
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Data flow analysis of scripts in Databricks SQL dialect

Bc. Lucie Procházková

Ing. Jan Trávníček, Ph.D.

Informatics

Computer Science

Department of Theoretical Computer Science

until the end of summer semester 2023/2024

Instructions

Study the Databricks dialect of SQL language – its syntax and semantics.

Familiarize yourself with the Manta project, its metadata and the way it represents data

flow and with how the Databricks objects are retrieved from the Databricks database in

the Manta project; if needed, propose and implement additions.

Analyze whether it is possible to retrieve information about data flow between data

structures in a Databricks database from scripts in Databricks SQL language using static

analysis of these scripts.

Propose an approach to parsing and representing Databricks SQL scripts; design a

suitable datastructure for a follow-up dataflow analysis. Describe its statements

relevant to the later data flow analysis.

Continue with a design of analysis of Databricks SQL scripts capable of retrieval of the

data flow between data structures in Databricks SQL database from Databricks SQL

scripts and an approach to represent this data flow in the Manta project.

Create a prototype implementation of a tool that can retrieve data flow between data

structures in the Databricks SQL database from Databricks SQL scripts and can store this

data flow in the Manta project.

Propose and implement testing of your prototype.

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 29 December 2022 in Prague.

Master’s thesis

Data flow analysis of scripts in Databricks

SQL dialect

Bc. Lucie Procházková

Department of Theoretical Computer Science

Supervisor: Ing. Jan Trávńıček Ph.D.

May 4, 2023

Acknowledgements

I want to thank my supervisor, Ing. Jan Trávńıček, Ph.D., for his guidance

and support throughout my research. Thanks for all comments and highly

detailed reviews of all the pull requests.

I also want to thank Ladislav Louka for his continuous support and always

welcomed advice. Thank you, I would not be able to finish this on time without

you.

I have to mention here also all my friends, who supported me not only

through writing this thesis but through all my studies. I can’t mention them

all here, so at least Matěj Havránek, Tomáš Kořistka, Linda Beková, Antońın

Kř́ıž, Adam Procháska, Michal Dvořák and Xuan Thang Nguyen.

Lastly, I would like to acknowledge Manta, for giving me the opportunity

to conduct this research. Special thanks go to my amazing parsers team.

Declaration

I hereby declare that I have authored this thesis independently, and that all

sources used are declared in accordance with the “Metodický pokyn o etické

př́ıpravě vysokoškolských závěrečných praćı”.

I acknowledge that my thesis (work) is subject to the rights and obliga-

tions arising from Act No. 121/2000 Coll., on Copyright and Rights Related

to Copyright and on Amendments to Certain Laws (the Copyright Act), as

amended, (hereinafter as the ”Copyright Act”), in particular § 35, and § 60

of the Copyright Act governing the school work.

With respect to the computer programs that are part of my thesis (work)

and with respect to all documentation related to the computer programs

(”software”), in accordance with Article 2373 of the Act No. 89/2012 Coll.,

the Civil Code, I hereby grant a nonexclusive and irrevocable authorization

(license) to use this software, to any and all persons that wish to use the soft-

ware. Such persons are entitled to use the software in any way without any

limitations (including use for-profit purposes). This license is not limited in

terms of time, location and quantity, is granted free of charge, and also cov-

ers the right to alter or modify the software, combine it with another work,

and/or include the software in a collective work.

Czech Technical University in Prague

Faculty of Information Technology

© 2023 Lucie Procházková. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.

It has been submitted at Czech Technical University in Prague, Faculty of

Information Technology. The thesis is protected by the Copyright Act and its

usage without author’s permission is prohibited (with exceptions defined by the

Copyright Act).

Citation of this thesis

Procházková, Lucie. Data flow analysis of scripts in Databricks SQL dialect.

Master’s thesis. Czech Technical University in Prague, Faculty of Information

Technology, 2023.

Abstract

This thesis investigates the Databricks SQL dialect, proposing an automatic

script analysis method and a prototype scanner unit for Manta, a data lineage

tool. Data lineage is essential for data integrity and governance.

The research outcomes include a comprehensive data flow analysis in Data-

bricks SQL, the prototype scanner unit design and implementation, and thor-

ough testing. Our contributions enhance Manta’s ability to work with Data-

bricks systems, providing a valuable analytic tool for organizations relying on

Databricks SQL for data processing.

Kĺıčová slova Databricks, SQL, data lineage, data flow analysis, Manta

tools, ANTLR, parsing

vii

Abstrakt

Tato diplomová práce zkoumá dialekt Databricks SQL a navrhuje metodu

automatické analýzy skript̊u a prototyp skeneru pro nástroj Manta, který se

zabývá data lineage. Data lineage je nezbytná pro integritu a správu dat.

Výsledky výzkumu zahrnuj́ı komplexńı analýzu datového toku v Data-

bricks SQL, návrh a implementaci prototypu skeneru a d̊ukladné testováńı.

Naše práce rozšǐruje schopnosti nástroje Manta v práci se systémy Databricks

a poskytuj́ı cenný analytický nástroj pro organizace, které spoléhaj́ı na Data-

bricks SQL pro zpracováńı dat.

Keywords Databricks, SQL, data lineage, analýza datových tok̊u, Manta

tools, ANTLR, parsing

viii

Contents

Introduction 1

1 Preliminaries 5

1.1 Automata and grammar theory 5

1.1.1 Grammar Types . 7

1.1.2 Automata . 10

1.2 Language processing . 13

1.3 Lexical analysis . 14

1.4 Syntax analysis and parsing . 16

1.5 ANTLR library and LL(*) analysis 20

1.5.1 LL(*) Parsing . 21

1.6 Abstract syntax tree . 22

1.7 Data flow analysis . 25

2 Databricks System analysis 27

2.1 Data Lake vs. Data Lakehouse vs. Data Warehouse 27

2.2 Delta Lake . 28

2.3 Databricks SQL and Databricks Runtime 29

2.4 SQL in Databricks . 30

2.4.1 Notebooks . 30

ix

2.4.2 Queries . 31

2.5 Data objects . 31

2.5.1 Metastore . 32

2.5.2 Catalog . 32

2.6 Extraction . 33

3 Databricks SQL Dialect 35

3.1 Datatypes . 35

3.2 Expressions . 37

3.3 Functions . 39

3.3.1 User-defined Functions 39

3.3.2 Built-in Functions . 42

3.3.3 Lambda Functions . 42

3.4 Identifiers . 43

3.5 Statements . 43

3.5.1 DML statements . 44

3.5.1.1 SELECT statements 44

3.5.1.2 INSERT statement 49

3.5.1.3 Other DML statements 51

3.5.2 DDL statements . 53

3.6 Parameterising options . 54

3.6.1 Spark Variables . 54

3.6.2 Query Parameters . 55

4 Design 57

4.1 Used technologies . 57

4.1.1 Java . 57

4.1.2 ANTLR . 58

4.1.3 Maven . 58

4.1.4 Spring . 58

x

4.1.5 JUnit . 59

4.2 Modules . 59

4.2.1 Dependencies . 60

4.2.2 Connector . 60

4.2.3 Data flow Graph Generator 62

4.3 Workflow . 65

5 Implementation 67

5.1 ANTLR Parser . 67

5.1.1 Lexer grammar . 67

5.1.2 Parser grammar . 69

5.2 Resolving . 72

5.2.1 AST nodes . 72

5.2.2 Deduction . 74

5.3 Data flow generator . 74

6 Testing 77

6.1 Connector Tests . 77

6.1.1 PreprocessingTest . 79

6.2 Data flow Generator Tests . 79

Conclusion 81

Bibliography 83

A Acronyms 87

B Data flow graphs 89

C Contents of attachments 93

xi

List of Figures

1.1 Two parse trees for the expression a + a ∗ a in the grammar G . . 10

1.2 AST tree for the SQL statement: SELECT id, name FROM students

WHERE age > 30; . 23

1.3 Detailed AST tree for the SQL statement: SELECT id, name FROM

students WHERE age > 30; . 24

1.4 Detailed data flow graph . 26

1.5 Filtered data flow graph . 26

3.1 Data flow of the statement from Code snippet 19 46

3.2 Data flow of the statement from Code snippet 20 47

3.3 Data flow of the statement from Code snippet 21 48

3.4 Data flow of the statement from Code snippet 22 48

3.5 Dataflow of the statement from Code snippet 24 49

3.6 Data flow of the statement from Code snippet 25 50

3.7 Data flow of the statement from Code snippet 27 52

3.8 Data flow of the statement from Code snippet 28 53

3.9 Data flow of the statement from Code snippet 30 54

4.1 UML diagram showing dependencies between modules 61

xiii

4.2 Schematic representation of key classes and their interactions within

the connector module . 63

4.3 Schematic representation of key classes and their interactions within

the data flow generator module . 64

4.4 Schematic representation of workflow 65

5.1 Sequential diagram of the ParserServiceImpl class 72

B.1 Detailed data flow of the statement from Code snippet 20 89

B.2 Detailed data flow of the statement from Code snippet 21 90

B.3 Detailed data flow of the statement from Code snippet 22 91

B.4 Detailed data flow of the statement from Code snippet 24 92

B.5 Data flow of the statement from Code snippet 25 92

xiv

List of code snippets

1 Example of assingment . 14

2 SELECT example . 15

3 An example of a simple parser grammar 21

4 Example of a simple SELECT statement 23

5 An example of INSERT statement 26

6 Struct construction example . 36

7 Map construction example . 36

8 Nested map example . 37

9 Expression syntax . 38

10 UDF syntax . 40

11 UDF example . 40

12 UDF usage example . 40

13 A more complex UDF example 41

14 A usage of more complicated UDF 41

15 UDF returning a SELECT result set 42

16 Lambda function syntax . 42

17 Lambda function example . 42

18 Syntax of a select statement . 45

19 An example of simple SELECT statement 47

xv

LIST OF CODE SNIPPETS

20 An example of SELECT statement with WHERE clause 47

21 An example of SELECT statement with GROUP BY clause 47

22 Undocumented but valid SELECT syntax 48

23 Syntax of an INSERT statement 49

24 An example of INSERT INTO statement with specified columns 49

25 INSERT INTO statement example with PARTITION clause 50

26 An example of INSERT INTO...REPLACE WHERE statement . . . 50

27 Undocumented INSERT SELECT syntax 51

28 An example of LOAD DATA statement 51

29 An example of MERGE INTO statement 53

30 An example of CREATE TABLE statement 54

31 An example of Python notebook cell 55

32 An example of SQL notebook cell 55

33 An example of SQL notebook cell 55

34 An example of parametrised SQL query 56

35 An example of lexer rules . 68

36 An example of fragment lexer rules 68

37 A lexer rules with a specification of a hidden channel 69

38 A ID rules . 69

39 Simplified example of DatabricksSQLMain.g file 70

40 Identifier rule in the DatabricksSQLNonReservedKW file . . . 71

41 Default implementation of resolving 73

42 FlowVisitor.process method example 75

43 The example of AnnotatedFilesResolverTest input 79

xvi

Introduction

Data lineage is a crucial concept in modern data management. As data in-

frastructure grows in complexity, keeping track of how data is sourced, trans-

formed, and used across the organization is challenging. This complexity poses

significant challenges for data consumers, engineers, and governors.

Data lineage provides a practical solution for addressing these challenges

by offering a comprehensive understanding of how data flows through an or-

ganization. It allows stakeholders to trace errors back to their root causes,

perform impact analysis before making changes, and understand how sensitive

data is used throughout the organization to ensure compliance with regulatory

requirements.

Without data lineage, it can be difficult for data consumers to understand

the origins of data and how it has been transformed, leading to issues of trust

in reports and insights. Data engineers also face challenges when trying to

troubleshoot issues related to data transformations without a reliable way to

track them. Data governance teams may also struggle to ensure compliance

with regulations when they cannot easily understand how sensitive data is

used across the organization.

Knowing how the data flows through the system enables better decision-

making by providing a clear and comprehensive view of the data flow within

1

Introduction

an organization. Using lineage graph visualizations, stakeholders can under-

stand how data is sourced, transformed, and used, enabling better change

management and preventing unexpected downtime or errors. [1, 2]

Databricks is a unified data analytics platform designed to accelerate in-

novation by unifying data engineering, data science, machine learning, and

analytics. It is built upon the open-source Apache Spark framework, provid-

ing a scalable and collaborative environment for processing large volumes of

data. Databricks has gained popularity due to its ability to simplify complex

data processing tasks, foster collaboration among diverse teams, and support

advanced analytics and machine learning use cases. Its cloud-based archi-

tecture and integration with major cloud providers further contribute to its

widespread adoption in various industries.

Manta is a project that focuses on managing and analysing data lineage,

offering organisations a comprehensive view of the flow of their data across

different systems and applications. The Manta project analyses metadata

about the structure of the data. It provides metadata about data flow and its

representations, making it a valuable tool for organisations to understand the

life cycle of their data and make informed decisions about it.

This thesis aims to study the Databricks dialect of SQL language and its

syntax and semantics. The implementation part of this thesis will focus on

extending the Manta tool to retrieve information about data flow in Databricks

SQL scripts through static analysis of these scripts. The goal of this thesis is

to implement a prototype of a scanner unit of the Manta product, which will

be used to analyze SQL code in the Databricks system.

The thesis is organized into six chapters, each focusing on a different aspect

of the research and implementation. The first chapter will provide a theoretical

background, focusing on parsing, static analysis of formal languages, automata

and grammar theory, and related topics. This chapter will help the reader

understand the concepts and techniques used in the thesis.

2

In the second chapter, the Databricks system will be introduced, as well

as the use of SQL in it. The chapter also introduces the philosophy of the

system and covers the data objects in the Databricks ecosystem.

The third chapter will analyze the Databricks SQL dialect, focusing on its

syntax, semantics, and features. This chapter will provide a general overview

of the language and its capabilities.

The fourth chapter will cover the design of the prototype. We will dis-

cuss the technologies used and describe the overall architecture of the created

prototype.

The fifth chapter will focus on implementing the prototype for analyzing

Databricks SQL, which will retrieve data flow information from the scripts

and store this information in the Manta. We will also explain the implemen-

tation of our tool and its key components and describe the grammar used for

generating the parser in this chapter.

The sixth and final chapter will conclude the thesis with a discussion of the

testing of our prototype. This chapter will describe our approach to testing

and various types of tests created for the prototype.

To summarize, this thesis seeks to enhance the understanding of the SQL

language dialect used in the Databricks ecosystem, its syntax, and semantics,

as well as extend the Manta tool with a new module for Databricks SQL

analysis. By studying the Databricks dialect of SQL, we aim to extend the

capabilities of the Manta tool and enable it to retrieve information about data

flow in Databricks SQL scripts through static analysis.

3

Chapter 1

Preliminaries

This chapter provides a comprehensive overview of the theoretical concepts

used in the static analysis of Databricks scripts. This chapter aims to provide

a solid foundation for the rest of the thesis and help the readers understand

the concepts and techniques used in our work. The chapter will cover several

important topics in detail, including basic grammar and automata theory,

lexical analysis, syntax analysis and parsing, abstract syntax trees and their

resolution, the ANTLR library, and data flow graphs.

1.1 Automata and grammar theory

The first section of this chapter focuses on basic grammar and automata the-

ory. We will introduce key concepts such as formal languages, grammars, and

automata and discuss their relevance to the analysis of scripts. The definitions

and theory are based on [3].

First, we present the fundamental concepts of strings, languages, and their

notations in the context of formal language theory.

Definition 1 (Alphabet). An alphabet Σ is a finite, non-empty set of symbols.

5

1. Preliminaries

Definition 2 (String). Let Σ be an alphabet. A string w is a finite sequence

of symbols from Σ. The length of a string is the number of symbols it contains

and is denoted by |w|. The empty string is denoted by ε and has a length of 0.

Definition 3 (Concatenation). Let x = x1x2 . . . xm and y = y1y2 . . . yn be

two strings over an alphabet Σ. The concatenation of x and y, denoted by xy,

is the string z = x1x2 . . . xmy1y2 . . . yn, where z has length m + n.

Definition 4 (Power). Σ is an alphabet. Let Σ0 = ε. Then Σk = Σk−1.Σ.

See that Σ = Σ1.

Definition 5 (Kleene star). A Kleene star of an alphabet Σ∗ is defined as⋃∞
i=0 Σi.

We denote ⋃∞
i=1 Σi by Σ+ and call this a Kleene plus of an alphabet.

The Kleene star of an alphabet Σ∗ is a set of all strings over this alphabet.

Kleene plus Σ+ is a set of all non-empty strings over the Σ alphabet.

We now formally define a language.

Definition 6 (Language). Given an alphabet Σ, a language L is a (possibly

infinite) set of strings over Σ. Formally, L ⊆ Σ∗.

Since languages are sets, we may perform standard set operations such as

union, intersection or set minus.

In computer science, multiple formalisms are used to define languages. The

most commonly used ones are grammars, automata, and regular expressions.

Grammar is a mathematical model for generating a language and is defined

as follows.

Definition 7 (Grammar). Grammar is a quadruple (Σ, N, R, S), where:

• Σ is the set of terminal symbols, also known as the alphabet, representing

the final set of elements in the language, such as letters, symbols, or

tokens.

6

1.1. Automata and grammar theory

• N is the set of non-terminal symbols, which are symbols that are intended

to be rewritten by a rule in the grammar. It is important to note that Σ

and N are disjoint sets.

• R is the set of grammar rules describing how non-terminal symbols can

be rewritten.

• S is the starting symbol

Usage of the rewriting rule is called derivation and is denoted by ⇒.

βAγ ⇒ βαγ only if there is a rule A → α ∈ R. We denote by ⇒∗ any

number of chained derivations.

Definition 8 (Sentential form). A string s over N ∪ Σ is a sentential form

in G = (Σ, N, R, S), if S ⇒∗ s. If s ∈ Σ∗, s is called a sentence or a word in

the language L defined by grammar G.

When we apply derivation on a sentential form, we may rewrite any non-

terminal symbol. However, we define left-most (resp. right-most) derivation

as always rewriting the left-most (resp. right-most) non-terminal symbol.

Assuming rules are numbered, we can write down numbers of rules used by

left-most derivation; we call this left parse. The right parse is then defined

analogously.

1.1.1 Grammar Types

There are different types of grammars based on the type of rules used, and

two of the most important types for us are regular and context-free grammars.

Regular grammars have rules that are in the form of A → bB, A → b, or

S → ε, where A, B ∈ N , b ∈ Σ. S is a starting symbol and is not on the

right side of any rule, and ε is an empty string. Regular grammars are often

used in lexical analysis to generate tokens of a source code in a programming

language.

7

1. Preliminaries

On the other hand, context-free grammars have rules in the form of A →

α, where A ∈ N , and α is any sequence of terminals and non-terminals.

Every regular grammar is context-free, as regular grammars are a subset of

context-free grammars. This thesis will use context-free grammar to define

the grammar of the Databricks SQL dialect.

Context-sensitive grammars are characterized by their rules, which are in

the form of αNβ → αγβ, where α and β are any strings, N is a non-terminal

symbol, and γ is a non-empty string of symbols. Context grammar can include

a rule in the form of S → ε, as long as S is not on the right side of any other

rule.

Unrestricted or unlimited grammars, also known as Turing-complete gram-

mars, have the most general form of rules – α → β, where α ∈ (Σ ∪ N)+ and

β ∈ (Σ ∪ N)∗. These grammars are equivalent in power to Turing machines

and can describe any computable language.

In conclusion, while unrestricted grammars have the greatest expressive

power, they are not practical for most language processing tasks, as the pars-

ing algorithms for unrestricted grammars are not feasible for real-world ap-

plications. At the same time, context-sensitive grammars are more powerful

than context-free grammars but also more complex to parse. For this reason,

context-free grammars are often the preferred choice for describing program-

ming languages and other formal languages in computer science.

Let us define a parse tree.

Definition 9 (Parse tree). Let G = (Σ, N, R, S) be a grammar. The tree is

a parse tree for G if it meets the following

1. Every inner node is labelled by A ∈ N .

2. Every leaf is labelled by either a ∈ Σ or ε. If the leaf is labelled by ε,

then it must be the only child of its parent.

8

1.1. Automata and grammar theory

3. If there is a node labeled A with children, in sequence, X1, X2, X3, . . . , Xk,

then A → X1X2X3 . . . Xk ∈ R

For grammars, we will define ambiguity, as this property is quite important

for parsing because it introduces non-determinism of the parsing task.

Definition 10. Grammar is ambiguous if there exists a string for which there

is more than one possible parse tree in this grammar.

This can occur when the grammar has productions that can be applied

in multiple ways, leading to multiple possible derivations for a single input

string. For example, consider the grammar G = ({a, +, ∗}, {S}, R, S):

R = {S → S + S | S ∗ S | a}

This grammar generates arithmetic expressions consisting of additions and

multiplications of the symbol a. The ambiguity arises for example when we

consider the expression a+a ∗a. This expression can be parsed in two different

ways; see the Figure 1.1

In the first parse tree, we first used the addition rule and then on the

second S the multiplication rule is used, while in the second parse tree, the

multiplication is used as first, then on the first S the addition rule is used,

leading to a different parse tree. Thus, the grammar G is ambiguous.

Ambiguity in grammar can lead to difficulties in designing and implement-

ing parsers, as it requires disambiguation techniques to be used in order for the

parser to be deterministic. These techniques include modifying the grammar

itself to eliminate ambiguity or using disambiguation rules in the parsing pro-

cess. Additionally, ambiguity can cause confusion and unexpected behaviour

in programming languages or other applications that rely on unambiguous

grammars for correct parsing and interpretation.

9

1. Preliminaries

S

S

a

+ S

S

a

∗ S

a

S

S

S

a

+ S

a

∗ S

a

Figure 1.1: Two parse trees for the expression a + a ∗ a in the grammar G

1.1.2 Automata

Automata are abstract mathematical models used in computer science to ac-

cept languages and recognize strings in those languages. Several types of

automata exist, including finite automata, push-down automata, and Turing

machines. We will discuss the first two models’ basic definitions and char-

acteristics, including deterministic and non-deterministic versions, and their

applications in language processing tasks such as parsing.

The simplest automaton is a finite automaton, which can be defined as

follows.

Definition 11 (Finite automaton). Finite automaton is defined as a tuple

M = (Q, Σ, δ, q0, F), where:

• Q is a finite set of states

10

1.1. Automata and grammar theory

• Σ is a finite set of input symbols, also known as the alphabet

• δ : Q × Σ → 2Q is the transition function

• q0 ∈ Q is the initial state

• F ⊆ Q is the set of final states, also known as accepting states

Informally, a non-deterministic finite automaton is one in which there may

be multiple states q′ such that δ(q, a) = q′ for a state q and input symbol a.

A finite automaton is called deterministic if, for each state q ∈ Q and each

input symbol a ∈ Σ, there is at most one state q′ ∈ Q such that δ(q, a) = q′.

I.e., the definition of the delta function is Q × Σ → Q.

A string w ∈ Σ∗ of length n is said to be recognized by the automaton

if there is a sequence of states q0, q1, . . . , qn such that q0 is the initial state,

qn ∈ F is a final state and δ(qi−1, wi) = qi for each 1 ≤ i ≤ n.

Push-down automata (PDA) are similar to finite automata, but they have

an additional push-down store that allows them to recognize context-free lan-

guages. A push-down automaton can be defined formally as follows.

Definition 12 (Push-down automaton). Push-down automaton is a tuple

M = (Q, Σ, Γ, δ, q0, Z, F), where:

• Q is a finite set of states

• Σ is a finite set of input symbols, also known as the alphabet

• Γ is a finite set of push-down store symbols

• δ is a finite subset of Q×(Σ∪ε)×Γ∗ → Q×Γ∗ is the transition function

• q0 ∈ Q is the initial state

• Z ∈ Γ is the initial push-down store symbol

• F ⊆ Q is the set of final states, also known as accepting states

11

1. Preliminaries

The PDA can accept a string in two ways after reading the entire input

string: either by reaching a final state or by having an empty push-down store.

The accepting method is declared when declaring the specific PDA by either

specifying final states, then the automaton accepts by reaching a final state,

or by making the set of final states empty and thus accepting by emptying

the push-down store.

A configuration of a PDA consists of a state, a push-down store content,

and the unread part of the input string.

An accepting configuration of a push-down automaton is a configuration

that satisfies the conditions for the PDA to accept a string given the selected

method described above.

An accepting configuration with a final state occurs when the PDA reaches

a designated final state, often denoted as qf , after processing the entire input

string. The final state must be specified as part of the definition of the PDA

and is often used to represent that the input string has been successfully

processed. An accepting configuration with an empty push-down store occurs

when the PDA reaches the end of the input string, and the push-down store

is empty.

Formally, let M be a push-down automaton and let w ∈ Σ∗ be a string.

We say that M accepts the string w if there is a sequence of configurations

c0, c1, . . . , cn such that c0 = (q0, ε, w), cn is valid accepting configuration and

(c0, . . . , cn) is a valid transition chain of M , meaning, that every configuration

is a result of a transition function used on the configuration before.

Push-down automata can be either deterministic or non-deterministic, just

like finite automata. Informally, the difference is that in a non-deterministic

push-down automaton, there can be multiple possibilities for the next con-

figuration based on a single input symbol (or epsilon) and push-down store

content.

12

1.2. Language processing

1.2 Language processing

This section provides a brief overview of the language analysis process, which

consists of several stages: lexical analysis, syntax analysis, semantic analysis,

and further processing.

The lexical analysis breaks down the input text into tokens or meaningful

units, such as words, numbers, and punctuation marks. The main goal of this

stage is to identify and categorise tokens based on their types and properties,

preparing them for the subsequent stages of analysis. The details of the lexical

analysis will be elaborated upon section 1.3.

Syntax analysis is concerned with creating a hierarchical structure that

represents grammatical relationships between tokens. This stage’s goal can be

to ensure that the input text conforms to the rules of the language’s grammar,

which is not an issue in our case, as we expect only valid input scripts. Syntax

analysis can, however, also creates a structure that can be used later in the

language analysis. This structure, a parse tree or a syntax tree, facilitates the

examination of the input text’s structure and organisation. Syntax analysis

will be covered by section 1.4.

The semantic analysis focuses on understanding the meaning of the input

text by examining the relationships and dependencies between its parts. The

goal of this stage can be to ensure that the input text is both logically and se-

mantically correct, considering context, among other aspects. In our case, we

will resolve the syntax tree, trying to determine which reference is referencing

what object.

The last step, further processing, is, in our case, a data flow analysis. We

create a data flow graph from the resolved syntax tree. We delve into this

process in section 1.7.

13

1. Preliminaries

fileName = inputName + ".sql"

Code snippet 1: Example of assingment

1.3 Lexical analysis

This section covers lexical analysis, which involves the process of breaking

down the input into its constituent parts, known as tokens. We will discuss

the role of lexical analysis in language processing and explain how it is used

to tokenise the input.

The purpose of the first step, lexical analysis is to identify the lexical

symbols, encode them, hide redundant symbols (comments, whitespaces etc.)

and determine token value [4].

The lexical analyser reads the stream of characters making up the source

program and groups the characters into meaningful sequences called lexemes.

For each lexeme, the lexical analyser produces as output a token of the form

<token-name, attribute-value> that it passes on to the subsequent phase,

syntax analysis. [5]

For example, statement in Code snippet 1 would translate to following

tokens <id, "fileName"> <=> <id, "inputName"> <+> <stringLiteral,

".sql">. We see that not every token has to have a value; however, usu-

ally, it can be useful to refer to tokens like <=> or <+> by some name. Then,

for example, we can distinguish between ’=’ as equals and ’=’ as assign and

interchange these two symbols in the lexer more easily. With this, the to-

kens for the same statement can be: <id, "fileName"> <assign,’=’> <id,

"inputName"> <plus,’+’> <stringLiteral, ".sql">

Identifier tokens are of particular interest to us. The attribute value of

the token is the actual name, character sequence identifying an entity in the

program. When needed, i.e. in compilers, the identifiers can be stored in

the symbol table directly during lexical analysis. Attribute values of different

14

1.3. Lexical analysis

SELECT * FROM schema1.as;
SELECT from AS col FROM t1;

Code snippet 2: SELECT example

identifier tokens are then usually pointers to the symbol table [5]. In this

thesis, we use a different approach. The tokens refer to the original input

sequence of characters and thus know exactly the original sequences of char-

acters they represent. What they are referring to is then solved during the

semantic analysis.

During lexical analysis, keywords are also identified. Keywords are a finite

subset of all possible identifiers. In some languages, keywords cannot be used

as identifiers.

There are two ways to implement this differentiation. First, we can dis-

tinguish different keywords by different final states of an automaton used for

lexical analysis. The second option is to check in the keywords table whether

this identifier is a keyword after the identifier is processed [4]. The second ap-

proach generally produces smaller automata; however, it is slower as it adds

the overhead of checking the table of keywords after processing every identifier

or keyword.

However, in SQL, we distinguish reserved keywords, which can not be used

as an identifier and non-reserved keywords, which may be used as an identifier.

Consider examples in Code snippet 2. There we can see as and from used as

column names, but they are also SQL keywords. The example was highlighted

using minted package [6], and we see that it used the wrong colour for from

and as when they were used as column names – this is a perfect example of

this issue - without a context it is sometimes impossible to determine whether

a sequence is used as an identifier or a keyword. This raises a problem in the

lexical analysis phase, as the lexical analyser is not able to work with context;

therefore, we postpone this determination to the syntactical analysis.

15

1. Preliminaries

Theoretically, the lexical analyser can be represented as a final automaton

that recognizes lexical symbols – tokens. This approach is used, for example,

in [4] or in [5]. However, in practice, this approach may have issues, such as

comments being recursive and requiring push-down automata instead of final

automata. Also, in this thesis, we retain comments and whitespaces in the

token sequence for later restoration of the script.

1.4 Syntax analysis and parsing

The third section focuses on syntax analysis and parsing. This step involves

analysing the input based on its syntax and constructing a parse tree to repre-

sent the structure of the input. We will discuss the different types of parsers,

including top-down and bottom-up parsers, and the pros and cons of each

approach.

Syntax analysis, also known as parsing, is the process of analysing the

syntactic structure of a sentence (in our case, a script) to understand its

meaning. Parsing aims to create a parse tree, a hierarchical representation of

the sentence, showing the relationships between its components.

There are three main approaches to parsing: universal, top-down and

bottom-up. Universal parsing methods include the Cocke-Younger-Kasami

algorithm and Earley’s algorithm. They can parse any grammar; however,

they are usually too inefficient to use in production analysers. Top-down

parsing starts with the highest level of the parse tree – starting symbol S –

and works its way down to the leaves – tokens, while bottom-up parsing starts

with the leaves and works its way up to the root. The parser scans the input

from left to right, one symbol at a time regardless of the approach used [5].

A bottom-up parser starts by reading the input symbols from left to right

and then tries to reduce them to non-terminals of the grammar until it reaches

the start symbol of the grammar. In order to do so, it utilizes a push-down

16

1.4. Syntax analysis and parsing

store to keep track of the symbols that have been read so far and already

reduced-to non-terminals.

A PDA can be used to implement a bottom-up parser. The bottom parser

PDA for a grammar G = (Σ, N, R, S) is a tuple (Q = {q, qf }, Σ, Γ = (Σ ∪ N ∪

{Z}), δ, q0 = q, Z, F = {qf }) and accepts by reaching a final state qf . The

transition function δ is defined as follows:

1. δ(q, a, e) = {(q, a)} for all a ∈ Σ. These transitions cause input symbols

to be shifted on top of the push-down store; we call them a shift.

2. If A → α is in R, then δ(q, ε, α) contains (q, A). These transitions say

that if the top of the push-down store contains a sequence of symbols

that can be reduced to a non-terminal A by using a production A → α,

then the PDA can make a reduction step and replace these symbols with

the non-terminal A. These transitions are called reductions.

3. δ(q, ε, ZS) = (qf , ε). This transition accepts the input when the entire

input has been parsed, and the push-down store contains only the start

symbol S. This transition is called acceptance.

By defining the transition function δ, the PDA can recognize the language

generated by a context-free grammar G(Σ, N, P, S) using a bottom-up parsing

strategy, producing the right parse. The PDA shifts input symbols onto the

push-down store, reduces the push-down store symbols to non-terminals, and

finally accepts the input by reducing the push-down store to the start symbol

S 1 [7].

On the other hand, a top-down parser is a type of parser that constructs

a parse tree from the root to the leaves. It starts by trying to expand the

grammar’s start symbol into a sequence of terminals and non-terminals, then

recursively expands each non-terminal until the entire input string is derived.
1The top of the push-down store is maintained on the right (as opposed to the general

left).

17

1. Preliminaries

If the top of the push-down store is the terminal symbol, it tries to match it

against the first unprocessed symbol of the input.

A PDA can also be used to implement a top-down parser. Top down

parser PDA for a grammar G = (Σ, N, R, S) is a tuple (Q = {q}, Σ, Γ =

(Σ ∪ N), δ, q0 = q, Z = S, F = {}) and accepts by an empty push-down store.

The transition function δ for a top-down parser is defined as follows:

1. δ(q, e, A) = (q, α) for all A → α ∈ P . These transitions push the right-

hand side of the production rule A → α onto the push-down store when

the top of the push-down store contains the non-terminal A.

2. δ(q, a, a) = (q, e) for all a ∈ Σ. These transitions consume input symbols

from the input string and the push-down store when the top of the push-

down store contains the terminal symbol a. a transition like this is called

the match.

The top-down parser will produce the left parse of a given input if we

output the respective rule on each expansion [7].

Both these approaches are, as defined, non-deterministic. More is needed

for their usage in the compilers; therefore, deterministic variants are explored.

There are LR parsers or Generalized LR grammars for bottom-up parsing,

which parse in linear to cubic time. This approach is not ideal for parsing

because it accepts ambiguous grammar [8] – which can be seen as an advan-

tage. In practise, it can be problematic, as the programmer can not rely on

one particular parse tree. Thus accepting unambiguous grammars only leads

to more sustainable code.

LL(k) analysis is a deterministic type of top-down parsing that uses a push-

down store automaton to construct a parse tree for a given input string. In

LL(k) analysis, the expansion rule is selected based on the content of a look-

ahead window of to-be-parsed symbols of length k. LL(k) is more powerful

18

1.4. Syntax analysis and parsing

than LL(k −1). The rules to use when expanding are given by a precomputed

parse table. Construction of the LL(k) analyser involves building this table.

LL(1) analysis is a specific case of LL(k) analysis where k = 1. It is the

least powerful among all the LL(k) analysis variants but has a straightforward

implementation by recursive descent. Two functions are used to construct the

LL(1) parse table: FIRST and FOLLOW.

For LL(1) analysis, the FIRST function is defined for any string α ∈ (N ∪

T)∗. It is a set of terminal symbols and possibly ε that are the first symbols

in sentences generable from α by rules from the grammar. Formally,

FIRST(α) = {a : α ⇒∗ aβ; a ∈ T ; α, β ∈ (N ∪ T)} ∪ {ε : α ⇒∗ ε; α ∈ N∗}.

The FOLLOW function is defined for each non-terminal symbol A.

FOLLOW(A) is a set of terminal symbols, and possibly ε, that follow A in

sentential forms generated by the grammar. Formally,

FOLLOW(A) = {a : S ⇒∗ αAβ; a ∈ FIRST(β)}.

In the situation, when ε ∈ FIRST(β), for instance, in the case of S, where

S ⇒∗ α, where α is the entire input sequence, ε ∈ FOLLOW(S).

LL(k) parsers require grammars to meet specific criteria, including being

left-recursion free, unambiguous, and having no FIRST -- FIRST, FIRST --

FOLLOW conflicts. For LL(1), we mean by those conflicts, that no non-terminal

can have the same symbol in two or more FIRST sets of its rules and, if there

is an ε in the FIRST of a rule, the FOLLOW can’t contain any of the symbols

in the FIRST sets of the nonterminal’s rules. For LL(k), FIRST and FOLLOW

sets contain k-grams, FIRST -- FIRST, FIRST -- FOLLOW conflicts are then

defined analogously.

Failure to meet these criteria will result in conflicts and ambiguities in the

parse table, making the parser unable to parse certain input strings determin-

istically.

19

1. Preliminaries

1.5 ANTLR library and LL(*) analysis

In this thesis, the LL(*) parsing method and ANTLR library are used. ANTLR

is a popular library for implementing parsers. This section explains how it can

be used to implement a parser for a specific language. We also discuss the key

concepts and techniques used in ANTLR and provide a brief overview of its

capabilities.

ANTLR (ANother Tool for Language Recognition) is a powerful parser

generator widely used for constructing parsers, interpreters, compilers, and

other language processing tools. ANTLR can generate parsers that can handle

a wide range of input languages.

The ANTLR parser generator uses a domain-specific language to describe

the grammar of the input, which is then used to generate a parser that can

recognize words from the language generated by the grammar. The parser

generator is based on the LL(*) parsing algorithm, a LL(k) parsing variant

that uses a lookahead of arbitrary length to parse more complex languages.

ANTLR supports a wide range of target languages, including Java, Python,

C#, and JavaScript, which makes it a popular choice for developing language

processing tools in various programming environments. It is used, for example,

as a part of the Google app engine (Python), IBM Tivoli Identity Manager,

BEA/Oracle WebLogic, Yahoo! Query Language, Apple Keynote, Oracle SQL

Developer IDE or NetBeans IDE [8].

In the example in Code snippet 3, we define a grammar for a simple lan-

guage that includes if statements and simplified boolean expressions2. We

define a rule for a program consisting of zero or more statements and a rule

for a statement, which can be an if statement with an optional else clause or

a print statement. We also define a rule for a simplified expression, which can

be either true, false, or an identifier (ID). Using ANTLR to generate a parser

for this grammar would result in a parser that can recognize and parse input
2The grammar in Code snippet 3 is ambiguous, as this is a simplified example

20

1.5. ANTLR library and LL(*) analysis

grammar SimpleLanguage;

program: statement*;
statement

: 'if' expression 'then' statement ('else' statement)?
| 'print' '(' expression ')' ';'
;

expression: 'true' | 'false' | ID;
ID: [a-zA-Z]+;

Code snippet 3: An example of a simple parser grammar

written in this language, allowing us to perform language processing tasks

such as data flow analysis.

1.5.1 LL(*) Parsing

LL(*) parsing is a top-down parsing algorithm introduced in [8]. In this sub-

section, we explain the base idea of the algorithm. It uses a predictive parsing

table to determine the following production rule to apply during parsing based

on the current non-terminal symbol and the lookahead symbol(s). In LL(*)

parsing, the predictive parsing table is constructed using deterministic finite

automata (DFAs) generated for each grammar non-terminal symbol and for

places where a similar decision is made (bracketed alternation, etc.).

During parsing of the grammar, the LL(*) algorithm starts with an initial

non-terminal symbol. Then it uses the DFA for that symbol to determine the

following production rule to apply based on the current lookahead symbol(s).

The use of DFAs in ANTLR’s implementation of LL(*) parsing allows for

fast and efficient parsing of input languages. The deterministic nature of the

automata ensures that the algorithm can proceed quickly through the input

stream without having to backtrack excessively.

To construct these DFAs, LL(*) employs augmented transition networks

(ATNs), a form of a directed graph representing context-free grammars. An

21

1. Preliminaries

ATN consists of states connected by transitions, where each state represents

a position within a production rule, and transitions correspond to gram-

mar symbols (either terminal or non-terminal). ATNs are “augmented” be-

cause they include epsilon transitions, which are transitions that can be taken

without consuming any input symbols. Epsilon transitions represent non-

deterministic choices within the grammar, such as when multiple production

rules share the same prefix.

To create a DFA for each non-terminal symbol in the grammar, the LL(*)

algorithm first constructs an ATN representation of the grammar. Then, the

algorithm converts the ATN to a DFA through ATN simulation. The ATN

simulation involves traversing the ATN based on the lookahead symbols and

exploring all possible texts to predict the correct production rule to apply dur-

ing parsing. During this process, the algorithm resolves any non-determinism

that arises due to epsilon transitions and merges equivalent states to construct

a deterministic automaton. This process may fail on recursive rules, as they

introduce a loop to the automaton. To handle this issue algorithm limits the

number of recursive invocations to any particular rule. Another strategy to

optimise the algorithm is a heuristic termination of DFA construction upon

discovering recursion in multiple alternatives. In such case, ANTLR falls back

on LL(1) lookahead for a non-terminal with backtracking or other predicates.

1.6 Abstract syntax tree

The sixth section explains what an abstract syntax tree is and how it is used to

represent the structure of the input. We also discuss the process of resolving

abstract syntax trees during the analysis of scripts.

The abstract syntax tree (AST) is a data structure that represents the

syntactic structure of the source code in a tree-like form. It is an essen-

tial component of many program analysis techniques. The abstract syntax

tree captures the hierarchy and relationships between the various elements of

22

1.6. Abstract syntax tree

SELECT id, name
FROM students
WHERE age > 30;

Code snippet 4: Example of a simple SELECT statement

a program, such as statements, their clauses, expressions, function calls or

their parameters.

The AST does not have an exact definition, as there are multiple possibil-

ities for how the AST for the same input can look. The AST design is decided

by a programmer, and it varies based on the purpose of the AST.

For example, consider the SQL statement in Code snippet 4. The corre-

sponding AST can be represented both as Figure 1.2 and Figure 1.3. In the

first AST, the root node represents the SELECT statement, with three child

nodes representing the selected columns and the table from which they are

selected. The WHERE clause is represented by a child node with an operator

and a value. We can see that the second AST is much more detailed, using

generic nodes like AST-STATEMENT.

SELECT

id name FROM

students

WHERE

>

age 30

Figure 1.2: AST tree for the SQL statement: SELECT id, name FROM
students WHERE age > 30;

23

1. Preliminaries

AST-STATEMENT

AST-SELECT

SELECT AST-LIST

AST-COL

AST-REF

id

, AST-COL

AST-REF

name

AST-FROM

FROM AST-TABLE

AST-REF

students

AST-WHERE

WHERE AST-EXPR

AST-COMPARE

AST-REF

age

> AST-LIT

30

Figure 1.3: Detailed AST tree for the SQL statement: SELECT id, name
FROM students WHERE age > 30;

The AST is usually generated by a parser that reads the source code and

produces a tree structure representing the program’s syntax. Each node in the

tree represents a different syntactic construct, such as a variable declaration,

function call, or loop statement. The nodes are connected by edges that

represent the syntactic relationships between them.

The AST is often used as the basis for program analysis techniques be-

cause it provides a high-level view of the program’s structure. From the AST

we can extract information about the program, such as all the variable dec-

larations, function calls, and control flow statements, as they may use the

same node type. The AST can be used to perform code optimizations, such

as loop unrolling and constant folding. The AST typically omits unnecessary

information from the input.

24

1.7. Data flow analysis

1.7 Data flow analysis

The final section covers the data flow analysis and the data flow graph, which

represent the flow of data within a system. We explain what data flow graphs

are and how they can be used to analyse the flow of data in a system.

A data flow graph is not defined precisely, as its design may vary with

different tools. Because in this thesis, we are extending the Manta tool, we

describe how the data flow graph is designed in Manta.

A data flow graph is an oriented graph that consists of nodes and oriented

edges. The nodes represent the actual data, and two nodes can be connected

by the oriented edges representing data flows between them. We define two

types of data flow edges: direct flows and filter flows.

Direct data flows indicate that the source nodes directly participate in the

data origin of target nodes. For example, let’s consider table t2 with columns

a,b and statement in Code snippet 5. We want to have direct flow from

column a of table t1 to column a of table t2, similarly with b column.

Filter data flows, on the other hand, impact the content of the target node

without directly contributing to it. As an example, see again Code snippet 5.

Here the c column affects which rows are selected, so it has an impact on the

result of the SELECT statement an thus the values inserted in table t2.

For the example statement in Code snippet 5, the detailed data flow graph

of this statement can be seen in Figure 1.4. However, for the customer, a graph

in Figure 1.4 is too detailed. For the analysis purpose, we need information

about all the result sets, and how they interact, how the expressions are con-

structed, in the final data flow graph, it may not be as important. Therefore

we may contract some of the edges and delete unimportant nodes. We will

call this filtered graph; see an example for the example statement in Code

snippet 5 in the Figure 1.5.

25

1. Preliminaries

INSERT INTO t2
SELECT a, b FROM t1 WHERE c > 100;

Code snippet 5: An example of INSERT statement

a [Column] (t2) b [Column] (t2)

a [Column] (t1)

1 a [ResultSetColumn] (<12,1>ResultSet)

D

b [Column] (t1)

2 b [ResultSetColumn] (<12,1>ResultSet)

D

c [Column] (t1)

<12,27>c [Expression] (script.sql)

D

1 a [ColumnFlow] (<11,1>INSERT)

D

2 b [ColumnFlow] (<11,1>INSERT)

D

1 a [ResultSetColumn] (<12,1>MasterResultSet)

D

2 b [ResultSetColumn] (<12,1>MasterResultSet)

D

D D

<12,27>c > 100 [Expression] (script.sql)

D

<12,31>100 [Literal] (script.sql)

<12,31>100 [Expression] (script.sql)

D

D

<12,21>Where [Where] (<12,1>ResultSet)

F

F F

Figure 1.4: Detailed data flow graph

a [Column] (t2) b [Column] (t2)

a [Column] (t1)

1 a [ColumnFlow] (<11,1>INSERT)

D

b [Column] (t1)

2 b [ColumnFlow] (<11,1>INSERT)

D

c [Column] (t1)

F F

D D

Figure 1.5: Filtered data flow graph

26

Chapter 2

Databricks System analysis

This chapter aims to analyse and introduce the Databricks system. Databricks

runtimes consist of core components that run on Databricks clusters. In addi-

tion to Apache Spark, Databricks Runtime also includes features and updates

that substantially improve big data analytics’ usability, performance, and se-

curity.

2.1 Data Lake vs. Data Lakehouse vs. Data

Warehouse

The philosophy of Databricks is built on the idea of data lakes. A data lake

is a central location that holds a large amount of data in its native, raw for-

mat. Compared to a hierarchical data warehouse, which stores data in files

or folders, a data lake uses a flat architecture and object storage to store the

data. Object storage stores data with metadata tags and a unique identifier,

which makes it easier to locate and retrieve data across regions and improves

performance. By leveraging inexpensive object storage and open formats, data

lakes enable many applications to take advantage of the data. [9]

One of the most important advantages of data lakes is that they are an

open format, so one can avoid lock-in to a proprietary system. Also, Data lakes

27

2. Databricks System analysis

are highly durable and low-cost. Data lakes store large amounts of structured,

semi-structured, and unstructured data. They can contain everything from

relational data to JSON documents to PDFs to audio files.

Databricks implements a data lakehouse concept. Data Lakehouse is an

architecture that enables efficient and secure Artificial Intelligence (AI) and

Business Intelligence (BI) directly on vast amounts of data stored in Data

Lakes. It has specific capabilities to efficiently enable both AI and BI on all the

enterprise’s data at a massive scale. Namely, it has the SQL and performance

capabilities (indexing, caching, MPP processing) to make BI work fast on data

lakes. It also has direct file access and direct native support for Python, data

science, and AI frameworks without ever forcing it through a SQL-based data

warehouse. The key technologies used to implement Data Lakehouses are open

source, such as Delta Lake, Hudi, and Iceberg. [10]

2.2 Delta Lake

Delta Lake is an open-source project that enables building a Lakehouse archi-

tecture on top of data lakes. Delta Lake is the optimized storage layer that

provides the foundation for storing data and tables in the Databricks Lake-

house Platform. Delta Lake is open-source software that extends Parquet data

files with a file-based transaction log for ACID transactions and scalable meta-

data handling. All tables on Databricks are Delta tables by default. Whether

you’re using Apache Spark DataFrames or SQL, you get all the benefits of

Delta Lake just by saving your data to the lakehouse with default settings. [11]

Delta Lake validates data on write so the user can set requirements every

write must meet. Metadata used to reference the table is added to the meta-

store in the declared schema or database. Data and table metadata are saved

to a directory in cloud object storage. There is an option to create Delta ta-

bles by directly interacting with directory paths using Spark APIs. Some new

features that build upon Delta Lake store additional metadata in the table

28

2.3. Databricks SQL and Databricks Runtime

directory. Still, all Delta tables have a directory containing table data in the

Parquet file format and a sub-directory delta log that contains metadata

about table versions in JSON and Parquet format.

2.3 Databricks SQL and Databricks Runtime

This subsection describes the difference between Spark SQL and Databricks

SQL. Databricks was built on top of Apache Spark [12].

While Databricks SQL is an optimized computing environment, Spark SQL

is a Spark module for structured data processing. of Apache Spark APIs that

enable data processing through SQL queries and DataFrame API [13]. Spark

SQL has replaced the Spark RDD API in Spark 2.x and supports SQL queries

and the DataFrame API for programming languages such as Python, Scala,

R, and Java.

SQL queries executed in Databricks Runtime closely resemble the open-

source Apache Spark functionality, with some built-extension protocols for

Delta Lake and proprietary Databricks features [14].

There are three computing options for the Databricks system, Databricks

SQL, Databricks Runtime and Delta Live Tables. All computing options pro-

vide slightly different semantics and syntax.

Delta Live Tables pipelines are multiple pipelined notebooks with some

special SQL syntax [15]. These pipelines offer to use Delta Live Views and

Tables that only exist during the run time of the Delta Live Table pipeline.

There is an option to make the results a permanent table by publishing it by

setting the target property in the configuration. This action can only publish

tables; views are not published to the metastore.

SQL executed with Delta Live Tables inherits syntax and semantics from

the Databricks Runtime but adds some exclusive keywords and functions for

Delta Live Tables.

29

2. Databricks System analysis

Databricks SQL run on SQL warehouses generally abides by ANSI stan-

dards. However, some features supported by Databricks SQL do not work

when run in Databricks notebooks against Databricks Runtime compute, in-

cluding HiveQL syntax, variable declaration and reference, and DButils wid-

gets.

Databricks SQL offers several features, including a schema browser and

a SQL editor with the possibility of visualizations. Databricks SQL provides

some configuration parameters; however, according to the documentation,

they should not impact lineage, only the system’s performance; therefore,

they are not further examined [16].

2.4 SQL in Databricks

Databricks SQL is a system for SQL on the Databricks platform. It uses Spark

SQL as the base for its SQL dialect.

SQL as a language can be found in three places: in SQL cells inside a note-

book and in queries, and in Delta Live pipelines. However, last two options

use not Databricks SQL environment, but Databricks Runtime. This brings

slight differences in supported syntax.

2.4.1 Notebooks

Notebooks in Databricks run against Databricks Runtime and support multi-

ple programming languages. Although each notebook has a default language,

cells within the notebook can use a different language. The language of a cell

can be set by starting the cell with %<language name> or by setting it manu-

ally in the user interface. Spark context is a shared resource across languages,

and it is possible to reference Spark context variables from SQL. However,

there is no current method to set a variable from SQL. There is a feature to

have the last result set available in other languages under the sqldf variable

30

2.5. Data objects

[17]. It has been discovered that these variables can contain code, so it is

necessary to analyze the code with variables replaced by their values before

performing any analysis. Notebooks in Databricks are created in workspaces

and can be shared.

2.4.2 Queries

Databricks SQL Queries run against a certain metastore in the Databricks

SQL environment. They are SQL scripts that come with their integrated de-

velopment environment (IDE) on the Databricks platform. Users can param-

eterize and schedule these queries using the platform’s features. Extraction

of information can be done through the API endpoint, which contains infor-

mation about parameters, schedules, and the query itself; however, there is

currently no way to extract the target of the query - what is a default catalog

and schema used in the query.

2.5 Data objects

The Databricks Lakehouse organizes data stored with Delta Lake in cloud ob-

ject storage with relations like databases, tables, and views. The information

about the data objects used in Databricks in this section was based on [18] and

testing on the Databricks instance. The Databricks Lakehouse architecture

combines data stored with the Delta Lake protocol in cloud object storage

with metadata registered to a metastore.

The Databricks Lakehouse comprises five main objects: a Catalog, which

serves as a grouping of databases; a Database or Schema, which groups ob-

jects in a Catalog and contains tables, views, and functions; a table, which is

a collection of rows and columns stored as data files in object storage; a view,

which is a saved query typically against one or more tables or data sources;

and a function, which is saved logic that returns a scalar value or set of rows.

31

2. Databricks System analysis

The table metadata is currently persisted in a central metastore accessible

by all clusters in every Databricks deployment.

2.5.1 Metastore

A metastore is the top-level container of objects in the Unity Catalog. The

Unity catalog is a data governance technology, a metastore and its user man-

agement. The metastore stores data assets (tables and views) and the per-

missions that govern access to them. Databricks account admins can create

metastores and assign them to Databricks workspaces to control which work-

loads use each metastore. The metastore contains all metadata that defines

data objects in the lakehouse. Databricks provides several metastore options.

The first option is a Databricks custom solution, a Unity Catalog meta-

store, where customers can create a metastore to store and share metadata

across multiple Databricks workspaces. Unity catalog is managed at the ac-

count level. The second option is the default one - Hive metastore. Databricks

stores all the metadata for the built-in Hive metastore as a managed service.

An instance of the metastore deploys to each cluster and securely accesses

metadata from a central repository for each customer workspace. The last

option is to run Databricks against a custom external metastore.

For a workspace to use Unity Catalog, it must have a Unity Catalog meta-

store attached.

Regardless of the metastore used, Databricks stores all data associated

with tables in object storage configured by the customer in their cloud account.

2.5.2 Catalog

A catalog is the highest abstraction in the Databricks Lakehouse relational

model. They may be seen as a database in other dialects such as PostgreSQL

[19]; however, DATABASE keyword is a synonym to a SCHEMA not to CATALOG

in the Databricks SQL. Every schema is associated with a catalog. Catalogs

32

2.6. Extraction

exist as objects within a metastore and are used to organize customers’ data

assets. Users can see all catalogs on which they have been assigned the USAGE

data permission. Before the introduction of Unity Catalog, Databricks used

a two-tier namespace. Catalogs are the third tier in the Unity Catalog names-

pacing model: catalog name.database name.table name. The built-in Hive

metastore only supports a single catalog, hive metastore

2.6 Extraction

Manta is currently extracting metadata from the Databricks system through

Hive metastore and a Unity catalog. Metadata about data objects, such as

tables, schemas and catalogs, needed for the SQL code analysis are stored in

the Manta project using a dictionary. There is an interface that can be used

for interacting with the dictionary.

The scripts, both notebooks and queries, are being extracted as well; there-

fore, the analysis did not discover any need for extending the extractor.

33

Chapter 3

Databricks SQL Dialect

This chapter aims to describe the essential concepts of Databricks SQL dialect.

We focus on concepts which can directly influence the flow of the data through

the system. This section covers data types, expressions, functions identifiers

and statements in the Databricks SQL dialect, as well as the needed prepro-

cessing of the script. The examples and syntax specifications in this chapter

were mostly taken from Databricks documentation [20].

3.1 Datatypes

This section discusses the various data types supported in Databricks SQL.

These data types are grouped into several classes, including integral numeric

types, exact numeric types, binary floating point types, date-time types, sim-

ple types and others. Integral numeric types represent whole numbers, in-

cluding TINYINT, SMALLINT, INT, and BIGINT. Exact numeric types represent

base-10 numbers and include only one type: DECIMAL. Binary floating point

types use exponents and a binary representation to cover a large range of num-

bers, and Databricks SQL supports two types: FLOAT and DOUBLE. Date-time

types represent date and time components and include two types: DATE and

TIMESTAMP. Simple types hold singleton values, and Databricks SQL supports

two types: BINARY and BOOLEAN.

35

3. Databricks SQL Dialect

In addition to STRING, which represents textual data, there are two other

string data types in Databricks SQL: CHAR and VARCHAR. These data types

store fixed-length and variable-length character strings, respectively.

Structs are data types used to group related data and are represented

using the STRUCT data type. Maps are data types used to represent key-value

pairs and are represented using the MAP data type. For instance, consider

the example in Code snippet 6 of creating a struct containing two fields:

first name and last name, using the STRUCT data type. The result of the

statement will be enclosed in curly braces {} and will contain two fields:

first name and last name. The values of these fields are 'John' and 'Doe',

respectively.

SELECT STRUCT (
'John' AS first_name,
'Doe' AS last_name
) AS person

Code snippet 6: Struct construction example

SELECT MAP(1, 'one', 2, 'two', 3, 'three') AS number_to_word

Code snippet 7: Map construction example

Similarly, a map can be created calling the MAP constructor, see Code

snippet 7. In this example, the resulting map is enclosed in curly braces {}

and maps the numbers 1, 2, and 3 to the words 'one', 'two', and 'three',

respectively.

Maps can also be nested inside other data types, such as structs, as shown

in the example in Code snippet 8. The struct in this statement contains three

fields in this example: first name, last name, and phone numbers. The

value of the phone numbers field is a map that maps the keys home and work

to the phone numbers '555-1234' and '555-5678', respectively.

36

3.2. Expressions

Lastly, Databricks SQL supports several other types, including INTERVAL,

which represents time intervals on a scale of seconds, years, and months. These

types are compatible with HiveQL, which Manta already supports.

SELECT STRUCT (
'John' AS first_name,
'Doe' AS last_name,
MAP('home', '555-1234', 'work', '555-5678') AS
phone_numbers↪→

) AS person

Code snippet 8: Nested map example

3.2 Expressions

Expressions are used to specify computations on data in SQL queries. The

syntax for expressions in Databricks SQL is defined in Code snippet 9. Here,

a literal refers to a fixed value, while colum reference and field reference

refer to columns and fields in the table or a struct or a map. When the expres-

sion is used in the function parameter reference, it refers to a parameter

passed to this particular function. The CAST expression converts one data

type to another. The CASE expression is used for conditional logic.

Operators such as +, -, *, /, and % can be used with expressions. It is also

possible to use logical operators such as AND, OR, and NOT.

The priority levels of operators are as follows [21]:

1. :, ::, []

2. - (unary), + (unary),

3. *, /, %, div

4. +, -, ||

5. &

37

3. Databricks SQL Dialect

6. ˆ

7. |

8. =, ==, <=>, <>, !=, <, <=, >, >=

9. not, exists

10. between, in, rlike, regexp, ilike, like, is [not] [NULL, true,

false], is [not] distinct from

11. and

12. or

Operators with a higher precedence level (lower number) are evaluated

before operators with a lower precedence level (higher number).

In Databricks SQL, associativity is generally left-to-right for arithmetic,

comparison, and logical operators. This means that when multiple operators

expression:
{ literal
| column_reference
| field_reference
| parameter_reference
| CAST expression
| CASE expression
| expr operator expr
| operator expr
| expr [expr]
| function_invocation
| (expr)
| (expr, expr [, ...])
| scalar_subquery
}

scalar_subquery: (query)

Code snippet 9: Expression syntax

38

3.3. Functions

with the same precedence level appear in an expression, they are evaluated

from left to right.

In addition to operators, functions can be invoked on data. Functions are

discussed in the following section.

Finally, a scalar subquery is a subquery that returns a single value. It can

be used in place of a literal or expression in an expression.

3.3 Functions

In this section, we discuss the built-in, lambda, and user-defined functions in

Databricks.

3.3.1 User-defined Functions

Databricks allows users to define their own functions, either as scalar or ag-

gregate functions. Scalar functions return a single value, while aggregate

functions return a result set. To create a user-defined function, the CREATE

FUNCTION statement is used.

The general syntax of the CREATE FUNCTION statement is described in

Code snippet 10. For example, the code in Code snippet 11 creates a simple

scalar function that returns the string “Hello World!”. The function can then

be used in a query; see Code snippet 12.

This returns the result set with one column hello() containing Hello

World! string.

More complex user-defined functions can be created using SQL or other

languages such as Java or Scala and imported as JAR. In this way, Hive UDFs

can also be used. The user-defined functions must be registered to the Spark

context in order to use them in SQL. This happens in the technology we use

to define the function (Java, Scala etc.), not in SQL. Function parameters are

referenced by unqualified names and are mapped by position.

39

3. Databricks SQL Dialect

CREATE [OR REPLACE] [TEMPORARY] FUNCTION [IF NOT EXISTS]
function_name ([function_parameter [, ...]])
RETURNS { data_type | TABLE (column_spec [, ...])
[characteristic [...]]
RETURN { expression | query }

function_parameter :
parameter_name data_type [DEFAULT default_expression]
[COMMENT parameter_comment]↪→

column_spec :
column_name data_type [COMMENT column_comment]

characteristic :
{ LANGUAGE SQL |

[NOT] DETERMINISTIC |
COMMENT function_comment |
[CONTAINS SQL | READS SQL DATA] |
SQL SECURITY DEFINER }

Code snippet 10: UDF syntax

CREATE TEMPORARY FUNCTION hello()
RETURNS STRING
RETURN 'Hello World!';

Code snippet 11: UDF example

SELECT hello();

Code snippet 12: UDF usage example

40

3.3. Functions

CREATE FUNCTION roll_dice(num_dice INT DEFAULT 1 COMMENT
'number of dice to roll (Default: 1)',↪→

num_sides INT DEFAULT 6 COMMENT
'number of sides per die (Default: 6)')↪→

RETURNS INT
NOT DETERMINISTIC
CONTAINS SQL
COMMENT 'Roll a˜number of n-sided dice'
RETURN aggregate(sequence(1, roll_dice.num_dice, 1),

0,
(acc, x) -> (rand() *

roll_dice.num_sides)::int,↪→

acc -> acc + roll_dice.num_dice);

Code snippet 13: A more complex UDF example

See the function in Code snippet 13; this is non-deterministic and returns

an integer. It can be called in the ways seen in Code snippet 14.

-- Roll a single 6-sided dice
SELECT roll_dice();

-- Roll three 6-sided dice
SELECT roll_dice(3);

-- Roll three 10-sided dice
SELECT roll_dice(3, 10);

Code snippet 14: A usage of more complicated UDF

There can be user-defined functions with SQL query as their body; see

Code snippet 15. However, it is impossible to run multiple statements with

one UDF call - there is always only one expression or one query in the body

of the UDF.

Examples were taken from the documentation [22].

41

3. Databricks SQL Dialect

CREATE FUNCTION weekdays(start DATE, end DATE)
RETURNS TABLE(day_of_week STRING, day DATE)
RETURN SELECT extract(DAYOFWEEK_ISO FROM day), day

FROM (SELECT sequence(weekdays.start,
weekdays.end)) AS T(days)↪→

LATERAL VIEW explode(days) AS day
WHERE extract(DAYOFWEEK_ISO FROM day) BETWEEN 1

AND 5;↪→

Code snippet 15: UDF returning a SELECT result set

3.3.2 Built-in Functions

Databricks provides many built-in functions that can be used in SQL expres-

sions. These functions can be called in the same way as user-defined functions.

a comprehensive list of Databricks built-in functions can be found in the doc-

umentation [23].

3.3.3 Lambda Functions

lambda_func:
{ param -> expr
| (param1 [, ...]) -> expr
}

Code snippet 16: Lambda function syntax

SELECT transform(array('hello world', 'goodbye world'),
s -> split(s, ' ')[0]) AS first_word

Code snippet 17: Lambda function example

Lambda functions are anonymous functions that can be used as built-in

function arguments. The syntax for lambdas is defined in Code snippet 16,

where expr refers to an expression. For example, the query in Code snippet 17

uses a lambda function to extract the first word from a string. This returns

42

3.4. Identifiers

the result set containing one column with the name first word and one row

with an array ["hello","goodbye"].

Lambda function expressions may contain function calls, including UDFs

and built-in functions. Lambda functions, in general, may introduce some

data flow. Analysis of this flow must be based on the function that is calling

the lambda function, as these dictate how the lambda is used.

3.4 Identifiers

Databricks employs a three-level naming notation [24]. The first level is a cat-

alog; the second is a schema, and the lowest is table, view or function. The USE

statement can define the catalog or schema. This statement defines the de-

fault catalog or schema for the whole script or notebook until USE statement

is used again.

There are standard identifiers, which can begin with an underscore, a digit,

or a letter. Valid identifiers include, for example df, 123, test, , 1 , and

1.

To enable the use of special characters or reserved keywords in identifiers,

delimited identifiers need to be used. These are enclosed in the backticks

`` and can contain any character from the character set, even a dot, which

normally separates name segments. You may refer to the delimited identifier

without backticks as long as it does not contain special characters. Valid de-

limited identifiers include `a.b` or `a``B` or `a*@#$%&̂*\|:<>?/b`. However,

delimited identifiers are not allowed in table names.

3.5 Statements

In Databricks SQL, statements are the primary means of interacting with

and managing data and database objects. They can be broadly categorized

into two types relevant to data lineage and the prototype implementation:

43

3. Databricks SQL Dialect

Data Definition Language (DDL) statements and Data Manipulation Lan-

guage (DML) statements. This section provides an in-depth discussion of both

DDL and DML statements, their specific use cases in Databricks SQL, and

how they impact the data flow analysis of scripts. Note that Auxiliary, Delta

Lake, and Security statements, which serve purposes such as optimization,

metadata exploration, and resource management, are not discussed in this

thesis, as they are not impactful to the data lineage analysis in the Databricks

environment.

3.5.1 DML statements

DML statements enable data manipulation, including insertion, updating,

deletion, and retrieval of data within these structures. The statements im-

portant for data lineage are especially INSERT statements, which may contain

SELECT statements; there are also LOAD DATA, MERGE IN or UPDATE statements.

3.5.1.1 SELECT statements

SELECT syntax is illustrated by Code snippet 18. The SELECT statements are

a crucial concept of SQL language. Here we analyse their clauses and their

impact on the data flow within the statement.

The SELECT clause or a SELECT list is the main component of a SELECT

statement, and it specifies the columns and literals to be retrieved in the result

of this particular SELECT query. These columns can also be called a result set.

In the example in Code snippet 19, the result set will contain three columns

a, b and c.

The FROM clause specifies the tables, views or subqueries from which the

data is retrieved. In the same example from Code snippet 19, direct data flow

occurs between the source table t1 and the selected columns (a, b, c). The

flow of the statement is illustrated by Figure 3.1.

44

3.5. Statements

select_statement:
{
[with_clause]

{ query } [set_operator select]*
[ORDER BY clause

| { [DISTRIBUTE BY clause] [SORT BY clause] }
| CLUSTER BY clause]

[WINDOW clause]
[LIMIT clause]
[OFFSET clause]

}

query :
{ select |

VALUES clause |
(query) |
TABLE [table_name | view_name]}

select :
SELECT [hints] [ALL | DISTINCT] { named_expression |

star_clause } [, ...]↪→

FROM table_reference [, ...]
[LATERAL VIEW clause]
[WHERE clause]
[GROUP BY clause]
[HAVING clause]
[QUALIFY clause]

named_expression
expression [column_alias]

star_clause
[{ table_name | view_name } .] * [except_clause]

except_clause
EXCEPT ({ column_name | field_name } [, ...])

Code snippet 18: Syntax of a select statement

45

3. Databricks SQL Dialect

a [C
olum

n] (t1)

1 a [R
esultS

etC
olum

n] (<
8,1>

R
esultS

et)

D

b [C
olum

n] (t1)

2 b [R
esultS

etC
olum

n] (<
8,1>

R
esultS

et)

D

c [C
olum

n] (t1)

3 c [R
esultS

etC
olum

n] (<
8,1>

R
esultS

et)

D

1 a [R
esultS

etC
olum

n] (<
8,1>

M
asterR

esultS
et)

2 b [R
esultS

etC
olum

n] (<
8,1>

M
asterR

esultS
et)

3 c [R
esultS

etC
olum

n] (<
8,1>

M
asterR

esultS
et)

D
D

D

Figure
3.1:

D
ata

flow
ofthe

statem
ent

from
C

ode
snippet

19

46

3.5. Statements

SELECT a, b, c
FROM t1;

Code snippet 19: An example of simple SELECT statement

The WHERE clause filters the rows returned in the result set based on one

or more conditions. In the example in Code snippet 20, filter data flow occurs

as the c column filters the rows but is not part of the selected columns. The

data flow is illustrated by Figure B.1, a less detailed version by Figure 3.2.

SELECT a, b
FROM t3
WHERE c = 'Hello';

Code snippet 20: An example of SELECT statement with WHERE clause

a [Column] (t3)

1 a [ResultSetColumn] (<11,1>MasterResultSet)

D

b [Column] (t3)

2 b [ResultSetColumn] (<11,1>MasterResultSet)

D

c [Column] (t3)

F F

Figure 3.2: Data flow of the statement from Code snippet 20

The GROUP BY clause groups the rows based on one or more columns,

and the HAVING clause filters the grouped data based on a condition. In the

example in Code snippet 21, filter data flow occurs in the GROUP BY clause,

as illustrated in Figure 3.3, in more detail in Figure B.2.

SELECT d, COUNT(*) as c
FROM t4
GROUP BY d;

Code snippet 21: An example of SELECT statement with GROUP BY clause

During analysis, it was discovered that the syntax FROM table SELECT

columns is also supported, despite the fact it is not documented in the official

47

3. Databricks SQL Dialect

d [Column] (t4)

1 d [ResultSetColumn] (<15,1>MasterResultSet)

D F

2 c [ResultSetColumn] (<15,1>MasterResultSet)

F

Figure 3.3: Data flow of the statement from Code snippet 21

documentation. The example can be seen in Code snippet 22. There is an

option to chain SELECT clauses; result sets are then unionised. The data flow

of the statement from this example can be seen in Figure 3.4 in more detail

then in Figure B.3.

This syntax was probably adopted from Hive QL; we can see this syntax

in [25]. However, even in the Hive QL, this feature is undocumented. Mention

of this syntax can also be found in [26]: In Spark version 2.4 and below, SQL

queries such as FROM <table> or FROM <table> UNION ALL FROM <table>

are supported by accident. In hive-style FROM <table> SELECT <expr>, the

SELECT clause is not negligible. Neither Hive nor Presto support this syntax.

These queries are treated as invalid in Spark 3.0.

FROM t1
SELECT a,b
SELECT c,d

Code snippet 22: Undocumented but valid SELECT syntax

a [Column] (t5)

1 a [ResultSetColumn] (<19,1>MasterResultSet)

D

b [Column] (t5)

2 b [ResultSetColumn] (<19,1>MasterResultSet)

D

c [Column] (t5)

D

d [Column] (t5)

D

Figure 3.4: Data flow of the statement from Code snippet 22

48

3.5. Statements

3.5.1.2 INSERT statement

The INSERT statement in Databricks SQL adds new rows to a table. There

are two syntax forms: the standard INSERT INTO statement and the INSERT

INTO...REPLACE WHERE statement, both described in Code snippet 23 [20].

INSERT { OVERWRITE | INTO } [TABLE] table_name
[PARTITION clause]
[(column_name [, ...])]
query

INSERT INTO [TABLE] table_name
REPLACE WHERE predicate
query

Code snippet 23: Syntax of an INSERT statement

The INSERT INTO statement establishes a direct data flow between the

source (query) and the target table (table name). The PARTITION clause

can be used to specify the partition key(s) for the table, and the optional

column list allows inserting data into specific columns, leaving others with

their default values or NULL.

INSERT INTO t2 (a, b)
VALUES ('John Doe', 123456);

Code snippet 24: An example of INSERT INTO statement with specified
columns

a [Column] (t2) b [Column] (t2)

1 a [ColumnFlow] (<23,1>INSERT)

D

2 b [ColumnFlow] (<23,1>INSERT)

D

Figure 3.5: Dataflow of the statement from Code snippet 24

49

3. Databricks SQL Dialect

In Code snippet 24, direct data flow occurs between the source (VALUES

clause) and the target table t2, inserting data into the specified columns a and

b. The flow is illustrated in Figure 3.5 and Figure B.4

INSERT INTO t1 PARTITION (c = 42)
SELECT a, b FROM t2 WHERE c = 'World';

Code snippet 25: INSERT INTO statement example with PARTITION clause

a [Column] (t1) b [Column] (t1)

c [Column] (t1)

a [Column] (t2)

1 a [ColumnFlow] (<5,1>INSERT)

D

b [Column] (t2)

2 b [ColumnFlow] (<5,1>INSERT)

D

c [Column] (t2)

F F

D D

3 c [ColumnFlow] (<5,1>INSERT)

D

Figure 3.6: Data flow of the statement from Code snippet 25

In Code snippet 25, direct data flow occurs between the source (the result

set of SELECT statement) and the target table t1. The PARTITION clause

specifies the partition key, creating a separate partition for the c value 42.

The data flow from this statement is illustrated by Figure 3.6 and Figure B.5

The INSERT INTO...REPLACE WHERE statement allows inserting new rows

while replacing existing rows that match the specified predicate. It establishes

a direct data flow between the source and the target table and a filter data

flow results from the REPLACE WHERE predicate. The same is happening in

UPDATE statement.

INSERT INTO students
REPLACE WHERE student_id = 123456
VALUES ('John Doe', '456 Main St', 123456);

Code snippet 26: An example of INSERT INTO...REPLACE WHERE statement

50

3.5. Statements

In Code snippet 26, direct data flow occurs between the source (VALUES

clause) and the target table students, while filter data flow results from the

REPLACE WHERE predicate, ensuring that the new row replaces any existing

row with the same student id value.

Despite not being documented in Databricks official documentation [20],

the statement syntax in Code snippet 27 is also supported. This statement

inserts the content of columns a and b from t1 into table t2 and the content

of columns a and b from the same tablet1 into table t3, as seen in Figure 3.7.

Unlike the similar SELECT syntax, this INSERT syntax is officially documented

as a feature of Hive QL [27].

FROM t1
INSERT INTO t2 SELECT a,b
INSERT INTO t3 SELECT c,d;

Code snippet 27: Undocumented INSERT SELECT syntax

3.5.1.3 Other DML statements

LOAD DATA statement causes direct flow from a specified file to a given table,

as can be seen in Code snippet 28. The data flow for this example can be seen

in Figure 3.8.

LOAD DATA LOCAL INPATH '/user/path/to/file' OVERWRITE INTO
TABLE test;↪→

Code snippet 28: An example of LOAD DATA statement

The MERGE INTO statements merge a collection of updates, insertions, and

deletions from a source table and integrate them into a target Delta table,

which will cause a direct data flow from the source table to the target table.

This statement is exclusively supported for Delta Lake tables. An example of

51

3. Databricks SQL Dialect

a [C
olum

n] (t1)

1 a [R
esultS

etC
olum

n] (<
7,16>

R
esultS

et)

D

b [C
olum

n] (t1)

2 b [R
esultS

etC
olum

n] (<
7,16>

R
esultS

et)

D

c [C
olum

n] (t1)

1 c [R
esultS

etC
olum

n] (<
8,16>

R
esultS

et)

D

d [C
olum

n] (t1)

2 d [R
esultS

etC
olum

n] (<
8,16>

R
esultS

et)

D

t2a [C
olum

n] (t2)
t2b [C

olum
n] (t2)

t3a [C
olum

n] (t3)
t3b [C

olum
n] (t3)

1 t2a [C
olum

nF
low

] (<
7,1>

IN
S

E
R

T
)

D

2 t2b [C
olum

nF
low

] (<
7,1>

IN
S

E
R

T
)

D

D
D

1 t3a [C
olum

nF
low

] (<
8,1>

IN
S

E
R

T
)

D

2 t3b [C
olum

nF
low

] (<
8,1>

IN
S

E
R

T
)

D

D
D

Figure
3.7:

D
ata

flow
ofthe

statem
ent

from
C

ode
snippet

27

52

3.5. Statements

a [Column] (t1) b [Column] (t1)

1 a [ColumnFlow] (<3,1>LOAD DATA)

D

2 b [ColumnFlow] (<3,1>LOAD DATA)

D

1 [Column] (file)

D

2 [Column] (file)

D

Figure 3.8: Data flow of the statement from Code snippet 28

MERGE INTO target USING source
ON target.key = source.key
WHEN MATCHED THEN DELETE

Code snippet 29: An example of MERGE INTO statement

this statement can be seen in Code snippet 29. Statement from this example

will delete all target rows that have a match in the source table.

Lastly, the UPDATE statement modifies the column values of rows that sat-

isfy a given predicate. If no predicate is supplied, it updates the column

values for all rows. This statement creates the same flow as the INSERT

INTO...REPLACE WHERE statement mentioned earlier. This statement is solely

supported for Delta Lake tables.

3.5.2 DDL statements

DDL statements allow users to define, modify, and delete database structures

such as tables, views, and indexes. Data definition language statements, such

as CREATE statements and ALTER statements for tables, views, schemas, and

catalogs define data sources. These data sources can then be stored and in-

volved in lineage generated from other statements. CREATE TABLE statements

may introduce a data flow, as they may copy data from other tables. A simple

example can be seen in Code snippet 30; the data flow for this code is then

illustrated by Figure 3.9.

53

3. Databricks SQL Dialect

CREATE TABLE t1 (a int, b int);

CREATE TABLE t2 AS SELECT * FROM t1;

Code snippet 30: An example of CREATE TABLE statement

a [Column] (t1)

1 a [ColumnFlow] (<3,1>CREATE TABLE)

D

b [Column] (t1)

2 b [ColumnFlow] (<3,1>CREATE TABLE)

D

a [Column] (t2) b [Column] (t2)

D D

Figure 3.9: Data flow of the statement from Code snippet 30

Also, CREATE FUNCTION is a statement that may impact the data lineage as

the function may contain select and therefore introduce new data flow. DROP

statements are unimportant for us, as we do not rely on the correct ordering of

statements; therefore, we want to persist metadata even from dropped tables.

Other statements are not as important, but they may be parsed in future

versions of the prototype to ensure a better user experience without parsing

errors on unimportant statements.

3.6 Parameterising options

Databricks offer two types of parameterising scripts based on the environment

this script comes from. For Databricks notebook cells, it is Spark variables;

for queries, it is parameters. This parametrisation introduces a need for pre-

processing scripts before the analysis.

3.6.1 Spark Variables

In Databricks, it is possible to combine SQL and Python code by using Spark

context variables. These variables can be accessed using the ${variable name}

54

3.6. Parameterising options

syntax in SQL queries. Spark variables can hold values such as numbers, text,

or even code. Let’s take the Python notebook cell in Code snippet 31 as

an example. This cell sets several Spark variables. We can then use these

variables in SQL cells in the same notebook.

%python
spark.conf.set("app.code1", "SELECT 1")
spark.conf.set("app.code2", "FROM t1")
spark.conf.set("app.text1", "'Hello'")
spark.conf.set("app.text2", "world")
spark.conf.set("app.number", 2)

Code snippet 31: An example of Python notebook cell

For instance, the cell in Code snippet 32 returns one row containing the

number 1. Similarly, the query in the Code snippet 33 returns one row con-

taining the strings "Hello", "world", and the number 2.

From testing, it was discovered that these variables are replaced even re-

cursively.

${app.code1} ${app.code2} LIMIT 1;

Code snippet 32: An example of SQL notebook cell

SELECT ${app.text1}, '${app.text2}', ${app.number} FROM t1
LIMIT 1;↪→

Code snippet 33: An example of SQL notebook cell

3.6.2 Query Parameters

Query parameters offer a way to pass arguments to Databricks SQL queries.

These parameters can be accessed using the syntax {{ param }} in the SQL

code. Parameters can be configured via a widget in the Databricks SQL query

55

3. Databricks SQL Dialect

console. They can contain text, numbers, or drop-down values. Moreover, it

is possible to have code as the content of a parameter. Drop-down options can

also be generated using a different query. There is also an option for multiple

values, which are replaced with a separator.

For example, the SQL code in Code snippet 34 uses a parameter t1. The

parameter t1 can be set to a value such as FROM t1 or FROM t1 WHERE t1.a

> 2, and both will work.

SELECT * {{ t1 }};

Code snippet 34: An example of parametrised SQL query

56

Chapter 4

Design

In this chapter, we discuss the design of our prototype for data flow analysis

of Databricks SQL. The prototype uses various technologies, including Java,

ANTLR, Maven, JUnit, and Spring. We also explore the different modules

that make up the prototype.

4.1 Used technologies

This section discusses the technologies used to extend the Manta tool for

scanning Databricks SQL. The primary reason for using these technologies is

to maintain compatibility with the existing Manta codebase.

4.1.1 Java

Java is the programming language chosen for this project due to its compat-

ibility with the existing Manta codebase. Some of the general advantages of

Java include platform independence, object-oriented nature, robustness, and

extensive libraries, which contribute to the development of a reliable and effi-

cient tool [28].

57

4. Design

4.1.2 ANTLR

ANTLR provides an effective method for analysing input code and generating

ASTs, which is crucial for the Manta tool’s functionality. The theory behind

ANTLR and its parsing algorithms is discussed in section 1.5. ANTLR version

3 is employed in this project to generate custom Abstract Syntax Trees (ASTs)

with rewrite rules, a feature not available in version 4.; therefore, ANTLR 3 is

chosen as custom AST is used to analyse the input code, use of the ANTLR 4

would require more code to define the AST. Scanners of other SQL-based

technologies in Manta also use ANTLR 3, so ANTLR 3 choice also supports

compatibility with the rest of the product [29].

4.1.3 Maven

Maven is the build automation and project management tool used through-

out the Manta product. Its benefits include dependency management, build

lifecycle, and standard project structure. While Maven streamlines the devel-

opment process, it can also introduce challenges such as managing complex

dependency trees and addressing build failures. However, these potential dis-

advantages are mitigated through careful configuration and adherence to best

practices [30].

4.1.4 Spring

The Spring Framework is used in the Manta product to manage dependencies,

provide modularity, and offer an extensive ecosystem for addressing various

project needs. While Spring simplifies the development process, it can some-

times introduce complexities such as steep learning curve and configuration

challenges. By leveraging the advantages of Spring and addressing potential

challenges, the project benefits from a robust and flexible architecture [31].

58

4.2. Modules

4.1.5 JUnit

JUnit is the testing framework employed in the Manta product. It facilitates

unit testing and integrates well with Maven and Java, ensuring the developed

code is reliable and functions as expected. In addition to serving as unit tests,

our tests function as regression tests, executing each time the application is

extended. This process ensures that the existing functionality remains intact

and is not adversely affected by new changes. Some potential disadvantages

of JUnit include the need for manual test case creation and the possibility

of false positives or negatives if tests are not designed thoroughly. However,

these challenges can be addressed by following best practices and ensuring

comprehensive test coverage [32].

4.2 Modules

This section introduces the scanner unit prototype, designed for data flow

analysis of Databricks SQL. The module is divided into four modules. Dividing

the scanner unit prototype like this, mirroring the structure used in other

scanner units for similar SQL technologies, offers several advantages. This

modular approach promotes the separation of concerns, where each module

focuses on a specific aspect of the data flow analysis process. Additionally, this

design choice allows for easier integration with other projects or technologies,

as the standardised structure facilitates understanding and collaboration.

The manta-connector-databrickssql-model module provides interfaces

for AST nodes. These interfaces are crucial in ensuring compatibility between

different modules within the prototype.

The manta-connector-databrickssql-resolver module is the core com-

ponent for performing the parsing process, constructing the AST, and resolv-

ing semantics for Databricks SQL scripts. It also contains the parser generated

by ANTLR and its source grammars, located in antlr/parser folder. Theo-

59

4. Design

retical background for AST construction and general language analysis process

were described in chapter 1.

The manta-connector-databrickssql-testutils module contains com-

mon test classes that are essential for validating the functionality of other

modules. These test classes’ testing methodology and purpose will be covered

in chapter 6.

Lastly, the manta-dataflow-generator-databrickssql module is respon-

sible for constructing the data flow graph from the resolved AST. To define

the data flow graph, refer to section 1.7.

4.2.1 Dependencies

Modules are dependent on each other. The UML diagram in the Figure 4.1

illustrates the relationship between the modules and their dependencies. All

modules are dependent on other Manta libraries and modules, which are com-

monly used by multiple scanners for different technologies. Resolver and

model packages also rely on the dictionary component, which is located in

the Databricks scanner module.

The manta-connector-databrickssql-resolver package depends on

manta-connector-databrickssql-model.

The manta-dataflow-generator-databrickssql module depends on

manta-dataflow-generator-databrickssql-model.

The package manta-dataflow-generator-databrickssql depend on the

manta-dataflow-generator-databrickssql-testutils module; however,

this package is omitted from the diagram.

4.2.2 Connector

The connector artefact is responsible for handling parsing, AST construction,

and resolution for Databricks SQL scripts. This section delves into the design

of the connector package, exploring its various parts and their roles.

60

4.2. Modules

manta-connector-databrickssql-aggregation

resolver model

manta-dataflow-generator-databrickssql-aggregation

manta-dataflow-generator-databrickssql

Figure 4.1: UML diagram showing dependencies between modules

The parser is generated using the ANTLR library, with its theory dis-

cussed in the section 1.5. The parser consists of classes DatabricksSQLMain,

DatabricksSQLMain NonReservedKW, DatabricksSQLMain Expressions, and

DatabricksSQLLexer. These classes are generated from lexer and parser

grammars and they extend external Manta classes MantaAbstractParser and

MantaAbstractLexer, providing additional functionality. The lexer is gener-

ated from a grammar file called DatabricksSQLLexer.g, while the parser is

generated from a grammar file named DatabricksSQLMain.g, with its parts

located in separate files DatabricksSQLExpressions.g with expression gram-

mar and DatabricksSQLNonReserveredKW.g with the specification of non-

reserved keywords. These grammar files reside within the antlr3/parser

package.

The connector package also includes classes with the Ast- prefix, repre-

senting AST nodes and containing logic executed during resolution. These

classes extend the common abstract class DatabricksSQLAstNode and im-

plement model interfaces from the manta-connector-databrickssql-model

module to ensure compatibility between modules. The AST nodes are con-

structed during parsing by the parser.

61

4. Design

Parsing is provided externally by the ParserService interface and its

implementation, ParserServiceImpl. These components offer methods to

parse scripts either by supplying a file name or directly through a string.

ParserServiceImpl is also responsible for preprocessing the input scripts.

We can see the relationship between essential classes inside the resolver on

the Figure 4.2.

Preprocessing prepares the input scripts for subsequent analysis by param-

eters and variables substitution. This subsection describes the preprocessing

process.

In the ParserServiceImpl class, preprocessing is performed based on the

configuration passed as a parameter.

This configuration is stored in the ParserService

Params class, which maintains information about the preprocessing settings.

The configuration includes a map and two booleans, isParametrized and

containsVariables, which indicate whether a parameter (from a query) or

a Spark variable are present. The map contains pairs of key-value strings

representing the names of parameters or variables and their corresponding

values.

The preprocessing process also handles the possibility of recursive variable

substitution, where variables can be substituted within other variables. Con-

sidering this case, the preprocessing implementation ensures that all variables

and parameters are correctly resolved before the input script is passed on for

further analysis in the scanner unit.

4.2.3 Data flow Graph Generator

The data flow graph generator is responsible for creating a data flow graph

from the resolved AST. This section explores the design and components of the

data flow graph generator, with essential relationships illustrated in Figure 4.3.

62

4.2. Modules

Figure 4.2: Schematic representation of key classes and their interactions
within the connector module

63

4. Design

Figure 4.3: Schematic representation of key classes and their interactions
within the data flow generator module

The data flow generator relies on the Visitor design pattern [33] and the

manta-connector-databrickssql-model module. The module contains an

interface for the Visitor design pattern and class, which provides a default

implementation of the visitor interface. The FlowVisitor class then imple-

ments the visitor logic required for creating a data flow graph. Each AST

node must implement the accept method from the IDatabricksSQLAstNode

interface, ensuring compatibility with the visitor pattern.

The FlowVisitor class is responsible for constructing the data flow graph,

utilising a helper class called DatabricksSQLGraphHelper. This helper class

extends an external class, AbstractGraphHelper, which contains implemented

methods for graph building. The DatabricksSQLGraphHelper leverages classes

from the mantadataflow-model module to create the data flow graph, stream-

lining the process and ensuring consistency across the scanner unit prototype.

64

4.3. Workflow

Data dictionary SQL scripts preprocessing
configuration

manta-connector-databrickssql-resolver

resolved AST

manta-dataflow-generator-databrickssql

Dataflow graph

Figure 4.4: Schematic representation of workflow

4.3 Workflow

This section outlines the steps in processing the input, resolving the AST, and

generating the data flow graph, as illustrated in Figure 4.4.

The scanner unit takes three main inputs: Data dictionary, preprocessing

configuration, and SQL scripts. SQL scripts can include queries or notebook

cells.

The first step in the execution is processing the input scripts with the

manta-connector-databrickssql-resolver module. This module is respon-

sible for preprocessing the input and creating a resolved AST from the pro-

vided inputs. By leveraging the parser components within the module, it

converts the input scripts into a structured AST, which is then resolved. The

AST then serves as an intermediate representation of the input SQL code for

further analysis.

65

4. Design

Once the resolved AST is obtained, it is passed to the manta-dataflow-

generator-databrickssql module. This module creates the data flow graph

from the resolved AST. By utilising the Visitor design pattern, helper classes,

and the mantadataflow-model module, the data flow graph generator con-

structs a comprehensive data flow graph that represents the analysed Databricks

SQL scripts. Then it also filters this data flow graph using FilterTask mod-

ule, an external Manta component. Filtering creates a less detailed data flow

graph, which is more readable and generally user-friendly.

66

Chapter 5

Implementation

This chapter covers the implementation details of our prototype for data flow

analysis of Databricks SQL. We describe the crucial classes and constructs

used in the implementation and provide a big picture of the solution for the

reader to grasp the concept better. The implementation of our prototype is

based on the design principles discussed in the previous chapter. The first

section of this chapter covers the implementation of the parser module. We

discuss the grammar used for generating the parser using ANTLR and the

classes and constructs used in the implementation.

5.1 ANTLR Parser

As discussed earlier, the parser is automatically generated from ANTLR gram-

mars. The main two are lexer grammar and parser grammar, located in

DatabricksSQLLexer.g and DatabricksSQLMain.g, respectively. The corre-

sponding Java classes are generated from these files during the build process.

5.1.1 Lexer grammar

The lexer is generated from a grammar defined in the DatabricksSQLLexer.g

file. This grammar specifies all the tokens used in parser grammar as well as

AST tree node tokens. Code snippet 35 shows a short example of lexer rules.

67

5. Implementation

The reserved and non-reserved keywords are distinguished by their prefixes.

Non-reserved keywords are prefixed with KW (e.g., KW SCHEMA and KW SELECT).

UNION : 'UNION';
WHEN : 'WHEN';
WHERE : 'WHERE';

KW_SCHEMA : 'SCHEMA';
KW_SELECT : 'SELECT';

LEFT_PAREN : '(' ;
RIGHT_PAREN : ')' ;

Code snippet 35: An example of lexer rules

Fragments are used in the lexer grammar to create reusable rules that can

be combined with other rules; however, these can’t be used outside the lexer

grammar. For illustration, see Code snippet 36.

fragment
Letter : 'a'..'z' | 'A'..'Z' ;

fragment
HexDigit : 'a'..'f' | 'A'..'F' ;

fragment
Digit : '0'..'9' ;

Code snippet 36: An example of fragment lexer rules

The hidden channel removes specific tokens from the output token stream.

As an example, in Code snippet 37, whitespace characters (WS) and single-

line comments SINGLE LINE COMMENT) are assigned to the hidden channel.

However, this hidden channel preserves tokens for later usage if needed.

There are two types of identifiers in the lexer. Regular one and the de-

limited one, see ID token and DELIMITED ID token in Code snippet 38. This

68

5.1. ANTLR Parser

WS : (' '|'\r'|'\t') {$channel=HIDDEN;} ;

SINGLE_LINE_COMMENT : '--' (˜('\n'|'\r'))* {$channel=HIDDEN;} ;

Code snippet 37: A lexer rules with a specification of a hidden channel

delimited identifier is used to represent identifiers, which are enclosed in back-

ticks (‘), such as ‘a.b‘. Delimitation keeps the dot . as part of the name

instead of using it to specify the outer context (e.g. the table of the column

or a schema of the table).

ID : (Letter | Digit | '_')+ ;

DELIMITED_ID : BACKTICK (˜(BACKTICK) | (BACKTICK BACKTICK))*
BACKTICK ;↪→

Code snippet 38: A ID rules

5.1.2 Parser grammar

The parser grammar is implemented in grammar files DatabricksSQLMain.g,

DatabricksSQLExpressions.g and DatabricksSQLNonReservedKW.g. From

these grammar files corresponding classes are generated by the ANTLR li-

brary. The parser processes the token stream generated by the lexer. The

DatabricksSQLMain.g file contains the main parsing rules for Databricks SQL

scripts. The Code snippet 39 illustrates some key components of the grammar.

69

5. Implementation

databrickssql_script :
bl = statement_list eof = EOF
-> ˆ(AST_SCRIPT $bl?)
;

statement_list : single_statement (SEMICOLON single_statement)*
;↪→

single_statement
: standalone_query_statement
| s = create_table_statement ->
ˆ(AST_CREATE_TABLE_STATEMENT<AstCreateTable>[contextState,
SYMBOLTABLESCOPE_stack.peek().getScope()] $s)

↪→

↪→

| s = create_view_statement ->
ˆ(AST_CREATE_VIEW_STATEMENT<AstCreateView>[contextState,
SYMBOLTABLESCOPE_stack.peek().getScope()] $s)

↪→

↪→

| s = create_schema_statement ->
ˆ(AST_CREATE_SCHEMA_STATEMENT<AstCreateSchema>[contextState,
SYMBOLTABLESCOPE_stack.peek().getScope()] $s)

↪→

↪→

...
;

Code snippet 39: Simplified example of DatabricksSQLMain.g file

The databrickssql script rule in Code snippet 39 represents the entry

point for the parsing process and defines the overall structure of a Databricks

SQL script. The statement list rule represents a list of statements in the

script and is simplified in this code snippet, while the single statement rule

specifies the different types of statements that can appear in the script, such

as standalone query statement or create schema statement. We can see

the definition of some AST nodes in the rules.

The expression logic for Databricks SQL scripts, including SELECT and

INSERT statements, is implemented in the DatabricksSQLExpressions.g file.

This file handles the logic for expressions and also ensures proper precedence

while parsing and resolving expressions.

70

5.1. ANTLR Parser

The DatabricksSQLNonReservedKW.g file defines the identifier rule, dis-

tinguishing between reserved and non-reserved keywords. The Code snip-

pet 40 illustrates the implementation of identifier and non-reserved keywords

recognition.

identifier
: ID
| DELIMITED_ID
| non_reserved_words
;

non_reserved_words // CHECK NON-RESERVED
: KW_ABORT
| KW_ACCOUNT
| KW_ALL
| KW_ALTER
| KW_ALWAYS

...
;

Code snippet 40: Identifier rule in the DatabricksSQLNonReservedKW file

Parser is called via ParserService interface, which is implemented by

ParserServiceImpl class. This class needs to get a data dictionary and

additional parameters, including the current schema, the current catalog and

a substitution map - a map of variables or parameters to be substituted during

preprocessing. It accepts input via either a file or a string. The functioning

of this class is illustrated by a sequential diagram in Figure 5.1.

First, the preprocessing is performed. Preprocessing means the process of

substituting parameters and variables with their values passed with the map

within the ParserServiceParams class. Parameter and variable substitutions

are accomplished using regular expressions that match parameter or variable

references in the input script. The matched references are then replaced with

their corresponding values, either determined by Python analysis (in the case

of variables) or extracted directly (in the case of parameters). Preprocessing

71

5. Implementation

also substitutes parameters and values with unknown values for delimited

identifiers with unknown prefix, so if these only contain some data object,

these objects could be deduced.

After the script is preprocessed, the Lexer tokenise the input script and cre-

ates a token stream, which is then passed to the parser in DatabricksSQLMain

class. The parser creates and returns the AST. The AST is then resolved and

returned.

:ParserServiceImpl

parseScript(script, additionalParameters)

preprocessScript()

:DatabricksSQLLexer

createTokenStream(script)

resolved AST

tokenStream

:DatabricksSQLMain :DatabricksSQLAstNode

resolve()

parse(tokenStream)

AST

resolve()

Figure 5.1: Sequential diagram of the ParserServiceImpl class

5.2 Resolving

The resolver component comprises the lexer, parser, and Abstract Syntax Tree

(AST) nodes. The resolution process aims to identify the objects referenced

in the script, so we can later analyse the data flow in the script.

5.2.1 AST nodes

The resolution process of an AST node is by default only delegating on its

descendants in the tree, see Code snippet 41. AST node classes are responsible

72

5.2. Resolving

for implementing the specific logic associated with different statement types

in the resolver. Each node type implements unique resolving logic, ensuring

the resolver can accurately process and analyse various statements within the

Databricks SQL script.

public IResEntity resolve() {
// Don't do anything by default; delegate this to

children.↪→

for (DatabricksSQLAstNode item : getChildren()) {
item.resolve();

}

return null;
}

Code snippet 41: Default implementation of resolving

For DDL statements, the resolver identifies the name and the correct scope

for the object, then creates the object in the dictionary if it is not already

present. This process allows the resolver to handle and manage the objects

within the script properly.

As an example, we explain the resolution of the SELECT statement. SELECT

statements are more complex to resolve, as the resolver must identify all ref-

erenced columns and their associated tables. The resolver processes the WITH

clauses and adds a table to the context - map of objects available in the scope.

Then resolves all the SELECT statements connected by set operators - identi-

fies tables and result set columns within those SELECTs, including references

in WHERE, GROUP BY or HAVING clauses - and resolves the additional clauses

for the whole statement, such as ORDER BY, LIMIT, PARTITION SORT BY or

DISTRIBUTE BY clauses. This comprehensive process ensures that all relevant

references within the SELECT statement are accurately resolved, so we know

which object they are referencing.

73

5. Implementation

5.2.2 Deduction

The resolver might encounter unknown objects or type mismatches during the

resolution process. The resolver attempts to deduce the referenced object to

give the user a better result, making assumptions based on its context. For

example, if the unknown object is in the result set, it is likely a column, while

if it is in the FROM clause, it is likely a table. This technique allows the

resolver to manage potential errors and uncertainties during the resolution

process.

5.3 Data flow generator

The Data flow generator aims to build a data flow graph. The input for

the Data flow generator is the resolved AST, while the output is a data flow

graph representing the data flow between tables, columns, and other database

objects in the script.

The critical components of the Data flow generator are the FlowVisitor

and DatabricksSQLGraphHelper classes. The FlowVisitor class implements

the Visitor design pattern, as described in subsection 4.2.3, and includes

a process method to analyse nodes in the resolved AST. This method re-

turns a node object used in the output data flow graph.

The DatabricksSQLGraphHelper class is used by the FlowVisitor class

to create nodes and edges for the data flow graph. This class extends the

AstGraphHelper class, which is part of Manta’s external libraries.

An example of the process method in the FlowVisitor class for process-

ing a WITH clause is shown in Code snippet 42. In this example, the process

method finds the target node of the WITH clause, creates target column nodes

using the DatabricksSQLGraphHelper class, and connects them to the corre-

sponding source column nodes.

74

5.3. Data flow generator

public List<Node> process(IAstWithClause node) {
LOGGER.trace("visited IAstWithClause: {}", logNode(node));

// target
IResEntity resWithAlias = node.getReferencedObject();
List<Node> targetColumnNodes =

graphHelper.buildColumnNodes(resWithAlias);↪→

// process the source
IAstMasterQuery astWithSelect = node.findWithQuery();
List<Node> sourceColumnNodes =

processAstNode(astWithSelect);↪→

// connect
graphHelper.addDirectFlow(sourceColumnNodes,

targetColumnNodes);↪→

return targetColumnNodes;
}

Code snippet 42: FlowVisitor.process method example

75

Chapter 6

Testing

In this chapter, we describe the tests developed for the individual modules of

the Databricks SQL data flow analysis system. These tests ensure that each

module functions correctly. We then delve into the details of the tests for each

module, highlighting the specific functionality being tested and the expected

results.

This chapter focuses on the testing process for the two main modules of the

prototype: the manta-connector-databrickssql and the manta-dataflow-

generator-databrickssql. Thorough testing of these modules is crucial for

ensuring the correctness and reliability of the system.

Tests have been designed to cover various aspects of both modules. They

serve not only as a means to verify the correctness of the implementation

but also as regression tests to prevent the introduction of new errors in future

development. This chapter is divided into two main sections: Connector Tests

and Data flow Generator Tests. In these sections, we discuss the different tests

for each module, their purposes, and examples of test scenarios.

6.1 Connector Tests

In this section, we describe the various tests designed to evaluate the correct-

ness and robustness of the manta-connector-databrickssql module. All

77

6. Testing

tests in the module extend the AstBasicTest class which is responsible for

initiating the test scenarios. This structure allows for consistency and ease of

extension across various tests.

AstResolverTest

The AstResolverTest is designed for debugging purposes. It assists in iden-

tifying issues during the AST resolution process and helps to verify the cor-

rectness of the implemented algorithms.

AstResolverBasicTest

The AstResolverBasicTest tests the error recovery mechanism implemented

in the manta-connector-databrickssql module. It verifies that the system

can detect and recover from errors in the input SQL scripts, so the unsup-

ported statement or even part of it affects only that statement, not the entire

script. It is also possible to test logs and test against invalid scripts.

AstInvariantsTest

The AstInvariantsTest is designed to check whether the AST contains all

tokens from the input script. This test ensures that the input script can be

reconstructed from the AST by matching the input script against the recon-

structed one.

AnnotatedFilesResolverTest

The AnnotatedFilesResolverTest verifies that the AST does not contain

error nodes and deducted entities unless explicitly allowed. This test class is

designed for SQL scripts based on special annotations. These annotations in

the test files describe an expected result after resolving a code, which allows

for a more accurate assessment of the correctness of the manta-connector-

databrickssql module.

78

6.2. Data flow Generator Tests

We can see the example of a simple test input in Code snippet 43. The

annotations closed in /**/ comments specify checks to be done. For example,

annotation /*=t1a*/ checks that all the identifiers with this annotation refer

to the same object in the dictionary. This test can also be used to verify the

structure of a resulting AST.

create table t1/*=t1*/ (
a/*=t1a*/ int,
b/*=t1b*/ int

);

select ta.b/*=t1b*/ as c/*=t1b*/ ,
ta.a/*=t1a*/ as d/*=t1a*/

from t1 /*=t1*/ ta
where ta.a/*=t1a*/ = 5
having ta.b/*=t1b*/ > 7
LIMIT 5;

Code snippet 43: The example of AnnotatedFilesResolverTest input

6.1.1 PreprocessingTest

The PreprocessingTest is focused on evaluating the preprocessing step in

the manta-connector-databrickssql module. This test ensures that the

input SQL scripts are properly preprocessed and that any issues related to

preprocessing are identified and resolved. It verifies preprocessing by substi-

tuting both parameters and variables. It ensures that the preprocessing result

matches the expected output.

6.2 Data flow Generator Tests

The Data flow Generator module is responsible for building a data flow graph

from the resolved Abstract Syntax Tree (AST). In this section, we describe

79

6. Testing

the various tests designed to evaluate the correctness and robustness of this

module.

AstFilesFlowTest

The AstFilesFlowTest is designed to test if the generated data flow graph

matches the expected result. The test compares the output graph with an

expected graph stored in a file with the expected.txt suffix. The test also

verifies the result of the filter task against an expected filtered graph stored

in the file with the filtered expected.txt This test also ensures that the

structure is correct even when introducing a new change.

ScriptPathTest

The ScriptPathTest serves two primary purposes. First, it tests the correct

data flow node structure. Second, the ScriptPathTest is also designed for

debugging purposes. Developers can identify and resolve potential issues in

the Data flow Generator module by analysing the data flow node structure.

We can also generate a visualisation of the data flow graph using this test

using -Dmanta.test.printGraph option.

ErrorReportingTaskTest

The ErrorReportingTaskTest validates that errors can be correctly reported,

thus ensuring trust in the rest of the tests, which rely on the correct error

reporting.

80

Conclusion

In this thesis, we aimed to study the Databricks SQL dialect, its syntax and

semantics, and analyse data flow in Databricks SQL scripts by extending the

Manta tool. We successfully achieved our research objectives, gaining insights

into the Databricks SQL language and implementing a prototype scanner unit

for the Manta tool.

Our primary findings include the ability to analyse data flow in Databricks

SQL scripts by extending the Manta tool, a development with practical im-

plications for clients. As a result, clients can now examine data flow within

their Databricks systems using the updated Manta tool, benefiting developers,

data engineers, and other stakeholders working with Databricks SQL and the

Manta project.

However, there are limitations to our research and implementation. The

prototype scanner unit needs further development to handle features omit-

ted from the prototype without failing on parsing or subsequent data flow

generation.

Future work could thus extend the scanner and integrate it into the Manta

tool to scan Databricks SQL queries. Additionally, implementing a transfor-

mation logic module for Databricks SQL would enable better analysis of ex-

pression logic within the SQL scripts, further enhancing the tool’s capabilities.

81

Conclusion

There is also the possibility of performing better lambda function analysis to

improve provided data lineage of lambda function usage.

In conclusion, this thesis contributes to understanding data flow analysis

in Databricks SQL and enhancing the Manta tool. As we address the chal-

lenges and build upon the achievements presented in this work, we hope to

positively impact developers, data engineers, and other stakeholders working

with Databricks SQL and the Manta project.

82

Bibliography

1. Ultimate Guide to Data Lineage [online]. MANTA, 2022 [visited on 2023-

04-16]. Available from: https://getmanta.com/ultimate-guide-to-

data-lineage.

2. About data lineage [online]. Google, 2023-03 [visited on 2023-04-16]. Avail-

able from: https://cloud.google.com/data-catalog/docs/concepts/

about-data-lineage.

3. HOPCROFT, John; ULLMAN, Jeffrey D. Introduction to automata the-

ory, languages, and computation. CNIB, 1995.

4. MELICHAR, Bořivoj; ČEŠKA, Milan; JEŽEK, Karel; RICHTA, Karel.

Konstrukce překladač̊u. Vydavatelstv́ı ČVUT, 1999. isbn 80-01-02028-2.

5. AHO, Alfred V; SETHI, Ravi; ULLMAN, Jeffrey D. Compilers: princi-

ples, techniques, and tools. Vol. 2. Addison-wesley Reading, 2007. isbn

0-321-48681-1.

6. Minted – highlighted source code for latex [online]. CTAN Atom, 2022-

12 [visited on 2023-03-16]. Available from: https://ctan.org/pkg/

minted?lang=en.

7. AHO, Alfred V.; ULLMAN, Jeffrey D. The Theory of Parsing, Transla-

tion, and Compiling. USA: Prentice-Hall, Inc., 1972. isbn 0139145567.

83

https://getmanta.com/ultimate-guide-to-data-lineage
https://getmanta.com/ultimate-guide-to-data-lineage
https://cloud.google.com/data-catalog/docs/concepts/about-data-lineage
https://cloud.google.com/data-catalog/docs/concepts/about-data-lineage
https://ctan.org/pkg/minted?lang=en
https://ctan.org/pkg/minted?lang=en

Bibliography

8. PARR, Terence; FISHER, Kathleen. LL (*) the foundation of the ANTLR

parser generator. ACM Sigplan Notices. 2011, vol. 46, no. 6, pp. 425–436.

9. Introduction to data lakes [online]. Databricks, 2022-05 [visited on 2023-

03-20]. Available from: https://www.databricks.com/discover/data-

lakes/introduction.

10. What is a Data Lakehouse and answers to other frequently asked ques-

tions. Databricks. Available also from: https://www.databricks.com/

blog/2021/08/30/frequently-asked-questions-about-the-data-

lakehouse.html.

11. What is Delta Lake? [online]. Databricks, 2023-02 [visited on 2023-03-20].

Available from: https://docs.databricks.com/delta/index.html.

12. MALIK, Rijul Singh. Databricks vs spark: Introduction, comparison, Pros

and Cons [online]. MLearning.ai, 2022-08 [visited on 2023-04-29]. Avail-

able from: https://medium.com/mlearning- ai/databricks- vs-

spark-introduction-comparison-pros-and-cons-35958a1bd7e4.

13. Spark SQL, DataFrames and datasets guide [online]. Apache Spark [vis-

ited on 2023-04-29]. Available from: https://spark.apache.org/docs/

2.2.0/sql-programming-guide.html.

14. Apache spark on databricks [online]. Databricks, 2023-02 [visited on 2023-

04-29]. Available from: https://docs.databricks.com/spark/index.

html.

15. Delta live tables SQL language reference [online]. Databricks [visited on

2023-03-16]. Available from: https://docs.databricks.com/workflows/

delta-live-tables/delta-live-tables-sql-ref.html.

16. Configuration parameters. Databricks, 2023-03. Available also from: https:

//docs.databricks.com/sql/language-manual/sql-ref-parameters.

html.

84

https://www.databricks.com/discover/data-lakes/introduction
https://www.databricks.com/discover/data-lakes/introduction
https://www.databricks.com/blog/2021/08/30/frequently-asked-questions-about-the-data-lakehouse.html
https://www.databricks.com/blog/2021/08/30/frequently-asked-questions-about-the-data-lakehouse.html
https://www.databricks.com/blog/2021/08/30/frequently-asked-questions-about-the-data-lakehouse.html
https://docs.databricks.com/delta/index.html
https://medium.com/mlearning-ai/databricks-vs-spark-introduction-comparison-pros-and-cons-35958a1bd7e4
https://medium.com/mlearning-ai/databricks-vs-spark-introduction-comparison-pros-and-cons-35958a1bd7e4
https://spark.apache.org/docs/2.2.0/sql-programming-guide.html
https://spark.apache.org/docs/2.2.0/sql-programming-guide.html
https://docs.databricks.com/spark/index.html
https://docs.databricks.com/spark/index.html
https://docs.databricks.com/workflows/delta-live-tables/delta-live-tables-sql-ref.html
https://docs.databricks.com/workflows/delta-live-tables/delta-live-tables-sql-ref.html
https://docs.databricks.com/sql/language-manual/sql-ref-parameters.html
https://docs.databricks.com/sql/language-manual/sql-ref-parameters.html
https://docs.databricks.com/sql/language-manual/sql-ref-parameters.html

Bibliography

17. Develop code in Databricks Notebooks [online]. Databricks, 2023-01 [vis-

ited on 2023-03-21]. Available from: https://docs.databricks.com/

notebooks/notebooks-code.html.

18. Data Objects in the databricks lakehouse. Databricks, 2023-02. Available

also from: https://docs.databricks.com/lakehouse/data-objects.

html.

19. PostgreSQL 15.2 documentation [online]. The PostgreSQL Global Devel-

opment Group, 2023-02 [visited on 2023-05-04]. Available from: https:

//www.postgresql.org/docs/15/index.html.

20. SQL language reference [online]. Databricks, 2023-03 [visited on 2023-04-

25]. Available from: https://docs.databricks.com/sql/language-

manual/index.html.

21. Built-in functions [online]. Databricks, 2023-03 [visited on 2023-04-16].

Available from: https : / / docs . databricks . com / sql / language -

manual/sql-ref-functions-builtin.html.

22. Functions [online]. Databricks, 2022-11 [visited on 2023-04-25]. Available

from: https://docs.databricks.com/sql/language-manual/sql-

ref-functions.html.

23. Alphabetical list of built-in functions [online]. Databricks, 2022-11 [visited

on 2023-04-16]. Available from: https://docs.databricks.com/sql/

language-manual/sql-ref-functions-builtin-alpha.html.

24. Query Data [online]. Databricks, 2023-02 [visited on 2023-04-25]. Avail-

able from: https://docs.databricks.com/data-governance/unity-

catalog/queries.html.

25. BUTANI, Harish; FRANCKE, Lars; LEVERENZ, Lefty. Common ta-

ble expression [online]. Apache Software Foundation, 2014-09 [visited on

2023-04-29]. Available from: https://cwiki.apache.org/confluence/

display/Hive/Common+Table+Expression.

85

https://docs.databricks.com/notebooks/notebooks-code.html
https://docs.databricks.com/notebooks/notebooks-code.html
https://docs.databricks.com/lakehouse/data-objects.html
https://docs.databricks.com/lakehouse/data-objects.html
https://www.postgresql.org/docs/15/index.html
https://www.postgresql.org/docs/15/index.html
https://docs.databricks.com/sql/language-manual/index.html
https://docs.databricks.com/sql/language-manual/index.html
https://docs.databricks.com/sql/language-manual/sql-ref-functions-builtin.html
https://docs.databricks.com/sql/language-manual/sql-ref-functions-builtin.html
https://docs.databricks.com/sql/language-manual/sql-ref-functions.html
https://docs.databricks.com/sql/language-manual/sql-ref-functions.html
https://docs.databricks.com/sql/language-manual/sql-ref-functions-builtin-alpha.html
https://docs.databricks.com/sql/language-manual/sql-ref-functions-builtin-alpha.html
https://docs.databricks.com/data-governance/unity-catalog/queries.html
https://docs.databricks.com/data-governance/unity-catalog/queries.html
https://cwiki.apache.org/confluence/display/Hive/Common+Table+Expression
https://cwiki.apache.org/confluence/display/Hive/Common+Table+Expression

Bibliography

26. Migration guide: SQL, datasets and DataFrame [online]. Apache [visited

on 2023-04-29]. Available from: https://spark.apache.org/docs/3.

2.4/sql-migration-guide.html.

27. Language Manual DML [online]. Apache Software Foundation, 2021-04

[visited on 2023-04-29]. Available from: https://cwiki.apache.org/

confluence/display/Hive/LanguageManual+DML%5C#LanguageManualDML-

InsertingdataintoHiveTablesfromqueries.

28. What is Java technology and why do I need it? [online]. Oracle, 2022

[visited on 2023-04-16]. Available from: https://www.java.com/en/

download/help/whatis_java.html.

29. PARR, Terence. Antlr V3 documentation [online]. 2013. [visited on 2023-

03-16]. Available from: https://theantlrguy.atlassian.net/wiki/

spaces/ANTLR3/pages/2687234/ANTLR+v3+documentation.

30. Introduction [online]. The Apache Software Foundation, 2022-12 [visited

on 2023-04-16]. Available from: https://maven.apache.org/what-is-

maven.html.

31. JOHNSON, Rod et al. Spring Framework Overview [online]. VMware,

Inc., 2023-03 [visited on 2023-04-16]. Available from: https://docs.

spring . io / spring - framework / docs / current / reference / html /

overview.html.

32. JUnit [online]. The JUnit Team, 2023 [visited on 2023-04-16]. Available

from: https://junit.org/junit5/.

33. GAMMA, Erich; JOHNSON, Ralph; HELM, Richard; JOHNSON, Ralph

E; VLISSIDES, John. Design patterns: elements of reusable object-oriented

software. Pearson Deutschland GmbH, 1995.

86

https://spark.apache.org/docs/3.2.4/sql-migration-guide.html
https://spark.apache.org/docs/3.2.4/sql-migration-guide.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML%5C#LanguageManualDML-InsertingdataintoHiveTablesfromqueries
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML%5C#LanguageManualDML-InsertingdataintoHiveTablesfromqueries
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML%5C#LanguageManualDML-InsertingdataintoHiveTablesfromqueries
https://www.java.com/en/download/help/whatis_java.html
https://www.java.com/en/download/help/whatis_java.html
https://theantlrguy.atlassian.net/wiki/spaces/ANTLR3/pages/2687234/ANTLR+v3+documentation
https://theantlrguy.atlassian.net/wiki/spaces/ANTLR3/pages/2687234/ANTLR+v3+documentation
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://docs.spring.io/spring-framework/docs/current/reference/html/overview.html
https://docs.spring.io/spring-framework/docs/current/reference/html/overview.html
https://docs.spring.io/spring-framework/docs/current/reference/html/overview.html
https://junit.org/junit5/

Appendix A

Acronyms

ACID Atomicity, Consistency, Isolation, Durability

ANSI American National Standard Institute

ANTLR ANother Tool for Language Recognition

API Application Programming Interface

AST Abstract Syntax Tree

ATN Augmented Transition Network

AWS Amazon Web Services

DDL Data Definition Language

DFA Deterministic Finite Automata

DML Data Manipulation Language

IDE Integrated Development Environment

JAR Java ARchive

MPP Massively Parallel Processing

PDA Push-Down Automaton

87

A. Acronyms

SQL Structured Query Language

UDF User-Defined Functions

UML Unified Modeling Language

88

Appendix B

Data flow graphs

a [Column] (t3)

1 a [ResultSetColumn] (<11,1>ResultSet)

D

b [Column] (t3)

2 b [ResultSetColumn] (<11,1>ResultSet)

D

c [Column] (t3)

<13,7>c [Expression] (script.sql)

D

1 a [ResultSetColumn] (<11,1>MasterResultSet) 2 b [ResultSetColumn] (<11,1>MasterResultSet)

D D

<13,7>c = 'hello' [Expression] (script.sql)

D

<13,11>Hello [Literal] (script.sql)

<13,11>'hello' [Expression] (script.sql)

D

D

<13,1>Where [Where] (<11,1>ResultSet)

F

F F

Figure B.1: Detailed data flow of the statement from Code snippet 20

89

B. Data flow graphs

d [C
olum

n] (t4)

1 d [R
esultS

etC
olum

n] (<
15,1>

R
esultS

et)

D

<
17,10>

d [E
xpression] (script.sql)

D

1 d [R
esultS

etC
olum

n] (<
15,1>

M
asterR

esultS
et)

2 c [R
esultS

etC
olum

n] (<
15,1>

M
asterR

esultS
et)

D

2 c [R
esultS

etC
olum

n] (<
15,1>

R
esultS

et)

D

<
15,16>

count_R
E

T
U

R
N

 [C
allR

esult] (<
15,16>

count)

D

<
17,1>

G
roupB

y [G
roupB

y] (<
15,1>

R
esultS

et)

F

F
F

Figure
B.2:

D
etailed

data
flow

ofthe
statem

ent
from

C
ode

snippet
21

90

a
[C

ol
um

n]
 (

t5
)

1
a

[R
es

ul
tS

et
C

ol
um

n]
 (

<
20

,1
>

R
es

ul
tS

et
)

D

c
[C

ol
um

n]
 (

t5
)

1
c

[R
es

ul
tS

et
C

ol
um

n]
 (

<
21

,1
>

R
es

ul
tS

et
)

D

1
a

[R
es

ul
tS

et
C

ol
um

n]
 (

<
19

,1
>

M
as

te
rR

es
ul

tS
et

)

D
D

b
[C

ol
um

n]
 (

t5
)

2
b

[R
es

ul
tS

et
C

ol
um

n]
 (

<
20

,1
>

R
es

ul
tS

et
)

D

d
[C

ol
um

n]
 (

t5
)

2
d

[R
es

ul
tS

et
C

ol
um

n]
 (

<
21

,1
>

R
es

ul
tS

et
)

D

2
b

[R
es

ul
tS

et
C

ol
um

n]
 (

<
19

,1
>

M
as

te
rR

es
ul

tS
et

)

D
D

Fi
gu

re
B.

3:
D

et
ai

le
d

da
ta

flo
w

of
th

e
st

at
em

en
t

fro
m

C
od

e
sn

ip
pe

t
22

91

B. Data flow graphs

a [Column] (t2) b [Column] (t2)

1 a [ColumnFlow] (<23,1>INSERT)

D

2 b [ColumnFlow] (<23,1>INSERT)

D

1 _c0 [ResultSetColumn] (<24,1>ResultSet)

D

<24,9>John Doe [Literal] (script.sql)

<24,9>'john doe' [Expression] (script.sql)

D

D

2 _c1 [ResultSetColumn] (<24,1>ResultSet)

D

<24,21>123456 [Literal] (script.sql)

<24,21>123456 [Expression] (script.sql)

D

D

Figure B.4: Detailed data flow of the statement from Code snippet 24

a [Column] (t1) b [Column] (t1)

c [Column] (t1)

a [Column] (t2)

1 a [ResultSetColumn] (<6,1>ResultSet)

D

b [Column] (t2)

2 b [ResultSetColumn] (<6,1>ResultSet)

D

c [Column] (t2)

<6,27>c [Expression] (script.sql)

D

<5,31>42 [Literal] (script.sql)

3 c [ColumnFlow] (<5,1>INSERT)

D

1 a [ColumnFlow] (<5,1>INSERT)

D

2 b [ColumnFlow] (<5,1>INSERT)

D

D

1 a [ResultSetColumn] (<6,1>MasterResultSet)

D

2 b [ResultSetColumn] (<6,1>MasterResultSet)

D

D D

<6,27>c = 'world' [Expression] (script.sql)

D

<6,31>World [Literal] (script.sql)

<6,31>'world' [Expression] (script.sql)

D

D

<6,21>Where [Where] (<6,1>ResultSet)

F

F F

Figure B.5: Data flow of the statement from Code snippet 25

92

Appendix C

Contents of attachments

text...the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.rar..............................the thesis text source code

93

	Introduction
	Preliminaries
	Automata and grammar theory
	Grammar Types
	Automata

	Language processing
	Lexical analysis
	Syntax analysis and parsing
	ANTLR library and LL(*) analysis
	LL(*) Parsing

	Abstract syntax tree
	Data flow analysis

	Databricks System analysis
	Data Lake vs. Data Lakehouse vs. Data Warehouse
	Delta Lake
	Databricks SQL and Databricks Runtime
	SQL in Databricks
	Notebooks
	Queries

	Data objects
	Metastore
	Catalog

	Extraction

	Databricks SQL Dialect
	Datatypes
	Expressions
	Functions
	User-defined Functions
	Built-in Functions
	Lambda Functions

	Identifiers
	Statements
	DML statements
	SELECT statements
	INSERT statement
	Other DML statements

	DDL statements

	Parameterising options
	Spark Variables
	Query Parameters

	Design
	Used technologies
	Java
	ANTLR
	Maven
	Spring
	JUnit

	Modules
	Dependencies
	Connector
	Data flow Graph Generator

	Workflow

	Implementation
	ANTLR Parser
	Lexer grammar
	Parser grammar

	Resolving
	AST nodes
	Deduction

	Data flow generator

	Testing
	Connector Tests
	PreprocessingTest

	Data flow Generator Tests

	Conclusion
	Bibliography
	Acronyms
	Data flow graphs
	Contents of attachments

