
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Modular Compiler for the TinyC Language

Bc. Martin Prokopič

Ing. Petr Máj

Informatics

System Programming

Department of Theoretical Computer Science

until the end of summer semester 2023/2024

Instructions

Familiarize yourself with the syntax and semantic of the TinyC language used in the NI-

GEN course. Analyze the current C++ specific toolchain and determine how to extend it to

support other implementation languages. As a proof of concept, design and implement

optimizing compiler for the tinyC language in Scala compatible with the existing

toolchain (including the tiny86 VM). Pay close attention to how advanced algorithms from

compiler construction can be implemented in the Scala language in an idiomatic and

clean way useful for educational purposes. Evaluate your design choices.

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 24 November 2022 in Prague.

Master’s thesis

Modular Compiler for the TinyC Language

Bc. Martin Prokopič

Department of Theoretical Computer Science
Supervisor: Ing. Petr Máj

May 4, 2023

Acknowledgements

First and foremost, I would like to thank my supervisor, Ing. Petr Máj, for
his guidance and expertise in the field of compiler construction, which made
this work possible. I would also like to extend my thanks to doc. Ing. Filip
Křikava, Ph.D. for introducing me to the world of Scala and functional pro-
gramming in general as part of the BIE-OOP and NIE-APR courses. Finally,
I would like to thank my loving family, whose support has been instrumental
in my academic and personal success.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 4, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Martin Prokopič. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Prokopič, Martin. Modular Compiler for the TinyC Language. Master’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2023.

Abstrakt

Tato práce popisuje překladač jazyka tinyC do assemberu virtuálního stroje
tiny86 (oboje používané v předmětu NIE-GEN). Překladač je implemento-
ván v jazyce Scala, je napojen na existující nástroje používané v předmětu,
podporuje všechny konstrukty jazyka tinyC a pro generování kódu používá
pokročilé algoritmy. Hlavní části překladače (frontend, middleend, backend)
jsou jasně odděleny a lze je využívat buď ze Scaly nebo externě pomocí vlast-
ního textového mezikódu ve stylu LLVM. Díky své jednoduchosti a modularitě
je překladač vhodný pro výukové účely.

Klíčová slova překladač, pokrývání stromu, barvení grafu, tinyC, tiny86,
Scala

Abstract

This thesis introduces an ahead-of-time compiler for the tinyC language tar-
geting the tiny86 VM (both used in the NIE-GEN course) implemented in
Scala. The compiler seamlessly integrates with the existing toolchain, sup-
ports all tinyC features and uses tree covering instruction selection and graph-
coloring register allocation. The main modules (frontend, middleend, back-
end) are cleanly separated and can be extended either from Scala, or externally
through a custom text-serializable LLVM-like SSA intermediate representa-
tion, which encourages use of the compiler for educational purposes.

Keywords compiler, tree covering, graph coloring, tinyC, tiny86, Scala

vii

Contents

1 Introduction 1
1.1 A Modular Compiler . 1
1.2 TinyC . 3
1.3 Tiny x86 . 4
1.4 Scala . 5
1.5 Previous Work . 6
1.6 Thesis Outline . 6

2 Intermediate-Code Generation and Optimization 7
2.1 String Parsing Theory . 7
2.2 Lexical and Syntax Analysis . 15
2.3 Semantic and Type Analysis . 17
2.4 Intermediate Representation . 18
2.5 Compiling Source Code to IR 22
2.6 Converting IR into SSA Form 23
2.7 Optimizations . 24

3 Instruction Selection 29
3.1 Overview of Instruction Selection Techniques 30
3.2 Tree Covering . 30
3.3 Phi Node Elimination . 37
3.4 Macro Expansion . 39

4 Register Allocation and Assignment 43
4.1 A Simple Local Register Allocator 43
4.2 Liveness Analysis . 44
4.3 Register Allocation by Graph Coloring 48
4.4 Linear Scan Register Allocation 54
4.5 Post Processing . 54

ix

5 Design and Implementation 57
5.1 Design Goals . 57
5.2 Extending the NIE-GEN Toolchain 58
5.3 Parsing and Typechecking TinyC 60
5.4 Semantic and Type Analysis . 62
5.5 Intermediate Representation . 63
5.6 Compiling TinyC to IR . 68
5.7 The Optimizer . 70
5.8 Overview of the Backend . 71
5.9 Instruction Selection . 72
5.10 Register Allocation . 74
5.11 Post Processing . 76
5.12 Implementation . 77
5.13 Documentation . 81

6 Evaluation 83
6.1 Unit Tests . 83
6.2 Integration and End to End Tests 83
6.3 Benchmarks . 84

Conclusion 89
Future Work . 89

Bibliography 91

A Acronyms 97

B User Guide 99
B.1 Building . 99
B.2 Usage . 100
B.3 Supported TinyC Features . 102

C IR Grammar 103

D Contents of the Electronic Attachment 107

x

List of Figures

1.1 A modular compiler supporting 3 different languages and targets. . 2

2.1 δ1 for grammar G1 = ({E, T, F}, {+, ∗, (,), a}, δ1, E). 8
2.2 δ2 for grammar G2 = ({E}, {+, ∗, (,), a}, δ2, E). 8
2.3 A parse tree and two different derivations of a + a in G2. 9
2.4 Two possible parse trees for the sentence a + a ∗ a in G2. 9
2.5 A modified grammar G′

2 with removed left recursion and new start
symbol S. 10

2.6 Productions of G3 demonstrating the dangling-else problem. 12
2.7 A PEG P1 = ({S, E, T, F, A}, {+, ∗, (,), a}, R, S), where R is writ-

ten above. 14
2.8 An example of (a) parse tree (as parsed by grammar from fig. 2.1)

and (b) equivalent AST for expression (a) + a ∗ a. 16
2.9 A simple C program demonstrating the limitations of tree-address

code. (a) shows the original code and (b) the equivalent three-
address code, where each statement does only a single operation. . 19

2.10 (a) the program from fig. 2.9b lowered into a set of basic blocks
and (b) its basic block control-flow graph. B1 is the entry point, B4
is the only exit point. 20

2.11 A SSA form of the program from fig. 2.10a. We use the ϕ-node to
join values of i coming from B1 and B3. (b) then shows a DFG of
the program, where the ϕ-node completes a cycle. 21

2.12 An example of a LLVM IR of a simple C program (a) before and (b)
after optimizations (clang-16 -O1). Function inlining together with
constant propagation have determined that x is always truthy, so
the compiler could replace the if statement with its body. Strength
reduction also replaced multiplication by two with a left shift. (c)
shows the original C source code. 27

3.1 An intermediate representation of the expression 1 + 2 ∗ 3. 31

xi

3.2 An example showing the effect of (b) edge splitting and (c) node
duplication on a common subexpression. After edge splitting the
UMul is evaluated only once and its result is stored in a register. . 36

3.3 An example of a shortcoming of naive ϕ-node elimination. (a)
shows the original CFG, (b) shows the incorrect result of merging
the x, y and z variables, which was corrected in (c) by inserting
copy statements. 38

3.4 An example demonstrating the lost-copy problem when we hoist a
copy across a critical edge. The program in (b) incorrectly prints
the value of x from the last instead of the penultimate iteration. . 39

3.5 An example of the swap problem, the program in (b) is incorrect. . 40
3.6 A corrected version of (a) the lost copy and (b) swap problem

examples by introducing temporary variables tx and ty. 40

4.1 Example CFG of a program for demonstrating liveness analysis. . 46
4.2 Hasse diagram of (a) a flat lattice and (b) a powerset lattice. . . . 47
4.3 A sample source code and a corresponding colored interference

graph with three precolored physical registers r1, r2 and r3. t1
and t2 do not interfere, because they are related only by a move. . 49

4.4 Diagram of phases of the graph coloring register allocation algorithm 49
4.5 Lifecycle diagram of a node during register allocation. 53

5.1 Two variants of integrating our compiler (tinycc.jar) with tiny86, in
(a) tiny86 runs inside the JVM together with the compiler and in
(b) the applications are separated on the OS level and communicate
using files. 58

5.2 Compilation of a tinyC function which accepts and returns a struct.
The structures are passed by reference and copied by the callee. . . 69

5.3 Diagram of the backend architecture. 71
5.4 Stack layout after entering a function. The first argument is at [BP

+ 2], the first local variable is at [BP + -1]. 74
5.5 Spilling VF7 requires a new integer temporary VR9, which the inte-

ger register allocator later assigns to R0. 74
5.6 Constructing a register allocator from the allocation algorithm,

register-specific information and additional spilling-related code. . 80

xii

List of Tables

2.1 FIRST and FOLLOW sets for G′
2. 11

2.2 A parsing table for grammar G2. 11
2.3 A subset of TIP (equivalent to µC) type inference rules required

for typechecking listing 2.2. I stands for an integer literal, E for
an expression and X for a program variable (functions are treated
as values) [1]. 18

3.1 A simple pattern set for a tree-based IR and tiny86-like target
language. The LEA instruction can be used to perform combined
multiply-add operation in a single instruction. 31

4.1 Steps of the iterative solver for the CFG from fig. 4.1. 46

5.1 Mapping between PEG expressions and our combinator library. . . 61

6.1 Comparison of size and performance of generated code with and
without enabled SSA construction. With enabled optimizations,
the code is in both cases smaller and the program finishes execution
faster. 87

6.2 Comparison of size and performance of generated code by our com-
piler (tinycc) with a different, older compiler (tinyc) with only rudi-
mentary instruction selection and a simple local register allocator.
tinycc produces smaller and faster code for both programs. The
numbers in the second column are different from table 6.1 because
here they include the required printnum implementation. 87

xiii

List of Listings

1.1 An example of printing a string to standard output in tinyC
using the builtin print. 4

1.2 An example of Scala 2 code with an immutable list and pattern
matching. 5

2.1 An example of variable shadowing in tinyC and C since the C99
revision. 17

2.2 A simple µC program which demonstrates type inference. The
type of x and y is not known until after the call expression. . . 18

3.1 An example maximal munch implementation in Scala for a sub-
set of patterns from table 3.1 32

3.2 An example of two patterns from a PCC machine description.
The first pattern matches a += operator if the result should be
stored in the A register, the first operand is an integer argument
stored in A register and the second operand is a NAME node. If
the match succeeds, the compiler emits the assembly code (after
expanding the AL and AR macros) and replaces the matched IR
subtree with the left subtree (RLEFT). The second pattern is
used for matching +, -, |, & and ˆ arithmetic operators and
uses the OI macro and | operator for more concise notation. [2] 33

5.1 The VM crashed as a result of loading from invalid memory
address -1 after it fetched the MOV instruction on address 5 even
though it was never going to be executed. 59

5.2 An example of an automatically generated parser error message
caused by an incomplete expression. 61

5.3 A simple combinator parser for PEG from fig. 2.7. 61
5.4 The IR of the “Hello, world!” program from listing 1.1. 68
5.5 An example Scala implementation of a rewrite rule for the IAdd

instruction. 73
5.6 Tiny86 listing of the inserted function prologue and epilogue. . 76

xv

List of Listings

5.7 Example of how the single-purpose classes can be combined to
compile a tinyC source code into IR. We also provide a conve-
nience function to do these steps at once. 78

5.8 Using Scala class composition to construct and run a tiny86
maximal munch instruction selector with the default ruleset. . . 80

6.1 factorize.c: A program for computing prime factors of a positive
integer. 84

6.2 collatz.c: A program that prints the number of reduction steps
required to reach 1 from a positive starting integer n. 85

6.3 A complete listing of void collatz(int) from collatz.c com-
piled by tinycc with optimizations. The tiny86 assembly does
not support symbolic labels, so they are represented as comments. 88

xvi

Chapter 1
Introduction

The Compiler Construction (NIE-GEN) course teaches tens of FIT CTU stu-
dents every year how to design and implement a compiler from start to finish,
focusing mostly on the optimizer and target code generation (backend) parts.
Each student is provided with a copy of the NIE-GEN Toolchain, which con-
tains a parser for tinyC, a low-level C-like programming language [3], and the
tiny86 virtual machine to be used as the target.

Although the tinyC parser is complete and the tiny86 VM has features
that make it excellent for teaching purposes, the only way to interact with
them is through a C++ API [4]. It means that without creating bindings for
another language (which is a lot of additional work for an already extensive
project) the student has to implement the entire compiler in C++.

The goal of this thesis is to design a modular compiler for tinyC in Scala (a
modern high-level language [5]) that integrates well with the existing toolchain
and which can be stripped down to be used as a foundation for NIE-GEN stu-
dents to build their compiler projects on. We evaluate suitability of Scala
by selecting and implementing some advanced techniques from compiler con-
struction, chosen with the goal of exploiting most of the features provided by
the tiny86 VM.

1.1 A Modular Compiler

Designing a compiler is a substantial project, which requires knowledge from
multiple fields of computer science. To make the development process more
tractable, we usually split the compiler into three parts – the frontend, the
middleend (optimizer), and the backend. They work together to translate a
source code in one language into another accepted by the target.

Programming in the (usually higher-level) source language is more pleasant
and a good optimizing compiler can make better decisions than a programmer
ever could if they have chosen to code in the target language directly.

1

1. Introduction

tinyC

C

Fortran

tiny86

RISC-V

x86

Optimizer

Figure 1.1: A modular compiler supporting 3 different languages and targets.

1.1.1 Frontend

The frontend is responsible for analyzing the source code and translating it
into an intermediate representation that is then processed by the rest of the
compiler. The frontend is the only part dependent on the source language.

Lexical Analysis First, a lexical analyzer scans the source code into a
sequence of tokens (e.g. an identifier, an operator, or an integer or string
literal) while also removing whitespace and comments.

Syntax Analysis A parser then uses a grammar to build an abstract syntax
tree, which captures the structure of the program. This is a well-researched
part of computer science and in section 2.1 we describe two techniques – LL(1)
parsing and parser expression grammars.

Semantic Analysis The grammar used by the parser cannot capture all of
the intricacies of the source language. The semantic analyzer links identifiers
to their declarations, determines the type of each expression according to the
rules of the language and optionally performs some additional checks.

Intermediate Code Generation The remainder of the frontend then takes
the AST annotated with type and other semantic information and translates it
into an unified intermediate representation (more in section 2.4). The compiler
uses the IR as an abstraction over all supported source and target languages,
which is the main tool enabling its modularity. Instead of developing N ·M
specialized compilers for each combination of N source and M target lan-
guages, we implement only N frontends and M backends that use a shared
optimizer (see fig. 1.1).

1.1.2 Middleend (Optimizer)

The middleend takes IR produced by the frontend and optimizes it using
language-independent passes. Thanks to the shared optimizer, both frontends
and backends can be much simpler and easier to maintain. We mention opti-
mizations such as SSA construction and constant propagation in sections 2.6

2

1.2. TinyC

and 2.7, both of which can significantly improve efficiency of the generated
code.

1.1.3 Backend

The last part of a compiler is the backend, which is responsible for generating
the target code from the optimized intermediate representation produced by
the previous stages.

Instruction Selection First, the instruction selector implements the IR
program using the best combination of machine instructions in respect to
execution speed, code size or some other criterion. We describe two popular
techniques, macro expansion and tree covering, in chapter 3.

Register Allocation and Assignment The code generated by the instruc-
tion selector uses an unlimited amount of temporaries, but the target provides
only a fixed amount of physical registers. The register allocator determines
whether a temporary should be stored in a register or spilled to the (slower)
memory. This is a NP-complete problem [6], but we show two heuristic meth-
ods producing good results in chapter 4.

Target-Dependent Optimizations After register allocation, the compiler
has the last opportunity to perform target-specific optimizations. This is often
a peepholer pass, which can make up for a simpler instruction selector by
replacing common patterns in the target code with their optimal alternatives.

1.2 TinyC

The first part of the NIE-GEN toolchain is the tinyC parser. TinyC is a
simplified subset of the C programming language, designed for teaching com-
pilers and code generation. Just like C, it is a general-purpose programming
language suitable for writing portable code, which can then be executed on
different targets. It is a relatively “low level” language, which means that
it does not deal with objects or more complex data structures and it leaves
memory management up to the programmer.

To make it better suitable for teaching, it has been stripped as much as
possible while keeping some parts interesting for compiler construction. It sup-
ports functions, the usual control flow statements (if, for, while, switch),
local and global variables, pointers1, structures and 1D arrays. However, the
syntax has been simplified and only 3 basic data types have been included
(char, int and double). We show an example program in listing 1.1. [3]

1including pointers to functions

3

1. Introduction

The tinyC language reference specifies only the syntax, which allows stu-
dents to express some creativity during the implementation. We design our
compiler to adhere as much as possible to semantics of the regular C language
as specified by the C99 standard [7], which makes our variant of tinyC more
predictable to unfamiliar readers and enables easy translation between regular
C and tinyC code.

int main() {
char *str = "Hello,␣world!\n";
while(*str) {
print(*(str++));

}
return 0;

}

Listing 1.1: An example of printing a string to standard output in tinyC using
the builtin print.

1.3 Tiny x86

Our tinyC compiler targets the tiny86 VM, designed by Ivo Strejc [4] for pur-
poses of NIE-GEN. It simulates a CPU with a custom register-based ISA.
There are two sets of registers, 64-bit-wide integer and double precision float-
ing point registers, whose amount is configurable by the user. This configura-
bility allows testing a compiler even before we implement a working register
allocator. Tiny86 instructions can also access a data memory addressed in
64-bit words (Harvard architecture) and communicate with the user through
standard input and output.

Targeting tiny86’s simplified ISA allows the student to focus more on the
compiler itself instead of studying the intricacies of a fully-fledged architec-
tures like x86 or RISC-V. Still, many tiny86 instructions support multiple
complex addressing modes, which puts it into the CISC territory.

Tiny86 is distributed as a shared C++ library, which exposes a simple
builder interface to directly construct a program using instruction objects.
It contains no built-in text- or binary-based assembly format, which makes
integrating with non-C++ applications harder.

Luckily, Filip Gregor extended [8] the tiny86 interpreter with a proof-of-
concept parser for a text-based program representation as part of his work
on an interactive debugger. In chapter 5 we describe how we have used this
parser to interface tiny86 with our tinyC compiler.

During execution, the VM collects information about lifecycle of each in-
struction as it goes through the CPU pipeline. Such statistics include the

4

1.4. Scala

number of memory accesses or the count of pipeline stalls2, which allow us to
measure quality of the code emitted by our compiler.

1.4 Scala

Scala is a modern high-level language, which combines object-oriented and
functional programming concepts together in a statically typed language. The
name Scala stands for scalable language and it was chosen because it grows
with demands of the programmer. Novice users can quickly start developing
programs and senior developers can fully utilize the advanced syntax con-
structs and extensibility offered by Scala. [5]

From functional language perspective, it offers a powerful type system,
large immutable collection library and constructs designed to allow building
code from smaller blocks. The object-oriented aspect helps with structuring
large projects and defining clear abstractions and interfaces between compo-
nents. Scala mainly targets the JVM and can seamlessly interoperate with
other projects within the Java ecosystem3. [5]

Currently there are two simultaneously supported versions of Scala, num-
bered 2 and 3, where Scala 3 is fairly new (released in 2021) and a major
overhaul of the previous version. Scala 2 is already taught on FIT CTU in
the Object-Oriented Programming (BIE-OOP) and Static Program Analysis
(NIE-APR) courses, so it is the natural choice given the educational aspect of
this thesis. Listing 1.2 contains a small snippet of Scala 2 code demonstrating
its functional and object-oriented nature.

sealed trait Animal
case object Cat extends Animal
case class Dog(name: String) extends Animal

List(Cat, Dog("Spot"), Dog("Buck")).foreach({
case Cat => println("a␣cat:␣Meow!")
case Dog(name) => println(s"$name:␣Woof!")

})

Listing 1.2: An example of Scala 2 code with an immutable list and pattern
matching.

2A pipelined CPU stalls when the next instruction depends on completion of another in
a previous stage that has not yet finished.

3There is also Scala.js, which allows Scala to run in the web browser and Scala Native,
which is an ahead of time compiler to native executables.

5

1. Introduction

1.5 Previous Work
The most popular compilers used today are GNU Compiler Collection (GCC)
and Low Level Virtual Machine (LLVM), both supporting many languages
and targets. They are comparable in terms of quality of the generated code,
but GCC is built as a monolithic program with a fixed set of built-in supported
languages and extending it means directly modifying its source code, which
can be difficult to understand.

On the other hand, Lattner et. al designed LLVM [9] from the ground
up with a common low-level intermediate representation and a framework for
lifelong analysis and transformation of programs, which can be used by other
software. If we wanted to implement a tinyC compiler using LLVM, we could
just translate the source into a textual representation of the LLVM IR and let
the optimizer and backend turn it into the target code.

The ahead-of-time microC (µC) compiler [10] designed by Král is compa-
rable in scope to our thesis. The µC language is similar in design and purpose
to tinyC, but Král’s thesis focuses on the optimizer part of a compiler, while
in our thesis we explore interesting ideas in all parts of a modular compiler
with emphasis on code generation in the backend.

1.6 Thesis Outline
In the following three chapters we describe techniques currently used in com-
piler construction (chapter 2 – frontend & optimizer, chapter 3 – instruction
selection, and chapter 4 – register allocation).

In chapter 5 we then choose a subset of the described methods and explain
how we have used them to design and implement our own modular tinyC
compiler targeting the tiny86 VM.

In chapter 6 we evaluate correctness and performance of our implementa-
tion and in the last chapter we conclude our thesis and suggest possible future
improvements.

6

Chapter 2
Intermediate-Code Generation

and Optimization

In this chapter we will describe the first two parts of a typical modular com-
piler, which were introduced in section 1.1 – the frontend and optimizer.

Before the compiler can translate the source program into the target lan-
guage, it must first understand its structure (syntax) and meaning (semantics).
To make the syntax analysis easier to implement and reason about, we do not
use characters of the source code directly. Instead, we first processes them
into a stream of tokens using lexical analysis. Before we can design a simple
lexical and syntax analyzer, we first have to define some basic principles of
the string and parsing theory. A good resource with more complete definitions
and explanations is the book by Aho et al. [6], known as “the Dragon Book”,
which we have also used while writing this chapter.

2.1 String Parsing Theory

Definition 1. A string is a finite sequence of symbols from a finite set called
the alphabet (usually denoted Σ). The symbol ε means an empty string.

2.1.1 Context-Free Grammar

Definition 2. A context-free grammar is a 4-tuple (N, Σ, δ, S), where

• N is a finite set of nonterminals (syntactic variables),

• Σ, Σ ∩N = ∅ is a finite set of terminals called the alphabet,

• δ ⊆ N × (N ∪ Σ)∗ is a finite set of rewrite rules (productions), where
each has a single nonterminal on the left side and a (possibly empty)
string of nonterminals and terminals on the right, and

7

2. Intermediate-Code Generation and Optimization

• S ∈ N is the start symbol.

A grammar is a precise specification of syntax of a given language. It
is structured, yet easy-to-understand and there exist tools to automatically
construct a syntax analyzer from some classes of grammars. That can be
advantageous when we want to extend the grammar later in development
of the compiler. In fig. 2.1 we show a set of productions for a grammar
G1 = ({E, T, F}, {+, ∗, (,), a}, δ1, E), which describes a simple language for
arithmetic expressions.

For ease of understanding, we will use uppercase characters for nontermi-
nals and we may use | to join alternative productions for a single nonterminal.

E → E + T | T

T → T ∗ F | F

F → (E) | a

Figure 2.1: δ1 for grammar G1 = ({E, T, F}, {+, ∗, (,), a}, δ1, E).

By applying a sequence of productions of a grammar as rewrite rules be-
ginning with the start symbol, we construct a derivation. In each step, we
replace a single nonterminal using one of the productions of the grammar.
We will now use a simplified version (fig. 2.2) of the previous grammar. By
applying the rule E → (E) we get E ⇒ (E) and say that E derives (E).
We say that (E) is a sentential form, because it contains the nonterminal
E, which can be derived further. We can for example continue with the rule
E → a to get E ⇒ (E) ⇒ (a). There are now no more nonterminals left
and the derivation has proven that (a) is one of the strings in the language
produced by the grammar G2.

2.1.2 Parse Tree

A parse tree is another way to prove that a sentence (a string of terminals)
can be derived by a grammar, it however does not show the exact order of
derivations. The root and interior nodes of the parse tree are labeled with
nonterminals representing a left side of a production and their children are
nodes labeled left-to-right with symbols of the corresponding right side. The

E → E + E | E ∗ E | (E) | a

Figure 2.2: δ2 for grammar G2 = ({E}, {+, ∗, (,), a}, δ2, E).

8

2.1. String Parsing Theory

E

E

a

+ E

a

E ⇒ E + E ⇒ a + E ⇒ a + a

E ⇒ E + E ⇒ E + a⇒ a + a

Figure 2.3: A parse tree and two different derivations of a + a in G2.

E

E

a

+ E

E

a

* E

a
(a) Corresponds to a + (a ∗ a)

E

E

E

a

+ E

a

* E

a

(b) Corresponds to (a + a) ∗ a

Figure 2.4: Two possible parse trees for the sentence a + a ∗ a in G2.

leaves of the tree contain terminals and nonterminals, which when read left-
to-right denote a sentential form or a sentence.

For a given sequence of derivations, we can construct an unique parse
tree and from a parse tree we can construct (possibly multiple) sequences of
derivations [6]. We can choose to produce leftmost or rightmost derivations
to make this relationship one-to-one – we always expand either the leftmost
or rightmost nonterminal in a sentential form. In fig. 2.3 we show an example
parse tree and two possible sequences of derivations for the same sentence.

2.1.3 Ambiguity of a Grammar

The last term we need to define before we can proceed with description of
parsing techniques is ambiguity of a grammar. The grammars G1 (fig. 2.1)
and G2 (fig. 2.2) describe the same language, but the second one is ambiguous.
A grammar is ambiguous if it produces more than one parse tree for some sen-
tence s. In another words, there are multiple possible leftmost and rightmost
derivations of s. We use the nonterminals E, F and T in G1 to capture the
priority of + and ∗, whereas in G2 there is only a single nonterminal E. In
fig. 2.4 we show two different parse trees of the sentence a + a ∗ a in G2.

Compilers usually use grammars that are either unambiguous, or the
parsers contain additional disambiguating rules that always select one of the
possible parse trees for further processing.

9

2. Intermediate-Code Generation and Optimization

2.1.4 Top-Down Parsing

Top-down parsing is one of the two most common approaches to constructing
a parse tree for a given sentence, the other one being bottom-up parsing. A
top-down parser tries to find a left parse (a sequence of leftmost derivations) by
building the parse tree from the root and continuing in preorder (depth-first)
fashion. This is often implemented as a recursive-descent parser.

At each step the parser needs to select a production to use for the current
(leftmost) nonterminal. In the most general way it can use backtracking to
try all possibilities, but that is not used in practice because of exponential
time complexity.

LL(k) parsers make this decision by looking ahead at the next k symbols
in the unconsumed input, for that reason they are called predictive parsers.
Whenever a LL(k) parser makes a decision, it never backtracks. That greatly
limits the class of grammars it can be constructed for (and therefore languages
it can accept), but it is still usually generic enough for programming languages.

A left-recursive grammar like the one in fig. 2.1 cannot be used to construct
a recursive-descent parser (even one with backtracking), because it would get
stuck in an infinite loop while expanding the nonterminal E or T . Luckily, left
recursion can be removed by introducing new nonterminals [6] like in fig. 2.5.
We have also added a new start symbol S, which matches the original E
terminated by an end-of-input marker $. This will be required later during
parsing table construction.

S → E $
E → T E′

E′ → + T E′ | ε

T → F T ′

T ′ → ∗ F T ′ | ε

F → (E) | a

Figure 2.5: A modified grammar G′
2 with removed left recursion and new start

symbol S.

To construct a predictive parser from a grammar, we need to define two
functions, FIRST(α) and FOLLOW(A).

Definition 3. FIRST : (N ∪ Σ)∗ → Σ ∪ {ε} returns the set of all possible
terminals that may appear at the beginning of sentences derived from the
sentential form α. If an empty string can be derived from α in some number
of steps, ε is also included.

10

2.1. String Parsing Theory

Definition 4. FOLLOW : N → Σ∪{ε} returns the set of terminals that may
appear immediately after the nonterminal A in some sentential form.

We can easily compute both FIRST and FOLLOW from the grammar
definition [6] and use them to build a predictive parser. We have included a
sample of values for G′

2 in table 2.1.

Rule (A→ α) FIRST(α) FIRST(A) FOLLOW(A)
S → E $ {(, a} {(, a} {ε}
E → T E′ {(, a} {(, a} {), $}
E′ → + T E′ {+}

{+, ε} {), $}
E′ → ε {ε}
T → F T ′ {(, a} {(, a} {+,), $}
T ′ → ∗ F T ′ {∗}

{∗, ε} {+,), $}
T ′ → ε {ε}
F → (E) {(}

{(, a} {∗, +,), $}
F → a {a}

Table 2.1: FIRST and FOLLOW sets for G′
2.

The grammar G′
2 is LL(1) – only a single symbol look-ahead is required to

choose the correct production. Given the grammar and the values of FIRST
and FOLLOW functions, we can now compute the parsing table using the
algorithm from [6]. The result for G2 is shown in table 2.2. Rows of the table
correspond to nonterminals, the columns contain the next symbol in the input
and the cells hold the production rule that the parser should select. The pars-
ing table can then be easily translated to implementation code (a procedure
for each nonterminal containing a switch statement for look-ahead).

a + ∗ () $
S S → E $ S → E $
E E → T E′ E → T E′

E′ E′ → + T E′ E′ → ε E′ → ε

T T → F T ′ T → F T ′

T ′ T ′ → ε T ′ → ∗ F T ′ T ′ → ε T ′ → ε

F F → a F → (E)

Table 2.2: A parsing table for grammar G2.

If the parsing table contains an unique rule in each cell, the grammar is
LL(1). Otherwise, we would either have to perform some more reductions of
the grammar [6] or use a different parser family altogether.

11

2. Intermediate-Code Generation and Optimization

An ambiguous grammar can never be LL(k), but sometimes the best solu-
tion is to manually pick one option in the parsing table. Many programming
languages with the if statement deal with a so-called dangling else problem.
See an example grammar G3 = ({S′, S, E}, {if , then, else, expr , stmt, $}, δ3, S′)
with δ3 in fig. 2.6.

S′ → S$
S → if expr then S E

S → stmt
E → else S | ε

Figure 2.6: Productions of G3 demonstrating the dangling-else problem.

If we tried to construct a parsing table for G3, it would contain duplicate
entries for E and else. The grammar does not specify if the else statement
should belong to the closest if (usually the desired behavior) or not, see for
example the sentence if expr then if expr then stmt else stmt. We can fix
this without changing the grammar by manually modifying the parsing table
to prefer E → else S.

2.1.5 Parser Expression Grammar

A context-free grammar describes how sentences of the language can be pro-
duced. But when developing a parser, we need to recognize how an already
existing sentence was derived. This clash of directions led Ford [11] to design
a formalism for parser expression grammars (PEGs), which are used to more
directly describe a top-down parser.

Definition 5. A PEG is a 4-tuple (N, Σ, R, eS) where

• N is a finite set of nonterminals,

• Σ, Σ ∩N = ∅ is a finite set of terminals,

• R is a total function from nonterminals to parsing expressions, and

• eS is the initial parsing expression.

We write the rules given by R as A← e.

R being a total function means that for each nonterminal A ∈ N there is
exactly one parsing expression R(A). A parsing expression receives an input
string of terminals and either fails, or succeeds and consumes a prefix of the

12

2.1. String Parsing Theory

input, leaving a remaining suffix. We define parsing expressions inductively,
the syntax is as follows:

e = ε | a | A | e1e2 | e1/e2 | e∗ | !e

• ε matches the empty string (and does not consume any input),

• a, a ∈ Σ matches and consumes the terminal a,

• A, A ∈ N tries to match R(A),

• e1e2 (a sequence) matches e1 and tries to match e2 on the remaining
input,

• e1/e2 (prioritized choice) tries to match e2 and only if it fails tries to
match e2,

• e∗ greedily4 matches zero or more repetitions of e,

• !e (a not-predicate) fails if e succeeds, otherwise if e fails !e succeeds
without consuming any input.

In comparison with LL(k) languages, PEGs have more expressive power.
A PEG can express all LL(k) and deterministic LR(k) languages and even
some non-context-free languages, thanks to the limited backtracking ability
and the not-predicate [11]. Despite this, they can be parsed in linear time
with the help of memoization [12].

We have rewritten the simple expression grammar from section 2.1.4 as a
PEG in fig. 2.7. Like with LL(1) parsing, we need to explicitly model end of
input, because parsing expressions match on a prefix of the input. Instead of
appending a terminator the input string, we use the expression !A, where A
matches any terminal. Parsing expressions also cannot contain left-recursion,
but we can perform the same transformation as with LL(1) grammars, or use
the repetition expression (e∗).

A natural way to implement recursive descent parsers in functional lan-
guages (including Scala [5]) is using higher-order functions called parser combi-
nators5. A combinator parser as designed by Hutton [13] is a function from an
input string of symbols to a list of result values and remaining suffixes. That
is, it performs full backtracking and returns a list of all possible matches. If
we modify the parser to return a Maybe (Option in Scala) instead of a list, we
get the same semantics as a PEG [14]. The Scala standard parser combinator
library does exactly that and includes some additional combinators to limit
backtracking to improve performance [5].

4as many times as possible
5A parser combinator is a higher-order function, which takes one or more parsers as

arguments and combines them into a new parser.

13

2. Intermediate-Code Generation and Optimization

S ← E !A
E ← T (+ T)∗

T ← F (∗ F)∗

F ← (E) / a

A← any terminal

Figure 2.7: A PEG P1 = ({S, E, T, F, A}, {+, ∗, (,), a}, R, S), where R is writ-
ten above.

We build a combinator parser from smaller parsers using combinators,
which perform the same basic operations as the operators in a parser expres-
sion (a sequence, prioritized choice, repetition and not-predicate). [13]

2.1.6 Error Reporting

When a parser is unable to recognize some input, we would usually want it
to report the probable location of the syntax error. In some cases it could be
beneficial if it tried to recover and continue parsing anyway, so we can display
all found errors to the user at once.

In this section we will focus on error reporting, because error recovery is
more complicated and can result in cascading errors [14].

Error reporting for LL parser (and LR for that matter) is simple, because
it processes the input from start to end without backtracking. If the parsing
table does not specify any transition for the next terminal, the parser aborts
with an error at the current location in the input [6]. However, when a PEG
or combinator parser reports a failure, the original source and location of the
error is usually lost, because the parser could have backtracked and tried other
alternatives [15].

Ford [15] implemented a simple heuristic, which simulates the error report-
ing of predictive parsers by passing information about all errors that occurred
at the furthest point of the input string up the chain of parser expressions.
The final error message contains information about the location, next symbols
in the input and all expected symbols, but it is missing any additional context.

Maidl [14] proposed an extension of the PEG grammar with labeled failures,
which work similarly to exceptions in programming languages. He added
a new expression ⇑l, which always fails with the label l and extended the
ordered choice operator e1/Se2 to backtrack only if e1 fails with a label l ∈ S.
The primitives emit the fail label on failure by default, but every parsing
expression can be annotated to convert those fail labels to a custom label
using the new try..catch-like operators. Together, this gives the author of

14

2.2. Lexical and Syntax Analysis

the grammar more control over backtracking and the ability to supply custom
context-rich error messages.

Scheidecker [16] mentioned in his blog post a simple improvement of Ford’s
technique. Instead of keeping the expected symbols in a flat structure, he
uses an expectation tree that is extended with friendly description l using
new describeParser(e, l) combinator. When the inner parser e fails without
matching any input6, it overwrites its expectation with l. If e failed after
matching some input, it wraps the expectation of e with a new node labeled
with l.

Once the failure is propagated to the root and becomes fatal, the parser
has the expectation tree for the furthest visited point of the input. Scheidecker
uses the description of each leaf to list the expected symbols/tokens and the
description of the innermost ancestor of all leaves as the context to build the
error message.

2.1.7 Other Parsing Methods

In addition to LL(k) and PEG parsing, we will use this section to briefly
mention a few other methods.

Bottom-up parsing constructs a parse tree starting from the leaves and
continuing up until the root. The LR(k) class of grammars can be parsed
by a shift-reduce parser, which is the most commonly used bottom-up parser
style. They are table-driven like LL parsers and can be implemented efficiently
while recognizing most context-free grammars for programming languages (the
LR(k) class of grammars is a proper superset of LL(k)). One disadvantage of
LR parsers is that they are too complex to be built by hand without help of
automatic tools. [6]

Algorithms exist for testing whether a string can be generated by a generic
context-free grammar, but they have high time complexity, which makes them
unsuitable for use in compiler construction [6].

2.2 Lexical and Syntax Analysis

The first thing a compiler frontend does is scanning and grouping of the input
characters into lexemes and production of stream of meaningful tokens. A
token has a name and an optional attribute and it is used as a terminal
symbol during syntax analysis. A lexer of a typical C-like language recognizes
the following classes of tokens [6]:

• tokens for every program keyword (such as if, while...),

• tokens for operators and other special symbols (+, ==, ->, [,). . .),
6Remember that we work with the furthest visited location.

15

2. Intermediate-Code Generation and Optimization

E

T

F

a

∗T

F

a

+E

T

F

)E

T

F

a

(

(a)

BinOp(+)

BinOp(∗)

Ident(a)Ident(a)

Ident(a)

(b)

Figure 2.8: An example of (a) parse tree (as parsed by grammar from fig. 2.1)
and (b) equivalent AST for expression (a) + a ∗ a.

• a token representing an identifier – the name is stored in the attribute,

• a token representing a constant (an integer, a real number. . .),

• a token for string literal ("foo", ’\n’. . .).

We implement a lexer greedily, so it always matches the longest possible
tokens, because otherwise it could incorrectly recognize identifiers such as
iface as keywords (if). For that reason, CFGs are not suitable for describing
the patterns of tokens. Instead, we can use ad-hoc algorithms, PEG parsers
or their subset called regular expressions in a loop to parse a prefix of the
input into a single token.

The syntax analyzer is then a top-down or bottom-up parser based on the
theory described in section 2.1. During parsing, we call actions to construct an
abstract syntax tree (AST). An AST is a data structure similar to a parse tree,
but it hides the nuances of the grammar and keep only the syntax information
useful for further processing.

The interior nodes of a parse tree represent nonterminals, whereas in an
AST, they represent programming constructs. For the expression grammar
from fig. 2.5, we would use only two node types instead of 6 nonterminals – a
binary operator (+, ∗) and an identifier (a). We compare a typical parse and
syntax trees for (a) + a ∗ a in fig. 2.8.

An alternative to separate lexical and syntax analysis is to build an unified
PEG parser and grammar. This is possible thanks to the greedy nature of
PEG [11], but leads to a more complex grammar and a slower parser. The
advantage of this approach is that we can easily express more complex lexing
rules (for example the » at the end of a nested C++ template7 [11]) and we

7Older versions of C++ mandated the space in vector<vector<int> >, so it is not
confused with the >> bitwise shift operator.

16

2.3. Semantic and Type Analysis

can even embed one PEG parser into another (for example to parse JavaScript
embedded in a HTML document [14]).

2.3 Semantic and Type Analysis

The parser hands off the AST to the semantic analyzer, which links identifiers
to their declarations and checks type of each expression. It then augments
the AST with the collected information and passes it to the intermediate code
generator.

The semantic analyzer recursively visits every AST node in order and
tracks the identifiers accessible from the current scope in symbol tables (envi-
ronments). Whenever an identifier enters the current scope through a declara-
tion, we add the symbol and a reference to the declaration (a binding) into the
active environment. We then discard the binding when the declaration leaves
the current scope. Whenever we visit an identifier, we look up its declaration
in the active environment or return an error if there was no match.

Some languages, such as tinyC [3] or C since the C99 revision [7] have
lexical scoping, which allows shadowing of multiple declarations of the same
identifier (see listing 2.1). In case of lexical scoping, we store the environments
in a stack, otherwise one or two shared symbols tables (one for global and one
for local scope) suffice.

int x = 1;
do {

int x = 2; // shadows the previous declaration
print(x); // prints 2

} while(0);
print(x); // prints 1

Listing 2.1: An example of variable shadowing in tinyC and C since the C99
revision.

2.3.1 Type Analysis

During type analysis, the compiler assigns a type to each program expression
(represented by an AST node) and checks that the types conform to a set of
logical rules (type system) dependent on the source language. We use type
checking to reduce (or completely eliminate) the need for dynamic checking
for type errors and to aid intermediate code generation. [6]

In most statically typed languages (including C [7] and tinyC), we define a
type of an expression in terms of types of its subexpressions (type synthesis).
We can check the rules in this case by recursively visiting the abstract syntax
tree. Whenever we cannot determine a type of an expression, we raise a type
error. A typical rule can look like this: “if the current node is +, the left child

17

2. Intermediate-Code Generation and Optimization

has type int and the right child has type double, then the result has type
double.”

Other languages, such as ML or µC8 [17] are strongly typed, however the
types are automatically inferred by the compiler without relying on the user.
The types also cannot be computed using a single bottom-up pass over the
AST, see for example a small µC program in listing 2.2. The typechecker does
not know the type of the arguments of the sum function until it is called. For
this reason, we build a list of type constraints for the whole program and then
solve them using unification [1].

select(c, x, y) { var r; if(c) r = x; else r = y;
return r; }

main() {
var a, b, r;
a = 2; b = 3;
return select(1, a, b);

}

Listing 2.2: A simple µC program which demonstrates type inference. The
type of x and y is not known until after the call expression.

We define constraints for each expression in terms of type variables (JEK
holds the type of E). We list a few rules in table 2.3. Description of the
constraint solver itself is outside of the scope of this thesis and can be found
in [1] or [6].

I: JIK = int
X = E: JXK = JEK

if (E) S1 else S2: JEK = int
X(X1, . . . , Xn){. . . return E; }: JXK = (JX1K, . . . , JXnK)→ JEK

Table 2.3: A subset of TIP (equivalent to µC) type inference rules required
for typechecking listing 2.2. I stands for an integer literal, E for an expression
and X for a program variable (functions are treated as values) [1].

2.4 Intermediate Representation
In a modular compiler, the translation between the source code and compila-
tion target is not direct. Instead, the compiler uses one or more intermediate
representations (IRs), which are easier to analyze and optimize and act as a
middleman between the frontend and the backend. A typical intermediate
representation emitted by the frontend resembles instructions of a low-level

8a programming language designed for the static program analysis (NI-APR) course
based on the TIP language from Møller’s book [1]

18

2.4. Intermediate Representation

int i = 0;
while(i + 1 < 2) {

print(i * 2);
i += 1;

}

(a)

int i = 0;
while(t1 = i + 1, t1 < 2) {

t2 = i * 2;
print(t2);
i = i + 1;

}

(b)

Figure 2.9: A simple C program demonstrating the limitations of tree-address
code. (a) shows the original code and (b) the equivalent three-address code,
where each statement does only a single operation.

abstract machine. We design the IR to be easily producible from all of the
supported source languages (can express all of their features in some way) and
so it can be easily translated into all supported target languages. [6]

We can classify the form of an IR as either flat or hierarchical (usually a
tree or a graph).

2.4.1 Flat IR

The flat variant has the form of a list of instructions, which are executed
sequentially and the control flow is specified by labels and branch instructions.
Each instruction performs only one operation (three-address code) and stores
the result to a specified temporary variable, of which there is usually unlimited
amount available. Figure 2.9 shows a simple program and its three-address
code representation, which we will use as a running example. [18]

We group sequences of instructions, which always get executed together
without any branches into basic blocks. A basic block ends with a termina-
tor (usually an (un)conditional branch, return or a halt instruction), which
specifies the next basic block to be executed.

To be able to reason better about the control flow of instructions or basic
blocks in analyses and optimizations, we define the control-flow graph.

Definition 6. A control-flow graph (CFG) is a directed graph, where nodes
correspond to instructions (or basic blocks) of a program. An edge (u, v) exists
iff instruction (basic block) v can be executed directly after instruction (basic
block) u. We mark one node as the entry point (entry(cfg)) of the program
and a set of nodes as exit points (exit(cfg)). A node n has a set of predecessors
(pred(n)) and successors (succ(n)) determined by its incoming and outgoing
edges.

We would like to build a similar graph representation for the flow of values,
but for that we need a form of IR where every variable has only one unique

19

2. Intermediate-Code Generation and Optimization

B1:
i = 0;
goto B2;

B2:
t1 = i + 1;
if(t1 < 2) goto B3;
else goto B4;

B3:
t2 = i * 2;
print(t2);
i = i + 1;
goto B2;

B4:

(a)

B1

B2

B3B4

(b)

Figure 2.10: (a) the program from fig. 2.9b lowered into a set of basic blocks
and (b) its basic block control-flow graph. B1 is the entry point, B4 is the only
exit point.

definition. We call this extension of three-address code the single static assign-
ment (SSA) form. A distinctive aspect of SSA form is the presence of ϕ-nodes
to combine two definitions of a variable coming from different predecessor
blocks. This is a notational convention rather than a real instruction, which
we later again eliminate during instruction selection or register allocation. See
fig. 2.11 for an example of three-address code and its SSA form.

We can construct SSA form for every program by giving variables unique
names and inserting ϕ-nodes in appropriate places. We will describe algo-
rithms for that in section 2.6.

The single unique definition property of SSA allows us to visualize the
data dependencies of instructions using a data-flow graph.

Definition 7. A data-flow graph (DFG) is a directed graph, where nodes
correspond to instructions in a program and edges to their data dependencies.
An edge (u, v) means that the instruction v uses (depends on) the result of
instruction u.

In a valid DFG, every cycle must go through some ϕ-node. Otherwise
none of the instructions in the cycle can have their requirements satisfied and
begin executing. The data-flow graph is used by various dataflow analyzes,
which we will mention in section 2.7.

20

2.4. Intermediate Representation

B1:
i1 = 0;
goto L1;

B2:
i2 = ϕ(i1, i3);
t1 = i2 + 1;
if(t1 < 2) goto B3;
else goto B4;

B3:
t2 = i2 * 2;
print(t2);
i3 = i2 + 1;
goto B2;

B4:

(a)

1

0 +

∗ + 2

1ϕ2

<
print

(b)

Figure 2.11: A SSA form of the program from fig. 2.10a. We use the ϕ-node to
join values of i coming from B1 and B3. (b) then shows a DFG of the program,
where the ϕ-node completes a cycle.

2.4.2 Tree-Based IR

Another common way to represent IR instructions is as tree nodes. A tree-
based intermediate representation looks similarly to an abstract syntax tree,
but the operations are much simpler (like in the flat three-address code from
section 2.4.1). The hierarchy of a tree is closer to the typical programming
language, but the tree representation of control flow is impractical for analyses
and optimizations.

Appel [19] describes implementation of a simple optimizing compiler and
uses trees as an intermediate representation. Instead of the high level control
flow nodes like if and while, he defines a system of labels and jumps similar
to a flat IR. In a later stage of the compilation, he splits the tree into smaller
trees (one for each program statement) and groups sequences of the resulting
trees into basic blocks.

2.4.3 Intermediate Representation in Existing Compilers

LLVM The core of the LLVM framework is built around a flat RISC-like
IR. The instructions operate on SSA virtual registers and their control flow
is given explicitly by listing them in basic blocks. The frontends do not have
to emit SSA directly, instead they can use the available memory instructions
(e.g. alloca, load and store), most of which the compiler then eliminates in
a SSA construction pass (mem2reg). Figure 2.12 contains example of LLVM

21

2. Intermediate-Code Generation and Optimization

IR code before and after optimization. [9]

GCC The main intermediate representation used in GCC are GENERIC
and GIMPLE. The frontends target the GENERIC IR, which a tree represen-
tation with a structure similar to C source code. The middleend then lowers
this IR into the GIMPLE representation, which is a standard three-address
code. [20]

JVM The Java Virtual Machine uses a stack-based IR, which is a form
somewhere between flat and hierarchical. Control flow is modeled using labels
and jumps like in flat intermediate representation, but the operations do not
use variables. Instead, they pop their operands from the implicit operand
stack and push back their result. [18]

2.5 Compiling Source Code to IR

After we have determined the type of every program expression, emitting the
IR code for a low level language like C is fairly straightforward and some
compilers do it at the same time as type checking or parsing. A single-pass
compiler (such as Bellard’s TCC [21]) takes this one step further and skips
the intermediate representation altogether and emits the target code directly.
In this kind of a compiler, all three parts (frontend, optimizer, backend) run
at once.

The IR represents the program statements at a lower level, so we refer to
the compilation process as lowering. In this stage we usually lose some type
information (opaque pointers) and accessing an array element or a struct
member may require computing its offset if the IR does not support complex
types directly.

We compile an expression either as a l-value (“location”) or a r-value
(“value”) depending on what side of an assignment it lies at. The compiler
has to statically check this, because not all expressions have a location and
can be assigned to (for example 42, &foo or foo * bar are all strictly r-values
in C).

If the IR is strictly SSA, it cannot represent local variables directly and
we need to perform online SSA construction, for which we describe a method
in section 2.6.

When we compile control flow statements (if, while. . .), we need to ref-
erence a basic block which we have not reached yet and thus do not know its
address. We can solve this by building the IR in memory and back-patching
the jump statements after we know the location of all required blocks.

22

2.6. Converting IR into SSA Form

2.6 Converting IR into SSA Form

Single static assignment construction is one of the more important transfor-
mations that compilers often implement. Having the IR in SSA form makes
analyses more efficient and easier to implement, because each variable has
only a single definition.

A challenge arises if a basic block has multiple predecessors and more than
one definition of a variable can reach a given program point. In that case we
need to insert ϕ-nodes into the joining points. We will now introduce two
methods that try to insert as few ϕ-nodes as possible.

We can perform SSA conversion either offline after we have the complete
CFG available, or online during the IR code emission. The first algorithm for
efficient SSA construction was designed by Cytron et al. [22] and uses the
offline approach. The algorithm is rather complex and relies on several other
analyses and transformations (liveness analysis, computation of dominance
trees and frontiers), but it guarantees minimality of the SSA form in terms
of number of ϕ-nodes. Because of its complexity, we will not explain it any
further in this thesis and instead provide a simpler but equally good solution.
We refer the reader either to the original paper, or to [6, 19] which also include
(maybe more tractable) description of the algorithm.

Braun et. al. [23] proposed a simple online-first (but adaptable for offline
use, see section 5.7.1) algorithm for SSA construction and its combination
with on-the-fly optimizations. The algorithm works backwards by tending a
map of variable definitions for each basic block.

2.6.1 Local Value Numbering

During IR code emission (in program execution order), we pay a special at-
tention to instructions that define (write) or use (read) a variable. When we
encounter an assignment into a variable v, we update the current definition of
v in the current basic block in the map with reference to the right side of the
assignment (WriteVariable in alg. 1). When the variable is later read, we use
the map to look up its definition (ReadVariable). We call this process local
value numbering [19]. After we process all instructions in a basic block, we
mark the block as filled. An issue occurs when a variable is read for which we
do not have any definition in the current basic block.

2.6.2 Global Value Numbering

We solve read of variable undefined in the current basic block by recursively
looking for its definition in the predecessors and caching the discovered defi-
nitions in the map (ReadVariableRecursive in alg. 2). There are three cases
we need to consider:

23

2. Intermediate-Code Generation and Optimization

procedure WriteVariable(variable, block, value):
currentDef [variable][block]← value

function ReadVariable(variable, block):
if currentDef [variable][block] is set then

return currentDef [variable][block]
end
return ReadVariableRecursive(variable, block)
Algorithm 1: Implementation of local value numbering [23].

1. we do not know yet about all of the predecessor blocks (the block has
not been sealed yet) – we create and return a temporary ϕ-node and
queue it for later resolution,

2. the block has a single predecessor – we do not need to insert any ϕ-nodes,
so we directly query the only predecessor for the definition,

3. the block has multiple predecessors – more than one definition of the
variable can reach the current basic block and we need to join them
using a ϕ-node.

The third case is the most interesting, because we cannot just recursively
query the predecessors as that could lead to infinite recursion in case of loops
in the CFG. Instead, before resolving the ϕ operands, we first create a blank
ϕ-node and store it into the map as the current definition.

After we add operands to the ϕ-node, we try to recursively eliminate it in
case it contains only one unique operand (not counting self-loops). When we
know that no more predecessors will be added to a basic block, we seal it and
resolve the queued incomplete ϕ-nodes (SealBlock).

This algorithm guarantees minimality for non-irreducible control flow (no
jumps to the middle of a loop, for more formal definition see [6]). The authors
designed an additional extension to construct minimal SSA for arbitrary con-
trol flow [23], but we will leave it as an exercise for the reader. To reach the
goals of this thesis, constructing some SSA form is enough9.

2.7 Optimizations
SSA construction is only one of many possible optimizations and transforma-
tions that we can do in the middleend (optimizer) of the compiler.

Most of the complexity of real world compilers (LLVM, GCC) lies here,
because spending time with static analyses and optimizations once during
compilation is better than during execution, which often happens repeatedly.

9and all control flow produced by our frontend is reducible, because tinyC does not have
the goto statement

24

2.7. Optimizations

function ReadVariableRecursive(variable, block):
if block /∈ sealedBlocks then

val ← new ϕ-node(block)
incompletePhis[block][variable]← val

else if |pred(block)| = 1 then
val ← ReadVariable(variable, pred(b)[0])

else
val ← new ϕ-node(block)
WriteVariable(block, variable, val)
val ← AddPhiOperands(variable, val)

end
WriteVariable(block, variable, val)
return val

function AddPhiOperands(variable, phi):
foreach p ∈ pred(parentBlock(phi)) do

appendPhiOperand(phi, ReadVariable(variable, p))
end
return TryRemoveTrivialPhi(phi)

function TryRemoveTrivialPhi(phi):
uniqSet = uniquePhiOperands(phi) \ {phi}
if uniqSet = ∅ ∨ |uniqSet| > 1 then

return phi // unreachable or non-trivial
uniqOp ← uniqSet[0]
phiUsers ← insnUsers(phi)
replace all uses of phi with uniqOp and remove phi
foreach u ∈ phiUsers do

if u is a ϕ-node ∧ u ̸= phi then
// recursively optimize users
TryRemoveTrivialPhi(u)

end
end
return uniqOp

procedure SealBlock(block):
foreach (variable, phi) ∈ incompletePhis[block] do

AddPhiOperands(variable, phi)
end
sealedBlocks ← sealedBlocks ∪ block

Algorithm 2: Implementation of global value numbering and trivial ϕ-node
removal [23].

25

2. Intermediate-Code Generation and Optimization

All frontends and backends of a compiler can benefit from this work, because
we optimize the generic IR.

Some often implemented optimizations include:

• constant propagation, which evaluates known constant expressions
during compile time,

• common subexpression elimination, which simplifies expressions if
their result is already known from an earlier point in the program,

• strength reduction, which replaces special cases of more general op-
erations with a less powerful, but faster equivalents (for example multi-
plication by a power of two by left shift),

• dead code elimination, which deletes basic blocks that definitely will
not be executed, and

• function inlining, which is an interprocedural optimization that re-
places some call expressions with body of the called function, giving
more context to further optimizations.

All those transformations have in common that they rewrite parts of the
program with equivalent code, which has faster expected execution time. Fig-
ure 2.12 shows the LLVM IR of a small C program before and after optimiza-
tion. Modern compilers are getting better at optimizing programs, but there
is an inherent limit to static optimizations set by the computability theory. If
we were to construct a fully optimizing compiler, which transforms a program
to the smallest equivalent version, we could solve the halting problem and that
is a contradiction. [19]

This thesis focuses more on the backend part of the compiler, so we will
not go into any further detail and instead point the reader to [23] and [19],
which describe practical implementations of the optimizations listed above.

26

2.7. Optimizations

define i32 @main() {
entry:

%x = alloca i32
%r = alloca i32
%0 = call i32 @square(i32 5)
%add = add nsw i32 1, %0
store i32 %add, ptr %x
store i32 0, ptr %r
%1 = load i32, ptr %x
%tobool = icmp ne i32 %1, 0
br i1 %tobool, label %if.then, label %if.end

if.then:
%call1 = call i32 @rand()
%mul = mul nsw i32 %call1, 2
store i32 %mul, ptr %r
br label %if.end

if.end:
%1 = load i32, ptr %r
ret i32 %1

}

(a)

define i32 @main() {
entry:
%0 = call i32 @rand()
%mul = shl nsw i32 %0, 1
ret i32 %mul

}

(b)

int square(int n) {
return n * n;

}
int main() {

int x = 1 + square(5), r = 0;
if(x) r = rand() * 2;
return r;

}

(c)

Figure 2.12: An example of a LLVM IR of a simple C program (a) before
and (b) after optimizations (clang-16 -O1). Function inlining together with
constant propagation have determined that x is always truthy, so the compiler
could replace the if statement with its body. Strength reduction also replaced
multiplication by two with a left shift. (c) shows the original C source code.

27

Chapter 3
Instruction Selection

Given a program in the intermediate representation, the goal of instruction
selection is to implement a program with the same behavior using instruc-
tions of the target language. This is not a one-to-one mapping, because real
machine instruction can often perform multiple operations at once (say an
arithmetic operation, which stores the result in memory). On the other hand,
because the IR can be used as an abstraction over multiple targets, some IR
instructions have no direct mapping and have to be implemented by multiple
target instructions or could even require some additional logic (for example
the ϕ-node). [24, 19]

Instruction selection is generally regarded as a pattern matching problem
– we substitute a pattern of IR instructions with a snippet of target code with
the same semantics. This problem can be further divided into two subprob-
lems: [24]

• pattern matching, during which we want to find all the candidate
snippets of instructions which can be used to implement the piece of IR
code (a basic block, function or the whole program), and

• pattern selection, which needs to select an optimal subset of candi-
dates from those, while preserving the same semantics as the IR code.

Some techniques can combine those two into a single step, but oftentimes
the pattern matching is similar and the main difference lies in the pattern
selection phase [24]. We can choose from multiple criteria to minimize, but
usually it is the execution time of the resulting code (which often correlates
with smaller code size). More complex instruction selectors can take advantage
of multiple addressing modes of the target ISA, which are also present in
tiny86.

The main source of information for this chapter is the excellent book by
Blindell [24], which describes a wide range of pattern matching and selection
techniques in detail.

29

3. Instruction Selection

3.1 Overview of Instruction Selection Techniques

The first instruction selectors were implemented manually using ad-hoc algo-
rithms. If performance and quality of the generated code is not a concern,
we can usually implement a simple instruction selection with a recursive IR
visitor. The ad-hoc instruction selectors are usually designed specifically for
one architecture and reusing (re-targeting) it for a different ISA might even
require a complete rewrite. On the other hand, if the algorithms were too
general, the generated code may not be as efficient. This led to consensus on
two main approaches: [24]

• macro expansion, where an expander takes the IR code and a list
of target-specific macro definitions (each consisting of an IR instruction
template and an associated action) and whenever it finds a match during
traversal of the code, it executes the corresponding action, or

• covering of the IR code (tree, DAG or graph) with patterns of varying
shapes.

3.2 Tree Covering

The main disadvantage of macro expansion is that we only expand a single IR
instruction at a time. Macro expansion is also greedy – the expander stops
after it finds a first match. While both of those limitations are usually to
some extent alleviated by post processing the generated code with a peephole
optimizer [24], we will now present an approach to instruction selection by
tree covering.

In this section we assume that the program is decomposed into a set of IR
trees and the compiler contains a built-in set of tree patterns, which model one
or more target instructions. The goal of the instruction selector is to find a
covering of the IR program (a set of pattern matches or tree tiles), where every
IR instruction is covered by exactly one tile. We call such covering optimal.

As an example, we show a simple pattern set for two-address assembly
language similar to tiny86 in table 3.1. The patterns store their result in the
r0 variable, which the instruction selector resolves to a fresh virtual register
during code generation. Although it is small, this pattern set is still fairly
repetitive, because the addition and multiplication operations are commuta-
tive. For that reason real world compilers generate the pattern set from a
more concise machine description.

There are usually multiple possible optimal coverings for a given IR pro-
gram. We denote optimum covering as the one with the lowest cost [19]. For
example we will describe the options we have for covering the program expres-
sion 1+2∗3 (its tree representation is in fig. 3.1) using our simple pattern set.
We could cover every IR node individually with the patterns (1) and (2), use

30

3.2. Tree Covering

Target Instruction(s) Tree Patterns

(1) MOV r0, n IImm(n)

(2) MOV r0, r1
ADD/MUL r0, r2

IAdd/UMul

r2r1

(3) MOV r0, r1
ADD/MUL r0, v

IAdd/UMul

IImm(v)r1

IAdd/UMul

r1IImm(v)

(4) LEA r0, [r1 + r2 ∗ v]

IAdd

UMul

IImm(v)r2

r1

IAdd

UMul

r2IImm(v)

r1

IAdd

r1UMul

IImm(v)r2

IAdd

r1UMul

r2IImm(v)

Table 3.1: A simple pattern set for a tree-based IR and tiny86-like target
language. The LEA instruction can be used to perform combined multiply-add
operation in a single instruction.

IAdd

UMul

IImm(3)IImm(2)

IImm(1)

Figure 3.1: An intermediate representation of the expression 1 + 2 ∗ 3.

some combination of (1), (2) and (3), or we could use the largest LEA pattern
(4) and two (1)s. It is the job of the pattern selector to find an optimum
covering (or a close approximation thereof) and we will now describe some
ways to implement it.

31

3. Instruction Selection

3.2.1 Maximal Munch

A simple algorithm which can find an optimal covering is called maximal
munch [19]. It traverses the IR tree in a top-down manner and tries to match
patterns from the largest to the smallest. The algorithm greedily selects the
first matching pattern. The process is then repeated for every subtree rooted
at a leaf of the pattern (the rx variables in table 3.1). In the worst case,
all patterns have to be tried for all instructions, which gives a complexity of
O(n ·m), where n is the number of IR instructions and m is the size of the
pattern set.

Thanks to the greedy nature of the algorithm, we can emit the target code
during the same process before exiting a node. If two tiles have the same size
(number of covered instructions), we can define a cost for each tile and use
that as a second factor for sorting. Maximal munch is in this regard similar
to macro expansion and does both pattern matching and selection at once.

If we represent the IR nodes using case class, we can implement a simple
maximal munch instruction selector in Scala using pattern matching, like in
listing 3.1. The implementation would look similarly in other languages.

def maxMunch(node: IrNode): VReg = {
val r0 = freshReg(); node match {

// patterns sorted from largest to smallest
case IAdd(i1, UMul(i2, IImm(v))) =>

val r1 = maxMunch(i1); val r2 = maxMunch(i2)
emit(s"LEA $r0, [$r1 + $r2 * $v]")

case IAdd(i1, IImm(v)) => val r1 = maxMunch(i1)
emit(s"MOV $r0, $r1"); emit(s"ADD $r0, $v")

case IAdd(i1, i2) =>
val r1 = maxMunch(i1); val r2 = maxMunch(i2)
emit(s"MOV $r0, $r1"); emit(s"ADD $r0, $r2")

case IImm(v) => emit(s"MOV $r0, $v")
}; return r0

}

Listing 3.1: An example maximal munch implementation in Scala for a subset
of patterns from table 3.1

A related algorithm has been used in practice in the Portable C Compiler
(PCC) developed for UNIX [2]. Johnson designed a machine description lan-
guage to specify a list of rewrite rules. Each rule consists of a pattern (an IR
instruction and subgoals), resource requirements (for example a certain type
of register) and an action (a target code to emit verbatim).

The requirements and constraints are encoded as an integer called a cookie
(a bitmask). By or-ing multiple of these cookies together, we can create more
general rewrite rules and make the definition more concise. In listing 3.2 we

32

3.2. Tree Covering

ASG PLUS, INAREG,
SAREG, TINT,
SNAME, TINT,

0, RLEFT,
" add AL,AR\n",

...
ASG OPSIMP, INAREG|FORCC,

SAREG, TINT|TUNSIGNED|TPOINT,
SAREG|SNAME|SOREG|SCON, TINT|TUNSIGNED|TPOINT,

0, RLEFT|RESCC,
" OI AL,AR\n",

Listing 3.2: An example of two patterns from a PCC machine description.
The first pattern matches a += operator if the result should be stored in the
A register, the first operand is an integer argument stored in A register and
the second operand is a NAME node. If the match succeeds, the compiler emits
the assembly code (after expanding the AL and AR macros) and replaces the
matched IR subtree with the left subtree (RLEFT). The second pattern is used
for matching +, -, |, & and ˆ arithmetic operators and uses the OI macro and
| operator for more concise notation. [2]

show two sample rewrite rules, where the second one is generalized using the
or operator.

The PCC supports only unary and binary patterns with a maximum height
of 1, which puts it closer to macro expansion, although the IR is still repre-
sented as a set of trees. If the compiler does not find any match for a piece of
IR code, it attempts to match it again after using some heuristics (for example
rewriting += with = and +).

3.2.2 Dynamic Programming

Maximal munch finds an optimal covering (every instruction is covered by
exactly one matched pattern), but it is not always optimum. This happens
in cases such as if the pattern has some additional requirements on the re-
sult of its leaves (e.g. a specific register type). Because the pattern matching
works from the top down, the algorithm does not know if the requirements
can be satisfied and that can force it later to do suboptimal choices (e.g. an
additional move between register type). To find an optimum covering, we can
use pure decomposition and work from the bottom up – we construct an opti-
mal solution for the whole problem from optimal solutions of its subproblems.
[19, 25]

The algorithm works by recursively assigning a cost to each node (IR
instruction) in the program tree. We first process all children of node n in a

33

3. Instruction Selection

bottom-up fashion and find all matching patterns rooted at n (we can delegate
this to a separate pattern matching algorithm). The cost of a match is sum of
its own cost (defined as part of the pattern) and the costs of its leaves. From
all of those matches we select one with the lowest cost and assign it to the
node n. We avoid recomputing the optimal costs of subtrees by storing them
in a table, see pseudocode in alg. 3.

bestChoiceForNode : Node → (Tile × int)
tileMap : Node → Tile
procedure BottomUpDp(n)

foreach c ∈ children(n) do
BottomUpDp(c)

end
bestChoiceForNode[n].cost←∞
foreach t ∈ matchingTiles(n) do

totalCost ← cost(t)
foreach l ∈ tileLeaves(t) do

totalCost ← totalCost + bestChoiceForNode[l].cost
end
if totalCost < bestChoiceForNode[n].cost then

bestChoiceForNode[n].cost← totalCost
bestChoiceForNode[n].tile← t

end
end

procedure TopDownSelect(n)
t← bestChoiceForNode[n].tile
tileMap[n]← t
foreach l ∈ tileLeaves(t) do

TopDownSelect(l)
end

Algorithm 3: A pseudocode of a simple bottom-up instruction selector
utilizing dynamic programming.

After the recursion ends, we have computed minimum costs and matches
for the entire IR tree. We now perform a top-down pass starting at the root
and for each visited node n, we perform the action specified by the match
(usually code emission) and recurse into the leaves of the match (we skip the
inner nodes).

The dynamic programming technique can be easily extended to support
multiple kinds of patterns (e.g. multiple register types). We can store the
minimum cost and corresponding tile for each pattern kind and select the tile
with the lowest cost of all kinds at the root.

34

3.2. Tree Covering

3.2.3 Extending Tree Covering to DAGs

Both maximal munch and dynamic programming work with IR represented
as a set of program trees. However, tree-based intermediate representations
cannot represent common subexpressions without explicitly using temporary
variables. When we lift this restriction, we get a structure called directed
acyclic graph (DAG), which is one of the kinds of intermediate representations
we have described in chapter 2. In this section we will limit ourselves to tree-
shaped patterns, techniques for matching more general DAG patterns can be
found in [24]. Still, matching trees on DAGs is a NP-complete problem [26]
and the techniques used by compilers often sacrifice optimality to shorten
compile times.

One way to tackle the problem is by decomposing the DAG into a set of
trees by dealing with the shared nodes. There are two general ways to do this,
which can be combined on a per-node basis: [24, 27]

• we can split the edges involving a shared node n and make an implicit
connection between the copies of n by storing it in a shared temporary
(register or memory location), or

• we can duplicate the node for each of its uses.

Both of those solutions compromise on the quality of the generated code. Edge
splitting computes the result of the shared node only once, but it relies on the
register allocator to optimize accesses to the temporary location. It also forces
the shared node to be always at the root of a pattern, which limits the use
of more complex patterns. Node duplication causes re-evaluation of the same
code multiple times, which leads to larger code and longer execution time. In
addition, we cannot duplicate nodes with side effects. We illustrate a simple
example of both edge splitting and node duplication in fig. 3.2.

In real implementations, we try to find balance between edges splitting
and node duplication. One such algorithm was developed by Fauth et al.
[28] for use in the Common Bus Compiler. The instruction selector used a
heuristic, which tries to decompose and cover the whole IR program using
both approaches and finally selects the one that is deemed better in terms of
code size and estimated execution time.

3.2.4 NOLTIS

NOLTIS is a near-optimal, linear time instruction selection algorithm for DAG
expressions developed by Koes and Goldstein [27]. It is an extension of the
dynamic programming approach, which can switch between edge splitting
and node duplication on a per-node basis. The algorithm first performs a
bottom-up DP pass, which treats the DAG like a tree (thus in a way simulates
decomposition by node duplication). It then for every shared node n decides
whether splitting the related edges would result in lowering of the overall cost

35

3. Instruction Selection

IAdd

UMul

IImm(3)IImm(2)

(a) The original DAG

IAdd

UMul

IImm(3)IImm(2)

(b) After edge splitting

IAdd

UMul

IImm(3)IImm(2)

UMul

IImm(3)IImm(2)

(c) After node duplication

Figure 3.2: An example showing the effect of (b) edge splitting and (c) node
duplication on a common subexpression. After edge splitting the UMul is
evaluated only once and its result is stored in a register.

of the covering. It does this by comparing overlapCost (the cost of letting
the tiles covering n overlap) and cseCost (the cost of splitting the tiles at n).
If the cseCost is lower than overlapCost, the node is added to a set of fixed
nodes. After making this decision for all nodes, it does another bottom-up DP
pass, but the fixed nodes can be only matched by a root of a pattern. Lastly,
it emits the target code in a top-down pass.

The algorithm depends on several assumptions about the set of patterns,
mainly that it is always possible to cut a tile at a shared node without affecting
the existence of a solution [27].

Koes and Goldstein implemented [27] the NOLTIS algorithm in LLVM
together with two additional variants of DP with only edge-splitting (cse-all)
and only node-duplication (cse-none). They run an experiment on a suite of
SPEC CPU2006 benchmarks comparing the overall tiling cost of the program,
where NOLTIS performed the best with cse-none in the second place.

3.2.5 Common Target-Specific Problems

In this section we list some commonly encountered problems when implement-
ing a tree-covering instruction selector and their solutions. Although most
modern architectures are designed as RISC [19], many machines used today
contain CPUs from the Intel 8086 family, which are examples of the com-
plex instruction set computer paradigm. A typical instruction taken from a
CISC ISA supports multiple addressing modes and can perform more complex
operations, that would take multiple instructions on a RISC machine.

36

3.3. Phi Node Elimination

3.2.6 Limited Number of Registers

Some older CISC ISA contain a very limited number of registers (e.g., 6 on
32-bit x86). This is more of a concern for the register allocator, the instruction
selector can still allocate fresh virtual registers (temporaries) as required. In
more complex compilers, the instruction selection and register allocation can
work in tandem and for example select different patterns in case of register
pressure (register-sensitive instruction selection) [24].

Through the complex CISC addressing modes we can also often work with
a value directly in memory without loading it into a register. With an ap-
propriate feedback from the register allocator, using those modes could be in
some cases beneficial even though memory is slower than accessing the register
file. We can also add an additional scheduling pass to reorder instructions so
less registers are required at once.

3.2.7 Multiple Output Instructions

Some instructions have multiple outputs (for example an arithmetic operation
that sets flags in the ALU or a DIV instruction that performs division and
remainder at once into two destination registers) or side effects (such as auto-
increment of address after memory fetch). We cannot directly model those
using tree patterns with a single root, so we have a few options: [19]

• ignore those instructions – they often take the same amount of ticks as
a sequence of simpler instructions,

• try to match them in ad-hoc way (possibly using a peepholer pass),

• use a different algorithm for matching DAG patterns.

A possible solution for matching DAG patterns without introducing a com-
pletely new algorithm was proposed by Arnold in [29]. His design permits
emitting code from nodes other than the root of a pattern, enabling a DAG
pattern to be decomposed into multiple tree patterns (one for each output).
After matching those smaller trees, the algorithm tries to combine them back
into the original pattern DAGs.

3.3 Phi Node Elimination
The limitation of DAG intermediate representation is that it is unable to rep-
resent loops in the data flow. In section 2.4 we have described a notion of SSA
intermediate representation which uses ϕ-nodes to facilitate loops. These are
virtual instructions, which merge data flow from multiple predecessor blocks
and they have no direct equivalent in a target ISA.

Although there are methods for covering a generic graph [24], in this thesis
we will limit ourselves to a simple adaptation of DAG covering. We can

37

3. Instruction Selection

break the loops by removing incoming edges of every ϕ-node. If some of its
predecessors are shared, we must ensure that their results are available at the
time of code emission (they are covered by roots of patterns). Then during
code emission, we perform a transformation called SSA destruction, where we
replace the ϕ-nodes with MOV instructions and append additional MOVs at the
end of some basic blocks. Before we can describe SSA destruction in more
detail, we need to define live range of a variable.

Definition 8. A variable in a SSA program is live at all program points
between each of its uses and its (single) definition. A set of program points
where a variable is live is the live range of the variable. Two live ranges
interfere if there is a program point common to both of those ranges. [30]

When we say variable in the context of instruction selection, we usually
mean a virtual register. Those virtual registers are allocated freely during
code emission and we usually assign to them only once. It is the responsibility
of a register allocator to map those virtual registers to physical ones in a later
phase of compilation.

One could come up with a naive method of SSA elimination by simply
merging the inputs and output of a ϕ-node into the same variable, but that
can affect correctness of the resulting code. See fig. 3.3a showing an example
CFG of a code with a simple if statement. After we eliminate the ϕ-node
by merging x, y and z in fig. 3.3b, the program becomes obviously incorrect.
We can fix this by emitting a copy into z at the end of b1 and b2 (fig. 3.3c),
but that may still result in incorrect programs. We will show two examples of
such issues, the lost-copy problem and the swap problem. [30]

z ← ϕ(x, y)
print(z)

x← 1
y ← 2

b1

b2

b3

(a)

z ← 1
z ← 2

b1

b2

print(z)b3

(b)

x← 1
y ← 2
z ← x

b1

z ← yb2

print(z)b3

(c)

Figure 3.3: An example of a shortcoming of naive ϕ-node elimination. (a)
shows the original CFG, (b) shows the incorrect result of merging the x, y and
z variables, which was corrected in (c) by inserting copy statements.

In the next example we will use the term critical edge.

38

3.4. Macro Expansion

x1 ← 1

x

x2

b1

x← ϕ(x1, x2)
x2 ← x + 1

b2

print(x)b3

(a)

x1 ← 1
x← x1

b1

x2 ← x + 1
x← x2

b2

print(x)b3

(b)

Figure 3.4: An example demonstrating the lost-copy problem when we hoist
a copy across a critical edge. The program in (b) incorrectly prints the value
of x from the last instead of the penultimate iteration.

Definition 9. An edge u → v is critical if u has multiple successors and v
has more than one predecessor.

The lost-copy problem can occur when we hoist a copy across a critical
edge in the CFG, which creates an interference between an argument of a
ϕ-node and its result [30]. We demonstrate this issue in fig. 3.4, where the
program after ϕ-node elimination prints the value of x from the last (n-th)
iteration instead of the previous (n − 1-th). We can see in (a) that the live
ranges of x (solid) and x2 (dashed) interfere.

The swap problem is another example of common issue caused by incorrect
SSA destruction. The correct semantic is that all ϕ-nodes at the beginning
of a block are executed at once and their results are assigned simultaneously.
However by inserting the copy statements we serialize the assignments as a
fixed order sequence. We have included an example of this problem in fig. 3.5,
where the values of x and y should be swapped in b2. [30]

A simple solution of both the lost-copy and swap problems is to copy the
arguments into a fresh temporary variable instead of referencing the result of
the ϕ-node directly. This could be further refined by minimizing the number
of copy instructions (refer to [30] for an algorithm to do just that), but to keep
things simple we delegate this work to the register allocator. For completeness,
we illustrate a fixed version of both of the previous examples in fig. 3.6.

3.4 Macro Expansion

Before tree covering was widespread, retargetable compilers used another in-
struction selection technique called macro expansion. Modern compilers such
as GCC still use this method, but combined with a powerful peephole opti-
mizer [20].

39

3. Instruction Selection

x1 ← 1
y1 ← 2

b1

x← ϕ(y1, y)
y ← ϕ(x1, x)

b2

print(x)
print(y)

b3

(a)

x1 ← 1
y1 ← 2
x← y1
y ← x1

b1

x← y
y ← x

b2

print(x)
print(y)

b3

(b)

Figure 3.5: An example of the swap problem, the program in (b) is incorrect.

x1 ← 1
tx ← x1

b1

x← tx

x2 ← x + 1
tx ← x2

b2

print(x)b3

(a)

x1 ← 1
y1 ← 2
tx ← y1
ty ← x1

b1

x← tx

y ← ty

tx ← y
ty ← x

b2

print(x)
print(y)

b3

(b)

Figure 3.6: A corrected version of (a) the lost copy and (b) swap problem
examples by introducing temporary variables tx and ty.

40

3.4. Macro Expansion

The macro expansion itself scans the linearized representation of the IR
and matches every instruction against a defined set of macros. Whenever we
find a match, we emit the corresponding target code. All macro-expanding
instruction selectors studied by Blindell were greedy and stop expanding on a
first match [24].

In early implementations, the macros were written by hand, but that
has proven to be tedious and prone to errors, because sometimes the macros
also dealt with register allocation and had to keep track of locations of their
operands [24]. Later systems (such as DMACS [31]) generate the set of macros
from a simpler machine description languages.

The main advantage of macro expansion over tree covering is its speed.
For that reason it is widely used in JIT compilers, which generate the target
code at runtime for sections that are recognized by a profiler as frequently
executed. Even naively generated machine code can be orders of magnitude
faster than relying on an interpreter.

3.4.1 Peephole Optimization

The code generated by macro expansion can be further improved by peephole
optimization. The optimizer slides a small window (a peephole) across the
generated assembly code and attempts to replace the visible adjacent instruc-
tions with a single instruction while preserving the program behavior.

Like with macro expansion, the earliest implementations of a peephole op-
timizer contained a hand-crafted list of patterns and their replacements. A
better approach, required for more complex ISAs is to describe observable
behavior of instructions (including side effects like setting ALU flags) using
register transfer lists (RTLs) and let the compiler generate the patterns auto-
matically [32].

Davidson and Fraser [32] implemented a peephole optimizer that utilizes
RTLs and optimizes a program in two passes. In the first pass, the peephole
optimizer processes the program backwards and determines observable effects
of each assembly instruction. In the second pass, it looks at adjacent pairs
of instructions and compares their observable effects (sum of RTLs) with the
instructions available in the ISA. If it finds a match, it replaces the pair with
the new instruction.

Modern compilers such as GCC use [20] a similar approach also designed
by Davidson and Fraser [33]. The difference from the previous technique is
that we generate RTLs directly from the intermediate code in a process called
expansion. The combiner then performs the peephole optimization on RTLs
and a final assigner pass emits the assembly code.

41

Chapter 4
Register Allocation and

Assignment

After instruction selection, we are left with a listing of target instructions
grouped into basic blocks and functions. But this code cannot be executed
directly by the target, because the instructions use virtual registers (tempo-
raries) to store operands and results. Using unlimited number of temporaries
had the convenience that we did not need to track their lifetime and check
for collisions, but we now need to rewrite the program to reference only the
limited number of physical registers available in the target without changing
its semantics. We divide this process into two parts: [6]

• register allocation, which decides what subset of temporaries will be
stored in registers (we spill the rest into the slower memory), and

• register assignment, which for each of the temporaries stored in a
register assigns its exact location (register number).

We further categorize allocators as either local, which perform register al-
location for each basic block separately, or global, which take a whole function
into account [6]. We will first describe a simple algorithm for simultaneous lo-
cal register allocation and assignment, which can be used as a stopgap solution
before introducing two more advanced global register allocation algorithms.

4.1 A Simple Local Register Allocator
We can do a basic form of register allocation even during code generation by
loading referenced temporaries from memory into registers just in time before
each instruction. At the end of a basic block or if all registers are occupied
with dirty values, we spill the dirty (modified) temporaries back into memory.
Bellard uses this approach in the Tiny C Compiler [21] and Aho et al. also
describe it in their book [6].

43

4. Register Allocation and Assignment

The algorithm needs to track what is stored in each of the physical registers
and where is each temporary stored. For that it uses two descriptors:

• a register descriptor keeps track of the currently present temporary
in each physical register and whether it may have been modified, and

• an address descriptor contains for each temporary a set of locations
it is currently present in. This can be a physical register number, a
location on the stack or both.

The algorithm is simple to implement but suboptimal, because it keeps
all temporaries in memory between basic blocks, which has a significant per-
formance penalty (for example in loops). A better solution is to use a global
register allocator, which tracks liveness of temporaries across basic blocks and
assigns registers to temporaries in a way that they do not interfere.

4.2 Liveness Analysis

An informal definition of liveness is that a temporary is live at a program
point, iff its current value will be read later. Having liveness information is
important for global register allocation, because if two temporaries are both
live at some program point, they cannot share a register.

We will describe methods to perform liveness analysis statically on the
instruction CFG of the program, which is a conservative approximation of
dynamic (real) liveness, but can be computed in bounded time during com-
pilation. The analysis determines if a variable may be live, so it belongs to
a class of may dataflow analyses. To compute liveness, the compiler has to
know what temporaries may be read or written to by an instruction.

Definition 10. An instruction defines a temporary when it may change its
value. An instruction uses a temporary, when it may access its value. def(t)
is the set of CFG nodes (instructions) that define temporary t. def(n) is the
set of temporaries defined by node n. We define use(t) and use(n) similarly.

Definition 11. The temporary t is live at an edge e of the CFG if there exists
a directed path from u ∈ def(t) to v ∈ use(t) that includes e and does not go
through any other node from def(t). A temporary is live-in at a node when it
is live-in at any of the incoming edges of that node. A temporary is live-out
at a node iff it is live at any of the outgoing edges of that node.

Because we are interested in the uses of temporaries in the future, we
analyze liveness by going backwards against the direction of edges of the CFG.
The CFG may contain loops, so we will compute live-in and live-out sets for
each node iteratively using the following dataflow equations:

44

4.2. Liveness Analysis

in[n] = (out[n] \ def(n)) ∪ use(n) (4.1)
out[n] =

⋃
s∈succ(n)

in[s] (4.2)

Going backwards through a node n first stops (kills) the liveness of all
temporaries defined by n and then starts liveness of all variables used by n. If
a node both defines and uses the same temporary, it still starts its live range,
because the node has to have access to the old value. Equation (4.2) is the
definition of a live-out temporary (def. 11).

We can solve these equations using a naive iterative algorithm shown in
alg. 4. The solver starts with empty sets of live temporaries for each node and
updates them for each node using the equations above until they no longer
change. The computation is monotonic (in′[n] ⊇ in[n] and out′[n] ⊇ out[n]),
so the solver halts after a finite number of iterations. When it does, we say
that it has reached a fixed point.

The equations can have multiple solutions, but because we start with
empty sets, the solver always returns the least fixed point, which is the most
precise solution. [19]

Input: Control-flow graph of instructions G
Output: A set of live-in (in[n]) and live-out (out[n]) temporaries for

each node n of G

foreach n ∈ nodes(G) do
in[n]← ∅; out[n]← ∅

end
repeat

foreach n ∈ nodes(G) do
in′[n]← in[n]; out′[n]← out[n]
out[n]←

⋃
s∈succ(n) in[s]

in[n]← use(n) ∪ (out[n] \ def(n))
end

until in′[n] = in[n] ∧ out′[n] = out[n] ∀n ∈ nodes(G)
Algorithm 4: A simple iterative solver for liveness analysis.

We demonstrate steps of this algorithm on CFG from fig. 4.1 in table 4.1.
The algorithm found the fixed point after 4 iterations and we can read the
live-in and live-out variables for each node in the last column.

Another, less imperative way to compute liveness is by representing the
program state as a lattice and reformulating the dataflow equations as a trans-
fer function.

Definition 12. A partial order is a set S and a reflexive, transitive and
anti-symmetric binary relation ⊑. A lattice is a partial order in which we

45

4. Register Allocation and Assignment

i = 0

j = i + 1

j < 2

k = i * 2

print(k)

i = j

1

2

3

4

5

6

Figure 4.1: Example CFG of a program for demonstrating liveness analysis.

b def use out1 in1 out2 in2 out3 in3 out4 in4 out5 in5

1 i i i i i
2 j i i j i i,j i i,j i j,i i
3 j j i i,j i i,j j,i j,i j,i j,i
4 k i i k i j,k j,i j,k j,i j,k j,i
5 k k j j,k j j,k j j,k j j,k
6 i j i j i j i j i j i j

Table 4.1: Steps of the iterative solver for the CFG from fig. 4.1.

can compute least upper bound (x ⊔ y) and greatest lower bound (x ⊓ y) for
every x, y ∈ S. A complete lattice is a lattice, where we can compute least
upper bound (

⊔
X) and greatest lower bound (

d
X) for every subset X ⊆ S.

Every complete lattice has a unique largest element ⊤ =
⊔

S (top) and unique
smallest element ⊥ =

d
S (bottom). For complete definition see [1].

We can visualize a complete lattice as a diamond-shaped Hasse diagram
with a finite height, where the top and bottom levels contain exactly one
element (⊤, resp. ⊥). We show two examples in fig. 4.2.

We will use a powerset lattice to store the live variables for a CFG node.

Note 1 (Powerset Lattice). If A is a set, then (P(A),⊆), where ⊥ = ∅, ⊤ = A,
x ⊔ y = x ∪ y, and x ⊓ y = x ∩ y is a complete lattice.

We will use two lattices to compute liveness of variables in the program.
A node state lattice is a powerset lattice describing the live-in variables of a
node. Using it we node-wise define a program state lattice, which is a map
lattice that holds a node state lattice for each node of the program [1].

We define a monotone function tu(s), which given a program state s com-

46

4.2. Liveness Analysis

a1

⊥

.ai an

⊤

(a)
∅

{1} {2} {3}

{1, 2} {2, 3} {1, 3}

{1, 2, 3}

(b)

Figure 4.2: Hasse diagram of (a) a flat lattice and (b) a powerset lattice.

putes the new live-in variables for node u (tu(s) ⊆ variables(G)).

join(u, s) =
⋃

v∈succ(u)
s[v]

tu(s) = (join(u, s) \ def(u)) ∪ use(u)

Using tu(s), we can node-wise define a monotone transfer function f(s) for
the whole program state (a map nodes(G)→ P(variables(G))).

f(s) = [u→ tu(s) | u ∈ nodes(G)]

Due to Kleene’s theorem, the least fixed point lfp(f) is defined as

lfp(f) =
⊔
i≥0

f i(⊥).

Because f is monotone, ⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ . . . and we are searching for
the first k, where fk(⊥) = fk+1(⊥), which is our lfp(f) [1]. We can write this
in pseudocode as alg. 5.

procedure NaiveFixedPoint(f)
x← ⊥
while x ̸= f(x) do

x← f(x)
end
return x

Algorithm 5: A naive iterative algorithm to find the least fixed point of f
starting at ⊥ by computing fk(⊥) = f(fk−1(⊥)), k ∈ N until the result no
longer changes [1].

We can further improve this solver by using worklists to avoid recomputing
states of nodes that definitely did not change [1].

Although the lattice theory may seem daunting at first, it allows us to
construct a general monotone framework, which can be used for many other

47

4. Register Allocation and Assignment

dataflow analyses just by providing an appropriate node transfer function
tu(s). For example: [1]

• sign analysis, which determines the signs (+, −, 0) of expressions,

• constant propagation analysis, which calculates the subset of ex-
pressions that always evaluate to a constant value – we then use the
information for the optimization mentioned in section 2.7, or

• available expression analysis, which determines what expressions
have already been computed earlier in the execution of a program.

4.3 Register Allocation by Graph Coloring

We can reformulate global register allocation as a graph coloring problem.
Using the liveness information of temporaries, we construct an interference
graph, where nodes correspond to temporaries and edges are present between
temporaries that cannot share a register – there exists a program point where
both of them are live (with one exception we mention later). We then color
each of the nodes in the graph with one of K colors, where K is the number
of physical registers in the target. Thanks to the property of graph coloring,
where two adjacent nodes cannot have the same color, we get a valid register
assignment. This method of register allocation was first proposed by Chaitin
et al. [34] and it is now used by GCC [20].

If the graph is not colorable, we choose some temporaries to spill into
memory – this splits their live ranges into very short segments, which simplifies
the interference graph and makes the coloring easier. We iteratively do this
until we find a valid solution.

The one exception where two temporaries td and ts do not interfere even
though they are both live at a single program point is when they are only used
together as part of one or more move instructions td ← ts. We take this one
step further and modify the coloring algorithm so that is tries to assign the
same color to both td and ts, allowing the move to be eliminated.

Determining if a graph can be colored with K colors is a NP-complete
problem, so compilers use algorithms based on heuristics.

Chaitin et al. [34] were the first to use graph coloring for register allocation
with a heuristic called coloring by simplification. Before the coloring itself,
their algorithm aggressively coalesced all move instructions. When the graph
was not K-colorable, it chose registers to spill randomly.

Briggs et al. [35] improved the coloring heuristics by delaying spilling
until the color assignment phase (optimistic coloring). To determine what
node to spill it calculates spill cost (determined by number of defines and uses
of a temporary) and selects node with the lowest cost. The algorithm uses
conservative coalescing, but does it all at once before simplification.

48

4.3. Register Allocation by Graph Coloring

t1 = r0 + 2
t2 = t1
t3 = t2 * 3
t4 = t1 + t3
print(t4)

(a)

r2

t1

t2

t4
r0

t3

r1

(b)

Figure 4.3: A sample source code and a corresponding colored interference
graph with three precolored physical registers r1, r2 and r3. t1 and t2 do not
interfere, because they are related only by a move.

Build Simplify Potential Spill Select Actual Spill

Figure 4.4: Diagram of phases of the graph coloring register allocation algo-
rithm

Finally, George and Appel [36] proposed an algorithm that interleaves
conservative coalescing with simplification, which allows more moves to be
coalesced than in the previous algorithm. This is the version of graph coloring
register allocation that Appel also described in his book [19] and which we
describe in the rest of this section.

4.3.1 Coloring by Simplification

First, we describe a simplified version of the algorithm without move coalescing
and then extend it to the full version. The optimistic coloring algorithm works
in 5 phases, illustrated in fig. 4.4: Build, Simplify, Potential Spill, Select
and Actual Spill.

Build We construct an interference graph from results of the liveness anal-
ysis. For performance reasons, we perform the analysis on basic blocks and
compute liveness of individual instructions during construction of the inter-
ference graph. We add an edge to the graph for every pair of temporaries that
are live at the same time at some point in the program (excluding the register-
register moves as described above). The graph also contains a precolored node
for each of the physical registers.

Simplify We repeatedly search for some node v of non-significant degree
(deg(v) < K), remove it from the graph and push it onto a stack. We can
show that if G−v is colorable with K colors, then there also exists coloring for
G. Even if all of the deg(v) < K neighbors of v have been assigned different

49

4. Register Allocation and Assignment

colors, there will still be one left for v. After the graph has been simplified by
removing v, the degree of its original neighbors decreases by one and it may
now be possible to simplify them.

Potential Spill After the simplify phase, we are either left with an empty
graph and we jump straight into the select phase, or there are only nodes of
significant degree. In the latter case, we select one of the remaining tempo-
raries to spill, remove it from the graph and push it onto the simplification
stack.

Select We rebuild the graph by repeatedly popping nodes from the stack
and assigning them colors. For each node we find a color that has not been
assigned to any of its neighbors yet and assign it to the node. This will succeed
for all nodes pushed onto the stack during the simplify phase, but it may fail
for a node added in the spill phase if all of its neighbors have already been
assigned at least K different colors. In that case we add the node to a list of
spilled nodes and continue the select phase to potentially identify more spilled
nodes.

Actual Spill If we were not able to color all nodes in the select phase,
we rewrite the program with the spilled temporaries represented in mem-
ory. We emit an instruction to store them into memory after each def and a
load instruction before each use. We must use fresh temporaries to hold the
freshly loaded values, so the live ranges are short. After we have rewritten
the program, we repeat the whole process until no additional spills have been
requested. Only few iterations are needed in practice [6].

4.3.2 Move Coalescing

The typical code emitted by the instruction selector contains many move in-
structions (td ← ts). If td and ts do not interfere, we can coalesce them into a
single node tdts, which causes both of them to have the same color and allows
the move to be deleted. We will now define two conservative coalescing strate-
gies – they allow coalescing two nodes only if it does not affect colorability of
the graph.

Theorem 1 (Briggs). If G is colorable, then G′ created by coalescing nodes u
and v into uv is also colorable if the node uv will have fewer than K neighbors
with degree ≥ K.

Proof. After coalescing, we can simplify all the insignificant-degree neighbors
of uv, which leaves uv with at most K− 1 neighbors and thus we can simplify
uv too. If G was colorable, this new simplified subgraph of G must be too.

50

4.3. Register Allocation by Graph Coloring

Theorem 2 (George). If G is colorable, then G′ created by coalescing nodes
u and v into uv is also colorable if for all neighbors t of u it holds that t either
has insignificant degree or t interferes with v.

Proof. With or without coalescing, we can simplify all insignificant-degree
neighbors of u and we are left only with the ones that were interfering with
v. After coalescing, the node uv is equivalent to v and thus the graph must
be as easy to color as G.

We interleave coalescing with simplification, because if the degrees of nodes
are lower, the conservative criteria have a higher change of succeeding. This
is one of the improvements made by George and Appel [36].

To handle move coalescing, we extend the algorithm with two new phases
– Coalesce and Freeze.

Build Same as before, except we now take note of move instructions and
move-related nodes.

Simplify We remove all non-move-related nodes with insignificant degree
and push them onto the stack.

Coalesce If the graph can no longer be simplified, we check whether any of
the moves in the graph can be coalesced using the conservative criteria. If the
resulting node is no longer move-related, we can resume simplification.

Freeze If all insignificant-degree nodes in the graph are move-related but we
cannot coalesce any more moves, we choose some move and freeze it – we no
longer consider it as candidate for coalescing and remove it from the graph.
This may cause its operands to become non-move-related and thus possible
to simplify.

Potential Spill Same as before – all nodes in the graph have significant
degree, so we choose one for potential spilling, push it onto the stack and
remove it from the graph.

Select Same as before – we pop nodes from the stack and assign colors.

Actual Spill If there were any spilled nodes, we rewrite the program with
spilled nodes as before and restart the algorithm.

51

4. Register Allocation and Assignment

4.3.3 The Complete Algorithm

Appel describes an implementation of this graph coloring algorithm with con-
servative move coalescing in [19]. It uses worklists to prevent quadratic time
complexity otherwise caused by evaluating the coalescing criterion for every
move at all times. Before and after each step (Simplify(), Coalesce(), Freeze(),
SelectSpill(), AssignColors()) a node (temporary) is always in exactly one of
the following data structures:

• precolored – a set of precolored temporaries (physical registers), whose
color [n] is already before running the algorithm,

• initial – a set that contains non-precolored nodes ready for distribution
by MakeWorklist() into spillWorklist, freezeWorklist and simplifyWorklist,

• simplifyWorklist – a set of non-move-related nodes with degree[n] < K
or nodes selected for optimistic spilling, ready to be removed from the
graph by Simplify(),

• freezeWorklist – a set of move-related nodes with degree[n] < K,

• spillWorklist – a set of nodes considered for spilling,

• coalescedNodes – a set of nodes removed from the graph by coalescing
with other node,

• selectStack – a stack of simplified nodes waiting to be assigned color
by AssignColors(),

• coloredNodes – a set of non-precolored nodes that have been popped
from selectStack and successfully assigned a color into color [n], and

• spilledNodes – a set of nodes to be spilled by RewriteProgram(). If
this set is non-empty, then the graph was not colorable.

The algorithm uses a similar collection of disjunct sets to track move in-
structions. We have to be aware that there may be multiple moves with the
same source and destination in a program, so we have to compare them by
reference. Each move starts in worklistMoves, the rest has the following pur-
poses:

• worklistMoves – a worklist of moves queued for coalescing by Coa-
lesce(),

• activeMoves – moves which cannot be coalesced, because they failed
the conservative criterion and thus could render the graph uncolorable,

• frozenMoves – moves that were too long in activeMoves (we have sim-
plified and coalesced every other node and move that we could), so we
have given up on coalescing them,

52

4.3. Register Allocation by Graph Coloring

initial

spillWorklist

freezeWorklist

simplifyWorklist

precolored

coalescedNodesselectStack

spilledNodes coloredNodes

in graph

removed from graph

Figure 4.5: Lifecycle diagram of a node. A node starts either in the precolored
or initial set depending on whether it represents a physical or virtual register.
We treat nodes in sets below the line as if they have been removed from the
graph (they are not included in Adjacent(n) and degree[n]).

• coalescedMoves – moves that have been coalesced (alias[n] contains
the sibling), and

• constrainedMoves – moves with interfering source and destination,
which cannot be coalesced.

We only consider the moves in worklistMoves and activeMoves as “active”
(for RelatedMoves(n)). We do not include the full pseudocode in this thesis
and refer the reader to the original sources ([19] or [36]).

4.3.4 Expressing Constraints using Interference

An advantage of graph coloring is that we can easily use it to express additional
constraints on registers by adding edges to the interference graph. For example
we can force a temporary to be colored with one of a specific subset of physical
registers by making it interfere with all of the others.

We can also modify the def and use sets of CALL and RET instructions
to let the allocator automatically backup and restore caller- and callee-save
registers.

If we make every live temporary at a CALL instruction interfere with all of
the caller-save registers, we implicitly instruct the register allocator to either
color each of those temporaries with a non-caller save register, or to spill them
into memory. We can do this by extending the def set of CALL instructions
with every caller-save register.

53

4. Register Allocation and Assignment

Callee-save registers can be handled in a similar manner by adding them to
the use set of the RET instruction. In this case we also need to make sure that
their live range is split into shorter segments by copying them into temporaries
in the prologue and restoring them back in the epilogue. Otherwise we would
lock the register allocator from using any callee-save registers, because physical
registers cannot be spilled.

4.4 Linear Scan Register Allocation

Poletto and Sakar proposed [37] a different method of global register allocation
called Linear Scan. It is not based on graph coloring, but instead does a single
pass over the IR while greedily allocating registers to temporaries. This makes
linear scan fast, albeit less optimal than graph coloring.

The algorithm requires IR instructions to be numbered in some order (the
paper suggests sorting the data-flow graph depth-first). Instead of live ranges
used in graph coloring, linear scan works with their conservative approxima-
tion – live intervals. A temporary t has live interval [i, j] if there is no instruc-
tion with number j′ > j such that t is live at j′ and there is no instruction
i′ < i such that t is live at i′.

We can compute live intervals for temporaries from live ranges obtained
from liveness analysis with a single pass over the IR. If two temporaries inter-
fere, their live intervals must overlap. We want to assign one of K available
registers to each interval so that no overlapping intervals share the same reg-
ister. If that is not possible, we need to spill some of them into memory.

4.4.1 The Algorithm

The algorithm loops over the live intervals in order of their starting points
and keeps track of intervals that overlap at the current program point in the
active set.

In each iteration, the algorithm first removes intervals that have already
ended from active and frees their assigned registers. Then, it needs to assign
a register to the newly started interval i. This is simple if we have some
available, but if there are currently K active intervals, we have to spill one
into memory. The implementation in the paper uses a simple heuristic and
chooses the interval with the furthest end point. Algorithm 6 contains the
three main procedures of linear scan.

4.5 Post Processing

After the register allocation is complete, we still have to do a few more passes
over the resulting assembly code.

54

4.5. Post Processing

procedure LSRA()
active ← ∅
foreach interval i in order of increasing start point do

ExpireOldIntervals(i)
if |active| = K then SpillAtInterval(i)
else

register [i]← acquireRegFromPool()
active ← active ∪ {i}

end
procedure ExpireOldIntervals(i)

foreach j ∈ active in order of increasing end point do
if endpoint(j) ≥ startpoint(i) then return
active ← active \ {j}
releaseRegToPool(register [j])

end
procedure SpillAtInterval(i)

spill ← last interval from active by endpoint
if endpoint(spill) > endpoint(i) then

register [i]← register [spill]
location[spill]← newStackLoc()
active ← (active \ {spill}) ∪ {i}

else location[i]← newStackLoc()
Algorithm 6: Pseudocode of the Linear Scan algorithm [37].

Whenever we enter a function, we have to allocate space for the local
variables in a stack frame and later deallocate it on function exit. We call the
snippets of code responsible for this prologue and epilogue and they often do
some additional actions (for example inserting and checking a stack canary
or configuring exception handlers [38]). We could not insert this code during
instruction selection or earlier, because the stack frame size could be modified
by register spilling.

If we are emitting machine code directly, we also need to transform the
generated symbolic instructions into their binary machine code counterparts
and replace labels by their real addresses (a process called assembling). If the
complete program consists of multiple compilation units, we call the linker to
resolve symbol cross references and create a single merged executable.

55

Chapter 5
Design and Implementation

In this chapter we first discuss the goals of our compiler and how we have
integrated it with the existing NIE-GEN toolchain. Then, we explain our
choices of methods from the previous chapters for each part of the compiler
and describe how we have used them during implementation to reach the
stated objectives.

5.1 Design Goals

Instead of building a monolithic program that does the whole compilation in
a single pass, we split it into a set of modules and classes with clearly defined
interfaces. The modularity allows easily extending the compiler with more
frontends and backends in the future and also enables the teacher to reveal
only a small part of it to students. They can then implement the rest as their
semester projects.

We expect the compiler to be used to process only small programs (in the
tens to small hundreds of lines), so we do not have to focus on compilation
speed. Instead, we try to implement advanced techniques from the compiler
construction course in the most simple and idiomatic way possible, so our
implementation can be used as a teaching aid during lectures and tutorials.

Scala supports a vast amount of programming constructs, some of which
are not obvious to non-Scala programmers. We want our work to be accessible
to the average NIE-GEN student, so we try to keep the use of advanced Scala
features to a minimum. Using the simpler Scala 2 instead of Scala 3 gets us
halfway there, with the rest being done by avoiding operator overloads, implic-
its10 and for comprehension except for places where it improves readability
(such as in DSLs).

10Martin Odersky, the author of Scala, said himself that implicit conversions are evil [39].

57

5. Design and Implementation

tiny86

JVM

tinycc.jar
SWIG bindings

JNI

(a) Using JNI bindings

t86-cliJVM file or
std. I/Otinycc.jar tiny86

(b) Using a file-based interface

Figure 5.1: Two variants of integrating our compiler (tinycc.jar) with tiny86,
in (a) tiny86 runs inside the JVM together with the compiler and in (b) the
applications are separated on the OS level and communicate using files.

5.2 Extending the NIE-GEN Toolchain
Our compiler should seamlessly integrate with the existing NIE-GEN toolchain,
which consists of the tinyC parser and the tiny86 VM, both of which are writ-
ten in C++ and expose only C++ interface. We have two options how to
interact with this interface from Scala (illustrated in fig. 5.1):

1. we can create bindings to use the C++ interface directly from Scala
through Java Native Interface (JNI) or a similar bridge, or

2. we have to design a text or binary serialization format and communicate
with the toolchain using files or standard I/O.

5.2.1 Calling Native Code from Java

The API surface of the tinyC AST and tiny86 ISA is fairly large (tens of
different node and instruction types with a complex class hierarchy), which
makes manually creating bindings unfeasible and unmaintainable. In our pre-
vious unpublished work we explored methods for automatically creating C++
bindings for Scala using SWIG, which we will now briefly mention.

Simplified Wrapper and Interface Generator (SWIG) is a tool for automat-
ically creating native code bindings for a wide range of language combinations.
SWIG can parse a C++ header file with some additional SWIG-specific ex-
tensions and generates a set of C++ and Java source files, which together
comprise the JNI bindings.

The resulting Java interface is usable from Scala, but there are a few
limitations:

• dynamic inheritance does not map cleanly to Java – when a C++ method
returns a pointer, it is not resolved to the full type on the Java side and
there is no equivalent of dynamic_cast<T> (only workarounds), and

• the Java API feels unnatural in Scala – we have to call methods with the
get, set, is prefixes and working with Java collections requires using
conversions.

58

5.2. Extending the NIE-GEN Toolchain

Debugging the C++ side is also made difficult, because it runs inside the
JVM. Segmentation faults and other exceptions thus crash the entire applica-
tion. For those reasons we have decided to not use JNI and instead use the
file-based approach.

5.2.2 File Input/Output

TinyC is language with a relatively simple syntax, so instead of creating a se-
rializer and deserializer for the AST, we have reimplemented the whole parser
from scratch in Scala. Our compiler frontend thus accepts a tinyC source file
as an input.

To interface with Tiny86, we have used the text-based assembly format
designed by Filip Gregor as part of his interactive debugger [8]. At the time
when we started our implementation, the parser (t86-cli) was still incomplete,
so we have extended it to support all features of tiny86 (notably the data
section and floating-point registers). The text-based nature of the format
allows the user to examine the assembly code before passing it to the VM.
The backend of our compiler thus prints a valid text-based representation of
the generated tiny86 program to a file or the standard output.

5.2.3 Improving the Tiny86 VM

During the implementation phase, we have discovered several bugs and short-
comings in the tiny86 VM. We have worked together with the current main-
tainer Filip Gregor to ensure our fixes reach the upstream.

One of the found and fixed bugs is a data hazard in the CPU pipeline,
where the VM crashed during fetch of invalid instruction, which would never
be executed (see listing 5.1 for a minimal example). In addition to fixing bugs,
we have extended t86-cli with the option to report performance statistics of
the executed program after the CPU halts.

.text
1 CALL 3
2 HALT
3 MOV R0, -1
4 RET
5 MOV R1, [R0]

Listing 5.1: The VM crashed as a result of loading from invalid memory
address -1 after it fetched the MOV instruction on address 5 even though it was
never going to be executed.

59

5. Design and Implementation

5.3 Parsing and Typechecking TinyC
In section 5.2 we have decided to implement the tinyC parser from scratch
instead of using the one included in the NIE-GEN toolchain (a manually
constructed top-down recursive descent parser). For implementing our own
parser, we have three feasible options:

1. manually write a recursive descent parser (similar to the one included
in the NIE-GEN toolchain),

2. select and use an external parser generator to generate Java or Scala
code from the tinyC grammar,

3. implement the parser natively in Scala using parser combinators.

The functional aspect and extensibility of Scala lends itself to the parser
combinator approach. Scala makes it easy to implement an internal DSL
using overloaded operators, so the parser code can be easily extensible and
look similarly to the original parser expression grammar. Another advantage
of parser combinators is that we do not need to complicate our build pipeline
with external tools and dependencies.

In the past, Scala was distributed with a bundled parser combinator li-
brary, which was later separated and is now community-maintained as the
scala-parser-combinators package. It provides a set of parser combinators im-
plemented in plain Scala (without macros or any code generation) and related
classes for lexing and parsing arbitrary input. In addition, it contains pre-
made lexer and a set of tokens suitable for languages similar to Java. Its main
weakness for our purposes is inflexible and unstructured error reporting [40].

5.3.1 A Tiny Parser Combinator Library

We have designed our own tiny parser combinator library with a syntax sim-
ilar to scala-parser-combinators, but with improved error reporting using the
methods we describe in sections 2.1.5 and 2.1.6. While it may seem like a fair
bit of upfront work, we could reuse this library for parsing the textual form
of our IR and even CLI arguments in addition to tinyC.

For error reporting, we have combined Ford’s heuristics [15] with the ex-
pectation tree technique designed by Scheidecker [16]. Our parser keeps track
of names of expected symbols at the furthest visited position in the input in an
expectation tree. If both children of the prioritized choice operator fail at the
same position, it creates a new node with expectations of both subexpressions.
We can use the p describedBy name combinator to give a custom name to an
expression, which refines the error message with additional context. For sim-
plicity, we have not implemented error recovery, so the parser returns only the
first error is encounters. Listing 5.2 shows a sample error message produced
by our tinyC parser, which is caused by an incomplete expression.

60

5.3. Parsing and Typechecking TinyC

error.tc:2:16: error: while parsing expression, expected ’+’,
↪→ ’-’, ’!’, ’~’, ’++’, ’--’, ’*’, ’&’, integer literal,
↪→ double literal, char literal, string literal, identifier,
↪→ ’(’, ’cast’ or ’scan’, but got unexpected ’;’
2 | int i = 1 +;
| ^

Listing 5.2: An example of an automatically generated parser error message
caused by an incomplete expression.

object ExprParser extends Parsers {
lazy val S = E ~ EOI
lazy val E = T ~ rep(’+’ ~ T)
lazy val T = F ~ rep(’*’ ~ F)
lazy val F = ’(’ ~ E ~ ’)’ | ’a’

}

Listing 5.3: A simple combinator parser for PEG from fig. 2.7.

PEG Scala description
ε success(()) empty string
a a a terminal (a ∈ Σ)
A A a nonterminal (A ∈ N)

e1e2 e1 ~ e2 a sequence
e1/e2 e1 | e2 prioritized choice

e∗ rep(e) zero or more repetitions
!e not(e) a not-predicate

Table 5.1: Mapping between PEG expressions and our combinator library.

A simple parser that just recognizes a PEG can be implemented similarly
to listing 5.3. In table 5.1 we show how PEG operators map to our internal
Scala DSL. The result of successfully matching some parser expression is the
raw parse tree, which is not that useful.

The real power lies in combinators, which manipulate the returned value.
The most versatile of them is the map combinator (p ˆˆ f), which transforms
a result of an inner parser p using an arbitrary pure function f . Using this
primitive, we can design the parser to directly construct tokens, AST nodes
or do any other action that does not have side effects (but we can easily work
around this limitation, see section 5.5.8).

61

5. Design and Implementation

5.3.2 Lexical and Syntax Analysis of TinyC

Although a single PEG could express the syntax of tinyC down to the character
level, we have decided to use the more standard approach with a separate lexer
and parser, both implemented using parser combinators. Our tinyC frontend
thus contains two PEGs.

The start expression of the lexical PEG matches a single longest possible
token. This is in contrary to the parser, where the start expression suc-
ceeds only for a complete program. During its operation, the lexer gradually
processes the whole input while passing the matched tokens to the syntax
analyzer. We use the following token types for tinyC (here as Scala classes):

sealed trait Token
object Token {

/** An operator, keyword or some other special character. */
case class Special(value: Symbol) extends Token
case class Identifier(value: Symbol) extends Token
case class IntLiteral(value: Long) extends Token
case class DoubleLiteral(value: Double) extends Token
case class StringLiteral(value: String, quote: Char) extends

↪→ Token
}

The main tinyC PEG then views those tokens as terminal symbols and
uses them to build an AST. We have used the reference tinyC grammar [3]
and the AST hierarchy from the parser included in the NIE-GEN toolchain
[41].

The grammar of tinyC is ambiguous in whether it should treat an identifier
as a named type, because the user can define their own type aliases using
typedef (same as in regular C) and named structs (tinyC skips the struct
keyword when referencing structs). We solve this ambiguity by storing the list
of currently defined types as an attribute of the input and defining combinators
isNamedType and declareNamedType to query and manipulate it. We cannot
use a global state for the same reason that parser expressions cannot have side
effects – backtracking and look-ahead using the not-predicate.

The syntax and semantics of tinyC are very close to a subset of C99, in fact
the only differences are the omitted struct keyword except in declarations,
the cast<T>(e) operator and in our case 64-bit wide default int type. We can
easily transpile tinyC source code to C on the AST level, which has allowed
us to verify correctness of our tests.

5.4 Semantic and Type Analysis

After parsing, our compiler does two recursive passes over the AST. The first
pass builds a map from identifiers to their declarations and the second one is

62

5.5. Intermediate Representation

dedicated to typechecking and returns a map from AST nodes to their types.
TinyC has lexical scoping just like C99, so we keep track of declarations in

a lexical stack. Functions, structures and global variables can have multiple
forward declarations in addition to their definition. We extend the returned
map with the ability to use declarations as a key and use it to store a linked
list of previous declarations.

The semantic analyzer also prevents duplicate field names in a struct,
duplicate cases in a switch statement and disallows assignment to a func-
tion identifier. Performing those checks earlier simplifies the main IR code
generator.

The typechecker is also fairly straightforward, because the type of every
AST node in tinyC can be synthesized from types of its children during a
single depth-first pass over the tree. Our compiler supports all of the types
defined by the official tinyC grammar:

• void,
• char – 8-bit signed integer in [−128, 127],
• int – 64-bit signed integer in

[
−263, 263 − 1

]
,

• double – 64-bit IEEE 754 double-precision float,
• a function,
• a structure holding a list of fields, which can be other structures (but

recursive declaration is possible only through a pointer),
• a pointer to any of the above, including nested pointers, and
• a statically-sized array – only as a type of a local or global variable.

We automatically promote arithmetic types (char, int, double) in this
order when they are used as arguments of a binary arithmetic operator. Our
frontend supports implicit and explicit (using cast<T>(e)) casting of expres-
sion types using C99 rules. Arithmetic types are implicitly compatible with
each other, any pointer can be assigned to void *, but the opposite direction
is possible only through the use of an explicit cast. Likewise, it is possible to
explicitly convert between pointer and int.

Both semantic and type analyses attempt to continue in case of error. If
the typechecker cannot determine type of an expression, it assumes the void
type. If any of the two analyses detected errors, the compiler does not continue
any further and reports them to the user.

In the following section we describe our shared intermediate representation
and how we generate it from the tinyC source code.

5.5 Intermediate Representation

From the options presented in section 2.4, we have opted for a flat IR inspired
by LLVM. Each instruction in our IR at the same time identifies a virtual
SSA register. Emitting SSA code from the frontend is harder and for some C

63

5. Design and Implementation

constructs impossible, so our IR also supports explicit memory load and store
operations through specialized instructions.

The SSA property gives our IR all of the advantages of a tree-based IR, be-
cause we can easily reconstruct expressions by looking at the implicit data-flow
graph. Moreover, explicitly sorting instructions into basic blocks unlocks the
potential of doing many lower-level optimizations directly on the IR instead
of in target-specific passes.

5.5.1 Structure of an IR Program

A whole IR program consists of a list of functions, each of which contains a list
of basic blocks. Every basic block ends with a special terminator instruction,
which can only ever exist as the last instruction of a basic block and whose
operands specify the next block to be executed. The first executed function
on startup is the one named “entry”. The first basic block of each function is
called the entry block and cannot have any predecessors.

Every instruction has an opcode, name, result type, operands and belongs
to a basic block. The instruction name must be unique within a function (with
the exception of AllocG, see section 5.5.3) and also identifies the corresponding
virtual register.

Each virtual register (instruction) has an associated type, which can be
one of void, i64 and double. The IR grammar also accepts a ptr type, but that
is just an alias for int64. Pointers in our IR are thus opaque, which simplifies
the type system, but leaves potential pointer-based optimizations with less
information. Operands of instructions are strongly typed and the only way to
cast between i64 and double is through the Cast and Bitcast instructions.

The next few sections contain a categorized overview of all supported IR
instructions together with a description of their semantics.

5.5.2 Basic Instructions

IImm, FImm (value → i64/double) Unlike LLVM, to simplify the object
hierarchy, we represent immediate values as regular instructions. The result
of IImm is a 64-bit integer constant, the result of FImm is a real constant with
double precision.

BinaryArith (left: i64/double, right: i64/double → i64/double) The IR sup-
ports all binary arithmetic operations provided by tiny86. The opcode of
each of those instructions starts with one of [IUSF] depending on the expected
type of operands. I stands for any integer (signed/unsigned), S for a singed
integer, U for an unsigned integer and F for double. Both operands must have
the same type, which is also the result type of the instruction.

64

5.5. Intermediate Representation

Cmp (left: i64/ptr/double, right: i64/ptr/double→ i64) Instructions from the
Cmp family compare two values with the same type. They use the same letter
prefixes as BinaryArith instructions to indicate the accepted type. The result
of the comparison is either 0 or 1.

5.5.3 Memory Instructions

The IR contains explicit memory instructions for working with variables on
the stack and in the data segment of the program. In addition to the standard
types, a variable type can be also a struct or a statically-sized array. We use
those types to abstract pointer arithmetic and memory alignment from the
frontend and move it into the backend, where the instruction selector can
tailor it to the target ISA.

AllocL (varTy → ptr) AllocL allocates a variable of the stack and returns its
address. The returned pointer is valid until the end of the function.

AllocG (varTy, initData → ptr) Similarly to AllocL, AllocG allocates a vari-
able in the data segment. In addition to the type, the user can provide an
array of 64-bit words, which will be used to initialize the allocated memory
at program startup. The name of AllocG must be unique in the entire IR
program and it is the only instruction that can be referenced across functions.

Load (valueTy, ptr : ptr → ptr) The Load instruction retrieves a value of a
given type (either i64 or double) from the address specified by ptr .

Store (ptr : ptr, value: i64/ptr/double → void) The Store instruction writes a
value to the memory at the address specified by ptr.

GetElementPtr (ptr : ptr, index: i64, elemTy, fieldIndex → ptr) The GetEle-
mentPtr instruction is used to compute offset of an array element or a struct
field. It is a simplified version of the equivalent LLVM instruction. In terms
of the C language, it computes &(((elemTy *)ptr)[index].fieldIndex). If
elemTy is not a struct type, fieldIndex must be set to 0.

SizeOf (varTy → i64) The SizeOf instruction returns the size of a given
variable type in 64-bit words.

5.5.4 Function-Related Instructions

GetFunPtr (targetFun → ptr) The GetFunPtr instruction returns address of
targetFun, which can be indirectly called by CallPtr.

65

5. Design and Implementation

LoadArg (index → i64/ptr) The LoadArg instruction retrieves value of the
index-th argument of the parent function. The result is the actual value of
the argument, not its address, because depending on calling conventions, it
could be present only in a register.

Call (targetFun, args: i64/ptr/double/void . . .→ i64/ptr/double/void) The Call
calls a function specified by a direct reference. The arguments and result types
are dependent on the called function.

CallPtr (funSig, ptr :ptr, args: i64/ptr/double/void . . . → i64/ptr/double/void)
In addition to direct calls, the IR supports calling function indirectly through
their address using CallPtr. The return type and types of arguments are spec-
ified by funSig and must match with args.

5.5.5 Standard Input/Output

The tiny86 VM supports interacting with the host system through the GETCHAR,
PUTCHAR and PUTNUM instructions. GETCHAR and PUTCHAR read and write a sin-
gle character from the standard input and output, PUTNUM prints an integer
terminated by a newline (this instruction was added by Filip Gregor to help
with testing t86-cli and we have decided to keep it for the same reason). We
expose those instructions as the following IR counterparts:

GetChar (()→ i64) The GetChar instruction reads and returns a single char-
acter from the standard input as an integer in [0, 255). It returns −1 on end
of file.

PutChar (arg: i64→ void) The PutChar instruction writes a single character
([0, 255)) to the standard output. Calling GetChar with an out of bounds
argument is an undefined behavior in tiny86.

PutNum (arg: i64 → void) The PutNum instruction prints a decimal repre-
sentation of arg terminated by a newline to the standard output.

5.5.6 Special instructions

Phi (predBlocks, args: i64/ptr/double . . . → i64/ptr/double) Phi is a virtual
instruction, which implements the SSA ϕ-node used to join values coming from
multiple predecessor blocks (see section 2.4). If the previously executed block
is the i-th element of predBlocks, the instruction evaluates to i-th element of
args. The size of predBlocks and args must equal the number of predecessors
of the parent basic block and all args must have the same type.

66

5.5. Intermediate Representation

Cast (arg: i64/double → double/i64) A cast instruction is used to convert
between i64 and double types. The IR contains two types of casts: Bit-
castInt64ToDouble and BitcastDoubleToInt64 reinterpret the binary represen-
tation of the argument as the target type, and SInt64ToDouble and Double-
ToSInt64 perform a regular conversion between a real number and a signed
integer.

5.5.7 Terminator Instructions

We use terminator instructions to direct the control flow at the basic block
level. A basic block must have exactly one terminator as its last instruction,
which defines its successor blocks.

Ret (arg: i64/double/ptr → void) The Ret instruction signalizes the ending
of the parent function and returns arg to the caller. The type of arg must
match the return type of the parent function.

RetVoid (()→ void) The RetVoid returns execution back to the caller from
a function with a void return type.

Halt (() → void) The Halt instruction immediately terminates execution of
the program.

Br (succBlock → void) The Br instruction represents an unconditional jump.
It transfers the execution to the specified successor block.

CondBr (arg: i64, trueBlock, falseBlock → void) The CondBr instruction rep-
resents a conditional jump. If arg is non-zero, the branch is taken and
trueBlock is the next to be executed. Otherwise, the execution is transferred
to falseBlock. We can combine CondBr with the Cmp instruction to build
conditions with any of the supported relational operators.

5.5.8 A Textual Representation of the Intermediate Code

During the development of our compiler we needed a way to view inputs and
outputs of the individual compiler passes, which led us to design a textual
format for our intermediate representation.

We have taken this one step further and designed and implemented a
parser, which can read back the text-based format and pass it to the op-
timizer and target code generation modules of our compiler. This greatly
extends the interoperability of our compiler with external tools. The com-
munity can develop their own frontends, optimization passes and backends in
languages other than Scala and easily integrate them together with the rest
of our compiler.

67

5. Design and Implementation

For the parser, we reuse the combinator library designed for frontend, but
with a different set of parsing expressions. We still use a separate lexer and
parser, but skip the AST this time, because the source code is a direct equiv-
alent to the internal IR program. Because the IR source code can contain
forward references and our IR builder is mutable, we cannot directly con-
struct the IR program from within the parser actions. Instead, the parser
progressively builds a function, which we then call to construct the IR after
the whole source code has been successfully parsed.

Listing 5.4 shows the syntax of the textual form of our IR on a sample
program. We include the complete PEG grammar in appendix C.

fn void entry() {
entry:
%str_Hellowor = allocg i64[15], 72 101 108 108 111 44 32 119

↪→ 111 114 108 100 33 10 0
%2 = br label %whileCond

whileCond:
%1 = phi [%str_Hellowor, label %entry],

[%7, label %whileBody]
%4 = load i64 %1
%5 = condbr %4, label %whileBody, label %whileCont

whileBody:
%ione = iimm 1
%7 = getelementptr i64, ptr %1, [%ione].0
%9 = load i64 %1
%10 = putchar %9
%11 = br label %whileCond

whileCont:
%12 = halt

}

Listing 5.4: The IR of the “Hello, world!” program from listing 1.1.

5.6 Compiling TinyC to IR

Our IR is low-level and general enough to be able to represent all tinyC fea-
tures, but for many constructs the translation is not direct and the frontend
has to perform lowering. The compiler visits the AST in post order and emits
IR code for each encountered expression.

The following two sections cover interesting problems we have encountered
during implementation, but for other specifics we refer the reader to the source
code.

68

5.6. Compiling TinyC to IR

struct P {
int x;
int y;

};
P set_x(int x, P obj) {
obj.x = x;
return obj;

}

ptr set_x(ptr, i64, ptr) {
entry:
%retval = loadarg 0
%x = loadarg 1
%obj = loadarg 2
copy obj into retval and

↪→ set retval->x = x
%0 = ret %retval

}

Figure 5.2: Compilation of a tinyC function which accepts and returns a
struct. The structures are passed by reference and copied by the callee.

5.6.1 Compiling Structures

The tinyC language fully supports the pass-by-value struct type, which
means every struct variable and argument is independent from each other
and assigning to them means performing a deep copy.

The memory instructions in our IR support only primitive types, so we
have to emit the copying code in the frontend. Another complication is when
a functions has a struct as its return value. We have to be careful about who
owns the memory and when it may be overwritten.

In our compiler, the caller first allocates memory for the return value and
passes its address to the called function as the first argument. The callee is
then responsible for copying both the arguments and the return value. The
callee then for simplicity returns the pointer to the reserved memory. We copy
small structures recursively using a combination of Load, Store and GetEle-
mentPtr, but for large structures we call memcpy(dest, src, n), which must
be provided by the user. We show a simple example in fig. 5.2.

5.6.2 Compiling Boolean Expressions

To make tinyC compatible with C99, we have decided to implement short
circuiting for || and && logical operators. A simple way to avoid converting the
individual subexpressions into values and storing them in temporary registers
or variables is by using a method similar to continuation passing. We define a
recursive procedure CompileLogicalExpr(), which takes the expression e, the
target block b and two blocks, which should be entered if the condition is
evaluated to true (for example the if body block) or false (the if else block).
We show its definition in alg. 7.

69

5. Design and Implementation

procedure CompileLogicalExpr(e, b, trueBlock, falseBlock)
if e is e1 && e2 then

leftTrue ← newBasicBlock()
CompileLogicalExpr(e1, b, leftTrue, falseBlock)
CompileLogicalExpr(e2, leftTrue, trueBlock, falseBlock)

else if e is e1 || e2 then
leftFalse ← newBasicBlock()
CompileLogicalExpr(e1, b, trueBlock, leftFalse)
CompileLogicalExpr(e2, leftFalse, trueBlock, falseBlock)

else if e is ! e1 then
CompileLogicalExpr(e1, b, falseBlock, trueBlock)

else
reg ← CompileExpr(e, b)
append CondBr(reg, trueBlock, falseBlock) into b

end
Algorithm 7: A recursive procedure to compile boolean expressions with
short-circuiting logical operators.

5.7 The Optimizer

Although we focus this thesis more on the backend part of the compiler, to get
the most of our instruction selection we need to perform a few optimizations
in the middleend. Most of tinyC statements contain one or more references to
a local variable, which our frontend compiles directly to IR as Load and Store
instructions. This means that the DFG is split into many small components
and not many registers are live at the same time (and almost none across basic
blocks).

5.7.1 SSA Construction

Because we want to take advantage of global register allocation, we have to
eliminate some of the local variables using SSA conversion. In section 2.6
we described a simple algorithm designed by Braun et. al. for online SSA
construction. We have modified this algorithm to work offline in a separate
pass over the complete IR program.

For simplicity, we run the SSA construction for each local variable sepa-
rately. We include AllocL nodes that are used only by Load and as destination
of Store instructions, because otherwise there could be indirect reads and mod-
ifications of their value. We replace each Load with the result of ReadVariable
and call WriteVariable for each Store (see alg. 1). Because we have the full IR
CFG available, we could seal a block before filling it if all its predecessors have
already been filled, but we have opted for a simpler, but also valid approach
of sealing all the blocks at the end.

70

5.8. Overview of the Backend

flat tiny86
asm

optimized
IR

register
allocation

prologue/epilogue
insertion

symbolic label
resolution

instruction
selection

structured tiny86
asm with VRegs

structured
tiny86 asm

structured
tiny86 asm

Figure 5.3: Diagram of the backend architecture.

5.7.2 Other Optimizations

Except for SSA construction, our optimizer also contains three very simple
additional passes.

Unreachable code elimination does a DFS pass of basic blocks in each
function starting from the entry block and removes all non-visited blocks. It
also sorts the basic blocks by the time of visit, which ensures that blocks are
close to their successors. Because the instruction selector respects the order
of IR basic blocks when emitting code, it eliminates many jump instructions.

Another pass shuffles AllocL and AllocG instructions so they are first in
the entry block of the parent function and moves global variables to the entry
function. This ensures that the instruction selector visits a variable definition
before it can see a reference to it.

The last pass ensures that every function has only a single block containing
a Ret or RetVoid instruction to prevent duplication of function epilogue. If
the function returns a value, it merges them using a ϕ-node.

After the IR has been optimized, it is passed to the compiler backend.

5.8 Overview of the Backend

The backend follows the overall modular architecture of our compiler and is
divided into four independent transformation passes as illustrated in fig. 5.3.

First, we take the IR optimized by the middleend and let the instruction
selector generate tiny86 assembly with an unlimited amount of temporaries,
grouped into basic blocks and functions. The register allocator then maps
those temporaries to the physical tiny86 registers, optionally generating code
to spill some temporaries onto the stack. The next step completes the assembly
by inserting prologue and epilogue and the last step flattens the assembly into
a contiguous listing and resolves symbolic labels into addresses.

The output of our backend is an assembly file, which can be directly ex-
ecuted by t86-cli. In the following sections we will describe the modules in
order, starting with instruction selection.

71

5. Design and Implementation

5.9 Instruction Selection

In chapter 3 we have described two techniques for instruction selection – macro
expansion and tree covering. Macro expansion generates code for each IR
instruction individually, whereas tree covering is more advanced and covers
the IR program with tiles that can match multiple instructions. Our IR is
comparably low level to the tiny86 ISA – there are some instructions that
must be implemented by multiple tiny86 instructions (for example Call or
CondBr), but for others it is opposite (for example most tiny86 instructions
can accept an immediate value as one of their operands).

Because our IR is SSA, the instructions represent nodes in a data-flow
graph. We have decided cover this graph with tree tiles by adapting the
simple maximal munch algorithm from section 3.2.1. The tiny86 ISA contains
a fairly large variety of instructions with a number of them supporting multiple
addressing modes. To fully utilize this ISA we need to define more than a
hundred of tree tiles, which is infeasible to do manually.

5.9.1 Tree Pattern Matching

We have designed a pattern matching library similar to parser combinators,
which we use to define our set of tree tiles. Every tree pattern is a function
which accepts a root instruction and returns a list of all matches – it performs
recursive matching with full backtracking. Each match provides a value, a list
of covered instructions, a list of required instructions (leaves) and a cost (used
to penalize some patterns, for example conversion between register types).
Because the patterns are regular functions, we can compose them using the
choice combinator. Likewise we can alter the value (which is originally the
matched instruction and arguments) with an arbitrary pure function using the
map combinator.

We use this library to implement a set of tree patterns for generating tiny86
instructions. The tree grammar uses only two nonterminals, Reg and FReg,
because otherwise the greedy maximal munch algorithm could get stuck after
choosing a tile with a nonterminal that it could not later expand. We use
the cost to penalize matching Reg with double and FReg with i64. Because
matching the patterns cannot have side effects, we use the same workaround as
when parsing our textual IR (section 5.5.8): the value of the pattern matches
is a function, which generates the code using a context passed as an argument
and returns the register number holding the result.

Listing 5.5 contains an example implementation of one such rewrite rule.
On the left side is the Reg nonterminal and the right side matches an IAdd
instruction with two operands stored in integer registers. Note that left and
right are not register numbers, but functions that return it after they are
called with the context.

72

5.9. Instruction Selection

GenRule(RegVar, Pat(IAdd, RegVar, RegVar).map({
case (insn, left, right) => (ctx: Context) => {

val leftReg = left(ctx)
val rightReg = right(ctx)
val resReg = ctx.freshReg()
ctx.emit(MOV, resReg, leftReg)
ctx.emit(ADD, resReg, rightReg)
resReg

}
}))

Listing 5.5: An example Scala implementation of a rewrite rule for the IAdd
instruction.

5.9.2 Maximal Munch

For pattern selection we use the greedy maximal munch algorithm. We start
at the roots (nodes with zero in-degree) of the data-flow graph and greedily
select patterns in depth-first order. Because our IR is a DAG, it can contain
shared nodes and the algorithm has to handle the case when a node has already
been covered.

If it has been covered as a root node, we reuse its result – we perform
edge splitting. If it has been covered as an inner node, we cover the node
multiple times – this is equal to node duplication mentioned in section 3.2.3.
We constructed our pattern set so that instructions with side effects are only
matched as roots, so those are never duplicated.

The result of the maximal munch algorithm is a map from IR instructions
to matched rewrite rules, where every instruction is covered by at least one
pattern. We then do two additional passes over the function body to collect
and emit assembly instructions for the selected tiles. Before emitting code
for a basic block terminator, we emit MOV instructions required by ϕ-node
elimination.

5.9.3 Calling Conventions

Emitting code for function calls requires specifying calling conventions. For
simplicity, we decided to store function arguments on the stack and the return
value in the first integer register R0. Before emitting CALL, the caller pushes
the arguments onto the stack in reverse order. The caller then cleans the stack
again after the called function returns. All integer registers are callee-save and
all float registers are caller-save.

We show the stack layout in fig. 5.4. Because memory in tiny86 is addressed
in 64-bit words which fit a value of every IR type (i64, double, ptr), we do not

73

5. Design and Implementation

BP

SP

ret addr

high

low

arg 1

arg m...

old BP

local n

local 1...

Figure 5.4: Stack layout after entering a function. The first argument is at
[BP + 2], the first local variable is at [BP + -1].

FADD VF7, 1.0

(a)

MOV VR9, [BP + -1]
MOV F0, VR9
FADD F0, 1.0
MOV [BP + -1], F0

(b)

MOV R0, [BP + -1]
MOV F0, R0
FADD F0, 1.0
MOV [BP + -1], F0

(c)

Figure 5.5: Spilling VF7 requires a new integer temporary VR9, which the
integer register allocator later assigns to R0.

have to deal with stack alignment. The tiny86 stack starts at the highest
memory address and grows towards zero.

5.10 Register Allocation
The second big component of the backend that comes after the instruction
selector is the register allocator. Tiny86 has a configurable amount of two
kinds of registers – integer (Rx) and floating point (Fx). Float registers are
accepted only by a handful of float instructions and cannot be used for other
operations and this holds vice versa for integer registers.

We solve this additional complexity by first allocating all float registers
and then running the entire register allocator again, this time only on integer
registers. We do it in this order, because a spilled float register can be loaded
only through an intermediate integer register. We show an example of spilling
in fig. 5.5.

To easily debug the instruction selector, we have designed a stand-in reg-
ister allocator that relies on the ability to configure tiny86 with an arbitrary
register count. It works by directly mapping the virtual registers to the avail-
able range of physical registers and can be used only for small programs. It
treats all registers as callee-save (including float registers), because only then
it knows the specific subset of used registers to back up and restore.

74

5.10. Register Allocation

For regular operation, we have chosen the graph coloring register alloca-
tion algorithm with move coalescing designed by Appel [19]. It works more
optimally than linear scan and its main drawback, slower compilation speed,
is not an issue for us. We design our compiler for educational purposes and
register allocation by graph coloring is one of the main topics covered in the
NIE-GEN course.

Another advantage of graph coloring register allocation is that with a
simple modification of the def and use sets of call-related instructions it can
automatically save and restore caller and callee-save registers. We use the
following rules:

• def(CALL Rx) := {caller-save registers, return value register}, and

• use(RET Rx) := {callee-save registers, return value register}.

Additionally, we backup all callee-save registers to fresh temporaries in func-
tion prologue and restore them in function epilogue. This is important because
otherwise the register allocator would not have any temporaries to spill (it can-
not spill precolored physical registers). If some of the caller-save registers stay
unused, the register allocator coalesces the temporaries and eliminates the
inserted move instructions.

5.10.1 Liveness Analysis

Before we can build and color the interference graph, we need to determine
live ranges of each register using liveness analysis. We compute set of live-out
temporaries for each basic block using the monotone framework introduced in
section 4.2. Appel’s algorithm then uses these sets to determine live variables
before and after each instruction and to construct the interference graph.

Before we can solve the dataflow equations, we need to compute defines
and uses for each basic block using alg. 8. The algorithm starts with empty
sets and updates them while looping backwards over the body of a basic block.

procedure GetBlockDefUse(b)
bbdef ← ∅; bbuse ← ∅
foreach i ∈ instructions in b in reverse order do

bbdef ← bbdef ∪ def(i)
bbuse ← (bbuse \ def(i)) ∪ use(i)

end
return (bbdef , bbuse)

Algorithm 8: Computation of def and use sets for a whole basic block.

To find the least fixed point of the dataflow equations, we use the naive
solver from alg. 5.

75

5. Design and Implementation

5.10.2 Graph Coloring

We use the rest of Appel’s register allocation algorithm without any functional
changes. The algorithm builds the interference graph using the information
obtained from the liveness analysis and then alternates between simplification
and move coalescing until the interference graph is empty. Then, it tries to
rebuild the graph while assigning colors and if that fails, marks nodes for
spilling.

To decide what node to spill we use the heuristic suggested by Appel [19].
We spill the candidate with the lowest cost computed from the count of its
references inside and outside of a cycle in the CFG as follows:

spillCost(t) =

+∞ t is precolored or was created
by spilling another temporary,

inLoop(t) · 10 + outLoop(t) otherwise.

The purpose of this heuristic is to avoid spilling registers used by instruc-
tions that could be executed frequently. To determine whether a basic block
is part of a cycle, we use Kosaraju’s algorithm to find strongly connected com-
ponents of the CFG. A node is part of a cycle if its component has size greater
than one or it is a self-loop.

After we successfully find a valid coloring for the interference graph, we
remove redundant MOV Rx, Rx instructions.

5.11 Post Processing

After we have completed the register allocation, we know the size of local
variables and we can insert a function prologue and epilogue by replacing the
corresponding markers inserted during instruction selection. In the prologue
we push the old base pointer to the stack, start a new call frame and allocate
space for local variables. In the epilogue we restore the old call frame and
return execution to the caller. Listing 5.6 contains the exact inserted tiny86
assembly code.

PUSH BP
MOV BP, SP
SUB SP, −localsSize
. . . function body . . .
MOV SP, BP
POP BP
RET

Listing 5.6: Tiny86 listing of the inserted function prologue and epilogue.

76

5.12. Implementation

As the last step before printing the generated tiny86 assembly we flatten
the functions and basic blocks into a single continuous listing and resolve
symbolic labels to their numeric addresses.

5.12 Implementation

In this section we describe how we have tackled the implementation of our
compiler in Scala 2. As we stated in section 5.1, we have striven to keep
the our code as readable as possible, so it is can be understood and used
by NIE-GEN students. The key means to do this has been separating the
compilation process into small coherent stages (compiler passes), that do only
a single operation. The main application then calls those passes in a specific
order to progressively translate the tinyC source code to tinyC assembly. Our
implementation follows the don’t repeat yourself (DRY) principle by moving
the commonly used code into their own functions and classes.

We have implemented everything in a single sbt project named tinycc.
We import only one external dependency scalatest which we use for unit and
integration testing. For better clarity, we have split the project into 5 packages:

• backend – everything related to tiny86, instruction selection and register
allocation,

• cli – the command line user interface,
• common – the intermediate representation and optimizer,
• frontend.tinyc – the tinyC frontend (parser, typechecker, tinyC to IR

compiler), and
• util – the parser combinator library, logger and other miscellaneous

classes used by other packages.

5.12.1 The Parser Combinator Library

We have implemented our parser combinator library in the util.parsing.combina-
tor package and it is used by both the frontend, the middleend and the com-
mand line interface of our compiler.

A Parser[T] extends (Input => Result[T]), where Input is a subclass
of Reader. The reader represents an immutable sequence of terminals, but
keeps track of the current position in the original input (line, column and
offset). A result can be either Accept[T] if the parser has successfully matched
a prefix of the input or Reject, which signalizes a rejection with an information
about what was expected. A rejection can be optionally fatal, which means
that no backtracking will be performed. The rest of the Parsers trait then
contains definitions of parser combinators.

StringParsers and SeqParsers then provide specialized version of Reader
and combinators for parsing strings and generic sequences. Lexical and

77

5. Design and Implementation

Scanners then build on top of StringParsers and can be used to imple-
ment a lexical analyzer after the user provides parsing expressions for tokens
and ignored whitespace.

5.12.2 The TinyC Frontend

We use this parser combinator library to implement the tinyC lexer and parser
in the frontend.tinyc.parser package. The tinyC lexer exposes its interface as
reader of tokens, which is accepted by the parser. The TinyCParser requests
tokens from the lexer as needed and at the end returns an instance of the root
AST node, AstProgram. Our AST is completely immutable.

The SemanticAnalysis and TypeAnalysis classes take the AstProgram
as input and return Map[AstIdentifierOrDecl, IdentifierDecl], respec-
tively Map[AstNode, Ty]. IdentifierDecl is a reference to either variable,
function or function argument declaration. Ty then represents a tinyC type.

The TinyCCompiler then takes the AstProgram and the declaration and
type maps and constructs an IrProgram using builders provided by the com-
mon.ir package.

We have implemented both the analyses and the compiler itself as recursive
passes over the AST, which use pattern matching to perform different actions
depending on visited node type. Errors are thrown as exceptions.

import tinycc.frontend.tinyc._
val scanner = new parser.Lexer.Scanner(sourceCodeStr)
val ast = parser.TinyCParser.parseProgram(scanner)
val decls = new analysis.SemanticAnalysis(ast).result()
val types = new analysis.TypeAnalysis(ast, decls).result()
val irProgram = new TinyCCompiler(ast, decls, types).result()

Listing 5.7: Example of how the single-purpose classes can be combined to
compile a tinyC source code into IR. We also provide a convenience function
to do these steps at once.

5.12.3 Intermediate Representation

During implementation of the intermediate representation we had to find a
balance between mutability and immutability of its components. Immutable
code and functional programming can be less prone to errors caused by side
effects and it is the typical way to do things in Scala. On the other hand, our
compiler frequently needs to manipulate the IR by inserting, removing and
moving instructions and basic blocks around. With an immutable IR it would
mean constantly recreating its parts.

In the end we have settled on mostly mutable IR, which we have imple-
mented in the common.ir package. The optimizer often needs access to a list
of uses of a particular instruction, so we track them using a mutable smart

78

5.12. Implementation

reference implemented as Ref[T]. Whenever a reference is set to a particular
object (T <: UseTracking[_, _]), it informs the object about itself and the
same thing happens when the reference is cleared.

We have provided helpers to move instructions between basic blocks in the
IrManipulation class and builders to quickly construct and fill a basic block,
function or a whole IR program in the IrBuilder file, which are used by the
frontend and the optimizer.

5.12.4 The Optimizer

The common package also contains implementation of the optimizations. Each
optimization pass extends ProgramTransform[IrProgram], which is a sim-
ple interface with a single method transform(program: IrProgram): Unit,
which performs the optimization by directly mutating the provided IR pro-
gram. We have implemented the following optimizations, executed in this
order:

1. BasicBlockScheduling – sorts basic blocks using a simple DFS pass so
jumps are often followed by their destination and removes unreachable
blocks,

2. AllocOrdering – moves all AllocL instructions to the beginning of a
function and all AllocG instructions to the beginning of the entry func-
tion,

3. MemToReg – eliminates some local variables (AllocL instructions) by per-
forming SSA construction, and

4. SingleFunExit – ensures that a function contains only a single Ret or
RetVoid instructions by creating a new exit block that merges the return
values with a Phi.

The Optimizer implements the same interface as the classes above and is
responsible for running the optimizations in a set order. The MemToReg and
SingleFunExit optimizations can be toggled using a parameter passed to the
constructor.

5.12.5 Instruction Selection

After the optimizer transforms the IR, the application hands off the code to the
instruction selector. We have implemented it in two parts: the backend.insel
package contains the general tree pattern matching library and the maximal
munch algorithm, and backend.t86.insel contain the classes specific to tiny86
– the code generator itself and the required set of patterns. We compose both
parts together into a complete instruction selector like we show in listing 5.8.

79

5. Design and Implementation

GenericNaiveRA[T] or GenericGraphColoringRA[T]

+
T86RegRegisterAllocator or T86FRegRegisterAllocator

+
additional code specific to the combination mostly related to spilling

Figure 5.6: Constructing a register allocator from the allocation algorithm,
register-specific information and additional spilling-related code.

import tinycc.backend.t86
import tinycc.backend.insel
val t86Program = (

new t86.insel.T86TilingInstructionSelection(irProgram)
with t86.insel.GenRules
with insel.MaximalMunch).result()

Listing 5.8: Using Scala class composition to construct and run a tiny86
maximal munch instruction selector with the default ruleset.

The result of the instruction selection is an T86Program, which is the root
of our hierarchical representation of tiny86 assembly. A T86Program consists
of functions (T86Fun), which contain a list of basic blocks (T86BasicBlock),
which at last contain the tiny86 instructions themselves. Every T86Program,
T86Fun and T86BasicBlock contains a reference to the original IR object.

5.12.6 Register Allocation

We use class composition again in our register allocator, this time to share
code between allocation of integer and float registers. We have implemented
both the naive register allocator which requires an unlimited amount of reg-
isters (GenericNaiveRegisterAllocator[T]) and the graph coloring alloca-
tor (GenericGraphColoringRegisterAllocator[T]), where T can be either
Operand.Reg or Operand.FReg. We then extend the generic base with one of
T86RegRegisterAllocator and T86FRegRegisterAllocator, which provide
methods to get the list of registers defined and used by an instruction or a
basic block and other information about the available registers of the given
type.

We then compose a complete register allocator for one register type using
classes from backend.t86.regalloc via the scheme in fig. 5.6. The backend then
calls the float register allocator and integer register allocator in succession.

Graph Coloring Implementation We have implemented the graph col-
oring register allocator itself in three stages. First, LivenessAnalysis com-
putes live-in and out temporaries for each basic block, which is then used by

80

5.13. Documentation

InterferenceGraph to construct a graph of interfering temporaries and fi-
nally InterferenceGraphColoring implements the graph coloring and move
coalescing itself. We use WorklistSet to ensure that every node and move
instruction is always in exactly one of the worklists defined in section 4.3.3.

5.12.7 Command-Line Interface

The final component of the compiler that is responsible for calling the other
modules is the command-line user interface, which resides in the cli package.

We have decided to implement the CLI rather unusually by using our
parser combinator library. Instead of parsing characters of a string, we treat
whole arguments as terminals.

The CLI (named tinycc) allows the user to run all three parts (frontend,
middleend, backend) separately with file I/O (compile-to-ir, optimize and code-
gen), or perform the entire compilation from start to finish (compile). To
monitor the time taken in the individual components of the compiler, we have
implemented a simple profiler, which can be enabled using the --profile option.

5.13 Documentation
As we stated in chapter 1, we want other students to use parts of our imple-
mentation as foundation of their NIE-GEN compiler projects. For that reason
we have documented our implementation using Scaladoc annotations, which
are automatically displayed by the IDE. Additionally, we include a brief user
guide in appendix B and the CLI contains built-in description of all available
commands, which can be displayed by tinycc help.

81

Chapter 6
Evaluation

The implementation itself is only one phase of the development cycle. In
this chapter, we first evaluate the correctness of our tinyC compiler using two
types of automated tests. We then use the rest of the chapter to experimen-
tally evaluate code size and execution time of typical code generated by the
compiler.

6.1 Unit Tests

We have designed a range of unit tests to verify the correctness of individual
classes and components. To manage and run them, we use the popular Sca-
laTest library. All unit tests are in the src/test/scala folder and their names
correspond to the tested classes.

One has to write a lot of unit tests to gain any meaningful code coverage,
because the tests are evaluating only a small part of the whole program in
isolation. We use them primarily to test our parsers and analyses, but the
bulk of our compiler is tested only by larger integration and end to end tests.

6.2 Integration and End to End Tests

Testing compilers is a hard problem, because they accept a wide range of
inputs (any valid source code). Some compilers compile their own source code
as one of the tests, but this is possible only for self-hosting compilers, which
is not our case. We have designed a suite of 44 small tinyC programs which
gradually test the features supported by our compiler. Every test is a self-
contained *.c file in the examples/ directory and provides standard input and
expected standard output using special comments.

TinyCFrontendTest verifies correctness of the parser and frontend by com-
piling all of the test cases and calling validate() on the generated IR pro-

83

6. Evaluation

grams. This method statically checks some properties that must hold in a
valid program, such as that:

• all operands are set and have the expected result type,
• all basic blocks are terminated, and
• there are no duplicate functions, basic blocks or instructions in the pro-

gram.

The End2EndTest then uses the same test cases as input, but this time
compiles them into assembly and executes the generated code on the tiny86
VM. The test then verifies that the executed program printed the correct
output.

To verify the correctness of this reference output, we have implemented a
simple AST-level transpiler of tinyC into C. The run_tests.sh script transpiles
every test case to C, compiles it using GCC and runs it on the host. We use
a small runtime to provide the builtin scan, print and printnum functions.

We can execute both the unit and end to end tests with the sbt test com-
mand.

6.3 Benchmarks
To determine the impact of the implemented optimizations, instruction selec-
tion and register allocation, we evaluate the code size and execution time of
two small programs for solving numerical problems. We have intentionally
selected computation-heavy problems so we are not limited by memory access
latency.

The first program (factorize.c) computes and prints prime factors of an
integer. We have replaced division and modulo by 2 with equivalent bitwise
operations.
void factorize(int n) {

while(n > 0 && (n & 1) == 0) {
printnum(2);
n = n >> 1;

}
for(int i = 3; i * i <= n; i = i + 2) {

while(n % i == 0) {
printnum(i);
n = n / i;

}
}
if(n > 1) printnum(n);

}

Listing 6.1: factorize.c: A program for computing prime factors of a positive
integer.

84

6.3. Benchmarks

The second sample program determines whether the Collatz conjecture
holds for a given positive integer. Collatz states in his conjecture that for any
positive starting integer, if we repeatedly apply the following operation, we
will always eventually obtain 1:

f(n) =
{

n/2 if n ≡ 0 (mod 2)
3n + 1 if n ≡ 1 (mod 2)

Whether this holds for any positive integer is one of the most famous
unsolved problems in mathematics and there have not been found any coun-
terexamples yet. The program collatz.c computes the number of steps it takes
to reach 1 starting at n.
void collatz(int n) {

int i = 0;
while(n > 1) {

if((n & 1) != 0) {
n = 3 * n + 1;

} else {
n = n >> 1;

}
i++;

}
printnum(i);

}

Listing 6.2: collatz.c: A program that prints the number of reduction steps
required to reach 1 from a positive starting integer n.

6.3.1 Measuring Effects of SSA Construction

We have compiled both of the programs with and without enabled optional
optimizations (SSA construction) and in table 6.1 we compare the size of
generated assembly code, number of execution ticks of the VM and average
number of executed instructions per tick (IPT) on three sample inputs. We
use the default number of integer registers (4) and all selected metrics are
independent on the host system. Tiny86 contains a logger (enabled by passing
-stats to t86-cli) that collects information about executed instructions and
provides values for the last two execution metrics.

In both cases enabling SSA construction produced smaller and faster code.
Utilizing registers instead of memory decreased the average instruction latency
and more instructions could be executed in the same amount of ticks. For
the two harder inputs the optimized assembly of collatz.c executed around
75% faster. We include the collatz function compiled with optimizations in
listing 6.3. The rest of the source code and tiny86 assembly is available in the
directory benchmarks/results/ of the electronic attachment.

85

6. Evaluation

6.3.2 Measuring Effects of Improved Backend

In this second experiment we compare the compiler presented in this thesis
(tinycc) with another, simpler tinyC compiler we created in the past (tinyc).
This older version does not support SSA construction, uses a very simple
instruction selection and a simple local register allocator similar to the one
described in section 4.1. Through this comparison we can measure the im-
provements in code size and execution speed offered by the tree tiling in-
struction selection and global graph coloring register allocator implemented
in tinycc.

The older compiler does not support the printnum(n) construct, so we
had to provide an equivalent function as part of the source code. In table 6.2
we compare tinycc with disabled optimizations to the older tinyc. In both
cases we have set the number of integer registers to 4. As with the previous
experiment, we include the raw files in the electronic attachment.

We can see that the advanced instruction selection and register allocation
improve the code size dramatically and in case of collatz.c the code executes
50% faster even with disabled optimizations than when compiled with tinyc,
and enabling them would further widen the gap.

We believe that the throughput got lower because due to the reduced code
size, jump statements are closer together (there is less MOV instructions) and
thus the CPU flushes its pipeline more often. We could probably obtain better
throughput by improving the branch predictor in tiny86, which is currently
very rudimentary [4].

86

6.3. Benchmarks

without -O with -O
speedup

size ticks IPT size ticks IPT
factorize(10)

70
272 0.213

54
212 0.231 1.28

factorize(64) 560 0.218 399 0.248 1.40
factorize(68767889) 53098 0.239 30707 0.268 1.73
collatz(31)

47
8374 0.198

42
4538 0.287 1.85

collatz(42) 742 0.204 450 0.278 1.65
collatz(837799) 40866 0.198 21932 0.288 1.86

Table 6.1: Comparison of size and performance of generated code with and
without enabled SSA construction. With enabled optimizations, the code is
in both cases smaller and the program finishes execution faster.

tinyc tinycc without -O
speedup

size ticks IPT size ticks IPT
factorize(10)

261
769 0.338

120
650 0.215 1.18

factorize(64) 2054 0.353 1694 0.217 1.21
factorize(68767889) 93951 0.410 54400 0.239 1.73
collatz(31)

172
14968 0.337

93
8827 0.199 1.70

collatz(42) 1404 0.353 931 0.206 1.51
collatz(837799) 71598 0.369 41319 0.198 1.73

Table 6.2: Comparison of size and performance of generated code by our
compiler (tinycc) with a different, older compiler (tinyc) with only rudimentary
instruction selection and a simple local register allocator. tinycc produces
smaller and faster code for both programs. The numbers in the second column
are different from table 6.1 because here they include the required printnum
implementation.

87

6. Evaluation

collatz$entry:
4 PUSH BP
5 MOV BP, SP
6 SUB SP, 2
7 MOV [BP + -2], R2
8 MOV [BP + -1], R3

[BP + 2] -> arg #0
9 MOV R0, [BP + 2]
10 MOV R2, 0

collatz$whileCond:
11 CMP R0, 1

26 -> collatz$whileCont
12 JLE 26

collatz$whileBody:
13 MOV R3, R0
14 AND R3, 1
15 CMP R3, 0

23 -> collatz$ifFalse
16 JE 23

collatz$ifTrue:
17 MOV R3, 3
18 IMUL R3, R0
19 INC R3

collatz$ifCont:
20 INC R2
21 MOV R0, R3

11 -> collatz$whileCond
22 JMP 11

collatz$ifFalse:
23 RSH R0, 1
24 MOV R3, R0

20 -> collatz$ifCont
25 JMP 20

collatz$whileCont:
26 PUTNUM R2
27 MOV R2, [BP + -2]
28 MOV R3, [BP + -1]
29 MOV SP, BP
30 POP BP
31 RET

Listing 6.3: A complete listing of void collatz(int) from collatz.c compiled
by tinycc with optimizations. The tiny86 assembly does not support symbolic
labels, so they are represented as comments.

88

Conclusion

In this thesis we have designed and implemented a modular tinyC compiler
written in Scala, that integrates with the tiny86 VM via a text-based assembly
format. The compiler is composed of three main separable components (fron-
tend, middleend and backend) and can be easily extended either in Scala by
depending on some of its parts or in any other language through our text-based
intermediate representation. The simplicity and extensibility of our architec-
ture makes it a great tool for educational purposes in compiler construction
courses such as NIE-GEN.

We have described and implemented a range of advanced techniques from
compiler construction with focus on the backend that allow the compiler to ef-
ficiently utilize more complex instructions and all available registers of tiny86.
We have checked the correctness of our work and provided documentation of
both the API and the CLI user interface.

We have demonstrated on two examples that the selected algorithms and
optimizations perform well and produce smaller code that executes faster than
if we compile the same programs with a simpler compiler.

Future Work
Our general purpose IR and parser combinator library allow easy development
of other frontends. In the future we could extend the compiler with support
for the microC language, which would enable this work to be used in the
NIE-APR course.

The middleend currently contains only one significant optimization, SSA
construction. Our SSA-based IR simplifies implementation of other static
analyses and optimizations, which could be explored in further work. Easy
targets are dataflow analyses taught in NIE-APR such as constant propagation
or available expression analysis.

The compiler is also open to additions of new backends. Register-based
targets such as x86_64 or RISC-V could reuse most of our tiny86 backend

89

Conclusion

including the global register allocator, while stack-based targets such as the
JVM could still make some use of the implemented generic tree covering in-
struction selection.

90

Bibliography

[1] Møller, A.; Schwartzbach, M. I. Static Program Analysis. Aarhus, Den-
mark: Department of Computer Science, Aarhus University, October
2018. [viewed date 2 May 2023]. Available from: http://cs.au.dk/
~amoeller/spa/

[2] Johnson, S. C. A Tour Through the Portable C Compiler. In: Unix Pro-
grammer’s Manual, chapter 33. Murray Hill, New Jersey, USA: AT&T
Bell Laboratories, 7th edition, 1981, ISBN 0-03-061743-X.

[3] Máj, P. TinyC Language Reference. In: TinyC Project Repository – Git-
Lab [online]. 2023. [viewed date 2 May 2023]. Available from: https:
//gitlab.fit.cvut.cz/NI-GEN/ni-gen-23/-/blob/main/LANGUAGE.md

[4] Strejc, I. Tiny x86 - Architecture Simulator for Educational Purposes.
Master’s thesis, Czech Technical University in Prague, Faculty of In-
formation Technology, 2021. Available from: http://hdl.handle.net/
10467/94644

[5] Odersky, M.; Spoon, L.; et al. Programming in Scala. ITpro collec-
tion, Artima, Incorporated, 2019, ISBN 9780981531618. Available from:
https://books.google.com/books?id=phOyzAEACAAJ

[6] Aho, A.; Lam, M.; et al. Compilers: Principles, Techniques, & Tools.
Pearson/Addison Wesley, 2007, ISBN 9780321486813. Available from:
https://books.google.com/books?id=dIU_AQAAIAAJ

[7] International Standardization Organization. ISO/IEC 9899:TC3: Pro-
gramming Language: C. Technical report, ISO/IEC JTC1/SC22,
2007. Available from: https://www.open-std.org/jtc1/sc22/WG14/
www/docs/n1256.pdf

[8] Gregor, F. Tiny86 Debugger. Master’s thesis, Czech Technical University
in Prague, Faculty of Information Technology, 2023.

91

http://cs.au.dk/~amoeller/spa/
http://cs.au.dk/~amoeller/spa/
https://gitlab.fit.cvut.cz/NI-GEN/ni-gen-23/-/blob/main/LANGUAGE.md
https://gitlab.fit.cvut.cz/NI-GEN/ni-gen-23/-/blob/main/LANGUAGE.md
http://hdl.handle.net/10467/94644
http://hdl.handle.net/10467/94644
https://books.google.com/books?id=phOyzAEACAAJ
https://books.google.com/books?id=dIU_AQAAIAAJ
https://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
https://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf

Bibliography

[9] Lattner, C.; Adve, V. LLVM: a compilation framework for lifelong pro-
gram analysis & transformation. In: International Symposium on Code
Generation and Optimization, 2004. CGO 2004., 2004, pp. 75–86, doi:
10.1109/CGO.2004.1281665.

[10] Král, V. Ahead-of-time compiler for the microC language. Master’s thesis,
Czech Technical University in Prague, Faculty of Information Technology,
2022. Available from: http://hdl.handle.net/10467/101065

[11] Ford, B. Parsing Expression Grammars: A Recognition-Based Syntactic
Foundation. New York, NY, USA: Association for Computing Machin-
ery, jan 2004, ISSN 0362-1340, p. 111–122, doi:10.1145/982962.964011.
Available from: https://doi.org/10.1145/982962.964011

[12] Ford, B. Packrat Parsing: Simple, Powerful, Lazy, Linear Time, Func-
tional Pearl. 2002: p. 36–47, doi:10.1145/581478.581483. Available from:
https://doi.org/10.1145/581478.581483

[13] Hutton, G. Higher-order functions for parsing. Journal of Func-
tional Programming, volume 2, no. 3, 1992: p. 323–343, doi:
10.1017/S0956796800000411. Available from: https://doi.org/
10.1017/S0956796800000411

[14] Maidl, A. M.; Mascarenhas, F.; et al. Exception Handling for Error
Reporting in Parsing Expression Grammars. PROGRAMMING LAN-
GUAGES, SBLP 2013, volume 8129. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, ISBN 0302-9743, pp. 1–15.

[15] Ford, B. Packrat Parsing: a Practical Linear-Time Algorithm with Back-
tracking. Master’s thesis, Massachusetts Institute of Technology, 2002.
Available from: http://hdl.handle.net/1721.1/87310

[16] Scheidecker, A. Parser Combinators and Error Reporting [online].
Dec 2012. [viewed date 2 May 2023]. Available from: https://
www.scheidecker.net/2012/12/03/parser-combinators/

[17] Křikava, F. The µC Programming Language. In: Selected Meth-
ods for Program Analysis (NI-APR) – FIT CTU Course Pages [on-
line]. Mar 2023. [viewed date 2 May 2023]. Available from: https:
//courses.fit.cvut.cz/NI-APR/microc.html

[18] Chow, F. Intermediate Representation: The Increasing Significance of In-
termediate Representations in Compilers. Queue, volume 11, no. 10, Oct
2013: p. 30–37, ISSN 1542-7730, doi:10.1145/2542661.2544374. Available
from: https://doi.org/10.1145/2542661.2544374

92

http://hdl.handle.net/10467/101065
https://doi.org/10.1145/982962.964011
https://doi.org/10.1145/581478.581483
https://doi.org/10.1017/S0956796800000411
https://doi.org/10.1017/S0956796800000411
http://hdl.handle.net/1721.1/87310
https://www.scheidecker.net/2012/12/03/parser-combinators/
https://www.scheidecker.net/2012/12/03/parser-combinators/
https://courses.fit.cvut.cz/NI-APR/microc.html
https://courses.fit.cvut.cz/NI-APR/microc.html
https://doi.org/10.1145/2542661.2544374

Bibliography

[19] Appel, A.; Palsberg, J. Modern Compiler Implementation in Java. Cam-
bridge University Press, 2002, ISBN 9780521820608. Available from:
https://books.google.com/books?id=IjKIngEACAAJ

[20] Free Software Foundation. GNU Compiler Collection (GCC) Internals.
In: GCC, the GNU Compiler Collection [online]. 2023. [viewed date 2
May 2023]. Available from: https://gcc.gnu.org/onlinedocs/gccint/

[21] Bellard, F.; et al. Tiny C Compiler Reference Documentation [on-
line]. Aug 2018. [viewed date 2 May 2023]. Available from: https:
//bellard.org/tcc/tcc-doc.html

[22] Cytron, R.; Ferrante, J.; et al. Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph. ACM Trans. Program.
Lang. Syst., volume 13, no. 4, Oct 1991: p. 451–490, ISSN 0164-0925,
doi:10.1145/115372.115320. Available from: https://doi.org/10.1145/
115372.115320

[23] Braun, M.; Buchwald, S.; et al. Simple and Efficient Construction of
Static Single Assignment Form. COMPILER CONSTRUCTION, CC
2013, volume 7791. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
ISBN 0302-9743, pp. 102–122.

[24] Blindell, G. Instruction Selection: Principles, Methods, and Applications.
Springer International Publishing, 2016, ISBN 9783319340197. Available
from: https://books.google.com/books?id=yp9PDAAAQBAJ

[25] Fišer, P.; Schmidt, J. Global Methods. In: Combinatorial Opti-
mization (NIE-KOP). 2022. [viewed date 2 May 2023]. Available
from: https://moodle-vyuka.cvut.cz/pluginfile.php/528885/mod_
page/content/6/Lecture12-Global.pdf?time=1670775676726

[26] Garey, M.; Johnson, D. Computers and Intractability: A Guide to
the Theory of NP-completeness. Mathematical Sciences Series, Freeman,
1979, ISBN 9780716710448. Available from: https://books.google.com/
books?id=fjxGAQAAIAAJ

[27] Koes, D. R.; Goldstein, S. C. Near-Optimal Instruction Selection on Dags.
In: Proceedings of the 6th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, CGO ’08, New York, NY, USA:
Association for Computing Machinery, 2008, ISBN 9781595939784, p.
45–54, doi:10.1145/1356058.1356065. Available from: https://doi.org/
10.1145/1356058.1356065

[28] Fauth, A.; Hommel, G.; et al. Global code selection for directed acyclic
graphs. Compiler Construction, volume 786. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1994;, ISBN 0302-9743, pp. 128–142.

93

https://books.google.com/books?id=IjKIngEACAAJ
https://gcc.gnu.org/onlinedocs/gccint/
https://bellard.org/tcc/tcc-doc.html
https://bellard.org/tcc/tcc-doc.html
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://books.google.com/books?id=yp9PDAAAQBAJ
https://moodle-vyuka.cvut.cz/pluginfile.php/528885/mod_page/content/6/Lecture12-Global.pdf?time=1670775676726
https://moodle-vyuka.cvut.cz/pluginfile.php/528885/mod_page/content/6/Lecture12-Global.pdf?time=1670775676726
https://books.google.com/books?id=fjxGAQAAIAAJ
https://books.google.com/books?id=fjxGAQAAIAAJ
https://doi.org/10.1145/1356058.1356065
https://doi.org/10.1145/1356058.1356065

Bibliography

[29] Arnold, M. Matching and Covering with Multiple-Output Patterns. Tech-
nical report, Delft University of Technology, Delft, The Netherlands,
1999.

[30] Khedker, U.; Sanyal, A.; et al. Data Flow Analysis: Theory and Prac-
tice. CRC Press, 2017, ISBN 9780849332517. Available from: https:
//books.google.com/books?id=9PyrtgNBdg0C

[31] Miller, P. L. Automatic Creation of a Code Generator from a Machine
Description. Master’s thesis, Massachusetts Institute of Technology, 1971.
Available from: https://hdl.handle.net/1721.1/149399

[32] Davidson, J.; Fraser, C. The Design and Application of a Retargetable
Peephole Optimizer. ACM Trans. Program. Lang. Syst., volume 2, 04
1980: pp. 191–202, doi:10.1145/357121.357129. Available from: https:
//doi.org/10.1145/357121.357129

[33] Davidson, J. W.; Fraser, C. W. Code Selection through Object Code
Optimization. ACM Trans. Program. Lang. Syst., volume 6, no. 4, oct
1984: p. 505–526, ISSN 0164-0925, doi:10.1145/1780.1783. Available
from: https://doi.org/10.1145/1780.1783

[34] Chaitin, G. J.; Auslander, M. A.; et al. Register allocation via
coloring. Computer Languages, volume 6, no. 1, 1981: pp. 47–
57, ISSN 0096-0551, doi:https://doi.org/10.1016/0096-0551(81)90048-5.
Available from: https://www.sciencedirect.com/science/article/
pii/0096055181900485

[35] Briggs, P.; Cooper, K. D.; et al. Improvements to Graph Coloring Register
Allocation. ACM Trans. Program. Lang. Syst., volume 16, no. 3, may
1994: p. 428–455, ISSN 0164-0925, doi:10.1145/177492.177575. Available
from: https://doi.org/10.1145/177492.177575

[36] George, L.; Appel, A. W. Iterated Register Coalescing. ACM Trans. Pro-
gram. Lang. Syst., volume 18, no. 3, may 1996: p. 300–324, ISSN 0164-
0925, doi:10.1145/229542.229546. Available from: https://doi.org/
10.1145/229542.229546

[37] Poletto, M.; Sarkar, V. Linear Scan Register Allocation. ACM Trans.
Program. Lang. Syst., volume 21, no. 5, sep 1999: p. 895–913, ISSN 0164-
0925, doi:10.1145/330249.330250. Available from: https://doi.org/
10.1145/330249.330250

[38] Zahradnický, T.; Kokeš, J. Introduction to Reverse Engineering,
Stack Frame Analysis. In: Reverse Engineering (NIE-REV) [on-
line]. 2022. [viewed date 2 May 2023]. Available from: https://
courses.fit.cvut.cz/NI-REV/media/lectures/rev01en.pdf

94

https://books.google.com/books?id=9PyrtgNBdg0C
https://books.google.com/books?id=9PyrtgNBdg0C
https://hdl.handle.net/1721.1/149399
https://doi.org/10.1145/357121.357129
https://doi.org/10.1145/357121.357129
https://doi.org/10.1145/1780.1783
https://www.sciencedirect.com/science/article/pii/0096055181900485
https://www.sciencedirect.com/science/article/pii/0096055181900485
https://doi.org/10.1145/177492.177575
https://doi.org/10.1145/229542.229546
https://doi.org/10.1145/229542.229546
https://doi.org/10.1145/330249.330250
https://doi.org/10.1145/330249.330250
https://courses.fit.cvut.cz/NI-REV/media/lectures/rev01en.pdf
https://courses.fit.cvut.cz/NI-REV/media/lectures/rev01en.pdf

Bibliography

[39] Odersky, M. Can We Wean Scala Off Implicit Conversions? In:
Scala Contributors [online]. 2020. [viewed date 2 May 2023]. Avail-
able from: https://contributors.scala-lang.org/t/can-we-wean-
scala-off-implicit-conversions/4388

[40] Scala Community. scala/scala-parser-combinators: simple combinator-
based parsing for Scala. In: GitHub [online]. Jan 2023. [viewed date 2
May 2023]. Available from: https://github.com/scala/scala-parser-
combinators

[41] Máj, P. TinyC AST Implementation (ast.h). In: TinyC Project Repos-
itory – GitLab [online]. 2023. [viewed date 2 May 2023]. Available
from: https://gitlab.fit.cvut.cz/NI-GEN/ni-gen-23/-/blob/main/
tinycc/frontend/ast.h

95

https://contributors.scala-lang.org/t/can-we-wean-scala-off-implicit-conversions/4388
https://contributors.scala-lang.org/t/can-we-wean-scala-off-implicit-conversions/4388
https://github.com/scala/scala-parser-combinators
https://github.com/scala/scala-parser-combinators
https://gitlab.fit.cvut.cz/NI-GEN/ni-gen-23/-/blob/main/tinycc/frontend/ast.h
https://gitlab.fit.cvut.cz/NI-GEN/ni-gen-23/-/blob/main/tinycc/frontend/ast.h

Appendix A
Acronyms

µC microC.

ALU arithmetic logic unit.

API application programming interface.

AST abstract syntax tree.

BIE-OOP Object-Oriented Programming.

BP base pointer.

CBC Common Bus Compiler.

CFG control-flow graph.

CISC complex instruction set computer.

CLI command-line interface.

CPU central processing unit.

DAG directed acyclic graph.

DFG data-flow graph.

DFS depth-first search.

DP dynamic programming.

DRY don’t repeat yourself.

DSL domain-specific language.

97

Acronyms

EOF end of file.

GCC GNU Compiler Collection.

I/O input/output.

IDE integrated development environment.

IPT instructions per tick.

IR intermediate representation.

ISA instruction set architecture.

JIT just-in-time.

JNI Java Native Interface.

JVM Java Virtual Machine.

LLVM Low Level Virtual Machine.

NIE-APR Static Program Analysis.

NIE-GEN Compiler Construction.

OS operating system.

PCC Portable C Compiler.

PEG parser expression grammar.

RAM random access memory.

RISC reduced instruction set computer.

RTL register transfer list.

SP stack pointer.

SSA single static assignment.

SWIG Simplified Wrapper and Interface Generator.

TCC Tiny C Compiler.

tiny86 Tiny x86.

tinyC tinyC.

TIP Tiny Imperative Programming.

VM virtual machine.

98

Appendix B
User Guide

This user guide briefly describes how to compile and use the modular tinyC
compiler. The directory tinycc of the electronic attachment contains a copy of
the source code repository.

B.1 Building

A prerequisite for running tests and compiled tiny86 programs is a working
tiny86 interpreter.

B.1.1 Building Tiny86

The source code repository includes a modified version of the tiny86 VM
with some bug fixes and support for a text-based assembly format in the t86
subdirectory. The parser and assembly syntax was designed by Filip Gregor
as part of his work on an interactive tiny86 debugger.

Tiny86 is a standard CMake11 project and can be compiled by running
the t86/scripts/build.sh script. The main CLI binary is saved to t86/build/t86-
cli/t86-cli.

B.1.2 Building the Compiler

This project uses sbt12. We provide scripts/setup_env.sh, which installs asdf13

to the home directory and uses it to grab all the required Java, Scala and sbt
versions14. If you already have asdf installed, you can do the same using asdf
install.

11https://cmake.org/
12https://www.scala-sbt.org/
13A CLI tool to manage runtime versions – https://asdf-vm.com/
14Tested versions configured in .tool-versions: Java 11.0.18+10, Scala 2.13.10, sbt 1.8.2

99

https://cmake.org/
https://www.scala-sbt.org/
https://asdf-vm.com/

B. User Guide

To build the project, run scripts/build.sh or sbt assembly in the root di-
rectory of the repository. Unit and integration tests can be executed with
sbt test.

We have tested the instructions above on Ubuntu 22.04 with build-essential,
cmake, git and curl packages.

B.2 Usage

The compiler is controlled through the CLI exposed as the tinycc wrapper
script, which contains a built-in help available through tinycc help.

B.2.1 Compiling and Running TinyC Source

create hello.c with an example program
cat >hello.c <<EOF
int main() {

char *str = "Hello,␣world!\n";
while(*str) {
print(*(str++));

}
return 0;

}
EOF

compile hello.c w/o optimizations
./tinycc compile -o hello.t86 hello.c

compile hello.c w/ optimizations
./tinycc compile -O -o hello.t86 hello.c

run hello.t86 on tiny86
./t86/build/t86-cli/t86-cli run hello.t86

Instead of directly compiling to assembly, we can run the frontend, mid-
dleend and backend separately:

compile to IR
./tinycc compile-to-ir -o hello.ir hello.c

optimize the IR
./tinycc optimize -o hello.opt.ir hello.ir

compile the optimized IR to assembly
./tinycc codegen -o hello.t86 hello.opt.ir

100

B.2. Usage

The IR grammar is described in appendix C.

B.2.2 Additional Options

Most subcommands accept --verbose and --profile options. The former enables
additional logging to the standard error output, the latter displays statistics
about time spent in individual components of the compiler.

The number of available integer and float registers is 4, respectively 5 and
it is configurable with the --register-cnt=M and --float-register-cnt=M options
passed to compile or codegen actions.

Do not forget to configure tiny86 with the corresponding register count via
-registerCnt=N and -floatRegisterCnt=M passed to t86-cli (default is 10 and 5).
The size of RAM can be configured with -ram=S (default is 1024 words). We
have also added -stats option to t86-cli, which prints number of elapsed ticks
and executed instructions by the VM.

compile with 2 integer and 2 float registers
./tinycc compile --register-cnt=2 --float-register-cnt=2 -O -o

↪→ hello.t86 hello.c

run with 2 integer, 2 float registers and 128 words of RAM
./t86/build/t86-cli/t86-cli run -registerCnt=2 -floatRegisterCnt

↪→ =2 -ram=128 -stats hello.t86

B.2.3 Transpiling TinyC to C

For debugging purposes, the compiler contains a builtin tinyC to C tran-
spiler, which can be used to execute tinyC programs directly on the host
machine. A small runtime defining the builtin functions is included in sr-
c/test/resources/gcc_runtime.{c,h}. This is used by the run_tests.sh script to
verify correctness of the reference output.

compile the runtime
gcc --std=c99 -fsigned-char -c src/test/resources/gcc_runtime.c

↪→ -o gcc_runtime.o

transpile the tinyC program to C
./tinycc transpile-to-c --prefix=’#include␣"gcc_runtime.h"’ -o

↪→ hello.transpiled.c hello.c

compile the generated C program and link it with the runtime
gcc --std=c99 -I src/test/resources -fno-builtin -fsigned-char

↪→ hello.transpiled.c gcc_runtime.o -o hello

run the binary on the host system

101

B. User Guide

./hello

B.3 Supported TinyC Features
The compiler supports all tinyC features from the language reference [3].

• void, char, int, double, pointers (including pointers to functions),
static 1D arrays and structs

• basic arithmetic operators
• function calls, including recursion
• reading and writing a single character from stdin/stdout via scan() and

print(c) builtins (scan() returns -1 on EOF)

In addition, the compiler supports the printnum(n) builtin, which prints
an integer terminated by newline.

The file examples/stdlib.c contains some useful functions that you can
copy into your programs (there is no preprocessor).

102

Appendix C
IR Grammar

⟨letter⟩ ::= (‘a’ | . . . | ‘z’) | (‘A’ | . . . | ‘Z’)
⟨digit⟩ ::= ‘0’ | . . . | ‘9’
⟨identifier-start⟩ ::= ⟨letter⟩ | ‘$’ | ‘_’
⟨identifier-mid⟩ ::= ⟨identifier-start⟩ | ⟨digit⟩
⟨identifier⟩ ::= ⟨identifier-start⟩ { ⟨identifier-mid⟩ }
⟨register⟩ ::= ‘%’ ⟨identifier-mid⟩ { ⟨identifier-mid⟩ }
⟨int-part⟩ ::= ⟨digit⟩ { ⟨digit⟩ }
⟨frac-part⟩ ::= ‘.’ ⟨digit⟩ { ⟨digit⟩ }
⟨exp-part⟩ ::= (‘e’ | ‘E’) [‘+’ | ‘-’] ⟨digit⟩ { ⟨digit⟩ }
⟨integer⟩ ::= [‘-’] ⟨int-part⟩
⟨double⟩ ::= [‘-’] ⟨int-part⟩ [⟨frac-part⟩] [⟨exp-part⟩]

⟨insn-ref ⟩ ::= ‘null’ | ⟨register⟩
⟨basic-block-ref ⟩ ::= ‘null’ | (‘label’ ⟨register⟩)
⟨fun-ref ⟩ ::= ‘null’ | ⟨identifier⟩

⟨program⟩ ::= { ⟨fun-decl⟩ }
⟨fun-decl⟩ ::= ‘fn’ ⟨ret-type⟩ ⟨identifier⟩ ‘(’ ⟨arg-type⟩ { ‘,’ ⟨arg-type⟩

} ‘)’ ‘{’ ⟨fun-body⟩ ‘}’
⟨fun-body⟩ ::= ⟨basic-block⟩ { ⟨basic-block⟩ }
⟨basic-block⟩ ::= ⟨identifier⟩ ‘:’ { ⟨insn⟩ }
⟨insn⟩ ::= ⟨register⟩ ‘=’ (⟨iimm⟩ | ⟨fimm⟩ | ⟨binary-arith⟩ | ⟨cmp⟩

| ⟨allocg⟩ | ⟨allocl⟩ | ⟨load⟩ | ⟨store⟩ | ⟨getelementptr⟩ | ⟨sizeof ⟩
| ⟨getfunptr⟩ | ⟨loadarg⟩ | ⟨call⟩ | ⟨callptr⟩ | ⟨putchar⟩
| ⟨putnum⟩ | ⟨getchar⟩ | ⟨phi⟩ | ⟨cast⟩ | ⟨ret⟩ | ⟨retvoid⟩
| ⟨halt⟩ | ⟨br⟩ | ⟨condbr⟩)

103

C. IR Grammar

⟨iimm⟩ ::= ‘iimm’ ⟨integer⟩
⟨fimm⟩ ::= ‘fimm’ (⟨integer⟩ | ⟨double⟩)
⟨binary-arith⟩ ::= (‘iadd’ | ‘isub’ | ‘iand’ | ‘ior’ | ‘ixor’ | ‘ishl’

| ‘ishr’ | ‘umul’ | ‘smul’ | ‘udiv’ | ‘sdiv’ | ‘fadd’
| ‘fsub’ | ‘fmul’ | ‘fdiv’) ⟨insn-ref ⟩ ‘,’ ⟨insn-ref ⟩

⟨cmp⟩ ::= (‘cmpieq’ | ‘cmpine’ | ‘cmpult’ | ‘cmpule’ | ‘cmpugt’
| ‘cmpuge’ | ‘cmpslt’ | ‘cmpsle’ | ‘cmpsgt’ | ‘cmpsge’
| ‘cmpfeq’ | ‘cmpfne’ | ‘cmpflt’ | ‘cmpfle’ | ‘cmpfgt’
| ‘cmpfge’) ⟨insn-ref ⟩ ‘,’ ⟨insn-ref ⟩

⟨allocl⟩ ::= ‘allocl’ ⟨var-type⟩
⟨allocg⟩ ::= ‘allocg’ ⟨var-type⟩ [‘,’ ⟨integer⟩ { ⟨integer⟩ }]
⟨load⟩ ::= ‘load’ ⟨scalar-type⟩ ⟨insn-ref ⟩
⟨loadarg⟩ ::= ‘loadarg’ ⟨integer⟩
⟨store⟩ ::= ‘store’ ⟨insn-ref ⟩ ‘,’ ⟨insn-ref ⟩
⟨getelementptr⟩ ::= ‘getelementptr’ ⟨var-type⟩ ‘,’ ‘ptr’ ⟨insn-ref ⟩ ‘,’

‘[’ ⟨insn-ref ⟩ ‘]’ ‘.’ ⟨integer⟩
⟨sizeof ⟩ ::= ‘sizeof’ ⟨var-type⟩

⟨getfunptr⟩ ::= ‘getfunptr’ ⟨fun-ref ⟩
⟨call⟩ ::= ‘call’ ⟨ret-type⟩ ⟨fun-ref ⟩ ‘(’ ⟨call-args⟩ ‘)’
⟨callptr⟩ ::= ‘callptr’ ⟨ret-type⟩ ⟨insn-ref ⟩ ‘(’ ⟨call-args⟩ ‘)’
⟨call-args⟩ ::= [⟨arg-type⟩ ⟨insn-ref ⟩ { ‘,’ ⟨arg-type⟩ ⟨insn-ref ⟩ }]
⟨putchar⟩ ::= ‘putchar’ ⟨insn-ref ⟩
⟨putnum⟩ ::= ‘putnum’ ⟨insn-ref ⟩
⟨getchar⟩ ::= ‘getchar’
⟨phi⟩ ::= ‘phi’ ‘[’ ⟨insn-ref ⟩ ‘,’ ⟨basic-block-ref ⟩ ‘]’ { ‘,’ ‘[’

⟨insn-ref ⟩ ‘,’ ⟨basic-block-ref ⟩ ‘]’ }

⟨ret⟩ ::= ‘ret’ ⟨insn-ref ⟩
⟨retvoid⟩ ::= ‘retvoid’
⟨halt⟩ ::= ‘halt’
⟨br⟩ ::= ‘br’ ⟨basic-block-ref ⟩
⟨condbr⟩ ::= ‘condbr’ ⟨insn-ref ⟩ ⟨basic-block-ref ⟩ ⟨basic-block-ref ⟩
⟨cast⟩ ::= (‘bitcastint64todouble’ | ‘sint64todouble’

| ‘bitcastdoubletoint64’ | ‘doubletosint64’) ⟨insn-ref ⟩

104

⟨scalar-type⟩ ::= ‘i64’ | ‘double’ | ‘ptr’
⟨arg-type⟩ ::= ⟨scalar-type⟩
⟨ret-type⟩ ::= ⟨scalar-type⟩ | ‘void’
⟨var-type⟩ ::= (⟨scalar-type⟩ | ⟨struct-type⟩) { ‘[’ ⟨integer⟩ ‘]’ }
⟨struct-type⟩ ::= ‘struct’ ‘{’ ⟨var-type⟩ { ‘,’ ⟨var-type⟩ } ‘}’

105

Appendix D
Contents of the Electronic

Attachment

benchmarks..................source code and results used for evaluation
latex...................the directory of LATEX source code of the thesis
tinycc........the Git repository with source code of the compiler includ-

ing prebuilt binary target/scala-2.13/tinycc.jar
t86.....the Git repository with source code of the modified tiny86 VM

including prebuilt binary build/t86-cli/t86-cli
CONTENTS.md description of the attachment contents
thesis.pdf..............................the thesis text in PDF format

107

	Introduction
	A Modular Compiler
	tc
	t86
	Scala
	Previous Work
	Thesis Outline

	Intermediate-Code Generation and Optimization
	String Parsing Theory
	Lexical and Syntax Analysis
	Semantic and Type Analysis
	Intermediate Representation
	Compiling Source Code to ir
	Converting ir into ssa Form
	Optimizations

	Instruction Selection
	Overview of Instruction Selection Techniques
	Tree Covering
	Phi Node Elimination
	Macro Expansion

	Register Allocation and Assignment
	A Simple Local Register Allocator
	Liveness Analysis
	Register Allocation by Graph Coloring
	Linear Scan Register Allocation
	Post Processing

	Design and Implementation
	Design Goals
	Extending the nigen Toolchain
	Parsing and Typechecking tc
	Semantic and Type Analysis
	Intermediate Representation
	Compiling tc to ir
	The Optimizer
	Overview of the Backend
	Instruction Selection
	Register Allocation
	Post Processing
	Implementation
	Documentation

	Evaluation
	Unit Tests
	Integration and End to End Tests
	Benchmarks

	Conclusion
	Future Work

	Bibliography
	Acronyms
	User Guide
	Building
	Usage
	Supported tc Features

	ir Grammar
	Contents of the Electronic Attachment

