
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Digitalization of Tax Administration Processes Using BPM

Systems and DEMO Methodology

Bc. Daniel Matoušek

Ing. Marek Skotnica

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

The law consists of two main parts – substantive and procedural. The substantive law

declares the rights and obligations of people, companies, and governments. The

procedural law defines a process to follow when complying with the laws. The legal

processes are notoriously complex and hard to digitize. The main goal of this thesis is to

explore how techniques researched and taught at the Czech Technical University, such as

DEMO and BPMN, can be applied to digitizing tax administration processes.

- Review state-of-the-art BPM systems, DEMO methodology, and BPMN.

- Create an as-is model of selected tax administration processes.

- Create a to-be digitalization model using BPMN.

- Create a proof of concept implementation in the Camunda BPM system.

Electronically approved by Ing. Michal Valenta, Ph.D. on 15 November 2022 in Prague.

Master’s thesis

DIGITALIZATION OF
TAX ADMINISTRATION
PROCESSES USING BPM
SYSTEMS AND DEMO
METHODOLOGY

Bc. Daniel Matoušek

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Marek Skotnica
April 24, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Bc. Daniel Matoušek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Matoušek Daniel. Digitalization of Tax Administration Processes Using BPM
Systems and DEMO Methodology. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2023.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

Acronyms x

Introduction 1

1 Theoretical foundations 3
1.1 Motivation . 3
1.2 Law modeling . 4
1.3 BPM systems . 4
1.4 BPMN . 4

1.4.1 Development and usage of BPMN . 5
1.4.2 BPMN constructs . 5
1.4.3 BPMN levels . 7

1.5 DEMO methodology . 7
1.5.1 OER analysis . 8
1.5.2 Models . 9

1.6 Camunda . 11
1.6.1 Microservices . 11
1.6.2 Camunda Platform 8 . 12

1.7 Methodology . 13

2 Tax administration as-is analysis 15
2.1 Tax administration overview . 15

2.1.1 Tax administration process . 16
2.2 OER analysis . 16

2.2.1 Distinguishing performa-informa-forma 16
2.2.2 Identifying transaction kinds and actor roles 17
2.2.3 Composing the essential model . 21
2.2.4 Validating the essential model . 22

2.3 Coordination Structure Diagram . 22
2.4 Object Fact Diagram . 23
2.5 Other models . 23
2.6 Summary . 24

3 Digitization to-be analysis 27
3.1 Camunda Modeler . 27
3.2 To-be model . 27

3.2.1 Participants . 30
3.2.2 Process description . 31

iii

iv Contents

3.3 Summary . 35

4 Implementation of proof-of-concept BPM system using Camunda Platform 37
4.1 Camunda hosting . 37

4.1.1 Software as a service . 37
4.1.2 Self-Managed . 38

4.2 Architecture . 38
4.2.1 Zeebe engine . 39
4.2.2 Identity . 40
4.2.3 Operate . 40
4.2.4 Tasklist . 41
4.2.5 Optimize . 41
4.2.6 Connectors . 42

4.3 Logical data model . 42
4.4 Executable BPMN model . 42

4.4.1 Forms description . 45
4.4.2 Variables . 46
4.4.3 Multi-instance . 47

4.5 Deployment . 47
4.6 Job workers . 48

4.6.1 Decision generating . 48
4.7 Testing . 51

4.7.1 Process testing . 51
4.8 Application prototype . 53
4.9 Summary . 57

5 Case study evaluation 59
5.1 Key findings . 59

5.1.1 Advantages . 59
5.1.2 Disadvantages . 60
5.1.3 Recommendations . 61

5.2 System limitations . 61
5.3 Future development . 61

Conclusion 63

Bibliography 68

Contents of attachment 69

List of Figures

1.1 The abilities in coordination and production acts [17]. 8
1.2 The complete transaction pattern [17]. 10
1.3 The relationships between aspect models and their concerns [17]. 11

2.1 Example of analysed text after completion of the OER analysis. 18
2.2 Interaction Structure Diagram of tax administration process. 21
2.3 Coordination Structure Diagram of tax administration process. 22
2.4 Object Fact Diagram of tax administration process. 24

3.1 Part 1 of analytical BPMN To-be model of tax administration process. 28
3.2 Part 2 of analytical BPMN To-be model of tax administration process. 29
3.3 Validating facts sub-process. 31
3.4 Testimony creation sub-process. 32
3.5 Expert report creation sub-process. 33
3.6 Special records creation sub-process. 33
3.7 Proceedings participation sub-process. 34
3.8 Tax negotiation sub-process. 35

4.1 Architecture of Camunda Platform 8 Self-Managed [37]. 39
4.2 Architecture of Zeebe [39]. 40
4.3 UML Logical data model of tax administration. 43
4.4 Part 1 of executable BPMN model of tax administration process. 43
4.5 Part 2 of executable BPMN model of tax administration process. 44
4.6 Part 3 of executable BPMN model of tax administration process. 44
4.7 UML Package diagram of Zeebe client responsible for completing script and service

tasks. 49
4.8 Camunda Platform 8 Tasklist with form example. 53
4.9 Example of generated official decision. 55
4.10 Camunda Platform 8 Operate with example of process instances. 56
4.11 Camunda Platform 8 Optimize dashboard example. 56

List of Tables

2.1 Example of extended Transaction Result Table (e-TRT). 17
2.2 Subject-Actor Table of tax administration process, part 1. 19
2.3 Subject-Actor Table of tax administration process, part 2. 20
2.4 Missing transaction steps. 25

v

vi List of Code listings

List of Code listings

4.1 Properties specifiing connection to locally running Zeebe engine. 49
4.2 TaxAdministrationApplication class definition. 50
4.3 Job worker responsible for generating the official decision. 50
4.4 Testing method used for verifying the errorless deployment of the process. 52

I would like to express my deep gratitude to my thesis supervisor,
Ing. Marek Skotnica, for his professional guidance, encouragement,
and valuable advice throughout the creation of this thesis. I am also
grateful to my family for their unwavering support and understand-
ing during this academic journey. Their love, patience, and belief
in me have been a constant source of strength and motivation.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46(6) of the
Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including any
and all computer programs incorporated therein or attached thereto and all corresponding doc-
umentation (hereinafter collectively referred to as the “Work”), to any and all persons that wish
to utilize the Work. Such persons are entitled to use the Work in any way (including for-profit
purposes) that does not detract from its value. This authorization is not limited in terms of
time, location and quantity.

In Prague on April 24, 2023 .

viii

Abstract

The digitalization of legal processes can create a more streamlined and effective approach to legal
proceedings, resulting in improved transparency, faster decision-making, better traceability, and
an overall expedited process execution. However, since legal processes are usually subject to a
complex web of regulations and strictly defined procedures, digitizing processes that are declared
in legislation is much more challenging compared to digitizing business processes. This thesis
focuses on the possible simplification of the development process of systems that support legal
processes through the involvement of Design and Engineering Methodology for Organizations
(DEMO) and Business Process Model and Notation (BPMN), researched at the Czech Technical
University in Prague. The goal of the thesis is to create a proof-of-concept Business Process
Management (BPM) system supporting the tax administration process defined in the Czech
code of law. To realize this system, the DEMO methodology is used to analyse the as-is state
of the tax administration process, while BPMN captures the to-be state of the process after
digitization, providing the basis for implementation. The result of the thesis is a proof-of-concept
BPM system based on the Camunda Platform 8 that supports the tax administration process.

Keywords Law digitalization, BPM system, DEMO, BPMN, Camunda Platform 8

Abstrakt

Digitalizace právńıch proces̊u může vytvořit efektivněǰśı a přehledněǰśı př́ıstup k vykonáváńı
právńıch ř́ızeńı, což by vedlo ke zlepšeńı transparentnosti, rychleǰśım rozhodnut́ım, lepš́ı sle-
dovatelnosti a celkově urychlenému pr̊uběhu proces̊u. Avšak digitálńı zpracováńı proces̊u, které
jsou deklarovány v právńıch předpisech, je mnohem náročněǰśı v porovnáńı s digitalizaćı business
proces̊u, jelikož právńı procesy jsou obvykle založeny na komplexńıch předpisech a př́ısně defi-
novaných postupech. Tato práce se zaměřuje na možná zjednodušeńı procesu vývoje systémů
podporuj́ıćıch právńı procesy prostřednictv́ım zapojeńı Design and Engineering Methodology
for Organizations (DEMO) a Business Process Model and Notation (BPMN), jež jsou ćılem
výzkumné činnosti na Českém vysokém učeńı technickém v Praze. Ćılem práce je vytvořit proof-
of-concept Business Process Management (BPM) systém podporuj́ıćı proces daňového ř́ızeńı defi-
novaný v českém zákońıku. K dosažeńı tohoto ćıle je použita DEMO metodologie pro analýzu
současného stavu daňového ř́ızeńı, zat́ımco BPMN zachycuje požadovaný stav procesu po digi-
talizaci a poskytuje základ pro implementaci. Výsledkem práce je proof-of-concept BPM systém
založený na Camunda Platform 8, jež podporuje proces daňového ř́ızeńı.

Kĺıčová slova Digitalizace zákon̊u, BPM systém, DEMO, BPMN, Camunda Platform 8

ix

Acronyms

AM Action Model
ARM Action Rule Specification
BPM Business Process Management

BPMI Business Process Management Initiation
BPMN Business Process Model and Notation

CM Cooperation Model
CSD Coordination Structure Diagram

DEMO Design and Engineering Methodology for Organisations
FEEL Friendly Enough Expression Language

FM Fact Model
JVM Java Virtual Machine
OER Organisation essence revealing
OFD Object Fact Diagram

OMG Object Management Group
PM Process Model

PSD Process Structure Diagram
SaaS Software as a service
TPT Transaction Product Table
UML Unified Modeling Language
WIS Work Instruction Specification

x

Introduction

Business processes, from purchasing to production, and even sales and marketing, are quickly
becoming digitized to increase efficiency and expedite execution. According to Gabryelczyk and
Biernikowicz [1], organizations invest a significant effort to accomplish digitization, as it is one
of the key aspects that lead to success.

Digitalization can also transform the way legal processes are carried out in modern times. It
can create a more efficient and streamlined approach to legal proceedings, leading to increased
accuracy, speed in decision making, improved transparency, accountability, and traceability of
the process, while reducing overall costs, as described by Zorzanelli Costa et al. [2].

However, the percentage of digitized legal processes still lags behind that of business processes.
Although procedural law is basically a definition of the processes that must be followed when
complying with legislation, digitization of legal processes is much more challenging compared to
an organization’s processes. Legal processes are often subject to a complex web of regulations and
compliance requirements that can be difficult to navigate when implementing digital solutions.
Moreover, the intention to digitize processes was not usually included when proposing new laws
or approving changes to legislation in the past, as written by Ciaghi and Villafiorita [3].

As a result, many projects dealing with digitization of the legal process are progressing slowly
or becoming much more expensive. An example that can be mentioned is the Czech Republic.
Although the government presented detailed plans describing the state administration’s digiti-
zation strategy in 2018, only a small percentage of the proposed projects were completed, as
referred to in the report by the Supreme Audit Office of the Czech Republic [4].

To summarize, despite the fact that digitization of state administration and legal processes can
expedite execution and reduce costs, as business process digitization shows, the transformation
to a way of working using systems as supporting tools for legal processes is slow.

In order to simplify the development process and eliminate the problems that come with the
implementation of systems supporting legal processes, this thesis focuses on the possibilities that
bring the involvement of the techniques and methodologies researched at the Czech Technical
University.

The goal of the thesis is to create a Business Process Management (BPM) system – a system
driven by process representation in order to coordinate the execution – that supports the tax
administration process, one of the processes defined in the Czech code of law. To achieve this
goal, the development process applies a specific approach that uses Design and Engineering
Methodology for Organizations (DEMO) – modeling methodology for analysing and representing
business processes – to analyse the current as-is state of the process, Business Process Model
and Notation (BPMN) – graphical notation that depicts the steps in business processes – to
design to-be state of the process after digitization, and Camunda Platform to implement the
BPM system supporting the tax administration process based on the solution designed in the
previous step.

1

2 Introduction

The thesis consists of five chapters in total. The first chapter reviews the state-of-the-art
of current practices, technologies, and methodologies. Law modeling and BPM systems are
described, and an overview of BPMN and its constructs is given, along with the DEMO method-
ology and its rules. Lastly, the key abilities and the way of using the Camunda Platform are
characterized.

The second chapter describes the as-is analysis of the tax administration process as defined
in the Czech code of law. Organizational Essence Revealing (OER) analysis is used to reveal
the process essence, identify transactions and actors, and mainly create the basis for the further
presented DEMO diagrams.

Using the insights gained during the as-is analysis, the proposed to-be state of the tax ad-
ministration process after digitization is designed. The process of designing the post-digitization
state is explained, and the final result of the to-be analysis represented by the analytical BPMN
model is shown in the third chapter.

The fourth chapter describes the realization of the BPM system using the Camunda Platform.
As a part of the chapter, the hosting possibilities, the overall system architecture, and its main
components are defined. Next, the creation of the executable BPMN model and the configuration
of details necessary for correct deployment, as well as the implementation of the Spring Boot
client, are specified. The end of the chapter contains an overview of the created system with an
example of its usage.

Finally, the last chapter of the thesis summarizes the development process of the BPM system
and expresses the key findings and the advantages and disadvantages of DEMO and BPMN
involvement. The chapter ends with the description of the further development possibilities.

Chapter 1

Theoretical foundations

The first chapter of the thesis will focus on technologies, methodologies, and concepts that are
well-known nowadays and can be used to produce systems supporting legal processes. Firstly, the
motivation and the law modeling and its advantages and limitations will be briefly described. The
next sections will overview BPM systems and summarize the current standards and constructs of
BPMN. In the following section, the DEMO methodology will be presented and its key features
will be pointed out. Next, Camunda will be introduced and its usage and main benefits will be
explained. In the final section, a description of the development methodology used to create a
system supporting legal processes will be provided.

1.1 Motivation

The legal system plays a vital role in the functioning of society. However, legal processes can often
be slow, complicated, and expensive, leading to frustration and dissatisfaction among citizens.
In recent years, there has been a growing trend towards the digitization of legal processes, with
the aim of making them faster, more efficient, and more accessible to all.

According to a report by the Supreme Audit Office of the Czech Republic [4], the government
spent 75 billion Czech crowns (approximately 3.19 billion euros) on digitization projects between
2012 and 2018. However, the current state of digitization in the country is not satisfactory. The
creation of systems that condition digitization is progressing slowly, and the resulting solutions
sporadically contain errors that make their use impossible [4].

An example that can be mentioned is the system dealing with vehicle registration. The
total cost of the system increased to 47 million Czech crowns (2 million euros), but, despite this
large investment, the Ministry of Transport of the Czech Republic considered returning to the
old system a few days after deployment due to problems encountered with the new system, as
described in [5]. Similarly, when a new census system was introduced at a cost of 30 million
Czech crowns (1.3 million euros), it became unavailable soon after launch, as described in [6].

These examples are not just exceptions to otherwise problem-free systems. In summary, a
considerable portion of the Czech Republic’s budget is spent on digitization, yet the resulting
systems are not always of high quality. Although the government presented a detailed plan
describing the digitization strategy in 2018 [7], as outlined in the report by the Supreme Audit
Office [4], progress is slow. A more effective solution for creating systems is necessary to keep up
with future needs and expedite the digitization process.

3

4 Theoretical foundations

1.2 Law modeling
In recent years, modeling the semantics of law has gained a notable amount of attention. Accord-
ing to Ciaghi et al.: [8]: “Providing a graphical representation of a law can be of great advantage
to those who want to understand or analyse it (e.g., citizens or jurists) as well as those who
need to implement it.” Moreover, law modeling plays a key role in the automation of state
administration.

The way automation can be achieved is similar to the automation of processes that are
modeled to analyse and improve the behavior of an organization in the private sector. Since
legal systems encroach on many aspects of our lives, their functioning demands a much higher
level of transparency than what is required of other organizational environments such as private
enterprises, as described by Zorzanelli Costa et al. [2].

However, legal documents often rely on opaque aspects of legal jargon used to define legislation
or on a number of procedural and operational aspects embodied in practice that are not explicitly
captured in legal documents. Furthermore, the legal system usually creates a complex structure
that can sometimes be impossible to precisely capture using ambiguous natural language. These
aspects create several barriers to transparency that is necessary for citizen access to justice as
well as the design and operation of the digital legal information system, as written by Zorzanelli
Costa et al.[2].

Modeling law brings transparency to legal documents and aids in the digitization of the legal
system. However, according to Ciaghi and Villafiorita [3], it is necessary to link the modeled
procedures to the regulations that define and direct them. In certain situations, it may not be
possible to create a model based on the current legal definition, and the modeling process may
require parallel actions in both the process design and the introduction of legal changes.

1.3 BPM systems
To create a solution that helps with automation of process, a Business Process Management
(BPM) system can be used. Van der Aalst [9] writes that “Business Process Management (BPM)
includes methods, techniques, and tools to support the design, enactment, management, and
analysis of operational business processes.” A business process is a set of activities that are
performed in an organized way, usually using a technical solution, with the purpose of achieving
a specified business goal.

Traditionally, business processes were managed manually, guided by the knowledge of the
organization’s personnel who followed the regulations and rules of the organization’s procedures.
In recent years, organizations have discovered that they can achieve additional benefits by using
software solutions to coordinate the activities of business processes, as described by Weske [10].
These software solutions are called Business Process Management systems. Weske [10] defines
BPM system as “a generic software system that is driven by explicit process representations to
coordinate the enactment of business processes.”

According to Gabryelczyk and Biernikowicz [1], organizations are adopting BPM systems
because they bring numerous benefits. As examples from the past show, the involvement of BPM
system usually results in the improvement of process efficiency, reduction of process costs, as well
as the elimination of process errors, and improvement of collaboration within the organization.

1.4 BPMN
Business Process Model and Notation (BPMN) is a standard for business process modeling that
enables businesses to comprehend their internal processes and structure through a graphical
notation. The primary benefit of BPMN is its flexibility. The models can be simple enough
for stakeholders responsible for designing, managing, and implementing business processes to

BPMN 5

understand them. On the other hand, models can contain enough information to be translated
into software components. The difference is in the selected level of detail. BPMN acts as a
bridge between business analysts who draft processes, developers who implement information
systems supporting the processes, and business people who manage and monitor the processes,
as described in [11].

According to Malekan et al. [12], a major drawback of BPMN is its ambiguity in process
execution. The realization of modeled constructs can be open to interpretation and the lack
of concrete semantics can result in different implementations of the same modeled process by
different developers.

1.4.1 Development and usage of BPMN
BPMN was developed and published in 2004 by the Business Process Management Initiative
(BPMI) with the aim of creating a single standard notation that combined the best ideas from
various divergent notations, such as UML Activity Diagrams and Event-Process Chains (EPCs).
This is why there are noticeable similarities between BPMN and, for example, UML Activity
Diagram. According to Alweyer [13], BPMN has since become the most widely accepted and
used standard for business process modeling. Today, BPMN is maintained and developed by the
Object Management Group (OMG), which is also responsible for other standards, such as the
aforementioned UML.

Alweyer [13] also notes that BPMN is not only well-established among organizations as their
business process modeling standard, but it can also be used by state administrations as a tool
to help with digitization. Currently, BPMN plays a key role in Switzerland’s e-government,
as described by Walser and Schaffroth [14]. Standards of Switzerland’s e-government specify
BPMN as recommended notation as it helps with the integration of local and federal tasks into
the process chain, where collaboration can be better designed. Other examples mentioned by
Alweyer [13] include public administrations in Queensland, Australia, and British Columbia,
Canada, where BPMN creates guidelines for their processes.

1.4.2 BPMN constructs
The current version of BPMN, BPMN 2.0, was released by OMG back in 2011. In order to create
a simple and understandable mechanism for capturing business processes, OMG [11] defined five
basic categories with several graphical elements that represent the building blocks of the BPMN
models. These categories are Flow objects, Data, Connecting objects, Swimlanes, and Artifacts.

1.4.2.1 Flow objects
Flow objects are the most important graphical aspects that define the behavior of the modeled
business process. The OMG specification of BPMN 2.0 [11] describes three Flow objects:

Events

Activities

Gateways

According to the official specification [11], “an event is something that “happens” during
the course of a process. . . . These events affect the flow of the model and usually have a cause
(trigger) or an impact (result).”

An activity describes any work that happens in the organization’s process. BPMN specifies
two types of activities that represent parts of the process. The activity can be either a task or a
sub-process.

6 Theoretical foundations

A gateway is used to determine the divergence and convergence of the sequence flow in the
process. By the gateway branching, forking, merging, and joining of paths is controlled the
overall process flow.

1.4.2.2 Data
Data category represents the information that is part of the process. Elements of this category are
Data objects, Data inputs, Data outputs, and Data stores [11]. Data object provides information
about the requirements of activities. Without the singular object or a collection of objects
described by Data objects, the activity cannot be performed. The same principle applies for
Data inputs and Data outputs.

Data stores provide a mechanism for an activity to retrieve or update stored information that
is persisted outside the scope of the process. They can be used to model databases, file systems,
document archives, and other data storage systems.

1.4.2.3 Connecting objects
A Connecting object defines the way of connecting the Flow objects to each other or to other
elements. They play an important role in describing the flow of a business process and help to vi-
sually represent the dependencies between different elements. There are four types of Connecting
objects defined in the specification of BPMN 2.0 [11]:

Sequence flow

Message flow

Association

Data association

Sequence flow is a type of Connecting object used in BPMN to define the order of the activities
in a process execution. It represents the flow between two Flow objects. In other words, it defines
the direction in which the process flows and specifies the order in which the events, gateways,
and other Flow objects in the process are executed.

Message flow represents the flow of messages between two participants in a process. The
message flow element points from the participant that is prepared to send a message to the
participant prepared to receive one.

An association is used to show the linkage of Artifacts with the BPMN graphical elements.
The same principle applies for data associations, with the only difference being that the connec-
tion is between Flow object and Data element.

1.4.2.4 Swimlanes
Swimlanes are used to group the modeled elements. In BPMN, Swimlane is either a lane or a
pool [11]. The pool represents a participant or it can also be used as a graphical container that
partitions a set of activities. The lane is a sub-partition in a process (often within the pool) that
is used to categorize and organize the activities.

1.4.2.5 Artifacts
Artifacts are used to provide additional information about the process itself. Currently, the
specification [11] defines two types of standardized Artifacts (Group and Text annotation), but
modelers are free to add other necessary Artifacts.

DEMO methodology 7

1.4.3 BPMN levels
As mentioned before, the main advantage of BPMN is its flexibility, which enables the creation
of less or more detailed models. Since the area of BPMN application is diverse, modelers who
come into contact with the notation do not have to use or know all the elements. Even though
BPMN has constructs that suit well for exception handling, modelers may find them unnecessary
or even useless because they do not see the need to add them to their process model. The same
applies to many other constructs. In fact, only a small number of elements are commonly used,
as described by Silver [15].

Because of that, Silver [15] defines three levels of BPMN use:

Level 1: Descriptive BPMN

Level 2: Analytical BPMN

Level 3: Executable BPMN

BPMN is mostly used at level 1, where descriptive modeling aims to document the process
flow in a simple way using a limited number of constructs that are easily understood by business
users. The result is similar to traditional flowcharting. Despite this, level 1 is sufficient for
describing most processes and their behavior at the level that businesses need.

Level 2 includes additional constructs that enable more accurate process modeling, taking
into account exceptions and events. According to Aagesen and Krogstie [16], “The additional
features are particularly relevant to include when doing computer-assisted analysis, supporting
quality assurance, and when the models are meant to be used as context for change through a
traditional development project.”

Both descriptive and analytical BPMN concern non-executable processes, and their benefit
relies solely on the information visible from the modeled process. On the contrary, BPMN level 3
is based on XML details that are typically not visible directly from the model. The main purpose
of executable BPMN is its ability to be transformed into an XML-based specification that can
drive process engines, as explained by Aagesen and Krogstie [16].

1.5 DEMO methodology

Design and Engineering Methodology for Organizations (DEMO) is a methodology that is used
to construct enterprise models based on the Enterprise Ontology, as defined by Dietz and Mul-
der [17]. The main goal of the methodology is to give a modeler an overview of and insight into
an organization. To capture the essence of an organization and its processes, DEMO method-
ology presents the essential model [18]. The essential model of a system or an organization is
described as an ontological model, in other words, a model of its construction that is completely
abstracted from implementation.

The current version of DEMO, DEMO-4, is based on theoretical foundations that consist of
four ontological and three philosophical theories, all referred by Greek letters [19]. According to
Dietz and Mulder [17] “philosophical theories concern the most fundamental ways in which people
perceive and conceive the surrounding world, make sense of it, study it, etc.” On the other hand
“ontological theories are about the nature of things. They serve to explain their construction
and operation, and predict the consequences of changing them, while completely abstracting from
implementation” [17].

Because BPMN due to the heterogeneity of its constructs lacks formal semantics, which can
lead to inconsistency and ambiguity of the modeled business process, DEMO and the Enterprise
Ontology can be applied to add a formal foundation to BPMN model creation, as recommended
by Van Nuffel et al. [20].

8 Theoretical foundations

Figure 1.1 The abilities in coordination and production acts [17].

1.5.1 OER analysis
According to Dietz and Mulder [17], in a running organization or process, no one needs to devise
or create an essential model from scratch using any other technique. The way an organization
works, its operational essence, already exists, and it only needs to be revealed.

The best way of revealing and understanding the essence of an organization is to address the
people working there, which basically means interacting with the actors themselves. Another
option is to rely on written documentation. The main reason why it is not considered the
best option is the difference between description and reality, no matter how thoroughly the
documentation is written. Although written documentation analysis is not the best way to
recognize the hidden essence of an organization, in practice it is the most widespread.

The method in DEMO that is used to reveal the essential model of a running organization or
process is called OER analysis. OER stands for Organizational Essence Revealing. The starting
point of the OER analysis is written documentation, as it is used in most cases of revealing
organizational essence. The whole method consists of four steps [17].

The first step of the OER analysis is used to determine the transaction acts and correspond-
ing information in an organization. To achieve the goal, distinguishing between the performa,
informa, and forma shapes occurs. That is the reason why step one of the OER analysis is also
called the performa-informa-forma (PIF) analysis. To be able to successfully complete the PIF
analysis, one needs to understand that all acts that are part of a process or an organization
can be divided into two sorts: production acts and coordination acts. In those acts, three abil-
ities are distinguished: forma ability, informa ability, and performa ability. A closer view with
short descriptions of these abilities can be seen in Figure 1.1. To emphasize the fundamental
humanness of actors, the first, most inner ability is added. At the completion of the first step

DEMO methodology 9

of the OER analysis, parts of the existing documentation should be highlighted if they express
performa, informa, or forma matter.

The second step of the OER analysis consists of identifying transaction kinds and actor
roles. Dietz and Mulder [17] define an actor as “a subject (human being) in an actor role.
The actor role determines the authority that the actor may exercise and the responsibility to do
so.” Coordination acts defining the interaction between actors, which play either an initiator or
executor role, occur in a certain pattern that can be seen in Figure 1.2. These acts can be divided
into four basic types: request, promise, declare, and accept and two additional types: decline
and reject. The complete transaction pattern also contains the revocation of basic types. Every
transaction or its instance represents the transaction kind that concerns one specific product
kind. To summarize the above, the result of the second step of OER analysis is a detailed
description of the transaction kinds representing a transaction that is, in fact, a sequence of
coordination acts in a specific pattern. Each transaction has its initiator and executor, who is
responsible for creating the product. The combination of a transaction kind and its executor is
termed transactor.

After the first two steps, the transaction types and actor roles are identified. The third step of
the OER analysis consists of building the essential model of an organization. Typically, the scope
of interest is narrowed or broadened in this step so that the transactor roles correspond to the
identified transaction types. This means that the first two steps may need to be reworked to find
missing or to leave out redundant transactor roles. The main goal of this step is to understand
the interaction structure of an organization that is defined by a number of tree structures. Unlike
in business process management, where the flow type of thinking is mostly used, in DEMO the
process is modeled from a structural perspective. The tree diagram is ideal for representing such
a structure because of its ability to capture the composition of the identified transaction types.
Once the process structure is defined, it is possible to create Cooperation Model, Action Model,
Process Model, or Fact Model described more thoroughly in the following section.

Some works, such as that written by Perinforma (pseudonym of Dietz) [21], list the third step
of the OER analysis as the final one. If the previous steps are followed, the result also complies
with most of the techniques used to achieve essence and simplicity in DEMO, including separation
of concerns, use of abstraction, devising proper concepts, and verification by instantiation. Only
validation from ontology does not immediately emerge from the following of the previous three
steps. Therefore, the fourth step is added, which consists of validating the essential model. The
procedure recommended by Dietz and Mulder [17] for the fourth step is “to study the identified
transactor roles one by one and to check the claims that the model implicitly makes”. After that,
a verified and validated essential model within the DEMO methodology can be produced.

1.5.2 Models
As mentioned in the previous section, DEMO, more specifically DEMO-4, defines four aspect
models. These aspect models can be used individually or in combination to analyse and design
different aspects of an organization. Together, they provide a comprehensive and integrated view
of an organization, which can help to identify and resolve issues related to organizational design,
communication, and coordination. The relationships between the aspect models and their main
concerns are illustrated in Figure 1.3.

Dietz and Mulder [17] define the aspect models and describe their main benefits in revealing
the process essence as follows:

Cooperation Model (CM)
The Cooperation Model captures the cooperative interactions between people and organi-
zations. The model is typically represented using two primary artifacts: the Coordination
Structure Diagram (CSD) and the Transaction Product Table (TPT). The CSD depicts the
actors involved in the cooperative interactions, the transactions between them, and the roles

10 Theoretical foundations

Figure 1.2 The complete transaction pattern [17].

and responsibilities of each actor. The TPT, on the other hand, shows the products and
a detailed description of the coordination acts between the actors and the associated com-
mitments, constraints, and dependencies. Together, these artifacts provide a comprehensive
view of the cooperative interactions.

Action Model (AM)

The Action Model describes the manifestation of the construction of an organization over
time. The Action Model is conveyed through an Action Rule Specification (ARS) and a
Work Instruction Specification (WIS).

Process Model (PM)

The Process Model is a model of the processes that occur as a result of actions taken by
actors. The Process Model is used to create a description of the state space and transition
space of the coordination world. The Process Structure Diagram (PSD) is used to express
the Process Model of an organization.

Fact Model (FM)

This model is used to define and visualize the products of an organization. It specifies the
state space and transition space of the production process. The Object Fact Diagram (OFD)
is a representation of the Fact Model.

Camunda 11

Figure 1.3 The relationships between aspect models and their concerns [17].

1.6 Camunda
Camunda is a platform that uses a workflow engine and a decision engine to orchestrate and
automate complex business processes that span people, systems, and devices. Organizations
apply the Camunda Platform solution to model and automate workflow and decision processes
using BPMN-powered flowcharts as defined in the documentation [22].

To put it into perspective, one of the main components of Camunda is the engine that can be
used to run executable BPMN models, which helps developers with creation of business process
management tools that orchestrate the tasks necessary for process accomplishment.

1.6.1 Microservices
To run an automated end-to-end business process, it typically requires multiple microservices to
achieve the desired outcome. According to Fowler and Lewis [23], the microservice architecture
is basically “an approach to developing a single application as a suite of small services, each
running in its own process and communicating with lightweight mechanisms.” Each of these
services is built around business capabilities, and the process of their deployment is independent
and usually fully automated by the deployment machinery.

However, with the use of microservice architecture often comes the struggle of developers to
effectively communicate across the services, monitor their performance, or resolve the errors that
may occur during runtime. The newest version of the Camunda Platform – Camunda Platform 8
– enables organizations to overcome these issues [22].

Since microservice architecture has rapidly gained popularity in the past few years, as de-

12 Theoretical foundations

scribed, for example, by Dragoni et al. [24], this thesis will mainly focus on the application of the
newest Camunda Platform 8, which is based primarily on the orchestration of tasks that require
human involvement alongside microservices as written in [22].

1.6.2 Camunda Platform 8
Camunda Platform 8 was released in 2022 as a successor to the already used Platform 7. Its
functionality is specifically designed to “orchestrate microservices into trackable and manageable
business processes without compromising crucial microservices principles such as loose coupling
and service independence,” as defined in [25]. Jakob Freund [26] describes the release of Camunda
Platform 8 as a step toward “a vision of the universal process orchestrator, allowing one to
orchestrate people, systems, and devices along BPMN process models that bring business and IT
together, and doing this reliably and at scale”.

This implies that Camunda Platform 8 is designed to operate on a large scale. To achieve
this, Camunda Platform 8 provides following abilities that ensure core quality, as defined in the
documentation [22]:

Horizontal scalability

Zeebe (the workflow engine that is used in Camunda Platform 8, more thoroughly described
in the chapter Implementation of proof-of-concept BPM system using Camunda Platform)
allows to run the process without dependence on an external database. It has the ability to
write data directly to the file system on the server, where it is deployed. The application of
Zeebe as a workflow engine has a positive effect on the simplicity of distributing processing
across the cluster to ensure high throughput.

High availability and fault tolerance

Camunda Platform 8 has a built-in, pre-configured replication mechanism, which makes it
possible to recover from a failure with no data loss and minimal downtime. The replication
process is fully automated, which means that no manual action is required.

Audit trail

All process-relevant information is written into an append-only log that can serve as a detailed
history of the process if necessary.

Reactive publish-subscribe interaction model

The model enables microservices to connect to the Camunda Platform 8 while maintaining
autonomy and a high degree of control. These properties allow for scalability, resilience, and
reactiveness.

Visual processes modeled in ISO-standard BPMN 2.0

As defined before, the use of the BPMN standard ensures the possibility for both technical and
non-technical stakeholders to collaborate on a process design due to the ease of understanding
the notation.

Language-agnostic client model

This ability makes it possible to build a client in a wide range of programming languages to
suit the developers of an organization.

Methodology 13

1.7 Methodology
As the state-of-the-art BPM systems, BPMN, DEMO, and Camunda were reviewed, the approach
that can be used to develop a BPM system can be presented. The methodology that aims to
create a system supporting legal processes consists of three phases:

As-is analysis

To-be analysis

Implementation

The first phase uses DEMO methodology to reveal the essence of the procedural part of the
law. The OER analysis and DEMO models are used to analyse and capture the as-is state of
the process based on its definition in the code of law. DEMO’s focus on essential elements and
structures makes it suitable for legal processes, which typically involve a high level of complexity
and detail. According to Van Nuffel et al. [20], the involvement of DEMO methodology can give
a formal foundation for further BPMN modeling.

The to-be analysis phase involves using an analytical BPMN model to design the future
state of the process. As BPMN is a widely used process modeling notation, it provides an
understandable way of representing the to-be state graphically. The analytical BPMN model is
a detailed model that includes useful information when capturing the state of the process after
digitization. According to van der Aalst [27], analytical BPMN models can be used to simulate
and optimize processes before implementation. This implies that the approach can ensure the
efficiency and effectiveness of the resulting BPM system.

The final phase corresponds to the implementation of the BPM system. It involves using the
Camunda Platform to implement the system based on the executable BPMN model, which is an
extension of the analytical model from the previous phase with implementation aspects. As the
Camunda Platform contains an engine that can run the executable model, the overall need to
write the code during the implementation phase can be reduced, as described by Silver [28].

In conclusion, the methodology that aims to create a BPM system supporting legal processes
involves as-is analysis using DEMO methodology and its OER analysis, to-be analysis using
an analytical BPMN model, and implementation based on an executable BPMN model and
Camunda Platform. The methodology, based on the mentioned assumptions, ensures that the
resulting system is designed to be an effective and useful supporting tool during the process
execution.

14 Theoretical foundations

Chapter 2

Tax administration as-is analysis

To convert the assumptions described in the chapter Theoretical foundations into practical use
and prove the concept, a case study based on existing law is included as part of the thesis. The
case study is mainly focused on verifying the selected methodology and its potential for use in
the digitization of the law.

The case study contains a description of the DEMO as-is analysis, followed by a to-be analysis
based on an analytical BPMN model, and the creation of a BPM system that leads to the
digitization of the law as defined by the methodology. The Czech tax administration law is used
as an example to illustrate this development process.

This chapter will focus on analysing the current state of the tax administration process, as
described in the Czech code of law. DEMO and its OER analysis will be the main tools used
to reveal the essence of the tax administration process, just as it does with the essence of an
organization’s processes. The goal of the as-is analysis is to understand the process workflow
and add the formal foundations to the BPMN models that will be shown and described in detail
in the next chapter.

First, a brief overview of tax administration will be provided. Following that, the four steps
of the OER analysis will be applied to reveal the main parts of the analysed law. In the following
sections, the resulting diagrams that are important for further development will be shown, and
the main modeling thoughts will be closely described. Finally, at the end of the chapter, a short
summary with the key findings of the tax administration as-is analysis will be presented.

2.1 Tax administration overview

This section provides a summary description of the tax administration as defined by the Czech
code of law, with a specific focus on its procedural part that outlines the process of creating an
official decision, which is the objective of the entire tax administration.

The tax administration is described in detail in Act No. 280/2009 Coll., Tax Administra-
tion [29]. The procedural part of the law that is particularly relevant to the case study presented
in this thesis is defined in paragraphs § 91 – § 107. In addition to defining the tax administration
process, the act establishes the rights and obligations of the tax subject as well as obligations of
the tax administrator.

The tax subject and the tax administrator are the primary parties involved in the tax ad-
ministration process. The tax subject is the person whose tax is determined during the process
and is obligated to cooperate with the tax administrator. The tax administrator is responsible
for overseeing the process to achieve its goal.

As mentioned above, the ultimate goal of the tax administration process is to create an official

15

16 Tax administration as-is analysis

decision that specifies the final amount of tax, along with the justification and reasons for the
tax assessment. This official decision serves as a binding document that is valid from the day of
its adoption.

2.1.1 Tax administration process
The process of creating an official decision is initiated on the day that the tax administrator
receives a submission from the tax subject. To ensure that the tax is determined correctly, the
tax subject is asked to provide facts that will lead to an accurate determination of the tax. The
administrator then decides whether the submitted facts are sufficient for the tax determination.
If the facts are sufficient and no additional necessary information is required, the final decision
can be created and sent to the tax subject.

However, if the submitted facts are not sufficient to determine the tax correctly, the tax
administrator is authorized to initiate the creation of an expert report, witness testimonies or to
obtain other additional information in order to create the decision.

Once the official decision is created, the tax subject is obligated to pay the costs of the
proceedings in case any expenses are incurred. These costs are related to the course of the
process. For example, if it is necessary for a third person to participate in the proceedings to
properly determine the tax, the participant may be awarded compensation. The entitlement of
the proceedings participant to compensation, as well as its final amount, is assessed by the tax
administrator.

The process ends when the costs are paid and the official decision, along with all of its
determining information and reasoning, is published. Part of the publication process involves
sending the decision to the tax subject as well as saving it to the appropriate system. Based on
the determined amount of tax, the subject also receives the payment obligation.

2.2 OER analysis

The following sections will focus on the individual steps of the OER analysis defined by the
DEMO methodology. The starting point of the OER analysis is the Czech code of law, specifically
the description of the tax administration process, as it can be considered a kind of documentation
that defines the process to be revealed.

2.2.1 Distinguishing performa-informa-forma
The first step of the OER analysis, as described previously, consists of performing the performa-
informa-forma (PIF) analysis. To distinguish the found performa, informa, or forma abilities in
the text, each one is highlighted with a different color. Performa ability is highlighted using the
color red, informa using the color green, and the color blue is used for forma ability, following
the established practice among DEMO modelers.

The text also contains a significant amount of so-called blue traps. The term blue trap refers to
a part of the text that, at first glance, expresses the forma ability, but also has a hidden meaning
in the form of the performa ability, as described by Jan Dietz [17]. Because of the hidden
performa meaning, the part of the text is not highlighted using the blue color, but instead, the
color red is used.

The resulting text of the Czech code of law with highlighted parts that match the abilities
can be accessed in the repository corresponding to the thesis.

https://github.com/matouda7/tax-administration-digitization

OER analysis 17

2.2.2 Identifying transaction kinds and actor roles
The next step of the OER analysis consists of identifying transaction kinds and actor roles. Since
the text contains highlighted performa abilities, the act types can be assigned to them. Each of
the performa abilities in the text should be marked as one of the coordination act types, such
as request – rq, promise – pm, declare – da, accept – ac, decline – dc, reject – rj, (or revokes
of basic types – rvrq, rvpm, rvda, rvac), or as a production act representing the creation of the
transaction product.

Based on this, transactions are recognized in the law text. An example of highlighted text
with assigned acts of the recognized transactions can be seen in Figure 2.1. Specifically, the
example contains paragraphs § 91 and § 92, which mainly describe the initiation of the tax
administration proceedings and the process of validating the submitted facts. In the example,
two transactions TK1 and TK2 can be seen that correspond to the official decision creation
process and the validation of the submitted facts process, respectively. The same way that the
text of the tax administration law is analysed in the example, the rest of the text is also analysed.
The whole text with identified transactions can be seen in the repository corresponding to the
thesis.

Overall, the tax administration process consists of 11 transactions. Found transactions are ex-
pressed using extended Transaction Result Tables (e-TRT), which contain, for each transaction,
the corresponding initiator and executor, transaction product, as well as all found coordination
acts. An example of the e-TRT that describes the official decision creation (TK1) can be seen
in Table 2.1. The rest of the e-TRT is shown in the mentioned repository.

Transaction Official decision creation (TK1)
Product Official decision is created
Initiator Official decision creation proposer (AR1)
Executor Official decision creator (AR2)
Request Submission application for decision creation
Promise Initiation of official decision creation
Decline Not specified
Declare Sending created official decision
Reject Not specified
Accept Not specified
Revoke request Withdraw submission
Revoke promise Declaration of non-necessity of decision
Revoke declare Proposing correcting decision
Revoke accept Not specified

Table 2.1 Example of extended Transaction Result Table (e-TRT).

As described above, each transaction has its initiator and executor, both of which are termed
actors. Since DEMO has specifically defined rules describing the naming of the actors, the actor
names usually differ from the already used common naming. To express the connections, found
actor roles and their correspondence to real-world subjects are visible in the Subject-Actor Table
shown in Tables 2.2 and 2.3. Each subject that can be part of the tax administration process
has defined roles that he can perform.

https://github.com/matouda7/tax-administration-digitization
https://github.com/matouda7/tax-administration-digitization

18 Tax administration as-is analysis

Průběh řízení

§ 91

 Zahájení řízení

(1) Řízení je zahájeno dnem, kdy příslušnému správci daně došlo první podání ve věci [TK1/rq] učiněné

osobou zúčastněnou na správě daní, nebo dnem, kdy byl správcem daně vůči osobě zúčastněné na správě

daní učiněn první úkon ve věci [TK1/pm].

(2) Nesplní-li daňový subjekt svou povinnost učinit podání zahajující řízení, zahájí správce daně toto řízení

[TK1/pm] z moci úřední, jakmile zjistí skutečnosti zakládající tuto povinnost.

§ 92

 Dokazování

 (1) Dokazování provádí příslušný správce daně [TK2] nebo jím dožádaný správce daně.

(2) Správce daně dbá, aby skutečnosti rozhodné pro správné zjištění a stanovení daně byly zjištěny co

nejúplněji, a není v tom vázán jen návrhy daňových subjektů.

(3) Daňový subjekt prokazuje všechny skutečnosti [TK2/da], které je povinen uvádět v daňovém tvrzení a

dalších podáních.

(4) Pokud to vyžaduje průběh řízení, může správce daně vyzvat daňový subjekt k prokázání skutečností

potřebných pro správné stanovení daně [TK2/rj], a to za předpokladu, že potřebné informace nelze získat z

vlastní úřední evidence.

 (5) Správce daně prokazuje

 a) oznámení vlastních písemností,

 b) skutečnosti rozhodné pro užití právní domněnky nebo právní fikce,

c) skutečnosti vyvracející věrohodnost, průkaznost, správnost či úplnost povinných evidencí, účetních

záznamů, jakož i jiných záznamů, listin a dalších důkazních prostředků uplatněných daňovým subjektem,

 d) skutečnosti rozhodné pro posouzení skutečného obsahu právního jednání nebo jiné skutečnosti,

 e) skutečnosti rozhodné pro uplatnění následku za porušení povinnosti při správě daní,

f) skutečnosti rozhodné pro posouzení účelu právního jednání a jiných skutečností rozhodných pro správu

daní, jejichž převažujícím účelem je získání daňové výhody v rozporu se smyslem a účelem daňového

právního předpisu.

(6) Navrhuje-li v řízení účast třetí osoby daňový subjekt, je povinen současně s návrhem sdělit správci daně

potřebné údaje o této třetí osobě a informaci o tom, které skutečnosti hodlá účastí této třetí osoby prokázat

nebo vysvětlit, popřípadě jiný důvod účasti. Není-li návrhu vyhověno, správce daně o tom vyrozumí daňový

subjekt s uvedením důvodu.

(7) Správce daně po provedeném dokazování určí, které skutečnosti považuje za prokázané a které nikoliv a

na základě kterých důkazních prostředků; o hodnocení důkazů sepíše úřední záznam [TK2/ac], pokud se toto

hodnocení neuvádí v jiné písemnosti založené ve spise.

Figure 2.1 Example of analysed text after completion of the OER analysis.

O
E

R
analysis

19

Tax
administrator

Tax
subject Expert Witness Third person

participating proceedings
Law

enforcement

Official decision creation
proposer (AR1) X

Official decision creator
(AR2) X

Facts submitter (AR3) X

Expert report creator (AR4) X

Testimony attestant (AR5) X

Special records creator
(AR6) X

Tax negotiator (AR7) X

Table 2.2 Subject-Actor Table of tax administration process, part 1.

20
T

ax
adm

inistration
as-is

analysis

Tax
administrator

Tax
subject Expert Witness Third person

participating proceedings
Law

enforcement

Proceedings participant
(AR8) X

Summons executor (AR9) X

Participant attachment
executor (AR10) X

Entitlement to compensation
decisive person (AR11) X

Cost of proceedings payer
(AR12) X

Table 2.3 Subject-Actor Table of tax administration process, part 2.

OER analysis 21

P1

P2 P3 P4 P5 P6

P7 P8 P10

P11

Valiadated facts
are submitted

Expert report
is created

Witness
testimony is

created

Tax is
negotiated

Participant is
summoned

Participant is
attached

Official
decision is

created

Entitlement to
compensation is

assessed

Cost of
proceedings are

paid

Special
records are

created

0..1

0..1 0..10..10..*

P9

Other
participant

participated in
the proceeding

0..*

0..1

Figure 2.2 Interaction Structure Diagram of tax administration process.

2.2.3 Composing the essential model
The third step is based on the composition of the essential model. As mentioned above, the
essential model is used to understand the interaction structure of an organization or, in this
case, the law defining the tax administration process. In this thesis, the Interaction Structure
Diagram shown in Figure 2.2 is used to express the tree structure of the essential model. The
Interaction Structure Diagram uses the products that correspond to the found transaction to
present the overall structure of the process.

As can be seen from the diagram, the process of official decision creation consists of two
sub-processes that are crucial for the decision creation. Additionally, five sub-processes can be
performed based on each case’s specific circumstances. Furthermore, three previously found
transactions depend on third person participation in the proceedings. The necessity of each
transaction is defined with a cardinality that can be seen near the association in the diagram.
By default, the cardinality is 1 (the sub-process is mandatory), but its value can be specified
to express the need for the corresponding sub-process. For example, the creation of the expert
report is not necessary in each case, so its cardinality is defined as 0..1, which means that the
activity can be performed, but it is not crucial, and in some cases, the expert report is not created.
In the same way, cardinality 0..* shows that for the determination of tax can be necessary the
creation of multiple testimonies or participation of several persons.

22 Tax administration as-is analysis

summons
executor

expert report
 creator

tax subject

CTAR01

participant
attachment

executor

facts
submitter

T2

testimony
attestant

T4

0..*

special
records
creator

T5

proceedings participant

T9

0..*

cost of
proceedings

payer

T11

0..1 0..1

0..1

rq

official decision creator

T1

T4

T7
rj

T8

entitlement to
compensation
decisive person

T10

T3

0..1

tax
negotiator

T6

0..1

Figure 2.3 Coordination Structure Diagram of tax administration process.

2.2.4 Validating the essential model
As recommended by Dietz and Mulder [17], the final step of the OER analysis involves validat-
ing the previously performed steps. This step focuses on verifying the essential model and its
transactor roles to ensure that the claims made by the model are accurate.

The validation procedure confirms that the construction of the essential model and other
constructs with minor changes (which are already included in the diagram and tables presented
in the previous sections to show the final correct results of OER analysis) comply with all
validation rules that come from validation from ontology. This emphasizes that the essential
model and constructs defined in the previous steps are valid and adhere to the techniques used
to achieve essence and simplicity in DEMO.

2.3 Coordination Structure Diagram
The first created model, the Cooperation Model, is represented by a Coordination Structure
Diagram. The construction of the model itself is based on the 11 transactions that were found
during the OER analysis and were formerly presented in an Interaction Structure Diagram. The
Coordination Structure Diagram of the tax administration is shown in Figure 2.3. The diagram
displays all the found transactions as well as the overall coordination of the actors who are
responsible for the completion of the associated activities.

The actors who perform the acts are named as recommended by Dietz and Mulder [17].
The actor role names correspond to the name of the transaction, of which the actor is the

Object Fact Diagram 23

executor, and the final product of the transaction. The primary purpose of the naming is to
avoid uncertain actor names or, even worse, naming actors after real-world persons. Due to the
proposed standardized naming conventions, the actor’s associated transaction and its product
are clearly visible and expressive.

To summarize the presented model, the process itself starts with the tax subject proposing
the official decision creation. The creation of the official decision, for which the official decision
creator is responsible, consists of several crucial activities and some activities that are unnecessary
in certain cases, as defined by the cardinality expressed in the same way as in the Interaction
Structure Diagram case. The main part of the official decision creation corresponds to the
submission of the facts based on which the tax is determined. As the facts may not be sufficient
for tax determination, the official decision creator can initiate the processes of expert report
or testimony creation, as well as the processes of tax negotiation or third person proceedings
participation. At the end of the creation process, the payment of the proceedings cost is realized.

The third-person participation is initiated for the purpose of additional contribution beyond
the information collected from other activities. To compel the participants to participate in the
proceedings, they are firstly summoned. If they refuse the summons, the attachments of the
participants are performed by the attachment executor, as defined by the arrow between the
transactions (rejection of the summons initiates the request of attachment). If the participant
loses a verifiable profit due to participation in the proceedings, he can ask for compensation.
The decisive person determines the entitlement to compensation.

2.4 Object Fact Diagram
To visualize the products of the transaction, the Fact Model is used. The Object Fact Diagram
shown in Figure 2.4 represents the Fact Model of the tax administration and emphasizes the data
aspect of the process. In comparison to the Coordination Structure Diagram, which focuses on
the overall structure of the process, the Object Fact Diagram provides an overview of the values
and information that occur during the process execution, as well as the states of the entities
involved.

The model includes two core entity types: Official decision and Proceedings participant. The
connection between these types is established by the property type the participant of [official
decision] is [proceedings participant]. Additionally, the model contains entity types corresponding
to the actions required to determine the tax and create the official decision.

In addition to the element types, the code of law that describes the tax administration process
implies additional attribute types. The element type official decision includes the attribute
type date of publication and tax amount. The attribute types negotiated tax amount, cost of
proceedings amount, and compensation amount are used to define the negotiated tax, the cost of
the proceedings, and the compensation of the participant, respectively.

2.5 Other models
DEMO defines two additional types of models. The Action Model describes the manifestation
of a construction, while the Process Model provides a more detailed definition of the effects of
each act. However, since the Cooperation Model and Fact Model, along with the e-TRT of each
transaction and Subject-Actor Table, are sufficient for creating a BPM system to support the
tax administration process, these models are not included in this thesis.

Creating the Process Structure Diagram to represent the Process Model itself is not crucial
because most transactions are initiated by the promise of the official decision creation or proceed-
ings participation transactions. Moreover, the executions of the transactions representing the
sub-processes of official decision creation are mutually independent. The only exception in the
entire process involves the summons-attachment dependency, which has already been explained.

24 Tax administration as-is analysis

the paritcipant of [official decision]

is [proceedings participant]

OFFICIAL DECISION

date of publication {DAY}
tax amount {MONEY}

COST OF PROCEEDINGS - PAID
OFFICIAL DECISION

the cost of proceedings of [official
decision] is paid

cost of proceedings amount {MONEY}

T11

T1

[official decision] is
created

FACT SUBMITTED OFFICIAL
DECISION

the fact of [official decision] is
submitted

T2FACT
the fact of [official decision]

is [fact]

EXPERT REPORT CREATED
OFFICIAL DECISION

the expert report of [official
decision] is created

T3EXPERT REPORT
the expert report of [official decision]

is [expert report]

the expert report creator of
 [expert report] is [expert]

EXPERT

TESTIMONY CREATED OFFICIAL
DECISION

the testimony of [official decision]
is created

T4TESTIMONY
the testimony of [official decision]

is [testimony]

the testimony attestant of
[testimony] is [witness]

WITNESS

SPECIAL RECORD CREATED
OFFICIAL DECISION

the special record of [official
decision] is created

T5SPECIAL RECORD
the special record of [official decision]

is [special records]

TAX NEGOTIATED OFFICIAL
DECISION

the tax of [official decision] is
negotiated

negotiated tax amount {MONEY}

T6

PARTICIPANT SUMMONED
PROCEEDINGS PARTICIPANT

the participant of [proceedings
participant] is summoned

T7

PARTICIPANT ATTACHED
PROCEEDINGS PARTICIPANT

the participant of [proceedings
participant] is attached

T8

T9

[proceedings participant] is
participated

ENTITLEMENT TO
COMPENSATION DECIDED

PROCEEDINGS PARTICIPANT

the entitlement to
compensation of

[proceedings participant] is decided

compensation amount {MONEY}

T10

PROCEEDINGS
PARTICIPANT

TAX SUBJECT

the proposer
of [official decision]

is [tax subject]
TAX ADMINISTRATOR

the creator
of [official decision]

is [tax administrator]

Figure 2.4 Object Fact Diagram of tax administration process.

2.6 Summary

The presented state of the as-is analysis succeeds in its purpose of providing a formal foundation
for subsequent BPMN models and BPM system and extracting the fundamentals from the tax
administration process definition. The result of the analysis consists of the Coordination Struc-
ture Diagram and Object Fact Diagram, which together contain substantial information, as well
as other constructs that emerge from the OER analysis, such as actor definitions and detailed
transaction descriptions. All of these models and constructs can be found in the repository
corresponding to the presented case study, which is part of this thesis.

During the OER analysis of the tax administration process, a total of 11 transactions were
identified. If the law was defined ideally from the DEMO perspective, which means that all
coordination acts were specified, it would be possible to identify 110 described coordination acts
in total. However, the vast majority of coordination acts are performed tacitly, in other words,
they are performed implicitly or can be deduced from the presence or absence of other acts.

Out of the 110 coordination acts that could be specified, only 31 were explicitly defined. The
definition of the remaining 79 coordination acts can usually be derived from the text or is absent
completely, meaning that 72% of the coordination act definitions are missing. To summarize the
specified and unspecified types of acts, Table 2.4 is presented.

The most specified types of coordination acts are declare and request, with only 27% and 36%
of transactions missing their definition, respectively. The most persuasive argument for this is

https://github.com/matouda7/tax-administration-digitization

Summary 25

that declare and request are acts that shape the product of the transaction itself. In comparison,
the promise act is specified in only 2 transactions, corresponding to 82% of transactions missing
its definition. This is due to the large number of tacit declarations of the act. The execution of
the promise act can, in most cases, be deduced from context.

Furthermore, revokes were specified in only a few cases. In total, any type of revoke of basic
coordination act type was defined in 4 transactions. In other words, 91% of revoke definitions
were missing from the description of transactions in the code of law.

Specified Not Specified Missing information
Standard transaction pattern

Request 7 4 36%
Promise 2 9 82%
Decline 3 8 73%
Declare 8 3 27%
Reject 4 7 64%
Accept 3 8 73%
Total 27 39 59%

Revokes
Revoke request 2 9 82%
Revoke promise 1 10 91%
Revoke declare 1 10 91%
Revoke accept 0 11 100%
Total 4 40 91%

Complete transaction pattern
Total 31 79 72%

Table 2.4 Missing transaction steps.

26 Tax administration as-is analysis

Chapter 3

Digitization to-be analysis

After describing the as-is analysis in the previous sections, this chapter will focus on the to-be
analysis of the tax administration process defined in the Czech code of law. The goal of this
chapter is to create and present a to-be state of the process, which can subsequently be used as
a template for the creation of the final BPM system supporting the process that was analysed
using DEMO.

3.1 Camunda Modeler
To capture the to-be state of the process, a BPMN level 2 to-be model needs to be created.
In addition to the workflow engine and other components helping with orchestration, Camunda
offers a modeler that can be used to create and edit the BPMN models. Currently, with the
release of Platform 8, Camunda has introduced a new Modeler, and there are now two ways
to create a BPMN model using Camunda products. A new Web Modeler has been added to
the well-known and widely used Desktop Modeler in order to conform to the recent direction
of Camunda, which is based on a Software as a service (SaaS) software distribution system, as
described by Tavlasto [30].

The changes in comparison with the Desktop Modeler are mainly based on the added possi-
bilities for collaboration, which consider sharing of the models or real-time collaborative model
creation. Both the Web and the Desktop Modeler offer the same constructs that are used to
create BPMN 2.0 models, which can further drive the process engine (meaning the possibility
of creating the BPMN executable model), as defined in [31]. Since the Desktop Modeler covers
the same amount of BPMN 2.0 elements that are used in process modeling and the case study
of the thesis is based on the Self-Managed version of Camunda Platform 8 (an alternative to
the SaaS version, more thoroughly described in the chapter Implementation of proof-of-concept
BPM system using Camunda Platform), all of the further presented BPMN models are modeled
using the desktop version of the Camunda Modeler.

3.2 To-be model
The to-be model, which is divided for better clarity into Figures 3.1 and 3.2, represents the to-be
state of the tax administration process after the deployment of the BPM system. The foundation
for the to-be model is the as-is analysis that uses DEMO described in the previous chapter. The
activities are derived directly from the presented DEMO models or can be derived from the
extended Transaction Result Tables. The model is compliant with well-established conventions
that are based on the Czech code of law.

27

28 Digitization to-be analysis

Figure 3.1 Part 1 of analytical BPMN To-be model of tax administration process.

To-be model 29

Figure 3.2 Part 2 of analytical BPMN To-be model of tax administration process.

30 Digitization to-be analysis

3.2.1 Participants
The to-be BPMN model is constructed from the perspective of the management system. The
main pool, named Official decision management system, represents the system itself. In addition
to the management system pool, the to-be model or models of sub-processes contain 11 other
pools that characterize the participants of the tax administration process. The participation
of these participants during the execution of the process is or can be essential for the correct
determination of the tax (as the as-is analysis showed and the to-be model implies, some of the
actions are not necessary for the determination of the tax in specific cases, because of that the
participation of the participants responsible for the actions is not obligatory). Some of the pools
are collapsed as the process of these parties is not known in detail, and it is out of the scope
of the modeled process. The participants that can occur during the tax administration process
execution are:

Tax subject

Official decision creator

Testimony creator

Witness

Expert

Special records supervisor

Participant supervisor

Summons executor

Attachment executor

Proceedings participant

Tax negotiator

Tax subject is the person whose official decision is created during the process execution.
This participant is responsible for the initiation of the proceedings that officially begin with the
sending of the proposal to create the official decision.

Official decision creator accomplishes most activities during the process execution. The
participant mainly communicates with Tax subject to obtain the information necessary for the
tax determination and performs tasks that correspond to the creation of the official decision.
These activities include, for example, getting and validating facts presented by Tax subject or
creating the final document. Aside from that, Official decision creator also decides on additional
requirements that are crucial for the correct determination of the tax and the completion of the
tax administration process, such as creation expert opinion or getting witness testimonies.

The responsibilities for completing additional requirements are distributed among multiple
participants. Testimony creator is responsible for communicating with Witnesses to add nec-
essary testimonies. Similarly, Participant supervisor collaborates with Summons and Attach-
ment executors to obtain the contributions of Proceedings participants in the tax administration
process. Expert has the responsibility for creating expert reports. Similarly, Special records su-
pervisor should communicate with Tax subject to fulfill the need for special records creation.
Lastly, Tax negotiator is responsible for tax negotiation if it is necessary for the correct process
accomplishment.

To-be model 31

Figure 3.3 Validating facts sub-process.

Although the responsibilities for completion of diverse tasks are divided among multiple
participants, in the final BPM system that will support the tax administration process, a real-
world person can have multiple participant roles. For example, a tax administrator (a real-
world person) has the main responsibility for creating the final decision. In addition to the
obvious Official decision creator role, the roles Testimony creator or Special records supervisor
can be assigned to the tax administrator, as he may be responsible for creation of testimony and
obtaining of special records. The same applies to Tax negotiator. On the other hand, in the real-
world, the persons responsible for the Expert and Summons/Attachment executor activities will
differ in most cases from the persons responsible for the performance of the rest of the activities
as they need to have the required education and powers, respectively. The partition of tasks
between more participants with fewer activities is selected to achieve better intelligibility and
clarity of the model from the perspective of participant responsibilities.

3.2.2 Process description
The reason why the BPMN model is presented is its ability to describe the orchestration of
the activities required to execute the process. The whole Official decision management system
consists of 10 tasks and 6 sub-processes that contain several additional tasks. Considering the
tasks that are part of the sub-processes and the tasks that are placed in the pools representing
participants described in the section before, the BPMN model consists of 58 tasks in total.

The order of the tax administration process activities is shown in BPMN models using the
sequence flow element (solid line arrows), while the message flow (dashed line arrows) represents
the path of messages between the pools.

As mentioned above, the process itself starts with the proposal to create the official decision.
Official decision creator reacts to the proposal by initiating the process within the Official deci-
sion management system pool. After that, the initial information about Tax subject is submitted
to the system. To register all the information that can be essential during the process, Official
decision creator collects additional information from Tax subject.

Then follows the most important sub-process of the whole tax administration process that
is focused on the collecting and validating presented facts. The Validating facts sub-process can
be seen in Figure 3.3. Firstly, all the information that corresponds to the facts presented by Tax
subject is written down and stored. Secondly, Official decision creator is able to go through the
submitted information and check if everything is valid. In case the information is not valid, Tax

32 Digitization to-be analysis

Figure 3.4 Testimony creation sub-process.

subject is requested to present the facts again in a correct way. If the validation of the presented
facts does not reveal any flaw, the sub-process ends. During the sub-process, the canceling
impulse that is typically based on the information gained during the process of obtaining facts
can be given. This impulse is represented in the model as an interrupting message event.

Next, a check of the sufficiency of the presented facts for the creation of the official decision
takes place. During the activity, Official decision creator decides whether the facts, together
with additional information, are sufficient for the creation of the official decision or whether
additional steps are crucial to complete the process.

If the happy path (kind of a default scenario with a typically positive outcome without devi-
ations, exceptions, or errors as defined in [32]) is followed, the final check of the values that are
crucial to the decision creation is completed before the official decision is created and published.
The creation consists of determining the amount of tax that must be paid, together with the
justification of the decision containing the reasons that lead to the determined amount of tax.
With all the necessary information submitted and saved, the document representing the official
decision is generated. Publication of the official decision is based on sending the signed decision
to Tax subject and also saving it to the appropriate system.

The last activity of the whole process ensures that the proceedings costs are paid. Official
decision creator interacts with Tax subject to pay the costs that occur during the activities
corresponding to the determination of the tax and the creation of the official decision.

If the information arising from the presented facts is not sufficient for the tax determination,
Official decision creator can opt to obtain the necessary additional information. In that case,
witness testimonies, expert report, or special records must be created if required. Similarly, the
acquisition of proceedings participation contribution can be added to the process. Each of the
additional steps is modeled as a separate sub-process. These sub-processes are shown in Figures
3.4, 3.5, 3.6, and 3.7.

The sub-processes of Testimony creation and Expert report creation contain the activities that
correspond to obtaining the testimony and creating the expert report, respectively. In the case
of testimony creation, saving information about the witness and, more importantly, notifying
Tax subject about the intention to create the testimony must precede, as revealed by the as-is
analysis.

The sub-process of Special records creation consists of multiple activities. Firstly, Tax subject
needs to be notified about the obligation to create special records. The obligation attributes are

To-be model 33

Figure 3.5 Expert report creation sub-process.

Figure 3.6 Special records creation sub-process.

34 Digitization to-be analysis

Figure 3.7 Proceedings participation sub-process.

based on information that has been saved before. After a required time (the time is not specified
in the code of law, as it can vary in different cases), Special records supervisor collects the special
records and decides whether the information collected is valid and whether the structure and
content comply with the requirements. If defects or a lack of information are found, Special
records supervisor enlightens Tax subject about the deficiencies and imposes the obligation to
create special records for a specified period of time again.

To accomplish the Proceedings participation sub-process, firstly the information about Pro-
ceedings participant needs to be filled in. Later, the corresponding person who has the powers
summons the participant. In case the summons is not accepted, the participant attachment
takes place. The next step is based on obtaining and saving the participant’s contribution,
which can vary in different cases. The contribution of participant can be anything that can help
with tax determination. The final steps consist of assessing the entitlement to compensation for
participation and eventually its payment.

Since circumstances can change during the execution of these sub-processes, the gained in-
formation can become unnecessary. In this case, waiting for sub-process completion is delay-
ing. That is the reason why the intermediate interrupting boundary event is attached to the
sub-processes. The event ensures the termination of the sub-process once the message that
corresponds to a change of circumstances is caught.

Following the accomplishment of the additional sub-processes (or its possible interruption),
Official decision creator decides whether the current information is sufficient to determine the
tax and create the official decision. If the information is insufficient, the final tax amount must be
negotiated. Tax negotiation visible in Figure 3.8 is the last tax administration sub-process. The
negotiation itself consists of one activity – Get negotiated tax. During the sub-process, the final
amount of tax is negotiated together with Tax subject. In case the Tax negotiation sub-process
is canceled, the official decision creation is postponed.

Summary 35

Figure 3.8 Tax negotiation sub-process.

3.3 Summary
The result of the to-be analysis of the tax administration process represents a proposed solution
that can be used to implement a management system supporting the process. The proposed
to-be state, visualized using a BPMN level 2 model, corresponds to the state of process after the
completion of digitization.

Most of the activities, as well as the participants, are directly derived from the materials
created during the as-is analysis. DEMO analysis provided a solid formal foundation for further
BPMN modeling and significantly helped during the process of model creation.

However, the law modeling differs significantly from the modeling of standard business pro-
cesses. Although the tax administration process can be roughly considered a business process,
the need to comply precisely with legislation makes the modeling process notably more de-
manding. Moreover, thorough digitization would require simultaneous change approvals of the
corresponding part of the code of law.

Even though the current state of Czech legislation does not allow the creation of a BPM
system consisting mainly of automated activities, the proposed system can be used to orchestrate
the activities and people responsible for their accomplishment during the process execution.

36 Digitization to-be analysis

Chapter 4

Implementation of
proof-of-concept BPM system

using Camunda Platform

This chapter will focus on the implementation of a proof-of-concept BPM system based on
the Camunda Platform 8, which supports the tax administration process as designed in the
previous chapter. Firstly, the hosting possibilities of Camunda Platform 8 offered by Camunda
will be covered. Next, the architecture of the system, including all its components, will be
described. The creation of a Logical data model, an executable BPMN model, as well as the
definition of Camunda Forms and all implementation details necessary for successful deployment
and execution, will be presented. In addition to the executable model, part of the implementation
is based on the Camunda client, which contains job workers. Finally, testing will be described
and an overview of the final BPM system will be provided in order to clarify the ways in which
it can be used.

The entire implementation of the proof-of-concept BPM system can be accessed in the repos-
itory corresponding to the thesis.

4.1 Camunda hosting

With the release of Platform 8, Camunda offers two versions of hosting that can be used to
deploy and run the modeled process. Camunda Platform 8 is offered as a Software as a service
(SaaS) or a Self-Managed solution, as described in [33]. The difference, as the names imply, is
based on the way in which the application is run.

4.1.1 Software as a service
With the SaaS version, Camunda is responsible for hosting, and the care about the technical
setup is shifted from the customer who wants to create the BPM system based on Camunda’s
solution. The main benefits of the Software as a service solution correspond to the fact that the
installation and technical setup of the application are provided by Camunda. Due to this, the
customer can fully focus on model creation and task and microservice orchestration, as mentioned
in [33].

37

https://github.com/matouda7/tax-administration-digitization
https://github.com/matouda7/tax-administration-digitization

38 Implementation of proof-of-concept BPM system using Camunda Platform

4.1.2 Self-Managed
As an alternative to using Camunda Platform 8 through SaaS, Camunda offers Self-Managed
version that is hosted by the customer. The creation of the overall process automation solution
and the work with Camunda Platform 8 are similar to the Software as a service version, as written
in [34], but the system in the case of Self-Managed version runs on the customer’s infrastructure,
providing a better overall overview during the development process and production deployment.
However, since the behavior of the system is entirely managed by the customer, installation,
setup, performance, security, uptime, redundancy, and resource allocation must be considered,
as described by Levy [35].

Camunda offers the following options to run Platform 8 in a Self-Managed fashion, as defined
in [36]:

Helm/Kubernetes

Docker

Manual

According to [36], Kubernetes and Docker are recommended options to run Camunda Plat-
form 8 Self-Managed in production use. Additionally, the Docker Compose configuration is
provided to enable running Camunda Platform 8 on a developer machine, although it is not
optimized for production usage.

The manual option involves running the Java application on a local or virtual machine that
must provide a supported Java Virtual Machine (JVM). Even though this approach offers signifi-
cant flexibility by running the Camunda platform on a virtual machine or “bare metal”, Camunda
does not recommend it due to the detailed and complex configuration required to ensure correct
interaction between components, as described in [36].

The Docker option has been selected for further development of the BPM system because it
allows the creation of the proof-of-concept solution that is close to the production without the
need of complex configuration and because Camunda provides a Docker Compose configuration
for local development. However, the solution presented further in the thesis can also be run with
minimal adjustments using Kubernetes or Manual options, or even the SaaS version of Camunda
Platform 8, as the underlying principles and most of the implementation details remain the same,
as written in [34].

4.2 Architecture
The entire Camunda Platform 8 is composed of several components, which can be considered
mutually communicating services. These components are offered to achieve the orchestration,
observation, and analysis of microservices together with human tasks. The overall architecture
of Camunda Platform 8 Self-Managed is shown in Figure 4.1. Apart from the Camunda Mod-
eler, which was already described in the previous chapter, the documentation of the Camunda
Platform 8, specifically the Self-Managed version [34], defines the following components:

Zeebe workflow and decision engine

Identity

Operate

Tasklist

Optimize

Connectors

Architecture 39

Figure 4.1 Architecture of Camunda Platform 8 Self-Managed [37].

4.2.1 Zeebe engine
Zeebe is the BPMN workflow engine that powers Camunda Platform 8, as defined in [38]. In order
to ensure resilience, Zeebe is based on a fail-over architecture that also supports geo-replication
across data centers to provide high availability. The architecture of Zeebe itself is visible in
Figure 4.2. According to [39], the Zeebe engine is based on four main parts:

Brokers

Gateways

Exporters

Clients

The Zeebe broker is the distributed workflow engine that tracks the state of active instances
of processes. The broker does not include any business logic. Its only responsibilities correspond
to processing commands that have been sent by clients, storing and managing the state of active
process instances, and assigning jobs to job workers, as described in [39]. Multiple Zeebe brokers,
which form a peer-to-peer network in order to eliminate a single point of failure, create Zeebe
cluster.

The gateways serve as an entry point to the Zeebe cluster. Their goal is to forward requests
to brokers. In the Zeebe workflow engine, the gateways are stateless and sessionless. To meet
the needs of load balancing and high availability, the gateways can be added and appropriately
configured.

According to the Zeebe documentation [39], “the exporter system provides an event stream
of state changes within Zeebe.” The purpose of the streamed data can vary, however, in most
cases, it is used to monitor the current state of the process, track incidents, and analyse historical
process data to optimize the process in the future. To provide data streaming, Zeebe includes
an out-of-the-box Elasticsearch exporter.

Elasticsearch is a distributed search and analytics engine for various types of data, as defined
in [40]. It is used as a tool to store imported historical data, as well as reports, dashboards,

40 Implementation of proof-of-concept BPM system using Camunda Platform

Figure 4.2 Architecture of Zeebe [39].

or alerts. Furthermore, the Self-Managed version also includes a Kibana profile in the Docker
Compose file. According to [41], Kibana is a tool that can be used to search and visualize the
data stored in Elasticsearch.

Since the gateways, brokers, and exporters are pre-configured in Camunda Platform 8 to
provide the service, custom actions and additional implementation are mainly based on the
clients. The client is used to send commands to Zeebe to deploy the process, perform business
logic, or handle operational issues. In other words, the client is a microservice that connects to
the Zeebe cluster to activate, complete, or fail jobs, as the brokers do not execute any business
logic, as referred to in [39].

The connection between clients and Zeebe gateways is done using gRPC, which utilizes the
HTTP/2-based transport protocol. Although Zeebe officially includes support for Java and Go
clients, gRPC makes it possible to create clients in other programming languages as well, as
described in [42].

4.2.2 Identity
Identity is the component within Camunda Platform 8 Self-Managed that is responsible for man-
aging and ensuring authorization and authentication, as defined in [43]. The Identity component
is used to recognize different users based on their user accounts and determine the actions they
are permitted to perform.

The Identity component allows the management of applications, APIs, permissions, and roles.
Using the permissions assigned to the applications, access to the components can be controlled.
APIs refer to a service that provides various resources. Roles represent a way to group sets of
permissions. Subsequently, these roles are assigned to real-world users to define their permissions
as described in [43]. To configure the roles and APIs and manage permissions, Camunda Platform
8 Self-Managed offers an Identity UI.

Principles of Identity+ are based on Keycloak, a single sign-on solution used for web appli-
cations and RESTful web services, as described in [44]. In Camunda Platform 8, it is used as an
identity and access management solution to secure access to other components such as Tasklist,
Operate, and Optimize.

4.2.3 Operate
Operate is a tool used in Camunda Platform 8 to monitor and troubleshoot process instances
running on the Zeebe Engine. In addition to providing visibility into running and completed

Architecture 41

process instances, the Operate component also offers the possibility to resolve incidents that
occur during process execution or update process instance variables using built-in operations, as
written in [45].

Using the Operate component, process instances can be easily retried or canceled if required,
for example, due to underlying problems or incidents. These operations can also be performed
for multiple process instances at once using the specified selections. The particular problems
that occurred during process execution can be solved using the Operate component without the
need to cancel or retry the execution of the instance. Errors during execution can occur due to
erroneous and missing variable values, which can be resolved by editing and adding variables,
respectively, as described in [45].

4.2.4 Tasklist
Camunda Platform 8 offers Tasklist to orchestrate tasks that require manual work to be com-
pleted. Tasklist is an application that provides a solution to processes containing user tasks
in Zeebe and controls the human workflow crucial for the execution of the process through an
interface for manual work, as defined in [46].

Tasklist is based on user notification principles. When a process is executed, the Tasklist sys-
tem notifies the user of the need to complete a user task if the user is assigned to it. Additionally,
the user can easily claim the task when working on its completion, indicating to other users that
they can focus on other available tasks. This provides flexibility in managing multiple process
instances while also eliminating the possibility of users being unaware of the need to complete
tasks, as well as avoiding multiple users working redundantly on the same task, which can lead
to prolonged process execution.

To complete the task, the system requires interaction with the user after they claim the
task. In most cases, this interaction involves filling out the Camunda Form, updating or adding
variables, or simply completing the task by marking it as done if the action is fully independent
of the system. If a user is unable to complete the task, it can be unclaimed so that anyone else
with the required skills or knowledge can claim it.

4.2.5 Optimize
To thoroughly and effectively complete process automation, the following three key aspects must
be considered, as defined in [47]:

Design

Automate

Improve

To design and automate the process, the components described above, such as Tasklist and
Optimize, are used. Because Camunda Platform 8 is built to handle all three aspects of process
automation, it contains the Optimize component, which is used to leverage process data gained
during executions. Optimize offers business intelligence tools for users to collaboratively access
reports, find bottlenecks, and examine areas for process improvements, as described in [47].

Reports and dashboards created with Optimize consist of several actionable insights that
help discover improvement possibilities and find areas responsible for process execution delays.
Both reports and dashboards can be assembled from different summarizing parts, such as the
numerically expressed incident rate, the number of completed executions, or even heat maps
based on the average distribution of total duration between process activities.

42 Implementation of proof-of-concept BPM system using Camunda Platform

4.2.6 Connectors
According to the documentation [48], Connectors are reusable building blocks that perform
integration with external systems. They are represented as separate tasks in the BPMN process
model and can be configured with parameters specific to the external system. Using a Connector
can eliminate the need to write additional code to integrate the external system.

Camunda Platform 8 (available in both SaaS and Self-Managed version) offers out-of-the-
box Connectors that can be used for various tasks. For example, the SendGrid Connector
enables sending emails directly from the BPMN process, the Google Drive Connector can be
used to create folders or files from a Google Drive template, the REST Connector allows for
easy requests to REST APIs and using the response in the following step of the process, and
the Kafka Producer Connector can produce a message to Kafka from the BPMN process task.
In addition to these, another 10 out-of-the-box Connectors are currently available in Camunda
Platform 8 as referred to in [49].

Aside from the out-of-box Connectors, custom Connectors can also be developed when using
the Self-Managed version of Camunda Platform 8. The implementation of custom Connectors
is based on the Connector SDK, which allows for development in Java with already provided
APIs for common Connector operations, and the Connector Template, represented by a JSON
configuration file defining the appearance of the BPMN element and the ways in which it can be
further configured.

4.3 Logical data model
To provide a conceptual representation of the data used in the system, the Logical data model
is created. According to [50], it helps to define the structure and relationships between the data
elements and provides a clear understanding of the meaning and important rules associated with
the data.

The resulting Logical data model, which represents the data that occur during the process
execution, is shown in Figure 4.3. The elements shown in the Logical data model are mostly
based on the as-is analysis presented in one of the previous chapters, as they are directly stated
in or arise from the Object Fact Diagram.

The main element of the model is Official decision, whose creation is the goal of the whole
process. Data elements related to Official decision include Tax subject, Presented facts, Cost
(representing the costs of the proceedings that correspond to tax administration), and data
elements based on additional information such as Testimony, Expert report, Special records, and
Participant contribution. The parties to the proceedings must have defined their Addresses,
and the participant, as mentioned in the previous chapters, can have the right to compensation
represented by the Compensation component in the model.

4.4 Executable BPMN model
The main part of the implementation of the BPM system is formed by the executable BPMN
model, which is mainly based on the analytical BPMN model presented in the previous chapter.
This model represents the backbone of the entire implementation, as the additional implemen-
tation details are mostly attached directly to its activities, gateways, or flow elements. Along
with the necessary configuration and all the implementation details, the executable model can
be deployed to the Zeebe process engine.

As can be seen in Figures 4.4, 4.5, and 4.6, which contain the executable BPMN model of
the tax administration process (divided into three parts for better clarity), the overall activities
and their orchestration are similar to the analytical model. However, the executable model is
focused exclusively on Official decision management system.

Executable BPMN model 43

Figure 4.3 UML Logical data model of tax administration.

Figure 4.4 Part 1 of executable BPMN model of tax administration process.

44 Implementation of proof-of-concept BPM system using Camunda Platform

Figure 4.5 Part 2 of executable BPMN model of tax administration process.

Figure 4.6 Part 3 of executable BPMN model of tax administration process.

Executable BPMN model 45

The resulting process model mainly contains user tasks, as human involvement is necessary
during most of the activities. The main benefit of the BPM system in this case is based on the
advanced orchestration of human activities that are required to be executed for the successful
completion of the tax administration process. This enables simplified communication between
people during the official decision creation process.

The executable model contains additional tasks compared to the analytical model that are
essential for implementation, such as the Initialize creation task, responsible for the initialization
of the process variables and generating the unique identifier of the process. Other tasks that
occur newly in the executable model have similar purposes.

The most significant changes are not visible from the model itself. These changes are based
on implementation details that are typically hidden in the XML specification of the model. To
deploy and correctly run the modeled process using the workflow engine, such as that offered by
Camunda, these details need to be specified.

4.4.1 Forms description
One of the implementation details that is not directly visible from the executable BPMN model is
the specification of Camunda Forms. As defined in [51], Camunda Forms are used to design and
configure forms that can be connected to a user task to implement a task form in the final BPM
system. After deploying the model containing configured Camunda Forms, Tasklist imports the
form schema and uses it to render the form of every task assigned to it.

Camunda Forms, as well as the BPMN executable model, can be designed and configured
using the Camunda Modeler. Once the design and configuration are done, the created form,
which is in the case of the Desktop Modeler represented by JSON, can be assigned to one or
more user tasks.

The design process of the Camunda Form consists of the composition of required Form Ele-
ments. According to the documentation [52], the following Form Elements are currently available
in Camunda Platform 8:

Text view

Text field

Text area 1

Number field

Datetime 1

Checkbox

Radio

Select

Checklist 1

Taglist 1

Image view 1

Button
1Supported by newest version of Camunda Platform – Camunda Platform 8.2, the elements are not available

in older versions.

46 Implementation of proof-of-concept BPM system using Camunda Platform

The configuration part is typically based on the specification of the behavior, which is defined
using the properties of each Form Element, as well as the definition of data entry, since most of
the Form Elements are intended to be bound to a variable using a data binding. To bind the
variable to the Form Field (Form Element that can be bound to a process variable), the Key
attribute is used. This attribute serves as an identifier to map the data of the respective field
during the initial loading and also during the submission of the form, as described in [53].

Aside from data binding, the Form Element definition can optionally contain other additional
attributes. These attributes are used to configure if the user can edit the element, to describe
the required input (email, phone number, or eventually custom expression represented by regex
value), and to define if the element must be filled before submission of the form or if it is possible
to leave it empty.

Because the newest version of Camunda Platform 8 - version 8.2 - offers the option to create
dynamic forms, the visibility of the Form Elements can differ over time. It is possible to leave
the Form Element visible or eventually hide it. This enables the creation of forms that can
change their structure in real-time based on the filled information. For example, in the presented
solution, the form that corresponds to the Check facts sufficiency task is dynamically updated if
the user marks the Required testimony checkbox, as he indicates the necessity to create testimony.
In this case, the new text field is shown to enter the names of witnesses that are used later in
the process execution.

4.4.2 Variables
Variables represent the data of the process instance. Each variable has a name that serves as an
identifier and a JSON value where the data are stored. Camunda Platform 8 supports String,
Number (which can be an integer or decimal number), Boolean, Array, Object, or Null data
types as described in [54].

To understand working with variables, it is necessary to know the basics of variable scopes
and propagation. The visibility of a variable is defined by its variable scope. The root scope is the
process instance itself. When a variable is in the root scope, it is visible and accessible anywhere
in the process. When a process enters a sub-process, a new scope is created. The activities in
this scope can see any variables of this and the parent scopes. On the other hand, activities
outside the scope cannot access the variables defined there. If the names of the variables outside
and inside the scope are the same, the parent scope variable is temporarily covered. In this case,
activities in the child scope cannot access the value of the variable in the parent scope.

In case a variable is merged into a process instance (which happens on job completion or
on message correlation), the variable is propagated from the scope of the activity to higher
scopes. The propagation ends when a scope defines a variable with the same name whose value
is updated. If no scope contains a variable with the same name, a new variable is created in
the root scope. The propagation can be limited using local variables. When a variable is set as
a local variable, it is created or updated in the given scope, regardless of the variable with the
same name in the parent scopes [54].

To create a new variable or customize how variables are merged into a process instance,
the input and output variable mapping can be used. In the process, the mapping is defined
as an extension element under ioMapping. Each variable mapping contains a source and target
expression. The source expression defines the value of the mapping. In most cases, that means
accessing the instance variable that holds the desired value. On the other hand, the target
expression describes where the mapped variable should be stored. As the variable mappings are
evaluated in the defined order, the source expression can access the target expressions of previous
mappings. If one or more output mappings are used, other variables are set as local variables in
the corresponding scope.

To access the variables and eventually calculate the values dynamically, expressions are used.
In Camunda, the expressions are written in FEEL (Friendly Enough Expression Language),

Deployment 47

which is part of the OMG’s DMN specification. Camunda Platform 8 integrates the FEEL Scala
engine to evaluate expressions, as referred to in [55]. Expressions are required in some of the
attributes of BPMN elements. For example, the condition of a sequence flow on an exclusive
gateway, as well as input and output collections of a multi-instance activity, must contain FEEL
expression. Aside from that, FEEL expression represents a powerful tool that can be used in
various cases, as described in detail in [56].

4.4.3 Multi-instance
A multi-instance is one of the constructs in Camunda 8 that is used to run an activity multiple
times. When an activity is marked as a multi-instance using the Camunda Modeler, it basically
works as a for-each loop in standard programming languages. The multi-instance can be any
service and receive tasks, embedded sub-processes, or call activities.

On the execution level, the multi-instance activity consists of two parts. The first part is
labeled multi-instance body and can be considered a container for the instances of the second
part - the inner activity, as described in [57]. Once the activity is entered, the multi-instance
body is activated, and one instance is created for each element of the inputCollection. The
activity is left when each of the instances is completed.

The execution of multi-instance inner activities, which are independent of each other, can
be done either sequentially or in parallel. As the name suggests, during a parallel run, multiple
instances are executed concurrently. On the contrary, in the case of the sequential multi-instance
activity, the instances are executed one at a time. When an instance is completed successfully,
the next one can be created for the following element in inputCollection, as defined in [57].

The inputCollection must contain an expression that defines the collection to iterate over. To
run without an incident (in Camunda Platform 8, an incident represents a problem that occurs
during a process execution), the expression that is evaluated once the multi-instance body is
activated must result in an array of any supported type. To access the current element of the
inputCollection value within the instance, inputElement can be specified. Following that, the
element is stored as a local variable of the inner activity instance under the determined name.

Similarly, the collection of the output is done. Multi-instance defines outputCollection and
outputElement expressions in order to collect the output values. The outputCollection defines a
name for the variable under which the output is stored once the multi-instance body is completed.
The outputElement is used to store the result of each instance. It is created as a local variable of
the instance. To collect the result of the multi-instance activity, this variable must be updated
with the desired output value. When the instance is completed, the outputElement expression is
evaluated, and the result is inserted into outputCollection.

In the presented solution, the sub-processes Testimony creation and Proceedings participation
are marked as sequential multi-instances to be able to create multiple testimonies and involve
multiple participants, respectively. Following the creation of outputCollections testimonyList
and participantContributionList, the service tasks Resolve testimonies and Resolve participant
contributions are used to transform the resulting collections into a form that can be inserted
into a final decision. As the collections in both cases are arrays of Strings, the result of the
transformation is a single formatted String with determined structure that can be directly used
during the official decision generation.

4.5 Deployment

As described before, the implementation of the proof-of-concept BPM system in this case study
is based on the Self-Managed version of Camunda Platform 8. More specifically, the entire
environment consisting of the Zeebe engine, Identity, Operate, Tasklist, Optimize, Connectors,

48 Implementation of proof-of-concept BPM system using Camunda Platform

Elasticsearch, and Keycloak is run locally using Docker. In other words, the resulting BPM
system is a locally running multi-container Docker application.

To define and run these applications, Camunda Platform 8 provides a Docker Compose file
(a YAML file used to configure Docker images). In addition to that, the resulting configuration
of the Zeebe Docker image can also be changed using environment variables, as described in [58].
To start the environment, the Docker Compose command must be issued.

Once the Docker images are running, the BPMN diagram representing the modeled process
can be deployed to the local environment. The deployment of the BPMN executable model is
done using the Desktop Modeler and the Zeebe gateway. Similarly, the instruction to start the
process instance can be sent to the Zeebe engine after the process is successfully deployed.

4.6 Job workers

The executable BPMN model presented in the previous sections, together with the definitions
of variables, expressions, Camunda Forms assigned to user tasks, and additional implementation
and configuration details, can already be deployed to the Zeebe engine. However, since the
model contains several script and service tasks, the execution of the process instance will never
reach the end event. As mentioned above, the Zeebe brokers responsible for process execution
do not include any business logic. Therefore, when script or service tasks are part of the process
model, execution stops at the point where the task is entered. The Zeebe engine creates a job
corresponding to the completion of the task and waits until the job is completed2, as described
in [60].

To complete a job, a job worker is used. In other words, a job worker is a service capable of
performing a particular task represented by a job. Job workers request jobs of a certain type at
regular intervals, which is called polling. The number of requested jobs, as well as the interval,
is configurable in the Zeebe client. If one or more jobs of the requested type are available, the
Zeebe engine will stream the activated job to the worker. When the job is received, the worker
performs the business logic to complete it and sends back a complete or fail command depending
on the possibility of completing the job successfully, as described in [61].

To scale up the processing, many workers can request the same job type. In this case, the
Zeebe engine ensures that each job is sent to only one of the available job workers. Since job
workers must repeatedly request jobs to find one to work on, both the engine and the workers
perform a lot of unproductive work, which is expensive in terms of resource usage. To eliminate
unnecessary work and ensure better utilization of resources, the Zeebe engine supports long
polling. With long polling, a request is kept open while no jobs are available. When at least one
job is created, the request is answered, and the job can be sent to job worker, as defined in [61].

The Zeebe engine also supports job queuing, which enables the decoupling of job creation and
execution. It is always feasible to create a new job, regardless of the actual job worker unavail-
ability. This is possible because Zeebe queues the jobs until workers request them. Additionally,
this increases the resilience of the overall system. Since Camunda Platform 8 is highly available,
job workers do not need to be. Zeebe can queue jobs during any job worker outages, so the
progress will resume once the workers come back online.

4.6.1 Decision generating
Aside from the job workers used to perform the Initialize creation script task responsible for
generating the unique ID of the process based on the name of the tax subject and the current
timestamp, as well as the already described Resolve testimonies and Resolve participant contri-

2In the most recent version of Camunda Platform 8 – Camunda Platform 8.2 it is also possible to implement
a script task using the FEEL expression instead of a job worker as specifies Fromme [59].

Job workers 49

Figure 4.7 UML Package diagram of Zeebe client responsible for completing script and service tasks.

butions script tasks, the main job worker is in control of generating the official decision based on
the information and values obtained during the execution of the process.

To implement the job workers required to complete the jobs created by script and service
tasks, a Spring Boot application, whose structure can be seen in the Package diagram in Fig-
ure 4.7, representing the Zeebe client is created. To use Zeebe as part of the application, the
spring-zeebe-starter dependency must be added. To configure the connection to the Zeebe
broker, the resources folder must include an application.properties file that specifies it.
The specification of the properties defining the connection, when using a locally running Zeebe
engine, can be seen in Code listing 4.1. Firstly, the address of the gateway is defined. As the
presented BPM system is based on the Self-Managed version of Camunda Platform 8, the process
instance is running on localhost. Specifically, the Zeebe gateway is located on port 26500.

After the connection to the broker is established, the application can be connected to Zeebe
by using the @EnableZeebeClient annotation, which enables the injection of the Zeebe client.
Next, the @Deployment annotation is defined. This annotation internally uses the Spring resource
loader to deploy the process model. The resulting definition of the application’s main class
TaxAdministrationApplication is shown in Code listing 4.2.

Using this class definition, the Spring Boot application is now considered a Zeebe client. To
implement job workers, the TaxAdministrationJobWorkers class is created. Job workers are
the methods of this class labeled with a @jobWorker annotation. To specify the job type, the
annotation takes a type attribute. To ensure that the job worker requests the demanded job,
the value passed to this attribute matches the value defined in the executable BPMN model,
specifically the attribute type in service task properties.

zeebe.client.broker.gateway-address=127.0.0.1:26500
zeebe.client.security.plaintext=true

Code listing 4.1 Properties specifiing connection to locally running Zeebe engine.

50 Implementation of proof-of-concept BPM system using Camunda Platform

@SpringBootApplication
@EnableZeebeClient
@Deployment(resources = "classpath:tax_management.bpmn")
public class TaxAdministrationApplication {

public static void main(final String... args) {
SpringApplication.run(TaxAdministrationApplication.class, args);

}
}

Code listing 4.2 TaxAdministrationApplication class definition.

As some of the process variables may be necessary to complete the job, the variables can be
passed to the Spring Boot application method representing the job worker. This can be done by
using the @Variable annotation when defining the input variable of the method. If the name of
the input variable corresponds to the process instance variable, its value is automatically fetched
to the input variable. A second option to access the process variables from the job worker is
much more useful if the number of necessary variables is higher. In this case, a separate class is
specified that contains the required variables as standard Java variables. Each of the variables
must have a defined getter and a specific setter that are used to map the class variables to the
process instance variables and vice versa. Using this approach, the variables are loaded after
labeling the input variable (its type corresponds to the defined custom variable class) with the
@VariablesAsType annotation.

To return a value to the process instance, the return type of the job worker method is typically
Map<String, Object>. The String value represents the name of the process variable, while the
Object value is the returned object.

The definition of job worker that is responsible for generating the official decision based on
the process instance variables and saving it to the file with a filename corresponding to the ID
of the process can be seen in Code listing 4.3.

To generate the PDF document, the DecisionGenerator class that contains a public method
generate is created. The method is responsible for the creation of a PDF file with a given name
and the assembling of the official decision using the values and information gained during the
process execution. The creation of the PDF is based on the methods of the OpenPDF library.

@JobWorker(type = "generatingDecision")
public Map<String, Object> handleGeneratingDecisionJob(final ActivatedJob job,

@VariablesAsType TaxManagementVariables variables) {
String fileName = "results/TMD_" + variables.getDecisionId() + ".pdf";

//generate pdf file
decisionGenerator.generate(fileName, variables);
log.info("Generated official decision, saved with filename: " + fileName);

return Collections.singletonMap("decisionFileName", fileName);
}

Code listing 4.3 Job worker responsible for generating the official decision.

Testing 51

4.7 Testing
In order to ensure correct behavior and error-free execution, testing is considered an important
part of software development. According to Celerity [62], finding errors and inaccuracies during
the testing stage is 6 to 7 times less expensive than resolving problems in the production stage
of a project. In other words, a production-ready system should be well-tested.

The main goal of the thesis is to find out how the presented methodology can be applied
to digitize legal processes. The implementation of the proof-of-concept BPM system aims to
be as thorough as possible, so that the resulting system can be close to real-world production
systems. Because of this, the testing phase should be part of the proof-of-concept BPM system
development process.

4.7.1 Process testing
To ensure the quality of the proof-of-concept BPM system, unit tests are used. As the implemen-
tation is partly based on the Spring Boot application, testing of the system is also done using
the Spring Boot framework. To write tests that control the quality of the system depending
on the Zeebe engine and the Zeebe client, the spring-zeebe-test dependency is added. This
dependency enables the creation of test cases that focus on the correct behavior of the system
represented by the Zeebe engine running the executable BPMN model together with the Zeebe
client and the corresponding job workers.

The test classes are annotated using the @SpringBootTest and @ZeebeSpringTest anno-
tations. As the first annotation is a primary annotation to create unit tests in Spring Boot
applications, @ZeebeSpringTest enables the testing of executable BPMN process definition to-
gether with the glue code that logically belongs to the process definition in a wider sense, as
described in [63]. The glue code tested together with the BPMN process definition is typically:

Job workers code, usually connected to service or script tasks.

FEEL expressions used in the process model for gateway decisions or input/output mappings

Additional code (used typically for data mapping and delegating to the workflow engine)

As the class is annotated with @ZeebeSpringTest, the variables of types ZeebeTestEngine
and ZeebeClient are automatically injected using the @Autowired annotation of Spring Boot.
These variables are further used to control and eventually update the state of the engine and
client. ZeebeTestEngine is an in-memory process engine that provides functions to help with
writing the tests. ZeebeClient represents the client used to send the commands to the engine,
such as starting the process instance.

The unit tests that are used to test the correct behavior of the system are based on the
JUnit 5 testing framework. This framework is well-known and widely used to create unit tests
on the JVM. The framework relies heavily on annotations, as written in [64].

First, the possibility to correctly deploy a process is tested. The testing is based on sending
the deploy command via the client to the Zeebe engine. Next, the result of the command
is verified using the BpmnAssert class and its method assertThat() that takes the resulting
DeploymentEvent. The deployment test can be seen in Code listing 4.4.

After the correct deployment is tested, the verification of errorless execution of the process
takes place. The verification is based on testing the process in chunks, as suggested in [63].
The whole process is divided into paths that are tested separately. One of the paths is usually
the happy path, followed by testing of the detours. This ensures that the whole process is tested
properly, meaning that every activity can be covered with a test that confirms its correct behavior
and eliminates unexpected results.

52 Implementation of proof-of-concept BPM system using Camunda Platform

@Test
public void testProcessDeployment() {

// Create and send new deployment command
DeploymentEvent deploymentEvent = zeebe.newDeployCommand()

.addResourceFromClasspath("tax_management.bpmn")

.send()

.join();

// Assert the correct deployment
BpmnAssert.assertThat(deploymentEvent);

}

Code listing 4.4 Testing method used for verifying the errorless deployment of the process.

Testing process execution starts with the creation of the process instance, which is done using
newCreateInstanceCommand() that initialize the process instance with a given processId. Once
the instance is created, the process can be executed while the correct and expected behavior is
tested.

As user tasks are completed by the user, their performance during testing must be done
manually within the code. To simplify the completion of user tasks across testing methods, the
waitForUserTaskAndComplete() method is defined. The method takes as a parameter the user
task identifier, along with the Map<String, Object> representing the values that the user task
should return. The execution of the method starts with the waitForIdleState() method called
on ZeebeTestEngine, which ensures that the engine is able to perform all necessary actions
before the user task is created. With that done, the jobs that represent incomplete user tasks
can be listed. Once the correct job is obtained, the method verifies, using JUnit’s assertTrue
method, that the job corresponds to the determined user task with the given identifier. Next, the
job can be completed using the newCompleteCommand() method, which takes the key of the user
task job as a parameter. The return values are passed to the command using the variables()
method.

As the process and the glue code are tested together, to prevent the generation of a PDF file
every time the tests are executed, the DecisionGenerator is mocked. The mocking is based on
creating an object that simulates the behavior of the real object without the side effects, which in
this case is generating (that is tested separately) and storing the official decision file. To simulate
the behavior of the DecisionGenerator class, the Mockito library and its built-in methods are
used.

The final step of the test methods consists of verifying the correct process execution. To wait
for process instance completion, the waitForProcessInstanceCompleted() method is used,
taking as a parameter a reference to the current process instance. Next, assertions are exe-
cuted to check whether the process instance has been completed successfully, whether there were
any incidents during the process execution, and finally whether the process instance ended in
the desired end event that corresponds to the tested path. This verification is done using the
hasPassedElement() method, which takes as a parameter the identifier of the event, gateway,
or activity that is expected to be passed, in this case the identifier of the end event.

The result of the testing is verified behavior of the system during the process execution, as
well as tested possibility to deploy the process flawlessly. As the happy path and every detour are
covered with tests and the correct behavior of the job workers and other glue code is checked,
the system should be free from the vast majority of possible errors.

Application prototype 53

Figure 4.8 Camunda Platform 8 Tasklist with form example.

4.8 Application prototype

The executable BPMN model, containing all the necessary implementation details, Camunda
Platform 8 components running within a Docker and Spring Boot application, which is used to
complete the service and script task jobs, create a prototype of the application. This prototype
serves as a proof-of-concept BPM system that supports the tax administration process defined
in the Czech code of law.

The system primarily helps with the orchestration of tasks and simplifies interactions be-
tween human actors who are responsible for completing them. As a result, the workload can be
distributed among several users. Important information is stored during the process execution,
making it available to the tax administrator when determining the tax amount and stating the
arguments that lead to it. Additionally, some necessary steps are automated, which, combined
with other factors, can accelerate the overall execution of the process.

Users of the presented system will interact primarily with the Tasklist component. Using the
Tasklist web interface, users can fill out the information that is important for completing the
tax administration’s goal, i.e., determining the amount of tax to be paid by the tax subject and
creating and publishing the official decision. During the execution of the process, the Tasklist
generates the corresponding form based on the created Camunda Form whenever the user task
needs to be completed. The user can claim the task, fill in the information, and submit it to the
system. An example of the form in the Tasklist web interface is shown in Figure 4.8.

The interaction with the Tasklist begins with the insertion of the tax subject’s personal infor-
mation into a prepared form. Based on the submitted information and the current timestamp,
a unique identifier for the process instance is generated by the system. Next, the user fills in
additional information and presented facts obtained from the tax subject. After the validation
of the facts and possible modification, the user is asked to read the available information and
decide on its sufficiency or select required additional steps using checkboxes.

As mentioned in previous chapters, the tax administrator can opt for the creation of witness
testimonies, expert reports, special records, or the participation of another person if necessary.
These sub-processes are based on filling out information about the acts to prepared forms. Ini-

54 Implementation of proof-of-concept BPM system using Camunda Platform

tially, the corresponding persons must be notified about the actions. Since the code of law
demands notification in the form of registered mail with the executor’s signature, the notifica-
tion must be sent manually. Once the step is done, the person who deals with its completion
submits the corresponding information to the system via prepared form. In the case of proceed-
ings participation, the completion also consists of a compensation payment if the participation
supervisor decides the claim. Additionally, tax negotiation can also supplement these steps in
case the added information is still insufficient for the determination of the tax.

Once all the required information is obtained, the phase of official decision creation can begin.
Firstly, the user checks if all the submitted information is correct. In the case of any content
or typographical errors, the user can update the values before the final decision is created. To
generate the decision, the tax administrator must submit the determined tax amount as well as
its justification. The final assembly of the PDF representing the official decision, which is based
on the values submitted in previous tasks, is automated. An example of generated decision can
be seen in Figure 4.9. At the end of the process execution, the user is asked to publish the
decision and get the proceedings cost paid by the tax subject.

In order for users to use the Tasklist component to complete tasks, they must first log in using
the Identity component. Users log in with their credentials, typically their username or email
address and password. To manage users in Camunda Platform 8 Self-Managed, the Keycloak web
interface is used. Users can be assigned to groups based on their abilities and powers, and task
completion can be directed to specific users through group assignments. For example, only users
with the required education can create an expert opinion, so the creation of an expert report
cannot be done by anyone who can log in to the Tasklist system, but only by users assigned to the
expert-report-creator group. Alternatively, permissions to use Camunda Platform 8 components
can be added to users, which can, for example, separate users at higher positions with access to
the Optimize component from officials responsible for official decision creation, who primarily
use Operate or Tasklist.

The Operate component can be used to monitor the current states of process instances as
users gradually complete tasks. This enables users to view and control the execution of processes.
Aside from viewing the current states of instances, the Operate web interface can also be used to
view and modify process variables. The most important role of the Operate component is based
on its ability to resolve incidents or cancel the entire process instance.

Figure 4.10 shows an example of overview of a currently running process instance in Operate.
As can be seen, the process instance is currently waiting for the completion of two tasks, while
simultaneously special records are being captured. In addition to the current state, the whole
path of process execution is highlighted in different color in the overview. The instance history,
which contains every activity and gateway passed so far during execution, is also part of the
process detail, along with the overview of current variables and their values. As the process
instance is still active, it is possible to update the variable values or add new variables. To
thoroughly monitor the process execution, the Operate component offers the possibility to view
details of completed instances and instances that ended up with an incident as well. This
information can be subsequently used to resolve any problems and eliminate the possibility of
another process instance failing.

While Operate focuses mainly on monitoring and controlling individual process instances,
Optimize is used to create summary reports and dashboards based on information gained during
numerous process executions for a defined period of time. This enables continuous process
improvement by providing transparency and insight into designed workflows. The dashboards
that can be built and customized directly using the Optimize web interface are useful mainly
to users in higher positions and those responsible for the process performance, as they can
provide important feedback about what is happening during the execution and what is slowing
the process down. Information such as the number of process instances in a given period of time,
the average duration of execution, the steps that are executed frequently, and the average time
spent on tasks is available to users with access to Optimize.

Application prototype 55

Official decision
Tax administration process

Czech Republic

Tax Subject information:
Name: Daniel Matoušek

Address: Dietzova 5/8, 771 96, Prague, Czech Republic

E-mail: d-matousek@some-email.com

Phone: +420123456789

Based on Act No. 280/2009 Coll., Tax Administration, as currently applicable, the Tax Administrator imposes an

obligation on Tax Subject to pay: CZK 123456

Reasoning:

adipiscing elit. Donec quis nibh at felis congue commodo. Pellentesque sapien. Class aptent taciti sociosqu ad litora

torquent per conubia nostra, per inceptos hymenaeos. Etiam quis quam. Ut enim ad minima veniam, quis nostrum

exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Nullam justo enim,

consectetuer nec, ullamcorper ac, vestibulum in, elit. Mauris metus. Nullam lectus justo, vulputate eget mollis sed,

tempor sed magna. Duis viverra diam non justo.

Pellentesque arcu. Nunc dapibus tortor vel mi dapibus sollicitudin. Fusce consectetuer risus a nunc. Curabitur

bibendum justo non orci. Duis sapien nunc, commodo et, interdum suscipit, sollicitudin et, dolor. Sed convallis magna

eu sem. Etiam bibendum elit eget erat. Etiam neque. Fusce tellus odio, dapibus id fermentum quis, suscipit id erat.

Nullam justo enim, consectetuer nec, ullamcorper ac, vestibulum in, elit. In rutrum. Sed ac dolor sit amet purus

malesuada congue. Integer vulputate sem a nibh rutrum consequat. Vivamus ac leo pretium faucibus. Sed ac dolor sit

amet purus malesuada congue.

Praesent in mauris eu tortor porttitor accumsan. Maecenas ipsum velit, consectetuer eu lobortis ut, dictum at dui.

Maecenas libero. Integer pellentesque quam vel velit. Curabitur vitae diam non enim vestibulum interdum. Morbi

imperdiet, mauris ac auctor dictum, nisl ligula egestas nulla, et sollicitudin sem purus in lacus. Suspendisse sagittis

ultrices augue. Nulla quis diam. Aliquam erat volutpat. Proin pede metus, vulputate nec, fermentum fringilla, vehicula

vitae, justo. Fusce tellus. Donec iaculis gravida nulla.

Notice:
The decision is valid from the day of its adoption. This decision may be appealed within 30 days of its adoption by

lodging a separate appeal with the Tax Administration Institution. An appeal can challenge the sentence part of the

decision, an individual sentence or its subsidiary provisions. An appeal against only the justification of the decision is

inadmissible.

In Prague 20. 03. 2023.

Tax justification containing arguments based on obtained information. Lorem ipsum dolor sit amet, consectetuer

Figure 4.9 Example of generated official decision.

56 Implementation of proof-of-concept BPM system using Camunda Platform

Figure 4.10 Camunda Platform 8 Operate with example of process instances.

Figure 4.11 Camunda Platform 8 Optimize dashboard example.

Summary 57

An example of the generated dashboard can be seen in Figure 4.11. As shown, the dashboard
includes a numerical summary of throughput and duration, as well as the incident-free rate.
Heatmaps can also play an important role in showing how often each step is executed and how
long it takes to complete each step. By using the reports and dashboards, bottlenecks in the
process can be detected, and necessary changes to the process model or personnel reassignments
can be made.

4.9 Summary
The implementation has resulted in a proof-of-concept BPM system based on Camunda Plat-
form 8, which supports the tax administration process. The overall system consists of several
components with different functions and purposes. The main component is the Zeebe engine,
which is responsible for process execution and communication with the Zeebe client that contains
the job workers. Tasklist is important component for users, as it acts as a mediator between the
process engine and users by allowing them to complete user tasks through designed forms. In
addition to that, Operate and Optimize components enable the possibility to monitor instances
and improve the process.

The main benefit of the system corresponds to its ability to manage the workflow, help with
orchestration, and simplify the interaction between users. In addition, the system automates
some necessary steps to accelerate the execution of the entire tax administration process.

The testing phase of the development process involves verifying the correct behavior and
incident-free execution of the created system. This is achieved through written unit tests that
cover 100% of the activities, including additional code such as decision creation, to ensure system
quality and eliminate errors and bugs that may occur when users interact with the system. These
tests are written with the help of the @SpringBootTest and @ZeebeSpringTest annotations,
which set up the application context for testing and enable in-memory testing of the process
running in the Zeebe engine, respectively.

58 Implementation of proof-of-concept BPM system using Camunda Platform

Chapter 5

Case study evaluation

The goal of the thesis, which is based on the creation of the proof-of-concept BPM system
using technologies researched at the Czech Technical University, was accomplished. The system
supporting the tax administration process defined in the Czech code of law was implemented
using the Camunda Platform 8. The implementation was grounded on the as-is analysis of the
current state that used the DEMO methodology to reveal the essence of the system, as well as
the to-be analysis using the BPMN to design a to-be state representing the way of the process
execution after the deployment of the BPM system.

This chapter focuses on the evaluation of the system development process. In the following
sections, key findings and mainly the advantages and disadvantages of the selected development
approach will be described. Aside from that, the limitations of the presented system and the
future development possibilities and improvement options of the proposed BPM system, which
in most cases are currently not possible to implement in order to comply with the legislation,
will be presented.

5.1 Key findings
As the goal of the thesis was achieved successfully, the presented approach to develop a BPM
system that supports the process defined in the code of law can be considered successful. The
involvement of the BPMN and DEMO methodology can, to a certain degree, simplify the overall
process of system creation.

5.1.1 Advantages
To conclude the selected approach to create the system, firstly, the main benefits of the method-
ology are described. The following aspects that correspond to the usage of DEMO, BPMN, and
Camunda Platform during the analysis, design, and implementation processes were found to be
the most beneficial:

DEMO’s capability to analyse the process thoroughly
One of the most significant advantages of the DEMO methodology is its ability to reveal
the essence of the process. After the analysis using the DEMO methodology and its OER
analysis is completed, a detailed overview of actors, together with transactions containing
information about each individual step of the process, as well as about the final products,
is created. Additionally, missing definitions of steps are clearly visible. Once the DEMO
analysis is done, the formal foundations for further BPMN models are created. As the final

59

60 Case study evaluation

result is very comprehensive, the BPMN activities, important data, and process orchestration
are basically revealed, and the person creating the BPMN model has a clear picture of the
overall process and understands its functioning.

Initial process analysis from a structural perspective
Typically, BPMN processes are modeled in a chronological order of activities, from the start-
ing point to the end point. However, this can become problematic when modeling procedural
law processes, as the definitions of the activities are typically not ordered consecutively within
the code of law. In contrast, the DEMO methodology, and especially the OER analysis ap-
proach to reveal the essence of the process, is based on firstly identifying all the transactions.
These transactions can be easily reordered later on, since DEMO analyses the process from
a structural perspective.

BPMN’s simplicity and understandability
Since BPMN is a well-known, widely used, and relatively easy to learn notation, the models
created using it are generally understandable. This can simplify the communication with
people who will be using the system, as well as within the development team. Even those
who have never encountered notation before should be able to imagine the process execution
when presented with a BPMN model.

Possibility to create the BPM system using the executable BPMN model
Using the Camunda Platform or any other engine that can run executable BPMN model
simplifies the development process, as it eliminates the need for time-consuming code writing.
To create a proof-of-concept BPM system using this approach, the implementation details and
necessary configurations must be added to the existing analytical model, so that the system
can be successfully deployed to the engine. In addition, client and job worker implementations
must be created. However, the overall implementation phase of the development can be
expedited in comparison to creating the system from scratch.

5.1.2 Disadvantages
Even though the selected approach led to the creation of the proof-of-concept BPM system, some
disadvantages of the methodology were found. To objectively evaluate the development process,
the main drawbacks, together with a short explanation, are presented in the following list:

Complexity of DEMO methodology
In general, the OER steps, which help to reveal the essence of the process and create the
DEMO models, are defined in detail. If the steps of the OER analysis are followed, the
result also complies with the techniques used to achieve the essence and simplicity in DEMO.
The creation of the DEMO models follows strict rules in order to ensure their correctness.
However, strictness during the process of essence revealing and model creation can be limiting
in some cases. Although it is necessary to create correct models, the rules do not allow for
any sort of freedom during the analysis. For instance, if the analyst wants to omit some
information from the models as it is not needed in further development, from the perspective
of DEMO methodology, the result is incomplete and it cannot be considered correct.

Inconsistency and ambiguity of BPMN models
As BPMN is an easy-to-use notation with many distinct use cases corresponding to the
different levels of detail contained in the model, the notation must offer flexibility. However,
in some cases, this flexibility can result in inconsistencies or ambiguities in the process models.
It is possible to create many different models that are equally correct solutions to a modeled
process. For example, the modeling of an action that needs to be repeated multiple times,

System limitations 61

such as obtaining testimonies from multiple witnesses, can be considered. In this case, it is
possible to model the situation using the multi-instance construct, loop construct, or standard
sequence flow and gateways as shown in a similar example in [65]. This means that there
are three possible solutions for a single part of the process. This is one of the reasons why
the usual process of creating a single solution often results in the repeated, time-consuming
designing of several versions of BPMN model that are identical from the process execution
perspective.

5.1.3 Recommendations
Despite the fact that the presented methodology has some disadvantages, it can be considered
effective overall. The benefits of each step in the development process outweigh the drawbacks,
particularly when creating a BPM system to support legal processes.

Even though the DEMO methodology is complex and strict, a detailed overview of trans-
actions, actors, and data that occur during the process execution is essential for further devel-
opment. It creates a solid foundation for subsequent creation of the BPMN models that is less
demanding. The same is true for the second step, designing the to-be state of the process. The
analytical BPMN model resulting from the to-be analysis is a useful starting point for creating
the executable BPMN model. Therefore, it is worth spending the necessary time to complete
the steps.

Despite thorough analysis, ensuring that the BPM system is fully compliant with relevant
legal requirements and regulations is critical when dealing with legislation. Legal experts should
check if the system complies with regulations and if the system is not based on a wrong inter-
pretation of the law before using it in production. Even better would be close cooperation with
legal experts during the analysis, design, and implementation phases of the development process
to ensure that the system complies with all relevant laws, requirements, and guidelines from the
beginning.

5.2 System limitations
Although the proof-of-concept BPM system aims to be as close to production as possible, the
result requires additional implementation to be able to deploy it to production. To function
effectively, the production-ready BPM system will need to integrate with various other systems,
such as tax calculation software, financial management systems, and possibly reporting tools.

Aside from that, the resulting proof-of-concept BPM system was run only locally using the
Docker Compose file, which is not recommended for production usage as it is not optimized.
The production version of the system requires the usage of Kubernetes or available Docker
images when using the Self-Managed Camunda Platform 8, or eventually consider the shift to a
SaaS solution. To use the system in production in the presented form, both approaches require
paying the monthly fee that depends on various variables, such as the number of users or process
instances, as described in [66].

5.3 Future development
As already mentioned, the digitization of the tax administration process is limited in order
to comply with the definition in the Czech code of law. Currently, the code of law contains
prescribed procedures and aspects that create barriers to thorough digitization of the processes.
Since the system must comply with the legislation, it must follow the defined procedures and
requirements. In order to allow further digitization, the corresponding changes must be enacted
simultaneously with the development of the system.

62 Case study evaluation

One of the aspects that creates a barrier for thorough digitization is based on the neces-
sity to notify the parties to the proceedings using registered mail containing manually signed
documents. In the case of the tax administration process, this means that every time the tax
subject, proceedings participant, or any other party to the proceedings needs to be notified about
anything, the tax administrator must create a document, print, sign, and send it manually as
registered mail. The only possible solution to comply with current legislation and expedite the
process execution is based on the creation of a separate department that would focus strictly on
the need to create and send notifications by registered mail. That would enable the tax admin-
istrator to work on the tasks necessary for the tax determination and decision creation instead
of distractions corresponding with the notifications.

In case the legislation enables notifying the party to the proceedings using email communica-
tion or alternatively eGovernment or other currently available technologies, the overall process
execution can be expedited.

As email communication can be used as a tool to interact with parties, the system could
automate the notification tasks. Because the Camunda Platform 8 contains the possibility to
send email messages using the built-in Connector, the overall changes to the implementation
would be undemanding. These changes would consist of the configuration of the SendGrid
Email Connector that is responsible for email communication directly from the process. The
configuration consists of the definition of the sender and recipient properties, as well as the
creation of dynamic templates that specify the structure and form of the email.

Another possible option to automate the notification of parties is based on the use of the
technology called Datová schránka. According to the Ministry of the Interior of the Czech
Republic [67], the Datová schránka is a state-guaranteed communication tool that replaces classic
registered mail and is mainly used for interactions with public authorities. To integrate the
possibility to use this technology, the definition of a custom Connector that enables the engine
to send messages using this technology directly from the process must be created. However,
currently, the technology is not used enough among people to fully replace the need to send
registered mail, since approximately only 5% of natural persons in the Czech Republic use the
technology to communicate with public authorities or in some other way, as shown by data from
the Ministry of the Interior of the Czech Republic [68].

Similar to the notification digitization situation are the payment automation circumstances.
The payments are part of the tax administration process as the costs of proceedings need to
be paid, or eventually if the proceedings participation is necessary and the participant has the
entitlement to compensation. In this case, part of the participation sub-process consists of
payment of the determined amount of compensation to the participant. These payments are
currently done manually, as required by the legislation. To digitize the process, the automation
of payments using the integration of some payment technology should be considered. Similarly,
as in the case of notifications, task completion would be automated, and the tax administrator
could focus on subsequent tasks. In view of that, the process execution could be expedited
notably.

To achieve more advanced digitization, a system must be created that allows tax subjects,
proceedings participants, and other relevant parties to submit information without interacting
with the tax administrator. This can be accomplished by leveraging the existing eGovernment
identity system to grant access to the system, which would enable users to fill in the required
information directly. The tax administrator’s participation would be limited to validating the
submitted information and creating the official decision, as well as completing additional tasks
that require his involvement.

However, transitioning to an almost fully automated system requires careful planning, atten-
tion to detail, and rigorous testing to ensure that it can handle a higher volume of users. The
system must be designed in a way that people can understand how it works and how to use it
effectively. This is necessary to avoid creating difficulties when interacting with a malfunctioning
system and to ensure that the system can truly help and expedite the process execution.

Conclusion

The thesis has successfully achieved its goal of creating proof-of-concept BPM system to support
the tax administration process defined in the Czech code of law. To accomplish this, a specific
approach was taken that utilized the DEMO methodology to analyse the current state of the
process, BPMN to design a future shape of the process after digitization, and Camunda Platform
to implement the BPM system supporting the tax administration process based on the solution
designed in the previous step.

The thesis is divided into five chapters. Firstly, an overview of law modeling and BPM systems
was provided and current state-of-the-art BPMN, DEMO and Camunda Platform was reviewed.
Next, the tax administration as-is state was analysed using DEMO methodology and its OER
analysis. Utilizing this knowledge, the to-be state of the process after digitization captured by
the analytical BPMN model was created. The following chapter describes the implementation of
the BPM system based on the Camunda Platform 8. This chapter contains an overview of the
hosting options and overall architecture of Camunda Platform 8 and its components, as well as a
description of the executable BPMN model, the creation of Camunda Forms, and definitions of
the implementation details. Additionally, the chapter presents the realization of the Zeebe client
and job workers and shows possible way of the BPM system testing. Finally, the last chapter
consists of a summary of the selected development approach, together with the advantages and
disadvantages that the involvement of DEMO and BPMN brings. The chapter also discusses
future development possibilities that could further enhance the effectiveness of the system.

The result of the development process is a proof-of-concept BPM system designed to support
the tax administration process defined in the Czech code of law. The system is based on the
Self-Managed version of Camunda Platform 8 running in Docker. The resulting system consists
of deployed executable BPMN model, along with a Spring Boot application that represents the
Zeebe client used to define the job workers. Users can interact with the system using the Tasklist
component, which allows them to fill in important information related to the tax administration
process using the forms generated on the basis of defined Camunda Forms. Additionally, the
system contains Operate and Optimize, which enable users to monitor and control process execu-
tion and create summarizing reports and dashboards based on information gained during process
executions, respectively. Authorization to the system is done and configured using Identity and
Keycloak.

The main benefit of the system is based on the advanced orchestration of tasks and simpli-
fication of interactions between human actors, which allows redistribution of workloads. The
system enables the storage of important information during the process execution to be available
to tax administrator when the tax is determined and the reasoning of the amount is created.
Aside from that, some of the necessary steps that do not require human intervention, such as
the assembly of the final document representing the official decision of the tax administration
process, are automated. The automation, together with the orchestration of tasks and redistribu-

63

64 Conclusion

tion of workloads, allows for further expedition of the overall execution of the tax administration
process.

The thorough digitization of legal processes is currently limited by the prescribed procedures
and requirements defined in the code of law. To comply with the legislation, the system must
follow the regulations, which makes in-depth digitization impossible. In the case of the tax
administration process, one of the aspects that create a barrier to thorough digitization is the
demand to notify parties to the proceedings via registered mail containing manually signed
documents. The notification could be easily done using email communication or other currently
available technology, but its usage requires a change in legislation. The same can be said about
other possible automation areas of the tax administration process.

In general, digitization has the potential to expedite process execution. However, since the
law was not originally intended to be digitized, a further and more thorough digitization of leg-
islative processes is contingent on corresponding changes to the legislation that must be enacted
simultaneously with system development.

Bibliography

1. GABRYELCZYK, R.; BIERNIKOWICZ, A. Motivations for BPM Adoption: Initial Tax-
onomy based on Online Success Stories. Federated Conference on Computer Science and
Information Systems (FedCSIS), Leipzig, Germany, 2019. Available from doi: 10.15439/
2019F229.

2. ZORZANELLI COSTA, M.; GUIZZARDI, G.; ALMEIDA, J. P. A. On Capturing Legal
Knowledge in Ontology and Process Models Combined. In: FRANCESCONI, E.; BORGES,
G.; SORGE, Ch. (eds.). Legal Knowledge and Information Systems. IOS Press, 2022. isbn
978-1-64368-365-2.

3. CIAGHI, A.; VILLAFIORITA, A. Improving Public Administrations via Law Modeling and
BPR. In: POPESCU-ZELETIN, R.; RAI, I. A.; JONAS, K.; VILLAFIORITA, A. (eds.). E-
Infrastructure and E-Services for Developing Countries. Springer, Berlin, Heidelberg, 2011.
isbn 978-3-642-23828-4.

4. Zpráva o digitalizaci veřejné správy v České republice. Nejvyšš́ı kontrolńı úřad. [online].
[Accessed: 2023-4-9]. https://www.nku.cz/cz/publikace- a- dokumenty/ostatni-
publikace/zprava-o-digitalizaci-verejne-spravy-v-ceske-republic-id10937/.

5. Registr vozidel se dočasně vraćı k p̊uvodńımu systému. Za nový ministerstvo zat́ım nezaplat́ı.
ČT24. [online]. [Accessed: 2023-4-9]. https://ct24.ceskatelevize.cz/domaci/1159050-
registr-vozidel-se-docasne-vraci-k-puvodnimu-systemu-za-novy-ministerstvo-
zatim.

6. Statistický úřad chce prošetřit, proč nefungoval systém pro sč́ıtáńı lidu. Audit ale zat́ım
nezadal. iROZHLAS. [online]. [Accessed: 2023-4-9]. https://www.irozhlas.cz/zpravy-
domov/scitani-lidu-2021-audit-vypadek-systemu_2104031831_zuj.

7. Rada vlády pro informačńı společnost: Program Digitálńı Česko. Ministerstvo vnitra České
republiky. [online]. [Accessed: 2023-4-9]. https://www.mvcr.cz/webpm/clanek/rada-
vlady-pro-informacni-spolecnost.aspx?q=Y2hudW09Ng%3D%3D.

8. CIAGHI, A.; WELDEMARIAM, K.; VILLAFIORITA, A.; KESSLER, F. Law Modeling
with Ontological Support and BPMN: a Case Study. IARIA, 2011. isbn 978-1-61208-122-9.

9. VAN DER AALST, W. M. P. Business Process Management Demystified: A Tutorial on
Models, Systems and Standards for Workflow Management. Springer, Berlin, Heidelberg,
2004. isbn 978-3-540-27755-2.

10. WESKE, M. Business Process Management: Concepts, Languages, Architectures. Springer,
Berlin, Heidelberg, 2012. isbn 978-3-642-28616-2.

11. Business Process Model and Notation (BPMN). OMG. [online]. [Accessed: 2023-01-22].
https://www.omg.org/spec/BPMN/2.0/PDF.

65

https://doi.org/10.15439/2019F229
https://doi.org/10.15439/2019F229
https://www.nku.cz/cz/publikace-a-dokumenty/ostatni-publikace/zprava-o-digitalizaci-verejne-spravy-v-ceske-republic-id10937/
https://www.nku.cz/cz/publikace-a-dokumenty/ostatni-publikace/zprava-o-digitalizaci-verejne-spravy-v-ceske-republic-id10937/
https://ct24.ceskatelevize.cz/domaci/1159050-registr-vozidel-se-docasne-vraci-k-puvodnimu-systemu-za-novy-ministerstvo-zatim
https://ct24.ceskatelevize.cz/domaci/1159050-registr-vozidel-se-docasne-vraci-k-puvodnimu-systemu-za-novy-ministerstvo-zatim
https://ct24.ceskatelevize.cz/domaci/1159050-registr-vozidel-se-docasne-vraci-k-puvodnimu-systemu-za-novy-ministerstvo-zatim
https://www.irozhlas.cz/zpravy-domov/scitani-lidu-2021-audit-vypadek-systemu_2104031831_zuj
https://www.irozhlas.cz/zpravy-domov/scitani-lidu-2021-audit-vypadek-systemu_2104031831_zuj
https://www.mvcr.cz/webpm/clanek/rada-vlady-pro-informacni-spolecnost.aspx?q=Y2hudW09Ng%3D%3D
https://www.mvcr.cz/webpm/clanek/rada-vlady-pro-informacni-spolecnost.aspx?q=Y2hudW09Ng%3D%3D
https://www.omg.org/spec/BPMN/2.0/PDF

66 Bibliography

12. MALEKAN, H. S.; SHAFAHI, M.; AYAT, N.; AFSARMANESH, H. Enhancing Robust
Execution of BPMN Process Diagrams: A Practical Approach. Springer, Cham, 2018. isbn
978-3-319-99127-6.

13. ALLWEYER, T. Bpmn 2.0: Introduction to the Standard for Business Process Modeling.
BoD – Books on Demand, 2016. isbn 9783837093315.

14. WALSER, K.; SCHAFFROTH, M. BPM and BPMN as Integrating Concepts in eGovern-
ment -: The Swiss eGovernment BPM Ecosystem. Springer, Berlin, Heidelberg, 2011. isbn
978-3-642-23135-3.

15. SILVER, B. BPMN method and style: with BPMN implementer’s guide. Cody-Cassidy
Press, 2011. isbn 978-0982368114.

16. AAGESEN, G.; KROGSTIE, J. BPMN 2.0 for Modeling Business Processes. Springer,
Berlin, Heidelberg, 2015. isbn 978-3-642-45100-3.

17. DIETZ, J. L. G.; MULDER, H. B. F. Enterprise Ontology: A Human-Centric Approach to
Understanding the Essence of Organisation. Springer, Cham, 2020. isbn 978-3-030-38853-9.

18. DEMO. Enterprise Engineering Institute. [online]. [Accessed: 2022-12-15]. https://ee-
institute.org/demo/.

19. DIETZ, J. L. G.; MULDER, J. B. F. The Evolution of DEMO. 2020.
20. VAN NUFFEL, D.; MULDER, H.; VAN KERVEL, S. Advances in Enterprise Engineering

III: Enhancing the Formal Foundations of BPMN by Enterprise Ontology. Springer, Berlin,
Heidelberg, 2009. isbn 978-3-642-01915-9.

21. PERINFORMA, A. P. C. The essence of organisation: An introduction to enterprise engi-
neering. Sapio Enterprise Engineering, 2017. isbn 978-90-815449-4-8.

22. What is Camunda Platform 8? Camunda Platform 8 Docs. [online]. [Accessed: 2023-2-10].
https://docs.camunda.io/docs/components/concepts/what-is-camunda-platform-
8/.

23. FOWLER, M.; LEWIS, J. Microservices: a definition of this new architectural term. 2014.
[online]. [Accessed: 2023-2-10]. https://martinfowler.com/articles/microservices.
html.

24. DRAGONI, N.; GIALLORENZO, S.; LLUCH LAFUENTE, A.; MAZZARA, M.; MON-
TESI, F.; MUSTAFIN, R.; SAFINA, L. Microservices: Yesterday, Today, and Tomorrow. In:
MAZZARA, M.; MEYER, B. (eds.). Present and Ulterior Software Engineering. Springer,
Cham, 2017. isbn 978-3-319-67425-4.

25. Camunda Platform 8: Software for Process Orchestration. Camunda. [online]. [Accessed:
2023-2-10]. https://camunda.com/platform/.

26. FREUND, J. Camunda Platform 8: A 10-Year Journey. 2022. [online]. [Accessed: 2023-2-
10]. https://camunda.com/blog/2022/04/camunda-platform-8-a-10-year-journey/.

27. VAN DER AALST, W. M. P. Process Mining: Data Science in Action. Springer, Berlin,
Heidelberg, 2016. isbn 978-3-662-49851-4.

28. SILVER, B. BPMN, BPMS: Executable BPMN 2.0. 2011. [online]. [Accessed: 2023-4-10].
https://methodandstyle.com/executable-bpmn-2-0/.

29. Zákon č. 280/2009 Sb., zákon daňový řád, v platném zněńı. [online]. 2009. [Accessed: 2023-
01-22]. https://www.zakonyprolidi.cz/cs/2009-280.

30. TAVALSTO, A. Introducing a New Modeler for Camunda Platform 8. 2022. [online]. [Ac-
cessed: 2023-2-12]. https://camunda.com/blog/2022/03/introducing-a-new-modeler-
for-camunda-cloud/.

31. Model a BPMN 2.0 diagram. Camunda Platform 8 Docs. [online]. [Accessed: 2023-2-12].
https://docs.camunda.io/docs/components/modeler/bpmn/.

https://ee-institute.org/demo/
https://ee-institute.org/demo/
https://docs.camunda.io/docs/components/concepts/what-is-camunda-platform-8/
https://docs.camunda.io/docs/components/concepts/what-is-camunda-platform-8/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://camunda.com/platform/
https://camunda.com/blog/2022/04/camunda-platform-8-a-10-year-journey/
https://methodandstyle.com/executable-bpmn-2-0/
https://www.zakonyprolidi.cz/cs/2009-280
https://camunda.com/blog/2022/03/introducing-a-new-modeler-for-camunda-cloud/
https://camunda.com/blog/2022/03/introducing-a-new-modeler-for-camunda-cloud/
https://docs.camunda.io/docs/components/modeler/bpmn/

Bibliography 67

32. Modeling beyond the happy path. Camunda Platform 8 Docs. [online]. [Accessed: 2023-2-14].
https://docs.camunda.io/docs/components/best-practices/modeling/modeling-
beyond-the-happy-path/.

33. Get started with Camunda Platform 8: End-to-end process orchestration to transform your
organization. Camunda. [online]. [Accessed: 2023-2-18]. https : / / camunda . com / get -
started/.

34. Camunda Platform 8 Self-Managed. Camunda Platform 8 Docs. [online]. [Accessed: 2023-
2-18]. https://docs.camunda.io/docs/self-managed/about-self-managed/.

35. LEVY, D. Camunda Platform 8 – Orchestrate All the Things. 2022. [online]. [Accessed:
2023-2-18]. https://camunda.com/blog/2022/04/camunda-platform-8-orchestrate-
all-the-things/.

36. Camunda Platform 8 installation overview. Camunda Platform 8 Docs. [online]. [Accessed:
2023-2-18]. https://docs.camunda.io/docs/self- managed/platform- deployment/
overview/.

37. Overview Components. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-4]. https:
//docs.camunda.io/docs/components/.

38. Zeebe. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-4]. https://docs.camunda.
io/docs/components/zeebe/zeebe-overview/.

39. Architecture. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-4]. https://docs.
camunda.io/docs/components/zeebe/technical-concepts/architecture/.

40. What is Elasticsearch? Elastic. [online]. [Accessed: 2023-3-4]. https://www.elastic.co/
what-is/elasticsearch.

41. What is Kibana? Elastic. [online]. [Accessed: 2023-3-4]. https://www.elastic.co/what-
is/kibana.

42. Community Clients Overview. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-4].
https://docs.camunda.io/docs/apis-clients/community-clients/.

43. What is Identity? Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-5]. https://docs.
camunda.io/docs/self-managed/identity/what-is-identity/.

44. Server Administration Guide. keycloak.org. [online]. [Accessed: 2023-3-5]. https://www.
keycloak.org/docs/16.1/server_admin/#using-the-admin-console.

45. Operate: Introduction. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-5]. https:
//docs.camunda.io/docs/next/components/operate/operate-introduction/.

46. Tasklist: Introduction. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-5]. https:
//docs.camunda.io/docs/components/tasklist/introduction-to-tasklist/.

47. What is Optimize? Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-5]. https://
docs.camunda.io/optimize/components/what-is-optimize/.

48. Connectors: Introduction. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-9]. https:
//docs.camunda.io/docs/components/connectors/introduction-to-connectors/.

49. Out-of-the-box Connectors: Overview. Camunda Platform 8 Docs. [online]. [Accessed: 2023-
3-9]. https://docs.camunda.io/docs/components/connectors/out- of- the- box-
connectors/available-connectors-overview/.

50. Logical Data Model - UML Notation. Sparx Systems. [online]. [Accessed: 2023-4-11]. https:
//sparxsystems.com/resources/gallery/diagrams/software/sw- logical_data_
model-uml_notation.html.

51. What are Camunda Forms? Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-11].
https://docs.camunda.io/docs/next/components/modeler/forms/camunda-forms-
reference/.

https://docs.camunda.io/docs/components/best-practices/modeling/modeling-beyond-the-happy-path/
https://docs.camunda.io/docs/components/best-practices/modeling/modeling-beyond-the-happy-path/
https://camunda.com/get-started/
https://camunda.com/get-started/
https://docs.camunda.io/docs/self-managed/about-self-managed/
https://camunda.com/blog/2022/04/camunda-platform-8-orchestrate-all-the-things/
https://camunda.com/blog/2022/04/camunda-platform-8-orchestrate-all-the-things/
https://docs.camunda.io/docs/self-managed/platform-deployment/overview/
https://docs.camunda.io/docs/self-managed/platform-deployment/overview/
https://docs.camunda.io/docs/components/
https://docs.camunda.io/docs/components/
https://docs.camunda.io/docs/components/zeebe/zeebe-overview/
https://docs.camunda.io/docs/components/zeebe/zeebe-overview/
https://docs.camunda.io/docs/components/zeebe/technical-concepts/architecture/
https://docs.camunda.io/docs/components/zeebe/technical-concepts/architecture/
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/kibana
https://www.elastic.co/what-is/kibana
https://docs.camunda.io/docs/apis-clients/community-clients/
https://docs.camunda.io/docs/self-managed/identity/what-is-identity/
https://docs.camunda.io/docs/self-managed/identity/what-is-identity/
https://www.keycloak.org/docs/16.1/server_admin/#using-the-admin-console
https://www.keycloak.org/docs/16.1/server_admin/#using-the-admin-console
https://docs.camunda.io/docs/next/components/operate/operate-introduction/
https://docs.camunda.io/docs/next/components/operate/operate-introduction/
https://docs.camunda.io/docs/components/tasklist/introduction-to-tasklist/
https://docs.camunda.io/docs/components/tasklist/introduction-to-tasklist/
https://docs.camunda.io/optimize/components/what-is-optimize/
https://docs.camunda.io/optimize/components/what-is-optimize/
https://docs.camunda.io/docs/components/connectors/introduction-to-connectors/
https://docs.camunda.io/docs/components/connectors/introduction-to-connectors/
https://docs.camunda.io/docs/components/connectors/out-of-the-box-connectors/available-connectors-overview/
https://docs.camunda.io/docs/components/connectors/out-of-the-box-connectors/available-connectors-overview/
https://sparxsystems.com/resources/gallery/diagrams/software/sw-logical_data_model-uml_notation.html
https://sparxsystems.com/resources/gallery/diagrams/software/sw-logical_data_model-uml_notation.html
https://sparxsystems.com/resources/gallery/diagrams/software/sw-logical_data_model-uml_notation.html
https://docs.camunda.io/docs/next/components/modeler/forms/camunda-forms-reference/
https://docs.camunda.io/docs/next/components/modeler/forms/camunda-forms-reference/

68 Bibliography

52. Form Elements. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-11]. https://docs.
camunda.io/docs/next/components/modeler/forms/form-element-library/forms-
element-library/.

53. Data binding. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-11]. https://docs.
camunda.io/docs/next/components/modeler/forms/configuration/forms-config-
data-binding/.

54. Variables. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-12]. https : / / docs .
camunda.io/docs/components/concepts/variables/.

55. Expressions. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-12]. https://docs.
camunda.io/docs/components/concepts/expressions/.

56. FEEL Expressions Introduction. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-12].
https://docs.camunda.io/docs/components/modeler/feel/language-guide/feel-
expressions-introduction/.

57. Multi-instance. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-12]. https://docs.
camunda.io/docs/next/components/modeler/bpmn/multi-instance/.

58. Docker. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-9]. https://docs.camunda.
io/docs/next/self-managed/platform-deployment/docker/.

59. FROMME, P. Camunda Desktop Modeler 5.7 released. 2023. [online]. [Accessed: 2023-3-13].
https://camunda.com/blog/2023/01/camunda-desktop-modeler-5-7/.

60. Service tasks. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-13]. https://docs.
camunda.io/docs/components/modeler/bpmn/service-tasks/.

61. Job workers. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-13]. https://docs.
camunda.io/docs/components/concepts/job-workers/.

62. The True Cost of a Software Bug: Part One. Celerity. [online]. [Accessed: 2023-3-18]. https:
//www.celerity.com/insights/the-true-cost-of-a-software-bug#.

63. Testing process definitions: Writing process tests in Java. Camunda Platform 8 Docs. [on-
line]. [Accessed: 2023-3-18]. https://docs.camunda.io/docs/next/components/best-
practices/development/testing-process-definitions/.

64. JUnit 5. JUnit Team. [online]. [Accessed: 2023-3-18]. https://junit.org/junit5/.
65. Modeling with situation patterns. Camunda Platform 8 Docs. [online]. [Accessed: 2023-3-13].

https://docs.camunda.io/docs/components/best-practices/modeling/modeling-
with-situation-patterns/.

66. Camunda Platform 8 Pricing. Camunda. [online]. [Accessed: 2023-4-8]. https://camunda.
com/pricing/.

67. Datové schránky. Ministerstvo vnitra České republiky. [online]. [Accessed: 2023-3-21]. https:
//www.mvcr.cz/clanek/datove-schranky-datove-schranky.aspx.

68. Zájem o datové schránky stále roste. Datovku si zř́ıdilo už přes p̊ul milionu občan̊u. Min-
isterstvo vnitra České republiky. [online]. [Accessed: 2023-3-21]. https://www.mvcr.cz/
clanek/zajem-o-datove-schranky-stale-roste-datovku-si-zridilo-uz-pres-pul-
milionu-obcanu.aspx.

https://docs.camunda.io/docs/next/components/modeler/forms/form-element-library/forms-element-library/
https://docs.camunda.io/docs/next/components/modeler/forms/form-element-library/forms-element-library/
https://docs.camunda.io/docs/next/components/modeler/forms/form-element-library/forms-element-library/
https://docs.camunda.io/docs/next/components/modeler/forms/configuration/forms-config-data-binding/
https://docs.camunda.io/docs/next/components/modeler/forms/configuration/forms-config-data-binding/
https://docs.camunda.io/docs/next/components/modeler/forms/configuration/forms-config-data-binding/
https://docs.camunda.io/docs/components/concepts/variables/
https://docs.camunda.io/docs/components/concepts/variables/
https://docs.camunda.io/docs/components/concepts/expressions/
https://docs.camunda.io/docs/components/concepts/expressions/
https://docs.camunda.io/docs/components/modeler/feel/language-guide/feel-expressions-introduction/
https://docs.camunda.io/docs/components/modeler/feel/language-guide/feel-expressions-introduction/
https://docs.camunda.io/docs/next/components/modeler/bpmn/multi-instance/
https://docs.camunda.io/docs/next/components/modeler/bpmn/multi-instance/
https://docs.camunda.io/docs/next/self-managed/platform-deployment/docker/
https://docs.camunda.io/docs/next/self-managed/platform-deployment/docker/
https://camunda.com/blog/2023/01/camunda-desktop-modeler-5-7/
https://docs.camunda.io/docs/components/modeler/bpmn/service-tasks/
https://docs.camunda.io/docs/components/modeler/bpmn/service-tasks/
https://docs.camunda.io/docs/components/concepts/job-workers/
https://docs.camunda.io/docs/components/concepts/job-workers/
https://www.celerity.com/insights/the-true-cost-of-a-software-bug#
https://www.celerity.com/insights/the-true-cost-of-a-software-bug#
https://docs.camunda.io/docs/next/components/best-practices/development/testing-process-definitions/
https://docs.camunda.io/docs/next/components/best-practices/development/testing-process-definitions/
https://junit.org/junit5/
https://docs.camunda.io/docs/components/best-practices/modeling/modeling-with-situation-patterns/
https://docs.camunda.io/docs/components/best-practices/modeling/modeling-with-situation-patterns/
https://camunda.com/pricing/
https://camunda.com/pricing/
https://www.mvcr.cz/clanek/datove-schranky-datove-schranky.aspx
https://www.mvcr.cz/clanek/datove-schranky-datove-schranky.aspx
https://www.mvcr.cz/clanek/zajem-o-datove-schranky-stale-roste-datovku-si-zridilo-uz-pres-pul-milionu-obcanu.aspx
https://www.mvcr.cz/clanek/zajem-o-datove-schranky-stale-roste-datovku-si-zridilo-uz-pres-pul-milionu-obcanu.aspx
https://www.mvcr.cz/clanek/zajem-o-datove-schranky-stale-roste-datovku-si-zridilo-uz-pres-pul-milionu-obcanu.aspx

Contents of attachment

readme.txt.................................the file with attachments contents description
src

thesis the directory of LATEX source codes of the thesis
text

thesis.pdf.. the thesis text in PDF format
case-study

as-is.............the directory with files, tables, models corresponding to as-is analysis
to-be........................the directory with models corresponding to to-be analysis
implementation..............................the directory containing implementation
testing .. the directory with results of testing
screenshots...................the directory containing screenshots of resulting system

69

	Acknowledgments
	Declaration
	Abstract
	Acronyms
	Introduction
	Theoretical foundations
	Motivation
	Law modeling
	BPM systems
	BPMN
	Development and usage of BPMN
	BPMN constructs
	BPMN levels

	DEMO methodology
	OER analysis
	Models

	Camunda
	Microservices
	Camunda Platform 8

	Methodology

	Tax administration as-is analysis
	Tax administration overview
	Tax administration process

	OER analysis
	Distinguishing performa-informa-forma
	Identifying transaction kinds and actor roles
	Composing the essential model
	Validating the essential model

	Coordination Structure Diagram
	Object Fact Diagram
	Other models
	Summary

	Digitization to-be analysis
	Camunda Modeler
	To-be model
	Participants
	Process description

	Summary

	Implementation of proof-of-concept BPM system using Camunda Platform
	Camunda hosting
	Software as a service
	Self-Managed

	Architecture
	Zeebe engine
	Identity
	Operate
	Tasklist
	Optimize
	Connectors

	Logical data model
	Executable BPMN model
	Forms description
	Variables
	Multi-instance

	Deployment
	Job workers
	Decision generating

	Testing
	Process testing

	Application prototype
	Summary

	Case study evaluation
	Key findings
	Advantages
	Disadvantages
	Recommendations

	System limitations
	Future development

	Conclusion
	Bibliography
	Contents of attachment

