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Abstract

Data analysis pipelines describe data analysis as a sequence of interdependent steps. These
pipelines enable reproducibility and effective execution of the analysis. This thesis describes the
design and implementation of an R package called Pipelinr, a domain-specific language and a
runtime for data analysis pipelines. The designed DSL allows the user to describe the pipeline
as a set of interdependent stages. Furthermore, it allows the user to use various composable
dynamic branching patterns to break down a stage into a set of tasks, which can be executed
in parallel using GNU Parallel. The runtime also provides the user with metadata about the
pipeline’s execution, which can also be used as input to the pipeline itself.

Keywords R, domain specific language, data analysis, pipeline

Abstrakt

Pipeliny pro analýzu dat popisuj́ı datovou analýzu, jako sekvenci na sobě závisej́ıćıch krok̊u. Tyto
pipeliny jsou reproducibilńı a lze je vyhodnocovat efektivně. Tato práce se zabývá návrhem a
implementaćı baĺıčku v jazyce R nazvaným Pipelinr, což je doménově specifický jazyk a runtime
pro pipeliny pro analýzu dat. Navržené DSL umožňuje uživateli popsat pipeline jako množinu
na sobě navazuj́ıćıch staǵı. Dále umožňuje uživateli využ́ıvat r̊uzné komponovatelné vzory pro
dynamické větveńı, které umožňuj́ı rozpad stage na množinu úloh, jež lze parallelně spouštět
pomoćı GNU Parallel. Runtime nadále poskytuje metadata ohledně běhu pipeline, které lze
využ́ıt jako vstup do pipeline samotné.

Kĺıčová slova R, doménově specifický jazyk, datová analýza, pipeline
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Introduction

Data is an essential component in the modern world. The amount of data created and captured
increases rapidly [1] every year. This large amount of data can be used, for example, by businesses
to make better data-driven decisions or by scientists to understand nature’s phenomena. At the
same time, data plays a crucial role in research. However, in recent times it has also highlighted
issues in the scientific community.

The recent replication crisis in science has negatively impacted the credibility of the research.
It has been shown that in fields like psychology or some branches of science, a large portion of
studies could not have been reproduced [2]. Although many complex factors are playing their
role in this crisis, researchers can facilitate a diverse selection of tools to make their research open
and reproducible [3]. Datasets and the data analysis code can be open-sourced and published
using platforms like GitHub or GitLab. The data analysis can be implemented by many different
tools that can aid reproducibility at many different scales [4].

Data analysis could be thought of as a sequence of individual steps that form a pipeline.
Typically the data needs to be acquired, cleaned, transformed, and evaluated. Nowadays, there
are many tools that let users define and execute a data processing pipeline using different tech-
nologies [5]. Simple pipelines can be constructed using GNU Make [6], even though it is typically
used as a build system. On larger scales, in the field of high-performance computing tools like
DAGMan [7] for HTCondor [8] enables the user to define workflows that are then executed on a
cluster, grid, or in a cloud.

A lot of data science is done using the R language [9]. Some packages in the R language
ecosystem took inspiration from the GNU Make approach and expanded on it. Packages like
drake [10] or targets [11] allow the user to specify the pipeline using a domain-specific language.
They also offer many different execution backends, which enable the user to parallelize the
pipeline execution. They even have support for pipeline execution using HPC grid engines.

This thesis describes the design and implementation of an R package called Pipelinr, which
allows the user to define and execute a pipeline using a DSL. One of its goals is to enable the
user to execute the pipeline in a parallel and distributed manner. It also aims to give the user
the ability to introspect metadata about the pipeline’s execution, which could be processed by
the pipeline itself.

1



2 Introduction



Chapter 1

Background and related work

1.1 R programming language
R is a programming language that is used primarily in statistical computing. It could be thought
of as a DSL for statisticians and data scientists.

The R language could be thought of as a continuation of the S language, which was language
for statisticians developed in 1976 at Bell Laboratories [12]. It shares a very similar syntax with
S, even up to the point where some S programs could be interpreted as R programs [9]. The first
release of R was in 1993 [13].

It is a high-level dynamically typed language, where every value is an object, including
functions. Every primitive value in R is a vector. The benefit of this approach is that operations,
which in more traditional programming languages would only operate on primitive values, work
on whole vectors. This includes, for example, arithmetic or logical operators. This approach also
allows R to vectorize these operations to execute them more efficiently [14]. An example of R
vector operations is shown in code listing 1.

Another differentiating factor from other popular languages is the non-standard evaluation.
R has functions like many other programming languages, and they are themselves an object. Ar-
guments of functions in R are lazy evaluated, meaning that they are only evaluated once they are
needed. This is in contrast to the majority of popular programming languages, which are eagerly
evaluated. Lazy evaluation can be a powerful feature. However, it bears performance penalties
because every function argument needs to be a promise object. An example demonstrating the
benefit of non-standard evaluation can be seen in code listing 2.

# Sequence operator ":" creates a vector of numbers from 1 to 5 inclusive.
numbers <- 1:5

# This operation doubles the values of elements in numbers.
doubled_numbers <- numbers * 2

# Logical operators on vector return a logical vector with
# results of a given operation on each element of the vector.
# Result of the follwing operation will be vec(FALSE, FALSE, TRUE, TRUE, TRUE).
is_number_greater_than_five <- doubled_numbers > 5

Code listing 1 R code example demonstrating vector operations.

3
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# This represents a function making an expensive computation.
expensive_computation <- function() { ... }

# create_logger is a higher order function that returns a logging function
create_logger <- function(enabled) function(data) {

# If the enabled flag is not true, the logger function will return early
if (!enabled) return()

print(data)
}

log <- create_logger(enabled = FALSE)

# Since logger was disabled on the previous line, R will not evaluate
# the "data" argument, thus skipping the expensive computation.
log(expensive_computation())

Code listing 2 R code example demonstrating the benefit of non-standard evaluation.

While R is more focused on the functional paradigm, it also offers multiple OOP systems.
The systems packaged with base R are named S3 and S4.

# Cat is a function returning an object with the class "cat".
cat <- function(name) {

structure(list(name = name), class = "cat")
}

# This defines a generic function
make_sound <- function(animal) UseMethod("make_sound", animal)

# S3 dynamic dispatch works by searching for a concrete implementation of a
# generic function with the name in the pattern of "<generic_name>.<class>".
# This is a concrete implementation of the make_sound() generic function
# for the class "cat".
make_sound.cat <- function(animal) {

paste("Cat", animal$name, "says: meow") |> str()
}

felix <- cat("Felix")

# This will print "Cat Felix says: meow"
make_sound(felix)

Code listing 3 Demonstration of the S3 object system in R.

In S3, objects can be assigned a class attribute. This attribute is a character vector, where
each element is a class name. S3 methods are generic functions that perform a dynamic dispatch
based on the class attribute. Inheritance is achieved by defining multiple class names in the
class attribute character vector. The classes specified at the begging of this vector inherit from
classes behind them [15]. An example of a code using the S3 object system can be seen in code
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listing 3.
The S4 object system is similar to S3 but is stricter. It lets the user define a class using the

setClass() function. Compared to S3, classes have explicit slots. Similarly to S3, a character
vector is used to identify the class. Since classes are explicitly defined, they need to be instantiated
using the new() function, as opposed to S3, where a class is assigned to an object. It’s possible
to specify a prototype defining default slot values. S4 defines the @ operator for accessing the slot
values. Similarly to S3, generics and concrete methods can be defined using the setGeneric()
and setMethod() functions respectively.

R also has a metaprogramming functionality [15]. It provides ways for the programmer
to retrieve function argument expressions’ ASTs as language objects without the expressions
being evaluated. Furthermore, these language objects can be inspected and modified. This
facilitates a metaprogramming ability within R, which is non-standard compared to other modern
programming languages.

Surrounding the language, there is a large ecosystem of packages within the CRAN repository
[9]. Packages from the tidyverse [16] package collection use this to their advantage to essentially
build DSLs. The package dplyr [17] specifies its own DSL for data manipulation, simplifying
the process of working with data frames. It is commonly used with the ggplot2 [18] plotting
library, which also specifies its own DSL. Furthermore, the magrittr [19] package introduces a
pipe operator, which is supported by the packages mentioned above to further expand on their
DSL. Combined, they provide the user with powerful DSL that would be hard to implement in
any other programming language. The code listing showcases how the tidyverse packages are
used together. Another thing to note is that R packages’ user interface is, in a lot of cases, meant
to be operated from R’s REPL.

Many R packages are actually not entirely written in R. This is possible because R packages
provide a convenient way to interface with code from other lower-level languages, for example
using the Rcpp [21] package and library for C++. C++ gives the programmer more control over
the program execution than R does, enabling the programmer to write more efficient code than
he could in R while at the same time being harder to work with.

1.2 Data analysis pipelines
Data analysis consists of multiple steps. Data usually needs to be collected, cleaned, transformed,
and evaluated. These series of steps could be thought of as a data analysis pipeline. Each step
in the pipeline depends on outputs from previous steps.

This has many benefits. Breaking down the analysis into single steps adheres to the single
responsibility principle, making it easier to reason about and maintain. The tools that facilitate
the creation and execution of such pipelines can leverage such features as parallel distribution or
reproducibility. Furthermore, the pipeline structure allows these tools to automate many tasks
[22]. They can identify which parts of the pipeline need to be evaluated without the need to
evaluate the whole pipeline. Such a feature can aid the exploratory analysis by reducing the
time needed to execute the given pipeline [22]. They can also automate the storage of results,
which can then be published with the code of a given pipeline. In the case of compute-intensive
pipelines, this can reduce the need to have access to expensive compute clusters while also
preserving the ability to inspect and review the code of the analysis.

1.3 Existing solutions
Simple pipelines can be linear in nature. In fact, pipelines can be implemented as bash scripts.
This can suffice for simple and small workflows, but even in those cases, advanced tools can
aid the pipeline’s development. Bash does not offer the functionality of other tools, but the
users can implement them themselves. However, if they choose this approach, in the end, they
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dataframe_solar %>%
select(System.Size, Customer.Segment) %>%
na.omit() %>%
filter(System.Size > 1) %>% # miscoded data
filter(Customer.Segment != "OTHER") %>%
na.omit() %>%
ggplot(aes(System.Size, fill = Customer.Segment, color = Customer.Segment)) +
geom_density(alpha = 0.2) +
scale_x_log10() +
facet_wrap(˜Customer.Segment)

Code listing 4 Demonstration of R code using the tidyverse [16] package collection. The resulting
plot can be seen in figure 1.1. Taken from [20].

Figure 1.1 Example of a plot produced by the code listing 4 using the ggplot [18] package. Taken
from [20].
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first_dataset.csv:
curl https://get-dataset.org > first_dataset.csv

second_dataset.json:
scp user@hostname:data.json ./second_dataset.json

second_dataset.csv:
./json-to-csv second_dataset.json

first_dataset_clean.csv: first_dataset.csv
./cleanup_data.sh first_dataset.csv

aggregated_data.csv: first_dataset_clean.csv second_dataset.csv
Rscript aggregate.R first_dataset_clean.csv second_dataset.csv

graphs: aggregated_data.csv
Rscript plot_graphs.R aggregated_data.csv

Code listing 5 Example of a hypothetical pipeline made using GNU Make

will probably implement a poor man’s version of the pipeline, which could have been better
implemented by using a tool suited for the job.

Such tools can take many shapes or forms. For lower-scale analyses, R packages like drake,
targets or even build systems like GNU Make can be used to implement such pipelines.

On larger scales, they can be implemented using HPC tools like DAGMan for HTCondor,
although these tools are intended for a different audience than researchers and are usually coupled
with a particular grid engine.

1.3.1 GNU Make
GNU Make [6] is a tool primarily used as a build system. Make uses a file called Makefile that
specifies rules for each so-called target. These rules tell the Make how to build each target. It
is also necessary to specify dependencies for a given target. Dependencies are also files, which
themselves can be other targets. This way, the targets, and their dependencies form a dependency
graph. Each time Make is run, it gathers information about which targets to rebuild based on
the modification timestamp of each file in the dependency graph.

Make can be used to model a data analysis pipeline [23]. Each step of the pipeline could
be modeled as a target. Since Make is language agnostic, it does not constrain users to specific
technologies. The code for each target could be written in different tools, such as bash scripts of
R programs. An example of such a pipeline is shown in code listing 5.

Using Make can be a good choice for simple pipelines, but it can be a hindrance for more
complex ones. Results between stages need to be stored on the filesystem, which could affect
the execution speed of the pipeline. Make also does not offer any functionality for distributed
execution, leaving this problem to the pipeline developer. While Make offers freedom for the
pipeline developers to choose their own technologies, it can create issues when building more
complex pipelines. The dependency graph can be complex, making it hard to develop and
maintain. This is because each step of the pipeline does not have clearly defined dependencies.
For this reason, it can be challenging for the pipeline developer to navigate through the pipeline’s
code.
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sources:
- code.R

targets:
all:

depends: plot.pdf

data.csv:
command: download_data(target_name)

processed:
command: process_data("data.csv")

plot.pdf:
command: myplot(processed)
plot: true

report.md:
depends: processed
knitr: true

Code listing 6 Example of a Remakefile from remake documentation [24]

1.3.2 Remake
Make is primarily tailored for building software, even though it can be used for data analysis
workflows. The remake R package takes the concept of Make and applies it to R [24]. It uses the
same notion of rules, targets, and dependencies as Make does. Instead of writing a Makefile, the
user defines the pipeline in a YAML file called Remakefile. Each rule has associated R commands,
which define how to build the given target, similar to Make. Dependencies are defined by a target
name rather than by filenames, as is the case in Make. It does not support any advanced parallel
or distributed scheduling. An example of a Remakefile defining a remake pipeline can be seen in
code listing 6.

The remake package is not longer maintained since 2017.

1.3.3 Drake
The drake R package is a data analysis workflow management tool [10]. It takes inspiration
from Make and remake, and builds an R DSL on top of their concepts. At the core of its model
sits a plan. A plan describes targets, and R expressions describe how to evaluate the target.
Each target is an output of its command. This means that each target is represented by an R
value instead of a file, as is the case in Make. Dependencies are defined simply by specifying a
symbol of another target in the target’s expression. An example of a drake plan can be seen in
code listing 7.

drake makes a distinction between two types of branching. First is static branching. It
knows how many targets will be built before executing the plan. This gives the option to users
to compactly write more complex plans. To achieve this, drake defines four transformations:
map(), cross(), split(), and combine().

The map() operation takes a data frame or a variable number of named vector parameters
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plan <- drake_plan(
raw_data = readxl::read_excel(file_in("raw_data.xlsx")),

data = raw_data %>%
mutate(Ozone = replace_na(Ozone, mean(Ozone, na.rm = TRUE))),

hist = create_plot(data),

fit = lm(Ozone ˜ Wind + Temp, data),

report = rmarkdown::render(
knitr_in("report.Rmd"),
output_file = file_out("report.html"),
quiet = TRUE

)
)

Code listing 7 Example of a drake plan from it’s documentation [25].

and creates a new target for each of their values. When given named vector parameters, they
are zipped together, and it creates a new target for each of their zipped values.

The cross() operation works like map(), except it creates a new target for every combination
of the values of its arguments.

The split() operation takes a slice size and a data frame or a vector as its arguments as
map() does. It then creates slices of a given size and maps them to a new target. This can be
useful when the user does not want to create too many targets with small inputs.

The combine() is used for aggregation. The user needs to specify a symbol representing a
column to group by. It then takes a data frame and performs the ”group by” operation.

The second type of branching is dynamic branching. This type of branching should be
used when the number of targets cannot be determined without executing the plan. Another
situation where it could be helpful is when static branching produces a large number of targets.
Dynamic branching is achieved by using one of the three available dynamic transformations:
map(), cross() and group(). map() and cross() behave like their static counterparts and
group() behaves like static combine().

Every time a plan is executed, drake can determine a subset of targets that have been changed
and, thus, which targets need to be executed. It achieves this by saving information about target
definitions to the file system.

Another feature of drake is its integration with HPC schedulers through the clustermq [26]
package. Because of this, targets can be executed in parallel on a compute cluster. This allows
it to achieve a much higher degree of scalability than Make.

1.3.4 Targets
The targets package is a successor to drake and offers similar functionality [11]. Its model
consists of targets, but unlike drake, they do not need to be assembled inside a plan object. It
uses a specialized file for pipeline definition called targets.R, similar to Makefile or Remakefile.
Example of the targets.R file is shown in code listing 8.

It supports multiple types of targets, such as files, reports, or plots, using a separate package
called tarchetypes [28]. Archetypes are specialized targets, which can simplify the definition
of common types of targets, such as tar read() archetype, which reads from a file. Other
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library(targets)
source("R/functions.R")

tar_option_set(packages = c("readr", "dplyr", "ggplot2"))

list(
tar_target(file, "data.csv", format = "file"),
tar_target(data, get_data(file)),
tar_target(model, fit_model(data)),
tar_target(plot, plot_model(model, data))

)

Code listing 8 Example of a targets.R file from the targets package documentation [27].

archetypes can produce an output of a particular type. For example, the tar render() renders
its input into an Rmd file. Some dynamic branching patterns are implemented as archetypes.
Even an alternative pipeline definition syntax similar to drake plan(), which does not need the
targets.R file, is implemented as an archetype.

Static branching is supported by the tar map() archetype, which is a counterpart to the
drake package’s static transformation map(). Other static branching operations are supported
by their respective archetypes.

targets expands on the dynamic branching aspect of drake by introducing new operations
while also making the operations composable. It calls the dynamic branching operations patterns.
There are patterns such as map(), cross(), and slice() which behave the same as their drake
counterparts. Furthermore, it introduces head(), tail(), and sample() patterns.

It has a similar support for parallel execution and HPC schedulers as drake.

1.4 Summary
Data analysis can be broken down into a sequence of steps, which can depend on each other’s
outputs. Many tools can aid this approach by automating certain tasks and giving the user to
execute the pipeline efficiently. These tools can be simple scripts or even build tools, like GNU
Make, to give an example. In R, a programming language aimed at data science, a few packages
expand on the philosophy of GNU Make pipelines. These tools allow the user to define and
execute a pipeline using a DSL. They can efficiently evaluate the pipeline and even execute it
distributively using HPC grid engines.



Chapter 2

Design

This chapter will describe a design of an R package called Pipelinr. Its design has two goals.
First is a DSL, which is used for pipeline definition and execution. Second, a runtime focuses
on providing the ability to execute a pipeline in a parallel and distributed manner. Pipelinr as
a whole also aims to address shortcomings of drake and targets, such as the handling of failed
tasks in a distributed environment.

To summarize, the tool should fulfill the following requirements:

Idempotence – The pipeline execution should be an idempotent operation. Every time the
pipeline is executed, it should reach some final state.

Feedback – The runtime should give the user some feedback about the execution. Some
pipelines could take a long time to execute, so the tool should report the execution progress
to the user.

Metadata – It should be possible to gather some metadata about the pipeline’s execution.
This should aid in debugging and troubleshooting of a pipeline.

Parallelization – The runtime should be able to execute the pipeline in parallel and distribu-
tively.

Finally, there is one non-functional requirement to make the implementation as compact as
possible regarding code size and the number of used dependencies.

2.1 Running example
Throughout this chapter, we will use a running example. This example describes a simple data
analysis pipeline. The naive implementation in the form of an R script file can be seen in code
listing 9. By being a simple Rscript file, it lacks any features that one would from a data analysis
pipeline expect. The user cannot select a part of the pipeline to rerun, nor are the results cached.
The pipeline is not separated into clearly distinct steps and does not provide any feedback about
the failures of each step. The pipeline also is not parallelized and would not scale well when it
would work with larger datasets. Since it is a small pipeline, these problems are not significant.
Given the dataset’s small size and small pipeline complexity, this simple implementation works
well.

The pipeline consists of multiple steps. First is the data acquisition step. In this step, the
pipeline fetches a list of Nigerian and Turkish cities’ names from the Countries Now public REST
API [29]. Then it uses the same API to fetch each city’s population. In the next step, the pipeline

11
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Figure 2.1 Diagram describing the pipeline’s model

computes the total city population for both countries. The final step creates a chart comparing
both countries’ total city populations. The described pipeline is an example and should be viewed
as such, the described analysis is by no means accurate nor uses proper data.

To simplify the pipeline’s implementation, multiple R packages have been used. The httr
[30] and jsonlite [31] packages have been used to send an HTTP request with JSON body
payload. The data frame manipulation is facilitated by the dplyr [17] package. The plot is
created using the ggplot2 [18] packages and a few functions are also used from the package
purrr [32].

2.2 Model

At the core of Pipelinr’s model is a pipeline. A pipeline is composed of multiple stages. A stage
describes a simple computation. This is analogous to a target in drake or targets.

Stages are described using two components: a body function used to execute the stage and
inputs. Stage essentially could be considered a function, taking some inputs and producing some
results. Every stage also has a unique name in a given pipeline. Stage results can be passed to
other stages in the pipeline as their inputs. This allows the user to define a dependency graph
of the pipeline’s stages. This graph cannot contain cycles. It needs to form a directed acyclic
graph.

A diagram describing the composition of pipelines and stages is shown in figure 2.1.

2.3 Pipeline construction in DSL

Pipelinr’s DSL provides two main functions to build pipelines. The stage is constructed using the
stage() function, and the pipeline is constructed using the make pipeline() function. Stages
are passed to the pipeline constructor as named arguments, where the name also defines the
stage’s name. This ensures that every stage name is unique. Based on the running example, we
could create the first two stages, which retrieve Nigerian and Turkish cities, by creating a body
function that calls the get cities() function and pass it to the stage() function:

make_pipeline(
nigerian_cities = stage(function() get_cities("nigeria")),

turkish_cities = stage(function() get_cities("turkey"))
)

The code snippet above defines the stages nigerian cities and turkish cities. These
stages do not take any inputs. To construct a stage that takes the results of these stages as
its input, we could create another stage whose body function arguments will match the stages’
names:
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library(httr)
library(jsonlite)
library(dplyr)
library(purrr)
library(ggplot2)

cities_by_country_url <-
"https://countriesnow.space/api/v0.1/countries/cities"

city_population_url <-
"https://countriesnow.space/api/v0.1/countries/population/cities"

get_cities <- function(country) {
body <- list(country = country) %>% toJSON(., auto_unbox = TRUE)

POST(
cities_by_country_url,
add_headers("Content-Type" = "application/json"),
body = body

) %>%
content() %>%
pluck("data") %>%
unlist() %>%
data.frame(name = ., country = country)

}

get_city_population <- function(city) {
body <- list(city = city) %>% toJSON(., auto_unbox = TRUE)

population_counts <- POST(
city_population_url,
add_headers("Content-Type" = "application/json"),
body = body

) %>%
content() %>%
pluck("data", "populationCounts", 1, "value") %>%
as.numeric()

}

nigerian_cities <- get_cities("nigeria")
turkish_cities <- get_cities("turkey")

cities <- bind_rows(nigerian_cities, turkish_cities)

cities$population <- map(cities$name, get_city_population) %>% unlist()

total_city_population <- cities %>%
group_by(country) %>%
summarize(total_population = sum(population))

ggplot(total_city_population, aes(x = country, y = total_population)) +
geom_col() +
xlab("Country") +
ylab("City population") +
ggtitle("Total city population by country")

ggsave("total_city_population.png")

Code listing 9 Naive implementation of a data analysis pipeline in the form of an R script file.
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Figure 2.2 Stage dependency graph of a pipeline from the running example

make_pipeline(
nigerian_cities = stage(function() get_cities("nigeria")),

turkish_cities = stage(function() get_cities("turkey")),

cities = stage(function(nigerian_cities, turkish_cities) {
bind_rows(nigerian_cities, turkish_cities)

})
)

If we would like to model the rest of our running example as a Pipelinr pipeline, the stage
dependency graph could look like it is described in figure 2.2. Code listing 10 shows the whole
pipeline from our running example described as a Pipelinr pipeline.

The examples above defined stage dependencies by reusing a stage name as another stage’s
body argument name. The stage dependencies can also be defined by the stage inputs()
function. The stage inputs() function defines a mapping from a stage body argument to a
stage name using the named parameters syntax, similar to how stages are given names in a
pipeline. The following snippet is an equivalent stage definition of the cities stage from the
running example, but it uses the stage inputs() function:

make_pipeline(
...
cities = stage(

inputs = stage_inputs(
nigerian = nigerian_cities,
turkish = turkish_cities

),
body = function(nigerian, turkish) {

bind_rows(nigerian, turkish)
}

),
...

)

Defining dependencies using stage inputs() can be combined with those defined using the
body function’s argument names. A conflict could arise if the body function argument name
matches the name of an input defined in the inputs argument. If such conflict arises, the one
defined by the inputs argument takes precedence.

The omitting of the inputs argument of the stage() function could be thought of as a
shorthand definition of dependencies. It should make the definition of simpler stages require fewer
lines of code and thus be more readable. The drawback is that it does not allow the user to define
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make_pipeline(
nigerian_cities = stage(function() get_cities("nigeria")),

turkish_cities = stage(function() get_cities("turkey")),

cities = stage(function(nigerian_cities, turkish_cities) {
bind_rows(nigerian_cities, turkish_cities)

}),

city_populations = stage(function(cities) {
cities$population <- map(cities$name, get_city_population) %>% unlist()
cities

}),

plot_city_population_by_country = stage(function(city_populations) {
total_city_population <- city_populations %>%

group_by(country) %>%
summarize(total_population = sum(population))

ggplot(total_city_population, aes(x = country, y = total_population)) +
geom_col() +
xlab("Country") +
ylab("City population") +
ggtitle("Total city population by country")

ggsave("total_city_population.png")
})

)

Code listing 10 Pipeline from the running example written using Pipelinr
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Figure 2.3 Diagram describing the model of tasks and task outputs.

more complex dependencies between stages. This is because the values of the stage inputs()
do not just need to be stage identifiers. They can be DSL expressions that define more complex
dependencies. Using these expressions, the user can utilize dynamic branching.

2.4 Dynamic branching
Dynamic branching is a technique that allows running a stage body function multiple times for a
dynamic number of arguments. One of the main benefits of dynamic branching is that it allows
runtime to parallelize the execution of a given stage.

Pipelinr’s model has a notion of tasks. A task is essentially a list containing a named list
of body function’s arguments. When a stage is run, the body function is called for every task’s
arguments. Pipelinr assumes that stage body functions are pure functions, meaning that they
return the same value for the same arguments. This means that the stage would produce the
same output for each task. One of the benefits of this assumption is that the tasks can be
identified by their hashes.

When a task is evaluated, it produces outputs. These outputs contain the result, which is
the value return value of the body function. However, not every invocation of the body function
successfully returns a value because it can throw an error. Pipelinr also saves these errors and
a flag indicating whether the task evaluation has failed or not. This is important because when
the stage is used as an input for another stage, a task is created for every non-failed task’s result
of the stage. A diagram describing the model of tasks is shown in figure 2.3.

Pipelinr defines a set of DSL functions that are available inside the stage inputs() expres-
sions. These functions serve two purposes. The first purpose is to allow the user to use dynamic
branching. The second purpose is to allow the user to preprocess the stage inputs. These DSL
functions are named using verbs in the past perfect tense, meaning they use the ”-ed” suffix.
This naming scheme, however, is not suitable for all functions. The available DSL functions are:

mapped() – Used to produce tasks from atomic vectors, lists or data frames.

remapped() – Remaps input values using a provided function.

filtered() – Filters out inputs.

chained() – Concatenates inputs to form a single input.

zipped() – Combines values yielded by the input iterators into tuples.

crossed() – Produces all possible combinations of inputs.

take() – Filters out first n inputs.

metadata() – Retrieves metadata about another stage’s execution. It’s discussed in a later
section.

Pipelinr assumes that the stage inputs() expressions do not contain any assignments. They
are intended to be function calls composed by function composition or pipe operator. Their
behavior is undefined if any of these expressions contain assignment or super-assignment.
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Figure 2.4 Diagram demonstrating how rows of a data frame are mapped to a task using a mapped()
function

The simplest dynamic branching pattern is mapped(). We will explain it using our running
example. In the example, the city populations stage makes a synchronous HTTP request for
every city in our dataset. Because of this, the stage could take a lot of time to execute. Ideally,
we would like to execute these requests in parallel. We will use the mapped() function to create
a task for each row in the cities stage’s results. This means the city populations stage body
will be called for each city. An example of this modified pipeline can be seen in example 11.
Figure 2.4 demonstrates how the rows of the result of the cities stage are mapped to individual
tasks.

Notice how the city populations stage results need to be collected using the collect df()
function. When a stage produces a certain number of results, they are then passed to the next
stage in separate tasks. Assuming that all tasks successfully evaluate, then the number of tasks
is preserved throughout the stages until the input values are collected to a single object using
the collect() or collect df() function.

The results of expressions defined by the stage inputs functions are iterators, on which the
DSL functions like mapped() operate. Even when the result of the expression is not an iterator
object, it is wrapped in an iterator that yields the result of the expression. An iterator is a
design pattern that is used to abstract away the underlying collection when iterating over it [33].
Pipelinr comes with a small iterator library that implements basic operations on iterators such
as fold, map, filter, and more.

The mapped() function takes as an argument an iterator or a list to make it more versatile.
If a list was passed as an argument, it’s wrapped in an iterator, and the function behaves as if
the iterator was passed to it. It expects that the iterator will yield only lists or data frames. It
then converts those lists to iterators that yield the list’s values. If it encounters a data frame
instead of a list, it’s treated as a list of rows. After that, those iterators are concatenated to form
a single iterator. It is similar to a flat operation on an iterator of lists. The following snippet
demonstrates the behavior of mapped():

numbers <- 1:3
strings <- c("a", "b")

# Yields 1, 2, 3.
mapped(numbers)

# Iter yields 1:3, c("a", "b").
iter <- concat_iter(make_iter(numbers), make_iter(strings))

# Yields 1, 2, 3, "a", "b".
mapped(iter)
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make_pipeline(
...
city_populations = stage(

inputs = stage_inputs(
city = mapped(cities)

),
function(city) {

city$population <- get_city_population(city$name)
city

}
),

total_city_population = stage(
inputs = stage_inputs(

cities_with_populations = collect_df(city_populations)
),
function(cities_with_populations) {

cities_with_populations %>%
group_by(country) %>%
summarize(total_population = sum(population))

}
),
...

)

Code listing 11 Pipeline from the running example making use of dynamic branching
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Since a stage can produce multiple results, the results are also represented by an iterator
of their results. Because stage inputs evaluate to iterators and stage outputs are also iterators,
a stage could be considered a function taking a variable number of iterator arguments and
returning an iterator to its results. The input iterators are zipped together to form a single
iterator returning a list of named arguments for the body function. This list of body function’s
arguments is called a task in the Pipelinr’s model.

Pipelinr supports more dynamic branching patterns such as cross using the crossed() func-
tion, which creates an iterator yielding all combinations of values from both argument iterators.

The filtered() function allows users to filter out iterators elements based on a predicate.
It takes two arguments. The first is an iterator, and the second is a predicate function. This
function needs to take a single argument, which is a value of the iterator. It also needs to return
a boolean value, which is a logical vector of length one in R’s terms. In the running example, we
could construct a new stage, which could take as input only Nigerian cities with their respective
population. Using the filtered() function, this hypothetical stage could look like the following
snippet:

make_pipeline(
...
filtered_stage = stage(

inputs = stage_inputs(
nigerian_cities_with_population = filtered(

city_populations,
function(city_with_population) {

city_with_population$country == "nigeria"
}

)
),
body = function(nigerian_cities_with_population) { ... }

),
...

)

2.5 Pipeline execution

Once the pipeline is defined, the user can execute the pipeline. Pipelinr’s API is designed to be
operated from the R REPL. The function that facilitates the pipeline execution is make(). The
make() function executes a pipeline by evaluating stages in their topological order.

By default, make() expects the pipeline to be defined in a R source file named pipeline.R
in the current working directory. This is similar to a targets.R file from targets. The last
expression in this file must evaluate to a pipeline object. Every time make() is invoked, it
evaluates the pipeline definition file, meaning that all changes made to the pipeline definition
should be reflected in the current make() invocation. Pipelinr also offers an option to pass the
pipeline object directly to the make() function in the pipeline argument. Using the pipeline
argument has the drawback of requiring the user to rebuild the pipeline himself with every
change.

Pipelinr persists all tasks on the filesystem. When a pipeline is run, make() searches for
unevaluated tasks for the currently executed stage on the filesystem and evaluates them. When
a task is evaluated, its outputs are also stored on the filesystem. Thanks to this, by default, only
the unevaluated tasks will be evaluated when the user reruns the pipeline. This makes a make()
an idempotent operation that puts the pipeline in the same state every time it is run. Another
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Figure 2.5 Stage dependency graph of a pipeline from the running example visualiz-
ing which stages are evaluated by using the only stage filter with the following expression:
make(c(city_populations, total_city_population))

Stages colored in red are not evaluated, while stages colored in green are evaluated.

benefit is that if a pipeline execution is somehow interrupted or, for some reason, does not run
into completion, it will continue from the exact point it left off the next time it is run.

The tasks and their outputs are preserved even when a stage’s implementation changes to
prevent unintentional data loss. This allows the user to make changes to the pipeline without the
fear of losing the previous tasks and their outputs. If the user wishes to clean the old saved tasks
with their outputs, he can set the clean flag to TRUE, which forces make() to delete the stage’s
persisted tasks and outputs before stage evaluation. This way the stage’s tasks are always up to
date the same way as if the pipeline was run from a completely unevaluated state.

The make() function takes an optional first argument named only that filters out stages by
their names. If the user, for example, would like to run only the city populations stage from
our running example, he can call the make() while passing a symbol with the same name as the
stage like so:

make(city_populations)

This would have the effect of skipping the evaluation of all stages except the city populations
stage. Beware that in the case where previous stages of currently filtered stages are not evalu-
ated, the filtered stages may be missing their inputs. Because of this, their evaluation will not
create any outputs. If a user would like to run more stages than a single stage, he can pass an
expression that returns a list of stages. An example of this expression that filters out multiple
stages could be written as a function call to the c function:

make(c(city_populations, total_city_population))

This would have the effect of filtering out the city population stage together with the
total city population stage. The only argument expression is being evaluated in an environ-
ment where each stage name is available as a variable with its name. Pipelinr expects the result
of this expression to be a character vector. This allows the user to select multiple stages using
the c() function, which combines all of the character vectors. Another option is to use string
literals directly:

make(c("city_populations", "total_city_population"))

Because the snippet above evaluates to a character vector, it is a valid stage filter expression.
However, compared to symbols, the string literal is more cumbersome to type.

Similarly to the only filter, make() accepts another optional argument named from. The
from filter filters out the specified stages using the expression the same way only does, but it
also includes successive stages of the filtered-out stages. Figure 2.6 demonstrates the from filter
on the running example.
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Figure 2.6 Stage dependency graph of a pipeline from the running example visualiz-
ing which stages are evaluated by using the from stage filter with the following expression:
make(from = city_populations)

Stages colored in red are not evaluated, while stages colored in green are evaluated.

During pipeline development, the user might wish to reevaluate some tasks. An example
scenario would be a bug in a stage’s implementation that affects only a handful of tasks. The
user might want to rerun tasks that do not satisfy the default condition of being unevaluated and
instead define his own conditions under which tasks for evaluation should be selected. Pipelinr
allows the user to provide a task filtering expression in the make() function named filter.
The filter argument is an expression that must evaluate to a boolean value, which is a logical
vector of length one in R’s terms. The expression is being evaluated for every task in a data-
masked environment, where tasks and their metadata elements are accessible by identifiers of
their respective names. If the expression evaluates to TRUE, the task is selected for evaluation,
otherwise it is skipped. Let us imagine that in our running example, we have discovered a bug
in the implementation of the city population stage. We have fixed a bug that was causing a
handful of tasks to fail with an error, thus producing no results. In this case, we would like to
rerun only the affected tasks. This could be accomplished by using a combination of the from
filter to make the pipeline run only from the affected stage and using the filter task filter to
select only failed or unevaluated tasks. A call to the make() function with the aforementioned
filters could look like this:

make(from = city_populations, filter = failed || !exists(result))

After a pipeline is executed, stage results can be retrieved using the read() and read df()
functions. The read() function returns all results in a list, while read df() returns the results
as a data frame. The data frame can be constructed by concatenating data frames or named
lists, where each named list will be a row in the returned data rame.

2.6 Executors
Pipelinr offers the user an option to select so-called task executors. The task executor is re-
sponsible for executing the stage’s tasks. In the current implementation, Pipelinr supports two
executors: the default R executor, which executes the tasks in the same R process, and a GNU
Parallel executor, which, as its name suggests, executes tasks using GNU Parallel [34].

The R executor is simple. It is the default executor and is primarily intended to be used with
smaller workloads. It may be useful during the development of the pipeline, where the pipeline
could be tested with just a fraction of the input dataset. It also does not have the overhead costs
of a GNU Parallel executor, which needs to start a new process for each task or even establish
SSH connections.

As mentioned, the GNU Parallel executor is used to parallelize the execution of the stage’s
tasks. Unlike the R executor, the GNU Parallel executor needs to be instantiated using the
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make_pipeline(
...,
city_populations = stage(

inputs = stage_inputs(
city = mapped(cities)

),
body = function(city) {

city$population <- get_city_population(city$name)
city

},
executor = gnu_parallel_executor

),

city_populations_meta = stage(
inputs = stage_inputs(

meta = metadata(city_populations)
),
body = function(meta) {

# this function will be called with metadata
# of each task from city_populations stage
...

}
),

...
)

Code listing 12 Pipeline from code listing 11 with an added stage city populations meta that
demonstrates how metadata could be consumed.

make gnu parallel executor function. This function takes a single optional argument
ssh login file, which is a string path to the SSH login file. If this option is specified, the GNU
Parallel will execute tasks over SSH on the specified hosts. It will essentially pass the argument
to the --sshloginfile option of GNU Parallel. If the argument is missing or if it is an empty
string, the tasks will be executed as child processes on the same machine as the master process.

The user can specify a default executor for a given pipeline in the executor argument of the
make() function. Pipelinr also allows the user to specify an executor of a single stage by using
the executor argument of a stage() function. The value of this argument takes precedence
over the pipeline’s executor.

2.7 Metadata
When a task is evaluated, it also produces metadata about the task’s execution along with the
task’s result. This metadata is accessible to any stage using the metadata() DSL function inside
input expressions. It accepts a stage identifier as a single argument and returns an iterator to the
stages metadata. Code listing 12 demonstrates how metadata could be consumed by a pipeline’s
stage.

Another option is retrieving the metadata usingthea metadata() function that is used outside
of the stage inputs() expressions. This function only shares the name with the function that
is available in the input expressions, the only difference being that the function accessible in the
input expressions returns an iterator, while the other function returns a collected list of each
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task’s metadata. Pipelinr also implements a function metadata df() that returns the metadata
in a data frame. Both of these functions accept a stage’s symbol as a parameter. A metadata
object is a named list with the following elements:

hash – Task’s hash. This is supposed to be the task’s identifier.

args – A named list containing arguments that were passed to the body function.

result – The value that was returned from the body function. This will be missing in the
case of an unevaluated task or in the case of a failed task evaluation.

failed – A boolean value signaling whether the task evaluation has failed or not.

error – An error message captured during the evaluation of the task.

stdout – Stdout output captured during the execution of the task.

stderr – Stderr output captured during the execution of the task.

started at – Timestamp of the task evaluation start time.

duration – Time it took for the task to be evaluated.

exit code – A worker process exit code. This will only be available if the task was evaluated
using a GNU Parallel executor.

If the task was not evaluated, all elements except hash and args will be missing.
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Chapter 3

Implementation

Pipelinr is implemented as an R package, according to the conventions and guidelines described
in the R packages book [35].

3.1 Pipeline construction

In this section, we will describe what happens during the pipeline construction. Pipeline is
constructed by passing stage objects to the make pipeline() function as named arguments,
which produces the following syntax:

make_pipeline(
stage_identifier_1 = <stage_object>,
stage_identifier_2 = <stage_object>,
...
stage_identifier_n = <stage_object>

)

Implementation of this DSL syntax is simple. The make pipeline() simply takes a variable
number of arguments using the ellipsis syntax.

The make pipeline() function has two primary responsibilities. The first responsibility is
to assemble stage objects inside a named list, where each stage is accessible by its name. The
second responsibility is to search for dependencies between stages.

Stage objects are composed of two elements: a body function and an inputs object. Input
objects are constructed using the stage inputs() function, which captures the expressions of
its named arguments. These expressions are captured as a list of quosures using the enquos()
function from the rlang [36] package.

To explain quosures, we need to first dive deeper into R metaprogramming. As mentioned in
the first chapter, R uses a non-standard evaluation. This means that argument values inside a
function are internally represented by a promise [15]. This promise contains an expression and
an environment in which the expression is meant to be evaluated. By accessing the argument’s
value inside a function, the promise gets evaluated, and the result is stored inside the promise.
The next time the promise gets used, the expression inside the promise does not get reevaluated,
instead the stored result is used. The following example discusses the quirks of non-standard
evaluation:

25
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foo <- function(a, b) b + a

x <- 1
y <- 2

foo(x, { x <- 2; y })

The call to foo() in this example will return 4. This is because the promise for argument b
gets evaluated before the promise for argument a. If we would change the order of the operands
in the addition expression to a + b, the return value would be 3. The drawback this has is that
it could make R code less predictable than code written in eagerly evaluated languages.

R functions have the capability to capture the expressions that have been passed to them as
arguments. In base R this can be done using the substitute() function. The substitute()
function extracts the expression of the promise without evaluating the promise. A quosure is
just a pair containing an expression and an environment in which it should be evaluated.

There is no direct need for Pipelinr to use quosures, the expressions could be captured using
substitute(), and their environments could be retrieved using parent.frame(). Quosures are
used because it simplifies the implementation, and the author did not want to reinvent the wheel.

During pipeline construction, the expressions in the list of quosures that were captured by the
inputs object are searched for other stage identifiers. The AST of these expressions is recursively
walked until a global identifier with the same name as a stage is found.

R language objects can be of the following types:

Literal value – Examples: 1, 0.5, TRUE, "Hello world"

Symbol – represents a variable. Examples: x, variable, print

Pairlist – as it’s name suggests, this is a list of pairs. You can encounter pairlists in the
definition of functions arguments. This is because function arguments can have default values,
thus they need to represented by pairs.

Call expression – these expressions include everything else that wasn’t covered by the types
above. This includes, as one would expect, function calls, but it also includes operators and
even blocks. In R, operators are functions that just happen to use a special syntax. Blocks
and semicolons are also operators, thus they are also functions.
Examples: foo(1, 2), 1 + 2, function(x) x + 1

The code that searches for dependencies in the stage inputs() expression first gathers all
used symbols in a given expression. Then it filters out only those symbols that match other stages’
names. The function that searches for the symbols is named find symbols(). Its implementation
is relatively straight forward, it simply needs to handle all types of the language objects.

If the currently walked AST node is a symbol, we check if it is a stage name, and if it is, we
return the string value of the symbol wrapped in a list. In the case of a literal value, an empty
list is returned. Finally, in the case of a pairlist or a call, we can convert them to a list and
recurse on each element of it’s elements. After that, we concatenate the results and return them
as a single list. The implementation of the find symbols() function is shown in code listing 13.

It should be noted that this used symbol analysis is an approximation. If we would analyze
an expression that would also make use of metaprogramming, for example, by using some of the
functions from the dplyr package, we could possibly find symbols that refer to variables in a
data-masked environment. Example of such a pipeline where this analysis would break down
can be easily constructed and could look like this:
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# Recursively walks language objects to retrieve used symbols
find_symbols <- function(expr) {

# In the case of a literal return an empty list
if (rlang::is_syntactic_literal(expr)) {

return(list())
}

# In the case of symbol, return it's string representation
if (is.symbol(expr)) {

return(list(as_string(expr)))
}

# In other cases, the AST node is either list or a pairlist.
# In both those cases we recurse on their child nodes.
purrr::map(as.list(expr), find_symbols) %>% purrr::flatten()

}

Code listing 13 Recursive function for searching all used symbols in a language object

data <- data.frame(a = 1:10)

make_pipeline(
a = stage(function() {...}),
b = stage(

inputs = stage_inputs(x = data %>% dplyr::filter(a > 5)),
body = function(x) {...}

)
)

In the snippet above, stage b clearly does not depend on stage a. However, because our
analysis of used symbols returns all symbols inside a given expression, it would find a dependency
between stages a and b. Such issues cannot be easily remedied.

After the stage dependencies are found, Pipelinr sorts stages by their topological ordering.
This is an invariant of the pipeline objects, which simplifies the implementation of code that uses
them.

3.2 Iterators
An iterator is a design pattern used to abstract away a collection when iterating over it [33].
Pipelinr’s iterator implementation has been largely inspired by the ECMAScript iterators [37].
Their structure is similar. Pipelinr’s iterators are represented by a list containing three named
elements:

value – value yielded by the iterator.

done – logical vector of length one indicating whether the iterator has finished or not.

next iter – function returning the next iterator.

The main difference from the ECMAScript iterators is that Pipelinr’s iterators are immutable.
The next iterator() function returns a new iterator with the next value. When an iterator
reaches its end, the next iterator it returns is an empty iterator.
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# Create an iterator of 10 random numbers between 0 and 1.
iter <- runif(10) %>% vec_to_iter()

# Find the greatest value yielded by the iter
fold_iter(iter, function(acc, curr) {

if (curr > acc) curr else acc
})

Code listing 14 Example usage of the fold iter() function

collect <- function(iter) fold_iter(iter, list(), function(acc, curr) {
c(acc, list(curr))

})

Code listing 15 Implementation of the collect() function built upon the fold operation.

An empty iterator is created by the make empty iter() function. The empty iterator’s value
is always NULL, and the done flag is always TRUE. The next iterator it returns is always also an
empty iterator.

Iterators can be constructed using the make iter() function. It takes two arguments, first is
a value and the second is an optional next iter() function that defaults to make empty iter().
If the second argument is not specified, it creates an iterator yielding a single value.

Pipelinr further defines more functions that work with iterators. The fold iter() functions
takes three arguments, an iterator, an initial accumulator value, and a folding function. This
folding function takes two arguments, an accumulator and the current value. It then calls the
folding function with each iterator’s value and with the result of the previous invocation in the
first argument. Code listing 14 demonstrates the usage of fold iter().

During Pipelinr’s development, the fold iter() function was written in a more functional
manner. It consumed the iterator recursively, which in a more standard language, would benefit
from the recursive tail call optimization. However, the R runtime does not do this optimization,
and because of that, this function did not work with large iterators and had to be rewritten using
a loop.

On top of fold iter(), we can build more functions. One of those functions is a collect()
function that collects the iterators into a list. The implementation of this function is simple, it
invokes fold iter(), with an initial accumulator value of an empty list, and then it appends
each element to the list, as is described in code listing 15.

Similarly, the collect df() function is used to collect an iterator yielding named lists or data
frames into a single data frame. It is implemented as a wrapper over the collect() function,
which converts the collected list into a data frame using the bind rows() function from the
dplyr [17] package.

The for each iter() function is primarily intended to be used for making side effects based
on iterators values. In addition to an iterator, it takes a function, which is called for every value
yielded by the iterator.

A useful function when working with iterators could be map iter(). This function works on
iterators similarly to how, for example, lapply() or map() from the purrr [32] package work on
lists and atomic vectors. It returns a new iterator whose values are mapped through the mapping
function. The function is implemented to map the values lazily only when the iterator is iterated
through the next iter() function call. It takes as its input two arguments, an iterator, and a
mapping function, that takes in a single argument, which is the current value of the iterator. The
implementation is simple and straightforward. It returns a new iterator with the value remapped
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iter <- as_iter(1:3)

# Yields 1, 4, 27
map_iter(iter, function(x) x ˆ x)

Code listing 16 Example usage of the map iter() function.

filter_iter <- function(iter, predicate) {
# Find first element which satisfies the predicate.
while (!iter$done && !predicate(iter$value)) iter <- iter$next_iter()

# If the iterator was consumed, return an empty iterator.
if (iter$done) {

return(make_empty_iter())
}

# Return a new iterator with the found value and recursively continue
# when next_iter() is called.
make_iter(

value = iter$value,
next_iter = function() filter_iter(iter$next_iter(), predicate)

)
}

Code listing 17 Implementation of the filter iter() function.

using the mapping function. The next iter() function calls the map iter() function again to
map the values recursively throughout the returned iterators. Code listing 16 demonstrates how
it can be used.

Pipelinr implements a filter iter() function that allows the users to filter out only certain
iterators based on their value. One could see it as the keep() function from the purrr package
that works on iterators. It works similarly to map iter() in the sense that it filters values lazily
without the need to collect the whole iterator first. Its implementation is shown in code listing
17.

Iterators can be concatenated together with the concat iter() function. This function takes
a variable number of iterators and concatenates them together to form a single iterator yielding
values from the argument iterators. An example demonstrating its usage can be seen in code
listing 18.

The zip iter() function zips iterators together to form a single iterator returning a list
containing their values. It takes a variable number of iterator arguments. The names of the

iter1 <- as_iter(1:3)
iter2 <- c("a", "b") |> as_iter()

# Yields 1, 2, 3, "a", "b".
concat_iter(iter1, iter2)

Code listing 18 Example usage of the concat iter() function.
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iter1 <- as_iter(1:3)
iter2 <- c("a", "b") %>% as_iter()
iter3 <- c(TRUE, FALSE) %>% as_iter()

zip_iter(iter1, string = iter2, iter3)
# The resulting iterator yields the following values:
# list(1, string = "a", TRUE)
# list(2, string = "b", FALSE)
# list(3, string = NULL, NULL)

Code listing 19 Example usage of the zip iter() function.

iter1 <- as_iter(1:3)
iter2 <- c("a", "b") %>% as_iter()

cross_iter(iter1, string = iter2)
# Yields the following values:
# list(1, string = "a")
# list(2, string = "a")
# list(3, string = "a")
# list(1, string = "b")
# list(2, string = "b")
# list(3, string = "b")

Code listing 20 Example usage of the cross iter() function.

arguments are propagated to the resulting lists. The returned iterator has the same length as
the longest iterator in the arguments. If an argument iterator has a shorter length than others,
NULL will be assigned to the resulting lists instead of its values once the iterator is done. A
demonstrative example of its usage is shown in code listing 19.

The cross iter() function creates all possible combinations of iterator values. It also takes
a variable number of iterator arguments as zip iter() and propagates the arguments to the
resulting lists. If any of the argument iterators is done, then it returns an empty iterator.

The iterator functions are available in stage inputs() expressions under different names as
dynamic branching functions. Table 3.1 describes how the functions are renamed.

Table 3.1 Mapping of iterator functions to dynamic branching functions in the stage inputs()
expressions.

Iterator function Dynamic branching function
map iter remapped
filter iter filtered
concat iter chained
zip iter zipped
cross iter crossed
head iter take
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3.3 Pipeline execution

Pipeline execution is facilitated by the make() function. It needs to load a pipeline if it wasn’t
provided. After that, it needs to decide which stages to execute based on the provided stage
filters. Then it creates a pipeline directory with stage directories. Finally, it executes the filtered
out stages.

Pipeline loading. When invoked, it first needs to load the pipeline object if it wasn’t provided
as an argument. The pipeline is, by default, loaded from the pipeline.R file. This file needs to be
parsed and evaluated to retrieve the pipeline object. Base R provides the parse() function that
takes a path as an argument and returns the AST of the file. After that, the AST is evaluated
using the eval() function together in an empty environment to minimize the pollution of the
global environment of the R session the make() was called in. The result of the eval() call is
expected to be a pipeline object. This is because Pipelinr has a constraint that the last expression
in the pipeline.R must evaluate to a pipeline object. The user is able to change the path to
the pipeline file by setting the option pipelinr pipeline file.

Stage filters. Once the pipeline object is obtained, make() must decide which stages should
be evaluated. To decide which stages to evaluate, it first needs to evaluate the from and only
expressions. The expressions of these arguments are captured as quosures using the enquo()
function from the rlang [36] package. The captured expressions are evaluated in a data-masked
environment, where the stage names are available as identifiers with their respective names. The
default values of the filter and only arguments are expressions that evaluate to character
vector of all stage names. The enquo() function is able to capture the expressions of default
function arguments, which simplifies the implementation.

The from filter also needs to collect the child stages. Because the pipeline is checked for
the existence of cycles during its construction, the algorithm for collecting the child stages does
not need to worry about them. The implementation recursively traverses the stage dependency
graph using the depth-first search algorithm. This recursive approach could be a problem in the
case of very large dependency graphs, where the depth of the dependency graph could be over
a thousand stages. However, the implementation assumes the pipelines constructed using it will
have a smaller depth. If this were a problem, the child stage search could be modified to use a
loop instead of recursion.

Stage directories. Before Pipelinr starts executing stages, it also creates the directory struc-
ture for every stage. The directory path is configurable using the pipelinr dir option. The root
Pipelinr directory contains directories bearing the names of their corresponding stages. These
stage directories contain saved tasks and their outputs. Their filenames contain the task’s hash
to make them identifiable just from the filename. The qs [38] package is used for R object
serialization.

Stage execution. After the stages have been filtered and their directories have been created,
Pipelinr starts executing the stages. The stage filtering process preserves the order of the stages,
so at this point, there is no need for topological sorting.

To execute a stage, Pipelinr first needs to evaluate the stage’s inputs. The stage input
expression quosures are evaluated in a data-masked environment, from which they can access
the dynamic branching DSL functions. This environment also contains iterators of stage results
the current stage depends on. They are accessible by identifiers in the form of their stage names.
If the result of the stage input expression is not an iterator, the resulting value is wrapped in an
iterator using the make iter() function. Pipelinr does not use any of the R’s object systems, so
to verify if the value is an iterator, it needs to be verified by the object’s structure.

The input iterators are combined using the zip iter() function. The names from the input
quosure list are preserved up to this point. Because the names of the input quosures are the
arguments of the body function, the result of the zip iter() call essentially returns the argu-
ments of the body function. If the stage did not depend on any other stage, the body arguments
iterator would be empty. For this reason, Pipelinr checks if the stage has any dependencies, and
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if it does not have any, then the empty argument iterator is swapped for an iterator yielding
a single empty list. If this would not have been done, the body function wouldn’t have been
invoked.

The argument iterator is then converted to a task iterator. Tasks are named lists containing
two elements, arguments, and a hash. The hash is computed from the arguments using the
hash() function from the rlang [36] package. The hash() function can compute the hash of
any R object. Because of this, it can be used to compute a hash of a task. After the hash is
computed, the tasks are persisted in the stage directory.

At this point, the tasks are ready to be executed by the executor. The executor is invoked
with the task iterator, and the same process continues for the next stages.

3.4 R executor
In the implementation, an executor is represented by a function. It takes two arguments, the
first is a task iterator, and the second is a stage object. The executor’s main responsibility is
to evaluate the tasks and save their outputs to the stage directory. They are also responsible
for displaying the stage’s execution progress. The progress bar rendering is facilitated by the
progress [39] package. The executors also need to collect the metadata about task’s evaluation.

The R executor is an executor that evaluates all tasks in the same R process as the make()
was called from. Its implementation is simple. It evaluates the task by calling the do.call()
with the stage body function and the task’s arguments.

The stdout and stderr output is captured using the capture.output() base R function.
The capture.output() takes in an expression as its first argument. It evaluates the expression
and redirects the output of the given type to a connection. Connection in R is described as
a ”generalized file” [40]. Opened files, input and output streams, sockets, pipes, and more are
represented in R as connections.

Pipelinr uses the textConnection() to capture the output to a character vector. The
textConnection() can be used to create a connection that reads input from a character vector or
writes output also to a character vector. To collect the output to a character vector, it must first
be instantiated and assigned to a variable. Once this is done, we can call the textConnection()
to create a connection to a vector. The first argument must be the variable’s name to which
our output vector has been assigned. The open argument needs to be set to "w" to specify
that the connection is an output connection. Furthermore, if the vector has been declared in
an environment other than the global environment, we also need to set the local argument to
TRUE. Once this is done, the returned connection will write to the specified character vector.

The capture.output differentiates between two types of output. This distinction is essen-
tially between the output written to stdout or stderr. To define which type of output it should
capture, the type parameter should be set to either output in the case of an output written to
stdout or message in the case of an output written to stderr. Code listing 21 shows how the
output capture is implemented.

Each element in the output character vectors corresponds to an output line. To get the
output in a single string, it needs to be merged together with line breaks as separators.

The R executor also measures the execution time of the task. This is implemented by simply
taking two timestamps, one before and one after the stage body function call. Then it calculates
the duration using the lubridate [41] package.

3.5 GNU Parallel
Pipelinr does not directly handle the orchestration of the worker process, which need to be used
to parallelize the execution of R code. Instead, it offloads this responsibility to GNU Parallel
[34]. As its name suggests, the GNU Parallel executor uses GNU Parallel to parallelize the
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# Initialize local character vectors for both output streams.
stdout <- character()
stderr <- character()

# Create output text connections.
out_con <- textConnection("stdout", "w", local = TRUE)
err_con <- textConnection("stderr", "w", local = TRUE)

# The capture.output() function needs to be called for each output stream.
capture.output(

capture.output(
<expression>,
file = out_con,
type = "output"

),
file = err_con,
type = "message"

)

# Connections need to be manually closed.
close(out_con)
close(err_con)

# At this point, the stdout and stderr character vectors contain outputted
# lines as their elements.

Code listing 21 Implementation of output capture using the textConnection() and
output.capture() functions.
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execution of a stage. GNU Parallel is a program for running shell commands in parallel. Since
GNU Parallel is a complex tool with a lot of features, we will describe only those features that
are being used by Pipelinr’s implementation.

To run a command in parallel, the user should pass the command to be parallelized as an
argument to the parallel command. After that, he needs to specify input sources with which
the program will be parallelized. The syntax uses the ::: delimiter to specify an input source
as a sequence of arguments. As an example, the user can run the following echo command in
parallel using the following command:

$ parallel echo Hello ::: 1 2 3 4 5
Hello 1
Hello 2
Hello 3
Hello 4
Hello 5

The command above defines a single input source of numbers from 1 to 5. GNU Parallel then
builds five commands in the format of echo Hello <number> and executes them in parallel.
The input source can also be taken from stdin, where each line corresponds to one input.

In addition to executing shell commands in parallel, it also allows the user to execute them
distributively over SSH. To achieve this, the user can use the -S and specify the SSH host. We
could modify the previous example to run on a hypothetical SSH host example.com:

$ parallel -S user@example.com echo Hello ::: 1 2 3 4 5

Instead of using the -S option, the user can also specify the hosts in the so-called SSH login
file. In this file, each line specifies an SSH host and the host’s number of available CPUs. To use
the SSH login file, the user must specify the file’s path using the --sshloginfile option. The
following snippet demonstrates the structure of the SSH login file:

4/user@example.com
2/another_user@hostname.org

The snippet above defines two SSH hosts, the first having four available CPUs and the second
having two.

Some shell commands need to read inputs from files, or their output is in the form of a file.
For this reason, GNU Parallel allows the user to transfer both input and output files to the SSH
hosts. Using the --transfer option, the user can specify which files should be transferred to
the host. The following snippet demonstrates the usage of the --transfer option to transfer
files foo.txt and bar.txt to the SSH host.

$ parallel -S user@example.com --transfer cat ::: foo.txt bar.txt

To retrieve files the remotely executed command could have produced, the user can use the
--return option. With this option, the user can specify, using replacement strings, which output
files should be transferred back based on the filenames of the input files. Suppose we would
want to compress some files using the zip command. If we would like to run this command in
parallel on a remote host using SSH, we could invoke the parallel command with the following
arguments:
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Seq Host Starttime JobRuntime Exitval Command
1 worker-4 1682254963.849 0.217 0 echo Hello 1
2 worker-2 1682254963.850 0.217 0 echo Hello 2
3 worker-3 1682254963.851 0.217 0 echo Hello 3
4 worker-1 1682254963.852 0.216 0 echo Hello 4
5 worker-4 1682254964.080 0.205 0 echo Hello 5

Code listing 22 An example of a simplified GNU Parallel job log file.

$ parallel
-S 2/user@example.com
--transfer
--return {.}.zip
zip {.}.zip ::: foo.txt bar

The snippet above creates zip archives of the input files. The files are transferred to the
remote host, on which the zip command is invoked to create a zip archive of the file with the
same filename but with the file extension changed to .zip. This is accomplished using the {.}
replacement string, which strips the filename from the input source of its file extension. GNU
Parallel implements many other replacement strings, but they will not be discussed in this thesis.

Some shell commands could depend on some local files, which are not available on the host.
An example of this could be just an invocation of a shell script. In such a case, the script wouldn’t
be available on the remote host. For this use case, GNU Parallel provides the --basefile option.
It is followed by a path argument to the file that should be transferred to all remote hosts before
the command is executed. Suppose we have a script named script.sh in the current working
directory, and we would like to execute it distributively on our remote hosts. The following
snippet demonstrates how parallel could be invoked to transfer the script to the remote hosts:

$ parallel
-S 2/user@example.com
--basefile ./script.sh
./script.sh ::: foo bar

The files transferred to the SSH hosts are only deleted if the --cleanup option is set. It
deletes all of the files on the SSH host that were transferred to or from the SSH host. This
includes even files transferred using the --basefile option.

Because the --transfer, --return, and --cleanup options are frequently used together, a
shorter option --trc can be used instead of the aforementioned options. It needs to be followed
by the argument of the --return option.

Using the --joblog option, the user can tell GNU Parallel to save the outputs and metadata
about command execution into a file. This could be useful when executing a large number of
commands to get an overview of their execution. An example of a simplified job log file can be
seen in code listing 22.

The file-transferring capability of GNU Parallel is implemented using rsync [42]. For this
reason, it needs to be installed on the SSH host. In addition to rsync, PERL [43] must also be
installed.

3.6 GNU Parallel executor
Because the R runtime is are single-threaded, parallelism can only be achieved by running multi-
ple R processes in parallel. By using GNU Parallel, Pipelinr can use it to spawn task evaluation
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worker processes.
To evaluate tasks, the executor invokes the exec task and collect metadata.sh shell script.

This script invokes two other R scripts. The first is the exec task.R script, which deserializes
and executes the provided task. The outputs from the task execution are saved in a separate file,
the same way they are saved when using the R executor. The other script that is executed is
collect metadata.R. Purpose of this script is to collect metadata, which could not be collected
in the R process spawn by the exec task.R script. In the current implementation, this script
only appends process exit code to the task outputs.

These scripts are located in the inst directory in the project root directory. This directory is
used to distribute files other than source files together with the package onto the user’s machine.
These files can then be located using the system.file() base R function. This function takes
a filename and a package name as arguments and then searches the package for the given file.
The returned values is a path to the found file.

When the execution is done over SSH, the script files and a serialized body function are
transferred at the beginning of stage execution using the GNU Parallel --basefile option. The
files transferred using GNU Parallel are always transferred to the same path as on the remote host.
For example, when transferring a local file located at /usr/lib64/R/library/foo, GNU Parallel
will try to transfer it to the same path on the remote machine. This creates a problem when the
files are transferred from directories where the user has read only permissions. To remediate this,
the path can be changed to a relative by placing an additional current directory dot symbol inside
the path. For example, if we would want to transfer a file located at /usr/lib64/R/library/foo
to the home directory of the user we log in through SSH, we could add a ./ before the filename:
/usr/lib64/R/library/./foo. The transferred file will then be located at ∼/foo. The executor
assumes the home directory on the SSH host has read and write permissions, so it transfers all
files to the home directory using the aforementioned path modification technique.

When the execution is not done over SSH, the script files are located in the package install di-
rectory. This is in contrast to when the execution is done over SSH because, in that case, the script
files are located in the home directory. Due to this reason, the exec task and collect metadata
script takes as its first two arguments the path to the exec task.R and collect metadata.R
scripts, otherwise, it would not be able to locate them.

The GNU Parallel process is executed using the processx package [44]. The processx
package is used primarily because it allows execution of the child process in a non-blocking way,
as opposed to the base R system2() base R function, which always waits for the child process
to finish. The non-blocking execution is crucial, because otherwise, the R process would not be
able to report on the stage execution progress.

During the execution of the child process, the executor polls each second whether the child
process has finished or not. If it has not yet finished, it reads the job log file to retrieve the
number of completed tasks. The number of completed tasks is essentially the number of lines in
the job log file minus the header line.

The arguments of the child process in the case of a local execution are relatively simple. We
only need to specify the --joblog option and the command, which invokes the
exec task and collect metadata.sh script. An example of the arguments passed to the child
process can be seen in code listing 23.

In the case of a remote execution over SSH, the arguments get more complex. To have the
task execution scripts available on the SSH hosts, we need to specify the --basefile options of
the scripts and stage body. After that, we need to specify the --trc option with the replacement
{.} out.qs, specifying the file name pattern of task output files. The scripts are executed using
their relative paths as opposed to absolute paths in the local execution.

The task filenames are passed as an input source through stdin. If they were passed as
arguments, the maximum argument count could be exceeded. Thus this approach should work
with a larger number of tasks.
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$ parallel
--joblog joblog
/home/user/projects/pipelinr/inst/exec_task_and_collect_metadata.sh
/home/user/projects/pipelinr/inst/exec_task.R
/home/user/projects/pipelinr/inst/collect_metadata.R

Code listing 23 Example of the parallel arguments provided by the GNU Parallel executor in the
case of a local execution.

$ parallel
--joblog joblog
--sshloginfile /home/user/projects/pipelinr/ssh_worker/nodefile
--basefile /home/user/projects/pipelinr/inst/./exec_task_and_collect_metadata.sh
--basefile /home/user/projects/pipelinr/inst/./exec_task.R
--basefile /home/user/projects/pipelinr/inst/./collect_metadata.R
--basefile body.qs
--trc {.}_out.qs
./exec_task_and_collect_metadata.sh
./exec_task.R
./collect_metadata.R

Code listing 24 Example of the parallel arguments provided by the GNU Parallel executor in the
case of a remote execution over SSH.

3.7 Stage body serialization

The GNU Parallel executor needs to serialize the stage body so it can be then loaded in another R
worker process. A problem arises when the body function uses globals or functions and variables
from non-base packages.

To explain this problem, we first need to discuss how R functions work, and before that,
we need to explain environments. Environments describe the mapping from a variable name to
its value. When a variable’s value is retrieved, the runtime searches for it in the environment.
Environments can have a parent environment. They essentially form a linked list. If a variable
has not been found in the current environment, the lookup then continues recursively through
the parent environments. In the case a variable has not been found in the environment, R throws
an error. Every R session has a global environment in which global variables are declared. The
global environment extends loaded package environments and other namespaces. R environments
are objects themselves and can be accessed and manipulated during runtime [15].

R functions have three components: arguments, body, and an environment, sometimes called
closure in other languages. When a function is called, its environment gets extended with a
new environment in which the arguments are assigned. This new environment then hosts the
execution of the function’s body [15].

The function’s environment is the environment, in which the function was defined. Consider
the following functions:
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x <- 1

foo <- function() {
x <- 2
function() x

}

bar <- foo()

The function foo() is defined in the global environment, which becomes its environment.
When foo() was called, a new environment extending the global environment was created. In
this environment, we define a new function which will then be immediately returned. In the global
environment, we assign this new function to the variable bar. The bar() function environment
will be the environment created when foo() was called. For this reason, if we would call bar(),
it would return 2. This is an example of lexical scoping.

A problem arises when serializing R functions that use globals. If we would serialize the
function using the qs [38] package or even using the base R saveRDS() function, it would only
serialize the function’s environment chain only up to the last environment before the global
environment. This means that it would not include globals or functions and variables from other
packages. This behavior makes sense because serializing the global environment could take up a
large amount of memory.

This is primarily a problem when serializing a stage body function. To solve this, the GNU
Parallel executor analyzes the function for used globals and packages, which are then serialized
with the function body and loaded during the task’s execution.

To analyze used globals, the codetools [45] package is used. This package provides the
findGlobals() function for analyzing used globals within a function body. The found globals
are checked to see if they are defined in the global environment or if they are a function or a
variable from a package. If the value is a global and at the same time is a function, we also need
to analyze it for used globals and packages recursively.

The analysis the findGlobals() implements is an approximation. It suffers many drawbacks
thanks to R’s dynamic nature, as discussed in the used symbols analysis in the pipeline con-
struction section. It also does not analyze the function for used packages. Consider the following
snippet:

foo <- function() ns::bar()

# returns "::"
codetools::findGlobals(foo)

In the snippet above, the function foo() accesses the function bar() in the ns namespace.
Because the findGlobals() function analyzes only the usages of global variables, it only returns
the :: namespace access operator as the only used global, which is the correct result from the
perspective of the analysis. Because of this reason, an analysis of used package namespaces was
implemented.

Pipelinr assumes that all namespace accesses made using the :: and ::: operators access
package namespaces, not some user-defined namespaces. The used package namespace analysis
simply traverses the AST to find the used packages. In the R’s AST, the namespace access
operators are represented by a call AST node, as are all operators.

Both analyses are implemented in the find used globals and packages() function. This
function returns a pair containing a named list of used globals with their values and a character
vector of names of used packages.

The GNU Parallel executor serializes the stage body functions into a list with three elements:
the body function, the global environment, and a character vector of names of used packages.
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The packages are loaded before the task evaluation. If a given package is not installed, an error
will be thrown. The user must make sure that all dependencies are installed on the SSH hosts.

3.8 Test environment

To test the implementation, Pipelinr emulates a full production environment, including the SSH
hosts. A Docker [46] container for the SSH hosts has been developed, to achieve this. It’s imple-
mented using a Dockerfile, which extends the Alpine Linux [47] image. The Dockerfile installs
the necessary dependencies for R, GNU Parallel, and an OpenSSH server [48]. It also installs
the necessary R packages for the GNU Parallel executor scripts, which are qs and lubridate.
The Dockerfile takes in a single build argument PUB KEY, which is supposed to be a path to a
public key, which is then added to the authorized keys of the worker user.

Starting a single SSH worker to emulate the production environment is not enough. Ideally,
we should run multiple workers in parallel. These workers need to be specified in an SSH login file.
GNU Parallel also would not work out of the box with default SSH settings, so we need to generate
an OpenSSH configuration file. These problems are handled by the run test workers.sh, which
builds and starts up multiple container replicas using Docker Compose [49] and then generates
the corresponding OpenSSH configuration files with the SSH login file.

The script begins by generating an RSA key pair used for the SSH authorization. This key
pair is generated only if it does not yet exist.

To build the SSH login file, the script needs to know the local addresses of the started-up
containers. Docker allows the inspection of a network where the containers are running using
the docker network inspect command. Docker Compose runs the replicas in a bridge net-
work, which is given a name in the format <dir> default, where <dir> is the directory of the
docker-compose.yml file. In our case, the name of the network is ssh worker default. By
running the docker network inspect ssh worker default command, we get detailed infor-
mation about the network in a JSON format. The Containers object field contains information
about the running containers. The script parses this information using the jq [50] program and
extracts the names of the containers together with their local addresses.

The script then continues with the creation of the OpenSSH configuration file. This file is
not necessarily needed and could be substituted by command line options. The main benefit of
it is that it makes debugging and troubleshooting of the SSH workers easier. Another benefit
is that the developer does not need to pollute his own SSH configuration file with SSH worker
identities, which also could have different addresses each time they are started. The generated
file primarily specifies aliases for every worker. It also turns off the host key check, which creates
issues when connecting to newly built containers because the OpenSSH client requires the user
to confirm a prompt manually. We can afford to turn off the host key check since, in the
case of local development, security is not an issue. The path to the known hosts file is set to
/dev/null, because storing the known hosts’ information could pose issues even when the strict
host checking is turned off. The host key information could be saved, for example, in the case of
debugging, during which the developer could manually connect to the SSH worker without using
the generated OpenSSH configuration file.

After the OpenSSH config is generated, the SSH login file is generated. The structure of the
file is constructed essentially by prepending the number of available CPUs before a hostname.
In the current implementation, each worker is defined as having only a single CPU available.

As a test runner, the testthat [51] package is used. As is common in the R ecosystem,
it has an API that is intended to be used from the R REPL. To make it easier for the devel-
oper to drop into the R REPL and run the tests, a .Rprofile file has been prepared. This
file ensures that the devtools [52], which then is used to load the development version of
Pipelinr. The run test workers.sh script is also run to start the SSH workers. Furthermore,
the GNU PARALLEL SSH environment variable is set up to make GNU Parallel load the generated
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OpenSSH configuration. Thanks to this, the developer can simply call the test() function to
run all tests.



Chapter 4

Assessment

This chapter assesses if our design and implementation follow the requirements we have defined
and then, we will demonstrate the viability of Pipelinr on a real pipeline.

4.1 Requirements
To reiterate, our requirements were that the pipeline execution should be idempotent, the runtime
should provide some feedback about execution, it should be possible to access metadata about the
execution, and the runtime should be able to execute the pipeline in parallel and distributively.

Idempotence – Every time a pipeline is evaluated, it should reach the same final state. In
the current implementation, this is dependent on the stage and task filters. If a make() is
invoked with the same stage and task filter, it is idempotent. However, when make() has
been invoked with different stage filters, the execution is not idempotent.
Consider a pipeline with stages a and b, where b depends on a. If we invoke make(b), the
pipeline will not produce any tasks for stage b because stage a has no results. If we then
invoke make(), the pipeline will create outputs for stage a and, from them, tasks and outputs
for stage b. Because of this, the pipeline reaches a different state.
To summarize, the idempotence requirement is fulfilled only when make() is invoked with
the same stage filters.

Feedback – When a pipeline is being executed, it renders a progress bar with the stage
execution progress. It also calculates the remaining time estimate for the given stage. We
can safely say this requirement has been fulfilled.

Metadata – Pipelinr has a notion of metadata directly in its model. It has been designed
with this requirement in mind. Metadata about the stage’s execution can be accessed by
the pipeline itself using stage input expressions or using the metadata() and metadata df()
functions. The metadata contains information about a given task’s arguments, result, execu-
tion time and strings printed to output streams.

Parallelization – Users can use the GNU Parallel executor, which can execute tasks in a single
stage in parallel. It also has the ability to execute those tasks distributively over SSH.

Furthermore, we had defined a single non-functional requirement, to make the implementation
as compact as possible. As of the time of writing, the current implementation consists of 1536
lines of R code, including comments and blank lines. It has ten dependencies, of which seven are
part of the tidyverse [16] package collection.
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Figure 4.1 Visualization of the Signatr tracing targets pipeline visualized by the tar visnetwork()
function.

4.2 Pipeline rewrite

To assess Pipelinr’s viability on a practical example, we chose a pipeline implemented using the
targets package and rewrote it. The pipeline in question is a pipeline from the signatr paper’s
[53] artifact [54]. This tool uses dynamic tracing and fuzzing to infer function signatures from
code that has been extracted from various R packages. It contains two pipelines, one for dynamic
tracing and one for fuzzing.

In this section, we will first discuss how to rewrite simple targets, that do not use dynamic
branching. Then we will discuss how dynamic branching targets can be rewritten. After that,
we will investigate which further improvements can be made to the pipeline.

The tracing pipeline was implemented using targets. It retrieves a predefined list of packages
and installs them. Then it extracts file paths from those packages, which are then passed to the
tracer. The tracing results are then post-processed and merged into a database. The visualized
targets pipeline can be seen in figure 4.1.

Rewriting simple targets, that do not use dynamic branching to Pipelinr is fairly simple.
The targets are simply converted to stages, and the target’s expression is wrapped in a function.
Consider the target packages to run:

list(
...,
tar_target(

packages_to_run,
install_cran_packages(packages_to_install, lib_path, NULL),
deployment = "main",
cue = tar_cue(mode = "always")

),
...

)
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Such a target can be rewritten to a stage like this:

make_pipeline(
...,
packages_to_run = stage(function(packages_to_install) {

install_cran_packages(packages_to_install, lib_path, NULL)
}),
...

)

With this approach, it is possible to rewrite all stages that do not use dynamic branching
nor directly depend on a target, which uses dynamic branching. This is because targets and
Pipelinr behave differently when dynamic branching is used. In Pipelinr’s terms, we could say
that every target is automatically collected into a single input. The most straightforward strategy
for rewriting these targets is, therefore, to use collect() or collect df() to collect the results
of a stage, which corresponds to a target, that uses dynamic branching.

The such case arises in the extracted files and individual files stages, where the
individual files stage needs to collect results from the previous stage using the collect()
function. The collected results form a list of character vectors, but the individual files body
function expects a single character vector. For this reason, the collected results need to flattened
into a single character vector using the unlist() function, as can be seen in the snippet below:

make_pipeline(
...
extracted_files = stage(

inputs = stage_inputs(
package = mapped(packages_to_run)

),
body = function(package) {

extract_code_from_package(package, lib_path, extracted_output)
}

),

individual_files = stage(
inputs = stage_inputs(

extracted_files = collect(extracted_files) %>% unlist()
),
body = function(extracted_files) {

remove_blacklisted(extracted_files, blacklist)
}

),
...

)

Another such case arises in the traced results and trace res stages. In this case, the
results of traced results stage only need to be collected using the collect df() function.

The stages mentioned above, which use dynamic branching, can benefit from parallelization
using the GNU Parallel executor. The paths it reads from global variables were normalized to
make the extracted files stage work. This is needed because when the GNU Parallel executor
is used, the code is executed inside the stage directory to not pollute the current working directory.
This breaks relative paths, so they need to be normalized. After this change, the stage executed
correctly without any errors.

The traced results stage would benefit the most parallel execution. However, all tasks
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in the stage ended with a segmentation fault when the GNU Parallel executor was used. This
probably due to a problem when invoking the modified R dyntrace runtime.

If we rewrite the pipeline with the described approach, we will discover that some stages are
unnecessary. These stages come from targets with the file format. The primary reason for their
existence in the targets pipeline was to make targets aware of those files. Thanks to this,
targets can determine which targets to rebuild. Pipelinr does not use the same approach. It
evaluates stage input expressions that produce tasks and then evaluates tasks that pass the task
filter. There is no notion of automatic task rerun, even when stage implementation changes, to
not lose task outputs unintentionally, which can be the case when debugging. For this reason,
these stages can be removed.

Upon closer inspection, we would further discover that the file format targets were followed
by targets, which essentially read unique lines from those files. The stages that stem from those
targets can be replaced by global variables, which contain the unique lines of their given file.
This is the case for stages that come from packages to install, blacklist, and db blacklist
targets.

The original targets implementation consisted of 398 lines of code, of which 136 were in
the targets.R file and 262 were in the R/functions.R file. After the Pipelinr rewrite, the
pipeline.R file, counterpart to the targets.R, had 64 lines. Some code was moved to the
R/functions.R, increasing the number of lines to 276. Overall the rewritten pipeline consists of
340 lines of code, which is 58 lines of code less than the original pipeline.

There are some parts of pipeline, which could be further refactored to make in more in line
with Pipelinr’s idioms. The responsibility individual files and db paths stages is to remove
blacklisted paths from their inputs. They could be rewritten to invocations of the filtered()
function in stage inputs, which could filter out the blacklisted values without the need for a whole
stage. This would require refactoring of the remove blacklisted() function, which handles
removal of blacklisted paths from a character vector.

The code for the implemented package is available in a forked GitHub repository of the
signatr artifact on the pipelinr git branch, which is available on the following URL:
https://github.com/MichaelVrana/sle22-signatr-artifact.

https://github.com/MichaelVrana/sle22-signatr-artifact
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make_pipeline(
packages_to_run = stage(function() {

install_cran_packages(packages_to_install, lib_path, NULL)
}),

extracted_files = stage(
inputs = stage_inputs(

package = mapped(packages_to_run)
),
body = function(package) {

extract_code_from_package(package, lib_path, extracted_output)
},
executor = gnu_parallel_executor

),

individual_files = stage(
inputs = stage_inputs(

extracted_files = collect(extracted_files) %>% unlist()
),
body = function(extracted_files) {

remove_blacklisted(extracted_files, blacklist)
}

),

traced_results = stage(
inputs = stage_inputs(

file = mapped(individual_files)
),
body = function(file) {

trace_file(file, lib_path, output_path)
}

),

traced_res = stage(function(traced_results) {
fix_traced_res(traced_results)

}),

db_paths = stage(
inputs = stage_inputs(

traced_res = collect_df(traced_res)
),
body = function(traced_res) {

remove_blacklisted(
traced_res$db_path,
db_blacklist,
only_real_paths = TRUE

)
}

),

merged_db = stage(function(db_paths) merge_db(db_paths, sxpdb_output))
)

Code listing 25 Pipelinr pipeline definition of the rewritten signatr tracing pipeline.
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Conclusion

The goal of this thesis was to develop a DSL together with a runtime for defining and executing
data analysis pipelines. Such DSL was implemented in the form of the Pipelinr R package.

The DSL allows the user to define a pipeline of multiple interdependent stages, forming a
dependency graph. The actual computation is expressed as an ordinary R function. Pipelinr
enables the user to use dynamic branching patterns for defining complex dependencies between
stages. The implementation of dynamic branching is built on top of a small iterator library, which
makes the dynamic branching patterns composable and flexible, allowing the user to preprocess
stage inputs using ordinary R expressions.

Dynamic branching allows the runtime to parallelize the execution of a given stage. Pipelinr
implements two executors for executing the pipeline’s stages. One of those is a GNU Parallel
executor, which can execute a given stage in parallel or even distributively over SSH. To enable
this, Pipelinr uses static analysis to search for the stage’s dependencies in the form of global
variables and packages and recreates the same environment in different R processes.

Pipelinr was designed to provide metadata about the pipeline’s execution. Metadata are a
core part of Pipelinr’s model and are paired with each task that in a given stage. Based on the
metadata, the user can troubleshoot the pipeline and even specify which parts of the pipeline
should be reevaluated.

To assess Pipelinr’s viability, a pipeline implemented using the targets R package has been
rewritten using Pipelinr.

The Pipelinr package is available for installation from a public GitLab repository:
https://gitlab.fit.cvut.cz/vranami8/r-dsl.

Future work
Ideas on improving Pipelinr would be based primarily on the usage of its user base. However, it
has not been used by any user other than the author, so we list some ideas we think it can be
improved.

A new executor could use HPC grid engines using the clustermq package for distributed
execution.

The static analysis of globals and used packages, which is used for stage body function
serialization could be extended by the analysis of used S3 and S4 methods since those are currently
not being analyzed.

Pipelinr currently stores all tasks and task outputs on the file system. The storage layer could
be extended to provide more options. For example, a SQL or NoSQL database could be used.

To provide better feedback about the stages execution, a GUI application or extensions to
IDEs or other text editors could be built.

Pipelinr could also apply for submission to the CRAN repository.
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