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Instructions

Learning to Rank methods (L2R) are used to improve relevance ranking within various 

kinds of result lists.

Most commonly, L2R is used to rank web search results given a user query as well as 

information known about the user.

L2R combines traditional Information Retrieval methods such as TF/IDF search with 

Machine Learning methods aimed at improving

the ordering of the initial result lists delivered by the baseline method.

L2R use cases range from textual search to recommender systems.

For search tasks, training data is typically acquired in the form of query/relevant 

document list pairs.

L2R has proven to work well on large datasets.

It has also been applied to smaller, domain-dependent datasets, e.g. sorting Slack chat 

search results by message relevance.

How much L2R improves over baseline is however much less known and documented for 

these smaller datasets.

Goals of the thesis:

- Research state-of-the-art L2R algorithms, available metrics and datasets.

- Choose an appropriate dataset for experiments, such as:

  - Web Answer Passages https://ciir.cs.umass.edu/downloads/WebAP/

  - MS MARCO https://microsoft.github.io/msmarco/
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- Implement an L2R-enabled Information Retrieval system that combines a baseline IR 

system with supervised learning

  - the baseline IR system will most likely use Apache SOLR, Apache Lucene, or Indri

  - the baseline IR system may additionally use Sentence Transformer models https://

www.sbert.net/ and perform a semantic search by looking up similar embedding vectors

  - pick an L2R algorithm and try to improve the baseline IR system's results

- Quantify whether and how L2R contributes to result relevance over the baseline IR 

system using training datasets of progressive size

  - the training datasets of progressive size can be created by subsampling a single 

original dataset

  - show how L2R affects the relevance of retrieved results for varying sizes of training 

data, e.g. 500, 1k, 10k, 20k training pairs
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Abstrakt

Dostupnost’ vel’kého množstva trénovaćıch dát sa stalo neoddelitel’nou súčast’ou
vytvorenia kvalitného modelu využ́ıvajúceho strojové učenie. Pri použit́ı stro-
jového učenia v reálnych aplikáciach však mnohokrát nastáva problém s data-
setmi, nakol’ko ich vel’kost’ nie je dostatočná. Táto práca sa zaoberá uplatneńım
tzv. Learning to Rank (LTR) metód na malé datasety. V rámci práce skúmame
efektivitu LTR modelu LambdaMART v porovnańı s tradičnými systémami
na vyhl’adávanie informácíı. Vyhodnotili sme množstvo rôznych experimen-
tov na 2 rôznych datasetoch – dataset MS MARCO a český dataset DaReC-
zech. Experimenty sú navrhnuté tak, aby odpovedali na tri výskumné otázky.
Otázky sa zameriavajú na porovnanie základného systému, ktorý využ́ıva
vyhl’adávanie na základe termov oproti systému využ́ıvajúcemu Learning to
Rank, d’alej potrebným počtom trénovaćıch dát a aký vplyv na výsledky má
nahradenie základného systému za predtrénovaný transformer model. Dosi-
ahnuté výsledky ukazujú, že LTR metódy dosahujú očividné zlepšenie oproti
obom verziám základného systému, a to aj napriek použitiu obmedzeného
množstva dát.

Kĺıčová slova Learning to Rank, vyhl’adávanie informácíı, MS MARCO,
DaReCzech, LambdaMART, transformer
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Abstract

The availability of large datasets has become almost indispensable necessity
for building a well-performing machine learning model. However, many real-
world applications, especially those in specialised domains, offer only data
limited in size. This thesis is devoted to appplication of Learning to Rank
(LTR) methods to small datasets. In this thesis we explore the effectiveness of
LambdaMART, a powerful LTR model, compared to a traditional Information
Retrieval (IR) system. We conduct a series of multiple experiments on two
different datasets, the MS MARCO dataset and a dataset in Czech language
called DaReCzech. The experiments are designed with the purpose to answer
three research questions. The questions focus on comparing a baseline term-
based IR system with an LTR-enabled system system, the amount of training
data needed, and the impact of replacing the term-based first-stage retrieval
with pre-trained sentence transformer models. Our findings show, that LTR
methods achieve a notable improvement over both types of baseline, even with
the constrained training data.

Keywords Learning to Rank, information retrieval, MS MARCO, DaReCzech,
LambdaMART, transformer
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Introduction

With the rapid increase in the amount of data shared online, search systems
have become crucial in helping users quickly access the information they are
looking for. An essential part of modern information retrieval systems is the
ability to prioritise search results based on the user’s input. Traditional IR
systems typically rely on a fixed function that scores documents against a
user’s query. Such scoring functions are usually based on the term frequency
and inverse document frequency components and favor documents with high-
est word overlaps with the query. Scoring each document then yields a final
ranked list of search results for the query.

Although traditional IR systems work well in many scenarios, they have
several drawbacks. Since they use a predefined set of rules or algorithms to
produce the score, they do not have the ability to learn from user feedback and
continuously improve their performance. Additionally, many systems are only
keyword-based. Although they are efficient and the computation of scores is
relatively fast and easy, they can be limiting when it comes to understanding
the meaning and the context of sentences. A different solution for addressing
the ranking problem is to use machine learning.

Learning to Rank (LTR) is a supervised machine learning task, where
the objective is to construct a model capable of predicting the importance or
relevance of a set of objects with respect to the given query and sort them
accordingly. The most common application of Learning to Rank algorithms
is found in the field of information retrieval. LTR algorithms can help to im-
prove the relevance of the results returned to users by traditional IR systems.
In contrast to traditional IR systems, Learning to Rank addresses this task by
using machine learning models trained on labelled ranked data. Even though
LTR has been shown to be effective on large datasets, in real-world scenar-
ios the training data is often limited. The effectiveness of LTR algorithms
on smaller domain-specific datasets can be challenging and still needs to be
explored further.
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Introduction

Goals of the thesis

This thesis aims to find the answers for the following three research questions,
marked as RQ1,RQ2 and RQ3:

RQ1 This research question is dedicated to comparing a baseline Information
Retrieval system with a LTR-enabled IR system. We aim to quantify
whether and how sorting the documents retrieved from the baseline sys-
tem using pre-trained ranking model contributes to the result relevance.

RQ2 The second research question is an extension of the previous question
by using varying sizes of training data. Assuming that the LTR model
outperforms the baseline IR system, our goal is to determine how much
(or how little) training data is needed for the model to improve the base-
line results. We experiment with data of different sizes obtained by
subsampling the original training dataset used in RQ1.

RQ3 Additionaly, we aim to experiment with improving the baseline by
adding pre-trained sentence transformer models. The objective is to
analyse how the overall performance of our multi-stage ranking pipeline
changes opposed to the one using keyword approaches only.

Thesis organisation

Chapter 1 provides an introduction to information retrieval and its traditional
ranking methods. It also introduces performance measures used to evaluate
models in IR. Chapter 2 reviews the fundamental background of Learning to
Rank methods, their classification and existing algorithms. It also explains
the multi-stage ranking system. Chapter 3 analyses datasets suitable for the
LTR task and the examples of features that are commonly used in this do-
main. Chapter 4 describes the experimental setup and implementation – the
technologies used, the data processing, the process of feature extraction and
model training are described in this chapter. Finally, Chapter 5 presents the
results of the proposed experiments, their analysis and the answers for the
research questions defined above.

2



Chapter 1
Ranking in Information Retrieval

The term information retrieval refers to the process of obtaining information
from a collection of data. Requests for information (usually provided by the
user of a search system) are called queries, and a collection of data or docu-
ments is called corpus. Depending on the application, the data in the corpus
can consist of textual documents, images, audio files, or other items. This
thesis focuses on documents that are entities that contain text. This chapter
also analyses the most frequently employed performance measures for IR. The
approaches to IR differ, starting from simple Boolean model to more complex
methods such as vector space and probabilistic models. The subsequent sec-
tions delve into the main ideas behind the most widely adopted conventional
ranking models.

1.1 Boolean model

The earliest and simplest IR systems were built on Boolean algebra and set
theory. Documents were typically represented as binary vectors of terms,
where each term was assigned a binary value that indicated its occurrence in
the given document. To specify a query, users needed to construct a combi-
nation of logical operators (AND, OR, NOT) between terms. Boolean model
stood out by its simplicity and could be efficiently implemented using an in-
verted index, however, there were many limitations to this solution – the model
was not able to predict relevance scores, it could only determine whether the
document was relevant to the given query, therefore, ranking the search re-
sults based on relevance was not possible (optionally, it was possible to sort
the resulting documents according to the document age or other document
feature) [1].

3



1. Ranking in Information Retrieval

1.2 Vector space model

Vector space model depicts both documents and queries as vectors in high-
dimensional space. The values in the vector belong to the weights of terms and,
owing to the fact that the queries and vectors have the same representation,
it is possible to measure the distance between the two. This distance can
then be interpreted as a dissimilarity or the relevance of the document to
the query. The vector model is highly parameterizable, meaning different
distance measures and approaches to compute term weights can be used. One
of the most widely used weighting schemes is called TF-IDF (term frequency-
inverse document frequency) [2]. TF stands for term frequency of a term ti in
document dj (typically normalised), and IDF is defined as

IDF (ti) = log |D|
d(ti)

, (1.1)

where |D| refers to the total number of documents in the collection, a d(ti) is
the number of documents that contain the term ti. By multiplying term fre-
quency with its inverse document frequency for each term, one can create the
document vector. The common weight to measure the similarity between the
query and document vector is to compute the cosine similarity (or distance).
The cosine similarity of two vectors u and v is defined as follows

cos sim(u, v) = u · v

||u|| · ||v||
. (1.2)

After querying, the result is a ranked list of documents ordered by their sim-
ilarity to the query. The vector space model is a simple geometric model,
which can be efficiently implemented; its advantages over standard Boolean
model are that it provides a continuous relevance value between queries and
documents and therefore allows ranking according to this value. Nevertheless,
VSM assumes many independent low-level terms, it is not able to deal with
documents having similar context which use different term vocabulary and
the term weights in the vector do not take the original order of terms into
consideration.

To avoid the assumption of term independence, some extensions of the
vector model were suggested, such as Latent Semantic Indexing (LSI) [3].
This model uses singular value decomposition (SVD) to preprocess the feature
space. After the transformation, the document is represented by concepts
(which are linear combinations of terms) instead of terms. By constructing
a new semantic space, where terms with similar context are associated, LSI
can overcome the issues with synonyms that VSM has. It also reduces the
dimensionality of the feature space. On the other hand, SVD algorithms
have a high complexity and the preprocessing of the feature matrix can be an
expensive operation.

4



1.3. Probabilistic model

1.3 Probabilistic model

Another group of ranking models for Information Retrieval are models based
on the probabilistic ranking principle [4]. The probabilistic ranking principle
claims that in an IR system, where for each query there is a list of documents
sorted by decreasing probability of their relevance to the query, if these prob-
abilities are estimated as accurately as possible, the system will reach the best
obtainable effectiveness. The goal is to determine the probability of relevance
of the document d to the query q, P (r|d, q). Ranking documents by given
probability is equivalent to ranking according to log-odds of that probability:

log(O(r|d, q)) = log
(

P (r|d, q)
1 − P (r|d, q)

)
= log

(
P (r|d, q)
P (r|d, q)

)
. (1.3)

By applying Bayesian and chain rules and other simple transformations to the
expression shown above it is possible to derive log

(
P (d|q,r)
P (d|q,r)

)
, which is the core

of all probabilistic models. The individual probabilistic models then differ in
the way how P (d|q, r) is computed [1].

1.3.1 BM25

One of the most famous probabilistic models is BM25. Given a query q with
terms t1, . . . , tm, BM25 is defined as:

BM25(d, q) =
m∑

i=1
= IDF(ti) · TF(ti, d) · (k1 + 1)

TF(ti, d) + k1 ·
(
1 − b + b · len(d)

avgdl

) , (1.4)

where k1 and b are free parameters of the model and avgdl is the average length
of document in the collection. The parameter k1 calibrates the document
frequency scaling (when set to 0 we get a binary model, and on the contrary,
large values correspond to using the raw term frequency). The variable b ∈
[0, 1] controls the scaling by document length, where b = 0 means that the
length is not normalised.

1.4 Statistical language model

An example of a statistical language model is a Language model for IR
(LMIR). The aim of this approach is to estimate a language model for each
document d in the corpus. To create the ranking of the documents based on a
query q, the language model uses query likelihood. Unlike the approach in the
previous section, which focused on modelling the probability of relevance of
a document d to a query q, in language models, the probability of generating
the terms in the query by the document model is used. Given the query q
containing terms t1, . . . tn and document d, the unigram LMIR assumes the

5



1. Ranking in Information Retrieval

independence of each term in the query. The probability of generating query
q from document d is given as

P (q|d) =
n∏

i=1
P (ti|d), (1.5)

where P (ti|d) is the probability of generating term ti from the document d.
The simplest method to estimate the P (ti|d) is to count the number of times
the term appears in the document divided by the total number of terms:

P (t|d) = TF(t, d)
|d|

. (1.6)

1.4.1 Smoothing for Language Models

An important concept in LMIR is smoothing, which refers to the adjustment
of the maximum likelihood estimator of a language model to improve its accu-
racy [5]. Smoothing is essential to avoid the zero probabilities that the model
can produce if a term in the query does not appear in the document. Jelinek
and Mercer proposed smoothing that interpolates the document model with
the collection model:

P (ti|d) = λP (ti|d) + (1 − λ)P (ti|D), (1.7)

where D is the entire collection of documents and λ ∈ (0, 1] is a smoothing
parameter. Setting λ close to zero is recommended for shorter queries [6].
Another popular smoothing method is Dirichlet smoothing, where the proba-
bility of generating term ti works by adding a pseudo-count to each word in
the document:

P (ti|d) = TF(ti, d) + µP (ti|D)
|d| + µ

. (1.8)

The probability of the term in the collection of documents D is meant as a
pseudo-count, and it is controlled by the smoothing parameter µ. The value
of this parameter should be set depending on the document length [6], for
example the default value used in Apache Lucene1 is 2000.

1.5 Metrics

This section describes the most commonly used performance measures for
evaluating the ranking models.

1https://lucene.apache.org
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1.5. Metrics

1.5.1 Mean Reciprocal Rank

For a single query q, reciprocal rank is defined as 1
r(q) , where r(q) is the position

of the first relevant document in the ranked list. If the document with the
highest relevancy does not appear in the search result list, the reciprocal rank
equals zero. The mean reciprocal rank for the whole set of queries Q can be
computed as

MRR = 1
|Q|

|Q|∑
i=1

1
r(qi)

. (1.9)

Since MRR only takes into account the position of the first relevant document,
it is a useful metric for datasets that only have one relevant result, such as
question answering datasets.

1.5.2 Normalized Discounted Cumulative Gain

Discounted Cumulative Gain penalises those documents that appear lower
in the result list but are highly relevant, by reducing the relevance value
logarithmically proportionally to the position of the document. Let reli refer
to the relevance score of the document at position i and let k be the number
of documents considered. Then the formula of NDCG at position k is defined
as

NDCG@k = DCG@K

IDCG@K
, (1.10)

where DCG is computed as

DCG@k =
k∑

i=1

2reli − 1
log2(i + 1) . (1.11)

IDCG@k is the ideal DCG, meaning the maximum possible DCG@k one can
obtain given this ranking list. The normalised version of DCG is preferred due
to the fact that in the ranking task, the number of documents retrieved for
each query may differ, thus normalising against the ideal gain is necessary to
compare the score between different queries [7].

1.5.3 Mean Average Precision

Precision at k for query q can be defined as:

P@k(q) =
∑k

i=1 ri

k
, (1.12)

where ri is a binary indicator showing whether document i is relevant for
query q (setting ri = 1). Then we are able to compute the average precision
of query q at k items:

AP (q)@k = 1∑k
i=1 ri

k∑
i=1

P@i(q) × ri. (1.13)

7



1. Ranking in Information Retrieval

Then the Mean Average Precision for the entire query set Q is computed as:

MAP =
∑|Q|

i=1 AP (qi)
|Q|

. (1.14)

This metric is designed for binary ratings as it does not consider the ranking
of retrieved items. Only the presence (or absence) of relevant documents is
important.
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Chapter 2
Learning to Rank

Let Q be a set of n queries Q = {q1, q2, . . . , qn} and D a document set
D = {d1, d2, . . . , dm}. For each query qi there exists a list of relevant doc-
uments R(qi) ⊆ D of size li associated with the query and a set of labels yi =
{yi,1, yi,2, . . . , yi,li}. The training set is denoted as Strain = {(qi, R(qi)), yi}n

i=1.
Typically, query-document pairs are represented by a feature vector xi =
Ψ(qi, dj), where i = 1, . . . , n; j = 1, . . . , li and Ψ is a feature extractor. The
process of creating features and their examples is described in the next chap-
ter in Section 4.2. The goal of the LTR task is to learn a ranking fuction
f(q, d) = f(x), that can assign a score to a given query document pair (their
feature vector), such that when the documents are ordered by their score it
reflects their relevance to the query. The notation used above was adopted
from [8] with slight modifications. In the following sections, when query-
document pairs are mentioned as an input, we mean their feature vector rep-
resentation unless stated otherwise. This chapter explains the concept of
learning to rank and reviews a part of the most commonly used algorithms.
These algorithms can be classified into three categories: pointwise, pairwise,
and listwise.

2.1 Pointwise methods

Pointwise approach is the oldest method used to solve LTR problems. These
algorithms treat each document from the training set individually – the method
predicts the relevance of a single document for a given query, instead of rank-
ing the whole list of items. The document relevance can be represented by
a real-valued score, a categorical score (which can be either binary meaning
relevant vs. irrelevant document, or into multiple categories), or ordinal score.
The goal is to predict the score for each document-query pair.

The advantage of this approach is that any traditional machine algorithm
can be used in the pointwise solution, since the ranking task can be reformu-
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2. Learning to Rank

lated as a classification or regression task. The input space is query-document
pairs and the target label is the relevance of the document y.

One drawback of this approach is that the model does not utilise the posi-
tion of each of the documents in the list of matching documents for the query,
and loosing this valuable information may result in suboptimal performance.
Furthermore, explicit labels are needed for each training data point, and as de-
scribed in the Chapter 3 the process of collecting relevance judgments can be
complicated. After training, the model can predict the relevance of new query-
document pairs it has not encountered before, and in the end it is possible
to create a resulting ranked list of relevant documents based on the predicted
score.

2.1.1 Algorithms

Some example of common algorithms that adopt the pointwise approach in-
clude the following methods. PRank [9] is a neural ranking algorithm that
uses a linear function called perceptron to estimate the relevance score of doc-
ument di. The output of the model is f(di) = wT xi, where w is a trained
vector of vector of weights. The learning in PRank is driven by stochastic
gradient descent.

An additional example of a pointwise algorithm is MART [10] which stands
for Multiple Additive Regression Trees. Regression tree is a decision tree
algorithm that is used to predict continuous valued outputs [11]. In MART,
the final model is a linear combination of the outputs of singular regression
trees. It can be interpreted as boosting algorithm that is performing gradient
descent in function space, using regression trees [12]. The final model can be
written as:

FN (x) =
N∑

i=1
αifi(x), (2.1)

where fi(x) ∈ R is a function modelled by a single regression tree, αi ∈ R
denotes the weight associated with the ith tree and x is a feature vector.

2.2 Pairwise methods

Pairwise methods tackle the ranking problem as a pairwise classification task.
The input space consists of document pairs and the objective is to determine
whether the first document is more relevant to the given query than the second.
The model learns how to score a pair of documents so that the more relevant
document is ranked higher. The advantage of the pairwise approach is that
the model is using the rank information in the training set, even though only
in a pairwise manner. Also, no explicit labels for each document-query pair
are needed, only pairwise preference is necessary.

10



2.2. Pairwise methods

2.2.1 Algorithms

Some example pairwise algorithms include RankBoost [13], RankSVM and
RankNet [14]. RankBoost is a method based on AdaBoost [15], the only
difference is that it uses the distribution defined on document pairs instead
of individual documents as in AdaBoost [16]. RankBoost learns a ranking
function by combining multiple weak rankers into a strong ranker.

RankSVM uses SVM for pairwise classification, the objective function is
the same as in SVM and the mathematical formulation only differs in the
constraints, which are constructed from the document pairs. RankSVM min-
imises the hinge loss function. The following subsection delves into RankNet
in more detail, as it played a significant role in LTR development.

2.2.2 RankNet

According to [16], RankNet was presumably the first LTR algorithm used by
commercial search engines. It uses a neural network as an underlying model,
but any model that produces a differentiable function of the model parameters
can be used [12]. For a given query and a pair of documents represented by
their feature vectors xi and xj with a different label, the model computes the
scores si = f(xi) and sj = f(xj). Let di ≫ dj define the document di being
more relevant than the document dj . The output of the model is mapped to a
learned probability that di should be ranked higher than dj through a sigmoid
function with parameter σ determining its shape:

Pij ≡ P (di ≫ dj) ≡ 1
1 + e−σ(si−sj) . (2.2)

RankNet uses the cross-entropy cost function to penalise the deviation
from the true probability P ij of document di being ranked higher than docu-
ment dj :

C = −P ij logPij − (1 − P ij)log(1 − Pij). (2.3)

Assumed that the true probability is known as P ij = 1
2(1 + Sij), where Sij ∈

{−1, 0, 1} is defined to be 1 if document di is more relevant than document dj ,
0 if they are equally relevant and -1 otherwise, then the cost can be specified
as:

C = 1
2(1 − Sij)σ(si − sj) + log(1 + e−σ(si−sj)). (2.4)

RankNet learns via gradient descent – the model weights are updated using
the gradient of the cost with respect to the model weights. The gradient of
the cost with respect to the model scores si is used in order to specify the
gradient with respect to the model weights.
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2. Learning to Rank

2.3 Listwise methods

These methods aim to learn a ranking function that can order a set of items
in a meaningful way for a given query, based on the overall relevance of the
items for the query. Listwise methods benefit from utilising all information
about document position in the list. Generally, there are two categories of
listwise methods based on how they optimise a ranking function on the whole
document list. The first option is to directly optimise the IR evaluation mea-
sure (as the measures discussed in Section 1.5). The other approach consists
of minimising a surrogate loss function, such as the probability loss function
defined on permutations [17].

2.3.1 Algorithms

The first listwise example is LambdaRank [18], a model based on RankNet
described above (2.2.2). The algorithm builds upon the idea that for training
the model, the costs themselves are not needed, only their gradients with
respect to the model scores. LambdaRank aims to write down the desired
gradients directly rather than deriving them from a cost [12]. The intuition
is that specifying the rules that determine how the rank order of documents
should change after sorting them by score is easier than constructing a general
smooth optimisation cost [18]. Lambdas (λs) in the model can be understood
as indicators of the directions in which documents should move in the ranked
list in order to optimise performance.

ListNet [19] and ListMLE [20] are common instances of listwise learning
to rank algorithms from the second category. These approaches use the loss
function that measures the difference between the output model and ground
truth permutations. ListNet is founded on the idea of minimising the KL-
divergence between the predicted ranking and the true ranking of the items.
Using the Luce model, ListNet defines the permutation probability distribu-
tion based on the scores given by its scoring function, which is compared with
permutation probability distribution based on the ground truth label. It em-
ploys neural network model and train using the gradient descent. ListMLE
is an improvement of ListNet that uses the negative log likelihood of ground
truth permutation as the ranking loss, which reduces the training complexity
compared to ListNet [16].

2.3.2 LambdaMART

The model [12] was developed as a combination of MART and LambdaRank
algorithms described in the previous sections. Instead of a neural network,
LambdaMART uses gradient boosting to optimise the cost function. Gradient
boosting is a technique that uses an ensemble of weak learners.
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2.3. Listwise methods

parameters: N trees, m training samples, L leaves per tree, learning
rate η

1 for i = 0 to m do
2 F0(xi) = BaseModel(xi) // set to 0 for empty BaseModel
3 end
4 for k = 1 to N do
5 for i = 0 to m do
6 yi = λi

7 wi = δyi

δFk−1(xi)
8 end
9 {Rlk}L

l=1 // L leaf tree on {xi, yi}m
i=1

10 γlk =
∑

xi∈Rlk
yi∑

xi∈Rlk
wi

// Assign leaf values based on Newton

step
11 Fk(xi) = Fk−1(xi) + η

∑
l γlkI(xi ∈ Rlk) // Take step with

learning rate η

12 end
Algorithm 1: Pseudocode summarising the LambdaMART algo-
rithm [12].

Since IR performances measures such as NDCG (1.5.2 or MAP (1.5.3)
are not differentiable at all points and thus cannot be used directly as loss
functions, LambdaMART uses the idea with λs from LambdaRank. Simply
put, LambdaMART just needs MART, to specify gradients (which are the
lambdas in this case) and the Newton step [21] to work. For every given pair
of documents di and dj , where di ≫ dj and the documents have already been
sorted by score, the λij , which can be interpreted as force that will push the
document in the list upwards/downwards, is defined as follows:

λij = −σ|∆Zij |
1 + eσ(si−sj) . (2.5)

Zij represents the utility difference generated by changing the rank positions
of documents di and dj , common example is to use NDCG as Z. While
LambdaRank updates all the weights after each query, LambdaMART only
updates a few parameters at a time, but using all the data, because the splits
at the nodes are computed using all the data that falls to that node. A
pseudocode for better understanding of the algorithm taken from the original
publication can be viewed in 1. The pseudo code and the process of building
LambdaMART model can be summarised to the following steps:

1. Create a base model F0.

2. For each iteration k (of N trees), construct a tree for all query-document
pairs x:
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2. Learning to Rank

a) Update the documents scores using Fn−1.

b) Compute the λ and w – the derivative of λ.

c) Fit a next tree with L leaves. For each leaf node l assign the value
γl, based on the λ of the instances that reach the node l. Do a
Newtons step to optimize gradient prediction in terminal nodes.

d) Update the model Fk.

3. The result is the model FN

In 2010, an ensemble of LambdaMART models won Track 1 of the 2010
Yahoo! Learning To Rank Challenge and became the state-of-the-art Learn-
ing to Rank model at the time. Even more than 10 years after that, Lamb-
daMART still beats neural approaches on multiple benchmark Learning to
Rank datasets with numerical, hand-crafted features [22, 23].

2.4 Recent deep learning approaches

In the recent years, several neural ranking models have been introduced. A
survey on deep learning ranking models from 2019 [24] shows that some of
them outperform the traditional LTR algorithms that use hand-crafted fea-
tures. One of the first significant models to do so is DeepRank [25] proposed in
2017, which simulates the human judgment process. The model simulates the
process in three steps, first by detecting the relevant locations by extracting
query-centric contexts. After that, the local relevances between the queries
and each query-centric context are determined using convolutional neural net-
work or two-dimensional gated recurrent units. The last step is to aggregate
local relevances to a global one using recurrent neural network and term gating
network to produce global relevance for ranking.

Another example is a HIerarchical Neural maTching model (HiNT) [26]
introduced in 2018, which consists of two stacked components. The first is
local matching layer used for modelling the semantic matching between a
query and each passage of a document. This is followed by the global decision
layer that accumulates local signals to determine the final relevance score.

Neural re-ranking solutions benefit from no need for an extra feature engi-
neering phase as part of data preparation, as they are able to work with raw
texts directly, where determining the important parts of the inputs are part of
the model’s architecute. On the other hand, the traditional LTR models offer
better interpretability and depending on the task, using own set of features
may be required.
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2.4.1 Transformers

With the introduction of BERT (Bidirectional Encoder Representations from
Transformers) [27] in 2018, transformers have become state-of-the-art in many
NLP tasks, including text classification [28], machine translation [29], lan-
guage modeling [30], sentiment analysis [31], question answering [29] and
many others. Unlike recurrent neural networks, which are another alterna-
tive to processing sequential data, transformers have the benefit of processing
the sequences in parallel.

The key advantage of transformers in IR, or NLP in general, is the ability
to capture the semantic meaning of words and sentences. Transformers achieve
this by using the powerful attention mechanism, based on pairwise matching
of individual parts of the input. Attention allows the model to discover the
relationship or importance of each word to the other parts of the input sen-
tence. Introduced by [32], the original transformer’s architecture consists of
an input layer, an encoder, a decoder and an output layer. The encoder and
decoder are both composed of multiple stacked encoder (or decoder) blocks.
Each block accepts and outputs a sequence. The blocks consist of multi-head
self-attention layer and fully connected neural network layers.

Application in Information Retrieval

In the context of information retrieval, there are two high-level categories of
strategies to incorporate transformers [33]. The first one is the most straight-
forward application, where the transformers are trained to directly output the
relevance score. This is often done using dual-encoder architecture, called
Siamese network [34]. The task is to determine a probability of how the
given document is relevant to the given query and then sort the documents
accordingly based on this probability score. This approach is typically part
of a multi-stage ranking architecture, where a smaller pool of documents is
retrieved first by a keyword engine (e.g. using BM25) [33]. The transformer
then serves as a re-ranker.

The other option is to leverage the learned dense representations. The
vector representation obtained from the transformer model captures the se-
mantic relations well and can replace sparse features, which rely mostly on
term matching. The ranking task can then be looked at as the problem of
approximate nearest-neighbour search, where the objective is to find the most
similar vectors to the vector that represents the query. A frequently employed
measure for evaluating the similarity of embeddings is the cosine similarity
described in 1.2 [33].

Limitations

On the contrary, transformer models are limited by their large size. Training
a transformer model can be extremely resource intensive. Even though the
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model is capable of processing sequences in parallel, the model still requires
significant memory and computational resources. Compared to competing
architectures, transformers are very data-hungry – large amounts of training
data are needed for their optimal performance. Although transformers can
be adapted to individual domains by applying transfer learning, a sufficient
amount of data is still needed for the fine-tuning part. With small datasets, the
model may overfit and perform suboptimally. Also, BERT-based models are
not able to handle long input documents, and longer documents either need to
be truncated or split into smaller chunks to obtain the proper representations.

2.5 Learning to Rank in practice

Learning to Rank methods have been proven to work well on a set of various
benchmark datasets [35], however, in real-life applications it is not possible
to determine the relevance score for all documents in the corpus to construct
the final list of top k most relevant documents. To balance search efficiency
and effectiveness in IR systems, LTR models are usually part of a multi-stage
architecture [36]. Figure 2.1 shows the components of such architecture.

2.5.1 Multi-stage ranking pipeline

Since the whole collection of documents is typically very large, the first-stage
retrieval system is needed to return an initial subset of candidate documents
(for example, of size 100–10000). First-stage retrieval should optimally achieve
high recall efficiently, the goal being to return a pool of documents that contain
as many relevant documents as possible, without taking too much time. After
that, the re-ranking stage is employed – this stage can consist of one or multiple
re-rankers that gradually decrease the size of the possibly relevant documents.
Since in this stage only a smaller set of documents is examined, re-rankers are
usually more sophisticated models. Finally, the sorted top k documents (for
example, 10) are retrieved to the user.

2.5.2 Term-based first-stage retrieval

In terms of first-stage retrieval, term-based models have been dominating this
area for a long period of time [36]. Especially the BM25 ranking model has
demonstrated effective performance in various research works [37, 38]. Term-
based models have the advantage of efficiency, they are typically employed
using inverted index, and they do not require heavy computational operations
to manage large-scale collections of documents. On the other hand, since they
match strictly based on terms, without taking the term ordering into account,
they may struggle with capturing semantic context of documents and suffer
from vocabulary mismatch problem. If high recall error is introduced in the
early stage of ranking pipeline, the re-ranking models may not be able to
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Document corpus
first stage
retrieval
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documents
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1

re-ranker
n
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Figure 2.1: The multi-stage architecture of information retrieval system.

improve the score, as they were not presented enough relevant documents in
the beginning.

2.5.3 Semantic first-stage retrieval

An alternative to term-based solution for the first-stage retrieval is to use
semantic retrieval models. There have been several efforts by researchers to
use dense retrieval methods for retrieval [36]. The requirements for the dense
model are that the document representation should be independent of the
query, so it can be pre-computed. For a real-time application, the computation
of the query representation and the final layer that determines the final score
need to be as simple as possible.

A viable method for semantic retrieval is to apply semantic search over the
learnt dense representations for documents using nearest neighbour search.
A naive approach would be to use k-Nearest-Neighbour search (kNN), for
example with cosine similarity as defined distance function. However, kNN
requires comparing the query vector to every vector in the document collection.
The complexity of kNN grows linearly with the number of items, making exact
search impossible to use with large datasets. To reduce the computation
complexity, Approximate Nearest Neighbor search (ANN) was introduced.
ANN algorithms sacrifice part of precision in favor of efficiency gain. The
existing ANN algorithms can be classified into multiple categories, such as
tree-based, graph-based, or hash-based.
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Chapter 3
Data

The acquisition of suitable data for LTR is a challenging task, partially due
to the need for a list of relevant judgments. To use certain ranking models,
it is necessary to collect the relevance for each document-query pair. Rele-
vance judgements can be either accumulated manually by an expert panel or
automatically derived from logging user behaviour.

The manual evaluation by experts may be error prone or biased depending
on the evaluator and their different interpretation or perception of the query
and the documents. As evaluating each document in the collection is infeasi-
ble, multiple search systems are typically used to create a pool of documents,
which are then manually inspected, ranked, and assigned a corresponding la-
bel.

For automatically constructed labels, one example would be to use user
clicks – the approach is built on the idea that the more relevant documents
should be clicked more often. However, this also brings a certain bias to the
data, as users have the tendency to click on the results that appear higher in
the search results list, even though the first result does not necessarily have
to be the most relevant one [39]. On the other hand such implicit feedback
is less costly to collect and can be collected in large quantities compared to
the manual feedback. Furthermore, recent research attempts to adapt LTR
models to be able to overcome the issues with bias, a successful example is [40].

This chapter reviews some of the publicly available information retrieval
datasets and datasets commonly used in the learning to rank domain. We
focus on datasets containing the original fulltexts for both queries and doc-
uments. The characteristics, advantages and limitations of each dataset are
further analysed and discussed.

3.1 MS MARCO

MS MARCO [41] stands for MAchine Reading COmprehension dataset. It is
a set of datasets used in the domain of natural language processing released in
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Set type Number of queries Number of queries filtered

Train set 808,731 502,939
Dev set 6,980 6,980
Eval set 6,937 –

Table 3.1: The number of unique queries available for training, validating and
evaluating MS MARCO dataset.

2016. The dataset comprises of multiple collections suitable for different tasks
such as document retrieval, passage retrieval, document re-ranking, question
answering, key-phrase extracion and others. The queries were created by
anonymising and sampling Bing’s search logs and the documents were re-
trieved from Bing using its large-scale web index. From these web documents,
the passages were automatically extracted and then labelled by human eval-
uators. Document and passage retrieval are the tasks that receive the most
attention from the researcher community. The tasks on the official website2

are defined as follows:

1. Document Re-Ranking: Given a candidate top 100 document as re-
trieved by BM25, re-rank documents by relevance.

2. Document Full Ranking: Given a corpus of 3.2M documents generate a
candidate top 100 documents sorted by relevance.

3. Passage re-ranking: Given a candidate top 1000 passages as retrieved
by BM25, re-rank passage by relevance.

4. Passage Full Ranking: Given a corpus of 8.8M passages, generate a
candidate top 1000 passages sorted by relevance.

Additionally both document and passage retrieval have an active leaderboard3

where researchers can publish their solution and compare MRR scores.

3.1.1 Dataset properties

The size of the passage ranking dataset is more than 8.8M passages derived
from 3.2M documents and 300K queries. The passages (and the documents)
do not have different degrees of relevance judgements; the passage can be
either relevant (1) or irrelevant (0) for the given query. On average, there
is one relevant document per query, and some queries from the dataset have
no relevant passages at all. The passage ranking task also offers data in
the form of triplets consisting of query id, relevant passage ID and irrelevant

2https://microsoft.github.io/msmarco/
3https://microsoft.github.io/MSMARCO-Document-Ranking-

Submissions/leaderboard/
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Field Value
Query ID 1006683
Query which cells contain chloroplasts
Relevant passage Chloroplasts are organelles present in plant cells and

some eukaryotic organisms. Chloroplasts are the most
important plastids found in plant cells.It is the struc-
ture in a green plant cell in which photosynthesis oc-
curs. Chloroplast is one of the three types of plas-
tids.hloroplasts are organelles present in plant cells
and some eukaryotic organisms. Chloroplasts are the
most important plastids found in plant cells.

Irrelevant passage The presence of chloroplasts in the guard cells mean
photosynthesis will occur. This leads to an accumu-
lation of glucose in daylight and the guard cells will
absorb water by o . . . smosis from the epidermal cells
which lack chloroplasts and do not produce glucoes.n
fact, they are the only epidermal cells that have chloro-
plasts that can do this. Usually, we think of photo-
synthesis as by Mesophyll cells. There is some theory
that the manufacturing of sugar can work in conjunc-
tion with K+ to regulate water potential.

Table 3.2: An example of query and its pair of passages from the MS MARCO
triplets dataset.

passage ID. Negatively labelled passages were selected from a list of the top
1000 passages scored using BM25. Table 3.2 presents an example from this
dataset. The dataset is already split into training, development and evaluation
set. Table 3.1 shows the number of queries in the given sets; the filtered version
denotes the number of queries that have at least one relevant passage. There
are different subsets available; here we state the small versions of the dev and
eval set, which are created from 6.8 % of queries available in the full version.
Since the leaderboards are still active, the ground truth for evaluation data is
not available.

3.1.2 State-of-the-art

In January 2019, the passage ranking task saw a notable increase in its state-
of-the-art with the first application of transformers to a ranking task presented
in [42]. This was a pivotal moment for the information retrieval community,
as it led to the new era of research, now dominated by the transformer ar-
chitecture [43]. Since then, BERT-based approaches have consistently held
the top spots on the leaderboard. As of April 2023, both the current best
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Set #queries #query-document pairs avg #docs per query
Train big 175,992 1,431,730 8.1
Train small 1,852 97,386 52.6
Dev 793 41,220 52.0
Test 2,323 64,466 27.8

Table 3.3: DaReCzech statistics.

solutions on the passage re-ranking [44] and the full ranking task [45] utilise
the BERT model in their solution.

3.2 DaReCzech

DaReCzech [46] is the Czech text relevance ranking dataset created by Sez-
nam.cz. The dataset is already divided into 4 disjunctive subsets: train-big,
train-small, dev, and test set. Table 3.3 shows the number of records in each
of these dataset parts and the average number of labelled documents for each
query. All data comes in the format of query-document pairs, where each
document is composed of title, URL and doc field. The doc field contains fol-
lowing three subfields: title, URL and bte. Each query-document is annotated
with a relevance label representing one of four degree levels (Useful, A little
useful, Almost not useful and Not useful).

The authors originally intended the train-big set to be used for training
neural network and the train-small for gradient boosted trees. They train
their deep learning model built on top of Czech Electra model on the train-
big set and select the best version on the dev set. Then they use the output of
this model as an additional feature to gradient boosted regression trees ranker
(GBRT) owned by Seznam, which is trained on the new feature with other
575 privately owned features that have been fine-tuned and improved in the
production over the years. The GBRT model is trained on the train-small
dataset.

As the data is not publicly available, we do not attach an example of the
queries or the documents. The dataset can be requested from Seznam.cz and
it is dedicated for academical, research, non-commercial purposes only.

3.3 NFCorpus

NFCorpus [47] is a full-text Learning to Rank dataset for the medical infor-
mation retrieval. The 3,244 queries of various lengths are written in simple
English, while the documents are composed of titles and abstracts of scien-
tific articles in the medical domain with a highly technical vocabulary. The
dataset also contains 169,756 relevance judgments, which were created from
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direct and indirect links from the website NutritionFacts.org. The relevance
judgements were automatically extracted in the following way: the most rele-
vant documents correspond to the medical publications that were cited in the
article on the website (the query), the second-level judgements are documents
that are internally linked through another NutritionFacts article that has a
direct link to the publication and the lowest level is used for the pairs that
are only connected through topics or tags on the website. The dataset is free
to use for academic purposes.

3.4 Other datasets

There are other popular and benchmark datasets worth mentioning used in
the Learning to Rank field such as Yahoo! Learning to Rank Challenge
Datasets [48] and datasets provided by Microsoft – LETOR 3.0 [49], LETOR
4.0 and MSLR-WEB [50]. The reason why these datasets were not further
considered in the experiments is that they do not contain the original full-text
documents used to create the document query feature vectors. Since we aimed
to use our own representation of documents in this thesis, enabling us to bring
the semantic factor into the feature vectors, the datasets with already precom-
puted features could not be used. However, unlike in the Yahoo dataset, the
features in datasets provided by Microsoft are not fully anonymised, and the
description of most of the features is provided, meaning the data can be used
as a useful source of inspiration for feature creation. The authors of [51] pro-
vide an insightful analysis of 136 features of the MSLR-WEB dataset and
study their importance for multiple LTR models.

3.5 Features

The extraction and selection of features is a crucial step in the ranking pipeline.
We divide the features into 3 categories:

3.5.1 Query-dependent document features

Query-dependent features are extracted from both the query and the docu-
ment.

Term-based features These features include the frequency (TF) of feature
terms in the document, the cover ratio of the query, the different rel-
evance scores obtained for each term in the query, and others. Such
features are usually computed per whole document, and additionally for
the documents containing different fields also field-wise (e.g. a set of
features is added for a document title, document body, and so). The
aggregate of term-based features is also frequently used by applying
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statistics such as min, max, mean, median, variance, and sum of these
signals.

Score features This category of features includes score features from ex-
isting retrieval models. The most commonly used features are scores
from BM25, language models with different types of smoothing, TF-
IDF scores, and others.

Transformer-based features There are multiple ways in which signals from
transformer neural networks such as BERT can be employed. The first
approach is to directly use the embeddings produced by the model as
features, as the authors in [45] did. The concatenated query-document
pairs with a separator character between the two were fed into the BERT
model, and then the pooled output was used as an input for the ranking
model. Another option is to use the pre-trained transformer reranker
to output a probability that a given document is relevant to the given
query. This probability score can then be used as a feature, as in [52].

3.5.2 Query-independent document features

Click-based features Examining user behaviour might be useful in deter-
mining relevance judgments. On the other hand, the number of clicks
per document and the dwell time per document may serve as an impor-
tant signal, given the fact that the more clicked documents should be
more relevant.

Document properties The IDF score for each term in the document can be
used to express the rarity or significance of the term within the document
collection. This category also covers the features that describe the length
of a document text, whether the entire length of the document, the
length of its title, or other sections.

URL features Many datasets contain the original URL of the documents
that can also contribute to the feature set. For example, the length of
an URL or a number of slashes can be used. Especially in web search
tasks, popular web pages tend to have shorter URLs, which are easier
to remember [51].

Other web features For web search, other commonly used features are in-
link and outlink numbers (the number of web pages that quote or cite
particular web page and vice versa), PageRank [53] score, web page
quality score, and others.

3.5.3 Query features

Query features, or document-independent features, refer to the features cre-
ated from some aspect of the query without considering its relevant docu-
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ments – meaning that the features have the same value across all documents
associated with this query. Some examples of query features are the num-
ber of unique terms in the query, pre-retrieval performance predictor scores,
likelihood of n-gram query in title fields, number of tokens, number of re-
trieved entities in the documents retrieved for the given queries, and more.
Researchers in [54] investigated the usefulness of such queries and found that
query features for the LambdaMART algorithm can improve performance.
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Chapter 4
Experimental Setup

The following chapter describes the technologies and tools used for experi-
ments, details on data selection, preparation, preprocessing, the process of
feature extraction and model training.

4.1 Technologies

All experiments were implemented using Python 3.10. Vector representa-
tions from sentence transformers were computed using a system with NVIDIA
GeForce GTX 1080 GPU. All remaining parts of the experiments, including
feature extraction, model training, and evaluation, were performed using a
computer with 4 core Intel Core i7 processo and 16GB of available RAM.

4.1.1 Elasticsearch

Elasticsearch4 is an open-source search engine built on top of Apache Lucene5.
It comes with a set of REST APIs, making ElasticSearch a powerful tool for
handling large amounts of data. It uses an inverted index to store data and
provides a wide range of search features, with the full-text search being one
of the most popular. It also has a Ranking evaluation API for evaluating the
quality of search results over a set of defined test queries. Moreover, it offers
a Python Elasticsearch Client, which is easy to work with.

4.1.2 ir datasets

The Python interface ir datasets [55] is a tool used to efficiently manage pop-
ular IR datasets. It provides the option to download data, iterate through
queries and documents, and search documents by their IDs effectively. The

4https://www.elastic.co
5https://lucene.apache.org
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Train set name #queries #query-doc pairs
mini 3,113 37,356
small 7,725 92,700
medium 38,749 464,988
large 77,373 928,476

Table 4.1: The number of records in subsets created from the MS MARCO
training data.

implementation works with memory inexpensive data structures such as itera-
tors, which makes working with large amounts of data manageable. Thanks to
this library, users do not have to tackle the problem of parsing different data
formats, as this tool loads the data and serves them to the user using the same
object representation for each dataset. It also has a concise documentation
with description, citation, and metadata for each of the datasets. From the
data mentioned in the previous chapter, ir datasets holds MS MARCO and
NFCorpus.

4.1.3 LightGBM

LightGBM [56] is a high-performance framework created by Microsoft. It
has been shown by multiple works [57, 22] that LightGBM’s LambdaMART
implementation outperforms its competing libraries such as XGBoost6 and
RankLib7 by both speed and accuracy. While most decision tree learning
models grow trees level-wise, LightGBM builds trees leaf-wise (by choosing
the leaf with maximum loss to grow).

4.1.4 Hugging Face

Transformers by Hugging Face [58] is a natural language processing library
that provides thousands of pre-trained models. The library stores models
for different tasks such as text classification, information extraction, question
answering, and others. The models from Transformers can be used for over 100
languages. We use the Transformers API to download and use a pre-trained
sentence model.

4.1.5 Other libraries and modules

We use pandas [59] for all data analysis and manipulation. NumPy [60] is
used for mathematical computations and we also apply the matplotlib [61]
science style from SciencePlots [62] for data visualisations.

6https://xgboost.readthedocs.io/en/stable/
7https://github.com/codelibs/ranklib
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4.2 Data preparation

From the datasets mentioned in Chapter 3, we choose the MS MARCO and
DaReCzech datasets for the experiments. The reason for this is that both
datasets are of sufficient size – the number of documents they contain is in the
order of millions – which is suitable for our task, since we can subsample the
data for the experiments without any limitations. Furthermore, DaReCzech
is in Czech language, so it offers an extra insight into how the chosen methods
apply when working with different languages. Additionally, opposite to NF-
Corpus, they contain mostly general, non-domain specific terms. Apart from
possible issues with heavy medical terminology, NFCorpus does not contain
negative labels – the non-relevant documents for the queries are not provided.
Hypothetically, they could be created from all the other documents in the
dataset, that were not marked as relevant for given query, but this could
bring errors and biases into the training data. Unlike NFCorpus, both MS
MARCO and DaReCzech contain negatively labelled query-document pairs.
As for the other datasets, as mentioned previously, they do not contain the
original full-text representations.

4.2.1 MS MARCO

We work with the MS MARCO passage set in the experiments.

Data engineering

To create training data, we use a small version of the original training data
of the respective dataset as provided by the ir datasets module. The small
version of training data (10 % of the original size) in triplet format consists of
query ID, its relevant document ID, and its non-relevant document ID for each
data point. From the original training data, we choose a subset of queries. We
omit queries which do not have at least one relevant result. For the majority of
queries, there is only one relevant passage and up to 1,000 irrelevant passages.
Since we do not need all the negatively labelled examples for the training,
we randomly choose 11 irrelevant passages for each query, resulting in the
final training set where for each query there exist 12 training data points (1
relevant and 11 irrelevant query-passage pairs). By subsampling the original
set of queries, we create train sets of various sizes, named mini, small, medium
and large. Details of the size of the data are summarised in Table 4.1.

As the relevant passages for the queries in the official evaluation set are
not available, we use the small version of the development set as the test data.
This set is also provided by ir datasets. Our final test set consists of 6980
queries. For hyperparameter tuning, we use a split of the training data.
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Index Name Feature description
1 Query length The number of terms in the query.
2 Doc length The number of terms in the document.
3 Covered query number The number of query terms covered by the

document.
4 Covered query ratio Covered query number divided by the to-

tal number of terms in the query.
5-9 TF Sum, min, max, mean and median of term

frequencies for each query term.
10-14 Normalized TF Sum, min, max, mean and median of nor-

malized term frequencies for each query
term.

15-19 IDF Sum, min, max, mean and median of in-
verse document frequency for each docu-
ment term.

20-24 TF-IDF Sum, min, max, mean and median of TF-
IDF score for each query term.

25 BM25 BM25 score for the whole query.
26 LM.DIR Score from Language Model with Dirichlet

smoothing, for the whole query.
27 LM.JM Score from Language Model with Jelinek

Mercer smoothing, for the whole query.

Table 4.2: The full description of the features used for the MS MARCO
dataset.

Feature extraction

In the feature extraction phase, the features were created based on the fea-
tures used in datasets provided by Microsoft [49] and the analysis of their
usefulness [51]. Some of these features are privately owned by Microsoft and
the passage ranking task does not contain different fields per document, so
the features are computed per the whole document, which is composed only
of the text field. We mostly focus on term-based and score features. The
Table 4.2 depicts the full list of implemented features. For obtaining the
term-based features, the original query texts are tokenised and the acquired
terms are then preprocessed by lowercasing, removing stopwords and all non-
numerical or non-alphabetical characters, and applying stemming, all per-
formed using tools from nltk [63] library. To retrieve similarity scores for
score-based features (features 25–27), three different Elasticsearch indices are
used, each configured with a different similarity metric. For Language Model
with Dirichlet smoothing, the smoothing parameter is set to the default value
µ = 2000. With Jelinek-Mercer smoothing, we leave λ = 0.1 and for BM25 we
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Dataset #queries #query-doc pairs
small (train) 1,852 72,033
big (train) 24,178 752,542
dev 2,316 55,695
test 1,886 53,247

Table 4.3: The number of records in each set of DaReCzech after filtering.

use b = 0.75 and k1 = 1.2. Feature extraction takes approximately 30 minutes
on CPU.

4.2.2 DaReCzech

Data engineering

Since the data only comes in a format of labelled query document pairs, to
employ multi-stage ranking pipeline it first is necessary to create the full set
of documents. We merge the documents from all 4 sets (train-big, train-small,
dev and test), assign each unique document a unique ID and create a document
set of size 1,289,384. Note that we consider documents with the same title
and body duplicates, even if their URL is different. We parse the doc field
to extract the bte field which is further referred to as body. Documents with
both empty title and empty body are removed from the dataset, resulting
in a full dataset of documents of size 1,239,862. All documents are indexed
in Elasticsearch using the same settings as for MS MARCO, except for the
Elasticsearch Analyzer that is set for Czech language.

We create two versions of training data – a small and a big version. For the
small version, we use the original train-small dataset. The bigger dataset is
created by subsampling the original train-big data; we filter queries that have
at least 10 annotated examples, resulting in dataset of more than 24K queries
and 752K records. Table 4.3 shows the total number of records after filtering in
each individual data partition. The test set is also cleared of empty documents
and duplicates. The label distribution for the test set is a bit different than
for the training set, as can be seen in Figure 4.1. Similarly as authors of
the dataset, we consider the document in the test to be relevant if its label
> 0.5. We fully remove test queries that do not have at least one relevant
document (the queries that only have documents labelled as 0 or 0.25), as for
these queries the Precision@10 metric that is computed for this dataset would
be always zero.

Feature extraction

For feature extraction, we employ similar set of features as for the MS MARCO
dataset, but in addition to the features that are extracted per entire document,
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Index Name Feature description
1 Query length The number of terms in the query.
2 Title length The number of terms in the document ti-

tle.
3 Body length The number of terms in the document

body.
4 Document length The number of terms in the whole docu-

ment.
5–7 Covered query number The number of query terms covered by the

document title, body and the whole doc-
ument.

8–10 Covered query ratio Covered query number divided by the to-
tal number of terms in the query.

11–25 TF Sum, min, max, mean and median of term
frequencies for each query term.

26-40 Normalized TF Sum, min, max, mean and median of nor-
malized term frequencies for each query
term.

41-50 IDF Sum, min, max, mean and median of in-
verse document frequency for each docu-
ment term.

51-66 TF-IDF Sum, min, max, mean and median of TF-
IDF score for each query term.

67-69 BM25 BM25 score for the whole query.
70-72 LM.DIR Score from Language Model with Dirichlet

smoothing, for the whole query.
73-75 LM.JM Score from Language Model with Jelinek

Mercer smoothing, for the whole query.
76 URL length The number of characters in document

URL.
77 URL slashes The number of times slash occurs in the

document URL.

Table 4.4: The full description of the features used for the DaReCzech dataset.
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Figure 4.1: The label distribution for the DaReCzech train and test after
removing empty documents.

we compute all features separately per title and body field. As nltk does not
fully support Czech language, we use Elasticsearch Analyze API to extract
terms from queries. Since the URLs for the documents are also available, we
use them to add two new features – the length of URL and the number of
slashes in it. This gives us 77 features in total; the full feature list is described
in Table 4.4.
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4.2.3 Semantic features

All the implemented features described in the previous section were created
based on the document and query terms. Our hypothesis is that adding a
semantic factor to our model may be able to overcome the problems of term-
based features and improve the model performance. To capture the semantic
meaning of queries and documents, we introduce an additional feature, which
is derived from a pre-trained sentence transformer model.

MS MARCO

We use the all-mpnet-base-v2 model from Hugging Face Transformers to com-
pute the embeddings. This model was created by fine-tuning the MPNet [64]
model introduced by Microsoft on a more than 1 billion sentence pairs. The
model was trained to predict which sentence of randomly sampled sentences
was paired with the given sentence in dataset. The concatenation from mul-
tiple datasets was used for this task, including 9,144,553 training tuples from
MS MARCO. The model is intended to be used as a sentence or short para-
graph encoder.

After tokenising the MS MARCO passages, we measure the average num-
ber of words in large train set, which is 66. The model can process an input
of size of 384 words; sequences longer than that are truncated. The output
of all-mpnet-base-v2 is a 768-dimensional vector. We use all-mpnet-base-v2
to compute the vector representation of each query and document pair sepa-
rately and then compute the cosine similarity, which is added as an additional
feature for the ranking model.

The reason for choosing this model is that as of April 2023, it is one of the
most popular sentence models on Hugging Face (with more than 1,650,000
downloads for the previous month). Also, as mentioned, it was fine-tuned
using MS MARCO passages and the input size is sufficient for this task.

DaReCzech

For Czech dataset, we use the paraphrase-multilingual-mpnet-base-v2 model.
Again, the output is a 768-dimensional vector. The embeddings are computed
separately per document title and document body field. We compute the
cosine similarity of query and both of the fields to obtain two new semantic
features that are added to the data.

4.3 Semantic search

To experiment with improving the overall score of the implemented ranking
system for MS MARCO, we carry out tests with semantic baseline. To create a
semantic search system, we use Hierarchical Navigable Small World (HNSW)
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algorithm implemented in hnswlib [65]. HNSW is a graph-based approximate
nearest neighbor search algorithm, and it is among the best-performing al-
gorithms for vector similarity search [66]. HNSW consists of a multi-layer
structure consisting of hierarchical set of proximity graphs for nested collec-
tions of the stored elements which is incrementally built.

Hnswlib is a C++ implementation of HNSW algorithm with Python in-
terface. We compute vector representations for all 8.8M passages from MS
MARCO dataset as described in the previous section and then create an in-
dex with cosine similarity set as a distance. The vectorization and index
creation were the most computationally expensive operations in our ranking
pipeline, the whole process took about 30 hours on GPU. When building the
semantic index, we set the parameters M and ef construction. The parame-
ter M controls the number of bi-directional links created for every new element
during construction. The authors recommend the range of 2–100, where low
M are functional for datasets with low dimensionality. For high dimensional
embeddings (768 in our case), higher M is required (authors state the range
48–64, while the range 12–48 is desribed as reasonable for most the use cases).
Therefore we set parameter M to 48. The ef construction controls the ratio
between index construction time and index accuracy. Higher values of this
parameter lead to longer construction phase. We set ef construction to 200.

4.4 Model selection and training

We choose LambdaMART as our LTR model based on the following facts.
As described earlier, LambdaMART is considered one of the state-of-the-art
traditional LTR models. Even though traditional LTR methods have be-
come inferior in performance compared to deep neural approaches on some
text-based datasets, the deep learning methods still have some drawbacks.
The most significant difference between neural rankers and the traditional ap-
proaches are that deep learning rankers do not need hand-crafted features,
as they are able to directly work with raw texts or word tokens. At first,
this can be seen as a major advantage, on the other hand, as authors in [67]
state, this makes the model more expensive at learning and query processing
times. Also, researchers [23, 22] show, that when using hand-crafted features,
traditional LTR models often outperform the neural rankers.

Generally, neural networks need large datasets to perform well, while mod-
els based on gradient boosted trees are known for their advantage in handling
smaller data [68]. As the aim of this thesis is to experiment with size-limited
data, we need a model that is less prone to overfitting with smaller datasets.

Furthermore, as researches in [22] point out, many publications that com-
pare neural approaches to LambdaMART use the RankLib (or other inferior
implementation), which was proven to substantially underperform the imple-
mentation from LightGBM library. It can be arguable whether some of these
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models are as effective as they claim to be.

4.4.1 Training

For training, we use the implementation of the LambdaMART algorithm from
the LightGBM library. We find the optimal set of hyperparameters using op-
tuna [69], an automatic hyperparameter tuning framework. For MS MARCO
we employ cross-validation using GroupKFold with 5 folds from the scikit-
learn [70] library. For DaReCzech we use fixed validation set we were pro-
vided with for tuning. We set the model’s objective as lambdarank with gbdt
boosting type, which gives LambdaMART algorithm. NDCG is set as the
metric to optimise. The ranges and values for the hyperparameter tuning
were set based on the recommendations in the official documentation8 and
the recommendations in [71]. LightGBM offers over 100 parameters that can
be specified. The following summary explains the chosen parameters and our
motivation to tune them; the full list of optimal parameters found for each
model variation is attached in Table A.1 in Appendix A.

n estimators We use up to 5000 estimators for our model, but with early
stopping rounds set to 300, so the training is interrupted when the val-
idation score stops improving.

learning rate We experiment with setting learning rate, which controls the
learning speed, to a value from the range [0.01, 0.3].

num leaves This attribute affects the tree shape as it controls the maximum
number of leaves in one tree. We try the values from range [8, 256].

max depth Another tree shape controlling parameter is the maximum depth
of a single tree. We experiment with not limiting the size of the tree
as set by default for the model (value of -1), and also try to limit the
maximum depth to a value in range [3, 20]. Smaller trees increase the
training speed.

max bin LightGBM buckets the continuous features into discrete bins. This
is done in order to improve training speed and save memory during train-
ing. This parameter controls the number of bins the features are binned
into. According to to the documentation, larger max bin values increase
accuracy, but slow down the training. We tune the hyperparameter to
the value in range of [255, 300].

min data in leaf Minimum number of data points in one leaf affects the tree
growth, as it specifies the condition under which a leaf will split. It can
be used to avoid overfitting. It is recommended to use larger values for
larger datasets, we experiment with range from 5 to 300.

8https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html
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min gain to split Another tree growth contributing parameter is the mini-
mum gain a leaf has to achieve in order to split. The default value is 0,
meaning no limitations, we experiment with setting this value up to 15.

feature fraction As some of the variables were influencing model’s deci-
sion making process too strongly, we add the feature fraction parameter
which limits the number of features that each iteration (tree) has avail-
able for training. We work with range [0.5, 1].

bagging fraction To force the model to generalise, we also experiment with
bagging. At each iteration, the model selects a specified fraction of data
points to use for training. Similarly as above, we tune the parameter
based on the range [0.5, 1].
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Chapter 5
Results

In the experiments, we aim to answer the research questions RQ1, RQ2 and
RQ3 defined in the introduction of this thesis. This chapter focuses on pre-
senting and discussing the achieved results.

5.1 RQ1 and RQ2

To determine whether LTR models improve the baseline IR system, we per-
form the following steps. As a baseline, we use a BM25 search system imple-
mented in Elasticsearch with default parameters. We use the Elastic Ranking
API to obtain the baseline performance measure for our test data. To evalu-
ate other solutions, we use Elasticsearch as the first stage of the pipeline – we
retrieve the top 100 documents for each query, hence the notation BM25100.
For each query and its 100 retrieved documents we extract the features and
as a final step use the trained model to re-rank the result. The scoring func-
tion of the implemented LambdaMART algorithm is pointwise, meaning the
output of the model is a relevance score for each query-document pair. The
predicted scores do not have a fixed range, they can be negative and do not
coincide with the relevance judgement labels provided to the model during
training phase. The final ranked list of documents is constructed by sorting
the output of the model by this score.

5.1.1 MS MARCO

As an evaluation metric for the MS MARCO dataset, we use the official leader-
board metric. We measure the mean reciprocal rank (MRR) at the top 10 and
top 100 retrieved passages. Depending on the training data subset on which
the model was trained, we use the notation LTRname, where the data names
correspond to those introduced in Table 4.1. The notation +s means the
model uses the train data with an additional semantic feature.
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Solution MRR@10 MRR@100
BM25 (Baseline) 0.18313 0.19437
BM25100 + LTRmini 0.19597 0.2066
BM25100 + LTRsmall 0.19747 0.20833
BM25100 + LTRmedium 0.20201 0.21269
BM25100 + LTRlarge 0.20374 0.21451

Table 5.1: The best achieved MRR scores on MS MARCO.

Solution MRR@10 MRR@100
BM25 (Baseline) 0.18313 0.19437
BM25 + semantic only 0.31787 0.32419
BM25100 + LTRmini+s 0.32420 0.3299979
BM25100 + LTRsmall+s 0.32731 0.33320
BM25100 + LTRmedium+s 0.32985 0.33562
BM25100 + LTRlarge+s 0.33031 0.33612

Table 5.2: The best achieved MRR scores on MS MARCO with semantic
feature.

Term-based features

The results in Table 5.1 show the mean reciprocal ranks for our models with a
basic set of features (features in Table 4.2). We observe that, as expected, the
performance of the model increases with the size of training samples. What is
more, all implemented LTR solutions outperform the BM25 baseline. Even as
little as 3K training queries were enough for the model to increase the MRR
score by ∆ = 0.012.

Semantic features

Table 5.2 shows the results after adding the cosine similarity feature. It con-
firms our hypothesis that the ability to capture semantic meaning of sentences
improves the model performance. Compared to the baseline, the improvement
is by a large margin of ∆ = 0.147 for MRR@10 and ∆ = 0.142 for MRR@100
in the case of the large train set. Figure 5.1 shows how the feature importance
changes after the cosine similarity of the query and the document is added –
it becomes a strong predictor variable.

To validate the performance of our model, we conduct an additional ex-
periment, where instead of using the LambdaMART model, we simply sort
the results retrieved from Elasticsearch by cosine similarity of the query and
document embedding. This setting is defined as semantic only. The LTR is
still able to outperform this score, even when trained on the smallest dataset.
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Solution P@10 P@l

BM25 (Baseline) 0.25642 0.29314
BM25100 + LTRsmall 0.28796 0.32128
BM25100 + LTRbig 0.291198 0.38167

Table 5.3: The best achieved P@10 scores on DaReCzech using BM25 as first-
stage retrieval, measured on the whole set of 1,239,862 documents .

5.1.2 DaReCzech

To evaluate DaReCzech, we use the same performance measure as the data
authors, Precision@10. After constructing the final sorted list of relevant
documents, we measure the ratio of relevant documents (documents with the
label > 0.5) in the top 10 retrieved documents. However, it is not clear
how certain edge cases where handled from the original paper. For example,
there are multiple test queries, that have less than 10 relevant documents.
Some queries do not have relevant documents at all (they are paired only
with documents labelled 0 or 0.25). If Precision@10 was computed without
additional handling, such examples would automatically penalise the final
score, even if all the available relevant documents for the query were found
among the best 10 retrieved documents. Therefore, we compute two variants
of precision. First, we compute a metric that does not specifically handle
these queries and even if there are less than 10 relevant documents, it strictly
computes the ratio of relevant documents among the top 10. Additionally, we
compute Precision@l, where l denotes the total number of relevant documents
for a given query if this number is less than 10, or 10 otherwise. We refer to
these metrics as P@10 and P@l. However, it is worth noting that the computed
scores are not fully comparable with the original DaReCzech paper, since in
our test set the empty documents and all queries without relevant documents
were removed. But our aim is to compare the improvement over the baseline,
for which the score was calculated in the same way as stated above.

Term-based features

Table 5.3 shows the scores obtained for a term-based set of features. Figure
5.2 and Figure 5.3 show the feature importance for the final model (cropped
to only the 10 most significant features).

It is worth noting that the train-small set is not a subset of train-big, in
fact, these datasets are disjunctive. Therefore, the difference in scores could
be boosted by better data samples that the model benefits from. Still, there is
a notable improvement over the BM25 baseline in both variations of metrics
for both versions of training data.
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Re-ranker performance

In addition to the multi-stage ranking pipeline as used for MS MARCO, we
conduct an experiment where we use the provided labelled test set. This
experiment tests only the performance of the re-ranker, without the possible
additional error created by the first-stage retrieval. After removing query-
document pairs with empty documents and queries that do not have at least
one relevant result, we sort the annotated documents provided for each query
by the score predicted by the trained model. We also measure Precision@10 by
simply sorting the documents by the BM25 score returned from Elasticsearch
to serve as a baseline for this experiment. Table 5.4 demonstrates the result
for this experiment.

Semantic features

Table 5.5 and 5.6 show the results after adding the features containing the
cosine similarity between the query and the title and the cosine similar-
ity between the query and the document body. While in the MS MARCO
dataset, such feature resulted in a significant boost of performance, in case
of DaReCzech, the models with semantic features improve the BM25 baseline
but have very little performance gain compared to the model with term-based
features only. Actually, the model trained on a small dataset performs worse
than the LTR model using the basic set of features. There are several potential
explanations for this result.

First, the DaReCzech dataset contains a lot of out-of-vocabulary terms,
such as Czech names and brands. The sentence transformer models struggle
with correctly interpreting such words, as they were trained on generic data,
and on the contrary, the term-matching approaches benefit from it. Apart
from that, the weaker performance could be caused by truncating the body
field in the dataset to produce the vector representation. This field is much
longer compared to the MS MARCO passage field, which could result in a
loss of valuable information. Figure 5.4 supports this claim, since the cosine
similarity for title field is one of the most important features, while the cosine
similarity between the query and the body field does not influence the model
as much. The other possibility is that the chosen model is not ideal for the
Czech language.

5.2 RQ3

To answer the third research question, we conduct an experiment with the MS
MARCO dataset, where instead of using BM25 provided by Elasticsearch as
the first-stage retrieval, we use semantic search implemented using the HNSW
algorithm as a baseline. The test queries are first vectorised using the same
sentence transformer model as the train data. Similarly as for BM25, we re-
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5.2. RQ3

Solution P@10 P@l

BM25 (Baseline) 0.46792 0.57634
LTRsmall 0.51548 0.64145
LTRbig 0.53892 0.70444

Table 5.4: The best achieved P@10 scores on DaReCzech, applied directly
on the test set of 5,247 query-document pairs, without using the first-stage
retrieval.

Solution P@10 P@l

BM25 (Baseline) 0.25642 0.29314
BM25100 + LTRsmall+s 0.28271 0.31302
BM25100 + LTRbig+s 0.301166 0.33123

Table 5.5: The best achieved P@10 scores on DaReCzech using BM25 as first-
stage retrieval and LTR model with semantic features.

Solution P@10 P@l

BM25 (Baseline) 0.46792 0.57634
BM25100 + LTRsmall+s 0.47869 0.60052
BM25100 + LTRbig+s 0.55779 0.71009

Table 5.6: The best achieved P@10 scores on DaReCzech, applied directly
on the test set, without using the first-stage retrieval, and LTR model with
semantic features.

trieve the most 100 relevant documents for each query embedding in the test
set. This setting is called HNSW100. First, we compute the mean reciprocal
rank for the semantic search only, by using the order in which the documents
were retrieved from the semantic index (sorted by cosine similarity). Then we
re-rank the 100 retrieved documents and evaluate the performance for both
versions of the LTR model – the one with term-based features and the one
with additional semantic (cosine similarity of the query and the document)
feature. This is done for all models for different data sizes. Table 5.7 shows
the results obtained. It can be observed that models with only term-based fea-
tures do not have the ability to improve the semantic baseline score, actually,
they degrade the MRR scores by ∆ up to 0.091. On the other hand, Table 5.8
shows that when using the model with the extra semantic feature, the score
improves and the total ranking system performance is the best score obtained
from all models, where MRR@10 equals to more than 0.35 for the largest
dataset. The total document relevance quality was elevated by ∆ = 0.02002
in MRR@10 and ∆ = 0.0247 in MRR@100 compared to the best model using
BM25 as the first-stage retrieval.
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5. Results

Solution MRR@10 MRR@100
HNSW (Baseline) 0.32904 0.34011
HNSW100 + LTRmini 0.23773 0.25225
HNSW100 + LTRsmall 0.24196 0.25646
HNSW100 + LTRmedium 0.24045 0.25484
HNSW100 + LTRlarge 0.24136 0.25646

Table 5.7: The best achieved MRR scores on MS MARCO using semantic
index as a baseline.

Solution MRR@10 MRR@100
HNSW (Baseline) 0.32904 0.34011
HNSW100 + LTRmini+s 0.34210 0.35254
HNSW100 + LTRsmall+s 0.34532 0.35603
HNSW100 + LTRmedium+s 0.3479 0.35871
HNSW100 + LTRlarge+s 0.35033 0.36079

Table 5.8: The best achieved MRR scores on MS MARCO with semantic
feature, using semantic index as a baseline.

5.3 Results summary

In the previous sections, we presented the results comparing the information
retrieval baseline system with a system enhanced by Learning to Rank model.
To sum it up, we propose the following answers for the defined research ques-
tions.

RQ1 For Research Question 1, we show that using a machine learning driven
ranking model to sort documents retrieved from the baseline system
has a positive effect on the result relevance. All implemented LTR so-
lutions outperformed the BM25 baseline. Adding semantic feature in
form of cosine similarity of the query and document embeddings im-
proved the performance significantly for the MS MARCO dataset – the
achieved performance gain is ∆ = 0.147 for MRR@10 and ∆ = 0.142
for MRR@100 for the large train set.

RQ2 For Research Question 2, our experiments with varying sizes of training
data ranging from 3K to 77K queries from MS MARCO and 1K to 24K
queries for DaReCzech showed that even the small versions of the train-
ing data were sufficient to improve the baseline results. The performance
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5.4. Discussion

of the model increased with the size of the training samples; the best
results were achieved by using the largest versions of the training data
for both MS MARCO and DaReCzech. On the other hand, the vari-
ance between the quality of the smallest model compared to the model
trained on more than 25× larger training set is not immense. Also, it
should be pointed out, that even if refer to the datasets as large, their
size is still relatively small compared to the original available training
data. The achieved results confirm that Learning to Rank models are
capable of delivering good performance even when working with limited
data resources.

RQ3 The experiments related to Research Question 3 include replacing the
term-based BM25 baseline with semantically driven search system im-
plemented using the HNSW algorithm. We show that stronger baseline
that uses the pre-trained sentence transformer outputs to find relevant
document can still be improved by adding a re-ranking stage in the form
of a traditional LTR model with term-based and transformer-based fea-
tures. We also show that models trained on only term-based features
were not enough to achieve a boost in performance, and, in contrast
to models with a semantic similarity feature, they notably weaken the
ranking pipeline performance. By combining the semantic baseline with
a LTR model trained on the large training data, we achieve the best
performance out of all models – MRR@10 of 0.35033 and MRR@100 of
0.36079.

5.4 Discussion

When we compare the best achieved score on the MS MARCO dataset of
MRR@10 of 0.35033 to the winning place solution on the MS MARCO leader-
board, there is still a notable gap of approximately 0.1. It is important to point
out, that the objective of this thesis was to quantify the performance improve-
ment Learning to Rank methods can bring compared to a term-matching base-
line system, not to achieve the best performance on the leaderboard. Apart
from that, our solution uses only a small percent of the original training data
and the re-ranking was not performed on 1000 candidates, but only 100, and
due to memory reasons we do not use the full version of development data,
only the 10 % of it.
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5. Results

Figure 5.1: The comparision of feature importance for MS MARCO large train
set using two sets of features.
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5.4. Discussion

Figure 5.2: The feature importance for model trained on small DaReCzech
dataset.

Figure 5.3: The feature importance for model trained on big DaReCzech
dataset.
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5. Results

Figure 5.4: The feature importance for model trained on big DaReCzech
dataset with semantic features.
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Conclusion

In conclusion, the objective of this thesis was to address three research ques-
tions. The first research question focused on comparing a baseline IR system
with an LTR-enabled system in order to determine the extent to which LTR
models improve the result relevance. The second research question extended
the first question by examining how much training data is needed for the LTR
model to outperform the baseline system. Finally, the third research ques-
tion explored the impact replacing the term-based first-stage retrieval with
the pre-trained sentence transformer models has on the overall performance
of the multi-stage ranking system.

To achieve the defined research goals, we provided an introduction to the
basic concepts behind Information retrieval, traditional ranking methods, as
well as a review of Learning to Rank. We reviewed the state-of-the-art rank-
ing algorithms and analysed their advantages and limitations. We reviewed
frequently used performance measures and provided an analysis of datasets
suitable for this task. We provided a summary on the features that are typi-
cally used in this domain.

We conducted experiments on the MS MARCO and DaReCzech datasets,
creating training data of varying sizes by subsampling the original datasets.
We implemented a feature extraction module, that extracts 27 features for
the MS MARCO dataset and 77 features for DaReCzech. We experimented
with improving the quality of training data by adding a semantic feature
represented as a cosine similarity of the query and document obtained from
embedding representation from pre-trained sentence transformer model. For
each created dataset, we trained a LambdaMART ranking model and found
its optimal set of hyperparameters.

To evaluate the model performance, we implemented a multi-stage rank-
ing system. We experimented with two types of first-stage retrieval models,
namely a BM25 search system provided by Elasticsearch and a semantic search
system implemented using hnswlib. We retrieved a pool of 100 candidate doc-
uments that were re-ranked by the created LambdaMART model. We com-
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Conclusion

pared the achieved scores to two types of baselines and we show that LTR
models have to ability to improve the relevance of the final list of retrieved
documents regardless the size of the traning data we used.

Overall, our findings demonstrate the effectiveness of traditional Learn-
ing to Rank methods in improving the ranking relevance when working with
datasets of constrained sizes. In summary, this thesis provides valuable insight
into the application of Learning to Rank methods on small datasets. The find-
ings can be put to use in real-world scenarios where limited data availability
is a common challenge.

Discussion

As a result, the practical implications of this thesis can be noteworthy to
companies and inviduals that use traditional, term-based search systems based
on TF-IDF or BM25 scores. First, the achieved results confirm, that adding a
semantic factor can strikingly improve the search system performance. More
importantly, the result relevance can be additionally boosted by Learning to
Rank models. Our findings show, that organisations do not need annotated
data in order of millions to enhance their search systems. As little as thousands
queries are sufficient to successfully employ a supervised ranking model on
top of a first-stage retrieval system. The labels for data can be collected from
actual users of the systems, for example by adding feedback buttons to the
existing search engine.

Future work

In the results presented in the previous chapter , we show that it is not the data
size that notably influences the model performance, but rather the extracted
features. As a future work, it is possible to experiment more with the feature
extraction phase. One option is to experiment with extending the feature
set by more complex features, such as translation-based or proximity based-
features. It is also possible to test different sentence transformer models with
different output embedding size for computing the transformer-based features.

For DaReCzech dataset, it may be interesting to try splitting the body field
into multiple smaller chunks of sentences, that would be encoded separately
by the sentence transformer. This could cover more information and the
final cosine similarity feature could be either chosen as a maximum of cosine
similarity of the query and all the parts of the field, or multiple features could
be added in case of splitting the field into fixed sized parts.

Additionally, it may be possible to improve the overall MRR score achieved
on MS MARCO by using a larger pool of documents retrieved by the first-stage
retrieval system. In the original challenge, researchers typically work with a
candidate set of 1000 passages. In this thesis we chose only 100 documents for
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Future work

memory and computational reasons – as there are approximately 7000 queries
in the test set, it would require to retrieve, store, extract features and predict
final scores for 7,000,000 passages in total.
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[46] Kocián, M.; Náplava, J.; et al. Siamese BERT-Based Model for Web
Search Relevance Ranking Evaluated on a New Czech Dataset. Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 36, no. 11,
Jun. 2022: pp. 12369–12377, doi:10.1609/aaai.v36i11.21502. Available
from: https://ojs.aaai.org/index.php/AAAI/article/view/21502

[47] Boteva, V.; Gholipour, D.; et al. A Full-Text Learning to Rank Dataset
for Medical Information Retrieval.

[48] Chapelle, O.; Chang, Y. Yahoo! learning to rank challenge overview. In
Proceedings of the learning to rank challenge, PMLR, 2011, pp. 1–24.

[49] Qin, T.; Liu, T.-Y.; et al. LETOR: A benchmark collection for research
on learning to rank for information retrieval. Inf. Retr., volume 13, 08
2010: pp. 346–374, doi:10.1007/s10791-009-9123-y.

[50] Qin, T.; Liu, T. Introducing LETOR 4.0 Datasets. CoRR, volume
abs/1306.2597, 2013, 1306.2597. Available from: http://arxiv.org/
abs/1306.2597

[51] Han, X.; Lei, S. Feature selection and model comparison on microsoft
learning-to-rank data sets. arXiv preprint arXiv:1803.05127, 2018.

[52] Hu, C. Learning to Rank in the Age of Muppets. Master’s thesis, Univer-
sity of Waterloo, 2022.

[53] Haveliwala, T.; et al. Efficient computation of PageRank. Technical re-
port, Citeseer, 1999.

[54] Macdonald, C.; Santos, R. L.; et al. On the usefulness of query features for
learning to rank. In Proceedings of the 21st ACM international conference
on Information and knowledge management, 2012, pp. 2559–2562.

[55] MacAvaney, S.; Yates, A.; et al. Simplified data wrangling with
ir datasets. In Proceedings of the 44th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, 2021,
pp. 2429–2436.

57

2004.08476
https://arxiv.org/abs/2004.08476
https://ojs.aaai.org/index.php/AAAI/article/view/21502
1306.2597
http://arxiv.org/abs/1306.2597
http://arxiv.org/abs/1306.2597


Bibliography

[56] Ke, G.; Meng, Q.; et al. LightGBM: A Highly Efficient Gradient Boost-
ing Decision Tree. In Advances in Neural Information Processing Sys-
tems, volume 30, edited by I. Guyon; U. V. Luxburg; S. Bengio; H. Wal-
lach; R. Fergus; S. Vishwanathan; R. Garnett, Curran Associates, Inc.,
2017. Available from: https://proceedings.neurips.cc/paper_files/
paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

[57] Daoud, E. A. Comparison between XGBoost, LightGBM and CatBoost
Using a Home Credit Dataset.

[58] Wolf, T.; Debut, L.; et al. Transformers: State-of-the-Art Natural Lan-
guage Processing. In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing: System Demonstrations,
Online: Association for Computational Linguistics, Oct. 2020, pp. 38–
45. Available from: https://www.aclweb.org/anthology/2020.emnlp-
demos.6

[59] pandas development team, T. pandas-dev/pandas: Pandas. Nov. 2022,
doi:10.5281/zenodo.7344967, if you use this software, please cite it as
below. Available from: https://doi.org/10.5281/zenodo.7344967

[60] Harris, C. R.; Millman, K. J.; et al. Array programming with NumPy.
Nature, volume 585, no. 7825, Sept. 2020: pp. 357–362, doi:10.1038/
s41586-020-2649-2. Available from: https://doi.org/10.1038/s41586-
020-2649-2

[61] Hunter, J. D. Matplotlib: A 2D graphics environment. Computing in
Science & Engineering, volume 9, no. 3, 2007: pp. 90–95, doi:10.1109/
MCSE.2007.55.

[62] Garrett, J. D. garrettj403/SciencePlots. Sept. 2021, doi:
10.5281/zenodo.4106649. Available from: http://doi.org/10.5281/
zenodo.4106649

[63] Bird, S.; Klein, E.; et al. Natural language processing with Python: an-
alyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”,
2009.

[64] Song, K.; Tan, X.; et al. MPNet: Masked and Permuted Pre-training for
Language Understanding. arXiv preprint arXiv:2004.09297, 2020.

[65] Malkov, Y. A.; Yashunin, D. A. Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence, volume 42,
no. 4, 2018: pp. 824–836.

[66] Bernhardsson, E. ANN Benchmarks. https://github.com/erikbern/
ann-benchmarks, 2021.

58

https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.5281/zenodo.7344967
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://doi.org/10.5281/zenodo.4106649
http://doi.org/10.5281/zenodo.4106649
https://github.com/erikbern/ann-benchmarks
https://github.com/erikbern/ann-benchmarks


Bibliography

[67] Silva, S. d. N.; et al. Applying machine learning to relevance evidence
fusion at indexing time. 2020.

[68] Jiang, J.; Wang, R.; et al. Boosting tree-assisted multitask deep learning
for small scientific datasets. Journal of chemical information and model-
ing, volume 60, no. 3, 2020: pp. 1235–1244.

[69] Akiba, T.; Sano, S.; et al. Optuna: A Next-generation Hyperparam-
eter Optimization Framework. CoRR, volume abs/1907.10902, 2019,
1907.10902. Available from: http://arxiv.org/abs/1907.10902

[70] Pedregosa, F.; Varoquaux, G.; et al. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, volume 12, 2011: pp.
2825–2830.

[71] Tuychiev, B. Kaggler’s Guide to LightGBM Hyperparame-
ter Tuning with Optuna in 2021. Sep 2021. Available from:
https://towardsdatascience.com/kagglers-guide-to-lightgbm-
hyperparameter-tuning-with-optuna-in-2021-ed048d9838b5

59

1907.10902
http://arxiv.org/abs/1907.10902
https://towardsdatascience.com/kagglers-guide-to-lightgbm-hyperparameter-tuning-with-optuna-in-2021-ed048d9838b5
https://towardsdatascience.com/kagglers-guide-to-lightgbm-hyperparameter-tuning-with-optuna-in-2021-ed048d9838b5




Appendix A
Hyperparameters

Model learning
rate

num
leaves

max
depth

max
bin

min
gain
to
split

feature
frac-
tion

min
data
in
leaf

bagg.
frac-
tion

MARCOmini 0.01 172 -1 286 5.5 0.7 83 0.5
MARCOsmall 0.3 256 4 260 11.2 0.4 20 1.0
MARCOmedium 0.1 102 -1 287 7.0 1.0 88 0.7
MARCOlarge 0.05 16 14 283 1.5 0.9 20 1.0
MARCOmini+s 0.05 128 6 266 6.8 0.9 20 1.0
MARCOsmall+s 0.05 128 8 273 10.5 0.7 20 1.0
MARCOmedium+s 0.05 57 -1 269 13.0 0.9 51 0.5
MARCOlarge+s 0.05 57 -1 269 13.0 0.9 51 0.5
DaReCzechsmall 0.3 68 18 287 12.6 0.7 80 1.0
DaReCzechbig 0.3 68 18 287 12.6 0.7 80 1.0
DaReCzechsmall+s 0.3 72 -1 292 14.0 0.9 142 0.6
DaReCzechbig+s 0.3 68 18 287 12.6 0.7 80 1.0

Table A.1: The set of hyperparameters used for singular models. The +s
denotes the usage of semantic features.

61





Appendix B
Acronyms

ANN Approximate Nearest Neighbor

BERT Bidirectional Encoder Representations from Transformers

GBRT Gradient Boosted Regression Trees

HNSW Hierarchical Navigable Small World

IDF Inverse Document Frequency

IR Information Retrieval

LMIR Language Model for Information Retrieval

LTR Learning to Rank

MAP Mean Average Precision

MRR Mean Reciprocal Rank

NDCG Normalized Discounted Cumulative Gain

NLP Natural Language Processing

SVD Singular Value Decomposition

TF Term Frequency
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Appendix C
Contents of enclosed media

README.MD..............................the guide for the project set up
learning to rank thesis ............ Python package with source files

configs.......the configuration files for reproducing the experiments
templates.........the templates used for Elasticsearch Ranking API

data.................................................created data files
msmarco .......................train and test data for MS MARCO
dareczech ..................train, val and test data for DaReCzech

text..................................................text-related files
DP Majtanova Adriana 2023.pdf......a PDF rendering of the thesis
majtaadr-assignment.pdf.a PDF rendering of the thesis assignment

src ............................ the source files for the thesis text
starter guide.ipynb ..................starter guide jupyter notebook
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