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report by Niklas Düser [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Histogram of the leading lepton transverse momentum . . . . . . . . . . . . . . . 16
3.2 Azimuthal angle of the tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Confusion matrix for v5 data (left) and v8 data (right) . . . . . . . . . . . . . . . 19
3.4 Histogram of HT - HT_lep - HT_jets for v5 data (left) and v8 data (right) . . . . 20
3.5 Network architecture with 5 hidden layers . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Model Evaluation Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Model selected for highest Z0 score among the decision trees . . . . . . . . . . . . 26
4.2 Weighted confusion matrix of the best SVM models for the original 800 GeV (left)

and new 800 GeV (right) simulated data . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Weighted confusion matrix of the best SVM models for 2000 GeV (left) and 3000

GeV (right) signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Best decision tree for the 250 GeV mass, feature values are normalized . . . . . . 31
4.5 Distributions of the three most important features after normalization. Top: tau

transverse momentum, left: invariant transverse mass of all leptons and miss-
ing transverse energy, right: invariant mass of all leptons and missing transverse
energy. The signal cross-section is 1 pb. . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Feature importance of the models trained on the original signal masses . . . . . . 38
4.7 Feature importance of the models trained on the new signal masses . . . . . . . . 39
4.8 Pearson correlation coefficients for 25 most important features of the original 800

GeV model, correlations measured on full dataset with all signal masses and back-
ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.9 Significance of the best models for each mass on the testing sets with assigned
signal masses. In the gray areas the efficiency is less than the preselection efficiency. 43

4.10 Dependence of significance approximation on the selected threshold on the testing
set for each of the best models, also shown is the threshold selected per model on
the validation set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.11 Asymptotic expected upper limit at 95% CL on cross-section, with 68% and 95%
confidence intervals as function of charged Higgs boson mass . . . . . . . . . . . 46

4.12 Asymptotic expected upper limit at 95% CL on cross-section, with 68% and 95%
confidence intervals as function of charged Higgs boson mass . . . . . . . . . . . 46

v



4.13 Expected and observed upper limits at 95% CL on the product of cross-section and
branching fraction σH±(H± → HW±, H → ττ) as a function of mH± and assuming
mH = 200 GeV for the combination of all final states considered. The observed
upper limits are represented by a solid black line and circle markers. The median
expected limit (dashed line), 68% (inner green band), and 95% (outer yellow band)
confidence intervals are also shown. Taken from [29] . . . . . . . . . . . . . . . . 47

4.14 P-value for different cross-sections, produced by Toy Monte Carlo for all signal
masses. The label norm tbH corresponds to the cross-section in [pb]. . . . . . . . 48

A.1 Pearson correlation coefficients for 25 most important features of the 300 GeV mass
model, correlations measured on full dataset with all signal masses and background 59

A.2 Pearson correlation coefficients for 25 most important features of the original 800
GeV mass model, correlations measured on full dataset with all signal masses and
background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.3 Pearson correlation coefficients for 25 most important features of the 1500 GeV
mass model, correlations measured on full dataset with all signal masses and
background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.4 Pearson correlation coefficients for 25 most important features of the 2000 GeV
mass model, correlations measured on full dataset with all signal masses and
background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.5 Pearson correlation coefficients for 25 most important features of the new 250
GeV mass model, correlations measured on full dataset with all signal masses and
background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.6 Pearson correlation coefficients for 25 most important features of the new 800
GeV mass model, correlations measured on full dataset with all signal masses and
background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.7 Pearson correlation coefficients for 25 most important features of the new 3000
GeV mass model, correlations measured on full dataset with all signal masses and
background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

List of Tables

3.1 Mapping between DSID and processes . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 List of features with no needed normalization (after missing value imputation) . 15
3.3 List of features with normalization of standard deviation . . . . . . . . . . . . . . 16
3.4 Feature explanation for the features with angle normalization . . . . . . . . . . . 17
3.5 Table of preselection efficiencies. The efficiency is the product of filter efficiency

and ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Best SVM models and their validation set results with signal cross-section 0.1 pb 27
4.2 Table of expected validation set signal and background events before and after

normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Best decision tree results on the validation set with signal cross-section 0.1 pb . . 30
4.4 Best random forest models and their validation set results with signal cross-section

0.1 pb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Best MLP model results on the validation set with signal cross-section 0.1 pb . . 34

vi



4.6 Best models, trained on all features, and their validation set results and thresholds
with signal cross-section 0.1 pb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 The expected values for signal/background on the validation set, after preselection
and for each of the best models at the working point threshold cut. The signal is
normalized to 0.1 pb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.8 Comparison of the significance of the best models trained on all the features with
models trained on a subset of features. The signal is normalized to the cross-
section 0.1 pb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.9 Expected values for signal/background of the testing set, after preselection and
for each of the best models at the working point threshold cut. The signal cross-
section is set to 0.1 pb. The significances are also given. . . . . . . . . . . . . . . 43

4.10 Asymptotic expected upper limit at 95% CL on cross-section, with 68% and 95%
confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.11 Toy Model expected upper limit at 95% CL on cross-section, with 68% and 95%
confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.1 300 GeV model feature importances . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.2 800 GeV model feature importances . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.3 1500 GeV model feature importances . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.4 2000 GeV model feature importances . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.5 New 250 GeV model feature importances . . . . . . . . . . . . . . . . . . . . . . . 56
A.6 New 800 GeV model feature importances . . . . . . . . . . . . . . . . . . . . . . . 57
A.7 New 3000 GeV model feature importances . . . . . . . . . . . . . . . . . . . . . . 58

List of code listings

1 Function to filter out features correlated above a certain threshold41

vii



I would like to thank my supervisor, doc. Dr. André Sopczak, for
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Abstract

The search for charged Higgs bosons, predicted by the Two Doublet Higgs Model and the Minimal
Supersymmetric extension of the Standard Model, is challenging because of a large number of
background processes and the unknown mass of the charged Higgs bosons. This thesis proposes to
use machine learning to separate signal tbH+ → tbWh → tbWττ from tt̄h, tt̄W , tt̄Z, tt̄, V V and
other background processes. A multi-model approach is proposed, where each model is sensitive
in a certain mass range to achieve large significance in its dedicated mass section. Four different
model types are optimized and the best model is selected for each mass of the charged Higgs
boson analysis. Permutation feature ranking is used for each best model to determine the most
important features. Based on the highest-ranking features, feature reduction is demonstrated to
reduce the sensitivity only slightly. Results are expressed as expected 95% CL limits.

Keywords ATLAS, CERN, classification, cross-section, machine learning, neural networks,
Keras, particle physics, ROOT, tbH+

Abstrakt

Hledáńı nabitých Higgsových boson̊u, které předpov́ıdá model označovaný jako Two Doublet
Higgs Model a Minimálńı supersymetrické rozš́ı̌reńı Standardńıho modelu, je náročné kv̊uli
velkému množstv́ı proces̊u v pozad́ı a neznámé hmotnosti nabitých Higgsových boson̊u. Tato
práce navrhuje použ́ıt strojové učeńı k odděleńı signálu tbH+ → tbWh → tbWττ od tt̄h, tt̄W ,
tt̄Z, tt̄, V V a daľśıch proces̊u na pozad́ı. Je navržen v́ıcemodelový př́ıstup, kde je každý model
citlivý v určitém rozsahu hmotnost́ı, aby dosáhl velké významnosti ve svém vyhrazeném hmot-
nostńım úseku. Jsou optimalizovány čtyři r̊uzné typy model̊u a pro každou hmotnost analýzy
nabitého Higgsova bosonu je vybrán nejlepš́ı model. Pro každý nejlepš́ı model je použito per-
mutačńı řazeńı př́ıznak̊u k určeńı nejd̊uležitěǰśıch vstup̊u modelu. Na základě nejlépe hodno-
cených př́ıznak̊u je prokázáno, že redukce počtu př́ıznak̊u snižuje citlivost jen nepatrně. Výsledky
jsou vyjádřeny jako očekávané limity na 95% CL.

Kĺıčová slova ATLAS, CERN, klasifikace, cross-section, strojové učeńı, neuronové śıtě, Keras,
částicová fyzika, ROOT, tbH+
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Introduction

The Standard Model of particle physics is one of the most important theories of today. It unifies
three fundamental forces – electromagnetic, strong, and weak interaction, leaving only gravity
not included. One of the last big events in the physics field is the discovery of the Higgs boson,
which was predicted as part of the Standard Model. But even with the Standard Model, our
understanding of particle physics is still incomplete. There are still measurements, which we
cannot fully explain. It is time to go beyond Standard Model.

There are already numerous models that try to explain some of the observed phenomena.
Among them, some even predict a new kind of Higgs-boson-like particle with charge. The
presence or absence of the charged Higgs boson provides a way to validate or disprove some of
the key hypotheses of today.

The observation of the charged Higgs boson is quite challenging. It is expected to be even
harder to observe, than the original Higgs boson. While the Large Hadron Collider, which
produced the original Higgs boson, should also be able to produce the charged one, it will
be hidden among the numerous background events. LHC produces hundreds of millions of
proton-proton collision events per second, but it is expected to take tens of minutes if not
hours to produce the charged Higgs boson. In such a scenario, automatic filtering of the events
and machine learning is key to removing most of the uninteresting events, so that only a few
interesting events remain – the ones caused by charged Higgs boson (with as few background
events as possible mixed in).

This thesis aims to provide a machine-learning-based filter, which would filter out background
events, and estimate, how many events would have to get through the filter out of the fixed
number of events so that it would prove that the charged Higgs boson was present among the
filtered events.
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Chapter 1

Goals

The goal of this thesis is to optimize the separation of signal (charged Higgs bosons) and back-
ground events using machine learning algorithms. This can be aided by previous work on the
subject, which can serve as a baseline for the performance of the algorithms.

To deal with a high number of features produced by the ATLAS detector (and its simulated
variant), the effects of each of the features on the machine learning models will be studied.
Feature ranking will be used to get the list of the most important features for the models. Feature
reduction will be used to test if the models work better with fewer features. The correlations of
the features may also play a role and will be taken into account.

Lastly, the statistical uncertainty of signal and background separation will be analyzed with
the goal to optimize the separation based on this uncertainty, as well as systematic uncertainties.

3
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Chapter 2

Background

2.1 ATLAS Detector

The Large Hadron Collider (LHC) at CERN collides bunches of up to 1011 protons (p) at a
design luminosity of 1034cm−2s−1. The high interaction rates (collisions 40 million times per
second), radiation doses, particle multiplicities, and energies require a specially designed particle
detector – ATLAS (A Toroidal LHC ApparatuS) [1].

Before delving into the detector itself, let us review the basic terminology for the measure-
ments. The azimuthal angle ϕ is measured around the beam axis. The polar angle θ is the angle
from the beam axis. Pseudorapidity, defined as η = − ln tan (θ/2), is often used instead of the
polar angle. The transverse momentum pT is measured in the plane perpendicular to the beam
(transverse plane). The pseudorapidity-azimuthal angle distance is defined as equation 2.1.

∆R =
√

∆η2 + ∆ϕ2 (2.1)

The ATLAS detector 2.1 consists of several layers of detectors. Below is the list of detectors,
sorted from the innermost to the outermost detector:

Pixel detector

Barrel semiconductor tracker (SCT)

Barrel transition radiation tracker (TRT)

End-cap transition radiation tracker (TRT)

End-cap semiconductor tracker (SCT)

Liquid Argon (LAr) Calorimeter

Tile Hadronic Calorimeter

Muon spectrometer

Pixel detectors and SCT cover the region |η| < 2.5. TRT enables track following for |η| ≤ 2. The
calorimeters cover the range |η| < 4.9. This list is important to understand the ranges of possible
low-level feature values. The available features will be further examined in the “Analysis and
Design” chapter.

5



6 Background

Figure 2.1 ATLAS detector layout [2]

2.2 Particle Physics

Below is a short overview of what is the charged Higgs boson, what are the most prominent
background processes and what metrics are used to evaluate the quality of the separation. This
section also includes explanations of the terminology used in the thesis.

2.2.1 Charged Higgs Boson
The Charged Higgs boson appears in several Standard Model (SM) extensions. One of those
extensions is the 2 Doublet Higgs Model (2DHM), which predicts 5 physical Higgs bosons – two
neutral CP-even scalars (Standard Model Higgs h and heavy Higgs H), two charged Higgs bosons
H± and one neutral CP-odd pseudoscalar A. The model has free parameters – the remaining
masses of the Higgs bosons and the value of tan β = ν2/ν1, where ν1 and ν2 are the vacuum
expectation values. Additionally, type II 2DHM is included in the Minimal Supersymmetric SM
(MSSM). Type II means, that the fermions couple to ϕ1 for the down quark and leptons and ϕ2
for the up quark, where (ϕ1, ϕ2) is the second Higgs doublet introduced by the model [3].

Based on the mass of the charged Higgs boson, two production regions can be distinguished –
charged Higgs boson with lower mass than the top quark (mH± < mt) and charged Higgs boson
with higher mass (mH± > mt) [3]. For reference, the top quark mass has been measured to be
mt = 172.13+0.76

−0.77 GeV [4]. The lower mass charged Higgs boson is mainly produced by the decay
of a top quark to H±b in tt̄ production. The higher mass Higgs boson (mH± > mt) is produced
by the fusion of top-bottom quarks. It has with two possible semi-final states – H±tb and H±t
(depending on flavor scheme). The most important decay channels of high mass charged Higgs
boson by contribution are H± → τν and H± → tb [3].

This thesis will be focused on the tbH+ → tbWh → tbWττ decay channel.
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Figure 2.2 tbH+ Feynman diagram, leading to the 2lSS1tau final state [5]

2.2.2 Signal and Background
In particle physics, the decay channel of interest is called a signal. Other channels are collectively
called background. The channel of interest, in this case, is the tbH+ → tbWh → tbWττ decay
process. The task is therefore a binary classification into signal and background classes. Since
the mass of the charged Higgs boson is not known, it is sampled at multiple values. The original
analysis worked with 4 mass points – 300 GeV, 800 GeV, 1500 GeV, and 2000 GeV charged Higgs
boson [5]. In this thesis, the performance on additional files for three different masses is also
evaluated – 250 GeV, 800 GeV, and 3000 GeV.

The background consists of decay processes, which are not easily separated from the signal.
These processes include the tt̄h process (figure 2.3), which bears great resemblance to the tbH+

process. The separation is made harder by the fact, that only some of the final products of
the decay are observed by the detector, as the ATLAS detector is not able to detect neutrinos.
Other background processes, used in this analysis, are tt̄W , tt̄Z, tt̄, V V and Others. The same
processes were used in the original analysis by Jǐŕı Posṕı̌sil [5].

2.2.3 Weights
The data consist of events. An event is a snapshot of a collision in the Large Hadron Col-
lider (LHC) [6]. The distribution of events in the simulated data does not match the real-
world distribution. Weights have to be applied to the simulated data – each event weight
is the number of times the event would happen in the real data. The event weight is com-
puted by equation 2.2, where w is the weight of the event, RunYear is the year the data were
simulated for and the real data were measured in (the year corresponding to an apparatus
configuration). The value of x0 is the LHC luminosity at the time. The cross_section is
known for background processes, but only estimated for the tbH+ process. When the cross-
section is said to be scaled to some value, for example, 0.1pb, x6 acts as a free parameter
and is set to this value (in this case x6 = 0.1). The source values of xi – that is RunYear,
custTrigSF_LooseID_FCLooseIso_DLT, weight_pileup, bTagSF_weight_DL1r_85, weight_mc,
lep_SF_CombinedTight_0, lep_SF_CombinedTight_1, cross_section, jvtSF_customOR, along
with lepSF_PLIV_Prompt_0, lepSF_PLIV_Prompt_1 and totalEventsWeighted – are available
in the simulated data for each event. The weight equation sometimes produces negative-weighted
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Figure 2.3 tt̄h Feynman diagram from analysis by Jǐŕı Posṕı̌sil [5]

events, as an artifact of the simulation. By the consensus of the 2lSS1tau research group, such
events are removed from the training set and left in the validation and testing sets. This is done
to minimize the impact of the negative-weighted events on training. The negative weighted events
are left in the validation and testing sets because they are needed to get the expected number
of events in the real data. This weight equation is used for version 8 of the simulated data. A
similar equation, but without x9 (lepSF_PLIV_Prompt_0) and x10 (lepSF_PLIV_Prompt_1) and
with less strict bTagSF_weight_DL1r_70 used instead of bTagSF_weight_DL1r_85 for x4 was
used for an older version of the simulated data in the original thesis [5].

w =
∏10

i=0 xi

x11
,

x0 =


36646.74 iffRunYear ∈ {2015, 2016}
44630.6 iffRunYear = 2017
58791.6 iffRunYear = 2018

x1 = custTrigSF LooseID FCLooseIso DLT
x2 = weight pileup

x3 = jvtSF customOR
x4 = bTagSF weight DL1r 85

x5 = weight mc
x6 = cross section

x7 = lep SF CombinedTight 0
x8 = lep SF CombinedTight 1
x9 = lepSF PLIV Prompt 0
x10 = lepSF PLIV Prompt 1
x11 = totalEventsWeighted

(2.2)
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2.2.4 Evaluation Metrics
The quality of the separation is evaluated based on accuracy, statistical significance, and sensi-
tivity. In the calculation of all these metrics, the expected number of events is used (weighted w
from equation 2.2). The accuracy is the fraction of correctly classified weighted events out of all
the weighted events. The significance is part of hypothesis testing, which is used at CERN to
establish discoveries or exclusions. The null hypothesis H0, in this case, is the Standard Model
(the charged Higgs boson does not exist) and the alternate hypothesis HA is the existence of the
charged Higgs boson. The statistical test is defined by [7] as q0 in equation 2.3 and its relation
to significance Z in equation 2.5. L is profile-likelihood, µ̂ is the parameter of interest, θ̂ and
ˆ̂
θ are the nuisance parameters, p0 is the p-value of the test. The unit of significance is σ. The
significance of 5σ is needed to establish a discovery and a 2σ corresponds to 95% confidence level
(CL) for exclusions. Under the assumption that the Higgs boson detections are independent
and that they are from a Poisson distribution, the significance can be approximated by equation
2.9, where S = ws · TP is the weighted number of true positive events and B = ws · FP is the
weighted number of false positive events. The ws parameter is the event scaled weight, com-
puted by simple equation 2.4, where f is the scaling factor. The scaling factor scales the events
of a subset of the dataset to the weights of the full dataset. The scaling factor is computed as
f = |data|/|data subset|, so if the testing set is 20% of the data, the scaling factor f = 5. If
S ≪ B, the equation can be simplified to equation 2.6. Equations 2.7 and 2.8 are alternatives
if B is close to zero. All these equations are used for evaluation of the previous analysis by Jǐŕı
Posṕı̌sil [5], the naming is the same as in his thesis for easier reference.

q0 =

−2 L(0,
ˆ̂
θ)

L(µ̂,θ̂) if µ̂ > 0
0 otherwise

(2.3)

ws = f · w (2.4)

Z = √
q0 = Φ−1(1 − p0) (2.5)

Z0 = S√
B

(2.6)

Z1 = S√
S + B

(2.7)

Z2 = S√
B + 1.5

(2.8)

Z3 =
√

((S + B) · log(1 + S

B
) − S) (2.9)

2.3 Used Technologies

2.3.1 Service for Web based ANalysis (SWAN)
SWAN is a cloud data analysis platform. SWAN follows the trend towards web-based interactive
analysis, where the user interacts with a web-based service, instead of an installed software. The
platform uses a browser-based Jupyter Notebook interface with access to the CERN storage,
CERNBox, to greatly simplify the access of users to CERN data and computational resources
using the web-based “software as a service” provisioning model. After the users enter the CERN
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account credentials on the authentication page, they are given access to the SWAN cloud environ-
ment. There, they can access their CERNBox storage, where they can create Jupyter Notebooks,
perform complex data analysis and share the results, as well as the models, with other researchers
[8].

2.3.2 ROOT Library
The ROOT system is a framework for large-scale data analysis. ROOT provides a basic set of
tools for data acquisition, detector simulation, event generation, and data analysis. ROOT is
written in C++ and provides an effective way to store objects in a tree hierarchy, load them,
analyze them, and visualize the results [9, 10].

2.3.3 Optuna
Optuna is a next-generation optimisation framework. Its architecture allows define-by-run pro-
gramming, which allows the users to dynamically construct the search space. It is easy to setup
and deploy for tasks ranging from light-weight experiments to heavy-weight distributed compu-
tations. Optuna has an efficient sampling and pruning algorithm, allowing efficient automatic
hyperparameter tuning. The optimisation framework features an independent sampling algo-
rithm TPE, as well as a relational sampling method CMA-ES. Pruning stops unpromising trials
for better cost-effectiveness. Optuna uses a pruning algorithm based on Successive Halving [11].

2.4 Previous Analyses
The thesis by Jǐŕı Posṕı̌sil used two model types – MLP and TabNet. The MLP architecture
consisted of a series of blocks, each with its own linear layer, activation function, and dropout
layer (placed in this order). The sub-type MLPs additionally had feed-forward shortcuts inspired
by their usage in CNN architectures.

TabNet, an attentive transformer architecture for tabular data, is the second model type used
in the previous thesis on this charged Higgs boson search channel. The best model of the thesis
was an MLP with a weighted loss function with event weights with Z0

.= 16.6 and Z1
.= 4.1 [5].

The later evaluation by Niklas Düser used only the MLP neural network model type with the
10 most important features, according to permutation feature importance. His CERN summer
student report additionally evaluated the model output using Toy Model Monte Carlo to get the
expected upper limit at 95% confidence level on the cross-section. The results for each of the
four signal masses are shown in figure 2.4 [12].
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Figure 2.4 The 95% CL limit on the cross-section is set where the CLs curve crosses the 0.05 horizontal
line (norm tbH marks the cross-section in pb), plots taken from the report by Niklas Düser [12]
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Chapter 3

Analysis and Design

3.1 Input Data

3.1.1 Data Format
CERN uses the ROOT software framework for data analysis and I/O operations (using stan-
dardized .root data files). The framework has a C++ interpreter and interface to Python [13].
The dataset consists of several .root files, each containing just one process. Each file is identified
by a process DSID in its name. One DSID can belong to only one process, but one process can
consist of multiple DSIDs. Full mapping between files and processes is listed in table 3.1.

tbH 300 510374 AF;
tbH 800 510375 AF;
tbH 1500 510376 AF;
tbH 2000 510377 AF;
tbH 250 new 512185;
tbH 800 new 512187;
tbH 3000 new 512186;
ttH 346343, 346344, 346345;
tt 410470;
ttW 700168, 700205;
ttZ 700309;
VV 364250, 364253, 364254, 364255, 364283, 364284, 364285, 364286, 364287,

363355, 363356, 363357, 363358, 363359, 363360, 363489;
Others 410560, 410408, 410646, 410647, 304014, 410080, 345705, 345706, 345715,

345718, 345723, 364242, 364243, 364244, 364245, 364246, 364247, 364248,
364249, 342284, 342285, 410081, 346799 AF, 346678 AF;

Table 3.1 Mapping between DSID and processes

There are multiple datasets. This thesis focuses on version 8 of simulated data for multilepton-
ttW-ttH, further referred to as “v8 data”. The v8 data was produced during the creation of this
thesis and made available to the team. The majority of the experiments in this thesis are done
on v8 data – when a version of data is not specified in the context, the experiment uses v8 data.

The previous thesis [5] and summer student report [12] used data without an assigned version,
created as a combination of existing simulated background data files, and added simulated signal
files. This data will be further referred to as “v5 data”. This version of the data will be analyzed

13
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to better understand the previous results and to evaluate any changes in the model performance
between v5 and v8 based on data quality. There is also version 6 of simulated data (“v6 data”),
which was used for a similar analysis of tt̄H (where tt̄H is the signal process, the rest of the
background processes stays the same) [14].

3.1.2 Features
Both the v5 data and the v8 data contain a high number of features. Not all of the features can
be used by the model. There are also features detailing the settings of the generator and the
truth value of the process. Such features must not be used for prediction, so only a subset of
features is loaded from the dataset. These features are then preprocessed, creating a few derived
features in the process.

In general, the preselected data contains events with information about two leptons, one
hadronically decaying tau, and a various number of jets. The leptons have the same sign, mean-
ing either are both particles or antiparticles. Events, where one lepton is a particle and one an
antiparticle are not used (per the directions for the 2lSS1tau group). Leptons and jets have as-
signed indexes based on their transverse momentum. The particle/jet with the highest transverse
momentum is said to be “leading” [15] (index 0), with the second highest “subleading” (index
1), and so on. Transverse momentum index is written as part of the feature name to identify
the particle/jet (along with “lep” – meaning lepton, “taus” – meaning the tau, “jet” – meaning
jet). Below are feature explanations, grouped by their assigned normalization. Imputation of
the missing values is done before normalization.

3.1.2.1 Features with Imputed Values
Features taus_passJVT_0, taus_width_0 and taus_DL1r_0 represent if the tau passed jet vertex
tagging, the width of the tau and the output of the DL1r algorithm (a jet is considered b-tagged if
its DL1r score is above a certain threshold) [16] for the tau, respectively. All of these features have
missing values (-99, -2, and -999, respectively) – roughly 2% of the data are missing. Imputation
of these values is selected to not lose the data.

The imputation is done separately for the categorical feature, taus_passJVT_0, and for both
continuous features (taus_width_0 and taus_DL1r_0). The categorical feature is imputed using
a decision tree classifier. The continuous features are imputed using a decision tree regressor.
The models are fitted on known values of the imputed feature and then predict the unknown
values. The prediction is based on the rest of the features as the input values.

3.1.2.2 Features without Normalization
This section lists basic features and derived features, for which the normalization is not necessary,
mostly because the features are already in the range ⟨−1, 1⟩, range ⟨0, 1⟩, or they are indicators
with values ∈ {0, 1}.

The feature lep_ID_0 indicates whether the leading lepton is electron (abs(lep_ID_0) = 11)
or muon (abs(lep_ID_0) = 13), as well as if it is a particle (lep_ID_0 > 0) or an antiparticle
(lep_ID_0 < 0). A similar feature exists for the subleading lepton – lep_ID_1. Since both
leptons must be of the same sign, the features provide redundant information. To remove the
redundancy, the features are split into three binary features – lep_0_is_muon – an indicator if the
leading lepton is a muon, lep_1_is_muon – an indicator if the subleading lepton is a muon and
lep_tau_opposite_charge – an indicator if both leptons have opposite charge relative to the
tau. The two original features lep_ID_0 and lep_ID_1 are removed. The feature total_charge
is also removed, because it contains the sum of charges of both light leptons (tau charge is not
included), which strictly depends on if both leptons have an opposite charge, relative to the tau
– it, therefore, provides duplicate information and it is left out.
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Feature name Unique
values

Min.
value

Max.
value

Explanation

lep 0 is muon 2 0 1 Indicator of leading lepton being a muon
lep 1 is muon 2 0 1 Indicator of subleading lepton being a muon
lep tau opposite charge 2 0 1 Indicator of both leptons having opposite

charges relative to the tau
taus decayMode [value] 2 0 1 Indicator of tau decay mode belonging to

[value] class
nTaus OR Pt25 2 0 1 Number of taus with at least 25 GeV trans-

verse momentum
taus passJVT 0 2 0 1 Indicator of tau passing jet vertex tagging
taus RNNJetScoreSigTrans 0 - 0.25 1.00 Output of RNN tau identification

taus JetRNNSigTight 0 2 0 1 Output of RNN tau identification for tight
(highest background rejection working point)

taus charge 0 2 -1 1 Charge of the tau
taus fromPV 0 2 0 1 Indicator of the tau originating in primary ver-

tex
taus passEleOLR 0 2 0 1 Indicator of tau not overlapping with a good

electron reconstruction
Table 3.2 List of features with no needed normalization (after missing value imputation)

The categorical feature taus_decayMode_0 distinguishes the decay modes of the tau. Since
the decay modes do not have a simple meaningful order in the context of this analysis, one-hot
encoding on the feature is performed (replacing the feature with indicators of each of the decay
modes happening – the new features are named taus_decayMode_[value], where [value] is
one of the possible values of the original feature).

Table 3.2 shows the full list of features without further normalization. The binary fea-
ture nTaus_OR_Pt25 represents the number of taus with at least 25 GeV transverse momen-
tum [5]. It can attain only two values because the number of taus is set to 1 (and only
some pass the transverse momentum threshold). Another four features – taus_passJVT_0,
taus_RNNJetScoreSigTrans_0, taus_JetRNNSigTight_0 and taus_passEleOLR_0 – belong to
the tau reconstruction (tau is not directly measured, measured are only the products of its de-
cay). The use of these features incorporates the certainty of the tau reconstruction into the
tbH+ classifier. The feature taus_fromPV_0 indicates if the tau originated at the point at which
a proton-proton (pp) interaction occurred (primary vertex) [17]. Along with taus_charge_0,
there is no need for normalization, as these features are already in the acceptable ranges and
further normalization might impact their interpretability.

3.1.2.3 Features with Logarithm Z-score Normalization

Features, which are listed below, are assumed to have a log-normal or similarly skewed distribu-
tion.A logarithm is applied to these features, before using the z-score normalization, to get closer
to the normal distribution of the features and to get more even distribution of feature values.

Features representing measurements of transverse momentum (pT ) of particles/jets often have
distribution close to log-normal (as can be seen in figure 3.1). These features are jet_pt[id],
which belong to jets with (id + 1) highest pT in an event. They are created from items at index
id of a vector feature jets_pt after preselection. The vector feature is removed afterward, as it
almost never contains more than six items after the preselection cut. The preselection requires
the first three highest to be non-zero (the jet to be present). A similar approach is used for jet
energy features (jet_e[id]). Log-z-score is also used for transverse momentum and energy of
all three particles (features lep_E_0, lep_E_1, lep_Pt_0, lep_Pt_1, taus_pt_0), as well as pT

sums (HT_inclFwdJets, HT_fwdJets, HT_jets, HT, HT_lep).
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Figure 3.1 Histogram of the leading lepton transverse momentum

Feature name Description
eta frwdjet Pseudorapidity of the forward jet
lep Eta 0 Pseudorapidity of the leading lepton
lep Eta 1 Pseudorapidity of the subleading lepton
taus eta 0 Pseudorapidity of the tau
lep EtaBE2 0 –
lep EtaBE2 1 –
lep Z0SinTheta 0 Longitudinal impact parameter of the leading lepton
lep Z0SinTheta 1 Longitudinal impact parameter of the subleading lepton
jet eta[id] Pseudorapidity of id-th jet

Table 3.3 List of features with normalization of standard deviation

3.1.2.4 Features with Z-score Normalization
The features with z-score normalization follow. These features are taus_DL1r_0, taus_width_0
(both features with imputed values were already explained previously), minDeltaR_LJ_0, fea-
ture minDeltaR_LJ_1 and minDeltaR_LJ_2 have the values of minimum ∆R, as defined by
equation 2.1. Also undergoing this normalization are features max_eta, dEta_maxMjj_frwdjet,
DRll01, nFwdJets_OR, nJets_OR (number of jets), sumPsbtag (sum of jet b-tags), leading and
subleading lepton track multiplicity (lep_nTrackParticles_0 and lep_nTrackParticles_1)
and taus_numTrack_0.

3.1.2.5 Features with Standard Deviation Normalization
These features (table 3.3) are normalized only by division by the standard deviation (mean is
assumed to be zero or the feature value distribution is mostly symmetric around x = 0). This
type of normalization applies to pseudorapidity feature (η), namely lep_Eta_0, lep_Eta_1 and
taus_eta_0, as well as jet_eta[id] created from jets_eta vector feature. The normalization
is also applied to features eta_frwdjet, lep_EtaBE2_0 and lep_EtaBE2_1.

Features lep_Z0SinTheta_0 and lep_Z0SinTheta_1 refer to the longitudinal impact param-
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Figure 3.2 Azimuthal angle of the tau

Feature name Explanation
lep Phi 0 Azimuthal angle of the leading lepton
lep Phi 1 Azimuthal angle of the subleading lepton
met phi Azimuthal angle of the missing transverse energy
taus phi 0 Azimuthal angle of the tau
jet phi[id] Azimuthal angle of the id-th jet

Table 3.4 Feature explanation for the features with angle normalization

eter of the leading and subleading leptons, respectively. This parameter is defined as the distance
of the track to the primary vertex in the longitudinal plane at the point of closest approach in r-ϕ.
Due to the long lifetime of b-hadrons, tracks generated from b-hadron decay products tend to
have large impact parameters enabling their contribution to be separated from the contribution
of tracks from the primary vertex [18].

3.1.2.6 Features with Angle Normalization
Azimuthal angle features (table 3.4) have an almost uniform distribution in the range (−π, π) (fig-
ure 3.2). For the purpose of normalization, they are simply divided by π. Features jet_phi[id]
are once again extracted from vector feature jets_phi, before being normalized.

3.1.2.7 Removed Features
The features are deleted for two reasons – because the feature has only one value after preselection
(group 1) or because the feature has only redundant information (group 2 – including the source
features for one-hot encoding and similar transformations). Both lists of removed features are
given in two groups:

Group 1 best Z Mll, nTaus OR, minOSMll, minOSSFMll, Mlll012, Mllll0123, total leptons,
taus JetRNNSigLoose 0, taus passEleBDT 0, best Z other Mll, taus JetRNNSigMedium 0,
best Z other MtLepMet
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New Campaign Mass (GeV) Filter Eff. (%) Created Ntuple Preselected Ratio (‰) Eff. (‰)
Yes MC16a 250 32.14 300000 24027 1110 3.70 1.19
Yes MC16a 800 40.36 300000 34138 2761 9.20 3.71
Yes MC16a 3000 49.57 300000 16378 552 1.84 0.91
Yes MC16d 250 32.14 398000 29629 1340 3.37 1.08
Yes MC16d 800 40.36 399000 43746 3372 8.45 3.41
Yes MC16d 3000 49.57 399000 21449 705 1.77 0.88
Yes MC16e 250 32.14 499000 37380 1718 3.44 1.11
Yes MC16e 800 40.36 498000 54246 4316 8.67 3.50
Yes MC16e 3000 49.57 499000 26631 851 1.71 0.85
No MC16e 300 59.57 1200000 74423 2595 2.16 1.29
No MC16e 800 67.73 800000 72027 4035 5.04 3.42
No MC16e 1500 73.49 600000 48461 2523 4.20 3.09
No MC16e 2000 75.71 400000 25334 972 2.43 1.84

Table 3.5 Table of preselection efficiencies. The efficiency is the product of filter efficiency and ratio.

Group 2 dilep type, lep ID 0, lep ID 1, taus decayMode 0, total charge

3.1.3 Preselection
The preselection pre-filters the data, leaving only the events meeting the preselection condition.
The preselection selects events with 2 leptons of the same sign and 1 hadronically decaying tau
(as per the directions of the 2lSS1tau group – using such preselection cuts, each such group
works on a separate dataset). Additionally, the preselection removes events with fewer than 4
jets and removes irrelevant events by additional conditions. The full preselection formula is noted
in appendix A.1.

It should be noted that this is not the only preselection the data go through. The simulated
data are first filtered during the event generation and then again before being provided to the
working group in the “Ntuple” format. The counts of the data are listed in table 3.5. The column
New tells if the data are part of newly simulated signal masses (these data were not available for
the previous thesis and summer student report). Sub-campaign matches a period of recording
of the real data, which is being simulated. Sub-campaign MC16a matches years 2015 and 2016,
sub-campaign MC16d matches year 2017 and MC16e matches year 2018 [19]. The mass refers to
the mass of the charged Higgs boson. Filter efficiency refers to the fraction of selected events
out of all generated events (the output of the simulation is therefore already filtered). The filter
criterion in the first signal simulation was the presence of one light lepton, and in the new signal
simulation, two light leptons were required. Created events are events after this first filtering.
The events are then filtered again, and the resulting Ntuples are provided for data analysis.
The Ntuple column shows the full size of the signal part of the v8 dataset. The preselection,
described in the first paragraph, is then applied to the data, leaving the Preselected number
of events. The last column shows the ratio between Created and Preselected events.

3.1.4 Checking Linear Separability
The purpose of the linear separability check is to ensure the consistency of the signal and back-
ground event generation. Any linear separability found in the dataset must therefore be looked
into to determine its cause. The check is done on only two sets of data – training set and
validation set, having 70% and 30% of the data, respectively. The data for the sets is selected
pseudo-randomly. The analysis uses a simple binary Linear SVM classifier model with C = 1
(not expecting a perfect separability). Both v5 and v8 data are checked. Firstly, the test is per-
formed with just 9 most important features according to feature ranking in the previous thesis
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Figure 3.3 Confusion matrix for v5 data (left) and v8 data (right)

by Jǐŕı Posṕı̌sil [5] and CERN summer student report by Niklas Düser [12] – the features being
nTaus_OR_Pt25, jet_pt0, lep_Pt_1, HT_fwdJets, HT_lep, lep_Pt_0, HT_inclFwdJets, HT and
HT_jets. The results in figure 3.3 show that v5 data is almost perfectly linearly separable, while
v8 data is not. The quality of the linear separation for the v5 data indicates a likely difference
in signal and background file generation.

ax + by + cz + d = 0 (3.1)
a

.= 0.00023257
b

.= −0.00022694
c

.= 0.00022889
d

.= 2.65083051 · 10−7

Next, each of the features is tested, if it is necessary for linear separation. The testing is done
by fitting the SVM model on the training set with a reduced number of features and looking
at its performance on the validation set with the matching set of features. Using this method,
features nTaus_OR_Pt25, jet_pt0, HT_inclFwdJets, lep_Pt_0, HT_fwdJets and lep_Pt_1 have
been removed. The model separates the remaining features (HT_lep, HT, HT_jets) using a plane
described by equation 3.1.4, where d is the model intercept and a, b, c are the coefficients of the
model (for features HT_lep = x, HT = y, HT_jets = z).

Based on this information, the relation of the features has been simplified by approximating
the equation 3.1.4 by equation 3.2, where d′ is the new intercept, which can be expressed as
d′ = HT − HT_lep − HT_jets. To visualize the linear separability, two histograms are plotted
for v5 data and two histograms for v8 data for comparison (figure 3.4). The histograms show
values HT − HT_lep − HT_jets – one for signal events and one for background events. The
v5 histograms indicate, that for signal, feature HT is the sum of features HT_lep and HT_jets,
while for background, feature HT consists of one more additional part. This discrepancy in
feature values is likely caused by separate signal and background data generation, with the more
complicated feature dependency getting through the previous data quality checks. The data
generation problem is not present in the new v8 data production, so no action had to be taken
in this regard. Technically, as the signal Ntuples are produced after the background Ntuples,
likely in the ntuple production code the HT definition changed for the signal production.

While no action is needed for this analysis with v8 data, the issue in v5 data has a clear
impact on the previous thesis [5] and the summer student report [12].
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Figure 3.4 Histogram of HT - HT_lep - HT_jets for v5 data (left) and v8 data (right)

y − x − z − d′ = 0 (3.2)

3.2 Architecture of Used Machine Learning Models

3.2.1 Multilayer Perceptron
The multilayer perceptron (MLP) neural network is an often-used machine learning algorithm.
Given its high flexibility in terms of model complexity and usage in the previous thesis on the
subject, it is also selected to be one of the models used in this thesis.

The Stochastic Gradient Descent (SGD) has been selected as the optimizer of the weights
of the network, based on paper [20], which evaluated the Stochastic Gradient Method and the
Stochastic Gradient Descent. It showed that in a broad range of settings, if the number of
iterations is linear, the generalization error is bounded by a vanishing function of the sample
size. Going by this principle, an early stopping criterion is set – ending the model fitting if the
validation loss of the model does not improve for 20 epochs.

The output layer of the network has one neuron with a sigmoid activation function, which
predicts if a given sample belongs to the signal class. The binary cross-entropy has been chosen
as the loss function for the network. The full schema of a five-hidden-layer network is shown
in figure 3.5. The number of hidden layers will be one of the optimized hyperparameters. The
activation function of the hidden layers in the figure is Rectified Linear Unit (ReLU), though,
in the model selection experiment, a sigmoid activation function is sometimes evaluated in place
of ReLU. Other notable hyperparameters of an MLP model are – batch size, dropout rate, and
learning rate.
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Figure 3.5 Network architecture with 5 hidden layers

3.2.2 Support Vector Machine
The Support Vector Machine binary classifier uses a hyperplane to separate the events into two
classes. The model can efficiently separate high-dimensional spaces by only focusing on the data
points closest to the separation boundary – the so-called support vectors. The model can use
different kernels to transform the feature space before performing the separation. Notable is the
linear kernel and RBF kernel. The first leaves the features without change, allowing the model to
perform a linear separation, and the second transforms the feature space to infinite dimensions,
which is achievable thanks to the kernel trick [21].

Linear separation is necessary to check that no further leak of truth information into the
data has taken place. The previous model performance during data quality checks (figure 3.3)
shows no leak for the v8 data, but a final check is necessary on the preprocessed data. The
infinite-dimensional feature space is a unique property of the SVM classifier among the chosen
models.

The model hyperparameters are C – the penalization constant for incorrect classification.
Small values of C lead to a greater margin between the hyperplane and data, possibly attaining
greater generalization power. Higher values of C lead to a smaller-margin hyperplane, which
better separates the training data [22],

Some implementations of the SVM also allow the model to output class probability instead
of binary output. In particular, the scikit-learn uses probabilities calibrated by Platt scaling.
The model uses logistic regression on the scores of the SVM, fit by additional cross-validation
on training data [23] [24].

3.2.3 Decision Tree
The decision tree model has a large advantage in its explainability. The tree consists of binary
decisions, located in a tree hierarchy and traversed top-to-bottom (from root to leaves). The
decision tree can also be used for feature importance ranking (later referred to as tree feature
ranking).

The decision tree is created using the greedy CART (Classification and Regression Trees)
algorithm, which constructs binary trees according to inequality condition-based node splitting.
The algorithm either selects the best split out of max_features, or the best split out of several
random splits. The algorithm uses either entropy or the Gini index to evaluate split quality.
Other hyperparameters include maximum tree depth and minimum number of samples in a leaf.
Each leaf is assigned a probability based on the fraction of expected signal events in it [23].

3.2.4 Random Forest
The random forest classifier is an ensemble model, which uses multiple decision trees to improve
its performance. The random forest predicts the probability that a given event belongs to
the signal class, based on the mean of the outputs of its trees. As such, the model has all
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Figure 3.6 Model Evaluation Pipeline

the hyperparameters of the decision tree model with additional hyperparameters related to the
ensemble, such as the number of trees in the forest [23].

The random forest, by default, uses the bootstrap technique to construct the training datasets
for its trees. Bootstrap is a sampling technique with replacement, which increases the ability of
the model to learn different aspects of the dataset and further improves the performance of the
model [23].

3.3 Feature Importance Ranking
There are two main types of feature importance ranking – the first is based on the internal
structure of the model and is available only for some models – in our case mainly just for
decision trees and random forests. The second is based on feature information removal through
permutation. Permutation feature ranking is defined as the decrease in model performance if a
feature is randomly shuffled. Given that different random shuffles can lead to different decreases
in model performance, the mean and standard deviation of the feature importance can be also
computed [23].

3.4 Model Type Selection
For this analysis, four different types of models have been selected – decision tree, random forest,
support vector machine (SVM), and multilayer perceptron (MLP). An evaluation pipeline has
been built to measure the performance of each of the models in a controlled environment.

The pipeline, shown in figure 3.6, leads the data files through preselection into a single dataset.
During preprocessing, weights are computed for the events, according to equation 2.2. The signal
cross-section is set to 0.1 pb The dataset is then split into the train, validation, and test sets in
the ratio 64:16:20. The train set is used to train the models, the validation set is used to compare
the models and the test set is used for the final evaluation of the best model performance. Since
there are multiple possible masses of the charged Higgs boson and the real charged Higgs boson
would have only one mass, a separate model is trained for each charged Higgs boson mass. An
800 GeV mass is a special case, since – for comparison purposes – additional files were generated
for it. To test the differences between the original and the new 800 GeV data, two models are
trained – one for the original 800 GeV files and one for the new 800 GeV files.

The model comparison trains 4 model types, each having multiple model instances for different
hyperparameters, for each of the charged Higgs boson masses (and two models for 800 GeV mass).
The models are then compared based on the significance of their output on the validation set.
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Based on the significance, the best model is selected for each mass. This defines the seven best
models.

3.5 Feature Reduction
After selecting the seven models, which are best suited for signal and background separation at
the given masses, the permutation feature importance is evaluated for each of the seven models.
Based on the result, the 5, 10, and 20 most important features are selected for each model and
features with large correlation are removed (replaced with the next most important feature for
the model). Finally, new models are trained on the reduced feature datasets and their significance
is compared on the validation set. Based on the results, the best-performing model in terms of
significance for each charged Higgs boson mass (two for 800 GeV) is selected to be used in the
final evaluation.

3.6 Best Model Evaluation
The best-performing model for each mass is evaluated using the TRExFitter (Top Related Ex-
periment Fitter), a framework for binned template profile likelihood fits [25]. For the evaluation
in TRExFitter, the signal cross-section is scaled to 1 pb and multiplied by filter efficiency (table
3.5). The correction by filter efficiency is done to take into account the different preselection
efficiencies caused by stricter event generator filtering of the new charged Higgs boson files.
TRExFitter is used to display histograms for the 10 most important features of the best models.
A histogram of the model outputs of each of the best models will be analyzed. Additionally,
plots of the upper expected limit at the 95% confidence level (CL) on the cross-section will be
created.

The expected upper limit is the upper limit at 95% CL of the signal cross-section one could
obtain if the background-only hypothesis is true. It is therefore important, that it is lower
than the actual signal cross-section (in this case scaled to 1 pb for TRExFitter evaluation).
There are two main methods of computation – the Asymptotics method and the Toy Monte
Carlo method [25]. The methods differ in the computation strategy – the Asymptotics method
directly computes integrals, while the Toy Monte Carlo uses an ensemble of pseudo-experiments
to evaluate the necessary integrals numerically [26].

3.7 Data preprocessing
The data aggregation process, which applies the preselection function (available in appendix
A.1) and copies the data from multiple process ROOT files into a single PyTorch .pt file is
managed using modified utility files from Jǐŕı Posṕı̌sil, created for his thesis [5]. Once the events
are aggregated into a single dataset file, they are loaded by the new code, which was created for
this thesis – namely the preprocessing.py file and the Jupyter Notebook .ipynb files.

For the aggregation of the data, the code of the thesis uses the following modified code from
Jǐŕı Posṕı̌sil [5]:

utils/root utils.py functions for loading the .root files

utils/file utils.py utility functions for creating and searching directories and files

utils/dataset utils.py the definition of the Dataset class, used to save data to a single .pt file

utils/utils.py short general utility functions

create dataset.py loads the data from multiple ROOT files into a single dataset file
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Chapter 4

Experiments

4.1 Experiment Setup

All the tests in this chapter are performed in a SWAN environment [8]. The tests were performed
using the following software specifications:

Python 3.9.12

Numpy, version 1.22.3

Pandas, version 1.2.2

TensorFlow and Keras, version 2.8.0

Scikit-learn, version 0.24.2

Optuna, version 3.1.1

All the models use sample weights for training, validation, and testing. The training, vali-
dation, and testing set have associated scaled weights, computed by equation 2.2 and scaled by
equation 2.4 with f = 0.64−1 for the training set, f = 0.16−1 for the validation set and f = 0.2−1

for the testing set. The following sections describe the experiment-dependent setup and results
of the experiments.

4.1.1 Model Selection Preparation
As part of the experiment preparation, the models have been compared on the validation set
based on the simplified significance formula Z0 = S/

√
B (equation 2.6). Results for B = 0

have been filtered out as irrelevant since the equation is only suited for S ≪ B. However, this
still led to the selection of models with almost no background events and few signal events. A
good example is the best decision tree selected by the Z0 criterion (whole tree in figure 4.1).
The tree was chosen from models created by a grid search in the form later used in section
4.2.2. The model managed to separate approximately 13% of the expected signal events and
just a small fraction of a background event (achieved by the background events having decimal
weights), getting a high Z0 score on the 3000 GeV mass. Based on this result, The more precise
Z3 (equation 2.9) significance approximation was selected to compare the models. The result is
also a good indicator that the tau transverse momentum (taus_pt_0) is an important feature
for separating the signal from the background at high H+ masses.

25
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Figure 4.1 Model selected for highest Z0 score among the decision trees

4.2 Model Selection
For the selection of the best model, the four types of models described previously are used –
Support Vector Machine, Decision Tree, Random Forest, and Multilayer Perceptron. Each of
the models is optimized on a grid of possible hyperparameter values. Grid search is used to find
the best combination, if computationally viable. Otherwise, the Optuna optimizer is employed
to search the hyperparameter space.

4.2.1 Suport Vector Machine
Two hyperparameter grids are used for the SVM model – one for the linear kernel and one for
the RBF kernel. The SVM with the linear kernel is there to show, how much of the signal
class can be linearly separated. Too good separation would be an indicator of a data generation
mistake, but a small amount of linear separability is expected (as was already demonstrated by
the decision tree in the model selection preparation section 4.1.1). The radial basis function
kernel is there to provide transformation into infinite-dimensional space.

Grid for the linear kernel:

C ∈ {0.01, 0.1, 1}

Grid for the RBF kernel:

C ∈ {0.01, 0.1, 1}

gamma ∈ {scale, 0.01, 0.001, 0.0001}

In this context, gamma value scale is defined as 1/(n features · X.var()) [23].
The model uses Support Vector Classifier (SVC) from scikit-learn with enabled probabil-

ity prediction. When evaluating the significance, approximation from equation 2.9 is used on
thresholded model output. The evaluation function tries 9 different thresholds, sampled evenly
at 0.1 intervals, starting at 0.1 and ending at 0.9. The result with the highest significance is
returned, along with the threshold. Some thresholds lead to the separation of a small part of
the signal and no background (i.e. 0 expected background events). This causes division by 0
in the significance approximation. Those are automatically not considered viable thresholds for
the model and are given minimum priority. If all the thresholds lead to no expected background
events, the Z3 score of the model is set to np.NaN and the model is not considered during the
selection of the best model.
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order mass Z3 [σ] C kernel gamma
1 tbH 300 2.38

(5.21)
0.10 RBF 0.0001

2 tbH 300 2.34 1.00 RBF 0.001
3 tbH 300 2.28 0.10 RBF 0.001
1 tbH 800 8.89

(8.82)
0.10 linear

2 tbH 800 8.52 1.00 linear
3 tbH 800 8.44 1.00 RBF scale
1 tbH 1500 16.63

(14.92)
1.00 linear

2 tbH 1500 16.52 0.01 linear
3 tbH 1500 16.13 0.10 linear
1 tbH 2000 14.91

(17.51)
0.10 linear

2 tbH 2000 13.23 0.01 linear
3 tbH 2000 11.13 1.00 RBF 0.001
1 tbH 250 new 5.24

(6.50)
0.10 RBF 0.0001

2 tbH 250 new 5.19 0.01 RBF 0.001
3 tbH 250 new 5.15 0.01 RBF 0.0001
1 tbH 800 new 15.09

(10.57)
0.01 RBF 0.01

2 tbH 800 new 14.96 1.00 RBF scale
3 tbH 800 new 14.95 0.10 RBF scale
1 tbH 3000 new 7.33

(15.31)
1.00 linear

2 tbH 3000 new 7.27 0.10 linear
3 tbH 3000 new 7.17 0.01 linear

Table 4.1 Best SVM models and their validation set results with signal cross-section 0.1 pb

The validation set is used for all model evaluations. For each signal mass m (and separately
for original and new 800 GeV events), a function creates a shallow copy of the training set with
the given signal mass and all background events. This shallow copy of the training set is used
for the training of all models in the grid search. A similar approach is used to get a shallow copy
of the validation set for model evaluation. In total, the grid search is run 7 times – once for each
of the masses (counting original and new 800 GeV separately) – the SVM models are trained for
each mass separately and the best model is selected for classification of each mass.

The top 3 models and their results for each of the masses are written in table 4.1. The table
shows, that the RBF kernel is best suited for lower signal masses, while the linear kernel performs
very well on masses 1500 GeV and above. The models obtain much better results than in the
linearity check (see right confusion matrix in figure 3.3). This demonstrates the need for task
separation for each of the signal masses – at least in the case of such simple models as the SVM.

Notable is the increase in the significance of the new 800 GeV signal mass. The reason for
the discrepancy becomes easily visible when looking at a confusion matrix – see figure 4.2. The
different results are caused by the higher weight of the new 800 GeV mass events. While simply
multiplying the weights of the original and new 800 GeV might seem like the best thing to do,
this would disrupt the normalization to the cross-section of 0.1 pb. The cross-section relates
to the frequency of occurrence of a particular process before any filter is applied and therefore
does not guarantee the weights in the dataset after preselection will be equal. To deal with the
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Figure 4.2 Weighted confusion matrix of the best SVM models for the original 800 GeV (left) and
new 800 GeV (right) simulated data

0.1 pb signal weights normalized signal weights
tbH 300 19.05 50.00
tbH 800 50.50 50.00
tbH 1500 58.83 50.00
tbH 2000 38.24 50.00
tbH 250 new 38.73 50.00
tbH 800 new 81.11 50.00
tbH 3000 new 15.54 50.00
ttH 12.94 12.94
tt 4.44 4.44
ttW 10.55 10.55
ttZ 12.59 12.59
VV 4.49 4.49
Others 5.78 5.78

Table 4.2 Table of expected validation set signal and background events before and after normaliza-
tion

issue, an additional value in parentheses will be added to the results of the best model for each
mass – the significance measured on the validation dataset with the weighted sum of expected
signal events set to 50. This approach keeps the original significance scores while allowing the
comparison of results for different signal masses. The number of expected background events
stays the same. Table 4.2 lists the number of expected events on the validation set for each
process.

The best model for new 800 GeV normalized data still achieves better significance than the
old model, even after scaling the weights of the validation set for evaluation. But the results
are much more similar – the difference between the significance 8.82 and 10.57 could now be
reasonably caused by the different weights during the training process and more than double the
data points for the new 800 GeV mass.

The significance after normalization behaves mostly as expected – the lower signal weights
are in general harder to distinguish. The exceptions are new signal masses 250 GeV and 3000
GeV. The model for mass 250 GeV achieves better results than a similar model for mass 300 GeV.
Though given the relatively small difference between the masses and different filter efficiency for
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Figure 4.3 Weighted confusion matrix of the best SVM models for 2000 GeV (left) and 3000 GeV
(right) signal

the new data, which caused a similar difference between the original 800 GeV and new 800 GeV
data, it is reasonable to assume a similar effect also happened in this case.

Another noticeable decrease in significance occurs between the 2000 GeV mass and the new
3000 GeV mass. The outputs of the models are displayed in figure 4.3. Similarly to the models
in preliminary testing, these models use linearly separable signal regions to remove almost all
of the background. Unlike the studied models in the preliminary testing, these models manage
to separate over half of the signal. In terms of unweighted events, 19 entries remain as false
positives for the 2000 GeV signal, and 5 entries remain as false positives for the 3000 GeV signal,
out of 5767 total unweighted background events.

At such low data counts, discrepancies in computed significancies are expected, which explains
the likely cause for the lower significance of the 3000 GeV signal. To further mitigate the effect
of the minimal background, the final model evaluation will be done on the best model output
without thresholding. TRExFitter performs its own binning, which allows more precise results.

4.2.2 Decision Tree
The decision tree model uses the DecisionTreeClassifier from scikit-learn. A fast training
time of the models allows us to perform the full grid search through the hyperparameter space.
The grid search is performed to get the best decision tree model for each signal mass. The models
use the predict_proba function, which outputs the probability that a given event belongs to
the signal class. Each model is once again trained on the training set with only one charged
Higgs boson mass and evaluated on the validation set with only one signal mass (the same one
used in the training). The best threshold is selected on the validation set, from the thresholds
t ∈ {0.1, 0.2, . . . , 0.9}. The lower number of thresholds is selected to reduce the chance of
overfitting the threshold on the validation set.

The following grid is used for each mass separately to get the seven best decision trees:

criterion ∈ {gini, entropy}

splitter ∈ {best, random}

max features ∈ {None, 32, 16, 4, 1}

max depth ∈ {None, 1, 2, 3, 4, 8, 16}

min samples leaf ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256}
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order mass Z3 [σ] criterion splitter max features max depth min samples leaf
1 tbH 300 4.00 entropy best 16 16 2
2 tbH 300 3.96 entropy best 32 4 4
3 tbH 300 3.95 gini best 32 4 32
1 tbH 800 10.15 entropy best 32 8 4
2 tbH 800 10.06 entropy best 16 8 2
3 tbH 800 9.71 gini best 32 8 256
1 tbH 1500 15.86 gini best 8 128
2 tbH 1500 15.86 gini best 16 128
3 tbH 1500 15.86 gini best 128
1 tbH 2000 12.41 entropy random 8 32
2 tbH 2000 12.16 entropy best 32 4
3 tbH 2000 12.03 entropy best 32 16 128
1 tbH 250 new 6.37 gini best 16 3 16
2 tbH 250 new 6.37 entropy random 32 8 1
3 tbH 250 new 6.31 gini random 16 8 16
1 tbH 800 new 14.59 entropy best 32 8 128
2 tbH 800 new 14.30 gini random 8 8
3 tbH 800 new 14.06 gini random 16 64
1 tbH 3000 new 9.14 entropy best 16 16 256
2 tbH 3000 new 7.74 entropy best 32 1
3 tbH 3000 new 7.66 entropy best 4

Table 4.3 Best decision tree results on the validation set with signal cross-section 0.1 pb

The results of the grid search, sorted based on the Z3 significance, are shown in table 4.3.
The results indicate the preference for the best splitter, which selects the best split out of
all available features. Criterion entropy achieves five out of seven best results, demonstrating a
small advantage over the Gini index. Trees with larger maximum depth are predictably preferred,
with a maximum depth of 8 being the most common for the three best models of each mass.
Still, the trees with a maximum depth of 4 achieved decent scores on the 300 GeV mass, and
the best tree for the new 250 GeV mass only required a depth of 3 to achieve the best Z3 score
on the validation set. The minimum samples per leaf do not show a clear advantage for any of
the values or masses, all the values of the hyperparameter are used, spread over the best three
models of each of the masses, with the exception of the 1500 Gev mass. All three best 1500 GeV
decision tree models have the same number of minimum samples per leaf. The likely cause is
that the best tree splitter and high minimum samples per leaf led to the creation of the same (or
very similar) model. This is further supported by all three best 1500 GeV decision trees having
the same score (15.859203).

Given the small maximum depth of the best 250 GeV decision tree, it can be easily visualized.
The tree is shown in figure 4.4. The tree consists of inner nodes, which have the decision condition
at the top, and leaves. All the leaves are located in the rightmost part of the plot. Each node
also contains the following information (top to bottom) – number of unweighted training samples
in the node, number of expected background (value left) and signal events (value right) and
name of the weighted majority class (the class with a larger number of expected events in the
node). When the model needs to make a prediction, the rules are applied from left to right, until
a leaf is reached. Once a leaf is reached, the model predicts probability based on the fraction of
the expected signal in the leaf (based on the training set samples).

It is clear the model is very simple, the cuts made use only the energy and transverse mo-
mentum. No features with pseudorapidity or azimuthal angle are used. The main selection of
the tree, in terms of the expected number of both signal and background events, is the topmost
leaf. This leaf is reached by satisfying all the conditions on the path from the root (leftmost
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lep_E_0 <= 0.03
samples = 22515

value = [63.1, 123.6]
class = signal

lep_E_1 <= 0.92
samples = 14054

value = [36.2, 92.55]
class = signal

True

HT_inclFwdJets <= 0.5
samples = 8461

value = [26.9, 31.05]
class = signal

False

jet_pt0 <= 0.0
samples = 12851

value = [31.87, 88.91]
class = signal

lep_E_0 <= -0.87
samples = 1203

value = [4.33, 3.64]
class = background

samples = 8084
value = [19.19, 69.21]

class = signal

samples = 4767
value = [12.67, 19.7]

class = signal

samples = 252
value = [1.06, 0.3]
class = background

samples = 951
value = [3.27, 3.35]

class = signal

MLepMet <= 0.06
samples = 5808

value = [17.22, 26.44]
class = signal

MLepMet <= 0.28
samples = 2653

value = [9.68, 4.61]
class = background

samples = 2311
value = [5.92, 17.86]

class = signal

samples = 3497
value = [11.29, 8.58]
class = background

samples = 910
value = [2.93, 3.23]

class = signal

samples = 1743
value = [6.75, 1.38]
class = background

Figure 4.4 Best decision tree for the 250 GeV mass, feature values are normalized

node) of the tree to the leaf. By itself, the leaf contains over half of the expected training signal
events. The conditions test each of the two leptons and the leading jet and remove the back-
ground based on the detected excess energy. The expected number of events is from the training
set, so the results are too optimistic and the validation performance is worse (Z3 significance on
the validation set is 6.37). Still, this model shows that for low charged Higgs masses at 250 GeV
and below, even simple models can achieve decent performance.

4.2.3 Random Forest
The random forest model uses the RandomForestClassifier from scikit-learn. As an ensemble
model for the decision tree, a random forest has the hyperparameters of its tree components on
top of its own hyperparameters. All trees, which are part of the random forest, have the same
hyperparameters. The hyperparameters for the trees are chosen to reflect the parameter grid
from the decision tree model but with some notable changes. The hyperparameter grid for the
trees of the ensemble is reduced in size, removing values for the minimum samples required to
be in a leaf node (min_samples_leaf) and the maximum tree depth (max_depth). Minimum
samples per leaf are reduced due to little effect seen for the decision tree model. Maximum depth
is reduced, removing the unlimited depth option, as well as the maximum depth of 16. Both
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order mass Z3 [σ] n estimators criterion max features max depth min samples leaf
1 tbH 300 4.25 100 gini 32 8 16
2 tbH 300 4.14 10 gini 16 8 16
3 tbH 300 4.07 1000 entropy 16 8 4
1 tbH 800 9.71 10 entropy 8 16
2 tbH 800 9.40 100 entropy 16 8 4
3 tbH 800 9.31 10 entropy 32 8 4
1 tbH 1500 17.90 1000 entropy 8 16
2 tbH 1500 17.74 1000 entropy 32 8 16
3 tbH 1500 17.49 100 entropy 8 16
1 tbH 2000 14.17 1000 entropy 32 8 1
2 tbH 2000 13.40 100 entropy 32 8 4
3 tbH 2000 13.00 10 entropy 32 8 16
1 tbH 250 new 6.77 100 gini 4 1
2 tbH 250 new 6.71 10 gini 4 16
3 tbH 250 new 6.45 10 gini 8 16
1 tbH 800 new 15.35 100 entropy 16 8 16
2 tbH 800 new 15.04 100 entropy 32 8 1
3 tbH 800 new 14.47 1000 entropy 16 8 16
1 tbH 3000 new 9.17 100 entropy 16 8 4
2 tbH 3000 new 8.58 10 entropy 16 8 1
3 tbH 3000 new 8.45 10 gini 32 8 16

Table 4.4 Best random forest models and their validation set results with signal cross-section 0.1 pb

depths are considered to produce too complex trees for the ensemble. Finally, the splitter
is removed from the grid because it is not accessible for the RandomForestClassifier class
(splitter value best is used). From the ensemble hyperparameters, only the number of trees is
chosen to be optimized with three possible values based on the base 10 logarithmic scale. The
random forest is set to use the bootstrap technique on the data to improve its performance.

The full hyperparameter grid is written below:

n estimators ∈ {1000, 100, 10}

criterion ∈ {gini, entropy}

max features ∈ {None, 32, 16, 4, 1}

max depth ∈ {8, 4, 3, 2, 1}

min samples leaf ∈ {1, 4, 16}

The hyperparameters have been optimized using grid search, the same as for the previous
two model types. The grid is searched for each of the signal masses – a training dataset with one
signal mass and all background processes is created and the random forest model is fitted on it.
Then it is evaluated on a similarly created validation set. The output of the ensemble has been
set to the prediction of signal probability through the predict_proba function. For each model,
the best threshold t ∈ {0.1, 0.2, . . . , 0.9} for the probability prediction is optimized to achieve
the highest Z3 significance approximation. The model predicts an event as signal if the value
of the predict_proba function is higher than the threshold. Otherwise, the event is predicted
as background. Since the significance considers only the events predicted as signal, the models
predicting only background or only a few signal events with no background are not considered in
the model selection. After the grid search is complete, the models are sorted by Z3 significance,
separately for each of the signal masses – based on the mass the model was trained on.

The three best random forest models for each signal mass are listed in table 4.4. Models with
the entropy criterion function achieved the best score on five out of seven signal masses, which
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further shows that entropy is slightly better suited as a branching criterion for building decision
trees on the charged Higgs boson dataset. The maximum depth of the trees has the highest value
for all but one signal mass – 250 GeV. This can reflect the relatively good separation a simple
decision tree achieved on this mass with a depth of 3. The random forest achieves the significance
Z3 = 6.77σ, which is an improvement over the Z3 = 6.37σ, at the cost of a significantly more
complex model, which uses a hundred trees to achieve the better score.

4.2.4 Multilayer Perceptron
The multilayer perceptron model uses the TensorFlow Keras Sequential class to construct the
neural network. The Sequential class accepts a varying number of layers, constructed using the
Dense class (perceptron layer), Dropout layer after each dense layer, and Input layer at the start
(the output layer is another Dense layer, with only one sigmoid output) [27]. The exact layout
of the model is given by hyperparameters, but the model always starts with an Input layer,
followed by Dense hidden layers (with Dropout layer after each hidden layer, if dropout_rate
is not 0). Last is the output Dropout layer with one neuron, which predicts the probability that
a given event belongs to the signal class. An example layout with five hidden layers is available
in figure 3.5, in the Analysis and Design chapter. The network uses the Stochastic Gradient
Descent parameter optimizer and binary cross-entropy loss function for training the parameters
of the model.

Besides the number of hidden layers, combined with the number of perceptrons per hidden
layer into the hidden_layer_sizes hyperparameter, which has a direct impact on the network
architecture and the number of trained parameters, other hyperparameters are also optimized.
The hidden layer activation function provides a non-linear transformation of the output of the
hidden layers. The batch size determines how many samples will be used at once to update the
parameters of the model. The learning rate affects the step size in model parameter updates.
The dropout rate is the fraction of neuron outputs per hidden layer set to zero during model
training. The dropout helps prevent overfitting [27].

The Optuna optimizer is used to get the best hyperparameters for multilayer perceptron
because the classical grid-search would be too slow in this case. The optimizer is run for 25
trials for each of the signal masses (25 models with various hyperparameters, selected by Optuna
from the grid below are trained on the training set with only one signal mass and all background
processes and evaluated on validation data, limited to one signal mass as is done for the previous
model types).

The hyperparameter grid for multilayer perceptron (used by Optuna):

hidden layer sizes ∈ {(641, 642), (1281, . . . , 1283), (5121, . . . , 5125), (321, ..., 325), (321, ..., 328)}

batch size ∈ {65536, 2048, 64}

hidden layers activation function ∈ {relu, sigmoid}

dropout rate ∈ {0, 0.1, 0.5, 0.8}

learning rate ∈ (0.00001, 0.01), sampled from the log-uniform distribution

Once all the models are trained, their performance is measured using the Z3 significance on
the validation set, as was done with the previous model types. The best three models for each
signal mass are shown in table 4.5. The most often used hidden layer sizes are two layers with
64 neurons each, (641, 642). The best hidden layer activation function is ReLU.

Given the high flexibility of the MLP, the models achieve noticeably lower Z3 scores than
expected. There are some factors, which could lower the model performance. The first is the
small number of trials, which was chosen in accordance with the time available for this section
of experiments, but which might lead to not enough hyperparameter combinations being tested.
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order mass Z3 [σ] layer sizes batch
size

activation
function of
the hidden
layers

dropout
rate

learning
rate

1 tbH 300 2.90 (641, 642) 2048 relu 0.5 0.000101
2 tbH 300 2.58 (641, 642) 2048 relu 0.5 0.000115
3 tbH 300 2.56 (641, 642) 64 relu 0.5 0.000176
1 tbH 800 6.42 (321, . . . , 328) 2048 relu 0.1 0.003709
2 tbH 800 6.29 (641, 642) 2048 sigmoid 0.8 0.000049
3 tbH 800 6.23 (321, . . . , 328) 2048 relu 0.0 0.000084
1 tbH 1500 16.27 (5121, . . . , 5125) 64 relu 0.5 0.003010
2 tbH 1500 16.26 (641, 642) 64 relu 0.1 0.005337
3 tbH 1500 15.55 (641, 642) 64 relu 0.1 0.002770
1 tbH 2000 12.61 (641, 642) 64 relu 0.5 0.009379
2 tbH 2000 12.32 (641, 642) 64 relu 0.5 0.000697
3 tbH 2000 12.02 (321, . . . , 325) 64 relu 0.5 0.005041
1 tbH 250 new 5.03 (641, 642) 65536 relu 0.5 0.000264
2 tbH 250 new 5.03 (641, 642) 64 relu 0.5 0.008654
3 tbH 250 new 4.99 (641, 642) 2048 sigmoid 0.5 0.000041
1 tbH 800 new 9.73 (5121, . . . , 5125) 2048 relu 0.0 0.000179
2 tbH 800 new 9.55 (641, 642) 64 relu 0.0 0.001427
3 tbH 800 new 9.52 (641, 642) 64 relu 0.0 0.000163
1 tbH 3000 new 6.92 (641, 642) 64 sigmoid 0.1 0.001871
2 tbH 3000 new 6.85 (641, 642) 64 sigmoid 0.1 0.004646
3 tbH 3000 new 6.25 (641, 642) 64 sigmoid 0.1 0.003340

Table 4.5 Best MLP model results on the validation set with signal cross-section 0.1 pb

Smaller charged Higgs boson dataset, caused by training a separate model for each signal mass,
is also a candidate factor.

4.2.5 Best Models
Based on the validation results, the overall best model is selected from the four model types
for each of the signal masses. The summary of the best model performances on the validation
dataset is available in table 4.6. The model selection is done based on the Z3 score column in
tables 4.1, 4.3, 4.4, 4.5. The results are measured for a signal cross-section set to 0.1 pb. The
corresponding numbers of expected events after preselection and at the working point for each
mass are listed in 4.7, together with the number of background events.

Charged Higgs boson mass Model type Z3 [σ] Threshold
tbH 300 Random Forest 4.25 0.6
tbH 800 Decision Tree 10.15 0.9

tbH 1500 Random Forest 17.90 0.9
tbH 2000 SVM 14.91 0.6

tbH 250 new Random Forest 6.77 0.7
tbH 800 new Random Forest 15.35 0.9

tbH 3000 new Random Forest 9.17 0.9
Table 4.6 Best models, trained on all features, and their validation set results and thresholds with

signal cross-section 0.1 pb
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H+ mass [GeV] 300 800 1500 2000 250 new 800 new 3000 new
Preselection 11.35/50.79 34.20/50.79 43.23/50.79 28.95/50.79 12.45/50.79 32.74/50.79 7.70/50.79
Working point 8.72/7.86 27.39/6.69 28.63/0.24 17.30/0.066 10.88/15.63 18.73/1.56 2.68/0.00083

Table 4.7 The expected values for signal/background on the validation set, after preselection and for
each of the best models at the working point threshold cut. The signal is normalized to 0.1 pb.

Out of the four evaluated model types, three are among the best models – SVM, decision
tree, and random forest. The random forest is the most successful model type, being selected as
the best model for five out of seven signal masses. It does not provide the highest significance
on the validation set for only two signal masses, original 800 and 2000 GeV. For the original 800
GeV, a decision tree performs better than the other three model types. The best decision tree
is created with the entropy splitting criterion, best splitter, 32 features used in the search for
the best split at each iteration, maximum depth of the tree 8 and 4 minimum samples per leaf.
The 2000 GeV mass is best separated by the SVM, with C = 0.10 and linear kernel.

The table 4.7 shows how much each of the best models reduced the expected number of
signal/background events, compared to the preselection. The working point is the best threshold,
selected on the validation set by maximizing Z3 significance and displayed in table 4.6. The
fraction of the correctly classified charged Higgs boson events is lower for higher signal masses.
The 3000 GeV model correctly classifies only about a third of the signal events. The most likely
reason is the significance function (equation 2.9), which uses only the true positive and false
positive values. This is a potentially desirable behavior, as a model capable of separating signal
from the background with minimum false positives would allow easier testing for the charged
Higgs boson presence. The downside is the higher uncertainty connected with the very low
number of background events and the low number of signal events.

4.3 Feature Importance Ranking
After preprocessing, the dataset contains 104 features. This large number can cause issues for
some of the models, also known as the curse of dimensionality. Even for some of the models,
which can effectively deal with high-dimensional spaces (for instance the SVM classifier), it can
be beneficial to reduce the feature space for the sake of better explainability and smaller storage
requirements for the input data, depending on the drop of model performance.

Before reducing the number of features, a feature importance ranking is constructed first. The
ranking is performed using permutation feature importance on the validation set – measured for
each of the seven best models separately. Since the permutation feature importance performs a
random permutation of a feature, before measuring the decrease of performance on the modified
dataset, multiple measurements were done for each model to gain not only the mean feature
importance but also the standard deviation.

The permutation feature importance is measured using permutation_importance function
from scikit-learn. For each model, 20 permutations and measurements are done for each feature.
Significance approximation Z3 (equation 2.9) is used as the score function for the feature impor-
tance measurement – the permutation_importance function, therefore, measures the decrease
in Z3 significance after a permutation of a feature in the validation set. The features are then
sorted based on their mean decrease in significance.

The three most important features are MLepMet, MtLepMet, and taus_pt_0, each being se-
lected as the most important for two signal masses. The tau transverse momentum (taus_pt_0)
additionally is the second most important feature for the three remaining masses, making it the
most important feature, overall. The invariant transverse mass of all leptons and missing trans-
verse energy (MtLepMet) is the second most important feature (additionally ranked third and
fifth) and the invariant mass of all leptons and missing transverse energy (MLepMet) is the third
most important feature (additionally ranked fourth and eighth). The normalized distributions
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of the three most important features are available in figure 4.5. The distributions are based on
the testing dataset and all signal masses. The importance of the features is clearly shown in the
distribution of the signal, which extends beyond background processes.

The plots in figures 4.6 and 4.7 show 10 features with the highest importance for each of
the seven best models. The box plot shows a line at the median, the box extends from the Q1
quartile to the Q3 quartile. The whiskers extend to the farthest data point within the 1.5(Q3−Q1)
distance from the edges of the box. The outliers are marked by small circles, drawn separately
[28]. The feature importances are sorted based on the mean decrease in Z3 significance. The full
list of feature importance scores for each model is available in the appendix A.2.

The division of feature importance into separate plots based on the signal masses and their
associated models allows us to examine the effect of mass on significance score and, by proxy, the
quality of separation of signal and background. It is noted that the composition of the feature
importance varies with mass. The most important feature of the 300 GeV mass model is the
invariant mass of all leptons and missing transverse energy. The tau transverse momentum, a
similar feature – in the sense of being dependent on the Higgs mass – has taken second place in
the feature ranking.

The feature ranking of the 250 GeV model is quite similar to the 300 GeV model. The
first feature is also MLepMet. The second is the sum of the transverse momentum of all jets,
instead of the tau transverse momentum, though both features are ranked among the top 10
most important for both the 250 GeV model and 300 GeV model. A likely cause of the exchange
in ranking placement is the shared information between the features.

Another interesting result is the different feature importance ranking for the original and
new 800 GeV signal masses. The most important feature of the original 800 GeV mass model
is the momentum of the tau (taus_pt_0), which, when its information is removed by random
permutation, causes a decrease in significance by approximately 3σ. A similar loss of significance
happens when the taus_pt_0 feature undergoes permutation in the new 800 GeV dataset. Still,
the new 800 GeV model performance depends on the MtLepMet feature, which is more important
than the tau transverse momentum. One of the possible reasons for this discrepancy is the
different type of model selected for the original 800 GeV mass – decision tree, compared to
the random forest for the new 800 GeV mass. Another reason might be the greedy algorithm
selecting the features, which might prioritize different features in a different set, which might
lead to different overall feature importance. This difference could be further increased by the
correlation of the features, though the Pearson correlation coefficient between taus_pt_0 and
MtLepMet is only 0.23.

To properly take the correlation of the features into account, the Pearson correlation co-
efficient is applied to the 25 most important features of each of the seven best models. For
the original 800 GeV model, the heatmap of the Pearson coefficients (figure 4.8), shows that
MtLepMet is quite strongly correlated to multiple other features – namely lep_Pt_0 (0.84), HT
(0.70), HT_lep (0.86) and others, which are not present in the top 10 most important features of
the new 800 GeV model. The increased correlation coefficient indicates the presence of shared
information. Under the assumption that the decision of the model is based on this shared in-
formation, the model should perform similarly with the correlated features removed. This fact
might be beneficial for feature reduction because out of two strongly correlated features, only
one has to be included in the dataset and the model should perform similarly well. In the feature
reduction phase, this effect will be explored further.

In the final part of the feature importance analysis, higher signal masses come into focus.
Unsurprisingly, for the highest mass, 3000 GeV charged Higgs boson, a transverse momentum
feature – namely the transverse momentum of the subleading jet – is the most important feature
by far. However, the number of angle-based features among the top 10 ranked features is more
unexpected. Given the difference in importance of the transverse momentum and most of the
angle-based features, the model uses the angle-based features for residual separation, after the
information about high mass has already been used.
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Figure 4.5 Distributions of the three most important features after normalization. Top: tau transverse
momentum, left: invariant transverse mass of all leptons and missing transverse energy, right: invariant
mass of all leptons and missing transverse energy. The signal cross-section is 1 pb.
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300 GeV 800 GeV

1500 GeV 2000 GeV

Figure 4.6 Feature importance of the models trained on the original signal masses
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New 250 GeV New 800 GeV

New 3000 GeV

Figure 4.7 Feature importance of the models trained on the new signal masses
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Figure 4.8 Pearson correlation coefficients for 25 most important features of the original 800 GeV
model, correlations measured on full dataset with all signal masses and background
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4.4 Feature Reduction Performance Analysis
Based on the feature importance ranking, the number of features is reduced. To stay comparable
with the thesis of Jǐŕı Posṕı̌sil, models are trained with the number of features reduced to 20,
10, and 5. The features in the subset are selected based on the feature ranking – i.e. from the
list of features sorted by the mean decrease of Z3 significance, the first 20, 10, and 5 features are
selected, respectively. Since the number of features after reduction is quite small (especially in the
case of 5 features), the strongly correlated features are removed from the sorted feature ranking
list before reduction to 20, 10, and 5 features to clear the way for additional non-correlated
features. A Pearson correlation coefficient above 0.6 is considered a strong correlation. The full
list of features used in the feature reduction experiment is available in the appendix A.4.

The creation of the list of features for the feature reduction experiment is done in two steps.
First, for each of the best models, a feature list is sorted according to the permutation fea-
ture ranking – from the most important to the least important feature. The list is stored as
[mass_name]_most_important_features for all best models (for instance, the feature list for
the SVM model on the 2000 GeV mass is assigned name tbH_2000_most_important_features).
Second, a filtering function is applied to the feature list, removing the strongly correlated fea-
tures. The filtering function is implemented in the Feature_importances_final.ipynb file and
its code is available in figure 1.

The function filter_out_correlated_features takes the first n_initial_features out
of the given [mass_name]_most_important_features and measures the Pearson correlation
coefficient for each possible pair of features on the whole dataset (labeled df2). The pairs with
a correlation above 0.6 and the first feature with more importance than the second feature are
labeled as the list_of_correlated_features. The list of pairs is then traversed and the less
important feature (the second feature of each pair) is removed, if neither feature of the pair is
already removed when the traversal encounters the pair.

def filter_out_correlated_features(
most_important_features, # array of features sorted by importance
correlation_threshold=0.6, # threshold for Pearson correlation coefficient
n_initial_features=25): # number of features to enter the filtering process

# take the first n_initial_features from most_important_features
selected_features = [feature for feature in most_important_features[:n_initial_features]]
# compute Pearson correlation coefficient for each of the selected_features
correlation_matrix = df2[selected_features].corr()
# mask out correlations on and below the diagonal
# also mask out correlations with absolute value below the correlation_threshold
triu_corr = pd.DataFrame(

np.triu(correlation_matrix.abs(), 1) > correlation_threshold,
columns=selected_features,
index=selected_features

)
# apply the mask and get pairs of correlated features with correlation above the threshold
list_of_correlated_features = correlation_matrix[triu_corr].stack().index.tolist()
removed_features = set()
# add the less important feature from each pair to the removed features
# unless the other feature of the pair is already removed
for some_feature, feature_to_remove in list_of_correlated_features:

if some_feature not in removed_features and feature_to_remove not in removed_features:
removed_features.add(feature_to_remove)

print('Removed features: ' )
print(removed_features)
# return the selected_features, which are not in removed_features
return [feature for feature in selected_features if feature not in removed_features]

Code listing 1 Function to filter out features correlated above a certain threshold
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Z3 [σ] All features 20 features 10 features 5 features
tbH 300 4.25 4.09 3.86 3.69
tbH 800 10.15 8.77 8.15 7.27
tbH 1500 17.90 16.88 17.47 17.77
tbH 2000 14.91 12.77 13.90 14.46
tbH 250 new 6.77 6.24 6.55 6.24
tbH 800 new 15.35 13.74 14.39 13.66
tbH 3000 new 9.17 5.22 5.20 4.80

Table 4.8 Comparison of the significance of the best models trained on all the features with models
trained on a subset of features. The signal is normalized to the cross-section 0.1 pb

After generating the lists of features for the feature reduction experiment, a model generator
is constructed. The model generator produces models, which have the same model type and
hyperparameters as the best models measured on the full dataset. Since the feature importance
was measured on these best models, feature reduction performance should be measured on the
same model base to make the test outputs comparable.

In the experiment, the model generator produces three models for each mass, which are fitted
to the training data, which only has 20, 10, and 5 features for the first, second, and third models,
respectively. The feature subsets, assigned to each mass, are available in the appendix A.4.
The best Z3 significance is then determined for each model on thresholds t ∈ {0.1, 0.2, . . . , 0.9}.
The resulting Z3 significances are listed in table 4.8 for the reduced-dataset models. The column
All features is taken from table 4.6 and it is not generated again for this experiment. Table 4.8
shows a large decrease in significance for the 3000 GeV mass. In other cases, a smaller decrease
in performance is noted. For the 1500 and 2000 GeV signal masses, the classifier with 5 features
achieves nearly the same significance as the classifier with all features. Nonetheless, the models,
which use all the available features achieve higher performance.

4.5 Analysis of Best Model Performance
The significance of each of the models was measured on the testing set with the threshold value
between 0 and 1. The working point is defined by a threshold cut with the highest significance.
The results are shown in figure 4.10.

The threshold selection was performed on values {0.1, 0.2, . . . , 0.9} on the validation set.
Figure 4.10 shows the significance distribution for the testing set. The plots show that the
thresholds are a small distance from the peak of the significance curve. Note that there are only
nine sampling points of the threshold on the validation set. Table 4.9 shows that the model
performance is better for higher charged Higgs boson masses.

The model performance on non-trained masses has been studied, and the results are shown in
figure 4.9. The 300 GeV model generalizes well on the 250 GeV mass and the high-mass models
generalize quite well for other high masses.

4.6 Expected Limits

4.6.1 Asymptotic
The output of the best model for each of the signal masses is evaluated using TRExFitter to
obtain the asymptotic expected upper limit at 95% CL on cross-section (figure 4.11). The limit
plot shows the minimum cross-section of the signal, at which the classifier can still detect it with
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Figure 4.9 Significance of the best models for each mass on the testing sets with assigned signal
masses. In the gray areas the efficiency is less than the preselection efficiency.

H+ mass [GeV] 300 800 1500 2000 250 new 800 new 3000 new
Preselection 16.12/50.51 42.14/50.51 39.56/50.51 18.77/50.51 13.16/50.51 44.00/50.51 11.51/50.51
Preselection Z0 2.27 5.93 5.57 2.64 1.85 6.19 1.62
Preselection Z1 1.97 4.38 4.17 2.26 1.65 4.53 1.46
Preselection Z2 1.87 4.9 4.6 2.18 1.53 5.11 1.34
Preselection Z3 2.16 5.3 5.01 2.5 1.78 5.52 1.56
Working point 7.33/6.26 21.55/5.95 17.60/0.28 6.19/0.027 9.10/15.72 22.14/1.21 4.55/0.01
Working point Z0 2.93 8.84 33.32 37.71 2.3 20.14 56.34
Working point Z1 1.99 4.11 4.16 2.48 1.83 4.58 2.13
Working point Z2 1.83 5.47 8.68 3.72 1.67 8.52 2.88
Working point Z3 2.53 6.41 10.66 7.44 2.12 9.7 7.11

Table 4.9 Expected values for signal/background of the testing set, after preselection and for each
of the best models at the working point threshold cut. The signal cross-section is set to 0.1 pb. The
significances are also given.
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Figure 4.10 Dependence of significance approximation on the selected threshold on the testing set
for each of the best models, also shown is the threshold selected per model on the validation set
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Cross-section [pb]
H+ mass [GeV] 300 800 1500 2000 250

new
800
new

3000
new

Expected upper limit 0.1019 0.0242 0.0152 0.0271 0.1019 0.0207 0.0305
Expected upper limit + σ 0.1571 0.0371 0.0241 0.0487 0.1516 0.0305 0.0484
Expected upper limit + 2σ 0.2427 0.0573 0.0402 0.1086 0.2238 0.0447 0.0837
Expected upper limit - σ 0.0735 0.0175 0.0109 0.0195 0.0734 0.0149 0.0220
Expected upper limit - 2σ 0.0547 0.0130 0.0081 0.0146 0.0547 0.0111 0.0164

Table 4.10 Asymptotic expected upper limit at 95% CL on cross-section, with 68% and 95% confi-
dence intervals

Cross-section [pb]
H+ mass [GeV] 300 800 1500 2000 250

new
800
new

3000
new

Expected upper limit 0.1018 0.0249 0.0156 0.0293 0.1016 0.0214 0.0328
Expected upper limit + σ 10.0000 0.0366 0.0244 0.0507 10.0000 0.0306 0.0463
Expected upper limit + 2σ 10.0000 0.0574 0.0405 0.1336 10.0000 0.0434 0.0724
Expected upper limit - σ 0.0686 0.0172 0.0127 0.0205 0.0668 0.0147 0.0271
Expected upper limit - 2σ 0.0444 0.0133 0.0083 0.0150 0.0580 0.0126 0.0196

Table 4.11 Toy Model expected upper limit at 95% CL on cross-section, with 68% and 95% confidence
intervals

95% CL. The 68% and 95% confidence intervals for the limit on cross-section are also included
in the plot. The filter efficiencies (table 3.5) are taken into account. The combined plot in figure
4.11 does not contain the original 800 GeV mass, the mass can be compared in the comparison
plots showing original and new asymptotics results separately (figure 4.12).

4.6.2 Toy Model
In addition, the expected cross-section limits are computed using the Toy model. The results
are consistent with the asymptotics and are shown in figure 4.14 and table 4.11. The results of
the Toy model and the Asymptotic model are consistent with each other.

4.6.3 Comparison with Previous Results
The expected limits of this analysis are significantly weaker than the previous limits (figure 2.4)
[5, 12]. The likely reason is a difference in signal and background file generation. A further im-
provement in this analysis is the inclusion of the filter efficiency of the event generation. Because
of these significant differences, a detailed comparison for individual masses is not suitable.

The results of this thesis are also compared with the results of the CMS collaboration. Figure
4.13 shows the expected upper limits at 95% CL on the product of cross section and branching
fraction σH±(H± → HW±, H → ττ) as a function of mH± from the CMS charged Higgs boson
decaying into a heavy neutral Higgs boson and a W boson analysis [29]. The expected limit
(figure 4.11) in the mass range 300 to 700 GeV obtained in this thesis is similar; however,
the CMS analysis includes systematic uncertainties which reduce the sensitivity and were not
addressed in this analysis [29].
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Figure 4.11 Asymptotic expected upper limit at 95% CL on cross-section, with 68% and 95% confi-
dence intervals as function of charged Higgs boson mass
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Figure 4.12 Asymptotic expected upper limit at 95% CL on cross-section, with 68% and 95% confi-
dence intervals as function of charged Higgs boson mass
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Figure 4.13 Expected and observed upper limits at 95% CL on the product of cross-section and
branching fraction σH± (H± → HW±, H → ττ) as a function of mH± and assuming mH = 200 GeV for
the combination of all final states considered. The observed upper limits are represented by a solid black
line and circle markers. The median expected limit (dashed line), 68% (inner green band), and 95%
(outer yellow band) confidence intervals are also shown. Taken from [29]
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Figure 4.14 P-value for different cross-sections, produced by Toy Monte Carlo for all signal masses.
The label norm tbH corresponds to the cross-section in [pb].



Chapter 5

Conclusion

This thesis focuses on the analysis and separation of the charged Higgs process using machine
learning. To achieve this, a thorough feature analysis is first conducted, focusing on the feature
origins and matching normalizations in order to more optimally use the information contained
in the features.

Following this analysis, a multi-model approach is proposed, where each model is sensitive in
a certain mass range to achieve large significance in its dedicated mass section. Four different
model types are chosen for the model selection. Support Vector Machines are chosen to check
the linear separability of the problem and data quality. Decision Trees are chosen for their
explainability. Random Forests are selected as an ensemble model with better performance over
explainability. The multilayer perceptron is chosen as the universal machine learning model.

Next, each model type is optimized on the problem domain via the selection of the best-suited
set of hyperparameters. Each model type is assigned a grid of viable hyperparameters. The SVM,
decision tree, and random forest models use grid search for hyperparameter optimisation, while
the multilayer perceptron uses Optuna optimizer to search the hyperparameter state space.
After the hyperparameters have been selected for each model type and each mass, the best
model for each mass is selected out of the four model types. The criterion for model comparison
during hyperparameter selection, as well as the selection of the best model for each mass, is the
significance function approximation.

Feature ranking was computed for each of the best models, using permutation feature im-
portance. The most important feature is the tau transverse energy, the second is the invariant
transverse mass of all leptons and missing transverse energy and the third is the invariant mass
of all leptons and missing transverse energy. Based on the feature ranking, feature reduction was
performed. The reduction from 104 features to 20, 10, and 5 most important features, after the
removal of strongly correlated features, led to a small decrease in significance for all masses.

The best models were tested on the testing set. The upper expected limit at 95% CL on
cross-section was computed for each model, using the Asymptotic and the Toy Model methods.
The expected limits at 95% Cl are in the range of 0.1 pb to 0.02 pb, depending on the charged
Higgs boson mass. Each of the best models was then tested on other signal masses, to give an
estimate of the generalization power on the neighborhood of its assigned mass point. Models
with assigned charged Higgs mass of 1500 GeV and more have good generalization power on high
masses, while the 300 GeV and 800 GeV masses are successfully predicted only by their assigned
models. Future work should focus on training the lower-mass models on all masses while keeping
one mass as the focus of the model to keep the benefit of high significance while broadening
the neighborhood the model can focus on. While statistical uncertainties are included in the
analysis, systematic uncertainty inclusion is a future project.

A goal of this thesis concerning the optimisation related to systematic uncertainties has been
moved to future work with the agreement of the thesis supervisor. The implementation of the
analysis using the version 8 dataset took significantly longer than expected.
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Appendix A

Appendix

A.1 Preselection Details

(custTrigMatch_LooseID_FCLooseIso_DLT )
& ( (dilep_type > 0 ) & ( (lep_ID_0*lep_ID_1)>0) )
& ( ((lep_Pt_0>=10e3) & (lep_Pt_1>=10e3))

& ((fabs(lep_Eta_0)<=2.5) & (fabs(lep_Eta_1)<=2.5))
& ((( abs(lep_ID_0) == 13 ) & ( lep_isMedium_0 )

& ( lep_isolationLoose_VarRad_0 ) & ( passPLIVTight_0 ))
| ((( abs(lep_ID_0) == 11 ) & ( lep_isTightLH_0 )

& ( lep_isolationLoose_VarRad_0 ) & ( passPLIVTight_0 )
& ( lep_ambiguityType_0 == 0 )
& ( lep_chargeIDBDTResult_recalc_rel207_tight_0>0.7 ) )

& ( ((˜((˜((lep_Mtrktrk_atConvV_CO_0<0.1)
& (lep_Mtrktrk_atConvV_CO_0>=0) & (lep_RadiusCO_0>20)))

& ((lep_Mtrktrk_atPV_CO_0<0.1) & (lep_Mtrktrk_atPV_CO_0>=0)))))
& (˜((lep_Mtrktrk_atConvV_CO_0<0.1)

& (lep_Mtrktrk_atConvV_CO_0>=0)
& (lep_RadiusCO_0>20))))))

& ( (( abs(lep_ID_1) == 13 ) & ( lep_isMedium_1 )
& ( lep_isolationLoose_VarRad_1 ) & ( passPLIVTight_1 ) )

| ( (( abs(lep_ID_1) == 11 ) & ( lep_isTightLH_1 )
& ( lep_isolationLoose_VarRad_1 ) & ( passPLIVTight_1 )
& ( lep_ambiguityType_1 == 0 )
& ( lep_chargeIDBDTResult_recalc_rel207_tight_1>0.7 ))
& (((˜((˜((lep_Mtrktrk_atConvV_CO_1<0.1)

& (lep_Mtrktrk_atConvV_CO_1>=0)
& (lep_RadiusCO_1>20)))

& ((lep_Mtrktrk_atPV_CO_1<0.1)
& (lep_Mtrktrk_atPV_CO_1>=0)))))

& (˜((lep_Mtrktrk_atConvV_CO_1<0.1)
& (lep_Mtrktrk_atConvV_CO_1>=0)
& (lep_RadiusCO_1>20)))))) )

& ( nTaus_OR==1 ) & ( nJets_OR_DL1r_85>=1 ) & ( nJets_OR>=4 )
& ( ((dilep_type==2) ) | ( abs(Mll01-91.2e3)>10e3))

51



52 Appendix

A.2 Feature Importances

feature name mean std
MLepMet 1.204666 0.519208
taus pt 0 1.008721 0.430085
sumPsbtag 0.893841 0.585750
lep1 tau Phi diff cos 0.731140 0.213217
MtLepMet 0.483445 0.360567
jet pt0 0.470068 0.371581
taus width 0 0.445110 0.185848
HT jets 0.409812 0.196070
jet 0 1 phi diff cos 0.400350 0.160209
Mll01 0.382739 0.263802
DeltaR min lep jet fwd 0.356089 0.199653
HT 0.340320 0.191305
taus RNNJetScoreSigTrans 0 0.315878 0.131832
dEta maxMjj frwdjet 0.295173 0.255849
lep Z0SinTheta 1 0.267763 0.100456
minDeltaR LJ 1 0.245780 0.120746
minDeltaR LJ 0 0.244420 0.167706
taus eta 0 0.242310 0.064653
lep Eta 1 0.233946 0.101889
DeltaR min lep jet 0.230378 0.173996
lep E 1 0.228396 0.115587
jet e3 0.213672 0.110805
jet pt2 0.206834 0.094651
jet phi0 0.199095 0.080845
lep0 tau Phi diff cos 0.185602 0.070840
max eta 0.178412 0.148207
HT inclFwdJets 0.170817 0.188063
jet e4 0.163412 0.113039
lep1 tau Phi diff sin 0.160184 0.079864
jet phi3 0.157790 0.091352
nJets OR 0.154386 0.089577
jet 2 3 phi diff sin 0.153142 0.125117
jet eta0 0.146965 0.087675
met met 0.143584 0.113738
taus JetRNNSigTight 0 0.133116 0.062966
lep tau opposite charge 0.129573 0.162534
lep Z0SinTheta 0 0.128401 0.071509
jet 0 1 phi diff sin 0.126915 0.057736
met phi 0.122310 0.055427
lep E 0 0.120263 0.124146
jet 4 5 phi diff cos 0.112262 0.085581
lep 0 jet 0 diff cos 0.110264 0.079467
jet 4 5 phi diff sin 0.108127 0.043194
jet eta3 0.106398 0.058805
lep Pt 1 0.104907 0.080214
lep Pt 0 0.101797 0.064730
minDeltaR LJ 2 0.101389 0.089827
jet 3 4 phi diff sin 0.097972 0.077278
jet pt4 0.095206 0.078774
jet e1 0.086095 0.054609
lep Phi 1 0.083563 0.059243
lep Phi 0 0.079984 0.044790

feature name mean std
jet phi2 0.075939 0.062576
jet 2 3 phi diff cos 0.075861 0.063870
Ptll01 0.075385 0.078555
taus phi 0 0.074004 0.102417
jet phi1 0.071491 0.072050
lep Phi diff cos 0.071047 0.085204
lep 1 jet 0 diff cos 0.070558 0.053512
DRll01 0.068938 0.092523
jet e0 0.066847 0.057849
lep Phi diff sin 0.066205 0.065122
lep EtaBE2 1 0.063605 0.091847
jet eta2 0.058937 0.057114
eta frwdjet 0.058780 0.064995
jet 1 2 phi diff sin 0.056033 0.072168
lep EtaBE2 0 0.047071 0.042403
lep 1 jet 0 diff sin 0.044687 0.054415
jet 1 2 phi diff cos 0.034687 0.104052
nTaus OR Pt25 0.033282 0.080073
jet e5 0.031225 0.034053
taus charge 0 0.028225 0.038833
jet eta5 0.027397 0.035993
jet pt5 0.026283 0.033325
jet e2 0.022814 0.058528
jet pt3 0.022081 0.064260
lep Eta 0 0.019188 0.088002
taus decayMode 2.0 0.018617 0.033386
HT lep 0.017839 0.106307
jet 3 4 phi diff cos 0.014893 0.050558
lep nTrackParticles 1 0.013208 0.053871
nFwdJets OR 0.009860 0.024082
jet phi4 0.006178 0.027946
taus fromPV 0 0.005804 0.017575
HT fwdJets 0.005379 0.022044
jet eta4 0.004871 0.071016
taus decayMode 1.0 0.000947 0.000972
lep 0 jet 0 diff sin 0.000532 0.055584
lep 1 is muon 0.000471 0.001657
taus decayMode 3.0 0.000000 0.000000
taus decayMode 4.0 0.000000 0.000000
taus decayMode 0.0 0.000000 0.000000
lep 0 is muon 0.000000 0.000000
taus decayMode 6.0 0.000000 0.000000
taus passJVT 0 0.000000 0.000000
taus passEleOLR 0 0.000000 0.000000
taus numTrack 0 -0.000560 0.002712
lep nTrackParticles 0 -0.008264 0.036919
jet phi5 -0.016534 0.058973
taus DL1r 0 -0.017680 0.079668
mjjMax frwdJet -0.019912 0.037627
jet pt1 -0.040167 0.121113
jet eta1 -0.043942 0.046512
lep0 tau Phi diff sin -0.044328 0.033088

Table A.1 300 GeV model feature importances
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feature name mean std
taus pt 0 3.027258 0.573703
HT lep 2.198179 0.362655
MtLepMet 1.733756 0.711090
lep Phi diff cos 1.728527 0.638963
taus charge 0 1.623596 0.581598
lep0 tau Phi diff cos 0.763291 0.233275
mjjMax frwdJet 0.756985 0.257327
Mll01 0.698736 0.201294
HT 0.685869 0.300255
taus width 0 0.595840 0.290110
lep1 tau Phi diff cos 0.282686 0.344255
DRll01 0.130723 0.091047
met met 0.104296 0.053771
jet 0 1 phi diff sin 0.081140 0.039321
jet e3 0.071902 0.056585
lep 1 jet 0 diff sin 0.064105 0.071973
lep0 tau Phi diff sin 0.058734 0.047207
HT jets 0.054727 0.051226
lep tau opposite charge 0.053503 0.142050
minDeltaR LJ 2 0.038387 0.037697
dEta maxMjj frwdjet 0.027189 0.012067
jet eta0 0.024812 0.079171
jet pt1 0.024245 0.151940
lep Eta 0 0.020416 0.197564
lep 1 jet 0 diff cos 0.014734 0.072746
jet e2 0.012873 0.051629
jet phi5 0.011395 0.027232
jet phi2 0.008115 0.010461
jet eta2 0.006781 0.035808
taus RNNJetScoreSigTrans 0 0.005846 0.008278
lep E 1 0.003533 0.089856
jet 3 4 phi diff cos 0.002891 0.003251
met phi 0.000762 0.073631
jet pt0 0.000739 0.043079
jet 2 3 phi diff cos 0.000546 0.009158
jet phi0 0.000495 0.000213
jet pt2 0.000210 0.001149
taus JetRNNSigTight 0 0.000000 0.000000
taus numTrack 0 0.000000 0.000000
taus decayMode 3.0 0.000000 0.000000
taus decayMode 1.0 0.000000 0.000000
taus decayMode 2.0 0.000000 0.000000
taus eta 0 0.000000 0.000000
taus fromPV 0 0.000000 0.000000
taus decayMode 4.0 0.000000 0.000000
taus phi 0 0.000000 0.000000
taus decayMode 0.0 0.000000 0.000000
taus passJVT 0 0.000000 0.000000
lep 1 is muon 0.000000 0.000000
taus DL1r 0 0.000000 0.000000
jet 1 2 phi diff cos 0.000000 0.000000
lep Phi diff sin 0.000000 0.000000

feature name mean std
lep 0 is muon 0.000000 0.000000
jet 4 5 phi diff cos 0.000000 0.000000
lep 0 jet 0 diff cos 0.000000 0.000000
jet 4 5 phi diff sin 0.000000 0.000000
jet 3 4 phi diff sin 0.000000 0.000000
jet 2 3 phi diff sin 0.000000 0.000000
jet 1 2 phi diff sin 0.000000 0.000000
lep nTrackParticles 1 0.000000 0.000000
taus passEleOLR 0 0.000000 0.000000
DeltaR min lep jet 0.000000 0.000000
lep nTrackParticles 0 0.000000 0.000000
jet pt4 0.000000 0.000000
jet phi4 0.000000 0.000000
jet phi3 0.000000 0.000000
jet phi1 0.000000 0.000000
jet e5 0.000000 0.000000
jet e4 0.000000 0.000000
jet e0 0.000000 0.000000
jet pt5 0.000000 0.000000
jet pt3 0.000000 0.000000
sumPsbtag 0.000000 0.000000
jet eta5 0.000000 0.000000
jet eta4 0.000000 0.000000
jet eta3 0.000000 0.000000
jet eta1 0.000000 0.000000
HT inclFwdJets 0.000000 0.000000
HT fwdJets 0.000000 0.000000
eta frwdjet 0.000000 0.000000
lep E 0 0.000000 0.000000
taus decayMode 6.0 0.000000 0.000000
lep Z0SinTheta 1 0.000000 0.000000
DeltaR min lep jet fwd 0.000000 0.000000
lep EtaBE2 1 0.000000 0.000000
nTaus OR Pt25 0.000000 0.000000
lep Phi 0 0.000000 0.000000
lep Phi 1 0.000000 0.000000
nJets OR 0.000000 0.000000
lep Pt 1 0.000000 0.000000
lep Z0SinTheta 0 0.000000 0.000000
max eta 0.000000 0.000000
nFwdJets OR 0.000000 0.000000
MLepMet 0.000000 0.000000
jet e1 -0.000246 0.002704
jet 0 1 phi diff cos -0.004231 0.053859
lep 0 jet 0 diff sin -0.006969 0.016299
lep EtaBE2 0 -0.014520 0.066667
Ptll01 -0.037246 0.035838
minDeltaR LJ 1 -0.054835 0.090502
lep1 tau Phi diff sin -0.055395 0.034278
lep Eta 1 -0.061548 0.062033
lep Pt 0 -0.228115 0.118430
minDeltaR LJ 0 -0.292790 0.181685

Table A.2 800 GeV model feature importances



54 Appendix

feature name mean std
MtLepMet 10.715283 1.699835
taus pt 0 8.449437 0.973712
lep1 tau Phi diff cos 3.110103 0.785966
HT inclFwdJets 1.575046 0.509917
lep0 tau Phi diff cos 1.574229 0.360287
jet e0 1.139809 0.269509
lep0 tau Phi diff sin 1.052009 0.473405
MLepMet 1.047756 0.187420
met met 1.044287 0.273011
taus charge 0 1.034181 0.462671
lep Pt 0 0.950642 0.229079
lep Phi diff cos 0.741358 0.302607
max eta 0.697128 0.419684
HT 0.689389 0.577100
HT lep 0.683032 0.237516
DeltaR min lep jet 0.505881 0.200264
Mll01 0.493561 0.244676
lep1 tau Phi diff sin 0.474708 0.808762
taus width 0 0.461149 0.313287
DeltaR min lep jet fwd 0.456321 0.222852
HT jets 0.437248 0.195598
mjjMax frwdJet 0.370948 0.207650
jet e1 0.369101 0.289666
DRll01 0.356922 0.335037
lep Phi 1 0.351716 0.237533
lep Eta 0 0.347595 0.426330
taus RNNJetScoreSigTrans 0 0.332905 0.262329
jet e2 0.330293 0.153850
jet pt0 0.296598 0.087400
minDeltaR LJ 0 0.286989 0.291209
taus eta 0 0.265660 0.172754
lep E 0 0.249435 0.194823
jet pt1 0.238495 0.133509
sumPsbtag 0.238267 0.198148
minDeltaR LJ 1 0.238215 0.248822
jet 1 2 phi diff cos 0.237665 0.116224
lep Eta 1 0.218804 0.155981
jet phi0 0.190458 0.137340
dEta maxMjj frwdjet 0.166433 0.221035
lep Phi diff sin 0.159833 0.254794
jet 1 2 phi diff sin 0.149189 0.074703
jet e3 0.146590 0.176247
jet 2 3 phi diff sin 0.130153 0.122105
lep 1 jet 0 diff sin 0.117234 0.174617
jet pt3 0.105715 0.172181
minDeltaR LJ 2 0.103570 0.144179
lep 0 jet 0 diff sin 0.090963 0.100504
jet 3 4 phi diff sin 0.086512 0.108708
lep 0 jet 0 diff cos 0.084298 0.126115
jet eta3 0.082394 0.084534
lep Pt 1 0.076758 0.218631
lep Z0SinTheta 0 0.073573 0.084650

feature name mean std
jet phi2 0.072993 0.123990
lep E 1 0.068996 0.237466
jet 4 5 phi diff sin 0.065326 0.082103
jet eta0 0.063077 0.144645
jet phi1 0.061180 0.076876
taus decayMode 2.0 0.061174 0.127476
jet e4 0.051880 0.105878
jet eta4 0.049436 0.077477
jet eta1 0.049142 0.077025
taus DL1r 0 0.048809 0.076554
met phi 0.041748 0.074200
jet pt5 0.024718 0.060369
jet 0 1 phi diff cos 0.024399 0.104762
jet phi3 0.023835 0.058212
lep Phi 0 0.018877 0.087607
lep EtaBE2 0 0.008211 0.240807
taus phi 0 0.005659 0.060446
jet eta2 0.002402 0.093643
lep 0 is muon 0.000000 0.000000
taus decayMode 4.0 0.000000 0.000000
taus decayMode 0.0 0.000000 0.000000
taus decayMode 3.0 0.000000 0.000000
eta frwdjet 0.000000 0.000000
taus decayMode 1.0 0.000000 0.000000
jet 4 5 phi diff cos 0.000000 0.000000
lep 1 is muon 0.000000 0.000000
taus passEleOLR 0 0.000000 0.000000
HT fwdJets 0.000000 0.000000
lep nTrackParticles 0 0.000000 0.000000
jet e5 0.000000 0.000000
jet phi5 0.000000 0.000000
jet eta5 0.000000 0.000000
nFwdJets OR 0.000000 0.000000
taus passJVT 0 0.000000 0.000000
nTaus OR Pt25 0.000000 0.000000
nJets OR 0.000000 0.000000
taus fromPV 0 0.000000 0.000000
taus JetRNNSigTight 0 0.000000 0.000000
taus numTrack 0 0.000000 0.000000
taus decayMode 6.0 0.000000 0.000000
jet 2 3 phi diff cos -0.002277 0.147958
lep Z0SinTheta 1 -0.022189 0.118975
jet pt2 -0.045257 0.157184
lep nTrackParticles 1 -0.081830 0.083956
jet 3 4 phi diff cos -0.089895 0.139071
jet pt4 -0.091104 0.083551
jet phi4 -0.096007 0.081233
lep tau opposite charge -0.108422 0.121204
lep 1 jet 0 diff cos -0.137783 0.094847
lep EtaBE2 1 -0.142432 0.144104
Ptll01 -0.143678 0.120547
jet 0 1 phi diff sin -0.253841 0.067365

Table A.3 1500 GeV model feature importances
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feature name mean std
taus pt 0 8.615530 1.720347
DRll01 3.752879 1.239824
jet pt1 2.888815 1.199397
MLepMet 2.195968 1.167438
lep EtaBE2 1 1.711264 0.745173
lep E 1 1.042407 0.548502
sumPsbtag 0.995894 0.763880
jet e0 0.946223 0.665401
taus numTrack 0 0.742801 0.429691
HT jets 0.723015 0.485177
Mll01 0.713279 0.413549
mjjMax frwdJet 0.569055 0.335925
lep nTrackParticles 1 0.547799 0.272317
minDeltaR LJ 2 0.517844 0.541345
jet phi3 0.390835 0.504706
minDeltaR LJ 1 0.353564 0.538258
jet pt0 0.323973 0.415357
jet e2 0.280397 0.408662
DeltaR min lep jet 0.224285 0.287723
jet 0 1 phi diff sin 0.191185 0.356540
lep 0 is muon 0.157038 0.161118
jet eta4 0.149207 0.434847
lep 0 jet 0 diff sin 0.126241 0.237290
taus eta 0 0.120991 0.220898
taus JetRNNSigTight 0 0.115757 0.226690
taus charge 0 0.109927 0.153696
lep Z0SinTheta 0 0.103367 0.233886
lep 1 is muon 0.102853 0.198942
dEta maxMjj frwdjet 0.087330 0.371171
jet e3 0.083058 0.219595
jet e4 0.081270 0.241907
DeltaR min lep jet fwd 0.076477 0.323092
jet pt4 0.054296 0.257118
lep Pt 0 0.044547 0.348978
HT fwdJets 0.032716 0.263313
taus width 0 0.028931 0.307223
jet eta3 0.012535 0.532795
jet phi4 0.000000 0.000000
jet 3 4 phi diff sin 0.000000 0.000000
taus decayMode 4.0 0.000000 0.000000
jet 4 5 phi diff cos 0.000000 0.000000
taus fromPV 0 0.000000 0.000000
jet phi1 0.000000 0.000000
jet 4 5 phi diff sin 0.000000 0.000000
taus decayMode 6.0 0.000000 0.000000
lep 1 jet 0 diff sin 0.000000 0.000000
taus passJVT 0 0.000000 0.000000
lep Phi diff cos 0.000000 0.000000
jet phi5 0.000000 0.000000
lep1 tau Phi diff cos 0.000000 0.000000
lep Phi 1 -0.008853 0.311810
jet 1 2 phi diff cos -0.009042 0.245671

feature name mean std
taus passEleOLR 0 -0.014623 0.065395
nFwdJets OR -0.029527 0.293938
lep 0 jet 0 diff cos -0.036898 0.385761
lep Phi 0 -0.037205 0.300278
minDeltaR LJ 0 -0.040662 0.503578
nJets OR -0.042281 0.385127
taus decayMode 0.0 -0.043868 0.107140
taus decayMode 2.0 -0.045721 0.151161
taus RNNJetScoreSigTrans 0 -0.046069 0.112515
jet eta1 -0.058491 0.120021
lep 1 jet 0 diff cos -0.061527 0.126251
lep Z0SinTheta 1 -0.067481 0.157983
taus decayMode 3.0 -0.073114 0.129927
jet 2 3 phi diff cos -0.076782 0.136444
nTaus OR Pt25 -0.091217 0.239497
lep0 tau Phi diff cos -0.092000 0.241645
lep Eta 0 -0.098619 0.612710
lep Phi diff sin -0.110258 0.359199
taus DL1r 0 -0.130702 0.236693
jet 0 1 phi diff cos -0.131206 0.208164
taus decayMode 1.0 -0.131605 0.149275
lep E 0 -0.140741 0.447463
max eta -0.177617 0.427983
lep1 tau Phi diff sin -0.181202 0.251129
jet eta0 -0.197470 0.207073
jet pt5 -0.199699 0.354427
jet e1 -0.206448 0.292721
met phi -0.227810 0.320667
eta frwdjet -0.232698 0.257725
lep EtaBE2 0 -0.240449 0.271309
jet 3 4 phi diff cos -0.240478 0.252233
lep0 tau Phi diff sin -0.245567 0.238571
taus phi 0 -0.248360 0.269206
jet 2 3 phi diff sin -0.257526 0.376637
lep tau opposite charge -0.276414 0.094531
HT lep -0.292456 0.000000
jet pt2 -0.293396 0.097979
jet e5 -0.299406 0.339448
jet eta2 -0.314715 0.207428
Ptll01 -0.315171 0.259804
lep Pt 1 -0.352309 0.333186
jet phi2 -0.358609 0.159542
jet phi0 -0.395453 0.512549
jet eta5 -0.399272 0.217492
jet 1 2 phi diff sin -0.448631 0.249804
jet pt3 -0.450471 0.362664
lep Eta 1 -0.465609 0.181855
lep nTrackParticles 0 -0.526188 0.322363
HT 2.346587 1.348885
HT inclFwdJets 2.484161 1.466220
met met 4.562813 1.673473
MtLepMet 5.340643 2.091216

Table A.4 2000 GeV model feature importances
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feature name mean std
MLepMet 2.418832 0.674713
HT jets 1.035409 0.225443
sumPsbtag 0.489840 0.152324
lep tau opposite charge 0.471623 0.221563
DeltaR min lep jet fwd 0.417646 0.118190
jet pt0 0.334748 0.174384
minDeltaR LJ 0 0.312349 0.101245
taus pt 0 0.246662 0.186970
HT 0.226881 0.091848
DeltaR min lep jet 0.204507 0.067271
taus charge 0 0.181631 0.118237
taus width 0 0.169516 0.102500
HT inclFwdJets 0.156448 0.149894
DRll01 0.156105 0.083876
MtLepMet 0.129373 0.086069
lep1 tau Phi diff cos 0.120296 0.044008
dEta maxMjj frwdjet 0.112454 0.054778
jet 0 1 phi diff cos 0.102652 0.071930
lep 0 jet 0 diff cos 0.075275 0.030755
jet pt1 0.075047 0.057822
lep0 tau Phi diff cos 0.070173 0.039476
jet phi3 0.060823 0.056990
jet phi1 0.055549 0.046414
lep 1 jet 0 diff sin 0.054632 0.027337
jet eta0 0.053854 0.028168
taus eta 0 0.046255 0.043002
lep Eta 0 0.044236 0.014752
max eta 0.043144 0.044614
jet 3 4 phi diff sin 0.041417 0.035220
Ptll01 0.039420 0.036971
jet eta2 0.035702 0.019254
lep EtaBE2 1 0.034359 0.040291
met phi 0.033932 0.018697
Mll01 0.032285 0.035935
minDeltaR LJ 1 0.030965 0.023792
lep nTrackParticles 1 0.030595 0.016972
jet pt2 0.029710 0.046383
jet pt4 0.027061 0.025978
lep E 1 0.027033 0.036913
jet 4 5 phi diff cos 0.022852 0.036502
taus RNNJetScoreSigTrans 0 0.021823 0.031102
jet 1 2 phi diff cos 0.017870 0.041328
eta frwdjet 0.014546 0.033648
jet eta3 0.014542 0.020552
jet 1 2 phi diff sin 0.014237 0.019222
jet e3 0.013966 0.027236
jet phi2 0.013092 0.017023
taus DL1r 0 0.012206 0.033058
met met 0.011868 0.056822
jet e0 0.011377 0.050886
mjjMax frwdJet 0.010774 0.018371
lep Z0SinTheta 0 0.010508 0.019220

feature name mean std
HT lep 0.010380 0.034175
jet 3 4 phi diff cos 0.009770 0.019542
taus fromPV 0 0.009032 0.023512
jet eta5 0.008930 0.009872
lep0 tau Phi diff sin 0.008361 0.012988
jet 2 3 phi diff sin 0.005898 0.014034
lep Phi diff sin 0.004230 0.022454
lep Pt 1 0.002785 0.009855
lep Phi 0 0.001098 0.013259
lep Pt 0 0.000860 0.000371
lep Z0SinTheta 1 0.000304 0.000799
jet phi0 0.000248 0.000182
jet pt5 0.000226 0.000282
lep1 tau Phi diff sin 0.000150 0.000669
jet e1 0.000126 0.000117
HT fwdJets 0.000018 0.000079
lep 1 jet 0 diff cos 0.000000 0.000000
jet pt3 0.000000 0.000000
taus decayMode 3.0 0.000000 0.000000
jet eta4 0.000000 0.000000
taus decayMode 2.0 0.000000 0.000000
taus decayMode 4.0 0.000000 0.000000
lep 0 jet 0 diff sin 0.000000 0.000000
lep 0 is muon 0.000000 0.000000
lep 1 is muon 0.000000 0.000000
taus decayMode 0.0 0.000000 0.000000
taus decayMode 1.0 0.000000 0.000000
jet eta1 0.000000 0.000000
minDeltaR LJ 2 0.000000 0.000000
jet e2 0.000000 0.000000
taus JetRNNSigTight 0 0.000000 0.000000
nFwdJets OR 0.000000 0.000000
nJets OR 0.000000 0.000000
nTaus OR Pt25 0.000000 0.000000
lep nTrackParticles 0 0.000000 0.000000
taus passEleOLR 0 0.000000 0.000000
jet phi5 0.000000 0.000000
taus decayMode 6.0 0.000000 0.000000
taus numTrack 0 0.000000 0.000000
jet phi4 0.000000 0.000000
taus passJVT 0 0.000000 0.000000
lep Eta 1 -0.000191 0.059669
jet 4 5 phi diff sin -0.000282 0.000197
jet e4 -0.000343 0.000848
lep E 0 -0.000569 0.000878
jet 2 3 phi diff cos -0.002302 0.018232
jet 0 1 phi diff sin -0.003285 0.002433
jet e5 -0.007172 0.014183
lep Phi diff cos -0.009912 0.021144
lep EtaBE2 0 -0.020465 0.022503
lep Phi 1 -0.033422 0.026443
taus phi 0 -0.040058 0.009087

Table A.5 New 250 GeV model feature importances
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feature name mean std
MtLepMet 4.253547 1.223928
taus pt 0 3.543661 0.618822
Mll01 2.498689 0.775792
taus charge 0 1.940902 0.608596
lep1 tau Phi diff cos 1.871623 0.495560
lep Phi diff cos 1.808359 0.707600
DRll01 1.765589 0.651490
met met 1.374030 0.783516
lep Eta 1 1.216830 0.315184
HT inclFwdJets 1.206561 0.684414
HT 1.127910 0.603420
lep Pt 0 1.046766 0.377972
MLepMet 0.966165 0.505554
taus width 0 0.954986 0.650333
max eta 0.853395 0.547894
lep0 tau Phi diff cos 0.829265 0.342363
HT lep 0.761826 0.409014
HT jets 0.501460 0.417280
lep0 tau Phi diff sin 0.407068 0.443335
jet e0 0.401048 0.227662
sumPsbtag 0.370411 0.283221
minDeltaR LJ 1 0.250766 0.211469
jet 0 1 phi diff cos 0.197565 0.239095
DeltaR min lep jet fwd 0.181012 0.372854
nTaus OR Pt25 0.179716 0.244783
lep tau opposite charge 0.175364 0.202908
lep Phi 0 0.171128 0.107597
lep1 tau Phi diff sin 0.168244 0.223407
jet pt0 0.155189 0.210403
jet e3 0.148571 0.092144
Ptll01 0.130187 0.234685
jet e4 0.117050 0.163406
jet pt4 0.090766 0.090060
jet e5 0.085447 0.077553
lep Pt 1 0.082733 0.434060
jet eta1 0.065920 0.056580
jet 4 5 phi diff cos 0.058590 0.090916
DeltaR min lep jet 0.053645 0.244912
nFwdJets OR 0.051400 0.113956
lep E 0 0.047518 0.315501
eta frwdjet 0.046237 0.043097
lep Z0SinTheta 0 0.031069 0.060082
lep E 1 0.030175 0.120215
jet phi5 0.029815 0.040056
taus decayMode 2.0 0.028223 0.033272
jet eta4 0.024698 0.054877
jet 2 3 phi diff cos 0.024642 0.080818
jet phi0 0.022449 0.074093
jet eta3 0.019251 0.036946
jet phi2 0.017606 0.112266
taus RNNJetScoreSigTrans 0 0.014583 0.200560
taus eta 0 0.009694 0.193198

feature name mean std
met phi 0.008890 0.051758
taus passEleOLR 0 0.007248 0.032261
taus decayMode 1.0 0.007157 0.005388
mjjMax frwdJet 0.003887 0.208944
taus decayMode 6.0 0.000000 0.000000
taus decayMode 0.0 0.000000 0.000000
lep 1 is muon 0.000000 0.000000
taus passJVT 0 0.000000 0.000000
taus decayMode 3.0 0.000000 0.000000
taus decayMode 4.0 0.000000 0.000000
jet 4 5 phi diff sin -0.000554 0.038870
lep nTrackParticles 1 -0.003080 0.011554
taus fromPV 0 -0.003947 0.027795
jet phi1 -0.004349 0.082743
lep 0 is muon -0.010819 0.008145
taus JetRNNSigTight 0 -0.012675 0.026893
jet 0 1 phi diff sin -0.014023 0.048014
lep nTrackParticles 0 -0.014056 0.036553
taus numTrack 0 -0.016893 0.032967
jet 3 4 phi diff cos -0.018532 0.088004
lep 0 jet 0 diff sin -0.019597 0.078953
jet phi3 -0.019844 0.106839
nJets OR -0.020632 0.036114
jet pt2 -0.024386 0.145480
minDeltaR LJ 2 -0.025154 0.117855
lep EtaBE2 0 -0.028563 0.138122
jet phi4 -0.028754 0.063964
jet pt5 -0.029698 0.103083
lep 1 jet 0 diff sin -0.030926 0.081880
jet eta0 -0.033001 0.116095
dEta maxMjj frwdjet -0.038130 0.154607
HT fwdJets -0.042183 0.103673
lep EtaBE2 1 -0.043468 0.059673
jet eta5 -0.046727 0.036081
lep Phi 1 -0.047367 0.051334
jet 3 4 phi diff sin -0.052107 0.071314
lep Eta 0 -0.078416 0.133209
jet 1 2 phi diff cos -0.078656 0.106325
jet pt3 -0.078878 0.163509
lep 1 jet 0 diff cos -0.082607 0.126492
lep 0 jet 0 diff cos -0.090893 0.230160
jet 1 2 phi diff sin -0.122530 0.074840
taus phi 0 -0.136058 0.123771
jet eta2 -0.137441 0.105901
minDeltaR LJ 0 -0.151761 0.376662
lep Z0SinTheta 1 -0.168849 0.097048
jet 2 3 phi diff sin -0.179997 0.075464
taus DL1r 0 -0.188369 0.109462
lep Phi diff sin -0.203268 0.155079
jet e2 -0.211553 0.104913
jet pt1 -0.325665 0.140454
jet e1 -0.345910 0.072104

Table A.6 New 800 GeV model feature importances
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feature name mean std
jet pt1 3.210628 0.187634
taus charge 0 1.838014 1.287685
DeltaR min lep jet 1.759808 1.264008
lep0 tau Phi diff sin 1.019533 0.553750
lep Phi diff cos 0.999391 0.473570
lep1 tau Phi diff cos 0.718046 0.383171
taus width 0 0.562124 0.518252
lep1 tau Phi diff sin 0.480318 0.397294
lep Phi diff sin 0.428976 0.415628
jet 4 5 phi diff cos 0.257770 0.215380
jet phi2 0.180898 0.152634
jet eta4 0.179490 0.136367
jet eta2 0.158635 0.261976
nTaus OR Pt25 0.106798 0.161459
met phi 0.097367 0.171885
jet e4 0.093791 0.206445
lep 0 jet 0 diff sin 0.062564 0.153599
minDeltaR LJ 0 0.060917 0.441272
minDeltaR LJ 2 0.048797 0.174175
jet 4 5 phi diff sin 0.039574 0.096653
lep Phi 0 0.027810 0.094706
taus decayMode 6.0 0.000000 0.000000
nFwdJets OR 0.000000 0.000000
jet eta5 0.000000 0.000000
taus passEleOLR 0 0.000000 0.000000
taus fromPV 0 0.000000 0.000000
taus JetRNNSigTight 0 0.000000 0.000000
taus numTrack 0 0.000000 0.000000
taus passJVT 0 0.000000 0.000000
HT fwdJets 0.000000 0.000000
nJets OR 0.000000 0.000000
taus decayMode 0.0 0.000000 0.000000
lep 0 is muon 0.000000 0.000000
taus decayMode 4.0 0.000000 0.000000
taus decayMode 3.0 0.000000 0.000000
taus decayMode 1.0 0.000000 0.000000
lep tau opposite charge 0.000000 0.000000
jet 0 1 phi diff cos -0.004703 0.146598
taus phi 0 -0.035230 0.119436
jet eta1 -0.057914 0.102915
eta frwdjet -0.081784 0.120240
lep 1 jet 0 diff cos -0.100217 0.244032
jet 0 1 phi diff sin -0.115024 0.152500
lep 1 is muon -0.124278 0.140964
jet pt4 -0.148602 0.112420
lep E 1 -0.149568 0.237834
jet 1 2 phi diff sin -0.150974 0.154896
minDeltaR LJ 1 -0.152091 0.253347
jet phi4 -0.158298 0.155070
DeltaR min lep jet fwd -0.173770 0.323339
lep Phi 1 -0.184521 0.143270
jet e2 -0.236792 0.236940

feature name mean std
jet phi5 -0.241944 0.157023
lep nTrackParticles 1 -0.286850 0.067517
dEta maxMjj frwdjet -0.289487 0.191154
jet 3 4 phi diff cos -0.475499 0.189475
jet 3 4 phi diff sin -inf NaN
lep 0 jet 0 diff cos -inf NaN
lep 1 jet 0 diff sin -inf NaN
lep Eta 0 -inf NaN
lep E 0 -inf NaN
jet phi3 -inf NaN
jet pt0 -inf NaN
jet 1 2 phi diff cos -inf NaN
jet 2 3 phi diff sin -inf NaN
jet 2 3 phi diff cos -inf NaN
Mll01 -inf NaN
lep Eta 1 -inf NaN
jet phi1 -inf NaN
jet phi0 -inf NaN
jet e5 -inf NaN
jet pt2 -inf NaN
jet e3 -inf NaN
jet e1 -inf NaN
taus decayMode 2.0 -inf NaN
jet e0 -inf NaN
jet pt5 -inf NaN
DRll01 -inf NaN
HT -inf NaN
MLepMet -inf NaN
lep0 tau Phi diff cos -inf NaN
mjjMax frwdJet -inf NaN
jet eta3 -inf NaN
Ptll01 -inf NaN
sumPsbtag -inf NaN
lep nTrackParticles 0 -inf NaN
met met -inf NaN
max eta -inf NaN
lep Z0SinTheta 1 -inf NaN
jet eta0 -inf NaN
lep Z0SinTheta 0 -inf NaN
taus eta 0 -inf NaN
taus pt 0 -inf NaN
lep Pt 1 -inf NaN
lep Pt 0 -inf NaN
HT lep -inf NaN
taus DL1r 0 -inf NaN
taus RNNJetScoreSigTrans 0 -inf NaN
lep EtaBE2 1 -inf NaN
HT jets -inf NaN
HT inclFwdJets -inf NaN
lep EtaBE2 0 -inf NaN
jet pt3 -inf NaN
MtLepMet -inf NaN

Table A.7 New 3000 GeV model feature importances
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A.3 Pearson Correlation Coefficients

Figure A.1 Pearson correlation coefficients for 25 most important features of the 300 GeV mass model,
correlations measured on full dataset with all signal masses and background

A.4 Feature reduction
Below are the features used to fit the feature reduction models. Three levels of feature reduction
are used, matching up to three lines in the following description – 5 features (first line), 10
features (first and second line) and 20 (first, second and third line)
300 GeV model MLepMet, taus pt 0, sumPsbtag, lep1 tau Phi diff cos, jet pt0

taus width 0, jet 0 1 phi diff cos, DeltaR min lep jet fwd, taus RNNJetScoreSigTrans 0, dEta maxMjj frwdjet
lep Z0SinTheta 1, taus eta 0, lep Eta 1, jet e3, jet pt2, jet phi0, lep0 tau Phi diff cos, max eta,
jet e4, lep1 tau Phi diff sin
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Figure A.2 Pearson correlation coefficients for 25 most important features of the original 800 GeV
mass model, correlations measured on full dataset with all signal masses and background
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Figure A.3 Pearson correlation coefficients for 25 most important features of the 1500 GeV mass
model, correlations measured on full dataset with all signal masses and background
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Figure A.4 Pearson correlation coefficients for 25 most important features of the 2000 GeV mass
model, correlations measured on full dataset with all signal masses and background
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Figure A.5 Pearson correlation coefficients for 25 most important features of the new 250 GeV mass
model, correlations measured on full dataset with all signal masses and background
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Figure A.6 Pearson correlation coefficients for 25 most important features of the new 800 GeV mass
model, correlations measured on full dataset with all signal masses and background
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Figure A.7 Pearson correlation coefficients for 25 most important features of the new 3000 GeV mass
model, correlations measured on full dataset with all signal masses and background
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800 GeV model taus pt 0, HT lep, lep Phi diff cos, taus charge 0, lep0 tau Phi diff cos
mjjMax frwdJet, taus width 0, lep1 tau Phi diff cos, met met, jet 0 1 phi diff sin, jet e3, lep 1 jet 0 diff sin,
lep0 tau Phi diff sin, HT jets, lep tau opposite charge, minDeltaR LJ 2, jet eta0, lep Eta 0,
lep 1 jet 0 diff cos, jet e2

1500 GeV model MtLepMet, taus pt 0, lep1 tau Phi diff cos, lep0 tau Phi diff cos, jet e0
lep0 tau Phi diff sin, taus charge 0, lep Phi diff cos, max eta, DeltaR min lep jet
lep1 tau Phi diff sin, taus width 0, HT jets, mjjMax frwdJet, jet e1, lep Phi 1, lep Eta 0,
taus RNNJetScoreSigTrans 0, jet e2, taus eta 0

2000 GeV model taus pt 0, DRll01, jet pt1, MLepMet, lep EtaBE2 1
sumPsbtag, jet e0, taus numTrack 0, mjjMax frwdJet, lep nTrackParticles 1
minDeltaR LJ 2, jet phi3, minDeltaR LJ 1, jet e2, jet 0 1 phi diff sin, lep 0 is muon, jet eta4,
lep 0 jet 0 diff sin, taus eta 0, taus JetRNNSigTight 0

New 250 GeV model MLepMet, HT jets, sumPsbtag, lep tau opposite charge, DeltaR min lep jet fwd
taus pt 0, taus charge 0, taus width 0, DRll01, lep1 tau Phi diff cos
dEta maxMjj frwdjet, jet 0 1 phi diff cos, lep 0 jet 0 diff cos, lep0 tau Phi diff cos, jet phi3,
jet phi1, lep 1 jet 0 diff sin, jet eta0, taus eta 0, lep Eta 0

New 800 GeV model MtLepMet, taus pt 0, taus charge 0, lep1 tau Phi diff cos, lep Phi diff cos
lep Eta 1, taus width 0, max eta, lep0 tau Phi diff cos, HT jets
lep0 tau Phi diff sin, jet e0, sumPsbtag, minDeltaR LJ 1, jet 0 1 phi diff cos, nTaus OR Pt25,
lep tau opposite charge, lep Phi 0, lep1 tau Phi diff sin, jet e3

New 3000 GeV model jet pt1, taus charge 0, DeltaR min lep jet, lep0 tau Phi diff sin, lep Phi diff cos
lep1 tau Phi diff cos, taus width 0, lep1 tau Phi diff sin, lep Phi diff sin, jet 4 5 phi diff cos
jet phi2, jet eta4, jet eta2, nTaus OR Pt25, met phi, jet e4, lep 0 jet 0 diff sin, minDeltaR LJ 2,
jet 4 5 phi diff sin, lep Phi 0
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Contents of Enclosed CD

readme.txt.........................................the file with CD contents description
application...............................the directory with the application-related files

preprocessing.py................................................data preprocessing
text............................................................the thesis text directory

src...................................the directory of LATEX source codes of the thesis
thesis.pdf............................................ the thesis text in PDF format
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List of abbreviations

2DHM 2 Doublet Higgs Model
2lSS1tau 2 leptons with same sign and 1 tau

CL Confidence Level
MLP Multilayer Perceptron

ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent

SM Standard Model
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