
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Object-relational mapping for database access in JavaScript

Bc. Ladislav Louka

Ing. Jan Matoušek

Informatics

Web Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

Object-relational mapping (ORM) libraries enable to naturally connect objects written in

a given programming language with their representation stored in a database. There are

lots of such libraries for JavaScript (JS) and TypeScript (TS), but each comes with its own

set of compromises. Explore and describe available open-source frameworks, provide

example implementations of application showcasing their advantages and downsides.

In the benchmark application test primarily feature richness of framework, efficiency,

type support for TypeScript and ability for relational data fetching. Discuss good and best

practices for use with each library and what project they fit in.

Guidelines:

1) Research existing JS and TS libraries and explore their problems and benefits by

gathering users' experiences.

2) Design a benchmark database and example application, implement the application in

each framework.

3) Describe and test the frameworks with a focus on their functionality, efficiency of

database usage, speed and usability.

4) Provide outcomes of the tests, analyze their results. Describe which framework has an

advantage in each situation.

5) Recall on gathered experience, discuss findings, propose improvements and

continuations.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 3 December 2022 in Prague.

Master’s thesis

Object-relational mapping for database access in
JavaScript

Bc. Ladislav Louka

Department of Software Engineering

Supervisor: Ing. Jan Matoušek

May 3, 2023

Acknowledgements

I want to express my gratitude to my supervisor, Ing. Jan Matoušek, for his
guidance and expertise throughout the development of this thesis. His ideas
helped me to explore new avenues for expansion, significantly enhancing the
quality of my work.

My heartfelt thanks also go to Lucie Procházková for her constant en-
couragement and invaluable assistance in editing the thesis. Her keen eye
and attention to detail greatly enhanced the clarity and coherence of the final
document.

I would also like to thank Ackee for generously providing a working en-
vironment and the flexibility to utilize their facilities. Their support enabled
me to focus on my research and complete this thesis on time.

Finally, I thank my friends, family, and colleagues for their continuous
support and encouragement throughout my academic journey.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 3, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Ladislav Louka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Louka, Ladislav. Object-relational mapping for database access in JavaScript.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2023.

Abstract

In this thesis, we investigate the role of Object Relational Mapping (ORM)
and query builder packages in JavaScript, focusing on the support of Type-
Script. The study aims to compare various packages, assessing their flexibility
and performance overhead to facilitate an informed decision-making process
for developers. Such comparison is important due to modern applications’
proliferation of database access.

Keywords SQL, ORM, Object-relational mapping, Query builder, JavaScript,
TypeScript

vii

Abstrakt

Tato práce se zabývá baĺıčky a frameworky pro objektově relačńı mapováńı
a tvorbu SQL dotaz̊u pro technologii JavaScript, se zaměřeńım na podporu
jazyka TypeScript. Ćılem práce je porovnat podporu jazyka, schopnosti jed-
notlivých baĺıčk̊u a jejich výkon. Práce poskytuje vývojář̊um informace, které
jim pomohou při výběru vhodného baĺıčku pro jejich aplikaci.

Kĺıčová slova SQL, ORM, Objektově-relačńı mapováńı, Query builder, Ja-
vaScript, TypeScript

viii

Contents

Introduction 3

1 Preliminaries 7

2 Framework selection 21
2.1 Typescript support . 21
2.2 Popularity and Support . 22
2.3 Exclusion criteria . 23

3 Ranking and Grading of the Frameworks 25
3.1 Quantifiable Criteria . 25

3.1.1 TypeScript Support . 25
3.1.2 Database Compatibility 26
3.1.3 Flexibility and Performance 26
3.1.4 ECMAScript and CommonJS compatibility 27
3.1.5 Licence . 27

3.2 Package Properties Criteria . 28
3.2.1 Popularity . 28
3.2.2 Support . 28
3.2.3 Dependencies . 29
3.2.4 Documentation Quality 29

4 Benchmark database schema design 31

ix

4.1 Cat Entity . 31
4.2 House and Toy House Entities 32
4.3 Toy and Toys Producer Entity 33

5 Benchmark Framework Design 35
5.1 Test Suite and Schema Separation 35
5.2 Database management . 36
5.3 Test type and Error Handling 36
5.4 Multi-Framework support . 37
5.5 Reporters - Output options . 38

6 Benchmark implementation 39
6.1 BenchmarkRunner . 39
6.2 BenchmarkSuite . 41
6.3 Reporters . 41
6.4 Benchmarks . 42

6.4.1 MVP Benchmark . 43
6.4.2 Entity Traversal Benchmark 43
6.4.3 Edge Cases Benchmark 44
6.4.4 Special SQL Actions Benchmark 45
6.4.5 Bulk Operations Benchmark 46

7 Individual packages 49
7.1 pgTyped . 49
7.2 @databases/pg . 51
7.3 Zapatos . 54
7.4 Knex.js . 56
7.5 Kysely . 59
7.6 MikroORM . 61
7.7 Prisma ORM . 64
7.8 TypeORM . 66
7.9 Objection.js . 69
7.10 Sequelize . 71
7.11 Disqualified frameworks . 74

7.11.1 RDB . 74

x

7.11.2 Bookshelf.js . 76
7.11.3 Waterline . 76

8 Observations 79
8.1 Package Information . 80
8.2 Flexibility Assessment . 81
8.3 Latency benchmark results . 82

Conclusion 89

Bibliography 91

A Appendix 105

B Structure of attachments 115

xi

List of Figures

1.1 Active pattern class diagram . 18
1.2 Data Mapper class diagram . 19

4.1 Schema of benchmark database . 32

6.1 Simplified schema of the Benchmark class architecture 40
6.2 ConsoleReporter example result - partial screenshot 42

8.1 getColorLatency Results . 84
8.2 countCatsByColor Results . 85
8.3 getToysAvailableToCat Results . 86
8.4 JSON Column handling Results . 87
8.5 BulkInsert Results . 88

A.1 HTMLReporter result - partial screenshot 106
A.2 JSON Where query Results . 107
A.3 Transactional operations Results 108
A.4 Pattern Matching (likeQuery) Results 109
A.5 Case insensitive pattern (ilikeQuery) Results 110
A.6 BulkDelete Results . 111
A.7 BulkUpdate Results . 112
A.8 Pagination Results . 113
A.9 Maximum value query Results . 114

xiii

List of Tables

8.1 Runtime package information in test environment 80
8.2 Entity Traversal Benchmark implementation methods 82
8.3 Special SQL Actions Benchmark implementation methods 83
8.4 Edge Cases Benchmark implementation methods 83
8.5 BulkOperations Benchmark implementation methods 84

A.1 Popularity and homepages of packages 105

xiv

Acronyms

API Application Programming Interface

BSD Berkeley Software Distribution

CLI Command Line Interface

HTML Hypertext Markup Language

I/O Input / Output

JSON JavaScript Object Notation

MVC Model - View - Controller

OOP Object-Oriented Programming

ORM Object relational mapping

QB Query builder

RDBMS Relational Database Management System

SQL Structured Query Language

XML Extensible Markup Language

1

Introduction

In the modern world, data have become an essential aspect of almost every
field. From e-commerce to healthcare, education to finance, data is every-
where and plays a critical role in decision-making processes. The advent of
Web 2.0 [1], which brought the concept of user-generated content, was largely
supported by connecting the Web to databases. Social media platforms, for
example, rely heavily on data to provide personalized recommendations, tar-
geted advertising, and other features that keep users engaged. Even applica-
tions not working with the internet often need significant data storage and,
as a result, the ability to manage and manipulate data has become a critical
skill for developers and organisations alike.

Relational databases such as SQL Server and PostgreSQL are by far the
most popular type of databases for data storage used in business-level appli-
cations. These databases use the relational data model, which is based on
tables with rows and columns, to store and manipulate data.

Object-oriented programming languages and languages incorporating parts
of the paradigm, such as Java, Python, Ruby, and JavaScript, have gained
popularity [2] due to their ability to create complex software systems that can
handle large amounts of data efficiently. Object-oriented programming (OOP)
is a programming paradigm that represents concepts as “objects” that have
attributes (data) and behaviours (methods). This makes it easier to write,
maintain, and reuse code, which is essential when working with large-scale
software systems.

3

Introduction

Despite the popularity of object-oriented programming languages, there
is often a disparity between OOP languages and the relational data model
used by many databases. OOP languages are designed to work with objects,
whereas relational databases are designed to work with relations. This can
make it challenging for developers to work with databases using OOP lan-
guages.

Object-Relational Mapping (ORM) has become a popular solution for de-
velopers who need to connect object-oriented programming languages with
relational databases [3]. ORM allows developers to work with relational
databases using object-oriented programming languages, eliminating the need
to write complex SQL queries. By abstracting away the details of the under-
lying database, ORM allows developers to focus on the application logic and
reduces the amount of boilerplate code that needs to be written. This makes
it easier for developers to work with databases and reduces the potential for
errors.

The thesis aims to conduct a comprehensive analysis of the most popular
ORM packages and SQL query builders for Typescript. This analysis will
provide an objective measurement of their relative strengths and weaknesses
in terms of functionality, type support, performance, and package quality.
Also included are noncomparative examples of syntax and usage examples
of the packages, to illustrate strengths and weaknesses and to showcase the
functionality of the modules. By evaluating each package’s performance in
these key areas, the thesis aims to provide a comprehensive comparison that
will be useful to developers who are looking for the best ORM or SQL query
builder package for their Typescript project.

While there are existing comparisons, most of them are created from the
point of a biased actor, usually a competitive or alternative solution developer
[4] [5]. This thesis aims to provide an independent view.

The thesis is organized into eight chapters that guide the reader through
comparing and benchmarking various frameworks. Chapter 1 sets the foun-
dation by defining the terminology used throughout the thesis and providing
context for each term. Chapter 2 focuses on determining the essential at-
tributes for a framework to be considered for inclusion in the comparison.
Chapter 3 then discusses the criteria used to compare and rank the pack-

4

ages, from directly calculated comparisons to more qualitative aspects like
TypeScript support level and documentation quality.

Chapters 4 through 8 delve into the practical aspects of the thesis, with
Chapter 4 introducing the features of the Cat database, which serves as the
basis for testing the features and performance of the packages. Chapter 5
outlines the design of the benchmark framework and highlights the crucial
features for implementation. Chapter 6 covers the actualization of this de-
sign into a functional benchmarking tool. Chapter 7 presents an in-depth
analysis of individual packages, noting any problems or interesting findings
encountered during the implementation of testing tasks. Finally, Chapter 8
synthesizes the results of the benchmarking process, comparing and contex-
tualizing the findings from both flexibility and performance testing.

5

Chapter 1
Preliminaries

In this chapter, we will establish a solid foundation for the rest of the thesis
by introducing the key concepts and definitions used later in the work.

Object-Relational Mapping

Object-relational mapping is a way to access relational data in an object-
centred programming language [6]. Its primary purpose is manipulating data
without switching concepts from object-oriented paradigms to the relational
representation of data in which most databases operate. The scope of this
translation layer can (as shown later in this work) vary. Different groups
define packages as ORMs while providing diverse levels of functionality [7].

At its base level, ORM provides an intermediary layer between applica-
tions’ OOP model and database which is usually relational (but can be graph
or document focused). The layer allows the developer to work with objects
in the code, while the package translates it into a relational structure when
saved to the database. These packages are often used on projects that are
heavily connected to a database model, as ORMs are most beneficial when
using a database is commonplace. When used only occasionally, it usually
brings too expansive a setup to translate into gains in code readability and
maintenance costs compared to executing premade SQL queries [3].

In addition to the basic functionality of translating between different styles
of data representation, ORMs often include functionality such as connection
pooling, support for read-only data replications, caching, or database migra-

7

1. Preliminaries

tions. When using such modules, developers can avoid writing boilerplate
code that is typically required.

SQL Query Builder

SQL query builder is derived from its function to create SQL queries and OOP
pattern, which it implements, called “builder”. Object-oriented programming
design patterns are reusable solutions commonly encountered during software
development in OOP languages. There is no single authority on how these pat-
terns are defined, nor a comprehensive list of these patterns, as every author
prioritises different patterns and functionalities [8].

The Builder pattern is one such pattern, providing API for the complex
creation process of objects. This pattern is one of the 23 defined in “Design
Patterns” by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
[9], which has been highly influential in software engineering. Its purpose is
to separate the creation of an object from its representation, allowing for the
separation of parts that initially were parts of one construction method into
several.

SQL Query is made up of several clauses, which each serve distinct func-
tions. For example, the SELECT clause specifies which columns are to be re-
trieved, and the FROM clause specifies which table or tables the columns should
be [10]. Once the builder pattern is applied to the SQL query, each of these
clauses (or even smaller fragments) can be created by calling the Builder’s
methods, creating a programmatic way to create SQL queries. The Builder
also allows developers to abstract minor differences between different SQL
implementations.

As the ability to create queries based on multiple criteria is one of the basic
functionalities of ORMs, they are almost always built on top of a query builder.
These can be available standalone or fully integrated into the ORM package.
Often, query builders are sufficient for the purposes of database access in most
applications, so they were included in the comparison. While they certainly
lack feature sets and, compared to ORMs, query builders usually require SQL
knowledge, they can be easier to set up and maintain while also being faster
and allowing fine-tuned adjustments to a query.

8

PostgreSQL

One of the most popular database engines today, PostgreSQL, is an open-
source object-relational database management system. Originally developed
under the name Postgres [11] (short for Post-Ingres) as a new generation
after a successful relational database called Ingress, it was first released under
this name in 1989. After several years of development at the University of
California at Berkeley, the name was changed to focus on SQL compliance.
The whole project moved to open-source, community-focused development
in 1996. Currently, the project is maintained by The PostgreSQL Global
Development Group, and releases and source code are provided under an open-
source BSD-style licence free of charge [12].

PostgreSQL is, at the time of writing, one of the most popular SQL
databases available, owing its widespread adoption to its reliability and high
scalability while supporting most of the SQL standard and being fully ACID
compliant [13]. ACID is an acronym for Atomicity, Consistency, Isolation,
and Durability, which are four fundamental tenets specifying properties for
reliability and consistency of transactions.

Some of the features that often make PostgreSQL stand out amongst other
RDBMS are its support for many different and advanced data types [14] out of
the box, such as the ability to natively store JSON objects and arrays, XML
data or geometric types. With extensibility being a significant focus, a lot
of functionality can be installed or optionally enabled, further improving the
reach and applicability.

There are extensive implementations of the API for many programming
languages, including C [15], Python [16], Java [17], and JavaScript [18]. Post-
greSQL also offers extensive documentation of both its API and internal func-
tionality, which supports its growth and popularity.

Lazy loading

Lazy loading is a technique for optimizing data retrieval to increase application
performance [8, p. 200]. It is a strategy consisting of only loading data when
it is needed rather than all at once, therefore reducing the initial load in

9

1. Preliminaries

exchange for the need to do additional loading later. Lazy loading is usually
achieved by breaking down larger datasets into smaller ones and loading each
one only when necessary. Such practice is commonplace in web development,
as asset sizes (such as images or JavaScript) have only grown in the evolution
of the web.

Some of the most common implementations of Lazy Loading come in the
way of only loading low-quality images unless the user is focused on them or
splitting code into multiple files, which are fetched when necessary, providing
quick first page-load time at the cost of adding additional requests [19].

When talking about ORMs and database access, lazy loading usually takes
place as replacing data retrieval from an object with a call to retrieve the data
from the database. In other words, the data of the database object does not
need to be loaded when the object representation or its part is created in the
program.

Eager loading

Eager loading is the programming practice of loading all the required data at
once, optimizing the number of requests that must be made to retrieve every-
thing [20]. This is done with the expectation that one expensive request will
minimize the amount of additional data that would need to be sent between
the two parties. This can lead to faster load times and improved application
performance.

It is usually achieved by sending a singular request and caching the data
in memory, even though it might only be needed later. There are obvious
downsides to this, such as higher memory usage or often loading more data
than is necessary. The concept of eager loading is antithetical to the lazy
loading approach, and that is on purpose. Each approach prefers a different
focus, and thus each is fit for different usage; lazy loading is practical when
a first look or first results matter the most, and eager loading is when the
focus is on one large result, which would be slowed down by too many small
requests, which would need to be made for the total result.

In the context of object-relational mapping frameworks, we are most likely
to encounter eager loading when fetching related entities. This way, when

10

there is an expectation for data about the currently approached entity, the
ORM can optimize the query so that the data are already loaded in memory
when it is requested later.

Circular dependence

A common problem in software development, circular dependency occurs when
two or more parts of code depend on each other, making it impossible to resolve
their dependence onto a dependency graph. Such a graph must conform to
limits set out for tree graphs and, therefore, cannot contain a loop. Due
to the way how modules are loaded in Node.js [21], such a problem would
lead to a deadlock and is therefore resolved by trying to run the modules
in a specific order. However, such an approach is only sometimes feasible,
so other solutions must be used. The issue of circular dependency is also
present in the compilation because, while TypeScript does allow asynchronous
references of types between files using import type term [22], if we need to
import not only the type but also the value, TypeScript will not be able to
resolve the type, and the compilation will fail. There are many solutions to
this problem, the most common being dependency injection or lazy loading.

In ORMs and database representation in OOP languages, this problem
is generally connected to the bidirectional nature of relations, as its explicit
representation will inevitably create circular dependency [23]. Therefore, for
most schema definitions, there needs to be a functionality built in that al-
lows users to define bidirectional relations without sacrificing type safety or
encountering a deadlock with importing modules.

Database transaction

Transaction isolation is a concept used in database management to represent
a unit of work. The transaction is typically a series of one or more database
operations that are supposed to be completed on the all-or-nothing principle.
In addition to performing database queries atomically, the transaction also
needs to provide additional functionality, such as coordination of reads and
handling operations in a reliable and recoverable manner.

11

1. Preliminaries

As database transactions are the base for the basic functionalities of mod-
ern RDBMS [24], their handling is essential when considering the ORM frame-
work. Often an operation can only be performed when the previous one suc-
ceeded or has to be made strictly in order without another operation having
access to the data in between [13]. This can be achieved only through the
database transaction, and support for them is necessary for many use cases.

Database connection pool

A database connection pool is a component that collects and manages sev-
eral database connections and allocates them to individual requests to the
database. It works by creating either a fixed number of connections at the
beginning or scaling up the number of connections based on usage. In this
way, querying the database does not have to wait for the connection to be
established, and the request can be routed through the database connection
pool to the currently unused connection [25]. Additionally, due to having
multiple connections, multithreaded and asynchronous applications can co-
ordinate connections to the database. Single connection applications can be
stalled while waiting for a single otherwise non-blocking request, while others
could be served by the database. Such connections must be coordinated with
transaction management, as the transaction is inherently connected with the
connection that spawned it.

Read replica

A read replica is a special kind of database instance, a read-only instance
of the database presenting additional query points for the applications ac-
cessing the database without having to resolve consistency between instances.
Some databases support multiple fully functional instances, however concur-
rent writes to alternative machines could produce an inconsistent state in the
database. With a read-only replica, consistency is not threatened; the only
negative is the possibility that the connections will receive a state that is
delayed when the replica is not synced to the latest consistent state of the
primary instance [26].

12

Creation and usage of read replicas can significantly speed up application
performance as database queries are no longer constrained by single hardware
instance, which usually bottlenecks query speed. Duplicating the data over
two instances can double disk read speeds; if different physical devices are
used, slow scans over data can run independently and finish faster.

JavaScript

A high-level dynamically typed programming language developed in the mid-
1990s at Netscape Communications Corporation to add dynamic content to
web pages. Initially called Mocha, it was later renamed multiple times to
finally settle on JavaScript to use the (at the time very high) popularity of
Java [27].

Before JavaScript, websites were almost always purely static documents
that were displayed in web browsers (such as Netscape at the time or Google
Chrome or Firefox currently). The logic for any web application had to be
handled purely on the server side. With the introduction of JavaScript, web
pages were able to be more interactive and dynamic. While initially designed
to be used when writing HTML documents and executed by web browsers,
it outgrew its client-side roots and conquered large parts of the server-side
development and even mobile app and desktop application environments. The
advantage of JavaScript is that it can be a completely full-stack language
which provides exact parity of logic between client and server and allows for
significant code portability.

Until the last few years, JavaScript had an exclusive reign over interac-
tive web content, which made it one of the most used programming languages
in the world [2]. With multiple deficiencies known and unfixable without
massive problems with incompatibility, multiple additions which build atop
JavaScript and even whole languages which compile into JavaScript were de-
veloped. Some complied languages are, for example, CoffeeScript [28], Dart
[29] or TypeScript [30]. These languages exist to provide additional features
and functionality that are not easily or at all possible in pure JavaScript.

13

1. Preliminaries

ECMAScript

Soon after the introduction of JavaScript, it became apparent that establishing
standards would be a necessary step for compatibility between implementa-
tions in different web browsers. Following this consensus, ECMA (originally an
acronym for European Computer Manufacturers until 1994 [31]) International
standards association meeting was held, and the first edition of the document
specifying the new standard specification was adopted in June 1997.

The specification, coded under the name ECMA-262 [32], is a comprehen-
sive document that has gone over several versions over the years and specifies
the syntax, semantics, and behaviour of the language. There is also an ex-
tensive description of data types, operators, flow control structures, built-in
objects, and API.

ECMAScript is currently used primarily for client-side scripting, with pri-
mary implementations being those used in web browsers, such as SpiderMon-
key (Firefox) [33], V8 (Google Chrome, Opera) [34] and JavaScriptCore (Sa-
fari) [35]. Increasingly with new revisions of the standard, even server-side
applications and services have started migrating to ECMAScript from other
standards (primarily CommonJS), but many constructs are not directly com-
patible or translatable.

CommonJS

One of the alternative specifications which reflected missing functionality in
ECMAScript for server use is CommonJS. Created to establish conventions
on modularization for JavaScript outside the web browser, it has also stan-
dardized several APIs and internal features [36].

Started in 2009 by an engineer at Mozilla, the project was initially called
ServerJS, with its flagship feature being the synchronous loading of modules.
This means that once a module is imported, its exported components are
immediately available to be used [37]. This simplifies working with modules
and was necessary for the expansion of JS code into server-side development
and is used widely today.

14

Since its conception, gripes with the ECMAScript specifications were largely
fixed with further iterations, making it also usable in server-side development.
Popular packages, including those exclusively used in server development, have
migrated their codebase to ECMAScript.

TypeScript

A statically typed language built on top of the JavaScript foundation, Type-
Script was developed by Microsoft Corporation with the focus on allowing
developers to catch errors at compile time before the problem is encountered
during runtime, which usually requires extensive testing. TypeScript code is
written in enhanced syntax and then compiled into regular JavaScript, with
several standards supported, including CommonJS and ECMAScript [22].

TypeScript was designed to address several shortcomings that have been
present in the ecosystem for a lost time, especially when creating large-scale
applications. JavaScript applications are very flexible with their dynamic and
loosely typed nature and prototype usage, but with flexibility comes a large
surface area for errors and mistakes.

Today, TypeScript is widely used for web development and JavaScript
server-side development. Most popular frameworks provide at least partial
support for TypeScript, and some (such as Angular and React) have even
switched to it as the recommended language. TypeScript has support in many
JavaScript-integrated development environments, such as Microsoft’s Visual
Studio Code [38] or JetBrains WebStorm [39]. With solid typing comes the
ability for more substantial and consistent code completion, guaranteed auto-
mated refactoring, and error checking.

Other projects have tried to fix the same issues as TypeScript fixes. For
example, Dart [29], which is developed by Google, works in the same way,
although it abstracts further from the traditional JavaScript syntax. It is also
compiled into standard ECMAScript syntax. However, it never gained the
same traction, and its focus was changed from alternative to JavaScript to the
primary language for development in the multi-platform framework Flutter.

15

1. Preliminaries

Node.js

Node.js is an open-source, cross-platform JavaScript based on the V8 engine,
which was originally developed by Google for Google Chrome. It is designed
to allow for server-side usage of JavaScript, with focus on network applica-
tions [40]. Released by Ryan Dahl in 2009 [41], it has since become stan-
dard for server-side JavaScript development, especially web applications. The
framework has gained popularity thanks to its alternative execution model,
which separates it from traditional server-side languages. Instead of spawn-
ing different threads or workers for connections, it works with a non-blocking
asynchronous I/O model, where many concurrent connections can be handled
with only a small overhead [42].

This is achieved through asynchronous programming, where multiple tasks
can be executed concurrently without blocking the main execution. Node.js
supports asynchronous programming through the concepts of callbacks and
promises. Callbacks are functions passed as arguments that are executed in
finished or failed states, ensuring that logic can be applied sequentially after
the asynchronous operation is finished. Promises provide a more structured
and object-focused way to handle asynchronous operations and have become
the preferred way. a promise is a representation of value which might not be
available yet, containing a status variable and reference for the result once
achieved, allowing for code execution while the operation status is updated in
the background. When the value of the promise is necessary, the promise can
be checked or awaited by using the async/await constructs [43].

While Node.js is currently the most dominant, there are other alternatives
available with their own approaches and focuses. The most popular one is
Deno, also developed by Ryan Dahl, with the intention to address some of the
security and design issues of Node.js. Deno, for example, contains extensive
tools and utilities within its standard library or uses better sandboxing be-
tween modules as supported by V8, the engine on which both it and Node.js
run [44].

16

npm

One of the key benefits of the Node.js ecosystem is the large number of third-
party packages that can be incorporated into projects. For example, many
popular web frameworks, such as Koa or Express.js, are built for Node.

Originally an acronym for Node Package Manager [45], the three-letter
name has been retroactively stripped of such meaning [46]. The first release
was published in 2010, and it has since become the default Node.js package
manager. Npm consists of a command line client, which is also called npm,
and an online database of packages called the npm registry, which is hosted
at www.npmjs.com.

Although npm is the default package manager, alternatives that were cre-
ated with different focuses and compromises exist, for example, yarn [47],
although they usually don’t provide their own registry.

JSON

JavaScript object notation (JSON) is a lightweight data-interchange format
that is widely used in web development. Introduced as an alternative to the
complex XML format that was previously used, it is based on a subset of
JavaScript representation of values. It consists of key-value pairs in objects,
arrays, and primitive types. One of the main benefits is its simplicity and
readability for humans, which makes it useful for places where data could
need to be interpreted by both humans and machines.

JSON has been standardised in the ECMA-404 [48] document by Ecma
International. The document specifies syntax and semantics, ensuring its re-
liability, consistency, and portability throughout systems and applications.

Unit of Work

Unit of Work is a software design pattern used most commonly in ORMs and
similar frameworks to manage persistence and consistency between application
and database state. The pattern is used to group all database operations
relating to a single transaction or process and only execute the final state,

17

www.npmjs.com

1. Preliminaries

ensuring they can be performed atomically without requiring lengthy and
expensive locking of database rows or tables or risking deadlocks through
database transactions [8, p. 184].

The main idea is to track changes across the object in memory, and instead
of committing every change into the database, only the last state change is
executed. This can be applied not only across one object instance but also
across whole swathes of objects. While atomicity is undoubtedly necessary on
many occasions, and unit of work on the ORM side can significantly reduce
the number of requests to the database, it can also lead to inconsistency when
multiple applications access the database and data which are currently loaded
in memory on one machine are modified by a different one.

Active record

The Active Record pattern is a design pattern defined by Martin Fowler in
his book “Patterns of Enterprise Application Architecture” [8, p. 160] and is
commonly used to represent database records in an application.

The goal of the pattern is to encapsulate logic for interacting with the
database table into a single object. Each instance of the object represents
a single record, and modifications made on it are then usually flushed with
a method call into the database. The base class also provides static methods
for CRUD (create, read, update, delete) operations and possibly additional
business logic.

Figure 1.1: Active pattern class diagram, recreated from [8, Fowler]

18

The main benefit of the Active Record pattern is a simple and intuitive
interface for objects and tables. Modifications of the object can be made right
on the data in languages, which allow setters and getters on attributes, and
static methods provide a simple gateway to work with the table. Diagram of
the pattern can be seen in Figure 1.1.

Limitations of the pattern come in the tight coupling between the ap-
plication and database logic, as the object instance is inherently tied to the
database representation. This makes it harder to test the implementation and
often requires additional abstraction or mocking. Additionally, the pattern
does not easily allow for the management of relations, so a database schema
with complex relations might not be able to represent the data easily.

Data mapper

The Data Mapper pattern, as described by Martin Fowler in his seminal work
on enterprise application architectures, provides a clear separation between
domain models and their underlying data storage. This approach enables
developers to create complex and expressive domain models without being
constrained by the relational database schema or various storage options. By
decoupling in-memory representations from the data storage mechanisms, the
Data Mapper pattern promotes a clean separation of concerns and enhanced
flexibility in application design [8, p. 165].

Figure 1.2: Data Mapper class diagram, recreated from [8]

Distinguished from the Active Record pattern, the Data Mapper pattern
ensures that business logic and data access responsibilities remain separate. In
this approach, a single entity represents the table or collection, while distinct

19

1. Preliminaries

entities represent individual records as seen in Figure 1.2. The Data Mapper
serves as a data access layer that performs operations on the data storage rep-
resentation without creating any direct bindings between in-memory objects
and the database. This responsibility is solely managed by the Data Mapper,
which takes care of any objects that utilize it.

By limiting the responsibilities class must service and ensure that it is not
accountable for multiple unrelated tasks, the single responsibility principle
aims to create more straightforward and more maintainable classes. Conse-
quently, the Data Mapper pattern contributes to a more robust and modular
software architecture that is easier to develop, maintain, and extend.

However, the Data Mapper pattern has its own set of drawbacks. One
notable downside is the increased complexity introduced by the additional
layer of abstraction. This added complexity could lead to a steeper learning
curve for developers unfamiliar with the pattern, as well as the potential for
increased development time [49].

20

Chapter 2
Framework selection

Selecting the optimal framework for any project can be difficult, with many
parameters and options to consider, and quite often, there are better options
than the most popular. The JavaScript ecosystem is rich in choice, as through-
out the years, many developers and companies have tried to create packages
in their own image. Mainly due to this plethora of choices, there is a need
for an overview which would present advantages and disadvantages. However,
only some frameworks can be reviewed; therefore, at least essential criteria
need to be established.

The selected packages were selected for their support of TypeScript, with
varying levels of compatibility, which will be shown in further detail later.
Additional criteria considered were popularity and support as separate factors,
leading to the inclusion of widely-used packages with currently limited support
and development and lesser-known packages with solid support.

2.1 Typescript support

The primary selection criterion for the packages was TypeScript compatibility.
Each package had to have at least a basic functionality working and typed,
requiring only reasonable effort to integrate. The degree of support varies
among the packages, and their level was also compared, but the base level
was necessary to be considered.

The functionality considered essential is not easy to define either, but as
the level of type support varied, the minimum settled on was package and

21

2. Framework selection

connection setup and simple querying. The package had to have connection
options typed, at least for primary usage, as listing all options for all connec-
tions is not necessary for most uses. Querying and updating database records
is the most common activity for which ORMs and connection builders will
be used, so the types they provide are some of the most useful. The result
of a simple non-joined query on one table should be able to return exact and
correct types, and an update of the record should also at least suggest the
attributes which can be changed.

The quality of the typings provided by the package will be a subject of
benchmarking. However, the packages included in this comparison had to
advertise at least basic functionality.

The quality of the typings provided by the package will also be a subject
of benchmarking. However, the packages included in this comparison had to
advertise at least basic functionality. Even packages with community-provided
typings were considered for implementation. However, only one package -
Waterline was found with at least basic quality typings provided in such a way,
and it was not sufficient for implementation, as explained in subsection 7.11.3.

2.2 Popularity and Support

Popularity was inherently a factor in the selection of packages; if the package
was known more, its likelihood of being found was smaller. We researched
popularity in several ways; the primary source was searching by name and
keyword ORM on the npm repository [50]. Secondary sources were articles on
ORM and database access in Node.js [51], [52]. The npm repository provides
statistics about the packages listed on it, the most prominent being weekly
downloads. The statistic is good for basic orientation but is not a great indi-
cator of the exact number of users, as users can download the package mul-
tiple times, most packages are cached by third parties, which automatically
download a version when it is released and many more ways, which skew the
number. Additional input for popularity was the number of issues and stars
the project currently holds on GitHub.

Support is a secondary attribute that is highly linked to popularity. Al-
though all packages reviewed are open-source, only maintainers can merge

22

2.3. Exclusion criteria

code into the main branch or release versions onto the registry. If they are
no longer active, the project effectively stops. While they can be released
under a new name if the licence permits such a thing, no packages missing
implementation into the benchmark have forks that would relieve the issues
encountered. High-quality support is crucial for addressing issues, incorporat-
ing new features and compatibility with changes in underlying technologies.

2.3 Exclusion criteria

Although some packages were initially selected for comparison, thanks to fit-
ting the previous criteria, problems encountered during their implementation
into the benchmarks needed to be better to allow for meaningful comparison.
They are still introduced in section 7.11, and the issues explained; however,
they will only be included in comparisons outside the basic summary.

The one condition that could disqualify a package was the ability to func-
tion inside the TypeScript project. That means having up-to-date type def-
initions and functionality for package configuration with the test database.
Even alternative type definition would be considered if, for example, a change
in TypeScript behaviour would require a redefinition of types.

If the issue of such deficiency lies in required dependencies, it’s exacer-
bated, as changing to a newer version could break the package’s functionality.
In cases where such problems are encountered, derivative distributions of the
framework were explored, but unless they are distributed through the npm
repository, they were not tested.

23

Chapter 3
Ranking and Grading of the

Frameworks

This chapter outlines and explains the criteria for evaluating ORM and SQL
query builder packages chosen for the comparison. These criteria will be the
core points which will be considered, but other specific notes will be made
about each package. The main criteria were the level of TypeScript support,
range of compatible database management systems, popularity, support, doc-
umentation quality, dependency count, and performance in different scenarios.

3.1 Quantifiable Criteria

The main section of the evaluation criteria focuses on technical aspects of
the frameworks, specifically their usage of TypeScript, support for different
databases, and difficulty composing queries. As these qualities are quantifi-
able, they were given the highest priority in comparing the packages.

3.1.1 TypeScript Support

The quality and extent of TypeScript support vary among the packages, with
some offering better integration and type safety without the need for casts.
In contrast, others only provide basic typing or require result type definitions
to be written into each request, which amounts to the same behaviour as if
the result was cast. Such functionality often comes when the package initially

25

3. Ranking and Grading of the Frameworks

written for JavaScript is not rewritten in TypeScript, only provided with a
types file for compatibility. The file specifies call signatures, but cannot
provide other assurances, that TypeScript native code has.

3.1.2 Database Compatibility

Wide database compatibility is necessary when working with a large project
that may encompass many services or when choosing a toolchain for a team
working with dynamic technology stack, as the one database may not satisfy
all the needs the team might have, and building experience with multiple
frameworks could be considered unnecessary spending. Providing a unified
API over multiple databases can be one of the benefits of query builders or
object-relational mapping frameworks.

3.1.3 Flexibility and Performance

Flexibility and performance are crucial in a database access framework. Sup-
pose the package would restrict the ability to access the data, requiring round-
about ways to deal with basic operations. In that case, there are better ways to
simplify development, just as if the framework creates excessively suboptimal
queries or adds excessive overhead. One of the requirements for a comprehen-
sive ORM framework is the ability to support many use cases and represent
and work with many different data models. If ORM doesn’t support possible
use cases or cannot represent commonly used database design patterns, it is
lacking in some ways compared to one that does.

Performance is often secondary when choosing an ORM framework, as
quite often, even frameworks adding significant overhead and creating subop-
timal queries are usually not noticeably slowing down the application. As the
application grows, the performance can become significantly more critical, and
the resources needed can be more expensive to scale. a high-performing pack-
age can support this growth by maintaining efficacy under load and effectively
using its available resources.

Performance was measured by comparing the request execution time to
other implementations. Benchmarking this way provides information about
the amount of overhead the framework requires to function and if the connec-

26

3.1. Quantifiable Criteria

tion pool is correctly initialized, connections are assigned optimally, and data
are retrieved in a proper form. The benchmark executes the run repeatedly
to eliminate any inconsistency from a single run.

3.1.4 ECMAScript and CommonJS compatibility

There are two different primary standards for JavaScript syntax, ECMAScript
and CommonJS. They primarily differ in how the inclusion of modules is writ-
ten and the mechanism of the module import. While CommonJS was domi-
nant in the server backend space for a long time, however, ECMAScript mod-
ules are becoming significantly more popular, with support added in Node.js,
TypeScript and many popular packages.

Combining packages from both ecosystems can still lead to problems. The
best way to support all possible combinations is to provide both types of
dependency declarations.

3.1.5 Licence

As developers consider integrating packages into their projects, it is crucial
to consider and understand the significance of licences governing their use.
Open-source software is often regarded as a valuable resource, offering a large
amount of reusable code and often the best solution. However, it is essential
to understand that open-source does not necessarily equate to unregulated
use. Licences still dictate the terms under which the package and its code can
be employed, modified and redistributed. Therefore, developers must examine
the licences of potential packages to ensure their intended use aligns with the
terms granted.

The most permissive licences allow for usage, modification and redistri-
bution with at most a requirement to credit the original author/authors and
don’t require the licensee to maintain the same licence in derivative works.
Examples of such permissive licences are MIT License [53] or Apache License
2.0 [54]. These are generally preferable for projects that demand flexibility in
their use of the software.

While still free in terms of monetary rewards, the opposite side to the
permissive licences are copyleft licences, which impose more stringent require-

27

3. Ranking and Grading of the Frameworks

ments on the usage, especially modifications and redistributions of the soft-
ware. The primary example of such a licence is GNU General Public License
[55], which requires derived works to be distributed under the same licence.

Since copyleft or other provisions might limit the usability of libraries such
as ORMs for many projects, it is necessary to include the licence as a grading
criterion.

3.2 Package Properties Criteria

However, technical criteria are only some that should be considered when
selecting a framework. Many of these factors are interconnected; often, success
in one is either caused by or preceded by doing well in others. For example,
while the popularity of the package can show the reliability and usability of
the package, it also often results in more issues being reported, and more users
are more likely to create community resources supplying or improving official
documentation.

3.2.1 Popularity

Popularity measures usage, as indicated by package downloads, the number
of issues, and the number of users on GitHub who have shown interest in
the repository. While all imperfect measures for absolute popularity, they
help compare popularity between packages by their relative difference. In the
case that the package usage requires multiple dependencies to be installed, for
example command line interface for development and runtime dependency,
the highest number is listed.

3.2.2 Support

The number of resolved and still open issues can be used to show popularity
and support of the project. With such a metric, support can be measured;
however, more important than that are the patterns of behaviour which main-
tainers have shown previously. If the release schedule is predictable, bugs and
security issues are fixed quickly, hesitant adopters can be assured that this pat-
tern will continue, and the framework is a safe investment. On the contrary,

28

3.2. Package Properties Criteria

a project which is officially or practically no longer supported can be assumed
to be a worse choice, as it cannot react to newly found errors and problems
with dependencies and might be unusable due to changes with TypeScript or
Node.js runtime.

3.2.3 Dependencies

As dependencies require maintenance due to their changes and vulnerable ver-
sions, their amount should also be manageable. Otherwise, it might increase
the maintenance cost for the package and application size. Even though data
storage is less critical than previously, having a more storage-conscious pack-
age is still beneficial.

3.2.4 Documentation Quality

Documentation quality is critical for new adoption and onboarding for working
with the framework. It also cannot be measured with reasonable objectivity.
Perceived quality depends on language understanding and users’ previous ex-
perience with the programming language and similar frameworks. Evaluation
of documentation will therefore summarize clarity, extensiveness and whether
features such as JSdoc annotations [56] which can be parsed by IDEs are used
to contain or link to the documentation.

The following chapters aim to provide a comprehensive and in-depth anal-
ysis of packages compared by evaluating each package by these comprehensive
criteria with additional added when.

29

Chapter 4
Benchmark database schema

design

This chapter describes the database used for performance testing of the ORM
and query builder packages. The database is designed around imaginary data
collection about cats, their home domiciles and toys found within these houses,
and the toys’ manufacturers. The database comprises six main entities - cat,
cat colours, colour hex codes, houses, toys and toy producers.

The design of the database was guided by the aim to represent many
different relational architectures and different commonly used data types. The
schema was created to represent different cardinality between entities, foreign
key usage and partiality. The data stored inside the schema was also selected
only to test data parsing ability rather than fit logical use.

The database was filled with testing data, designed with diversity and
amount to allow for flexibility testing and for highly inefficient queries to
be evident. However, the data in the database is insufficient to overfill the
database buffers and test for excessive operation complexity, only to detect
inefficiency in the query. This is one area which can be explored in further
work.

4.1 Cat Entity

The cat entity instances represent individual cats which we want to monitor.
Each has a unique identifier, name and date of birth, all of which are nullable

31

4. Benchmark database schema design

except for the identifier. This entity aims to represent the basic database
table and to verify the correct handling of the data type from Postgres, as
JavaScript Date time represents a moment, including time [57]. In contrast,
the database entry would only contain the date [58]. Additionally, the cat
entity uses big integer data type, and handling numbers beyond the standard
range allocated in JavaScript is tested. The cat colour and colour hex
code are two entities that represent the cat colour by its name and by its
hex code. The entities are intentionally split in this way to use identifying
relation [59] - the primary key of the hex colour entity is also a foreign key
referencing the id of the cat colour entity.

4.2 House and Toy House Entities

The house entity represents domiciles where the cats spend time at their
behest. The relation must account for ambitious cats using several houses as
their homes. The main aim is to test the difficulty of implementing and using
simple many-to-many relations. The only attribute that provides new data

Figure 4.1: Schema of benchmark database

32

4.3. Toy and Toys Producer Entity

type or behaviour is the simple has_dog attribute, specified as a Boolean. It
is one of several attributes that test the frameworks’ ability to correctly type
and convert the data recovered from the database.

The houses can be equipped with many toys for the cats to use. The
relation between houses and toys is modelled through a decomposition table
which contains attributes representing the number of the same toy in the
house. While the primary keys are the identifiers of the house and toy, the
decomposition with the amount, rather than several records with an additional
identifier, is designed to test the ability to insert a record if it does not exist
or update the value referencing its previous state. If more toys are purchased,
the owner of the house does not suddenly throw out all toys they already
had; they will add them to their current pile. This operation is often called
upsert - a combination of update and insert, and some database engines, such
as CockroachDB [60], implement it explicitly under this name. PostgreSQL
achieves it using the ON CONFLICT statement in INSERT query [61]. It also
tests the handling of composite primary keys, a standard paradigm in many
databases.

4.3 Toy and Toys Producer Entity

The toy entity purpose in testing is in numeric data type used in price at-
tribute and usage of additional column attributes such as CHECK constraints or
DEFAULT values in the column [62]. Column naughty is focused on commonly
problematic strings in software development, such as special Unicode charac-
ters, emojis and other issues that could come up in handling data from the
database, especially if the encoding is not correctly handled. Toys producers
host the JSON columns to test if it is possible to use advanced JSON traver-
sal and query operators provided in PostgreSQL [63] (and their equivalents in
other database management systems).

33

Chapter 5
Benchmark Framework Design

The benchmarking process was designed to compare the performance of var-
ious ORM and SQL query builder packages. As such, it was important to
ensure that the benchmarking framework was developed in the same envi-
ronment as the packages themselves. To achieve this, the framework was
implemented in TypeScript, the same language used by the packages being
tested.

The benchmarking framework had to be designed to accommodate errors
that could occur during development and testing of the packages. Addition-
ally, it has to support testing of multiple database schemas and allow for
results to be exported in a variety of formats for further analysis. The result-
ing benchmarking framework provides a robust and comprehensive means of
comparing database access packages.

5.1 Test Suite and Schema Separation

The benchmarking framework was designed to support separation of tests into
multiple test suites, a common practice with JavaScript test frameworks such
as Jest [64] or Mocha [65]. Test suite separation allows for organization of tests
by subject and contains specifications about the database schema and data
expected to be executed. Input and output parameters must be typed to test
TypeScript support, and the framework should provide sufficient functionality
to avoid the need for casting.

35

5. Benchmark Framework Design

The tests are expected to be run simultaneously with snapshots of the
database schema and should not interfere with data used by another test
suite. As a deliberate choice, this limits the scope of each test’s modifications
over the database and data. However, it eliminates the need to reset the
database to the original state after each test suite, reducing the time it takes
to run the benchmark. Even so, such functionality should still be supported,
as the framework has to allow for wider range of tests than is expected for
implementation.

5.2 Database management

As the framework operates strictly over a database instance, the framework
must be able to perform maintenance operations. These include initializing
the database with its schema, seeding the database with test data and later
tearing down the schema and replacing it with a different one, depending on
which the test suite requires.

5.3 Test type and Error Handling

The framework needs to support multiple tests to ensure the validity of any
results it produces. If performance is measured, multiple runs can reduce
the impact of statistical anomalies, which can occur due to the innumerable
possible external events.

Along with performance, the correctness of both query types, resulting
runtime types, and the result value are essential. As types are only visible
before compilation, and with typed test suite definitions TypeScript compiler
would not compile the code. Due to this restriction, even incorrect types from
the packages will need to be cast into their expected value. However, even just
the need for such modification means the package is insufficiently supporting
type definitions.

Resulting runtime types and values are validated using the node module
node:assert [66], which provides assertion functions. It is provided to func-
tion with testing frameworks such as mocha, which do not offer verification
functions. Included are even deep equality checking functions. The main ad-

36

5.4. Multi-Framework support

vantage, however, comes from being included in the Node.js standard library,
meaning that no additional package has to be included.

Returning an incorrect result is one of many ways the benchmark test
can be failed; the package can return an unexpected error, or the test is
impossible to perform. Both are fail-states which the benchmark suite must
account for with error handling. One choice during the design process was
that a single failure would mark the real test as failed, even though other
iterations succeeded. If the package caused the issue, that means the package
is not reliable enough and such problem needs to be marked. If the failure
is caused by external issue, for example database error, the test run can be
repeated after triage.

5.4 Multi-Framework support

The benchmarking bootstrap is designed for sequential testing of multiple
packages. This design, rather than separate execution, allows for compre-
hensive comparison under the same conditions, ensuring accurate results. As
managing the dependencies could prove problematic if packages had different
dependencies required, npm workspaces [67] were selected as a project struc-
ture. That way, top-level dependencies of the framework can be separated
from the individual implementations.

As each framework is initialized through its initialization method, abstrac-
tion over the package itself must be created. The initialization also has to ac-
count for delayed connection pool creation. Some packages only start the con-
nection once the first request is sent to limit the number of open connections
for the database. The database has a limited amount of connections it can
support, which is one way to optimize its usage. The benchmark database can
easily handle the limited connections between the benchmarking framework
and the individual connections; however, it should still contain a method for
closing the connection and destroying the context so subsequent frameworks
can access the same amount of resources.

37

5. Benchmark Framework Design

5.5 Reporters - Output options

An integral part of the design was the inclusion of reporters. Reporters pro-
vide an interface and implementation of multiple output options, enabling the
results to be saved and shown in various formats. Standard test frameworks
utilize reporters to make code coverage or detailed error stack inspectable.
The reporters can interpret the data in different formats with a benchmarking
framework. The reporter interface has to be designed to be extensible, in order
to allow for the easy addition of other output options or data interpretations
in the future.

38

Chapter 6
Benchmark implementation

The design of the benchmark overhead leads directly to its implementation.
The benchmark functionality, written in TypeScript, involves two main com-
ponents: the BenchmarkRunner and BenchmarkSuite classes. The classes
work together to manage the ordering of tests, database administration, and
execution of test suites, as well as handling packages, test suites, and reporters.
The simplified class schema is shown in Figure 6.1.

6.1 BenchmarkRunner

The BenchmarkRunner class is responsible for managing the benchmark’s over-
all execution. It holds information about the test suites, ORMs and query
builder packages being tested, and the reporters. The class has responsibility
for database administration while also ordering and executing the test suites
on their respective database schemas.

Database administration tasks include setting up and tearing down exam-
ple databases used in testing. Tests are currently written only for the database
examined in Chapter 4, therefore this functionality is only used to initialize
the database and to preserve a consistent state. In order to perform these
tasks, BenchmarkRunner maintains its database connection using the default
pg module.

The benchmark runner is also responsible for ordering, initialization and
execution of individual packages and tests. Each package is declared using
a unified interface, which defines initialization and destruction methods for

39

6. Benchmark implementation

Figure 6.1: Simplified schema of the Benchmark class architecture

40

6.2. BenchmarkSuite

efficient memory usage, implemented test suites and package name. The order
of execution is guided by the database schema selected, the package, and
individual test suites. If any suites are not implemented in the individual
package declaration, the reporters are notified, and the tests can be marked
as not implemented in the report.

6.2 BenchmarkSuite

As the name suggests, BenchmarkSuite represents each test suit of the bench-
mark. It covers the specification of each test, including validation function,
name, parameters and options for running the test. This design ensures type
safety for running the tests as they implement the interface defined for the
suite. The options include which tests should be performed or how many loops
to execute for repeated tests. Class methods implement individual types of
tests, error handling for individual runs and measuring the execution time of
each test run.

Two implemented test workflows, validity test and latency test; validity
test runs each implementation once, tests if the value is equal to reference in
both value and the runtime type, and returns test result. The latency test
executes the tests in a loop, intending to show if the framework can create
well-crafted queries while not adding significant overhead.

6.3 Reporters

As the output of the benchmarks is meant to be interpreted by humans, the
measured data needs to be transformed into a human-readable format. Test
objects contain vital information, but the benchmark output consists of thou-
sands of such objects; therefore, they must be converted into valuable data.
Two reporters were implemented for this benchmarking framework, with an
interface for further reporters.

Console Reporter

The primary reporter for use in development intends to provide simple bench-
mark results in table form. While running the benchmark, it allows for quick

41

6. Benchmark implementation

assessment of any errors and monitors the progress of the run. Illustrating
test status using emoticons and separating test suite, implementation, and test
type helps with any expansion of the framework with new tests of packages.

Figure 6.2: ConsoleReporter example result - partial screenshot

HTML Reporter

The HTML reporter is the primary source for any data analysis of the bench-
mark run. It consists of a template file and the reporter. The reporter receives
data from the benchmark using the unified API, parses it, and inserts it into
the template file as a JSON string once the benchmark is finished. Along
with the data, cascading style sheets are also inserted, as they are written in
Sass language [68], which must be compiled before the HTML file viewer uses
them. After the template is completed, the file is saved separately, and graphs
are created on runtime using JavaScript.

While the data could be served dynamically, this separate file allows for
multiple runs to be saved and be independent of the server which would pro-
vide the data. The JSON is available and can be inspected if further analysis
is needed. Example of resulting web page is included in the appendix as
Figure A.1.

6.4 Benchmarks

This section will list and describe all the benchmarks developed to compare
individual packages. In addition to comparing performance, the requirements

42

6.4. Benchmarks

for implementation are comparison, as an easily implemented framework is
better than one that’s difficult to, provided they otherwise have feature parity.

6.4.1 MVP Benchmark

This test suite was only implemented under the Knex.js package as its purpose
is to test the functionality of the benchmarking framework and does not test
any database functionality. It is proof of concept for correct validation and
exception handling tests for the benchmark suite and runner implementation.
It consists of a small number of tests, including a fully passing test, a test
expecting Skipped exception, which is used for marking tests which are not
implemented, tests whose results are mismatched in value or runtime type,
and a test that throws generic error on execution. Additionally, MVPBench
examines if test configurations are working as they should be, testing both
validity and latency settings.

6.4.2 Entity Traversal Benchmark

One of the generally provided functionalities of ORMs is the ability to define
entities and their relations. This benchmark aims to test the ability to use
these defined relations to find objects using these connections. The first test
of the suit focuses on finding a cat’s colour in hex by traversing two relations,
one of which is identifying. The framework starts with the cat’s ID and
needs to fetch the color hex instance through its connection to the cat color
instance. Thanks to the relation design, there is a guarantee that only one
result will be returned at any time. The second test counts cats by their
colour hex code, traversing the relations from the first test in the opposite
direction. Instead of selecting, the test counts the cats, testing if the query
difficulty changes if we use aggregate functions instead of basic SELECT query.
The third test in this benchmark selects all toys available to a cat, primarily
focusing on the format of the returned data and how well the decomposition
table can be accessed or avoided. The decomposition table exists because of
the M:N relation between toys and houses, but the additional amount attribute
is not used.

43

6. Benchmark implementation

6.4.3 Edge Cases Benchmark

The edge cases benchmark aims to evaluate database adapter performance in
specific situations that may not be commonly encountered but can potentially
cause problems. The two tests in this benchmark focus on data type conversion
and parameter handling.

BigIntColumn test examines the data type conversion for the BigInteger
type in PostgreSQL. JavaScript’s Number type can lose precision when han-
dling large integers since the maximum safe integer for Number is 253 − 1
[69], while PostgreSQL’s bigint type can store numbers up to 263 − 1 [70].
Although the BigInt primitive [71], which can store integers with arbitrary
precision, was introduced in ECMAScript 2020 (ES11) [32] and has been im-
plemented in Node.js since 2018 [71], not all frameworks handle this type
correctly. The frameworks can either cast the value to Number, losing preci-
sion and failing the test, or return the value as a string or, ideally, as a BigInt
primitive.

SQLInjection test assesses the framework’s basic handling of parameters.
One of the main reasons for using a database access package over a basic
driver is to improve security against SQL injection attacks. The code will
return all records if the parameter is sent as part of the SQL query. If the
package incorrectly escapes the query, it will result in no results returned.
Only the correct handling of arguments will return the specific Cat with the
fascinating name a “’ or true --”. It is important to note that this test
does not evaluate whether the package is entirely vulnerable to SQL injection
attacks but rather if the basic handling of arguments is not vulnerable.

In order to test the ability to use aggregate functions over a relation, the
maxQuery test examines the package’s ability to query the relation’s maximal
value. The test is run over the Toy entity, with the highest price being searched
for. In addition to aggregate function usage, this also tests the ability to parse
DECIMAL type and work with it in terms of JavaScript type Number, which is
more accurately reflected with PostgreSQL type DOUBLE.

44

6.4. Benchmarks

6.4.4 Special SQL Actions Benchmark

The Special SQL Actions benchmark evaluates the performance of frame-
works in scenarios that go beyond basic querying, focusing on unique ways of
interacting with the database. This benchmark comprises several tests, each
targeting different aspects of database interactions.

The upsertToysToHouse test examines whether the package contains an
upsert operation method and assesses its flexibility, such as the ability to dif-
ferentiate between the insertion and update objects, as well as the capacity
to reference the updated value. The test uses a CatDatabase schema that
includes a decomposition table called ToysHouse, which stores references be-
tween houses and toys and the quantity of each toy type in the house.

The suite also contains tests which evaluate the handling of JSON columns
in the database. The JSONColumn test checks the ability to parse JSON val-
ues from the database, while the JSONWhere test focuses on querying based
on the value of an object key inside the JSON column. PostgreSQL provides
two ways to query the value: extraction operator ->> for simple comparisons
or @> operator for more complex comparisons with JSONB datatype [63],
which are useful for developers using SQL, but the abstraction of ORM might
obstruct the access to these methods.

The transactionalOperations test investigates how individual packages han-
dle transactions, assessing the full range of operations available for reverting
changes to the data.

Lastly, the likeQuery test examines the methods each framework uses for
pattern-matching queries, evaluating basic search functionality in the database
by searching for a part of a house address. As case insensitivity differs in im-
plementation between database engines and the ILIKE term support is not
universal, test ilikeQuery also tests the ability of packages to use the func-
tionality provided by database engines. The query can use either PostgreSQL
native ILIKE term, parsing the request and creating SIMILAR TO condition,
or a different pattern matching function.

By understanding how different frameworks handle these particular SQL
actions, developers can make informed decisions when selecting a database
adapter that aligns with their project’s unique requirements. The benchmark

45

6. Benchmark implementation

ensures that developers are aware of each package’s various capabilities and
limitations, enabling them to choose the most suitable solution for their spe-
cific use cases.

6.4.5 Bulk Operations Benchmark

The benchmark for bulk operation focuses on the usage limitations for more
extensive operations and large amounts of data. With ORM abstracting
through the Active Record pattern, more extensive scale analytics and data
manipulation operations can be obscured and inefficient. The limitations
might come from something other than the abstraction but also from interac-
tion with the driver and optimization of large-scale operations.

The BulkInsert test observes the existence of bulk insert, its realization
and the handling of PostgreSQL query limits. The SQL dialect uses Int16
type to represent parameters, meaning that, at most, each query can contain
32767 binding parameters [72]. The test tries to create 30000 instances of
a House entity, where each instance would, in a primitive insert, result in
3 bindings (id, house address and dog values). As this would breach the
limits, the node-postgres (pg) driver for Node.js would throw the error bind
message has 90000 parameter formats but 0 parameters [73]. Two popular
solutions to this problem exist: chunking the creation into multiple requests
or using the array UNNEST function, which supplies each type of parameter in
an array, resulting in only as many parameters as columns are inserted. The
packages are ranked based on the existence of the function to create explicit
bulk insertion. Only if the native function does not exist do we resort to
chunking the data before using the insertion method. Out of all the options,
the UNNEST method is the fastest way to execute such a request, so packages
relying on it will have a significant speed advantage.

The BulkDelete test questions the ability to access data representation
through abstraction, as the operation consists of deleting all values in the
database and filling in the condition. Poorly executed implementation of ORM
could obscure access, leaving the developers to query and delete the fitting
objects. BulkUpdate tests the same paradigm but with updates, where only
records meeting specific criteria are to be updated, while other values are

46

6.4. Benchmarks

untouched. Finally, the pagination test is focused on repeated querying and
the feature richness of the framework. The test imagines a list of entities
users want to browse by pages. If the package has an integrated pagination
function, it should be used; if the feature is missing resorting to function calls
to use SQL terms of LIMIT and OFFSET is chosen.

47

Chapter 7
Individual packages

In the following chapters, we will discuss each package in detail, highlighting
its essential characteristics and the results it produced when tested using the
custom-designed benchmarking framework. This comparative analysis will en-
able us to evaluate the packages objectively and provide valuable insights for
developers seeking the most suitable ORM or query builder for their Type-
Script projects. The results for each package will be examined in the context
of the package, with a simplified summary in Chapter 8.

7.1 pgTyped

PgTyped, primarily developed by Adel Salakh [74], is an open-source package
that, while not technically an ORM or query builder, offers unique functional-
ity for TypeScript developers. It analyzes SQL queries written by developers
and, through database introspection, creates typed helper methods for exe-
cuting those queries. The final usage is shown in Listing 1. This package is
designed specifically for TypeScript, resulting in excellent typing but occa-
sionally leading to complex errors, a common issue with other highly typed
language-based packages like Kysely.

The package is compatible only with PostgreSQL, as each database re-
quires its own parser and introspection process. PgTyped uses the pg connec-
tion package, which is only compatible with PostgreSQL. It provides complete
SQL flexibility with minimal overhead, allowing developers to use it without
limitations that come with pure SQL queries. However, it lacks the abstraction

49

7. Individual packages

typically found in ORM or query builder packages, making direct comparisons
challenging.

PgTyped supports both ESM and CommonJS dependency initialization,
ensuring excellent compatibility at the expense of a slightly larger package
size. It is released under the MIT license, a highly permissive option. Its pop-
ularity ranks relatively low, with its main package, @pgtyped/cli receiving
only about 10,000 downloads weekly [75]. On GitHub, it has more stars but
still falls within the lowest third of the packages compared.

// -- File: EntityTraversal.sql
/* @name countCatsByColor */
SELECT

COUNT(*)
FROM cat

JOIN cat_color ON cat_color.id = cat.cat_color_id
JOIN color_hex ON color_hex.id = cat_color.id

WHERE
color_hex.hex_code = :hexCode;

// -- File: EntityTraversal.ts
import {

countCatsByColor,
} from './EntityTraversal.queries'

return countCatsByColor
.run({ hexCode }, getClient())
.then(result => Number(result[0].count))

Listing 1: Usage of pgTyped

The package is well-supported, with regular version releases and active
issue resolution. Most long-lasting issues are feature requests rather than
bug reports. As the package is divided into development and runtime compo-
nents, the CLI package can afford more dependencies than combined packages.
The runtime dependency has only three direct dependencies: the widely-used
chalk and debug packages, and the parser dependency, which adds antlr4ts
for ANTLR 4 (ANother Tool for Language Recognition) grammar functional-
ity in TypeScript/JavaScript [76].

50

7.2. @databases/pg

The documentation is brief [77], providing examples and a quick start guide
that covers the essentials for using the package. While the generated types lack
method information, the original query is included in the Javadoc annotation,
making it easily accessible during development. PgTyped is a unique and flex-
ible package for TypeScript developers working with PostgreSQL. However, it
may provide a different abstraction level for those seeking a traditional ORM
or query builder solution.

Performance in benchmarks

In line with expectations, the pgTyped package outperformed all other pack-
ages examined in the study. Most pgTyped operations are executed before
or during compile time, yielding performance metrics comparable to those
achieved using the plain pg driver. While the package does not offer explicit
support for parsing esoteric primitive types such as Decimal or Big Integer,
which would result in their return as strings (akin to the pg driver’s approach).
The package does provide a specific type for JSON and JSONB columns. How-
ever, as these types must be sufficiently generic, this limits their overall value.

As is typical with intricate TypeScript interfaces, the errors frequently
encountered when using pgTyped can be challenging to interpret and offer
limited guidance regarding type hinting. Despite this, the package proves
advantageous in error detection.

It is important to note that the pgTyped package solely supports single-
command queries. Consequently, each query had to be separated during the
transaction tests, with the commands for initiating and rolling back transac-
tions explicitly written as SQL code. This limitation warrants consideration
when selecting a package for implementation within a context.

7.2 @databases/pg

The @databases/pg package is developed by Lindsay Forbes, a prominent con-
tributor to the Node.js ecosystem with hundreds of published packages. The
package offers a simple interface for CRUD operations on individual tables in
TypeScript. The package’s typed interface is derived from schema definitions

51

7. Individual packages

return db
.query(

sql`SELECT
COUNT(*) as count
FROM

cat
JOIN cat_color ON cat_color.id = cat.cat_color_id
JOIN color_hex ON color_hex.id = cat_color.id
WHERE ${dbTables

.color_hex(db)

.conditionToSql({ hex_code: hexCode }, 'color_hex')}`
).then(r => Number(r[0].count))

Listing 2: countCatsByColor solution in @databases/pg showing where con-
dition composition

in interfaces, which can be generated using the @databases/pg-schema-cli
[78] package. However, the package lacks support for table joining, making
it suitable only for basic queries. Complex queries require a combination of
templated SQL and conditions written using module functions with types.

Though not as feature-rich as a typical ORM, the package simplifies ba-
sic querying more than a standard query builder. It is exported as an ES
module and was initially licensed under GPLv3 but is now published under
the MIT License. The @databases project supports multiple databases via
modular drivers, with official support for PostgreSQL, MySQL, SQLite, and
Expo/WebSQL [79]. Postgres has the most advanced support, with additional
databases supported through modular drivers.

The package has 517 stars on GitHub and 26,613 weekly downloads which
makes it the fourth least downloaded and the second least known on GitHub
[80]. The project is actively developed and comprises numerous subpackages,
with new databases being added and bugs frequently addressed. The pack-
age depends solely on internal modules or widely used packages, for example
assert-never and cuid, along with the pg driver as a dependency.

While the documentation quality could be better, offering basic informa-
tion, a quick-start guide, and examples, there is no inline documentation re-
quiring developers to consult the online documentation. Database migrations

52

7.2. @databases/pg

can be managed and executed using the @databases/pg-migrations pack-
age, supporting both .sql and .ts formats. However, no interface is provided
for TypeScript migrations, necessitating custom scripts, and no schema mod-
ification methods are included in the package.

@databases/pg is a package that simplifies basic querying in TypeScript
by providing a straightforward interface for CRUD operations. Although it
lacks the extensive functionality of a traditional ORM, it offers compatibility
with multiple databases and has an active development community. However,
the absence of inline documentation and limited support for complex queries
and migrations may require developers to rely on additional resources and
tools.

Performance in benchmarks

As anticipated, packages with minimal abstraction, such as @databases/pg,
tend to exhibit superior performance in latency tests. Notably, this package
is among the few capable of automatically converting Big Integer values to
their corresponding JavaScript type.

The benchmarks depended a lot on queries which were at least majorly
manually written as shown in Listing 2, only providing shortcut methods for
basic operations, helpers for parameter insertion and parsers for basic where
binary comparisons.

Nevertheless, the insertOrUpdate method [79], meant for upsert opera-
tions, has a limitation, as it cannot differentiate between objects designated for
updates and those for inserts. This constraint poses challenges for operations
such as value incrementation or decrementation.

While @databases/pg does offer support for transactions, the package lacks
an API for managing these transactions. Instead, it only provides the func-
tionality to encapsulate operations within a transactional context. This aspect
should be considered when evaluating the suitability of this package for par-
ticular applications.

The package does not support integrated pagination, which is not unusual.
However, it also does not support OFFSET usage in its primary query interface,
which forced the usage of plain SQL for the composition of the query.

53

7. Individual packages

7.3 Zapatos

The Zapatos package, developed by George MacKerron, is designed to provide
type safety for database querying in TypeScript, specifically for PostgreSQL
through the pg driver. It generates a TypeScript schema of the database via
introspection, offering methods for basic CRUD operations that are instantly
typed and function as shortcuts for generic queries. Additionally, it features
tagged templates for writing arbitrary SQL [81].

Unlike pgTyped, which analyses queries and generates types, Zapatos dis-
allows the inclusion of any value which was not specified in the manually types.
This approach can lead to issues if the type is not defined correctly initially,
potentially resulting in an unreliable type and is less explicit way to cast the
result. Despite this limitation, the package supports lateral joins, enabling
the return of nested objects, a feature typically not found in packages with
such low abstraction levels. However, as with other TypeScript-dependent
packages, Zapatos can generate compilation errors that are difficult to parse.

Released under the MIT license, the package uses ESModule dependencies
and has 14,933 weekly downloads and 980 GitHub stars, ranking it third least
downloaded and starred. It is regularly updated, and none of the reported
issues in the repository significantly limit its use. The package has no runtime
dependencies, only development dependencies.

While the documentation quality is generally good, it is brief but covers
most of the necessary information for getting started, although lacking in
detail. Similarly, the annotations for types provide only brief information,
insufficient for guiding development on their own.

In summary, Zapatos is a package that provides type safety for database
querying with PostgreSQL, offering typed CRUD operations and tagged tem-
plates for SQL. Although it takes a different approach to type generation than
pgTyped, it supports lateral joins which result in nested objects which are nat-
ural way of representing data in OOP. The package has concise but sufficient
documentation for most users [82]. However, the package’s limitations include
possible type inaccuracies due to developer error and challenging compilation
errors.

54

7.3. Zapatos

Performance in benchmarks

In the performance evaluation, the Zapatos package proved notable, as it was,
for example, among the few packages that permitted the utilization of distinct
objects for updates and inserts during upsert operations without requiring
a usage of raw SQL query. This package generally exhibited low latency in
explicitly written queries and shortcut functions, typically only surpassed by
pgTyped or @database/pg, which both employ a more rudimentary represen-
tation of the SQL language.

However, a significant problem was encountered during the Big Integer
data type test, implementation of which in Zapatos is shown in Listing 3. The
identifier’s value was altered due to its conversion to a number before being
returned. This issue was resolved by employing an explicit SQL query instead
of the shortcut function db.selectExactlyOne. This unexpected result is
particularly striking, given that the framework conducts introspection over the
database, correctly identifying the schema as int8. Nevertheless, the shortcut
function converts the column value into a JavaScript number runtime type,
which, according to the specification, is represented by C++ double (float64)
or equivalent [69]. Although both PostgreSQL and JavaScript use the same
number of bytes to represent the value, the PostgreSQL type can accommodate
a significantly more extensive range of integer values, as it utilizes decimal
precision [70].

It was necessary to compose numerous queries using explicit SQL (as de-
picted in the final comparison table), including transaction rollbacks. The
framework only performs this task autonomously if the transaction encoun-
ters an error (and subsequently rethrows the error).

A unique feature of the Zapatos package is its support for lateral joins,
which the framework advocates. This approach generates nested objects that
align more naturally with the object-oriented programming paradigm.

Initially, due to limitations with other frameworks, the TypeScript compi-
lation was done with the StrictNullChecks option disabled. This conflicted
with the way Zapatos does its type checking. This option is one of the most
common problems with out-of-date type definitions, so Zapatos is not suitable
for projects that have to keep this option disabled due to other dependencies.

55

7. Individual packages

// Value incorrectly converted into a number
// Also see the specification of accessible
// and selected values as template types for the sql
db

.selectExactlyOne('cat',
{ cat_name: name },
{ columns: ['id'] })

.run(pgPool)

.then(data => BigInt(data?.id ?? 0))

// Correct value returned as string
db.sql<

schema.cat.SQL,
schema.cat.Selectable[]

>`SELECT * FROM ${'cat'}
WHERE ${'cat_name'} = ${db.param(name)}`
.run(pgPool)
.then(rows => BigInt(rows[0].id ?? 0))

Listing 3: Zapatos number precision loss

7.4 Knex.js

Knex.js is a highly popular and versatile query builder in the JavaScript and
TypeScript ecosystem, with a substantial following of 1,346,100 weekly down-
loads and 17,419 stars on GitHub. Initially developed by Tim Griesser [83],
it has since grown to involve numerous contributors actively participating in
its maintenance and development. Its popularity statistics may be skewed, as
the package is used in various ORMs, such as Bookshelf.js and Objection.js,
contributing to its download count.

One of the key strengths of Knex.js is its broad support for a wide range of
databases, including but not limited to PostgreSQL, Oracle Database, Cock-
roachDB, and Amazon Redshift. This flexibility extends to accommodating
multiple drivers for databases like PostgreSQL and MySQL, where several
popular drivers exist. With this extensive compatibility, Knex.js caters to
a diverse audience of developers working with different databases and drivers
[84].

56

7.4. Knex.js

// Knex query creation and request
await knexInstance

select<Array<{ toy_name: string }>>('toy.toy_name')
.from('toy')
.join('toy_house', 'toy_house.toy_id', 'toy.id')
.join('house_cat', 'house_cat.house_id', 'toy_house.house_id')
.where('house_cat.cat_id', '=', id)

-- Resulting SQL
SELECT

toy.toy_name
FROM

toy
JOIN toy_house ON toy_house.toy_id = toy.id
JOIN house_cat ON house_cat.house_id = toy_house.id
WHERE

house_cat.cat_id = $1;

Listing 4: Knex query composition compared to resulting SQL

Knex.js offers non-abstracted function-based query building, representing
each SQL term with a function call. This approach allows developers to con-
struct queries in a granular and modular manner. This all while keeping the
syntax quite reminiscent of SQL syntax as shown by comparison in Listing 4.
The package also supports type templating and table definitions, which can
be autogenerated using the knex-types [85] package, further streamlining the
development process.

However, Knex.js faces limitations in type guarantees due to its benevolent
implementation in JavaScript and having separately written types. These
constraints result in type support not extending to more advanced features,
such as join suggestions or multi-table joins, potentially limiting the package’s
utility in more complex scenarios. Additionally, when the .first() method is
called, Knex.js does not automatically assume that the query is fetching single
and not multiple objects, leaving the typing responsibility to the developer.

Compatibility-wise, Knex.js is built to work seamlessly with both ES mod-
ule and CommonJS syntax, ensuring its usefulness across various development
environments. The package is licensed under the MIT Licence.

57

7. Individual packages

Although Knex.js benefits from active support for its basic functionality,
the vast range of databases it supports inevitably leads to a considerable
upkeep. Consequently, many bugs remain unaddressed for extended periods,
potentially impacting developers who rely on the package for their projects.

Regarding documentation, Knex.js stands out with high-quality online re-
sources, guiding users through setup and usage. As with many other packages
in this comparison, the documentation is created using vitepress package
and has excellent readability and searchability. However, the package does
not have annotated types or function calls, which may result in developers
needing to refer back to the online documentation more frequently than de-
sired.

The package has several dependencies, mostly utility packages, such as
colorette for styling command line output or lodash for collection and ad-
vanced data structures manipulation. While Knex is inflating the download
numbers of these packages by a significant amount, they are also popular
and supported on their own accord. None seem to have any outstanding or
long-lasting issues.

Performance in benchmarks

The package evaluation demonstrated the ability to formulate queries for the
benchmarks as flexibly as the SQL language. However, a notable limitation
was its inability to accommodate operators with the ? character [86]. This
issue arises due to the package’s utilization of ? as a parameter replacement
character. Consequently, this poses challenges for PostgreSQL when checking
key existence in JSONB data types and even generates complications in Oracle
databases when conducting regex comparisons, as documented in issue #3112
[87] on the Knex GitHub repository. Despite its persistence since at least
2019, no resolution for this issue appears imminent.

Regarding type checking, the typing offered by Knex.js is insufficient for
TypeScript projects at best. Consequently, calls to the package are almost
equivalent to manually composing the query. Furthermore, many methods
are specific to the database engine and offer minimal abstraction, necessitating
frequent consultation of the package’s high-quality documentation.

58

7.5. Kysely

7.5 Kysely

Kysely is a relatively young query builder in the TypeScript ecosystem, aim-
ing to replace Knex.js by offering the same query composition power while
providing superior type support for query composition and results. Although
its development only began in earnest in 2021, the package has gained traction
since 2022, as it matured and continues to be actively developed.

Compared to Knex.js, Kysely supports fewer database engines and SQL
dialects out-of-the-box, with native support for MySQL, PostgreSQL, and
SQLite. However, third-party drivers are available for several other (albeit
more exotic) databases [88]. One of the driving forces behind Kysely’s cre-
ation was Knex.js’s excessive permissiveness, which limited its type support
capabilities [89]. Kysely addresses this issue while retaining the strengths of
query composition. Though the order of operations in Kysely may sometimes
differ from SQL, this does not commonly pose a significant problem. The
syntax is shown in Listing 5.

// Query for selecting toy id and the producer id,
// for toys with price over 10000
// and not produced by producer with id = 1

// Note the order of methods,
// leftJoin has to come before select and where,
// if values are selected or queried from the table joined
await kyselyInstance

.selectFrom('toy')

.leftJoin('toys_producer',
'toy.toys_producer_id',
'toys_producer.id')

.select(['toy.id', 'toys_producer.id'])

.where(({ or, not, cmpr }) =>
or([

not(cmpr('toys_producer.id', '=', 1)),
cmpr('toy.price', '>', 10000),

])
).executeTakeFirstOrThrow()

Listing 5: Example of Kysely syntax

59

7. Individual packages

Its excellent type guarantees make it an attractive choice, especially com-
pared to more expressive packages. Kysely can also be further enhanced with
Model classes through the third-party package kysely-orm. However, due to
its limited usage and lack of updates reflecting the latest Kysely API changes,
it was not considered for comparison here. To generate type definitions, de-
velopers can use introspection with the kysely-codegen package [90] or an al-
ternative schema specification via prisma-kysely [91]. Kysely also provides in
built support for database migrations, although it lacks the CLI that other
packages, like Knex.js provide.

Distributed with both CommonJS and EcmaScript dependency specifi-
cations, Kysely is compatible with both dialects and is licensed under the
MIT Licence. Despite its youth, the package has already amassed over 53,000
weekly downloads on npm and over 4,600 stars on GitHub [89]. Most issues
reported are enhancement suggestions, however due to the package’s young
age, the relative age and amount of issues is different.

Kysely’s active development has led to frequent updates and enhance-
ments, such as improved documentation published during the writing of this
thesis. While the web document may be brief compared to more established
packages like Knex, it covers all essential information. The package’s type
annotations provide excellent documentation, explanations, and multiple us-
age examples and are the best example of function annotation in all packages
considered in this comparison. With zero dependencies apart from peer de-
pendencies for database drivers, Kysely is a lightweight and efficient solution.

In summary, Kysely is a promising query builder in the TypeScript ecosys-
tem, seeking to surpass Knex.js with its superior type support and powerful
query composition capabilities. Although it currently supports fewer database
engines and SQL dialects, its performance and type guarantees make it an at-
tractive choice for developers. Its active development, compatibility with var-
ious dependency specifications, and high-quality documentation contribute to
Kysely’s growing appeal within the TypeScript community.

60

7.6. MikroORM

Performance in benchmarks

Regarding performance, the Kysely package consistently outperformed or at
least matched Knex, which is boasts a comparatively rich set of features for
a query builder. While Kysely does not offer parsing for types such as Big
Integer, its handling remains consistent with that of the pg driver. Like many
other packages, Kysely lacks support for explicit transaction control, above
encapsulation into one. However, this is at least supplemented with raw SQL
queries inside the encapsulation. This will however result in additional call
of COMMIT or ROLLBACK at the end of the encapsulation, even though the
transaction was finished manually, and such behaviour is usually reserved
for ORMs which abstract the database access further than common query
builders.

Another advantage of Kysely is its utilization of tagged strings, akin to
the approach employed by @databases/pg when composing raw SQL queries.
This method proves more comprehensible than the combination of bindings
and function calls implemented by Knex. Consequently, the Kysely package
offers an appealing balance of performance and usability, making it a viable
option for various database management tasks.

7.6 MikroORM

MikroORM, a project developed by Martin Adámek, has emerged as an ORM
solution that offers both versatility and ease of use. With a focus on implicit
transactions using the Unit of Work pattern, MikroORM offers native support
for NoSQL databases, specifically MongoDB, alongside support for traditional
relational databases such as MySQL, MariaDB, PostgreSQL, and SQLite [92].
At the time of writing, MikroORM has garnered decent attention, with 189,128
weekly downloads and 5,777 stars on GitHub [93] [94].

The internal architecture of MikroORM for relational databases is powered
by Knex, a popular SQL query builder library, which allows developers to ac-
cess the underlying query builder with type support provided by MikroORM’s
definitions. Users can therefore utilize the full power of knex while benefiting
from the additional features and abstractions MikroORM provides. Database

61

7. Individual packages

@Entity()
export class CatColor {

@PrimaryKey()
id!: number

@Property({ length: 256 })
colorName!: string

@OneToMany({ entity: () => Cat, mappedBy: 'catColor' })
cats = new Collection<Cat>(this)

@OneToOne({ entity: () => ColorHex, mappedBy: 'id' })
colorHex?: ColorHex

}
Listing 6: Cat color entity represented in MikroORM schema

models are represented using classes with decorators, making creating rela-
tionships between entities intuitive through explicit @OneToOne, @OneToMany,
and @ManyToMany decorators that translate seamlessly from the conceptual
schema of the database as represented in Listing 6. Furthermore, MikroORM
offers an EntityGenerator package that allows developers to generate these
definitions based on an existing database schema automatically.

Regarding TypeScript compatibility, MikroORM supports compiled Type-
Script and native TypeScript execution using ts-node. However, it does not
support alternative runtimes like Deno due to various limitations, including
dependencies [95]. Speaking of dependencies, MikroORM relies on several
well-known JavaScript packages for parsing and metadata reflection, which
the package utilizes for establishing relationships and maintaining context.

The documentation for MikroORM is comprehensive, providing all the nec-
essary information for developers to utilize the package effectively [96]. While
the types do not direct link to the documentation, they include basic descrip-
tions of the methods, which aids in understanding their usage. MikroORM
also offers support for migrations and seeding, with migrations generated by
analysing the differences between the database schema and the schema defined
within MikroORM. It also supports read replica connections using random se-
lection for which instance to use for the query.

62

7.6. MikroORM

Performance in benchmarks

The Mikro ORM package distinguished itself in performance benchmarks pri-
marily due to its unique features. In addition to standard query handling,
the package facilitates field matching using JavaScript native regular expres-
sions, which are subsequently parsed and translated into SQL queries. An-
other remarkable result was observed in the JSONColumn latency test, where
MikroORM significantly outpaced even the pgTyped package. This achieve-
ment is not attributed to superior database connection performance but to the
package’s Entity Manager. This internal cache/repository is designed for par-
ticular contexts. It caches the current state based on the object’s primary key
values, enabling rapid data retrieval from application memory rather than
querying the database [97]. However, this approach may introduce incon-
sistencies, prompting MikroORM to implement optimistic locking for fields
potentially impacted by such issues.

Relations are incorporated using the populate option, which permits dot
notation for further related entities and filtering. While not strictly typed,
simple nested objects have enough type support to provide essential infor-
mation for query composition and function as anticipated. The results are
well-typed, although BigInteger and Decimal types are returned as strings.
Transaction support with a direct control sequence API is also implemented.
For instances where the integrated interface lacks flexibility, pre-typed Knex.js
instance is accessible for most queries.

Entities in MikroORM are straightforward to implement, although docu-
mentation for their use with complex decomposition tables is limited and has
to be implemented through a standard relations between three tables. a mi-
nor issue arose due to an undocumented difference between the columnType
and type options; however, the package’s developer promptly addressed the
concern. Overall, MikroORM offers a compelling balance of features and per-
formance, making it a viable choice for various applications.

63

7. Individual packages

model cat {
id BigInt @id(map: "pk_cat")

@default(autoincrement())↪→

cat_color_id Int?
cat_name String? @db.VarChar(256)
date_of_birth DateTime? @db.Date
cat_color cat_color? @relation(fields: [cat_color_id],

references: [id], onDelete: Cascade, onUpdate: NoAction,
map: "fk_cats_cat_color")

↪→

↪→

house_cat house_cat[]
}

Listing 7: Example of Prisma schema language model definition

7.7 Prisma ORM

PrismaORM has rapidly gained popularity in the development community due
to its innovative and modern approach to creating database clients and object-
relational mapping. Adopting a unique method for defining database schemas,
PrismaORM utilizes its schema language [98], which aims to represent the
database structure using concepts more closely aligned with relational syntax
rather than complex objects found in traditional object-oriented programming
paradigms. An example definition of model in the schema language is shown
in Listing 7.

The schema in PrismaORM comprises three main components: the data
source definition, the output specification for the schema (such as the Prisma
database client), and the database schema itself. A custom client is generated
from this schema (and, optionally, a context like the current system archi-
tecture, if not specified). This client includes type definitions for type safety,
ensuring a robust and reliable database interaction experience. However, one
potential drawback of this approach is the increased binary size of the gen-
erated client. For example, the resulting binary size in a test database was
approximately 15 MB, which may lead to cold start issues in serverless envi-
ronments. To address this concern, PrismaORM provides specific instructions
for many cloud platforms to optimize the binary result and configuration as
much as possible [99].

64

7.7. Prisma ORM

The Prisma suite also includes a migration platform that automatically
transforms schema changes into corresponding database updates. PrismaORM
boasts impressive adoption rates, with 1,057,351 weekly downloads and 30,431
GitHub stars, making it the second most popular package by the GitHub
metric [100] [101]. The package supports both Node.js and Deno as runtime
environments, catering to various developers and project requirements.

However, it should be noted that Prisma supports only CommonJS imports
by default and does not offer an official method for generating ECMAScript
module-compatible code [102]. This limitation may be a challenge for devel-
opers who prefer or have to use ECMAScript modules in their projects.

Performance in benchmarks

PrismaORM, a competitive ORM package, has demonstrated performance
on par with other leading ORM solutions, such as Sequelize and TypeORM.
In the getToysAvailableToCat test, which measures relation traversal per-
formance, PrismaORM generated a significantly faster query by employing
multiple nested queries instead of the LEFT JOIN and LEFT OUTER JOIN op-
erations utilized by its competitors. However, in the countCatsByColor test,
the package produced an overly complicated query with redundant conditions.
The complexity of the query plan resulted in the database’s planning phase
consuming nearly as much time as the query execution itself, taking almost
twice as long as queries generated by rival frameworks.

Regarding functionality, PrismaORM stands out as the only ORM that
did not necessitate using raw SQL for any query, which is an accomplishment
in and of itself. The package supported incrementing and decrementing op-
erations in upsert queries, and although the filter objects became relatively
complex, they remained comprehensible. While the transaction implementa-
tion does not allow for explicit handling, this approach is more understandable
within an ORM context, where SQL queries are already opaque, as opposed
to a query builder such as Kysely, which employs a similar methodology.

Furthermore, PrismaORM can accurately convert and type unconventional
runtime types, including Big Integer and JSON values. This capability en-
hances the versatility and applicability of the package for various use cases.

65

7. Individual packages

7.8 TypeORM

TypeORM is a pioneering ORM framework designed to support TypeScript
and leverage its features. It is compatible with both active directory and
data mapper patterns, allowing for easy exchange of entity definitions during
development. TypeORM supports a wide range of database engines, includ-
ing MySQL, PostgreSQL, SQLite, Oracle DB, and SAP Hana, and even has
experimental support for the NoSQL database MongoDB.

The framework employs its own query builder and uses Model classes with
property decorators to describe its methods. TypeORM supports both Lazy
Loading and Eager loading (Listing 8) when working with models and is com-
patible with CommonJS and ECMAScript. It offers automatic migrations
based on its models and manually written migrations. However, it lacks sup-
port for seed files, requiring them to be included as migrations if executed
through its CLI.

await BenchDataSource.getRepository(Cat)
.findOne({

where: {
id: id.toString()

},
relations: {

catColor: {
colorHex: true,

},
},

})

Listing 8: TypeORM Eager Loading example, implementation for getCatColor
benchmark test

TypeORM is highly popular, boasting the second-highest download num-
ber and the highest amount of stars among those compared, with 1,192,427
weekly downloads [103] and 30,947 stars on GitHub [104]. Released under
the MIT License, TypeORM is the ORM with the highest number of down-
loads and native support for TypeScript, as Sequelize only outperforms it
when considering the Sequelize package’s download numbers [105], not the
Sequelize-Typescript package [106] used for comparison.

66

7.8. TypeORM

Despite its stable support, TypeORM’s development has shifted towards
maintaining existing features in 2018 due to the amount of work for purely vol-
unteer supported development [107]. This maintenance mode has led to 1,873
open issues as of now [104]. Although the project has now resumed develop-
ment due to receiving financial support, it primarily focuses on more minor
updates every few weeks. It is not as actively developed as other “active”
projects in this analysis.

The documentation for TypeORM is of good quality, providing all the
necessary information for development. However, it needs more formatting
and chapters, to make it easier to follow, even if the developer does not know
what precisely they are looking for [108]. The model methods include brief
descriptions but are mostly limited to a single-sentence short explanation.

TypeORM has the highest number of dependencies among the packages
compared, with many dependencies like buffer being necessary to support
various runtimes, including browser or React Native environments that lack
the same standard library support as Node.js. These dependencies are actively
developed and have high download numbers, posing no additional risk to the
toolchain. However, TypeORM’s early adoption of the TypeScript ecosys-
tem has largely overlooked its JavaScript functionality, as evidenced by the
documentation and example projects.

Performance in benchmarks

When examining the performance of TypeORM in various benchmarks, it
was observed that this ORM solution closely competes with its main rival, Se-
quelize. In most tests, TypeORM either slightly outperformed or marginally
fell behind Sequelize, with negligible differences in performance. These out-
comes can be attributed minimally to disparities in the generated queries, as
both ORMs are comparable in their query generation and execution capabil-
ities.

However, TypeORM’s query generation approach raises some concerns
when working with complex joined tables. The generated queries are often
complex for humans to read due to excessive naming or using hashes instead
of more recognizable names. This complexity necessitates additional parsing

67

7. Individual packages

for developers to effectively understand and work with these queries, one such
query is shown in Listing 9. Moreover, TypeORM often prefers LEFT JOINs,
which are computationally more demanding than INNER JOINs and, in this
case, will yield the same output thanks to the database schema.

SELECT
"Toy"."id" AS "Toy_id",
"Toy"."toy_name" AS "Toy_toy_name",
"Toy"."barcode" AS "Toy_barcode",
"Toy"."price" AS "Toy_price",
"Toy"."currency" AS "Toy_currency",
"Toy"."naughty" AS "Toy_naughty",
"Toy"."date_introduced" AS "Toy_date_introduced",
"Toy"."toys_producer_id" AS "Toy_toys_producer_id"

FROM "toy" "Toy"
LEFT JOIN "toy_house" "Toy__Toy_toyHouses"

ON "Toy__Toy_toyHouses"."toy_id" = "Toy"."id"
LEFT JOIN "house"

"Toy__Toy_toyHouses__Toy__Toy_toyHouses_house"↪→

ON "Toy__Toy_toyHouses__Toy__Toy_toyHouses_house"."id" =
"Toy__Toy_toyHouses"."house_id"↪→

LEFT JOIN "house_cat" "859f7912[...]aab7b94c"
ON "859f7912[...]aab7b94c"."house_id" =

"Toy__Toy_toyHouses__Toy__Toy_toyHouses_house"."id"
LEFT JOIN "cat" "521c7a07[...]88acfd85"

ON "521c7a07[...]88acfd85"."id" =
"859f7912[...]aab7b94c"."cat_id"

WHERE ("521c7a07[...]88acfd85"."id" = 1)

Listing 9: TypeORM Query generated for getToysAvailableToCat benchmark
(with hashes shortened)

Another issue encountered with TypeORM relates to its handling of auto-
matically generated primary keys. The ORM disregards user input for these
columns if they can be generated automatically, limiting developers’ flexibility
when working with databases. For instance, this constraint poses challenges
when inserting seed data with hard-coded IDs.

In terms of upsert functionality, TypeORM, like Sequelize, does not pro-
vide support for increment operations. Additionally, it is impossible to formu-

68

7.9. Objection.js

late an equivalent query using the included query builder, as the syntax does
not allow for custom update SQL and only supports ignoring specific data
that would be otherwise inserted.

When handling transactions, TypeORM lets developers create an explicit
transaction handler that includes entity manager methods and functions for
starting, managing, and ending transactions. While the filter types are only
lightly typed, they offer sufficient guidance for developers navigating the avail-
able filtering options.

7.9 Objection.js

Objection.js is an ORM based on the Knex.js query builder and is closely
connected to the Knex ecosystem. It supports SQLite3, Postgres, and MySQL
while also being compatible with many other database engines supported by
Knex [109]. Unlike Sequelize or TypeORM, Objection.js does not provide
extensive abstraction; it only offers Models that assist with query composition,
types, and relation fetching. The Models primarily serve as a starting point for
SQL queries rather than offering the complex functionality of Active Record
or Data Mapper patterns. This results in syntax which is quite similar to
Knex as shown in Listing 10.

The package has 128,872 weekly downloads [110] and 6,972 stars on GitHub
[109]. Objection.js predates the popularization of TypeScript and is therefore
developed fully in JavaScript. Its former lead developer admits that the pack-
age requires a significant rewrite of types to compete in TypeScript support,
which is not feasible due to the workload required [111]. Objection.js was
not maintained for over a year, accumulating technical debt and leading to
incompatibility with TypeScript 4.8 and newer due to enhancements to the
strictNullChecks option. A new version has since been published [112],
fixing some issues that arose during that time. New developers have started
working on maintaining the project as of writing this thesis.

The package is released under the MIT Licence and offers high-quality web
documentation, including extensive usage guides and a detailed API Reference
[113]. A unique feature of Objection.js is the ability to provide JSON Schema
validation for inserted objects, ensuring database data consistency.

69

7. Individual packages

// Knex.js
knexInstance

.select('stock_info')

.from('toys_producer')

.where('id', '=', id)

.first()

.then(data => data?.stock_info ?? {})

// Objection.js
ToysProducer.query()

.select('stock_info')

.where('id', '=', id)

.first()

.then(data => data?.stockInfo ?? {})

Listing 10: Comparison of Knex.js and Objection.js syntax for count query

Objection.js has only three dependencies for full functionality: Knex, AJV,
and db-errors. The AJV dependency provides JSON Schema validation, while
db-errors, originating from the same company that published Objection.js,
aims to deliver a unified API for handling various errors produced by differ-
ent database engines. Although the db-errors package has not been updated
for over four years, it is unlikely to pose a significant security threat to the
package. Objection.js now also supports both ESM and CommonJS, with the
latest release fixing ESM compatibility issues.

Performance in benchmarks

Objection.js could only be included in the performance benchmarks only after
its typings were updated to be compatible with TypeScript 4.8 and later while
maintaining strictNullChecks, a requirement for the proper functioning of
other packages like Zapatos. Once the compatibility issues were resolved with
manually edited types, Objection.js demonstrated performance largely on par
with other ORM packages such as MikroORM and TypeORM. However, a no-
table exception was observed in the getCatColor test, where Objection.js was
significantly slower than its counterparts.

70

7.10. Sequelize

This performance discrepancy was traced back to the method that was
used for fetching related entities: withGraphFetched, the only type-supported
way to fetch relations beyond a single relationship in Objection.js without re-
sorting to plain Knex query builder calls [113]. This method was selected
for type support, but it caused the speed issue encountered. The method
retrieves data through three separate, dependent database calls, resulting in
considerably longer query execution times even with minimal latency. While
this approach may offer some benefits in specific scenarios, such as apply-
ing limits to individual queries to alleviate the load on massive databases, it
generally falls short of the performance optimization capabilities offered by
relational database management systems (RDBMS) that utilize single, more
complex queries.

Another challenge posed by Objection.js lies in its limited typing support.
Many inherited methods from Knex lack template variables to specify the
result, despite their original counterparts providing such functionality. Con-
sequently, developers often need to cast the results manually to ensure the
correct final type, except for the most basic queries. It was the only package
which provided completely incorrect resulting types, which forced the usage
of x as unknown as DesiredType casting.

The composition of Objection.js, which positions itself as not quite an
ORM nor a pure query builder, often requires developers to have direct access
to the query. However, this approach often obscures vital information, forcing
developers to rely on experience or testing to understand certain aspects of
the system. For instance, the table name is hidden when using predefined
relations for joining. Developers must determine the alias assigned to the
joined table for WHERE clauses without any clear guidance from the package.

7.10 Sequelize

Sequelize is one of the oldest, still popular, and actively supported ORM
frameworks for the JavaScript ecosystem, with development starting in 2010.
After over 12 years of development, it supports various databases, including
PostgreSQL, MySQL, and SQLite3 [114]. Its popularity is attributed to its
simple syntax and flexible usage. Sequelize supports read replication, using

71

7. Individual packages

round-robin scheduling for read queries and a write pool for write or explicitly
marked database calls. It also provides a command-line interface for managing
schema and data, offering migration and seeding options.

Sequelize can use either manually written migrations or automatically gen-
erated ones based on Model definitions. The framework also supports pro-
grammatic synchronization of the database state to reflect the Model defini-
tion using the sequelize.sync() method. Unlike other ORMs discussed in
this work, Sequelize does not expose a query builder interface, only allowing
for raw query execution when integrated entity fetching is insufficient.

Full TypeScript support for the main project is still in progress [115].
However, a separate project called sequelize-typescript [106] offers support
for TypeScript native definitions, using decorators for Model and property
specifications. One of the original features of Sequelize is its support for the
automatic creation and update of timestamp fields on database tables and the
option for “paranoid” tables [116]. In this mode, calling a deletion method
sets the deletedAt attribute instead of removing the record. The framework
behaves like the deleted records do not exist unless previously restored.

Both Sequelize and sequelize-typescript are provided under the MIT Li-
cence and actively supported. Due to its extensive user base, the framework
has over 750 reported issues [117], with a minority marked as bugs and the
majority being feature requests. The central repository of the package has
27,729 stars on GitHub and the largest number of weekly downloads out of
all packages compared, at 1,505,485 [105].

Sequelize has 16 dependencies, plus TypeScript-specific helpers required
for usage with the current TypeScript version. These dependencies primarily
relate to inflexion, code analysis for model dependency graphs, and various
data types supported by the framework, including GeoJSON and advanced
Date types. While the package offers extensive documentation, differences in
Model definition when using TypeScript can be confusing. Documentation for
additional operators and decorators is lacking, as it is primarily contained in
several Markdown files in its repository.

72

7.10. Sequelize

return Cat.count({
// Nested objects are not supported for filtering
// The key is not typed either

where: {
'$catColor.colorHex.hex_code$': hexColor,

},
include: [{ model: CatColor, include: [ColorHex] }],

})

Listing 11: Example of nested where condition in Sequelize -
countCatsByColor test

Performance in benchmarks

In performance benchmarks, the Sequelize ORM demonstrated competitive re-
sults, closely matching its main rival, TypeORM. Sequelize generated efficient
queries for basic operations and performed within 10-50% of the reference
pgTyped implementation. However, with more complex queries, Sequelize
preferred using LEFT OUTER JOINs when they were not necessarily based
on the conceptual schema of the database. Consequently, these test scenarios
took 50-150% of the reference solution execution time.

While query execution remained relatively fast, the increased complexity
due to unnecessary LEFT JOINs may lead to performance issues that neces-
sitate manual optimization in some instances. As LEFT JOINs are some of
the more complex operations databases perform, and their complexity grows
rapidly with the amount of data joined, this approach can quickly impact the
application’s overall performance.

Sequelize’s filter types were limited, as even essential attribute matching
for search by attribute equality is not typed. This lack of typing support
increases the likelihood of developers making errors that may only become
apparent during runtime. Furthermore, Sequelize does not provide a ded-
icated API for WHERE clauses on joined tables, requiring developers to rely
on dot notation and unchecked fields to define such filters. Example of such
functionality is shown in Listing 11.

While defining models is documented, the example code provided was
found to throw errors related to shadowing attribute names. Although the

73

7. Individual packages

solution to this issue can be quickly addressed using the TypeScript declare
keyword, it is essential to mention such features in the introductory documen-
tation for models to minimize confusion for developers.

Like most other ORMs, Sequelize does not support abstracting upsert
operations with increments or decrementation on updates. As a result, devel-
opers must resort to implementing such operations using raw queries. It also
performed the worst among all tested packages during pagination test, as the
query used by the package was identical to the one used by other packages
and no discrepancy was detected in connection handling, it seems to have been
caused by the frameworks overhead.

7.11 Disqualified frameworks

While originally included for analysis and experimentation, some frameworks
were not successfully implemented. This approach had to be taken as the
packages were found to be lacking in features required for inclusion, such
as basic TypeScript support, or execution under the testing environment was
unattainable, usually due to outdated code or dependencies or not functioning
as described in the documentation. We were unable to fix the issues. These
packages are nonetheless included with a basic description of their advertised
features and the issues for their exclusion for this comparison.

7.11.1 RDB

RDB, a lesser-known ORM package, was initially selected for comparison due
to its distinctive model definition approach and appearance in the npm repos-
itory under the ORM tag. At the time of selection, RDB had only 284 weekly
downloads [118] and 291 stars on GitHub [119], making it the least popular
package among those reviewed. What set RDB apart was its alternative model
definition method, which relied on method calls to create the entity model,
unlike the schema-based approaches employed by other frameworks.

However, further examination of RDB revealed several limitations that led
to its disqualification from the comparison. Firstly, the package does not pro-
vide any types for methods beyond connection and model initialization. This

74

7.11. Disqualified frameworks

const ToyHouse = rdb.table('toy_house')
ToyHouse.primaryColumn('toy_id').numeric()
ToyHouse.primaryColumn('house_id').numeric()
ToyHouse.column('amount').numeric()

// ToyHouse type => rbd.table
interface Table {

primaryColumn(column: string): ColumnDef;
column(column: string): ColumnDef;
join(table: Table): Join;
hasMany(join: JoinRelation): HasMany;
hasOne(join: JoinRelation): HasOne;
formulaDiscriminators(...discriminators: string[]) : Table;
columnDiscriminators(...discriminators: string[]) : Table;

}

Listing 12: RDB entity model type definition

lack of typing support significantly hinders its compatibility with TypeScript,
making it challenging to work with in a typed environment.

Additionally, RDB does not offer a solution for circular dependency issues
that may arise when defining models across multiple files. Consequently, de-
velopers must either use a singleton method to encapsulate the definition or
repeat it for each file, both of which are suboptimal approaches. Given these
limitations, RDB is most suited for single-file projects that can initially define
their database logic.

The framework also lacks typings for search method attributes and result-
ing object types, further limiting its usefulness in TypeScript-based projects.
Due to these issues, as well as the file separation requirements of the bench-
mark, RDB was ultimately disqualified from the comparison. The full interface
is shown in Listing 12 and as seen, it does not contain any methods for ref-
erencing the model attributes. Its documentation is quite simple, written in
Markdown and consisting of mostly plain examples [120].

In conclusion, while RDB presents an interesting alternative approach to
model definition, its limitations in typing support and handling of multi-file
projects make it less appealing for developers seeking a robust and flexible
ORM solution, mainly when working with TypeScript.

75

7. Individual packages

7.11.2 Bookshelf.js

Despite its last update occurring in July 2020 [121], Bookshelf.js remains
a popular database access package on npm, with 103,607 weekly downloads
at the time of writing this thesis. Started by Tim Grissier, who also initiated
the development of the query builder Knex, Bookshelf.js is an ORM which
is based on Knex and implements the Data Mapper pattern for entities in
the database. Designed to work with PostgreSQL, MySQL, and SQLite3,
Bookshelf.js has not been actively developed for an extended period, resulting
in compatibility issues with more recent versions of Knex [122].

The last officially supported Knex version for Bookshelf.js was 0.21.17,
whereas the current Knex version is 2.4.2. This discrepancy has led to sev-
eral type errors and incompatibilities as the Knex API has evolved over time.
While there are forks of the repository that address significant issues, the pack-
age still suffers from limited type support, primarily because the entire project
is developed in pure JavaScript, with types generated as an afterthought [123].

The primary reason for disqualifying Bookshelf.js from the comparison was
the numerous dependencies with unmaintained and outdated versions, which
pose significant security risks. These risks include prototype pollution [124]
and SQL injection attacks [125], making the package unsuitable for modern,
secure applications. The package itself cannot run unless these dependencies
are installed or at least overridden.

7.11.3 Waterline

The Sails framework, an Model-View-Controller style [8, p. 330] architec-
ture framework for JavaScript, is designed for building modern web applica-
tions. As part of this framework, the Model component is implemented using
an ORM called Waterline. Sails is relatively less popular in the JavaScript
ecosystem, with only 31,492 downloads, which pales in comparison to giants
like Express (28,825,585 weekly downloads [126]) or Koa (1,600,532 weekly
downloads [127]). While Waterline’s primary purpose is to serve as a compo-
nent within the Sails framework, it is also available as a standalone package.

However, during the implementation process, several issues were encoun-
tered with Waterline. The package does not provide its own types but relies

76

7.11. Disqualified frameworks

on optional types from the @types repository [128], which is maintained by
volunteers. Unfortunately, these types are outdated, as they only cover version
0.13.x, while the latest Waterline version is 0.15.2. As a result, these types
do not accurately reflect the package’s functionality, and initialization using
them does not work. Similarly, following the documentation for a standalone
setup, as shown on the framework’s website, also proved non-functional as the
documentation [129] is written mainly for the full framework usage, with pure
waterline usage being an afterthought.

Due to these inconsistencies and the inability to overcome them, Waterline
was disqualified from the comparison.

77

Chapter 8
Observations

In this final chapter, we will discuss the performance of various ORM packages
based on the benchmarks conducted. The chapter is divided into three main
sections: Package Information, Flexibility Assessment, and Performance Test
Results.

The Package Information section provides an overview of each package,
including the supported database engines, the version used for comparison,
popularity statistics, and runtime support. This information is essential for
understanding the background and scope of each ORM package and its suit-
ability for different project requirements.

Next, the Flexibility Assessment section evaluates each package’s adapt-
ability by determining whether the test was implemented using native ORM
functions, the query builder, or raw SQL with parameters. This section will
also highlight any issues or challenges encountered while working with each
ORM framework. Understanding the flexibility of each package enables de-
velopers to make informed decisions regarding the ORM that best fits their
needs and project constraints.

Finally, the Performance Test Results section presents the outcomes of each
test, focusing on cases where query composition, operator selection, or intro-
duced overhead could play a measurable role in the package’s performance.
These tests were conducted using the BenchmarkRunner, the frameworks con-
nected to a PostgreSQL instance in Docker, on an AMD Ryzen 6850U pro-
cessor @ 2.7GHz, Debian GNU/Linux 11 (bullseye) operating system, 32GB
of LPDDR5-6400 RAM, and SSD storage.

79

8. Observations

Full implementation of the benchmark is included as part of this the-
sis and published online on https://github.com/ladal1/orm-comparison.
With the Node.js compatibility over many platforms and dependence of per-
formance on multiple factors, the version of the package may be different based
on the configuration.

By examining the performance of each ORM package in these three areas,
developers can gain valuable insights into the advantages and limitations of
each framework, ultimately guiding them in choosing the most appropriate
solution for their projects.

8.1 Package Information

While evaluating the ORM frameworks, the latest stable branch version was
used for testing at the time of writing. It is important to note that a new
version 3.0.2 of Objection.js was released after the testing was completed;
however, this update does not introduce any new features, only addressing
issues with types and ESM support.

Table 8.1 provides the exact versions used for each package, along with the
number of runtime dependencies required (excluding optional packages and
database drivers). To assess the availability and popularity of these packages,
Table A.1 lists each package with popularity metrics such as weekly downloads
from the npm repository and GitHub stars given to the project. The data was
collected on the 10th of April, 2023.

Table 8.1: Runtime package information in test environment

Package Runtime dependencies Tested Version

PgTyped 3 2.0.1
Zapatos 0 6.1.4
Kysely 0 0.24.2
@Databases/pg 15 5.4.1
Objection.js 2 3.0.1
MikroORM 7 5.6.16
PrismaORM 1 4.10.1
TypeORM 14 0.3.12
Knex.js 14 2.4.2
Sequelize 16 6.31.0

80

https://github.com/ladal1/orm-comparison

8.2. Flexibility Assessment

8.2 Flexibility Assessment

The primary aspect of the comparison between individual ORM packages
is their ability to implement advanced SQL constructs using a more unified
API for the programming language. Although abstraction introduces addi-
tional logic that requires processing power, it should offer functionality that
approaches the capabilities of direct SQL usage. A framework requiring de-
velopers to introduce abstraction but still necessitates writing SQL queries, as
the request cannot be expressed through the API, is considered less effective
as an abstraction layer than one that can perform such requests.

Tables 8.2, 8.3, 8.4, and 8.5 showcase the layers used to perform the re-
quired functionality for the benchmark. The shortcuts for the methods are
listed in the following list. A requirement for each implementation was that
the logic had to be consistently implemented on the database, with the frame-
work only composing the query and parsing the result. For example, it was
not allowed to check for an existing object in an upsert operation by querying
the database independently.

The order for implementation was as follows:

1. Native methods that abstract the database logic (Native)

2. The integrated query builder (QB)

3. Manually written queries in SQL (SQL)

If the operation was impossible to perform or resulted in problems, the lower
level was attempted, and the first successful one is listed in the tables.

Several notable observations can be made from the flexibility comparison.
PrismaORM stands out as the only ORM capable of natively implementing
the entire logic for each test, thanks to its unique support for increment and
decrement logic over upsert operations. The other full-fledged ORM packages
in the comparison, such as Sequelize, TypeORM, and MikroORM, performed
similarly but could not express upsert incrementation natively.

MikroORM held an advantage over TypeORM, using Knex.js as its query
builder, which could express the upsert operation while TypeORM’s custom
internal query builder could not. On the other hand, Zapatos was the only

81

8. Observations

package that partially failed in any test. It could not correctly parse bigint
values from PostgreSQL as strings or BigInt primitives in JavaScript when
using native methods, casting the result into a number instead. However, this
issue was resolved when a manually written query was used.

Lastly, it is worth noting that only @databases/pg parsed bigint values
into JavaScript BigInt primitives with typing. PrismaORM also returned
the value correctly, however the result itself was untyped, which made its
usage significantly more complicated. All other packages returned character
representations of the value.

Table 8.2: Entity Traversal Benchmark implementation methods

Package getCatColor countCatsByColor getToysAvailableToCat

@Databases/pg SQL1 SQL1 SQL1

Knex QB QB QB
Kysely QB QB QB
MikroORM Native Native Native
Objection.js Native Native Native
PgTyped SQL SQL SQL
PrismaORM Native Native Native
Sequelize Native Native Native
TypeORM Native Native Native
Zapatos Native SQL1 SQL1

1 With type support in template fields

8.3 Latency benchmark results

The second aspect of the benchmarking process involved evaluating the per-
formance of the various packages. This evaluation focused on the optimality
of the queries formulated by each package and the overhead introduced by
the composition of the queries and result parsing. Through code analysis,
the pgTyped package was expected to exhibit minimal overhead and the most
efficient manually written queries. Consequently, pgTyped was employed as
a reference for optimal queries and minimal performance.

Several noteworthy observations emerged from the testing process. The
most apparent performance loss occurred with Objection.js during the get-
ColorLatency test shown in Figure 8.1. This performance loss resulted from

82

8.3. Latency benchmark results

Table 8.3: Special SQL Actions Benchmark implementation methods

Package Upsert JSON
type

JSON
Where Transaction Like

Query
ILike
Query

@Databases/pg SQL1 Native Native Native SQL1 SQL1

Knex QB2 QB QB QB QB QB
Kysely QB2 QB QB QB QB QB
MikroORM QB2 Native Native Native Native Native
Objection.js QB2 QB QB Native QB QB
PgTyped SQL SQL SQL SQL SQL SQL
PrismaORM Native Native Native Native Native Native
Sequelize SQL Native Native3 Native Native Native
TypeORM SQL Native Native Native Native Native
Zapatos Native2 Native SQL1 Native SQL1 SQL1

1 With type support in template fields
2 Raw SQL for increment on update
3 Raw SQL for fetching key value as promoted nested keys did not result

in syntactically correct query

Table 8.4: Edge Cases Benchmark implementation methods

Package SQL Injection BigInt handling Maximum value query

@Databases/pg SQL1 Native4 SQL1

Knex QB QB3 QB3

Kysely QB QB3 QB3

MikroORM Native Native4 QB3

Objection.js QB2 QB2, 3 QB2, 6

PgTyped SQL SQL3 SQL3

PrismaORM Native Native4 Native4

Sequelize Native Native3 Native3

TypeORM Native Native3 QB4

Zapatos SQL1 SQL3, 5 SQL3

1 With type support in template fields
2 Query builder attached to model
3 Value returned as string
4 Value returned as Native type (BigInt or Number)
5 Native method converted value to Number, losing precision
6 Invalid typing requiring full cast

83

8. Observations

Table 8.5: BulkOperations Benchmark implementation methods

Package bulkInsert bulkDelete bulkUpdate Pagination

@Databases/pg Native Native Native SQL
Knex QB QB QB QB
Kysely QB1 QB QB QB
MikroORM Native Native Native Native
Objection.js Native Native Native Native2

PgTyped SQL SQL SQL SQL
PrismaORM Native Native Native Native
Sequelize Native Native Native Native
TypeORM Native1 Native Native Native2

Zapatos Native1 Native Native Native
1 Bulk/Batch operations not supported, data chunked manually
2 Native pagination without offset calculation

Figure 8.1: getColorLatency Results

@Data
ba

ses
/P

g
Knex

Kyse
ly

Mikr
oO

RM

Obje
cti

on
.js

PgT
yp

ed

Pris
maO

RM

Seq
uel

ize

Typ
eO

RM

Zap
ato

s
0

2,000

4,000

6,000

8,000

1,
53

5.
1

1,
73

6.
6

1,
17

9.
6

2,
02

3.
4

5,
83

6.
9

92
6.

7 2,
11

6.
3

2,
26

5.
8 3,
50

5.
3

1,
21

8.
5T
im

e
(m

s)

Objection.js favouring multiple dependent queries over a single query with
joins when utilizing the withGraphJoined method. While it would have been
possible to rewrite the query using the integrated query builder and resolve
the issue, this approach would compromise the flexibility testing and be thus
considered inadvisable.

Another fascinating result was the exceptional performance of MikroORM
in the JSONColumn test, results of which are in Figure 8.4, where it surpassed

84

8.3. Latency benchmark results

Figure 8.2: countCatsByColor Results

@Data
ba

ses
/P

g
Knex

Kyse
ly

Mikr
oO

RM

Obje
cti

on
.js

PgT
yp

ed

Pris
maO

RM

Seq
uel

ize

Typ
eO

RM

Zap
ato

s
0

1,000

2,000

3,000
1,

30
9.

5

2,
60

2.
3

1,
50

2.
2

2,
30

6.
4

2,
48

4.
8

1,
20

7.
2

1,
63

5.
6

2,
00

6.
3

2,
04

4.
4

1,
43

4.
4

T
im

e
(m

s)

even the pgTyped reference. This performance advantage can be attributed
to MikroORM’s caching mechanism, which leverages primary keys within its
entityManager to prevent repeated database queries for the same data, yield-
ing faster results than the reference. This feature can be highly beneficial for
a skilled developer, but can also cause problems, if the developer does not
know about it.

On the contrary, MikroORM struggled with the BulkInsertion test when
using the native entity creation function and unit of work paradigm over the
entity manager, losing out to all other packages by a significant margin, as
seen in Figure 8.5 in MikroORM UoW bar. The issue stems from the batch-
ing method, which resolves the flushing of the Unit of Work entity, which
batches the method by 300 entities by default [130]. However, the framework
also includes the native insertMany method, which handles the insertion at
a comparable efficiency with other packages, as seen in the same figure under
MikroORM native value.

Kysely demonstrated comparable capabilities to Knex while offering an
enhanced developer experience through type safety. Both Sequelize and Type-
ORM exhibited similar performance levels; however, TypeORM provided su-
perior types for methods and filters. MikroORM, though smaller in scale,

85

8. Observations

Figure 8.3: getToysAvailableToCat Results

@Data
ba

ses
/P

g
Knex

Kyse
ly

Mikr
oO

RM

Obje
cti

on
.js

PgT
yp

ed

Pris
maO

RM

Seq
uel

ize

Typ
eO

RM

Zap
ato

s
0

1,000

2,000

3,000

4,000

5,000

1,
48

8.
6

1,
79

8.
4

1,
35

9.
5

2,
75

8.
6

3,
27

1.
1

1,
40

2.
5

1,
81

6

3,
74

4.
6

3,
43

0.
9

1,
68

8.
9

T
im

e
(m

s)

proved to be functionally rich and benefited from access to the well-established
and thoroughly tested Knex.js query builder when model methods were insuf-
ficient.

The performance of Sequlize in the pagination test was investigated to
ensure the error was not in the wrong usage of the package. However, the
resulting query performs precisely as it should, and its handling is equivalent
to other packages. The result has to be caused by the overhead of the package
rather than the database of the usage.

Most ORMs lost out to query builders mainly because they prefer left
joins over stricter inner joins for many select operations. This behaviour is
primarily caused by the inability to specify precisely all the details necessary
for the realization of a query in a relational schema using the model schema
these packages used. PrismaORM avoided many of these mistakes thanks
to its more expressive and purpose-built prisma schema, which can be more
expressive than class or object definition.

Other than the few noted exceptions, the test results were as expected,
with packages using less abstraction of the database logic being able to use
optimal queries, which gave them an advantage over generic ORM queries.

86

8.3. Latency benchmark results

Figure 8.4: JSON Column handling Results

@Data
ba

ses
/P

g
Knex

Kyse
ly

Mikr
oO

RM

Obje
cti

on
.js

PgT
yp

ed

Pris
maO

RM

Seq
uel

ize

Typ
eO

RM

Zap
ato

s
0

1,000

2,000

3,000

97
7.

3

1,
63

8.
2

91
1.

5

18
9.

7

2,
18

7

65
0.

7 1,
11

8.
9

1,
83

5.
6 2,

44
6.

4

1,
02

4

T
im

e
(m

s)

Object-relational mapping packages carry a drawback of possible less opti-
mal data path resolution, as shown by Objection.js results in Figure 8.1 or
Figure 8.3. However, the drawback is only prominent when dealing with com-
plex queries involving multiple joins. It is preferable to use ORMs where the
amount of data in the database will not result in suboptimal computation
time, as the overhead of the package itself is negligible. Figures 8.2, 8.4, and
A.2 through A.9 (included in the appendix), show that while the relative per-
formance of the queries is almost double that of reference, it is still minor for
the amount of data usually considered for most smaller projects. When con-
sidering enterprise-level databases, the toll in which the suboptimal queries
can result will accumulate. It can result in redundant work as the application
must be repeatedly optimized while the ORM obfuscates which application
operation is causing the slowdown.

87

8. Observations

Figure 8.5: BulkInsert Results

@Data
ba

ses
/P

g
Knex

Kyse
ly

Mikr
oO

RM
UoW

Mikr
oO

RM
Nati

ve

Obje
cti

on
.js

PgT
yp

ed

Pris
maO

RM

Seq
uel

ize

Typ
eO

RM

Zap
ato

s
0

0.5

1

1.5
·104

1,
01

4.
4

1,
96

2

2,
34

5.
9

11
,6

80
.5

5,
11

3.
5

3,
04

6.
3

94
1.

3
6,

14
4.

3
2,

42
7.

8
3,

46
6.

3
2,

73
5.

9T
im

e
(m

s)

88

Conclusion

In conclusion, this thesis has successfully investigated the spectrum of database
access options available to developers within the TypeScript ecosystem. The
research has led to the development of a scalable benchmarking framework de-
signed to evaluate the capability of various packages to execute database op-
erations. This framework accommodates additional test databases and suites,
providing opportunities for future research and expansion.

Several avenues for future work emerge from the findings of this thesis.
These include extending the benchmark framework to incorporate a more com-
prehensive array of packages and databases, evaluating the capacity of these
packages to describe database schemas, and devising additional test suites to
assess the flexibility and performance of the packages under investigation.

The results of the benchmarking process provide valuable insights into the
performance and capabilities of several prominent ORM frameworks. While
there appeared to be negligible performance differences between TypeORM
and Sequelize, the two leading ORM frameworks, TypeORM demonstrated
significantly better support for TypeScript features, utilizing them to its ad-
vantage. Furthermore, two lesser-known packages, Kysely and MikroORM,
displayed remarkable utility and flexibility in their respective domains.

Kysely, a query builder alternative to the more popular Knex, exhibited
superior type support while delivering faster results and maintaining an equal
capacity for query creation. Kysely has significant potential to become a com-
pelling alternative for developers seeking a more type-safe and performant
query builder.

89

Conclusion

MikroORM surprised with its extensive feature set, excellent type support,
and the ability to leverage Knex for crafting highly complex queries. Its
performance in the benchmarks underscores the potential value of MikroORM
for developers who require a more feature-rich and type-safe ORM solution
while still retaining the flexibility to utilize Knex when necessary.

The findings of this thesis emphasize the importance of considering lesser-
known packages in addition to the most popular solutions when selecting
a suitable ORM framework or query builder. By doing so, developers can make
more informed decisions that align with their specific requirements, maximiz-
ing the benefits of the chosen package and optimizing the overall development
process.

As the ecosystem of TypeScript-compatible database access packages con-
tinues to evolve, the framework can be updated and expanded to ensure that
developers stay well-informed about the strengths and weaknesses of emerging
solutions. Such service would enable them to make better-informed decisions
when selecting a package that best suits their project’s needs, ultimately con-
tributing to more efficient and robust application development.

In summary, this thesis shed light on the diverse landscape of TypeScript-
compatible database access packages, providing insights into their capabilities
and performance. With the knowledge gained from this study, developers
stand better equipped to select the most suitable package for their specific
requirements, ensuring a more streamlined and effective development process.

90

Bibliography

1. O’REILLY, Tim. What is web 2.0: Design Patterns and Business Mod-
els for the Next Generation of Software [online] . ” O’Reilly Media,
Inc.”, 2005 [visited on 2023-04-15]. Available from : https://www
.oreilly.com/pub/a/web2/archive/what-is-web-20.html.

2. Stack Overflow Developer Survey 2022 [online] . [visited on 2023-
04-21]. Available from : https://survey.stackoverflow.co/2022
/?utm-source=social-share&utm_medium=social&utm_campaign=d
ev-survey-2022.

3. TORRES, Alexandre; GALANTE, Renata; PIMENTA, Marcelo S.;
MARTINS, Alexandre Jonatan B. Twenty years of object-relational
mapping: A survey on patterns, solutions, and their implications on
application design. Information and Software Technology. 2017, vol. 82.
issn 09505849. Available from doi: 10.1016/j.infsof.2016.09.0
09.

4. Drizzle northwind pg [online] . [visited on 2023-04-22]. Available
from : https://github.com/drizzle-team/drizzle-northwind-be
nchmarks-pg.

5. imdb-bench [online] . [visited on 2023-04-23]. Available from :
https://github.com/edgedb/imdbench.

6. Mapping Objects to Relational Databases: O/R Mapping In Detail [on-
line] . [visited on 2023-04-21]. Available from : http://www.agil
edata.org/essays/mappingObjects.html.

91

https://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
https://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
https://survey.stackoverflow.co/2022/?utm-source=social-share&utm_medium=social&utm_campaign=dev-survey-2022
https://survey.stackoverflow.co/2022/?utm-source=social-share&utm_medium=social&utm_campaign=dev-survey-2022
https://survey.stackoverflow.co/2022/?utm-source=social-share&utm_medium=social&utm_campaign=dev-survey-2022
https://doi.org/10.1016/j.infsof.2016.09.009
https://doi.org/10.1016/j.infsof.2016.09.009
https://github.com/drizzle-team/drizzle-northwind-benchmarks-pg
https://github.com/drizzle-team/drizzle-northwind-benchmarks-pg
https://github.com/edgedb/imdbench
http://www.agiledata.org/essays/mappingObjects.html
http://www.agiledata.org/essays/mappingObjects.html

Bibliography

7. artima - Inappropriate Abstractions [online] . [visited on 2023-04-
21]. Available from : https://www.artima.com/articles/inappro
priate-abstractions#part3.

8. FOWLER, Martin. Patterns of enterprise application architecture.
Boston: Addison-Wesley, 2003. The Addison-Wesley signature series.
isbn 9780321127426.

9. GAMMA, Erich; RICHARD, Helm; RALPH, Johnson; JOHN, Vlis-
sides. Design patterns: elements of reusable object-oriented software.
Reading, Mass: Addison-Wesley, 1995. Addison-Wesley professional
computing series. isbn 9780201633610.

10. 4.1. Lexical Structure [online] . 2023-02. [visited on 2023-04-21].
Available from : https://www.postgresql.org/docs/15/sql-synta
x-lexical.html.

11. PostgreSQL: About [online] . [visited on 2023-04-21]. Available
from : https://www.postgresql.org/about/.

12. PostgreSQL Licence [online] . 2023-02. [visited on 2023-04-21].
Available from : https://www.postgresql.org/about/licence/.

13. 13.2. Transaction Isolation [online] . 2023-02. [visited on 2023-04-
21]. Available from : https://www.postgresql.org/docs/15/tran
saction-iso.html.

14. Chapter 8. Data Types [online] . 2023-02. [visited on 2023-04-21].
Available from : https://www.postgresql.org/docs/15/datatype
.html.

15. Chapter 34. libpq — C Library [online] . 2023-02. [visited on 2023-
04-21]. Available from : https://www.postgresql.org/docs/15/li
bpq.html.

16. psycopg2: psycopg2 - Python-PostgreSQL Database Adapter [online] .
[visited on 2023-04-21]. Available from : https://psycopg.org/.

17. Home — pgJDBC [online] . [visited on 2023-04-21]. Available
from : https://jdbc.postgresql.org/.

92

https://www.artima.com/articles/inappropriate-abstractions#part3
https://www.artima.com/articles/inappropriate-abstractions#part3
https://www.postgresql.org/docs/15/sql-syntax-lexical.html
https://www.postgresql.org/docs/15/sql-syntax-lexical.html
https://www.postgresql.org/about/
https://www.postgresql.org/about/licence/
https://www.postgresql.org/docs/15/transaction-iso.html
https://www.postgresql.org/docs/15/transaction-iso.html
https://www.postgresql.org/docs/15/datatype.html
https://www.postgresql.org/docs/15/datatype.html
https://www.postgresql.org/docs/15/libpq.html
https://www.postgresql.org/docs/15/libpq.html
https://psycopg.org/
https://jdbc.postgresql.org/

Bibliography

18. node-postgres [online] . [visited on 2023-04-21]. Available from :
https://node-postgres.com/.

19. Lazy loading - Web Performance [online] . 2023-04. [visited on
2023-04-20]. Available from : https://developer.mozilla.org/en
-US/docs/Web/Performance/Lazy_loading.

20. Eager Loading — Sequelize [online] . 2023-04. [visited on 2023-04-
21]. Available from : https://sequelize.org/docs/v6/advanced-
association-concepts/eager-loading/.

21. Node.js V20.0.0 documentation [online] . 2023-04. [visited on 2023-
04-20]. Available from : https://nodejs.org/api/modules.html#m
odules_cycles.

22. Documentation - Modules [online] . [visited on 2023-04-21]. Avail-
able from : https://www.typescriptlang.org/docs/handbook/mod
ules.html.

23. MELTON, Hayden; TEMPERO, Ewan. An empirical study of cycles
among classes in Java. Empirical Software Engineering [online] . 2007,
vol. 12, no. 4 [visited on 2023-04-21]. issn 1382-3256, issn 1573-7616.
Available from doi: 10.1007/s10664-006-9033-1.

24. HAERDER, Theo; REUTER, Andreas. Principles of transaction-
oriented database recovery. ACM Computing Surveys [online] .
1983, vol. 15, no. 4 [visited on 2023-04-21]. issn 0360-0300, issn
1557-7341. Available from doi: 10.1145/289.291.

25. GUPTA, Kirti; MATHURIA, Manish. Improving performance of web
application approaches using connection pooling. In : 2017 Interna-
tional conference of Electronics, Communication and Aerospace Tech-
nology (ICECA) [online] . Coimbatore: IEEE, 2017 [visited on
2023-04-21]. isbn 9781509056859. Available from doi: 10.1109/ICE
CA.2017.8212833.

26. Chapter 27. High Availability, Load Balancing, and Replication [online]
. 2023-02. [visited on 2023-04-21]. Available from : https://www
.postgresql.org/docs/15/high-availability.html.

93

https://node-postgres.com/
https://developer.mozilla.org/en-US/docs/Web/Performance/Lazy_loading
https://developer.mozilla.org/en-US/docs/Web/Performance/Lazy_loading
https://sequelize.org/docs/v6/advanced-association-concepts/eager-loading/
https://sequelize.org/docs/v6/advanced-association-concepts/eager-loading/
https://nodejs.org/api/modules.html#modules_cycles
https://nodejs.org/api/modules.html#modules_cycles
https://www.typescriptlang.org/docs/handbook/modules.html
https://www.typescriptlang.org/docs/handbook/modules.html
https://doi.org/10.1007/s10664-006-9033-1
https://doi.org/10.1145/289.291
https://doi.org/10.1109/ICECA.2017.8212833
https://doi.org/10.1109/ICECA.2017.8212833
https://www.postgresql.org/docs/15/high-availability.html
https://www.postgresql.org/docs/15/high-availability.html

Bibliography

27. A Brief History of JavaScript [online] . [visited on 2023-04-21].
Available from : https://auth0.com/blog/a-brief-history-of-ja
vascript/.

28. CoffeeScript [online] . [visited on 2023-04-21]. Available from :
https://coffeescript.org/.

29. Dart programming language [online] . [visited on 2023-04-21].
Available from : https://dart.dev/.

30. TypeScript [online] . [visited on 2023-04-21]. Available from :
https://www.typescriptlang.org/.

31. Mission [online] . [visited on 2023-04-21]. Available from :
https://www.ecma-international.org/mission/.

32. ECMA-262 [online] . [visited on 2023-04-21]. Available from :
https://www.ecma-international.org/publications-and-standa
rds/standards/ecma-262/.

33. SpiderMonkey — Firefox Source Docs documentation [online] . [vis-
ited on 2023-04-21]. Available from : https://firefox-source-do
cs.mozilla.org/js/index.html.

34. V8 — JavaScript engine [online] . [visited on 2023-04-21]. Available
from : https://v8.dev/.

35. JavaScriptCore — WebKit [online] . [visited on 2023-04-21]. Avail-
able from : https://trac.webkit.org/wiki/JavaScriptCore.

36. CommonJS Spec Wiki [online] . [visited on 2023-04-21]. Available
from : https://wiki.commonjs.org/wiki/CommonJS.

37. Introduction - CommonJS Spec Wiki [online] . [visited on 2023-
04-21]. Available from : https://wiki.commonjs.org/wiki/Introd
uction.

38. TypeScript Programming with Visual Studio Code [online] . [visited
on 2023-04-21]. Available from : https://code.visualstudio.com
/docs/languages/typescript.

94

https://auth0.com/blog/a-brief-history-of-javascript/
https://auth0.com/blog/a-brief-history-of-javascript/
https://coffeescript.org/
https://dart.dev/
https://www.typescriptlang.org/
https://www.ecma-international.org/mission/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://firefox-source-docs.mozilla.org/js/index.html
https://firefox-source-docs.mozilla.org/js/index.html
https://v8.dev/
https://trac.webkit.org/wiki/JavaScriptCore
https://wiki.commonjs.org/wiki/CommonJS
https://wiki.commonjs.org/wiki/Introduction
https://wiki.commonjs.org/wiki/Introduction
https://code.visualstudio.com/docs/languages/typescript
https://code.visualstudio.com/docs/languages/typescript

Bibliography

39. TypeScript — WebStorm [online] . [visited on 2023-04-21]. Available
from : https://www.jetbrains.com/help/webstorm/typescript-s
upport.html.

40. About [online] . [visited on 2023-04-21]. Available from : https:
//nodejs.org/en/about.

41. Ryan Dahl: Original Node.js presentation [online] . [visited on
2023-04-21]. Available from : https://www.youtube.com/watch?v
=ztspvPYybIY.

42. ORSINI, Lauren. What You Need To Know About Node.js [online] .
2013-11. [visited on 2023-04-21]. Available from : https://readw
rite.com/what-you-need-to-know-about-nodejs/.

43. Promises - MDN. 2023-04. Available also from : https://develope
r.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_O
bjects/Promise.

44. Deno runtime [online] . [visited on 2023-04-22]. Available from :
https://deno.land/.

45. cli/README.md - npm/cli [online] . 2009-09. [visited on 2023-
04-21].

46. npm Logs and Usabge [online] . [visited on 2023-04-21]. Available
from : https://docs.npmjs.com/policies/logos-and-usage.

47. Yarn package manager. Available also from : https://classic.yar
npkg.com/en/docs/getting-started/.

48. The JSON Data Interchange Syntax - ECMA-404 [online] . [visited
on 2023-04-21]. Available from : https://www.ecma-internation
al.org/publications-and-standards/standards/ecma-404/.

49. DAVID. ORM Patterns: The Trade-Offs of Active Record and Data
Mappers for Object-Relational Mapping. 2018. Available also from :
https://www.thoughtfulcode.com/orm-active-record-vs-data-m
apper/.

95

https://www.jetbrains.com/help/webstorm/typescript-support.html
https://www.jetbrains.com/help/webstorm/typescript-support.html
https://nodejs.org/en/about
https://nodejs.org/en/about
https://www.youtube.com/watch?v=ztspvPYybIY
https://www.youtube.com/watch?v=ztspvPYybIY
https://readwrite.com/what-you-need-to-know-about-nodejs/
https://readwrite.com/what-you-need-to-know-about-nodejs/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://deno.land/
https://docs.npmjs.com/policies/logos-and-usage
https://classic.yarnpkg.com/en/docs/getting-started/
https://classic.yarnpkg.com/en/docs/getting-started/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.thoughtfulcode.com/orm-active-record-vs-data-mapper/
https://www.thoughtfulcode.com/orm-active-record-vs-data-mapper/

Bibliography

50. keywords:orm - npm repository search [online] . [visited on 2023-
04-21]. Available from : https://www.npmjs.com/search?q=keywor
ds:orm.

51. WANYOIKE, Michael [online] . 2021-03. [visited on 2023-04-21].
Available from : https://www.sitepoint.com/javascript-typescr
ipt-orms/.

52. WANG, Xiaoxuan. Popular ORMs in JavaScript [online] . 2020-04. [
visited on 2023-04-21]. Available from : https://medium.com/@ys
zd320/popular-orms-in-javascript-d101f667c0be.

53. MIT License [online] . [visited on 2023-04-21]. Available from :
https://mit-license.org/.

54. Apache License Version 2.0 [online] . [visited on 2023-04-21].
Available from : https://www.apache.org/licenses/LICENSE-2.0
.html.

55. FREE SOFTWARE FOUNDATION, Inc. The GNU General Public
License v3.0 - GNU Project - Free Software Foundation [online] .
2007. [visited on 2023-04-21]. Available from : https://www.gnu
.org/licenses/gpl-3.0.en.html.

56. Documentation - JSDoc Reference [online] . [visited on 2023-04-21].
Available from : https://www.typescriptlang.org/docs/handbook
/jsdoc-supported-types.html.

57. Date - JavaScript [online] . 2023-04. [visited on 2023-04-22].
Available from : https://developer.mozilla.org/en-US/docs/Web
/JavaScript/Reference/Global_Objects/Date.

58. Date/Time Types [online] . 2023-02. [visited on 2023-04-22]. Avail-
able from : https://www.postgresql.org/docs/15/datatype-date
time.html.

59. KARWIN, Bill. Answer to “Still Confused About Identifying vs. Non-
Identifying Relationships” [online] . 2010-05. [visited on 2023-04-22].
Available from : https://stackoverflow.com/a/2814663.

96

https://www.npmjs.com/search?q=keywords:orm
https://www.npmjs.com/search?q=keywords:orm
https://www.sitepoint.com/javascript-typescript-orms/
https://www.sitepoint.com/javascript-typescript-orms/
https://medium.com/@yszd320/popular-orms-in-javascript-d101f667c0be
https://medium.com/@yszd320/popular-orms-in-javascript-d101f667c0be
https://mit-license.org/
https://www.apache.org/licenses/LICENSE-2.0.html
https://www.apache.org/licenses/LICENSE-2.0.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.typescriptlang.org/docs/handbook/jsdoc-supported-types.html
https://www.typescriptlang.org/docs/handbook/jsdoc-supported-types.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://www.postgresql.org/docs/15/datatype-datetime.html
https://www.postgresql.org/docs/15/datatype-datetime.html
https://stackoverflow.com/a/2814663

Bibliography

60. Upsert — CockroachDB [online] . [visited on 2023-04-21]. Available
from : https://www.cockroachlabs.com/docs/stable/upsert.htm
l.

61. INSERT [online] . 2023-02. [visited on 2023-04-21]. Available
from : https://www.postgresql.org/docs/15/sql-insert.html.

62. 5.4. Constraints [online] . 2023-02. [visited on 2023-04-21]. Avail-
able from : https://www.postgresql.org/docs/15/ddl-constrain
ts.html.

63. 8.14. JSON Types [online] . 2023-02. [visited on 2023-04-21].
Available from : https://www.postgresql.org/docs/15/datatype-
json.html.

64. Jest testing framework [online] . [visited on 2023-04-21]. Available
from : https://jestjs.io/.

65. Mocha - the fun, simple, flexible JavaScript test framework [online] .
[visited on 2023-04-22]. Available from : https://mochajs.org/.

66. Assert [online] . [visited on 2023-04-22]. Available from : https
://nodejs.org/api/assert.html.

67. Workspaces [online] . [visited on 2023-04-22]. Available from :
https://docs.npmjs.com/cli/v7/using-npm/workspaces/.

68. Sass: Syntactically Awesome Style Sheets [online] . [visited on
2023-04-22]. Available from : https://sass-lang.com/.

69. Number - JavaScript [online] . 2023-04. [visited on 2023-04-22].
Available from : https://developer.mozilla.org/en-US/docs/Web
/JavaScript/Reference/Global_Objects/Number.

70. 8.1. Numeric Types [online] . 2023-02. [visited on 2023-04-22].
Available from : https://www.postgresql.org/docs/15/datatype-
numeric.html.

71. BigInt - JavaScript [online] . 2023-04. [visited on 2023-04-22].
Available from : https://developer.mozilla.org/en-US/docs/Web
/JavaScript/Reference/Global_Objects/BigInt.

97

https://www.cockroachlabs.com/docs/stable/upsert.html
https://www.cockroachlabs.com/docs/stable/upsert.html
https://www.postgresql.org/docs/15/sql-insert.html
https://www.postgresql.org/docs/15/ddl-constraints.html
https://www.postgresql.org/docs/15/ddl-constraints.html
https://www.postgresql.org/docs/15/datatype-json.html
https://www.postgresql.org/docs/15/datatype-json.html
https://jestjs.io/
https://mochajs.org/
https://nodejs.org/api/assert.html
https://nodejs.org/api/assert.html
https://docs.npmjs.com/cli/v7/using-npm/workspaces/
https://sass-lang.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.postgresql.org/docs/15/datatype-numeric.html
https://www.postgresql.org/docs/15/datatype-numeric.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt

Bibliography

72. 55.7. Message Formats [online] . [visited on 2023-04-25]. Available
from : https://www.postgresql.org/docs/current/protocol-mes
sage-formats.html.

73. Queries with more than 32k parameters are allowed #2579 [online] .
[visited on 2023-04-23]. Available from : https://github.com/br
ianc/node-postgres/issues/2579.

74. PgTyped - Typesafe SQL in Typescript [online] . [visited on 2023-
04-22]. Available from : https://pgtyped.dev/.

75. @pgtyped/cli [online] . 2023-03. [visited on 2023-04-22]. Available
from : https://www.npmjs.com/package/@pgtyped/cli.

76. @pgtyped/runtime dependencies [online] . 2023-03. [visited on 2023-
04-22]. Available from : https://www.npmjs.com/package/@pgtype
d/runtime?activeTab=dependencies.

77. pgTyped Documentation [online] . [visited on 2023-04-22]. Available
from : https://pgtyped.dev/docs/.

78. @databases/pg-schema-cli [online] . 2023-01. [visited on 2023-04-
22]. Available from : https://www.npmjs.com/package/@database
s/pg-schema-cli.

79. @databases/pg [online] . 2023-01. [visited on 2023-04-22]. Available
from : https://www.atdatabases.org/docs/pgg.

80. @databases/pg [online] . 2023-01. [visited on 2023-04-22]. Available
from : https://www.npmjs.com/package/@databases/pg.

81. Zapatos [online] . 2023-01. [visited on 2023-04-22]. Available from
: https://www.npmjs.com/package/zapatos.

82. Zapatos Documentation [online] . 2023-01. [visited on 2023-04-22].
Available from : https://jawj.github.io/zapatos/.

83. Commits · knex/knex [online] . [visited on 2023-04-22]. Available
from : https://github.com/knex/knex.

84. Installation — Knex.js [online] . [visited on 2023-04-22]. Available
from : https://knexjs.org/guide/.

98

https://www.postgresql.org/docs/current/protocol-message-formats.html
https://www.postgresql.org/docs/current/protocol-message-formats.html
https://github.com/brianc/node-postgres/issues/2579
https://github.com/brianc/node-postgres/issues/2579
https://pgtyped.dev/
https://www.npmjs.com/package/@pgtyped/cli
https://www.npmjs.com/package/@pgtyped/runtime?activeTab=dependencies
https://www.npmjs.com/package/@pgtyped/runtime?activeTab=dependencies
https://pgtyped.dev/docs/
https://www.npmjs.com/package/@databases/pg-schema-cli
https://www.npmjs.com/package/@databases/pg-schema-cli
https://www.atdatabases.org/docs/pgg
https://www.npmjs.com/package/@databases/pg
https://www.npmjs.com/package/zapatos
https://jawj.github.io/zapatos/
https://github.com/knex/knex
https://knexjs.org/guide/

Bibliography

85. KRIASOFT. knex-types [online] . 2022. [visited on 2023-04-22].
Available from : https://www.npmjs.com/package/knex-types.

86. Knex.js issue #5091 [online] . [visited on 2023-04-22]. Available
from : https://github.com/knex/knex/issues/5091.

87. Knex.js issue #3112 [online] . [visited on 2023-04-22]. Available
from : https://github.com/knex/knex/issues/3112.

88. Kysely Documentation [online] . [N.d.]. [visited on 2023-04-23].
Available from : https://kysely.dev/docs/intro.

89. Kysely [online] . [visited on 2023-04-23]. Available from : https
://github.com/kysely-org/kysely.

90. kysely-codegen [online] . [visited on 2023-04-23]. Available from :
https://github.com/RobinBlomberg/kysely-codegen.

91. prisma-kysely [online] . [visited on 2023-04-23]. Available from :
https://github.com/valtyr/prisma-kysely.

92. MikroORM [online] . [visited on 2023-04-23]. Available from :
https://mikro-orm.io/.

93. mikro-orm [online] . [visited on 2023-04-23]. Available from :
https://www.github.com/mikro-orm/mikro-orm.

94. mikro-orm [online] . [visited on 2023-04-23]. Available from :
https://www.npmjs.com/package/mikro-orm.

95. Support for deno? [online] . [visited on 2023-04-23]. Available from
: https://github.com/mikro-orm/mikro-orm/discussions/3079.

96. MikroORM Documentation [online] . [visited on 2023-04-23].
Available from : https://mikro-orm.io/docs/.

97. Working with Entity Manager [online] . [visited on 2023-04-23].
Available from : https://mikro-orm.io/docs/entity-manager.

98. Prisma Schema [online] . [visited on 2023-04-23]. Available from
: https://www.prisma.io/docs/concepts/components/prisma-sch
ema.

99

https://www.npmjs.com/package/knex-types
https://github.com/knex/knex/issues/5091
https://github.com/knex/knex/issues/3112
https://kysely.dev/docs/intro
https://github.com/kysely-org/kysely
https://github.com/kysely-org/kysely
https://github.com/RobinBlomberg/kysely-codegen
https://github.com/valtyr/prisma-kysely
https://mikro-orm.io/
https://www.github.com/mikro-orm/mikro-orm
https://www.npmjs.com/package/mikro-orm
https://github.com/mikro-orm/mikro-orm/discussions/3079
https://mikro-orm.io/docs/
https://mikro-orm.io/docs/entity-manager
https://www.prisma.io/docs/concepts/components/prisma-schema
https://www.prisma.io/docs/concepts/components/prisma-schema

Bibliography

99. Deplyoment guides [online] . [visited on 2023-04-20]. Available
from : https://www.prisma.io/docs/guides/deployment/deploym
ent-guides.

100. prisma [online] . [visited on 2023-04-23]. Available from :
https://www.npmjs.com/package/prisma.

101. prisma/prisma [online] . [visited on 2023-04-23]. Available from
: https://www.github.com/prisma/prisma.

102. Support ES6 modules export / ESM [online] . [visited on 2023-04-23].
Available from : https://github.com/prisma/prisma/issues/5030.

103. TypeORM [online] . [visited on 2023-04-23]. Available from :
https://www.npmjs.com/package/typeorm.

104. typeorm/typeorm [online] . [visited on 2023-04-23]. Available from
: https://www.github.com/typeorm/typeorm.

105. Sequelize [online] . [visited on 2023-04-23]. Available from :
https://www.npmjs.com/package/sequelize.

106. Sequelize Typescript [online] . [visited on 2023-04-23]. Available
from : https://www.npmjs.com/package/sequelize-typescript.

107. Future of TypeORM [online] . [visited on 2023-04-23]. Available
from : https://www.github.com/typeorm/typeorm/issues/3267.

108. TypeORM Documentation [online] . [visited on 2023-04-23]. Avail-
able from : https://www.typeorm.io/.

109. Vincit/objection.js [online] . [visited on 2023-04-23]. Available
from : https://www.github.com/Vincit/objection.js.

110. Objection.js [online] . [visited on 2023-04-23]. Available from :
https://www.npmjs.com/package/objection.

111. The future of Objection.js [online] . 2022-11. [visited on 2023-04-23].
Available from : https://github.com/Vincit/objection.js/issue
s/2335.

112. Objection.js 3.0.2 [online] . 2023-03. [visited on 2023-03-30]. Avail-
able from : https://github.com/Vincit/objection.js/releases
/tag/3.0.2.

100

https://www.prisma.io/docs/guides/deployment/deployment-guides
https://www.prisma.io/docs/guides/deployment/deployment-guides
https://www.npmjs.com/package/prisma
https://www.github.com/prisma/prisma
https://github.com/prisma/prisma/issues/5030
https://www.npmjs.com/package/typeorm
https://www.github.com/typeorm/typeorm
https://www.npmjs.com/package/sequelize
https://www.npmjs.com/package/sequelize-typescript
https://www.github.com/typeorm/typeorm/issues/3267
https://www.typeorm.io/
https://www.github.com/Vincit/objection.js
https://www.npmjs.com/package/objection
https://github.com/Vincit/objection.js/issues/2335
https://github.com/Vincit/objection.js/issues/2335
https://github.com/Vincit/objection.js/releases/tag/3.0.2
https://github.com/Vincit/objection.js/releases/tag/3.0.2

Bibliography

113. Objection.js Documentation [online] . [visited on 2023-04-23].
Available from : https://vincit.github.io/objection.js/.

114. Sequelize Documentation [online] . [visited on 2023-04-23]. Available
from : https://sequelize.org/docs/.

115. TypeScript [online] . [visited on 2023-04-23]. Available from :
https://sequelize.org/docs/v6/other-topics/typescript/.

116. Paranoid [online] . [visited on 2023-04-23]. Available from :
https://sequelize.org/docs/v6/core-concepts/paranoid/.

117. sequelize/sequelize [online] . [visited on 2023-04-23]. Available
from : https://www.github.com/sequelize/sequelize.

118. rdb [online] . [visited on 2023-04-23]. Available from : https:
//www.npmjs.com/package/rdb.

119. alfateam/rdb [online] . [visited on 2023-04-23]. Available from :
https://github.com/alfateam/rdb.

120. RDB Documentation [online] . [visited on 2023-04-23]. Available
from : https://github.com/alfateam/rdb/blob/master/docs/doc
s.md.

121. Bookshelf [online] . [visited on 2023-04-23]. Available from :
https://www.npmjs.com/package/bookshelf.

122. bookshelf/bookshelf [online] . [visited on 2023-04-23]. Available
from : https://www.github.com/bookshelf/bookshelf.

123. Bookshelf Documentation [online] . [visited on 2023-04-23]. Avail-
able from : https://bookshelfjs.org/.

124. CVE-2019-10744 - GitHub Advisory Database [online] . [visited on
2023-04-21]. Available from : https://github.com/advisories/GH

SA-jf85-cpcp-j695.

125. CVE-2016-20018 - GitHub Advisory Database [online] . [visited on
2023-04-21]. Available from : https://github.com/advisories/GH

SA-4jv9-3563-23j3.

126. Express — npm [online] . 2022-10. [visited on 2023-04-21]. Available
from : https://www.npmjs.com/package/express.

101

https://vincit.github.io/objection.js/
https://sequelize.org/docs/
https://sequelize.org/docs/v6/other-topics/typescript/
https://sequelize.org/docs/v6/core-concepts/paranoid/
https://www.github.com/sequelize/sequelize
https://www.npmjs.com/package/rdb
https://www.npmjs.com/package/rdb
https://github.com/alfateam/rdb
https://github.com/alfateam/rdb/blob/master/docs/docs.md
https://github.com/alfateam/rdb/blob/master/docs/docs.md
https://www.npmjs.com/package/bookshelf
https://www.github.com/bookshelf/bookshelf
https://bookshelfjs.org/
https://github.com/advisories/GHSA-jf85-cpcp-j695
https://github.com/advisories/GHSA-jf85-cpcp-j695
https://github.com/advisories/GHSA-4jv9-3563-23j3
https://github.com/advisories/GHSA-4jv9-3563-23j3
https://www.npmjs.com/package/express

Bibliography

127. Koa — npm [online] . 2023-04. [visited on 2023-04-21]. Available
from : https://www.npmjs.com/package/koa.

128. DefinitelyTyped/types/waterline at master · DefinitelyTyped [online]
. [visited on 2023-04-21]. Available from : https://github.com/D
efinitelyTyped/DefinitelyTyped.

129. Models and ORM - Sails.js [online] . [visited on 2023-04-21].
Available from : https://sailsjs.com/documentation/concepts/m
odels-and-orm.

130. ADÁMEK, Martin. MikroORM 4.1: Let’s talk about performance [on-
line] . [visited on 2023-04-24]. Available from : https://mikro-o
rm.io/blog/mikro-orm-4-1-released.

131. ROSENWASSER, Daniel. Announcing TypeScript 4.8 [online] . 2022-
08. [visited on 2023-04-21]. Available from : https://devblogs.m
icrosoft.com/typescript/announcing-typescript-4-8/.

132. initial import · sequelize/sequelize@fee9208 [online] . [visited on
2023-04-21]. Available from : https://github.com/sequelize/seq
uelize/commit/fee92083a75c15f5b6cd2d0c2f3bb043ae155e68.

133. Future of TypeORM · Issue #3267 · typeorm/typeorm [online] . [
visited on 2023-04-21]. Available from : https://github.com/typ
eorm/typeorm/issues/3267.

134. ECMAScript 2015 (ES6) and beyond [online] . [visited on 2023-
04-21]. Available from : https://nodejs.org/en/docs/es6.

135. Frequently Asked Questions about the GNU Licenses [online] . [visited
on 2023-04-21]. Available from : https://www.gnu.org/licenses
/gpl-faq.html#WhySomeGPLAndNotLGPL.

136. KRIASOFT. Knex.js [online] . 2022. [visited on 2023-04-22].
Available from : https://www.npmjs.com/package/knex.

137. kysely [online] . [visited on 2023-04-23]. Available from : https:
//www.npmjs.com/package/kysely.

138. Type-safe relations [online] . [visited on 2023-04-23]. Available
from : https://mikro-orm.io/docs/type-safe-relations.

102

https://www.npmjs.com/package/koa
https://github.com/DefinitelyTyped/DefinitelyTyped
https://github.com/DefinitelyTyped/DefinitelyTyped
https://sailsjs.com/documentation/concepts/models-and-orm
https://sailsjs.com/documentation/concepts/models-and-orm
https://mikro-orm.io/blog/mikro-orm-4-1-released
https://mikro-orm.io/blog/mikro-orm-4-1-released
https://devblogs.microsoft.com/typescript/announcing-typescript-4-8/
https://devblogs.microsoft.com/typescript/announcing-typescript-4-8/
https://github.com/sequelize/sequelize/commit/fee92083a75c15f5b6cd2d0c2f3bb043ae155e68
https://github.com/sequelize/sequelize/commit/fee92083a75c15f5b6cd2d0c2f3bb043ae155e68
https://github.com/typeorm/typeorm/issues/3267
https://github.com/typeorm/typeorm/issues/3267
https://nodejs.org/en/docs/es6
https://www.gnu.org/licenses/gpl-faq.html#WhySomeGPLAndNotLGPL
https://www.gnu.org/licenses/gpl-faq.html#WhySomeGPLAndNotLGPL
https://www.npmjs.com/package/knex
https://www.npmjs.com/package/kysely
https://www.npmjs.com/package/kysely
https://mikro-orm.io/docs/type-safe-relations

Bibliography

139. MARTIN, Robert C. The Principles of OOD [online] . 2003. [visited
on 2023-04-21]. Available from : http://butunclebob.com/Articl
eS.UncleBob.PrinciplesOfOod.

140. sequelize/sequelize-typescript [online] . [visited on 2023-04-23].
Available from : https://github.com/sequelize/sequelize-types
cript.

103

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://github.com/sequelize/sequelize-typescript
https://github.com/sequelize/sequelize-typescript

Appendix A
Appendix

Table A.1: Popularity and homepages of packages

Package
npm

weekly
downloads

GitHub
Stars Homepage

PgTyped 9937 2348 https://github.com/adelsz/pgtyped

@databases/pg 26613 517 https://atdatabases.org/docs/pg

Zapatos 14933 980 https://jawj.github.io/zapatos/

Knex.js 1346100 17419 https://knexjs.org/

Kysely 53635 4683 https://kysely.dev/

MikroORM 189128 5777 https://mikro-orm.io/

PrismaORM 1057351 30431 https://prisma.io/

TypeORM 1192427 30947 https://typeorm.io/

Objection.js 128872 6972 https://vincit.github.io/objection.js/

Sequelize 1505485 27729 https://sequelize.org/

RDB 284 291 https://github.com/alfateam/rdb

Bookshelf.js 103607 6315 https://bookshelfjs.org/

Waterline 29086 5387 https://waterlinejs.org/

105

https://github.com/adelsz/pgtyped
https://atdatabases.org/docs/pg
https://jawj.github.io/zapatos/
https://knexjs.org/
https://kysely.dev/
https://mikro-orm.io/
https://prisma.io/
https://typeorm.io/
https://vincit.github.io/objection.js/
https://sequelize.org/
https://github.com/alfateam/rdb
https://bookshelfjs.org/
https://waterlinejs.org/

A
.

A
ppendix

Figure A.1: HTMLReporter result - partial screenshot

106

Figure A.2: JSON Where query Results

@Data
ba

ses
/P

g
Knex

Kyse
ly

Mikr
oO

RM

Obje
cti

on
.js

PgT
yp

ed

Pris
maO

RM

Seq
uel

ize

Typ
eO

RM

Zap
ato

s
0

500

1,000

1,500

2,000

2,500

3,000

93
8.

6

1,
67

7.
5

1,
02

2.
7

1,
78

8.
2

2,
43

4.
5

64
1.

7

1,
14

0.
7 1,
40

9.
4

2,
34

3.
6

95
9.

9T
im

e
(m

s)

107

A. Appendix

Figure A.3: Transactional operations Results

@Data
ba

ses
/P

g
Knex

Kyse
ly

Mikr
oO

RM

Obje
cti

on
.js

PgT
yp

ed

Pris
maO

RM

Seq
uel

ize

Typ
eO

RM

Zap
ato

s
0

200

400

600

800

1,000

1,200

1,400

41
8.

1

47
2.

5

38
3.

9

58
6

81
2.

8

26
8.

9

80
0.

2

79
0.

1

96
1

37
7.

6

T
im

e
(m

s)

108

Figure A.4: Pattern Matching (likeQuery) Results

@Data
ba

ses
/P

g
Knex

Kyse
ly

Mikr
oO

RM

Obje
cti

on
.js

PgT
yp

ed

Pris
maO

RM

Seq
uel

ize

Typ
eO

RM

Zap
ato

s
0

500

1,000

1,500

2,000

2,500

3,000

97
2.

5

1,
27

0

97
6

1,
64

4.
4

2,
15

9.
7

72
1.

4

1,
22

6.
5

2,
05

0.
7

1,
71

9.
3

1,
10

5.
4

T
im

e
(m

s)

109

A. Appendix

Figure A.5: Case insensitive pattern (ilikeQuery) Results

@Data
ba

ses
/P

g
Knex

Kyse
ly

Mikr
oO

RM

Obje
cti

on
.js

PgT
yp

ed

Pris
maO

RM

Seq
uel

ize

Typ
eO

RM

Zap
ato

s
0

1,000

2,000

3,000

4,000

5,000

1,
18

3.
9

2,
46

8.
5

1,
50

3.
6

2,
78

7.
2

4,
02

5.
1

1,
45

1

2,
56

6.
3

1,
68

7.
7

2,
00

8.
1

2,
35

3.
6

T
im

e
(m

s)

110

Figure A.6: BulkDelete Results

@Data
ba

ses
/P

g
Knex

Kyse
ly

Mikr
oO

RM

Obje
cti

on
.js

PgT
yp

ed

Pris
maO

RM

Seq
uel

ize

Typ
eO

RM

Zap
ato

s
0

1,000

2,000

3,000

4,000

5,000

6,000

2,
20

6.
07

2,
99

9.
51

2,
62

1.
24

3,
80

4.
45

4,
01

5.
91

1,
85

9.
12

4,
75

4.
51

2,
61

5.
36

2,
55

3.
98

2,
12

8.
23

T
im

e
(m

s)

111

A. Appendix

Figure A.7: BulkUpdate Results

@Data
ba

ses
/P

g
Knex

Kyse
ly

Mikr
oO

RM

Obje
cti

on
.js

PgT
yp

ed

Pris
maO

RM

Seq
uel

ize

Typ
eO

RM

Zap
ato

s
0

500

1,000

1,500

2,000

2,500

1,
05

8.
5

1,
54

0.
95

1,
27

6.
72

1,
84

0.
69 2,
07

0.
5

91
0.

43

1,
81

7

1,
50

0.
98

1,
24

7.
17

99
0.

07

T
im

e
(m

s)

112

Figure A.8: Pagination Results

@Data
ba

ses
/P

g
Knex

Kyse
ly

Mikr
oO

RM

Obje
cti

on
.js

PgT
yp

ed

Pris
maO

RM

Seq
uel

ize

Typ
eO

RM

Zap
ato

s
0

1

2

3

4

·104

18
,5

20
.4

21
,4

42
.5

20
,2

20
.4

12
,9

15
.4

20
,2

87
.3

13
,3

66

9,
39

2.
8

34
,7

87
.6

7,
70

3.
4

19
,8

30
.2

T
im

e
(m

s)

113

A. Appendix

Figure A.9: Maximum value query Results

@Data
ba

ses
/P

g
Knex

Kyse
ly

Mikr
oO

RM

Obje
cti

on
.js

PgT
yp

ed

Pris
maO

RM

Seq
uel

ize

Typ
eO

RM

Zap
ato

s
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

69
0.

5

1,
35

5.
8

84
0.

1 1,
03

1

1,
49

9

54
7.

9

1,
04

1.
2

98
1.

3

83
4.

7

65
6.

9T
im

e
(m

s)

114

Appendix B
Structure of attachments

readme.txt file with the attachment structure
src.......................................the directory of source codes

benchmark..................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

thesis.pdf..............................the thesis text in PDF format

115

	Introduction
	Preliminaries
	Framework selection
	Typescript support
	Popularity and Support
	Exclusion criteria

	Ranking and Grading of the Frameworks
	Quantifiable Criteria
	TypeScript Support
	Database Compatibility
	Flexibility and Performance
	ECMAScript and CommonJS compatibility
	Licence

	Package Properties Criteria
	Popularity
	Support
	Dependencies
	Documentation Quality

	Benchmark database schema design
	Cat Entity
	House and Toy House Entities
	Toy and Toys Producer Entity

	Benchmark Framework Design
	Test Suite and Schema Separation
	Database management
	Test type and Error Handling
	Multi-Framework support
	Reporters - Output options

	Benchmark implementation
	BenchmarkRunner
	BenchmarkSuite
	Reporters
	Benchmarks
	MVP Benchmark
	Entity Traversal Benchmark
	Edge Cases Benchmark
	Special SQL Actions Benchmark
	Bulk Operations Benchmark

	Individual packages
	pgTyped
	@databases/pg
	Zapatos
	Knex.js
	Kysely
	MikroORM
	Prisma ORM
	TypeORM
	Objection.js
	Sequelize
	Disqualified frameworks
	RDB
	Bookshelf.js
	Waterline

	Observations
	Package Information
	Flexibility Assessment
	Latency benchmark results

	Conclusion
	Bibliography
	Appendix
	Structure of attachments

