to the class of r-regular unit disk graphs.

Note
This work includes detailed proofs and extensions of results included in a paper co-authored by the

author of this thesis. The paper, called Establishing Herd Immunity is Hard Even in Simple Geometric
Networks, was accepted to the WAW 2023 conference (18th Workshop on Algorithms and Models for
the Web Graph) held at the Fields Institute for Research in Mathematical Sciences, Toronto, Canada on
May 23-26, 2023.

Organization of the work
The rest of this work is organized as follows. In the following sections, we introduce basic notation
and terminology. We provide an extended introduction to graph theory and complexity theory and all
necessary definitions and theorems we build upon.

In Chapter 2, we give proofs of our main results. We address the class of unit disk graphs and prove
the promised hardness and tractability results.

In Chapter 3, we address bounded degree graphs and the exact threshold setting. We provide the
proofs of results regarding gengeral graphs with maximum degrees 3 and 2. We also include proofs
regarding the exact threshold setting in the classes of planar and unit disk graphs.
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1.1 Preliminaries
We denote by N the set {0, 1, 2, . . .}, Z is the set of all integers, i.e., Z = {. . . ,−2,−1, 0, 1, 2, . . .}, and
Q and R stand for the sets of rational and real numbers, respectively. For a set A, we denote by

(
A
2

)
the set of all 2-element subsets of A. For a nonnegative integer k, we denote the set {1, . . . , k} by [k].
In particular, [0] = ∅.

1.1.1 Graph Theory
We assume that the reader is familiar with basic concepts from graph theory. We state the most important
definitions and results related to our work. For further reading about graph theory and other related
topics, we refer the reader to the monograph of Diestel [28].

Finite simple undirected graph is an ordered pair G = (V,E), where V is a finite set of vertices, and
E ⊆

(
V
2

)
is a set of edges. For a graph G, we denote by V (G) and E(G), respectively, the set of vertices

and the set of edges of G. Traditionally, if no confusion can occur, we denote by n the number of vertices
and by m the number of edges of a graph.

Throughout this work, we will deal exclusively with graphs that are finite, simple, and undirected.
We will thus refer to finite simple undirected graphs simply as graphs.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A graph H is an induced
subgraph of a graph G if V (H) ⊆ V (G) and E(H) = E(G) ∩

(
V (H)

2

)
. Let X ⊆ V (G). We denote by

G[X] the subgraph of G with vertex set X and edge set E(G) ∩
(
X
2

)
. We refer to G[X] as the subgraph

induced by X. The complement of a graph G, denoted by G, is the graph G :=
(
V,
(
V (G)

2

)
\ E(G)

)
.

Let G = (V,E) and G′ = (V ′, E′) be two graphs. We say that G and G′ are isomorphic, or that
G is isomorphic to G′, if there exists a bijection f : V → V ′ such that {u, v} ∈ E if and only if
{f(u), f(v)} ∈ E′ for all vertices u, v ∈ V . If two graphs G and H are isomorphic, we write G ' H.

Let G = (V,E) be a graph and e = {u, v} ∈ E its edge. We say that e is incident to the vertices
u and v, and we refer to u and v as endpoints of e. We further call u a neighbor of v and vice versa
v a neighbor of u. The set of all neighbors of a vertex v ∈ V is denoted by NG(v). The number of edges
incident to a vertex v is called the degree of the vertex v and is denoted by degG v. A vertex v ∈ V (G)
with degG v = 1 is called a leaf.

We refer to the set N(v) as the open neighborhood of the vertex v. The closed neighborhood of
a vertex v is defined to be NG[v] := NG(v) ∪ {v}. As we are dealing with simple graphs, we have
degG v = |NG(v)|. If no confusion can occur, we omit the index G and write just N(v), N [v] or deg v.
We extend the neighborhood notation NG(v), NG[v] to sets of vertices as follows. For a set of vertices X
we define NG(X) :=

⋃
v∈X N(v) and similarly NG[X] :=

⋃
v∈X N [v].

The maximum degree of a graph G is ∆G := max{degG v | v ∈ V (G)}. We say that a graph G is
c-regular if degG v = c for all vertices v ∈ V (G). We call a graph regular if it is c-regular for some
constant c ∈ N.

The path graph on n vertices is the graph Pn := ([n], {{i, i+ 1} | i ∈ [n− 1]}). The cycle graph on n
vertices, or simply a cycle (of length n), is defined to be the graph Cn := ([n], E(Pn) ∪ {{n, 1}}). The
complete graph on n vertices, or a clique, is denoted by Kn and is defined by Kn :=

(
[n],

(
[n]
2

))
, i.e., it

contains all possible edges. The complete bipartite graph with partitions of size m,n ∈ N (not both of
them zero) is the graph Km,n where V (Km,n) := [m]× {0} ∪ [n]× {1} and E(Km,n) := {{(a, 0), (b, 1)} |
a ∈ [m], b ∈ [n]}.

We say that a graph G = (V,E) is bipartite if and only if there is a partition of V into two sets A
and B such that for all edges e = {u, v} ∈ E either u ∈ A and v ∈ B or vice versa. We refer to the sets
A and B as parts of the graph G. Observe that a graph G is bipartite if and only if it is a subgraph
of Km,n for some m,n. There is a folklore characterization of bipartite graphs in terms of odd cycles.
See [28, Proposition 1.6.1.] for a proof.

I Theorem 1.1. A graph is bipartite if and only if it does not contain a cycle of odd length as a subgraph.

In our work, we deal with planar graphs. Informally speaking, a graph is planar if and only if it
can be embedded in R2 such that vertices occupy distinct points and edges {u, v} are curves connecting
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points corresponding to the vertices u, v. No two curves are allowed to cross except at the endpoints.
We refer the reader to [28, Chapter 4] for a more rigorous introduction.

We now introduce the notion of intersection graphs. An intersection graph is a natural way to build
a graph from a family of sets. The definition is as follows.

I Definition 1.2. Let A = {A1, A2, . . . , An} be a family of sets. The intersection graph arising from A,
denoted by G(A), is defined as follows. V (G(A)) := A and E(G(A)) := {{Ai, Aj} | i 6= j ∧Ai ∩Aj 6= ∅}.
The family A is called the intersection model or the representation for the graph G.

I Observation 1.3. Every graph is an intersection graph for some family of sets A.

Proof. Let G = (V,E) be a graph. Let Av = {e | v ∈ e} and A = {Av | v ∈ V }. In other words, for each
vertex v take the set of edges incident to v. By definition, two vertices u, v are neighbors if and only if
there is an edge {u, v} ∈ E, which is equivalent to the fact that Au ∩Av = {u, v} 6= ∅. �

Note that we are explicitly talking about A as a family of sets, not as a set of sets. We permit
repetitions inside A. More specifically, for some Ai, Aj ∈ A we can have Ai = Aj and i 6= j.

Defining the notion of intersection graphs might initially seem uninteresting, as it is true that any
graph can be represented as an intersection graph. However, by imposing restrictions on the intersection
model, one can obtain interesting and non-trivial graph classes.

The class of disk graphs is the class of intersection graphs for which the intersection model is a set
of closed disks in the euclidean plane. The class of interval graphs is the class of intersection graphs for
which the intersection model is a set of closed interval with real endpoints. The class of disk graphs has
several interesting subclasses that we will specifically deal with in this work. These include the classes
of disk contact graphs, unit disk graphs and grid graphs.

A unit disk graph is a disk graph in which the corresponding intersection model consists of closed
disks in the Euclidean plane with equal diameter. An example of a unit disk graph and its corresponding
intersection model is given in Figure 1.1. A disk contact graph (also known as coin graph) is a disk
graph G(D) in which the corresponding intersection model further satisfies: For any two distinct disks
Di, Dj ∈ D we have |Di ∩Dj | ≤ 1. In other words, disks corresponding to adjacent vertices may only
touch in exactly 1 point.

There is a known characterization of disk contact graphs which we state here without proof. This
result is also known as Koebe-Andreev-Thurston Theorem [48].

I Theorem 1.4 (Circle Packing Theorem, folklore). The class of disk contact graphs is exactly the class
of planar graphs.

Figure 1.1 An example of a unit disk graph. The graph is depicted on the left, and its corresponding unit
disk representation is on the right.

We now define the class of grid graphs. One could define the grid graphs geometrically as follows.

I Definition 1.5. Let m,n ∈ N,m, n ≥ 1. An m × n grid is a graph G = (V,E) where V = [m] × [n]
and (x1, y1) is a neighbor of (x2, y2) if and only if the manhattan distance of the points (x1, y1) and
(x2, y2) is equal to 1. That is, if |x1 − x2|+ |y1 − y2| = 1. In other words, if (x1, y1) and (x2, y2) are two
neighboring grid points, they share an edge.

A more graph-theoretical definition is as follows.

I Definition 1.6. Let G and H be graphs. The cartesian product of G and H, denoted by G�H, is the
graphG′ = (V ′, E′), where V ′ = V (G)×V (H), and {(u, u′), (v, v′)} ∈ E′ if and only if u = v∧u′ ∈ NH(v′)
or u′ = v′ ∧ u ∈ NG(v).
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Figure 1.2 The 4× 4 rook graph, or K4�K4

Figure 1.3 The 4× 4 grid graph, or P4�P4

I Example 1.7. K2�K2 ' C4. Cartesian product with K1 does not mean anything. I.e., G�K1 ' G
for any G.

I Example 1.8. A rook graph is a graph, whose vertices are positions on an m× n chess board. Two
board positions u and v are adjacent if and only if the rook piece can move from u to v. See Figure 1.2.
It turns out that the m× n rook graph is isomorphic to the cartesian product Km�Kn.

The alternative definition of a grid is as follows.

I Definition 1.9. An m× n grid is the graph Pm�Pn.

It is not hard to observe that Definitions 1.5 and 1.9 define the same thing. If we don’t specifically
care about the dimensions of the grid, we refer to an m×n grid simply as grid. A grid graph is a graph G
that is an induced subgraph of a grid.

I Example 1.10. C4 is the 2× 2 grid as K2�K2 = P2�P2 = C4. A 4× 4 grid is shown on Figure 1.3

We shall now see the relationship between the graph classes introduced so far. This is the content of
Observation 1.11.

I Observation 1.11. The classes of disk graphs, unit disk graphs, disk contact graphs, and grid graphs
are related in the following way (see also Figure 1.4):

i) Every unit disk graph is a disk graph, and every disk contact graph is a disk graph.

ii) The class of unit disk graphs and disk contact graphs are unrelated by inclusion.

iii) Every grid graph is also a unit disk graph and also a disk contact graph.

Proof. Claim i) is clear from the definition.
For ii), we make use of the Circle Packing theorem. Observe that clique Kp for p ≥ 5 is a unit disk

graph but not a planar graph (thus not a disk contact graph). On the other hand, for p ≥ 6, the graph
K1,p is not a unit disk graph1 but is indeed planar (i.e., disk contact).

Finally, for iii) consider the grid graph H and let G be the grid Pm�Pn for some m,n where H is
an induced subgraph of G. Embed G in an obvious way into the integer grid [m] × [n] ⊆ Z2. We

1Unit disk graphs do not contain K1,p as an induced subgraph for all p ≥ 6.
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first obtain the obvious disk representation for G. We place a disk with diameter 1 on each grid point
(i, j) ∈ [m] × [n]. To obtain disk representation for H, just erase all disks corresponding to vertices in
V (G) \ V (H). This disk representation also shows that H is also a disk contact graph.2 �

DISK

GRID

UDG DC

Figure 1.4 Relationship between the considered graph classes. An arrow from a class G to a class H indicates
that G is a subclass of H. UDG stands for the class of unit disk graphs, DC is the class of disk contact graphs,
DISK is the class of disk graphs and GRID is the class of grid graphs.

When talking about a graph class there is a notion of sparsity or density which essentially captures
how many edges the graph has.

Complete graphs have a large number of edges in the sense that |E(Kn)| = Ω(|V (Kn)|2) as n→ ∞.
Complete graphs are dense. The Ω notation is not a precise definition since we also want to call a graph
class G dense if it contains graphs with quadratically many edges. However, not all graphs from G need
to have at least c|V |2 edges for some constant c only depending on G. With this definition, we consider
the class of bipartite graphs to be dense.

On the other hand, it can be shown (see [28]), that for a planar graph G we have |E(G)| ≤ 3|V (G)|−6,
asymptotically |E(G)| = O(|V (G)|) as |V (G)| → ∞. The class of planar graphs is an example of a sparse
class.

Obviously, the notion of sparsity and density only makes sense if the size of the graphs in the class
tends to infinity, i.e., we are only interested in infinite graph classes. A formal definition follows.

I Definition 1.12. Let G be an infinite class of graphs. G is said to be sparse if there exists a constant c
such that for all graphsG ∈ G, we have |E(G)| ≤ c|V (G)|. On the other hand, G is said to be dense if there
is a constant c such that for every n, there is a graph G ∈ G with |V (G)| = n and |E(Gn)| ≥ c|V (G)|2.

With this definition, there cannot be a class that is both dense and sparse. However, there can be a
class that is neither dense or sparse.

I Observation 1.13. The classes of grid and disk contact graphs are sparse, while the classes of unit
disk and disk graphs are dense.

In our work, we make use of a standard graph construction called graph subdivision. Let G = (V,E)
be a graph and e ∈ E an edge. The process of subdividing the edge e constitutes of replacing e in G
by a path graph P and connecting the original endpoints of e with the leaves of P . We will often use
the phrase “we subdivide an edge e ∈ E(G) once, twice, or k times (respectively)” which means we are
replacing the concrete edge e by a path P1, P2, Pk (respectively) in G.

I Example 1.14. Take G = C3. By subdividing any edge e once, we obtain the cycle C4. More
generally, taking G = Cn, then, by subdividing any edge k times, we obtain the cycle Cn+k.

With the notion of edge subdividision we can define the concept of a graph subdivision.

I Definition 1.15. A subdivision of a graph G is a graph G′ which is created from G by subdividing
some edges e ∈ E(G).

2This is also a consequence of the Circle Packing theorem because grid graphs are planar.
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Independent Set and Vertex Cover
We turn our attention to two important problems that we use in our reductions. Before delving into the
complexity theory perspective, we define the notions of vertex covers and independent sets and observe
a few relations between them and other problems, namely matching.

I Definition 1.16. Let G = (V,E) be a graph. A set S ⊆ V is a vertex cover (of G) if and only if it
covers all edges3. More precisely, for all edges e ∈ E we have S ∩ e 6= ∅. A vertex cover S∗ is a minimum
vertex cover if and only if for any other vertex cover S of G we have |S∗| ≤ |S|.

We first observe an alternative definition of a vertex cover which will be useful later.

I Lemma 1.17. Let G = (V,E) be a graph. A set S ⊆ V is a vertex cover of G if and only if for every
vertex v ∈ V , we have v ∈ S or N(v) ⊆ S.

Proof. Suppose that S is a vertex cover and for the sake of contradiction, let v be a vertex with v /∈ S
and u ∈ N(v) with u /∈ S. Notice that this implies S ∩ {u, v} = ∅, contradicting the assumption that S
was a vertex cover.

On the other hand, suppose that every vertex satisfies v ∈ S or N(v) ⊆ S and let {u, v} ∈ E be any
edge. By assumption, for the vertex v, we have v ∈ S or N(v) ⊆ S. If v ∈ S, we are done. Otherwise, if
v /∈ S, we have some u ∈ N(v) ⊆ S, thus u ∈ S in this case. Thus, S is a vertex cover. �

We also have the notion of independent sets.

I Definition 1.18. Let G = (V,E) be a graph. A set S ⊆ V is independent (in G) if and only if for all
vertices u, v ∈ S, we have {u, v} /∈ E. In other words, any two vertices inside S are not adjacent.

Vertex covers and independent sets are related by the following lemma.

I Lemma 1.19. Let G = (V,E) be a graph. Then S ⊆ V is a vertex cover of G if and only if V \ S is
an independent set in G.

Proof. Let S be a vertex cover and consider the set I = V \ S. Let u, v ∈ I be two distinct vertices.
If {u, v} ∈ E(G), this means that {u, v} ∈ V \ S, in other words, S ∩ {u, v} = ∅, contradicting the
assumption that S was a vertex cover. Thus, {u, v} /∈ E(G) and thus I is an independent set.

On the other hand, let V \S be an independent set. We show that S = V \ (V \S) is a vertex cover.
Let {u, v} ∈ E(G), and suppose, for the sake of contradiction, that S ∩ {u, v} = ∅. This in turn implies
that {u, v} ∈ V \ S. But since {u, v} ∈ E(G), and V \ S is, by assumption, an independent set, this is
impossible. Thus, S must be a vertex cover. �

As we already observed in the proof of Lemma 1.19, for S ⊆ V we have V \ (V \ S) = S. Thus, we
also get that S ⊆ V is an independent set if and only if V \ S is a vertex cover.

Related to the vertex cover is the notion of matching. Given graph G = (V,E), a matching is a set of
edges M ⊆ E satisfying ∀e, f ∈M : e∩ f = ∅. In other words, no two edges share a vertex. A maximum
matching is a matching M∗ such that for any other matching M , we have |M∗| ≥ |M |.

Interestingly, in the class of bipartite graphs, the size of a maximum matching is equal to the size of a
minimum vertex cover. This is a standard result of König [52]. See [28, Theorem 2.1.1.] for a reasonable
proof.

I Theorem 1.20 (Kőnig, 1916). If G is a bipartite graph, then the size of a maximum matching of G
is equal to the size of a minimum vertex cover of G.

Observe that this does not hold for non-bipartite graphs. For example, take the graph C3. A minimum
vertex cover is of size 2, while a maximum matching is of size 1.

3That makes sense, right? Vertex cover covers edges.
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1.1.2 Complexity Theory
In our work, we utilize reductions from the Independent Set, the Vertex Cover, and the Sat
problems, which we introduce in the following paragraphs.

We assume that the reader is familiar with standard complexity theory concepts such as classes
P and NP, NP-hardness, polynomial reductions, etc. For a brief introduction to complexity theory, we
refer the reader to the monograph of Arora and Barak [4].

The notions of vertex cover (Definition 1.16) and independent set (Definition 1.18) give rise to the
Vertex Cover and Independent Set decision problems. These are defined as follows.

Input: Graph G = (V,E), k ∈ N
Task: Is there a vertex cover C ⊆ V of G with |C| ≤ k?

Vertex Cover

Input: Graph G = (V,E), k ∈ N
Task: Is there an independent set I ⊆ V in G with |I| ≥ k?

Independent Set

I Theorem 1.21 (folklore, see for instance [4, Theorem 2.16]). Vertex Cover and Independent
Set are NP-complete.

We will often talk about a problem restricted to a particular class of inputs. This restriction can
significantly alter the nature of the problem. Consider the Independent Set and Vertex Cover
problems and consider the extreme case where we restrict the input graphs to be cliques. Then the
Independent Set and Vertex Cover problems become trivial and rather uninteresting. Largest
independent set is of size 1 since any set of size at least 2 contains an edge, and smallest vertex cover
is of size n − 1 (as a consequence of Lemma 1.19). However, if the problem remains NP-hard even
with some restrictions of the input, it could be useful for future hardness reductions. For example,
the Independent Set problem remains NP-hard even when restricted to the class of 3-regular planar
graphs [32].

One approach to measuring the hardness of a problem in classical complexity theory is to impose
restrictions on the problem that narrow the scope of possible inputs, yet still encompass a diverse range
of instances that can be considered. If a problem is NP-hard in the general case (i.e., there is tiny hope of
a polynomial-time algorithm), the ultimate goal is to find a reasonable restriction of the problem which
permits an efficient (polynomial-time) algorithm for the problem, and yet the range of inputs remains
broad enough to be meaningful. What exactly is meant by “broad enough” is rather a philosophical
question.

For example, consider the restriction of the input graphs to cliques for the Vertex Cover and
Independent Set problems. This restriction is rather uninteresting because not many4 graphs are
cliques. Also, the provided algorithm provides minimal insight into the nature of the problem. In
contrast, restricting input graphs to trees or, more generally, graphs with bounded treewidth, we obtain
a reasonably large class of graphs while still maintaining the polynomial-time5 solvability. Additionally,
the algorithm provides nontrivial insight into the problem’s nature.

From this point of view, Independent Set and Vertex Cover are equivalent in the sense that no
matter what restriction we impose on the inputs, in any class G, the problems are either

a) both NP-hard, or

b) both polynomial-time solvable.
4What exactly is “many” is precisely the question about “broad enough” mentioned in the previous paragraph.
5in this case, even linear-time
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As both problems are in NP, if neither of a),b) were true, this would be equivalent to P 6= NP. Assuming
P 6= NP, exactly one of a) and b) applies for each particular class of inputs. We get the following claim
as a corollary of Lemma 1.19. We leave the part with polynomial-time solvability of the two problems
for the reader.

I Corollary 1.22. Let G be a class of graphs. The following claims are equivalent:

i) Vertex Cover is NP-hard restricted to G.

ii) Independent Set is NP-hard restricted to G.

Proof. For i)⇒ii), we reduce from Vertex Cover restricted to G. Given an instance (G, k) of Vertex
Cover, we construct an instance (G′, k′) of Independent Set as follows. Set G′ = G and k′ =
|V (G)| − k. By Lemma 1.19, a set S ⊆ V (G) is a vertex cover of size at most k if and only if V (G) \S is
an independent set for G = G′ of size at least |V (G)|−k. The direction ii)⇒i) is proven analogously. �

It makes sense that if a problem is polynomial-time solvable, then imposing restrictions on the input
won’t break the polynomial-time solvability. This can be seen the other way around from the hardness
side. That is, if a problem is NP-hard under some restrictions, then it is NP-hard even if the restrictions
are relaxed. We formalize this in Lemma 1.23.

I Lemma 1.23. Let X be a decision problem and let G ⊆ H be two classes of inputs for X. Then the
following holds:

i) If X restricted to G is NP-hard, then X restricted to H is also NP-hard.

ii) If X restricted to H is polynomial-time solvable, then X restricted to G is also polynomial time
solvable.

Proof. For claim i) suppose that X restricted to G is NP-hard. We reduce from X restricted to G. Let
x be an instance of X and let x ∈ G. Since G ⊆ H, also x ∈ H. Thus, we provided a reduction from
NP-hard instance to an instance x ∈ H. Thus, X restricted to H is also NP-hard.

For claim ii) consider a polynomial-time algorithm AH solving inputs to X restricted to H. We show
how to solve instances of X restricted to G in polynomial time. Let x ∈ G. By assumption, also x ∈ H.
Thus, we may apply the polynomial-time algorithm AH to solve the instance x ∈ G. �

Consider the graph classes from Figure 1.4. As a consequence of Lemma 1.23, if we show NP-hardness
of some problem restricted to the class of grid graphs, we immediately get NP-hardness result for all the
superclasses, in this particular case for unit disk, disk contact, and disk graphs.

Satisfiability (SAT)
In the following paragraphs, we introduce the well-known satisfiability problem. A Propositional formula
over variables X = {x1, . . . , xn} is a boolean expression containing the variables and three logical con-
nectives: disjunction (∨), conjunction (∧), and negation (¬). A literal is either a variable or a negation
of a variable. If a literal is a variable, it is referred to as positive, whereas if it is a negation of a variable,
it is referred to as negative. A clause is a disjunction of literals. A formula ϕ is in conjunctive normal
form (CNF) if and only if it is a conjunction of clauses. We often shorten this and refer to formulae in
CNF simply as CNF formulae.

I Example 1.24. Formula ϕ = (x ∨ ¬z) ∧ (¬x ∨ y ∨ z) is a CNF formula over variables {x, y, z} with
two clauses x ∨ ¬z and ¬x ∨ y ∨ z. The first clause consists of two literals x and ¬z. The literal x is
positive, while the literal ¬z is negative.

A (truth) assignment for a formula ϕ over variables X = {x1, . . . , xn} is a function f : X → {0, 1}. We
can regard f as a function to the boolean algebra ({0, 1},∧,∨,¬). This gives rise to a unique extension
of f to a homomorphism of boolean algebras f̃ : FX → ({0, 1},∧,∨,¬), where FX is the free boolean
algebra generated by the set X. From now on, by abuse of notation, we write f instead of f̃ .
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In simpler terms, FX corresponds to the set of all propositional formulae over the variables X and
f̃ evaluates the formula in the standard6 way given the values of the variables.

Assignment f for a formula ϕ is satisfying if and only if f(ϕ) = 1. Formula ϕ is satisfiable if and
only if there exists a satisfying assignment for ϕ.

I Example 1.25. Going back to Example 1.24, consider again the formula ϕ = (x∨¬z)∧ (¬x∨ y ∨ z).
The assignment f1, given by f1(x) = 0, f1(y) = 1, f1(z) = 1, is not a satisfying assignment for ϕ, because
f1(ϕ) = (0 ∨ 0) ∧ (1 ∨ 1 ∨ 1) = 0 ∧ 1 = 0. However, ϕ is satisfiable, as witnessed by the assignment f2,
given by f2(x) = 1, f1(y) = 1, f1(z) = 0. We let the reader verify that f2(ϕ) = 1.

Any CNF formula ϕ may be viewed as a set of clauses C1, . . . , Cm, and every clause can be thought
of as a set of literals. Note that repeated literals inside a clause, repeated clauses, or the order of the
clauses or literals in the formula make no difference on the value f(ϕ) for any assignment f . To see this,
note that the connectives ∧ and ∨ are associative and commutative, so the order does not matter. The
connectives also satisfy the idempotence law. That is, ψ ∨ ψ = ψ and ψ ∧ ψ = ψ for any formula ψ. It
follows that repeated clauses or literals make no difference.

I Observation 1.26. Let ϕ be a CNF formula with clauses C1, . . . , Cm. An assignment f is satisfying
for ϕ if and only if for each clause Cj we have f(Cj) = 1 and that is if and only if there exists a literal
` ∈ Cj such that f(`) = 1.

In the Sat problem, the input is a propositional CNF formula ϕ, and the task is to decide whether ϕ is
satisfiable.

Input: Propositional CNF formula ϕ.
Task: Is ϕ satisfiable?

Sat

I Fact 1.27 (Cook-Levin Theorem). Sat is NP-complete.

The Sat problem is an inherent NP-hard problem that is widely studied. Many constrained variants
of the Sat problem were shown to be NP-hard and utilized to show NP-hardness for other problems of
interest (see for instance [26, 27, 31, 54]).

We now proceed to define one of the variants used in our reductions. The variant is called Re-
stricted Planar 3-Sat, and the definition and hardness of this setting comes from the work of
Dahlhaus et al. [26], where they used it to prove NP-hardness of the Multiterminal Cut problem.

I Definition 1.28. Let ϕ be a propositional CNF formula with clauses C1, . . . , Cm and variables
x1, . . . , xn. The incidence graph for ϕ, denoted by Gϕ, has the vertex vxi

for each variable xi, and the
vertex vCj

for each clause Cj . There is an edge between variable vertex vxi
and clause vetex vCj

if and
only if the variable xi occurs in Cj .

It is not hard to observe that the incidence graph of any formula ϕ is always bipartite with parts
{vx1

, . . . , vxn
}, {vC1

, . . . , vCm
}.

3-Sat is a restricted variant of Sat problem where all clauses of the input formula contain at most 3
literals. In the Planar 3-Sat, the incidence graph of the input formula is required to be planar. In the
Restricted Planar 3-Sat, it is further assumed that each variable occurs in exactly 3 clauses. More-
over, each variable occurs twice as a positive literal and exactly once as a negated literal. Restricted
Planar 3-Sat remains NP-hard (see [26, pf. Theorem 2a]).

1.2 Target Set Selection
In this section, we finally define the problem central to our work.

6That is, recursively, f(¬ϕ) := 1 − f(ϕ), f(ϕ ∨ ψ) := max{f(ϕ), f(ψ)}, and f(ϕ ∧ ψ) := min{f(ϕ), f(ψ)} for all
formulae ϕ and ψ.
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I Definition 1.29. Let G = (V,E) be a graph, t : V → N a function (which we call the threshold
function), and S ⊆ V . Consider the following activation process arising from S defined as follows:

S0 = S,

Si+1 = Si ∪ {v ∈ V | |N(v) ∩ Si| ≥ t(v)}.

We call S a target set (for G) (with respect to t) if and only if Sn = V .

It is not hard to see that for any S ⊆ V , the sets S0, S1, S2 . . . form an ascending chain with respect
to inclusion, i.e., S0 ⊆ S1 ⊆ S2 ⊆ · · · . Moreover, for all indices i ≥ 0, either Si+1 \ Si 6= ∅, or Si+j = Si

for all j ≥ 0. In other words, in every iteration, either there is at least one new active vertex, or the
process stabilizes and no new vertices become active in all subsequent iterations. As G has n vertices,
the process stabilizes after at most n iterations. With this definition at hand, we can define decision
variant of the Target Set Selection problem.

Input: Graph G = (V,E), a threshold function t : V → N, k ∈ N
Task: Is there a target set S ⊆ V for G with respect to t satisfying |S| ≤ k?

Target Set Selection (TSS)

We observe that Target Set Selection generalizes the Vertex Cover problem, in other words,
Vertex Cover is a special case of Target Set Selection. This implies that Target Set Selection
is necessarily NP-hard in the general case. This is a standard result about TSS and can be found in
many works about Target Set Selection (see for instance [17]), but we include a proof for the sake
of completeness.

I Lemma 1.30. Let G = (V,E) be a graph, t : V → N given by t(v) = deg v and let S ⊆ V . Then S is
a vertex cover of G if and only if S is a target set for G with respect to t.

Proof. Suppose that S is a vertex cover. By Lemma 1.17, this is equivalent to the fact that for all vertices
v ∈ V , either v ∈ S or N(v) ⊆ S.

Now, consider the activation process arising from S. All vertices outside S = S0 get activated in the
first round of the process, i.e., S1 = S2 = . . . = Sn = V , so S is also a target set for G with respect to t.

On the other hand, suppose that S is a target set for G with respect to t, and, for the sake of
contradiction, suppose that it is not a vertex cover of G. This implies existence of an edge {u, v} ⊆ V \S.
Observe that u and v will never be activated as both of them have their threshold equal to their degree,
thus u has to be activated before v and vice versa, but that is impossible. It follows that S must be
a vertex cover. �

I Corollary 1.31. Target Set Selection is NP-complete.

Proof. First, we show that the problem belongs to the class NP. Given the underlying graph G = (V,E),
threshold function t, and S ⊆ V , we can verify, by simulating the process, that Sn = V in polynomial
time. Hence, Target Set Selection belongs to the class NP.

For the hardness, we reduce from the Vertex Cover problem. Given an instance (G, k) of the
Vertex Cover problem, we construct an instance (G, t, k) of Target Set Selection as follows. We
set t(v) = deg v for each v ∈ V . By Lemma 1.30, instances (G, k) and (G, t, k) are equivalent. �

In all future statements, we only deal NP-hardness as all our considered problems (including Target
Set Selection) are in NP.

As already said in the introduction, due to NP-hardness of Target Set Selection in the general
case, attempts were made to restrict the threshold function. Let us remind ourselves of the three
commonly studied settings.

Unanimous thresholds – t(v) = deg v for all vertices v

Constant thresholds – t(v) ≤ c for all vertices v, and some fixed constant c

Majority thresholds – t(v) =
⌈
deg v
2

⌉
for all vertices v.
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All three settings are NP-hard in the general case, as we will in fact prove in the next chapter. This
is not a new result as already Dreyer and Roberts [29] showed hardness for all constants c ≥ 3 and
Chen [17] then extended this result to all constants c ≥ 2. The proof for c ≥ 3 can be carried out
the same way as in the proof of Corollary 1.31, but instead reduce from Vertex Cover restricted to
c-regular graphs. To one’s disappointment, this reduction does not work for c = 2 as Vertex Cover
is trivially solvable in the class of 2-regular graphs which is nothing else but a disjoint union of cycles.
Hardness of Target Set Selection under the majority setting was first shown by Peleg [61]. We in
fact include a different hardness proof for the majority setting in Section 2.3.

Although it seems that all three settings share the same complexity, there are graph classes where the
complexity of these three settings varies significantly. Specifically, we demonstrate this for the class of
grid graphs. In the unanimous threshold setting, Target Set Selection can be solved in polynomial
time, whereas the other two settings remain NP-hard.
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Chapter 2

Unit Disk Graphs

In this chapter, we provide the main results regarding the Target Set Selection problem restricted
to the class of unit disk graphs. As a by-product of our theorems, we also obtain the full complexity
picture in related classes, namely disk contact and grid graphs. The results are summarized in Table 2.1.

The chapter is organized into three parts, each of which addresses one of the three settings of Target
Set Selection. In Section 2.1, we discuss the unanimous threshold setting. Section 2.2 delves into the
constant threshold setting and finally, in Section 2.3, we cover the majority threshold setting.

2.1 Unanimous Thresholds
In this section, we provide the results about Target Set Selection in the unanimous threshold setting.
That is, for each vertex v, we have t(v) = deg v. We strongly rely on the equivalence between Target
Set Selection and the Vertex Cover problem established in Lemma 1.30.

I Theorem 2.1. Target Set Selection is NP-hard even if the underlying graph is a unit disk graph
and all thresholds are unanimous.

Proof. It is known that the Vertex Cover problem is NP-hard even on unit disk graphs [20]. In the
same way as in proof of Corollary 1.31, we reduce from the Vertex Cover problem but restricted to
unit disk graphs. Therefore, the theorem holds. �

I Theorem 2.2. Target Set Selection is NP-hard even if the underlying graph is planar and all
thresholds are unanimous.

Proof. It is known that Independent Set problem is NP-hard restricted to the class of 3-regular planar
graphs [32]. By Corollary 1.22, the same applies for the Vertex Cover problem. In the same way as
in proof of Corollary 1.31, we reduce from the Vertex Cover problem but restricted to the class of
planar graphs. Therefore, the theorem holds. �

Table 2.1 Overview of our results. The first row contains individual restrictions of the threshold function,
and the first column contains assumed graph classes. In the table, “NP-h” stands for “NP-hard”, “P” stands for
polynomial-time solvable cases. All results are complemented by the reference to the appropriate statement.

constant majority unanimous unrestricted

unit disk graphs NP-h (Cor 2.28) NP-h (Cor. 2.35) NP-h (Thm. 2.1) NP-h (Thm. 2.1)

grid graphs NP-h (Thm. 2.27) NP-h (Cor. 2.34) P (Thm. 2.3) NP-h (Thm. 2.27)

planar graphs
(disk contact
graphs)

NP-h (Thm. 2.18) NP-h (Thm. 2.32) NP-h (Thm. 2.2) NP-h (Thm. 2.2)
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NP-hardness of Target Set Selection in the unanimous threshold setting in the classes of planar
and unit disk graphs reflects the NP-hardness of the Vertex Cover problem in these graph classes.
However, the situation is different in the class of grid graphs. We make use of Kőnig’s theorem, which
makes the Vertex Cover problem tractable in the class of bipartite graphs. As grid graphs are also
bipartite, we can use the same idea to find Vertex Cover efficiently in the class of grid graphs.

I Theorem 2.3. Target Set Selection can be solved in time O(n3/2) if the underlying graph is
a grid graph and the thresholds are unanimous.

Proof. By Lemma 1.30, Target Set Selection with unanimous thresholds is equivalent to the Vertex
Cover problem so this reduces to deciding whether the input instance has a vertex cover of size at most k.
Let G = (V,E) be the input graph, which is a grid graph. Observe that grid graphs are also bipartite,
so G is bipartite. We start by finding a maximum matching of G. This can be accomplished in O(m

√
n)

time using the Hopcroft-Karp algorithm [39]. Now, by Kőnig’s theorem, the size of a maximum matching
in G is equal to the size of a minimum vertex cover of G. We can thus decide whether G has a vertex
cover of size at most k, in other words, a target set of size at most k. Since grid graphs are sparse, the
total running time is O(m

√
n) = O(n

√
n) = O(n3/2). �

Note that the above algorithm can be easily modified to also output an optimal target set. To see
this, notice that we are specifically finding a maximum matching in G, whose size is, by Kőnig’s theorem,
the same as the size of a minimum vertex cover of G. Any minimum vertex cover then corresponds to an
optimal target set. It is possible to recover a minimum vertex cover from a given maximum matching in
O(n+m) time in bipartite graphs. See [11, Lemma 5.3.]. Thus, the time complexity remains O(n3/2).

2.2 Constant Thresholds
In this section, we deal with the constant threshold setting. That is, all thresholds are bounded by
a constant c. Recall that the problem is trivial when all thresholds are bounded by c = 1 since it suffices
(and is also necessary) to target one vertex per each connected component (not containing a vertex of
threshold 0) of the input graph.

We show that Target Set Selection is NP-hard when all thresholds are bounded by a constant
c ≥ 2 even if the underlying graph is a grid graph.

The section is divided into two parts. The first part establishes the complexity for the case where
thresholds are bounded by a constant c ≥ 3. The second part provides a complete picture of the problem’s
complexity by resolving the scenario even when the thresholds are bounded by a constant c ≥ 2. We, in
fact, show the hardness when the thresholds are at most 3 (and at most 2). Obviously, if the thresholds
are bounded by a constant c, they are also bounded by all constants c′ ≥ c, so the hardness result for all
constants is an obvious corollary to our theorems.

Note that the result for constant thresholds would hold solely by the proof for thresholds at most 2,
although the part dealing with thresholds at most 3 includes an additional finding regarding the hardness
of the Independent Set problem restricted to the class of regular unit disk graphs, which may be of
independent interest.

Rectilinear embedding of planar graphs
Throughout the section, we will employ reductions from problems that involve planar graphs. To ef-
fectively apply such reductions, having some kind of “nice” representation of the planar graph will be
essential. One such representation that is useful for our purposes is the so-called rectilinear embedding.

I Definition 2.4. Given a planar graph G = (V,E), a rectilinear embedding (of G) is a planar drawing
of G such that vertices occupy integer coordinates, and all edges are made of (possibly more) line segments
of the form x = i or y = j (i.e., the line segments are parallel to the coordinate axes).

I Example 2.5. Recilinear embeddings of K4 and K2,3 are shown in Figure 2.1.
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Figure 2.1 A rectilinear embedding of K4 (on the left) and K2,3 (on the right).

It is obvious that if a planar graph admits a rectilinear embedding, its maximum degree must be at
most 4. Due to the theorem of Valiant (Theorem 2.6), this condition is also sufficient. Moreover, the
area of the embedding is polynomial in the size of the graph and the embedding can be computed in
polynomial time with respect to the size of G. By the area of such embedding we mean the minimal
area of a rectangle R with sides parallel to the coordinate axes such that the drawing is entirely inside
R. For example, the area of the embedding of both graphs in Figure 2.1 is 3 · 3 = 9.

I Theorem 2.6 (Valiant [68]). Given a planar graph G = (V,E) with maximum degree ∆G ≤ 4, there
exists a rectilinear embedding of G with area at most O(|V |2). Moreover, this embedding can be computed
in polynomial time with respect to the size of G.

2.2.1 Case of thresholds bounded by 3

Note that we have already proved the hardness for Target Set Selection for planar graphs in the
case of constant thresholds.

I Corollary 2.7. Target Set Selection is NP-hard even if the underlying graph is planar and all
thresholds are at most 3.

Proof. Apply the same proof as in Theorem 2.2. Note that the input graph was 3-regular, so the
thresholds are exactly 3, thus at most 3. �

Our attention now turns to unit disk graphs. We begin by showing an auxiliary result that the
Independent Set problem is NP-hard in the class of 3- and 4-regular unit disk graphs. We don’t know
anything about 5-regular unit disk graphs, see Remark 2.16. We then combine Corollary 1.22 together
with Lemma 1.30 to finish the hardness proof for Target Set Selection.

I Theorem 2.8. For r ∈ {3, 4} Independent Set is NP-hard even if the underlying graph is an
r-regular unit disk graph.

Proof. We reduce from Independent Set on r-regular planar graphs. As already noted in the proof
of Theorem 2.2, this restriction of Independent Set remains NP-hard [32]. Let (G, k) be an instance
of the Independent Set problem where G = (V,E) is planar r-regular graph, where r ∈ {3, 4}. We
first construct a rectilinear embedding of G, which exists by Theorem 2.6. We construct a new instance
(G′, k′) of Independent Set where G′ will be a unit disk graph.

We start from the graph G and we subdivide each edge e = {u, v} ∈ E(G) exactly 6qe times, creating
a path u, x1, x2, . . . , x6qe , v. The constant qe is to be explained later. Next, for all i ∈ [2qe], we replace
every vertex x3i−1 with a clique Kr−1 and connect all its neighbors to the clique (see Figure 2.2). In
other words, we create r−2 additional copies of the vertex x3i−1 and connect these copies into a complete
graph (independently for each i). Note that the number qe depends on the edge e. Let G′ be the resulting
graph. It is not hard to see that G′ remains r-regular.

We now provide the unit disk representation for G′ and show how to compute the numbers qe in
polynomial time for all edges e ∈ E(G). We also show a polynomial upper bound on the numbers qe.
This is the content of the following technical lemma.

I Lemma 2.9. The graph G′ can be represented by unit disks and for each edge e ∈ E(G) there exists
a number qe such that the number of vertices on the path from u to v created by the subdivision of e is
equal to 6qe. Moreover, the number qe can be computed in polynomial time, and it can be choosen small
enough such that it is polynomially bounded by the size of G.
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u x1 x2

x′2

x′′2

x3 x4 x5

x′5

x′′5

x6 v

Figure 2.2 An example of a construction of path subdivision in the case of 4-regular graphs. In this case,
qe = 1.

Proof. We let d = 1
7 be the diameter of the disks in the representation. Fix a rectilinear embedding

for G. From now on, we will refer to this embedding simply as the drawing. Recall that the drawing
has vertices in integral grid points and edges are made of (possibly more) line segments parallel to the
coordinate axes. For an edge e ∈ E(G), we denote by Pe the simple polygonal chain representing e in
the drawing.

First, the vertices v ∈ V (G′) corresponding to vertices of G will have their disk at the corresponding
grid point in the drawing.

We now show how to construct the subdivisions of the edges. We proceed independently for each
edge e = {u, v} ∈ E(G).1 Let g denote the number of grid points contained in the polygonal chain Pe.
Let these be p1, . . . , pg as seen when walking from u to v along Pe. In particular, the point p1 corresponds
to the vertex u, and the point pg corresponds to the vertex v. The remaining points are are refered to
as internal points of the chain Pe. We place a disk centered at each of the internal points p2, . . . , pg−1.
Let D1 and Dg denote the disks corresponding to u and v, respectively, and D2, . . . , Dg−1 the new disks
centered at p2, . . . , pg−1. Our task is now to insert a certain number of disks in between Di, Di+1 for
all i ∈ [g − 1]. Note that Di and Di+1 are centered at neighboring grid points, i.e., their centers are at
distance 1. Let wi denote the number of inserted disks between Di, Di+1. We specify the numbers wi

later. Our task is to make the total number of disks in between D1 nd Dr a multiple of 6, i.e., the
number of disks shall be equal to 6qe. The total number of disks between D1, . . . , Dr is given by
ye = g− 2+

∑g−1
i=1 wi. Our aim is now to choose the numbers wi such that ye = 6qe. To achieve this, we

do the following. We first learn how to insert ` ∈ {6, 7, 8, 9} disks between a single pair of adjacent disks.
We prove this in Lemma 2.10. We simplify the scenario and assume that Di and Di+1 are centered at
pi = (0, 0) and pi+1 = (0, 1), respectively. It is not hard to generalize the idea to general points pi, pi+1.

I Lemma 2.10. Let L be a line segment with endpoints (0, 0), (1, 0) and let ` ∈ {6, 7, 8, 9}. We can
always place ` disks E1, . . . , E` with diameters d = 1

7 and centers s1, . . . , s` all lying on L such that:

i) s1 = (d, 0),

ii) s` = (1− d, 0),

iii) any disk Ej intersects precisely its neighbors Ej−1 and Ej+1 (if they exist) and no other disks.

Proof. We prove this by construction and specify the centers of the ` disks. As all centers shall be on
the line L, they are of the form sj = (aj , 0). For a fixed ` and j ∈ [`], the points aj are given by the
formula:

aj =
5j + `− 6

7(`− 1)
.

It can be verified by a straightforward calculation that the properties i),ii) and iii) hold. To verify iii),
it is enough to check that aj+1 − aj ≤ d and aj+2 − aj > d for appropriate j. �

Now we know how to insert ` ∈ {6, 7, 8, 9} disks. We show how many disks we have to insert such
that g − 2 +

∑g−1
i=1 wi is a multiple of 6, given g ≥ 2. In other words, we are now in the situation to

choose the corresponding wi, given g ≥ 2. We prove this in Lemma 2.11.
1The variables introduced from this point should have another index e to indicate that they are in fact dependent on

the edge e, however, for the sake of readability, we omit it.
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I Lemma 2.11. For any g ≥ 2 we can pick g − 1 numbers w1, . . . , wg−1 from the set {6, 7, 8, 9} such
that

g − 2 +

g−1∑
i=1

wi = 0 mod 6

.

Proof. We divide the proof into six cases according to the residue class of g modulo 6.

Case 1 If g = 0 mod 6, we set w1 = 8 and wi = 6 for i ∈ {2, . . . , g − 1}.

Case 2 If g = 1 mod 6, we set w1 = 7 and wi = 6 for i ∈ {2, . . . , g − 1}.

Case 3 If g = 2 mod 6, we set wi = 6 for all i ∈ [g − 1].

Case 4 If g = 3 mod 6, we set w1 = 9, w2 = 8 and wi = 6 for all i ∈ {3, . . . , g − 1}. Note that g ≥ 3 in
this case.

Case 5 If g = 4 mod 6, we set w1 = w2 = 8 and wi = 6 for all i ∈ {3, . . . , g − 1}. Note that g ≥ 3 in
this case as well.

Case 6 If g = 5 mod 6, we set w1 = 8 and wi = 6 for all i ∈ {2, . . . , g − 1}.

It is straightforward computation to verify that the chosen numbers wi work in every case. �

After this step, we know how to compute the number qe for each edge. The formula for qe is given
by

qe =
1

6

(
g − 2 +

g−1∑
i=1

wi

)
.

The number g is given by the polygonal chain Pe and Lemma 2.11 tells us how to choose the numbers wi.
This computation can indeed be done in polynomial time. We now establish the promised polynomial
upper bound on the number qe. Observe that the number of grid points contained in Pe is at most
the area of the drawing. i.e., by using Theorem 2.6, g ≤ c|V |2 for some constant c. Further, by the
construction, we have wi ≤ 9 for all any g ≥ 2 and i ∈ [g − 1]. Thus, we have

qe ≤
1

6
(g − 2 + 9(g − 1)) ≤ 1

6
(10g − 11) ≤ 10

6
g ≤ 10

6
c|V |2 = O(|V |2),

as promised.
We thus constructed the subdivision of the edges. What is left is to show how to represent the cliques

at the vertices x3i−1 for i ∈ [2qe]. We simply create r − 2 copies for the case of Kr−1. It is not hard to
see that this precisely corresponds to replacing a vertex with a clique.

Note that in Lemma 2.10 we placed the disks in between Di and Di+1 starting from s1 = (d, 0) and
ending at s` = (1− d, 0). This implies that for any edge e = {u, v}, the disks adjacent to D1 and Dr will
not intersect any other disks representing other subdivided edges (in particular, those with endpoints u
or v)

This completes the construction of unit disk representation for G′. Refer to Figure 2.3 for an example
of the construction. �

Finally, to finish the construction of the instance (G′, k′), we set k′ = k+
∑

e∈E 3qe. We now establish
the equivalence between the instances (G, k) and (G′, k′).

I Claim 2.12. If (G, k) is a yes-instance, then (G′, k′) is a yes-instance.

Proof. Assume that (G, k) is a yes-instance of Independent Set, and let S be an independent set in G
of size at least k, i.e., |S| ≥ k. We build an independent set S′ of size at least k′. We first add all
vertices from S to S′. Note that G′ contains all original vertices of G by construction. Next, process all
edges independently in arbitrary order as follows. Let e = {u, v} ∈ E(G) be an edge. Since S was an
independent set, we have u /∈ S or v /∈ S (i.e., in S′). We distinguish these two cases.
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Figure 2.3 Example of a construction of the unit disk representation of the graph G′ from the proof of
Theorem 2.8. The original graph G was a star K1,3 with vertices embedded at a1, a2, a3, a4. The proof of
Theorem 2.8 originally started with an r-regular graph, however, for the sake of simplicity, we show the reduction
on a simpler graph. The blue disks correspond to the internal grid points contained in the polygonal chains
representing the edges. These are the disks D2, . . . , Dg−1 for the corresponding edges. Consider the edge e =
{a1, a2} ∈ E(G). The red disks at a1 and a2 are the disks D1 and D4, respectively, and the blue disks at b1
and b2 are the disks D2 and D3, respectively. The black disks correspond to the disks Ej from Lemma 2.11.
The numbers correspond to the numbers wi (and are equal to the number of black disks Ej between blue and
red disks). For the edge e we have g = 4 grid points contained in the polygonal chain, thus we are in the case
g = 4 mod 6 in Lemma 2.11. Thus, we are setting w1 = w2 = 8 and w3 = 6 for this particular edge. The total
number of disks on the subdivided edge e is thus 2 + 8 + 8 + 6 = 24 = 0 mod 6 and we have qe = 4.

Case 1 If u /∈ S, we add the vertices {x2i−1 | i ∈ [3qe]} to S′.

Case 2 If v /∈ S, we add the vertices {x2i | i ∈ [3qe]} to S′.

It is not hard to see that S′ is independent after each step. For each edge, we added exactly 3qe vertices,
so |S′| ≥ k +

∑
e∈E 3qe = k′. It follows that (G′, k′) is a yes-instance. �

I Claim 2.13. If (G′, k′) is a yes-instance, then (G, k) is a yes-instance.

Proof. Assume that (G′, k′) is a yes-instance and let S′ be an independent set in G′ of size at least k′,
i.e., |S′| ≥ k′ = k +

∑
e∈E 3qe. We create an independent set S ⊆ V (G) as follows. We start with S′

and we will be removing some vertices. We process the edges e ∈ E(G) in arbitrary order and we do
the following. Let e = {u, v} ∈ E be an edge in the original graph and let u, x1, x2, . . . , x6qe , v be its
subdivision. There are two cases to consider.

Case 1 Both u and v are in S′. In this case, |S′ ∩ {x1, . . . , x6qe}| ≤ 3qe − 1 by the pigeonhole principle.
We choose u or v and remove one of them from S′ to make the resulting set independent in G. We
also remove all the xi’s that were in S′.

Case 2 At least one of u and v is not in S′. In this case, |S′ ∩ {x1, . . . , x6qe}| ≤ 3qe by the pigeonhole
principle. In this case, we only remove all the xi’s from S′.

Note that in both cases, we removed at most 3qe vertices for each edge. The new set consist exclusively of
the vertices of the original graph G and is of size at least k′−

∑
e∈E(G) 3qe = k. Note that if {u, v} ∈ E(G)
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is an edge and both u and v were in S′, we removed one of u, v from S′, so |S ∩ {u, v}| ≤ 1. It follows
that S is independent, thus (G, k) is a yes-instance. �

It remains to say that the reduction is polynomial since the rectilinear embedding can be computed
in polynomial time by Theorem 2.6 and we further added at most O(

∑
e∈E 3qe) new vertices and edges.

However, the numbers qe are polynomially bounded in the size of G and can be computed in polynomial
time by Lemma 2.9. This completes the proof of Theorem 2.8. �

We can extend this result for infinitely many r. Given instance of Independent Set where the
underlying graph is r-regular we replace each vertex v by a clique Kq and join all its neighbors to all the
vertices of the Kq. In other words, create q−1 additional copies v1, . . . , vq−1 of the vertex v and connect
all pairs vi, vj with i 6= j by an edge. This is the same construction as in proof of Theorem 2.8. In this
way we get a (q(r+1)−1)-regular graph. Denote this new graph by Ĝq. Note that for each independent
set in G there is an independent set of the same in Ĝq and vice versa. This implies that the instances
(G, k) and (Ĝq, k) of Independent Set are equivalent. In the language of (unit) disk graphs, replacing
each vertex with a clique Kq is the same as creating q − 1 additional copies of every disk in the original
representation. We thus proved the following interesting corollary.

I Corollary 2.14. If Independent Set is NP-hard on the class of r-regular graphs, then Independent
Set is NP-hard in the class of (q(r + 1)− 1)-regular graphs for any positive integer q.

We explicitly showed NP-hardness of Independent Set in r-regular unit disk graphs for r ∈ {3, 4}
in Theorem 2.8. As a by-product, we get the following result.

I Corollary 2.15. Independent Set is NP-hard even if the underlying graph is an r-regular unit disk
graph where r is positive integer and r ≡ −1 mod 4 or r ≡ −1 mod 5.

I Remark 2.16. We remark that we don’t know if Independent Set is NP-hard for all r-regular unit
disk graphs, r ≥ 3. Certainly, for r = 1, 2 the problem is in P. The first r unknown to us is r = 5. It is
known that Independent Set on 5-regular planar graphs is NP-hard [3], however, our reduction is not
applicable, since we need ∆G ≤ 4 to apply the rectilinear embedding.

To prove hardness for all constants r, one can’t apply the approach we used here to show that for
infinitely many constants the problem is hard. That is, prove it explicitly for finitely many base cases
r1, . . . , rk, and then apply Corollary 2.14 (we proved explicitly r1 = 3, r2 = 4). To see this, note that for
any such base cases r1, . . . , rk, we can pick a large enough prime number p with p > ri +1 for all i ∈ [k].
Observe that explicitly proving hardness for ri-regular graphs implies the hardness for r-regular graphs
with r = −1 mod ri + 1. Now, the NP-hardness for r = p − 1 is not implied by the base cases. To see
this, note that this would imply that for some j we have p− 1 = −1 mod rj + 1, which in turn implies
p = 0 mod rj + 1. But that is impossible since p was a prime number and p > rj + 1.

We now return to the Target Set Selection problem and utilize the previous results to show NP-
hardness of Target Set Selection in the class of unit disk graphs in the constant threshold setting
for c ≥ 3.

I Theorem 2.17. Target Set Selection is NP-hard even if the underlying graph is a unit disk
graph and all thresholds are at most 3.

Proof. By Theorem 2.8, Independent Set is NP-hard when restricted to the class of 3-regular unit
disk graphs. By Corollary 1.22, the same hardness result holds for Vertex Cover. As in the proof of
Corollary 1.31 we reduce from Vertex Cover but restricted to 3-regular unit disk graphs. Therefore,
the theorem holds. �

2.2.2 Case of thresholds bounded by 2

Proof for thresholds at most 2 relies on a reduction from the Restricted Planar 3-Sat problem.
First, we establish the hardness for planar graphs with ∆G ≤ 4 (Theorem 2.18). We then utilize this
reduction to show NP-hardness for the classes of grid graphs and unit disk graphs.
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Planar Graphs
I Theorem 2.18. Target Set Selection is NP-hard even when the underlying graph is planar with
maximum degree ∆G ≤ 4 and all thresholds are at most 2.

Proof. We reduce from the Restricted Planar 3-Sat problem. Let ϕ be the input formula with
variables x1, . . . , xn and clauses C1, . . . , Cm. The reduction consists of two types of gadgets:

Variable gadget Given a variable xi, the variable gadget for xi is the planar graph depicted in Fig-
ure 2.4. We refer to this gadget as Xi. The notable vertices of the gadget are Ti, Fi, ti, and fi. The
idea is that the vertices Ti and Fi stand for the truth assignment of this particular variable, while
the vertices ti and fi represent the positive and negative literals, respectively, and serve to connect
the variable gadgets with the respective clause gadgets. Note that by the definition of Restricted
Planar 3-Sat we have deg ti = 4 and deg fi = 2.

Clause gadget Given a clause Cj , the clause gadget for Cj consists of a single vertex yj which is
connected to the corresponding literal vertices that are contained in the clause Cj . We refer to this
gadget as Yj .

ti

Ti

fi

Fi

ai

bi ci

di

Figure 2.4 Schematic representation of the variable gadget Xi for a variable xi. The gray vertices have
threshold 2, while the white vertices have threshold 1. Note also that the half-edges illustrate the fact that the
gadget is connected with the rest of the graph only via ti and fi.

We are now ready to construct an instance (G, t, k) of Target Set Selection. Start with the
incidence graph Gϕ. For every variable xi, we replace the vertex vxi by the variable gadget Xi and we
identify each clause vertex vCj with the vertex yj , i.e., with the gadget Yj . Next, we connect all literal
vertices of Xi with the corresponding clause gadgets. More precisely, we add an edge {ti, yj} into E(G)
if xi occurs as a positive literal in the clause Cj , and we add an edge {fi, yj} to E(G) if xi occurs as a
negative literal in the clause Cj .

It remains to set the thresholds and k. For the variable gadget, the gray vertices have threshold equal
to 2, while the white vertices have threshold equal to 1. In the clause gadget, we set t(yj) = 1. Finally,
we set k = n.

Observe that G is a planar graph. To see this, note that we can start with a planar drawing of Gϕ

and replace the vertices of Gϕ with the gadgets. Note that the only problem could be with the edges
coming from the vertices ti and fi. However, for a variable xi occuring in the clauses Cj1 , Cj2 , Cj3 , no
matter what the order2 of the vertices yj1 , yj2 , yj3 is (with respect to the planar drawing of Gϕ), it is
always possible to draw the edges from ti and fi to the corresponding clause gadgets in such a way that
we don’t create any crossings. For example, the edges going from ti can encircle the entire gadget in the
drawing and leave the gadget to the right of the edge coming from fi.

Moreover, we have ∆G ≤ 4, and thresholds are at most 2, as promised.
Before we show equivalence of the instances (G, t, k) and ϕ, we establish some basic properties of the

variable gadget. Properties of the clause gadget are clear, since it is a single vertex with threshold 1.

I Lemma 2.19. The gadget Xi has following properties:

i) If the vertex Ti is active, then after 4 rounds, the vertices ai, bi, ci, di, ti are necessarily active.

ii) If the vertex Fi is active, then after 4 rounds, all vertices on the fi-Fi-path inside Xi are necessarily
active.

2More precisely, the order of the points corresponding to the vertices yj1 , yj2 , yj3 given by radially sorting them around
the point corresponding to the vertex vxi in the original drawing.
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iii) Even if the vertices in N [V (Xi)] \ V (Xi) are active and no other vertex inside V (Xi) is active, then
vertices Ti and Fi will never be active.

iv) If the vertex Fi is active and ti becomes active, then all vertices in Xi are eventually active.

v) If the vertex Ti is active and fi becomes active, then all vertices in Xi are eventually active.

Proof. The claims i) and ii) are clear from the construction of the gadget.
For claim iii), observe that if the neighbors of ti and fi outside V (Xi) are active, then ti becomes

active. However, t(ai) = t(Ti), so vertices ai and Ti never become active. If fi is also active, it only
activates the neighbor of Fi with threshold 1 but never Fi itself, since t(Fi) = 2 and Ti never become
active.

For claim iv), suppose that Fi is active and ti becomes active in round r. Then, in round r + 1 the
vertex Ti becomes active. In round r+2, the vertex di becomes active. Next, in round r+3, the vertices
bi and ci become active. Finally, in round r + 4, the vertex ai becomes active. Also, all vertices on
the path from Fi to fi become active during these rounds (if they are not already activated). Thus, all
vertices in Xi are active.

For claim v), suppose that Ti is active and fi becomes active in round r. After 4 rounds, the vertex
Fi becomes active and similarly as in the proof for iv), observe that the remaining vertices ai, bi, ci, di
and ti become active. Thus, all vertices in Xi are active. �

We now establish the equivalence between the formula ϕ and the constructed instance (G, t, k).

I Claim 2.20. If ϕ is satisfiable, then (G, t, k) is a yes instance of TSS

Proof. Let ϕ be satisfiable and let f be a satisfying assignment. We create a target set S as follows. For
each variable xi we add either Ti if f(xi) = 1 or Fi if f(xi) = 0. Observe that |S| = n = k. It remains
to show that S is a target set.

To see this, observe that by the properties i) and ii) every Ti and Fi activates the corresponding ti
or fi (respectively) in 4 rounds. In the fifth round, all clauses become active. Indeed, because f is a
satisfying assignment, all of them become active. In the sixth round, the vertices fi or ti become active.
More precisely, if Ti ∈ S, then fi becomes active in the sixth round (and vice versa if Fi ∈ S, then
ti becomes active in the sixth round). By the properties iv) and v), the remaining vertices of all the
variable gadgets become active. Thus, S is a target set. It follows that (G, t, k) is a yes-instance. �

I Claim 2.21. If (G, t, k) is a yes-instance of TSS, then the formula ϕ is satisfiable.

Proof. Suppose that (G, t, k) is a yes-instance of Target Set Selection and let S ⊆ V (G) be a target
set for G of size at most k. We first make several claims about the structure of S.

I Claim 2.22. For every variable gadget Xi we have S ∩ V (Xi) 6= ∅.

Proof. Suppose otherwise, i.e., let Xi be a variable gadget such that S ∩ V (Xi) = ∅. Note that by the
property iii) of the variable gadget, the vertices Ti and Fi never become active even if the vertices in
N [V (Xi)] \ V (Xi) are active. This contradicts the assumption that S is a target set. �

By Claim 2.22, S must contain at least one vertex from the variable gadget. By the definition of k,
there is at most one vertex of the gadget Xi inside S. Putting this together, we have the following claim.

I Claim 2.23. For all i ∈ [n] we have |S ∩ V (Xi)| = 1.

Let ui ∈ S ∩ V (Xi) be the unique vertex for the i-th variable gadget. We now argue that we can
assume without loss of generality that ui ∈ {Fi, Ti}.

I Claim 2.24. There is a target set S′ satisfying: for all i ∈ [n] we have S′∩{Ti, Fi} 6= ∅ and |S′| = |S|.
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Proof. Process the variable gadgets independently one by one. Formally,3 start with S0 = S and induc-
tively build the sets Si for i ∈ [n] by processing the gadgets. We let S′ := Sn. Let i ≥ 1.

For the i-th gadget, if Si−1 ∩ {Ti, Fi} 6= ∅, there is nothing to do, i.e., we set Si = Si−1. Otherwise,
observe that S ∩ V (Xi) = Si−1 ∩ V (Xi). Recall that ui was the unique vertex in S ∩ V (Xi). We
distinguish two cases.

Case 1 The vertex ui lies on the fi-Fi-path in Xi. Note that we can replace ui by Fi and this does
not change the fact that ui eventually becomes active by the property ii). I.e., in this case, we set
Si = Si−1 \ {ui} ∪ {Fi}.

Case 2 The vertex ui satisfies ui ∈ {ai, bi, ci, di, ti}. Note that we can replace ui by Ti and this does
not change the fact that ui eventually becomes active by the property i). I.e., in this case, we set
Si = Si−1 \ {ui} ∪ {Ti}

This finishes the proof. �

By Claim 2.24 we have, without loss of generality, ui ∈ {Fi, Ti} for all i ∈ [n]. We proceed to construct
a satisfying assignment f for ϕ in the obvious way. For a variable xi we set f(xi) = 0 if ui = Fi, and
f(xi) = 1 otherwise (i.e., if ui = Ti). What is left is to show that f is indeed a satisfying assignment for
ϕ.

I Claim. f is a satisfying assignment for ϕ.

Proof. For the sake of contradiction, suppose that that f is not a satisfying assignment. By Observa-
tion 1.26, this is equivalent to the existence of a clause Cj with f(Cj) = 0. More precisely, for all literals
` ∈ Cj we have f(`) = 0.

Without loss of generality, assume that |Cj | = 2 and that Cj contains one positive and one negative
literal. Any other case can be proven analogously. Without loss of generality, let Cj = ¬x1 ∨ x2 (i.e.,
let Cj consist of the first two variables, otherwise permute the names of variables accordingly). By
assumption, we have f(x1) = 1 and f(x2) = 0. That is, S ∩ V (X1) = {T1} and S ∩ V (X2) = {F2}.

Note that yj /∈ S because otherwise there is a variable gadget Xi with S∩Xi = ∅, which is impossible
by Claim 2.22. Since S is a target set and yj /∈ S, there must be a round r in which one of the neighbors
of yj becomes active. We have N(yj) = {f1, t2}. We show that this is impossible. More precisely, we
show that neither of f1 and t2 become active.

We have S∩V (X1) = {T1}. Observe that in order to make the vertex f1 active, it is necessary to have
at least one vertex from the path from f1 to F1 in the target set S. This implies that |V (X1) ∩ S| ≥ 2,
which contradicts Claim 2.23. Thus f1 is never active.

Analogously, we have S∩V (X2) = {F2}. Observe that in order to have t2 active, then, since t(t2) = 2
and one edge from t2 outside V (X2) leads to yj , we need at least one of {ai, Ti} to be active. Observe
that this implies that one of a2, b2, c2, d2, T2, t2 must be in the initial target set S, otherwise t2 is never
active. However, this implies that |S ∩ V (X2)| ≥ 2 which again contradicts Claim 2.23. Thus t2 is never
active either.

Putting this together, we observe that yj never becomes active, thus contradicting the assumption
that S was a target set. �

This finishes the proof of Claim 2.21. �

To conclude the proof of Theorem 2.18, it remains to combine Claims 2.20 and 2.21 and notice that
the reduction is indeed polynomial since G has exactly m+ 11n vertices. �

Grid graphs and Unit Disk Graphs
In the previous section we showed hardness of Target Set Selection when the underlying graph is
restricted to be planar with maximum degree at most 4 and the thresholds are at most 2. We utilize
this result to show the hardness in the same setting for the class of grid graphs.

Let us begin with few observations about how graph subdivisions affect target sets.
3We use superscripts to avoid confusion with the activation process (Definition 1.29)
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I Observation 2.25. Let G = (V,E) be a graph and t : V → N a threshold function, S a target set, and
let v ∈ S be a vertex with t(v) ≤ 1 and deg v ≥ 1. S \ {v} ∪ {u} is also a target set for any u ∈ N(v).

I Observation 2.26. Let G = (V,E) be a graph and t : V → N a threshold function and let e ∈ E.
Let G′ be a graph that results from G by subdividing an edge e once and creating new vertex v′ /∈ V . Let
t′ : V (G′) → N be defined by t′(v′) = 1 and t′(v) = t(v) for v 6= v′. Then the following holds:

i) If S is a target set for G with respect to t, then S is also a target set for G′ with respect to t′.

ii) If S′ is a target set for G′ with respect to t′, then there exists target set S for G with respect to t and
|S| = |S′|.

I Theorem 2.27. Target Set Selection is NP-hard even if the underlying graph is a grid graph
and all thresholds are at most 2.

Proof. We reduce from Target Set Selection on planar graphs with maximum degree 4 and thresh-
olds at most 2. Hardness of this setting is implied by Theorem 2.18. Let (G, t, k) be an instance of TSS
where G is planar and ∆G ≤ 4. Fix a rectilinear embedding of G which exists by Theorem 2.6. We refer
to the rectilinear embedding simply as drawing. We now modifiy the graph G as follows. For an edge
e ∈ E(G), consider the polygonal chain Pe representing e in the drawing. Let g denote the number of
grid points contained in Pe. We subdivide the edge e exactly g − 2 times (see Figure 2.5). Note that
the case g = 2 vacuously corresponds to no subdivision. After this step, the graph is (not necessarily
induced) subgraph of a grid. To make it induced, we further simultaneously subdivide all edges exactly
once (see Figure 2.6). After this step, the resulting graph is indeed an induced subgraph of a grid (i.e.,
a grid graph). We set the thresholds of all newly created vertices to 1. Let G′ denote the resulting graph,
t′ : V (G′) → N the new threshold function and set k′ = k.

I Claim. (G, t, k) is a yes-instance of Target Set Selection if and only if (G′, t′, k′) is a yes-instance
of Target Set Selection.

Proof. Let (G, t, k) be a yes-instance and let S ⊆ V (G) be a target set of size at most k. Inductively for
each subdivision, apply i) from Observation 2.26. It follows that S is also a target set with respect to t′
and is of size at most k = k′, thus (G′, t′, k′) is a yes-instance.

On the other hand, let (G′, t′, k′) be a yes-instance and let S′ ⊆ V (G′) be a target set of size at
most k′. Inductively for each subdivision, apply ii) from Observation 2.26. Observe that in each step we
get a target set S with the same size. It follows, that there is a target set S with respect to t and is of
size k′ = k, thus (G, t, k) is a yes-instance. �

To finish the proof, we notice that the rectilinear embedding can be computed in polynomial time by
Theorem 2.6 and its area is at most O(|V |2). It follows that in both steps of the construction, we only
added at most O(|V |2) many new vertices, thus the size of G′ is at most polynomial in the size of G. In
other words, the reduction is polynomial. The theorem follows.

�

As the class of grid graphs is a subclass of the unit disk graphs, we obtain NP-hardness for the unit
disk graphs as a corollary of Theorem 2.27.

I Corollary 2.28. Target Set Selection is NP-hard even when the underlying graph is a unit disk
graph and all thresholds are at most 2.

2.3 Majority Thresholds
In this section we provide results about Target Set Selection in the majority threshold setting in
discussed graph classes. Recall that in this setting we have t(v) =

⌈
deg v
2

⌉
for each vertex v. Before

delving into the specific classes of graphs discussed in this work, we first examine how the general case
(i.e., when the underlying graph is unrestricted) is proven to be hard. This is content of Theorem 2.29.
Initially, the first proof of hardness in this setting is due to Peleg [61]. The proof provided here is slightly
inspired by the proof of a related result concerning the inapproximability of the Target Set Selection
problem given by Chen [17].
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Figure 2.5 Transformation of a planar graph with maximum degree 4 into a subgraph of a grid by subdividing
edges that fail to connect two neighboring grid points. Filled vertices correspond to the vertices of the original
graph and the empty ones are the newly created vertices.

Figure 2.6 Transformation of graph, that is (not necessarily induced) subgraph of a grid into a graph that is
induced subgraph of a grid (i.e., a grid graph) by subdividing all edges exactly once. Filled vertices correspond
to the vertices of the original graph and the empty ones are the newly created vertices.

I Theorem 2.29. Target Set Selection remains NP-hard under the majority threshold setting.

Proof. We know that Target Set Selection is NP-hard when the threshold function is unrestricted.
We reduce from TSS with unrestricted thresholds. Let (G, t, k) be an instance of TSS. We create new
instance (G′, t′, k′) as follows. For each vertex v with t(v) 6=

⌈
degG v

2

⌉
, we perform the following:

Case 1 If t(v) >
⌈
degG(v)

2

⌉
, we add 2t(v)− degG(v) new vertices with threshold 1 incident to v and set

t′(v) =
⌈
degG′ (v)

2

⌉
= t(v)

Case 2 If t(v) <
⌈
degG(v)

2

⌉
we add degG(v)−2t(v) cherry gadgets (see Figure 2.7) and attach them to v

as depicted in Figure 2.7. We set the threshold of the vertices in the gadget to be at majority, that
is t′(g`) = t′(gr) = 1 and t(gm) = 2. We increase the threshold of v by degG(v) − 2t(v), i.e., we set
t′(v) = t(v) + degG(v)− 2t(v) =

⌈
degG′ (v)

2

⌉
.

Let V1 ⊆ V (G′) denote the vertices added in the case 1 of the construction. Let α denote the number
of cherries added in the construction, and let g`i , gri , gmi be the three vertices of the i-th added cherry.

Finally, set k′ = k + α.

I Claim 2.30. (G, t, k) is a yes-instance of Target Set Selection if and only if (G′, t′, k′) is a yes-
instance of Target Set Selection.

Proof. Let (G, t, k) be a yes-instance and let S ⊆ V (G) be a solution with |S| ≤ k. We claim that
S′ = S ∪ {gmi | i ∈ [α]} is a solution for (G′, t′, k′). Certainly, |S′| ≤ k + α = k′. First, we check that
all original vertices indeed get activated. The only vertices that had their threshold values changed were
the vertices v ∈ V (G) for which t(v) <

⌈
degG(v)

2

⌉
. We attached exactly degG(v)− 2t(v) cherries to these
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vertices and increased their threshold by exactly degG(v) − 2t(v). However, the cherries will become
active because gmi ∈ S′ and only t′(v)− degG(v)− 2t(v) = t(v)more neighbors of v need to be active in
order for v to be active. But that corresponds to the original activation process arising from S in G. It
follows that S′ is a target set for G′ with respect to t′, thus (G′, t′, k′) is a yes-instance.

On the other hand, let (G′, t′, k′) be a yes instance and S′ ⊆ V (G′) a solution with |S′| ≤ k′.

I Claim 2.31. For each i ∈ [α] we have S′ ∩ {g`i , gmi , gri } 6= ∅.

Proof. Suppose for the sake of contradiction that there is an index i such that S′ ∩ {g`i , gmi , gri } = ∅.
Observe that the vertex gmi has exactly one neighbor outside the cherry gadget. It follows that it will
never become active. This contradicts the fact that S′ is a target set. �

We may further assume that S′ contains no vertices v with deg v ≥ 1 and t(v) ≤ 1 by Observation 2.25.
In particular, we can assume that S′ ∩ V1 = ∅. Denote the set of vertices inside all cherries by V ′. That
is, V ′ =

⋃α
i=1{g`i , gmi , gri } and let S = S′ \ V ′. The task is now to show that S is a valid solution

to (G, t, k). Since we assumed that S′ does not contain vertices from V1, and we removed all vertices
from the cherries, S indeed contains only vertices of G. Now, we argue that |S| ≤ k. By Claim 2.31,
S′ contains at least one vertex from each cherry and since the cherries are pairwise vertex-disjoint, we
have |S′ ∩ V ′| ≥ α. It follows that |S| = |S′ \ V ′| ≤ k′ −α = k. It remains to prove that S is a target set
for G with respect to t. Similarly as in the proof of the opposite direction, the only interesting vertices
are those, for which t(v) <

⌈
degG(v)

2

⌉
. In this direction (when going from G′ to G), we decreased their

threshold by degG(v) − 2t(v) but that is also the number of neighbors we removed from v in G. Thus,
activation of these vertices remains unchanged.

This finishes the proof of Claim 2.30. �

To finish the proof of Theorem 2.29 it remains to notice that the reduction is indeed polynomial since we
added at most 3 · degG(v) ≤ 3|V (G)| vertices for each vertex v ∈ V (G), i.e., we added at most 3|V (G)|2
new vertices. �

gm

gl gr

v

gmi

gli gri

gmj

glj

grj

Figure 2.7 The cherry gadget (on the left). Connection of two cherry gadgets to a vertex v ∈ V (G) with original
degree degG(v) = 4 and original threshold t(v) = 1. The new threshold of v is t′(v) = t(v) + degG(v)− 2t(v) = 3
and degG′(v) = 6, thus it is at majority. The half edges going from v represent connection of v to the rest of G.

I Remark. We remark that we didn’t actually have to mess with the cherry gadgets. Instead, we
could have started the reduction with a hard instance, where for all vertices v we have t(v) >

⌈
degG(v)

2

⌉
.

For example, in the proof of Theorem 2.2 the underlying graph in the hard instance of Target Set
Selection is 3-regular, and the thresholds are exactly 3. This means that only the first case from proof
of Theorem 2.29 would apply and the proof would be much simpler.

Although the cherry gadgets were not necessary, we now use them to show hardness of Target Set
Selection under the majority setting for our desired graph classes. We start with the planar graphs.

I Theorem 2.32. Target Set Selection is NP-hard under the majority threshold setting even when
the underlying graph is planar with maximum degree ∆G ≤ 4.
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Proof. The proof combines ideas from proofs of Theorem 2.18 and Theorem 2.29. We reduce from the
Restricted Planar 3-Sat problem in a similar way as in proof of Theorem 2.18 and fix the thresholds
of the vertices that are not equal to the majority in a similar fashion as in the proof of Theorem 2.29.
Let ϕ be the input formula with variables x1, . . . , xn and clauses C1, . . . , Cm.

Recall the original variable gadget (see Figure 2.4). Again, we have deg ti = 4 and deg fi = 2.
Observe that all vertices except di and Fi have majority thresholds. We fix the threshold value of the
vertices di, Fi.

To fix the vertex di, because we have t(di) <
⌈
deg di

2

⌉
, we attach one cherry to di (and increase the

threshold of di by 1). This follows case 2 in the proof of Theorem 2.29 because deg di−2t(di) = 3−2 = 1.
To fix vertex Fi, because we have t(Fi) >

⌈
degFi

2

⌉
, we add a leaf adjacent to Fi with threshold 1. The

modified variable gadget is depicted in Figure 2.8.
Now comes the clause gadget. Recall that in the Restricted Planar 3-Sat all clauses are of size

at most 3. In our construction, this means that for the clause Cj and the original clause gadget Yj
consisting of a single vertex yj we have deg yj ∈ {1, 2, 3}. We also had t(yj) = 1. Thus, if deg yj ≤ 2,
the threshold is at majority. In this case, the clause gadget remains unchanged. If this is not the case,
i.e., deg yj = 3, we attach exactly one cherry to yj (and increase the threshold of yj by 1). The modified
clause gadget is depicted in Figure 2.9.

The placement of the variable and clause gadgets and connections between them remains the same
as in proof of Theorem 2.18. Let β denote the number of clauses that contain exactly 3 literals (i.e., the
number of cherries attached to clause gadgets). Total number of attached cherries is α = n+ β. We set
k = n+ α = 2n+ β. Let G denote the constructed graph and t the threshold function. It is not hard to
see that G is still planar, t(v) =

⌈
degG(v)

2

⌉
for all v ∈ V (G) and ∆G ≤ 4, as promised.

I Claim 2.33. The formula ϕ is satisfiable if and only if (G, t, k) is a yes-instance of Target Set
Selection.

Proof. This can be shown by combining Claims 2.20 and 2.21 and Claim 2.30. More precisely, we
already know by Claims 2.20 and 2.21 that the formula ϕ is satisfiable if and only if the originally
constructed instance of Target Set Selection in the proof of Theorem 2.18 was a yes-instance.
Let (Gold, told, kold) denote the constructed instance from the proof of Theorem 2.18. Now, since the
reduction from (Gold, told, kold) to (G, t, k) is essentially the same as in proof of Theorem 2.29, we get
by Claim 2.30 that (G, t, k) is a yes-instance if and only if (Gold, told, kold) is a yes-instance. The claim
follows by combining these two equivallences. �

Notice that this reduction is a composition of two polynomial reductions, hence it is also a polynomial
reduction. �

ti

Ti

fi

Fi

ai

bi ci

di

Figure 2.8 Schematic representation of the variable gadget Xi for a variable xi in the case of majority
thresholds. The gray vertices have threshold 2, while the white vertices have threshold 1 (cf. Figure 2.4)

.

It is now straightforward to prove the hardness for the majority setting in the remaining graph classes.
That is, grid graphs and unit disk graphs. We employ the same idea as in proof of Theorem 2.27.

I Corollary 2.34. Target Set Selection is NP-hard under the majority threshold setting even if
the underlying graph is a grid graph.
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yj

Figure 2.9 Representation of the clause gadget Yj for a clause Cj containing exactly 3 literals in the case
of majority thresholds. Filled vertices have threshold 2, empty vertices have threshold 1. The three half edges
illustratee the fact that the gadget is connected with the rest of the graph only via yj .

Proof. Apply the same reduction as in the proof of Theorem 2.27, but start from a planar instance with
majority thresholds and ∆G ≤ 4 which is NP-hard by Theorem 2.32. Observe that a vertex created by
subdividing an edge has degree 2 and all other degrees are unchanged. Notice that since the thresholds
of the vertices created by the subdivision is 1, the new threshold function is indeed at majority. �

As the class of grid graphs is a subclass of unit disk graphs, we also obtain hardness under the
majority setting in unit disk graphs.

I Corollary 2.35. Target Set Selection is NP-hard under the majority threshold setting even if
the underlying graph is a unit disk graph.
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Chapter 3

Bounded degree graphs

In the previous chapter, we established hardness of Target Set Selection in all the commonly studied
restrictions of the threshold function – constant, unanimous, majority in the classes of unit disk, and disk
contact (planar) graphs. Note that the proofs provided hardness not only for the concrete graph classes
but also for general graphs with very small maximum degree. It is natural to explore the problem’s
complexity on graphs with even smaller degree. Theorem 2.18 shows that Target Set Selection is
NP-hard even when the underlying graph G has maximum degree ∆G ≤ 4 and thresholds are at most 2.
Theorem 2.2 shows that when ∆G ≤ 3 and thresholds are at most 3, the problem is also NP-hard. Here,
we show that Target Set Selection is still NP-hard when ∆G ≤ 3 and thresholds are at most 2.
This complements a result of Kynčl et al. [51] who showed that the problem is solvable in polynomial
time if all thresholds are exactly 2 and ∆G ≤ 3. This result suggests that the scenario where thresholds
are allowed to be at most c may be different from the scenario where they are all exactly c. We show
that even for unit disk graphs, Target Set Selection is NP-hard even when all thresholds are set to
c for infinitely many c. In particular, we prove the result for c = 2, 3, 4. We also extend the tractability
result by observing how to compute an optimal target set in graphs with ∆G ≤ 2.

We start with a simple observation that we can always upper-bound the threshold of a vertex by its
degree.

I Lemma 3.1. Let (G, t, k) be an instance of Target Set Selection. Then there is an equivalent
instance (G′, t′, k′) with t′(v) ≤ degG′(v) for all v ∈ V (G′).

Proof. If v is a vertex with threshold t(v) > deg v, then it must be included in any target set. We thus
set G′ = G − v, decrease the threshold value of all neighbors of v by 1 (if not already at zero) and
k′ = k − 1. Certainly the new instance is equivalent to (G, t, k). Repeat this step until there are no
vertices with threshold t(v) > deg v. �

I Theorem 3.2. Target Set Selection is NP-hard even when the underlying graph has maximum
degree ∆G ≤ 3 and thresholds are at most 2.

Proof. We utilize the reduction of Kynčl et al. [51] used to show the NP-hardness of Irreversible
2-Conversion Set in graphs with maximum degree 4. Their problem exactly corresponds to Target
Set Selection with thresholds set to 2. In their reduction, they make use of leafs with threshold 2
to virtually decrease the thresholds of some vertices in the resulting graph. In their problem, they
are not explicitly allowed to have other thresholds than 2. By Lemma 3.1, we can erase all these leaf
vertices with threshold 2 and decrease the threshold of their neighbors to obtain an equivalent instance
(G, t, k). Observe that in their reduction, after erasing all these leaf vertices, we end up with a graph
with maximum degree 3, i.e., we have ∆G ≤ 3. Also, the thresholds are at most 2, as promised. The
theorem follows. �

This result suggests that it might be of interest to distinguish between constant thresholds (i.e.,
t(v) ≤ c for some fixed constant c) and exact thresholds (i.e. t(v) = c for some fixed constant c)(i.e.,
t(v) = c for some c). Exact thresholds correspond exactly to the Irreversible c-Conversion Set
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problem. This problem is known to be NP-hard for all c ≥ 3 [29] and also for c = 2 [17, 51]. Note that
when c = 2 and the graph is 3-regular, the problem is equivalent to the Feedback Vertex Set problem
(see [66, Lemma 2]), which is solvable in polynomial time in graphs with maximum degree 3 [67]. Kynčl
et al. [51] extended the tractability result for Target Set Selection with t(v) = 2 (or, in their paper,
Irreversible 2-Conversion Set) from 3-regular graphs to graphs with maximum degree 3. Going
back to the class of unit disk graphs discussed in Chapter 2, we also have slightly weaker result for this
class when the thresholds are exact. We rely on the result about NP-hardness of Independent Set on
regular graphs (see Theorem 2.8 and corollary 2.15).

I Theorem 3.3. For infinitely many constants c Target Set Selection is NP-hard when restricted to
the class of unit disk graphs and the thresholds are exactly c. In particular, the claim holds for c = 2, 3, 4.

Proof. For c ≥ 3 we reduce from Independent Set restricted to instances where the underlying graph
is c-regular unit disk graph where c > 0 and c ≡ −1 mod 4 or c ≡ −1 mod 5. Hardness of this setting
is implied by Corollary 2.15. We proceed in a similar way as in proof of Theorem 2.17 but start with a
c-regular graph for appropriate c.

For c = 2 we reduce from Target Set Selection with majority thresholds on grid graphs. Hardness
of this setting is implied by Corollary 2.34. Let (G, t, k) be such instance and let V (G) = {v1, . . . , vn}.
We create a new instance (G′, t′, k′) as follows. We are aiming for t′(v) = 2 for all v ∈ V (G′).

First, we obtain a disk representation D = {D1, . . . , Dn} for G as in proof of Observation 1.11. The
disk Di corresponds to the vertex vi. Now, we fix vertices vi with threshold 1 by attaching a leaf vertex v′i
with threshold 2 to vi and we increase threshold of vi by 1. In this way we have t′(vi) = t′(v′i) = 2. Let z
denote the number of vertices vi ∈ V (G) with t(vi) = 1. We set k′ = k+ z. Let G′ be the newly created
graph.

I Claim. The instances (G, t, k) and (G′, t′, k′) are equivalent.

Proof. Observe that by applying Lemma 3.1 to the instance (G′, t′, k′) we obtain precisely the instance
(G, t, k). The claim follows. �

It remains to say how to realize the attachment of a leaf vertex in the unit disk representation.
Let si ∈ R2 be the center of Di and let ε = 1

5 . Observe that the representation satisfies: Every two
disks have at most 1 point in common. Let vi satisfy t(vi) = 1. Thus, degG vi ∈ {1, 2} because t is
majority. As all the disks are embedded in an integer grid and deg vi ≤ 2, there exists a direction
di ∈ {(0, 1), (1, 0), (−1, 0), (0,−1)} such that si + di is not a center of any other disk Dj . We add a new
disk D′

i with diameter 1 centered at si + εdi (see Figure 3.1).
It is not hard to see that D′

i ∩ Di 6= ∅ and that D′
i does not intersect any other disks. In other

words, this exactly corresponds to attaching a leaf vertex v′i to vi. We repeat this step for all other
vertices v ∈ V (G) satisfying t(v) = 1. Observe that the selection1 ε = 1

5 ensures that no matter which
direction dj we choose for any other disk Dj , the newly created disk D′

i intersects only the disk Di. This
can be checked by applying the triangle inequality several times, or directly, by computing the distances
of the centers of corresponding disks.

To conclude the proof, note that we added at most 1 new vertex per each original vertex, thus the
reduction is indeed polynomial. �

I Remark. We remark that in the case for c = 2, the resulting unit disk graph still satisfies ∆G ≤ 4.
We thus have a hardness result not only for t(v) ≤ 2 and ∆G ≤ 4, but also for t(v) = 2 and ∆G ≤ 4 in
the class of unit disk graphs. Notice that a very same proof also works for planar graphs but without all
the geometrical mess.

I Corollary 3.4. Target Set Selection is NP-hard even when the underlying graph is planar or
unit disk graph with ∆G ≤ 4 and the thresholds are exactly 2.

1The only problem might arise in the scenario shown in Figure 3.1. In this case si + pi = sj + pj and the two red disks
might overlap if ε was choosen too large. In fact, one can compute that any ε ∈

(
0, 1− 1√

2

)
would suffice.
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D′
i

D′
j

Di

Dj

Figure 3.1 Attaching leafs to vertices vi, vj corresponding to disks Di, Dj . The black disks correspond to the
original graph while the two red disks are the newly created leafs. The corresponding directions are di = (1, 0)
and dj = (0,−1).

I Remark. We remark that the first constant for which we don’t have an NP-hardness result for
Target Set Selection in the class of unit disk graphs and thresholds set exactly to c, is c = 5. It is
implied by the fact that the proof heavily relies on the hardness of Independent Set, for which the
situation is pretty much the same. Refer back to Remark 2.16 for more details.

We end the chapter with an observation on how to generalize the computation of an optimal target set
for general graphs with ∆G ≤ 2. Such graphs are disjoint unions of cycles and paths. We further assume
that the graph is connected since an optimal target set can be computed for each connected component.
In other words, it is enough to show how to compute an optimal target set when the underlying graph
is a path or a cycle.

Observe that if the graph contains a vertex with threshold 1 that induces a path on three vertices
together with its neighbors, we can always bypass it – erase it and connect his two neighbors by an
edge and the size of an optimal target set does not change. This can be seen as a reverse operation to
subdivision. We formalize this in Observation 3.5.

I Observation 3.5. Let G = (V,E) be a graph and t : V → N a threshold function and let v ∈ V satisfy
deg v = 2 and t(v) = 1. Denote N(v) = {u,w} and also assume that {u,w} /∈ E. Let G′ be a graph
created from G by deleting v and adding edge {u,w}. Let t′ be the function t restricted to V (G′). Then
the following holds:

i) If S is a target set for G with respect to t, then there is a target set S′ for G′ with respect to t′ and
|S| = |S′|.

ii) If S′ is a target set for G′ with respect to t′, then S′ is also a target set for G with respect to t.

Since we have ∆G ≤ 2, we can also assume that t(v) ≤ 2 by Lemma 3.1.

I Theorem 3.6. An optimal target set for the cycle Cn is of size max
{
1,
⌈
q
2

⌉}
, where q is the number

of vertices with threshold 2.

Proof. Apply Observation 3.5 to all vertices of threshold 1 until we either end up with a triangle or with
a cycle where all vertices have thresholds 2. If we end up with a tringle, then there are two cases to
consider. If all vertices have threshold 2, then the optimal solution is of size 2 =

⌈
3
2

⌉
, as claimed. If

this is not the case picking either one of the vertex with threshold 2 or any vertex (if all vertices have
threshold 1) suffices (and is also necessary).

If we end up with a cycle of length ` ≥ 4 with all thresholds 2, then this corresponds to the Irre-
versible 2-Conversion Set and the optimal solution is of size

⌈
`
2

⌉
=
⌈
q
2

⌉
as noted in [51].

We now use part ii) of Observation 3.5 and conclude that the computed target set is also optimal for
the original cycle we started with. �

I Theorem 3.7. An optimal target set for path Pn is of size max
{
1,
⌈
q+1
2

⌉}
, where q is the number of

vertices with threshold 2.

Proof. Apply Observation 3.5. Then erase leafs with threshold 1 as there is always an optimal solution
not containing them and they will become active if their neighbor becomes active. After this process,
we either end up with a single vertex with threshold 1 – this happens in the case where all thresholds
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in the original graph were equal to 1, so the solution is of size 1. Otherwise we end up with a path P`

where all vertices have thresholds 2. This again corresponds to the Irreversible 2-Conversion Set
and the optimal solution is of size

⌈
`+1
2

⌉
=
⌈
q+1
2

⌉
as noted in [51].

In the same way as in proof of Theorem 3.6, we use part ii) of Observation 3.5 and conclude that the
computed target set is also optimal for the original path we started with. �
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Chapter 4

Conclusion

We have shown NP-hardness of Target Set Selection in the class of unit disk graphs in all the three
commonly studied settings – constant, unanimous and majority. En route, we also showed NP-hardness
results for the classes of grid graphs and planar graphs. There was one exception – in the unanimous
threshold setting on grid graphs, Target Set Selection is solvable in polynomial time.

In the last chapter, we demonstrated that there is a difference between exact and constant thresholds.
That is, t(v) = c for fixed c and t(v) ≤ c for fixed c, respectively. More precisely, we showed that if
∆G ≤ 3 and t(v) ≤ 2, Target Set Selection is hard in general graphs, whereas it is solvable in
polynomial time if t(v) = 2 and ∆G ≤ 3 by a previous result of Kynčl et al. [51].

We also returned back to the class of unit disk graphs and addressed the exact threshold setting
and showed that for infinitely many constants c Target Set Selection remains NP-hard even in the
classes of unit disk and planar graphs with t(v) = c. In particular, we showed this for c = 2, 3, 4. For
the case c = 2, we still preserved the tight upper bound on maximum degree of the graph, i.e., ∆G ≤ 4.

We completed the complexity picture regarding maximum degree and observed how to compute
optimal target sets in graphs with ∆G ≤ 2, i.e., cycles and paths.

Future directions and open questions
We give a few open questions that might be interesting to explore.

I Question 4.1. Is Target Set Selection NP-hard when restricted to the classes of unit disk or
planar graphs even if the maximum degree is at most 3 and the thresholds are at most 2?

I Question 4.2. Is Target Set Selection NP-hard when restricted to the class of grid graphs and
the threshols are exactly 2?

As Target Set Selection turned out to be still NP-hard even in the class of unit disk graphs
and grid graphs, it might be a reasonable direction to step back and take a different path in the class
hierarchy (see Figure 4.1). Instead of restricting disk graphs to unit disk graphs and grids, one could
restrict the disk graphs to different subclasses. A subclass of the class of disk graphs that already provided
a tractability result is the class of interval graphs. In this class, the constant threshold setting is solvable
in polynomial time [10], and unanimous threshold setting even in linear time, as it is equivalent to the
Vertex Cover problem [56].

A natural question is: What is the complexity of Target Set Selection in the class of interval
graphs under the majority threshold setting?

Note that while the algorithm given by Bessy et al. [10] for thresholds at most c runs in polynomial
time, the degree of the polynomial depends on c. This implies that their algorithm cannot be extended
to a polynomial-time algorithm for the majority threshold setting.

I Question 4.3. Is Target Set Selection solvable in polynomial time in the majority threshold
setting when the underlying graph is an interval graph?
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If the answer to the latter question is yes, we can even ask for an efficient algorithm for the degree-
dependent threshold setting, which generalizes the exact, the unanimous, and the majority settings.

I Question 4.4. Is Target Set Selection solvable in polynomial time when the underlying graph
is an interval graph and the threshold function satisfies t(v) = f(deg v) for some function f?

To the best of our knowledge, no NP-hardness result for Target Set Selection is known for the
class of interval graphs, thus we may even ask:

I Question 4.5. Is Target Set Selection solvable in polynomial time when the underlying graph
is an interval graph and the threshold function is unrestricted?

If an NP-hardness result occurs for the class of interval graphs, one could restrict the structure even
further, e.g., to the class of unit interval graphs, where all the intervals in the representation have equal
length. The class of unit interval graphs is also a subclass of unit disk graphs. Refer to Figure 4.1 for an
overview of the mentioned graph classes and corresponding complexity results regarding Target Set
Selection.

DISK
h, h, h

UINT
`, p, ?

GRID
p, h, h

UDG
h, h, h

INT
`, p, ?

Figure 4.1 Relationship between the considered graph classes in the further research of complexity of Target
Set Selection. An arrow from a class G to a class H indicates that G is a subclass of H. The three letters
below each class correspond to the complexity of Target Set Selection in the unanimous, constant, and
majority threshold setting, respectively. The letter h indicates NP-hardness of the given setting, p and ` indicate
polynomial- and linear-time solvability, respectively. A question mark indicates an open question. Going left to
right top to bottom, the graph classes are: the disk graphs, the unit disk graphs, the interval graphs, the grid
graphs, the unit interval graphs.

Another question, unrelated to target sets, is about the hardness of the Independent Set problem
on r-regular unit disk graphs for all constants r.

We explicitly showed the NP-hardness for the cases r = 3 and r = 4 in Theorem 2.8. We then noticed
that this extends the hardness to all constants r satisfying r = −1 mod 4 or r = −1 mod 5. A natural
question is, whether the problem NP-hard for all constants r ≥ 3? We remark that the first r for which
we don’t have a proof of NP-hardness is r = 5. As noted in Remark 2.16, our approach from Section 2.2
is not applicable to give a proof for every constant r.

I Question 4.6. Is Independent Set NP-hard when restricted to the class of r-regular unit disk
graphs for all constants r ≥ 3?

Similar question follows with the hardness of exact thresholds in unit disk graphs given in Theorem 3.3.
The proof relied heavily on the result about Independent Set. For Target Set Selection, we
managed to include a different approach for c = 2, however, as before, the first c for which we don’t have
a proof of NP-hardness if c = 5.

I Question 4.7. Given any c ≥ 2, is Target Set Selection NP-hard even when restricted to the
class of unit disk graphs and all thresholds are exactly c?
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