
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Textural features information quality

Bc. Pavel Kříž

prof. Ing. Michal Haindl, DrSc.

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

The goal of the thesis is to design and implement a specialized portal designed for

measuring the quality of textural features. The portal will offer sharing of good results

and an interactive comparison of the quality of obtaining textural features by different

methods for the selected image.

Follow these steps:

1. Study and describe different types of texture features computed from multispectral

images.

2. Design a methodology/procedure for measuring the information quality of textural

features.

3. Design a portal to both share good results on texture feature quality and allow

interactive experimentation with texture feature quality on different images using

classification methods.

Electronically approved by Ing. Michal Valenta, Ph.D. on 22 December 2022 in Prague.

Master’s thesis

TEXTURAL FEATURES
INFORMATION QUALITY

Bc. Pavel Kříž

Faculty of Information Technology
Department of Software Engineering
Supervisor: prof. Ing. Michal Haindl, DrSc.
May 4, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Bc. Pavel Kříž. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Kříž Pavel. Textural features information quality. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2023.

Contents

Acknowledgments v

Declaration vi

Abstract vii

Alphabetical list of abbreviations viii

Introduction 1

1 Research 3
1.1 Textural Feature Extraction Algorithms . 3

1.1.1 Monospectral and Multispectral Features 3
1.2 Natively Monospectral Features . 4

1.2.1 Laws Filter Masks . 4
1.2.2 Gabor Features . 5
1.2.3 Local Binary Patterns . 6
1.2.4 Median Binary Pattern - MBP . 7
1.2.5 Centralised Binary Pattern - CBP . 7
1.2.6 Completed Linear Binary Pattern - CLBP 7
1.2.7 Dominant Local Binary Patterns - DLBP 8
1.2.8 Local Binary Patterns Histogram Fourier Features - LBP-HF 8
1.2.9 Autocorrelation Function - ACF (AF) . 9
1.2.10 Tamura Features - TF . 9
1.2.11 Textons . 11
1.2.12 SIFT . 12

1.3 Natively Multispectral Features . 13
1.3.1 Markovian Multispectral Features . 13
1.3.2 Generalized Co-occurrence Matrix . 13

2 Analysis 15
2.1 Mosaic . 15

2.1.1 Using the Mosaic Portal . 15
2.1.2 User Interface . 16

2.2 Feature evaluation technology . 18
2.3 Server technology . 18
2.4 Client portal technology . 20

2.4.1 React Native . 21
2.4.2 Flutter . 21

2.5 Tasks Queuing . 21
2.6 Database Systems . 22

2.6.1 MongoDB . 23
2.6.2 SQLAlchemy . 24

iii

iv Contents

3 Textural Features Information Quality Methodology 25
3.1 Features Categorization . 25

3.1.1 Per-pixel Features . 25
3.1.2 Per-window Features . 26
3.1.3 Representation Sub-division . 26
3.1.4 Converting Per-pixel to Per-window Features 27
3.1.5 Converting Per-window to Per-pixel Features 27
3.1.6 Multispectral and Monospectral Features 28

3.2 Statistics . 28
3.3 Classification Statistics . 28

3.3.1 Supervised Classification . 28
3.3.2 Unsupervised Classification . 29

3.4 Overview . 29

4 Implementation 33
4.1 Architecture . 33

4.1.1 Scalability . 34
4.1.2 User management . 34

4.2 Client Application . 36
4.2.1 Mosaic UI Inspiration . 36
4.2.2 Data download Optimizations . 36
4.2.3 Visualization . 36
4.2.4 Routing . 36

4.3 Communication Server . 37
4.3.1 Authentication . 37
4.3.2 Task delegation . 37

4.4 Solver Server . 38
4.4.1 Solver Server Architecture . 39
4.4.2 Task Solving Process . 39

4.5 Input and Output Formats . 39
4.5.1 Per-pixel Vector . 40
4.5.2 Per-window Vector . 40
4.5.3 Per-window Histogram . 40
4.5.4 Per-window List . 40
4.5.5 Per-window Big Matrix . 41

4.6 User Interface . 41
4.6.1 Initial Idea . 41
4.6.2 User Interface Mockups and Testing . 42
4.6.3 Current State of User Interface . 43

5 Exemplary Results 47
5.1 Statistics . 47
5.2 Features . 49

6 Conclusion 53
6.1 Current State of Development . 53
6.2 Future Outlook . 53
6.3 Final Words . 54

A API documentation 55
A.1 Communication API . 55
A.2 Solver API . 56

Contents v

B UI testing 57
B.1 Scenario A - Create experiment . 57
B.2 Scenario B - Download experiment data . 62
B.3 Scenario C - Publish experiment . 66
B.4 Scenario D - Go back to root folder . 70
B.5 Scenario E - Go back to experiment folder . 73
B.6 Scenario F - Change password . 76
B.7 Scenario G - Filter images . 79
B.8 Other feedback . 82

Media attachment contents 87

List of Figures

1.1 Maximum response filters MR8 . 11
1.2 SIFT value sampling . 13

2.1 Mosaic navigation panel . 16
2.2 Mosaic UI example . 17
2.3 Pinterest home page . 19
2.4 Bitbucket home page . 20
2.5 Crossplatoform frameworks popularity . 21
2.6 Task queuing requirement . 22

3.1 Converting Per-pixel to Per-window Features . 27
3.2 Segmentation problem task from Mosaic portal 29
3.3 Texture quality methodology . 31

4.1 Deplyoement diagram of the benchmark . 34
4.2 Current system scalability . 35
4.3 Potential system scalability . 35
4.4 Similarities of our application and Mosaic . 37
4.5 Execution of the experiment and obtaining the results 38
4.6 Execution of the experiment inside of the Solver server 39
4.7 Main layout in the application . 44
4.8 View of all registered users in the application . 44
4.9 View of one of the published examples of experiments 45
4.10 View of successfully submitted experiment settings form 45
4.11 Examples of clickable elements in the application 46

5.1 Exemplar view of statistics for LBP_H . 48
5.2 Exemplar scroll window view of per-pixel vector features (LBP) 50
5.3 Exemplar scroll window view of per-window histogram features (LBP_H) 51
5.4 Exemplar scroll window view of per-window list features (SIFT) 52

B.1 Root folder of My experiments (Scenario A) . 59
B.2 New methods folder (Scenario A) . 60
B.3 New user experiment (Scenario A) . 61
B.4 Root folder of My experiments (Scenario B) . 63
B.5 Public space . 64
B.6 Best public experiment . 65
B.7 Root folder of My experiments (Scenario C) . 67
B.8 Private completed experiment . 68
B.9 Sharing settings of an experiment . 69
B.10 New methods folder (Scenario D) . 71
B.11 Root folder of My experiments (Scenario D) . 72
B.12 New user experiment (Scenario E) . 74
B.13 New methods folder (Scenario E) . 75

vi

B.14 Root folder of My experiments (Scenario F) . 77
B.15 User settings . 78
B.16 Available images . 80
B.17 Selected images . 81

List of Tables

1.1 Examples of multispectral and gray scale features 4
1.2 Table with advantages and disadvantages of LBP 6
1.3 The way in which the image is scaled and blurred in SIFT 12
1.4 Matrix and its gray-level co-occurrence matrix 14

2.1 Analysis and comparison of task queuing libraries according to our needs 22

List of code listings

2.1 Example of a document we need to store . 24
4.1 Example JSON file with per-window vector features 40
4.2 Example JSON file with per-window histogram features 40
4.3 Example JSON file with per-window list features 41
4.4 Example of metadata JSON file for the per-window big matrix features 41

vii

I would like to thank everyone who helped me in creating my thesis,
both directly and indirectly. First of all, I would like to thank my
supervisor Professor Haindl. He was patient with me when I made
faults or didn’t understand something and he explained everything
I needed. He guided and helped me well, and last but not least, he
enabled me to combine the research project with the thesis. I would
also like to thank my family, who supported me both mentally and
materially, especially my dad, who helped me also with the final
inspection.

viii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No.121/2000 Coll., the Copyright Act, as amended. In accordance with Section 2373(2) of Act
No. 89/2012 Coll., the Civil Code, as amended, I hereby grant a non-exclusive authorization
(license) to utilize this thesis, including all computer programs that are part of it or attached to
it and all documentation thereof (hereinafter collectively referred to as the ”Work”), to any and
all persons who wish to use the Work. Such persons are entitled to use the Work in any manner
that does not diminish the value of the Work and for any purpose (including use for profit). This
authorization is unlimited in time, territory and quantity.

In Praze on May 4, 2023 .

ix

Abstract

Dozens and possibly hundreds of textural features have already been introduced, but any com-
prehensive evaluation and comparison of the features is still lacking. We study and describe
monospectral and multispectral features and based on this we create a general methodology for
measuring the information quality of textural features. In this methodology, we classify features
into categories, which creates a generalization layer that allows features to be evaluated generally
and automatically. We will then incorporate this methodology in the creation of a multispectral
textural benchmark with a web portal that allows experimentation with features. We will ex-
plain all phases of development from analysis, design of the user interface and its testing, to the
actual implementation of the system. The created benchmark is made up of several components
and can be expanded with other features, datasets for statistics, and last but not least, it is
computationally scalable both vertically and horizontally.

Keywords textural features, benchmark, representation, multispectral features

Abstrakt

Už byly představeny desítky a možná i stovky texturálních příznaků, avšak nějaké rozsáhlé
hodnocení a porovnání příznaků stále chybí. V této práci prozkoumáme a popíšeme monospek-
trální a multispektrální příznaky a na základě toho vytvoříme obecnou metodologii na měření
informační kvality texturálních příznaků. V této metodologii rozřadíme příznaky do kategorií
a tím vytvoříme zobecňující vrstvu, která umožní příznaky hodnotit obecně a automaticky.
Tuto metodologii pak začleníme do tvorby multispektrálního texturálního benchmarku s we-
bovým portálem, který umožní experimentovat s příznaky. Vysvětlíme všechny fáze vývoje od
analýzy, návrhu uživatelského rozhraní a jeho testování, až po samotnou implementaci systému.
Vytvořený benchmark bude složený z několika komponent a bude rozšiřitelný o další příznaky,
datasety nebo statistiky a v neposlední řadě bude výpočetně škálovatelný jak vertikálně, tak
horizontálně.

Klíčová slova texturní příznaky, benchmark, reprezentace, multispektrální příznaky

x

Alphabetical list of abbreviations

ACF Autocorrelation Function
API Aplication programming interface
BIB Bibliography

BRIEF Binary Robust Independent Elementary Features
CAS Czech Academy of Sciences
CBP Centralized Binary Pattern

CLBP Completed Linear Binary Pattern
CPU Central Processing Unit

DBMS Database management system
DLBP Dominant Local Binary Pattern
DOC Documentation

FAST Features from Accelerated Segment Test
GCM Generalized Co-occurrence Matrix

GLCM Ggray-level Co-occurance Matrix
HTTP The Hypertext Transfer Protocol

ICPR2014 contest Unsupervised Image Segmentation contest presented on
International Conference on Pattern Recognition

JSON JavaScript Object Notation
LAWS Level, edge, wave, spot detection

LBP Local Binary Pattern
LBP-H Local Binary Pattern Histogram

LBP-HF Local Binary Patterns Histogram Fourier Features
MBP Median Binary Pattern
ORB Oriented FAST and Rotated BRIEF

REST Representational State Transfer
RQ Redis Queue

SIFT Scale Invariant Feature Transform
SQL Structure Query Language

TF Tamura Features
UI User Interface

URL Uniform Resource Locator
UTIA Institute of Information Theory and Automation

VS-LWIR Visual spectrum - Long Wave Infrared

xi

xii Alphabetical list of abbreviations

Introduction

Computer Vision and Machine Learning are on the rise, and the usage of textural features is
growing. The visual texture notion is closely tied to the human semantic meaning of surface
material appearance, and texture analysis is an important and frequently published area of
image processing. However, there is still no mathematically rigorous definition of the texture
that would be accepted throughout the computer vision community. We understand a textured
image or the visual texture [1] to be a realization of a random field. The purpose of textural
features is to represent a meaningful representation of the image. Textural features are extracted
from an image texture and then used for classification or object recognition as a preprocessed
input. The image contains hundreds of thousands of individual pixel values, which is usually
too much for mentioned tasks. Therefore the features are used to lower that number or extract
only some specific information from the image, such as local relationships. Dozens and hundreds
of different textural features have been developed over the last 40 years, and there are some
comparative or evaluative studies as well. Nevertheless, they usually consider only a selected set
of textural features, and the methodology varies from one study to another. When one wants
to select the right features for their application, they create a set of features they think might
suit their purposes. However, it is hard to compare all chosen features because the comparison
studies use different methodologies. If we have two studies, one with features A and B and the
second with B and C., Then we cannot guarantee that A is worse than C despite A performing
worse than B in the first study and C being evaluated as a better performer than B in the second
study. Even worse, if a second study says that C performed worse than B, we can hardly compare
A and C. Because of all of that, we are convinced that there is a need for a comprehensive feature
benchmarking tool that would generally give insight into the informational quality of all types
of features.

We need to be able to measure textural features informational quality generally for a variety
of textural features. We are not able to gather all existing features and compare them, and
new features and feature modifications are coming in the future, which leads to the solution
of automated tools for measuring the informational quality and textural features benchmark.
For the use case we described earlier, it is needed for the benchmark to be publicly available,
and this is, in our eyes, best achieved with a web portal/application. This way, everyone can
use our benchmark to compare desired features in one tool and add their features to the same
comparison. We want it to be as general as possible, not only for different types of features but
also for different images. In the past, primarily gray-scale images were used for feature extraction
because of the lack of computational power, but nowadays, there is plenty of it, and we consider
that as a loss of information to extract features from gray-scale images if there is the option
to extract features from images from multiple spectra. Usually, there are three spectra, but we
want to generalize it further to any spectra count.

As explained before, our ultimate goal is to measure the informational quality of textural

1

2 Introduction

features, and in order to do so, we want to create the benchmark accessed through a web portal.
However, to achieve these two goals, we must go deeper and set other goals that lead to these
two. First, we have to study the textural features to understand them well enough to design the
general measurement of the features. Measuring the features is a methodology that is another
goal on the way to the ultimate goal. For recapitulation, we will first study the features, then
design as much general measuring methodology as possible and implement the methodology into
a benchmark controlled through the web portal.

Chapter 1

Research

Textural features are commonly used in computer vision in tasks like object recognition, classi-
fication, or image segmentation. Some features are adequate for one task but not so good for
others. For example, Scale-invariant feature transform (SIFT) has been introduced as a solution
to object recognition in the original paper [2], but they cannot detect precise region borders
in image segmentation. The ultimate goal of this thesis is to decide the level of information
quality of the feature. However, the information quality usually differs in specific situations, as
described with the SIFT features. One way to guess the informational quality is to study and
understand the different types of textural features and predict how they would perform. This
approach is problematic, manual, demanding, and exhausting will and time. The second option
is to study the features and find a generalized way to measure their information quality based on
the knowledge of many comparative textural features. This way, we can assume that we studied
enough textural features to be able to create a generalized measurement of textural features’
information quality.

1.1 Textural Feature Extraction Algorithms
There are many textural features from which we can choose. Similarly, there are several ways how
to divide textural features. Information-based grouping can differentiate between discriminative
and descriptive features. The first one is about texture discriminative description, and the
features are made for extracting characteristic categorization information about the texture.
The second group consists of descriptive textural features that could be used to restore and
generate the original texture from which the features are made [3]. As we will find out, we will
study mainly discriminative features. There is another feature categorization to monospectral
and multispectral features [3]. This grouping is an essential division for this thesis; we will explain
it separately.

Note: We will call features also feature extraction algorithms and not only features as the
data itself. Because the features are the imminent output of the algorithm, we use the naming
for both.

1.1.1 Monospectral and Multispectral Features
Most popular features are made only to work with one spectrum (usually grayscale); these are
called monospectral features. They are natively monospectral but can be easily modified to
be multispectral as well. The modification is straightforward; the features are extracted from
each spectrum separately, as it would be a grayscale image. It might be already clear that

3

4 Research

Grey scale Multispectral
Co-occurrence matrix based Generalized co-occurrence matrix based

Laws Filter Masks Markovian features
Gabor features

Local Binary Patterns
Autocorrelation Function

Tamura features
Table 1.1 Examples of multispectral and gray scale features [3]

multispectral images are those that extract the features from multiple spectra of the image
at the same time, and thus they respect the spectral correlation. Although the monospectral
features can be modified to multispectral versions, they are not natively multispectral. A list of
a few examples is in table 1.1.

1.2 Natively Monospectral Features
In this section, we will study and describe natively monospectral features. Even though they
are natively monospectral, they can also be used as multispectral features. The spectra can be
decorrelated before the feature extraction, so the extraction of features in different spectra gives
different information.

1.2.1 Laws Filter Masks
Laws Filter masks are features used as a detection mechanism that convolves the image with a
set of masks [4]. Masks are proposed to be of size 3 x 3 or 5 x 5. There are five categories of
detection that are abbreviated and described with mnemonics[5]:

L for level detection ,

E for edge detection ,

S for spot detection ,

W for wave detection ,

R for ripple detection .

The process of computation is following [4]:

1. convolution with Laws filter masks,

2. smoothing with 15× 15 (for 3× 3 masks) window,

3. energy computation for every pixels.

Energy computation is done as follows:

El,m =

l+p∑
i=l−p

m+p∑
j=m−p

F 2
i,j or El,m =

l+p∑
i=l−p

m+p∑
j=m−p

|Fi,j |, (1.1)

where Fi,j is a pixel in image from the second step and p =
s

2
− 1, where s is the size of a

window.

Natively Monospectral Features 5

Laws Filter Masks 3× 3

The masks of size 3× 3 are created from matrix multiplication combinations from following list
(waves and ripples need bigger mask) [5]:

L3 = [1, 2, 1], (1.2)
E3 = [−1, 0, 1], (1.3)
S3 = [−1, 2,−1]. (1.4)

When combined with matrix multiplication 9 - 3×3 convolution masks are created: LT
3 L3, L

T
3 E3,

LT
3 S3, E

T
3 L3, E

T
3 E3, E

T
3 S3, S

T
3 L3, S

T
3 E3, S

T
3 S3,

LT
3 L3 =

1, 2, 1
2, 4, 2
1, 2, 1

 LT
3 E3 =

−1, 0, 1
−2, 0, 2
−1, 0, 1

 LT
3 S3 =

−1, 2,−1
−2, 4,−2
−1, 2,−1

 , (1.5)

ET
3 L3 =

−1,−2,−1
0, 0, 0
1, 2, 1

 ET
3 E3 =

1, 0,−1
0, 0, 0
−1, 0, 1

 ET
3 S3 =

 1,−2, 1
0, 0, 0

−1, 2,−1

 , (1.6)

ST
3 L3 =

−1,−2,−1
2, 4, 2

−1,−2,−1

 ST
3 E3 =

1, 0,−1
−2, 0, 2
1, 0,−1

 ST
3 S3 =

 1,−2, 1
−2, 4,−2
1,−2, 1

 . (1.7)

Laws Filter Masks 5× 5

With the bigger size of 5 × 5 all 5 vectors are used and more detailed. Together they create 25
different matrices - 5× 5 convolution masks [5]:

LT
5 L5, L

T
5 E5, L

T
5 S5, L

T
5 W5, L

T
5 R5, . . . , R

T
5 L5, R

T
5 E5, R

T
5 S5, R

T
5 W5, R

T
5 R5,

where:

L5 = [1, 4, 6, 4, 1], (1.8)
E5 = [−1,−2, 0, 4, 1], (1.9)
S5 = [−1, 0, 2, 0,−1], (1.10)
W5 = [−1, 2, 0,−2, 1], (1.11)
R5 = [1,−4, 6,−4, 1]. (1.12)

1.2.2 Gabor Features
Gabor features are created using the convolution of an image with created Gabor filters [6]. The
filters are used to analyze the image regarding specific angles and frequency. The filters are then
matrices where every point is computed with the following formula:

g(r) =
1

2πσr1σr2

exp

[
−1

2

(
r21
σ2
r1

+
r22
σ2
r2

)
+ 2πiV r1

]
, (1.13)

where the r = [x, y] are the pixel coordinates.
The filters are generated with different angles to create a bank of such filters. After that, the

image is convoluted with every such mask. The features are responses (finished convolution) of
the image with the filters.

6 Research

Advantages Disadvantages
monotonic gray-scale changes invariant gray-scale

low computational complexity sensitive to noise
not descriptive

Table 1.2 Table with advantages and disadvantages of LBP. The content of the table was taken from
the presentation [3]. Note that LBP is not descriptive because one LBP value can be assigned to a big
variety of structures.

1.2.3 Local Binary Patterns
Local Binary Patterns is a feature extraction method that is a popular option and has many
variations (for example, [7],[8],[9],[10]). The principle is to compute features for every pixel and
then create a histogram from them. The features are numbers, and every one of them represents
some specific micropattern.

The LBP for such pixel is than computed as:

LBPP,R =

P−1∑
s=0

sign (Ys − Yc) 2
s, (1.14)

where Ys is a neighboring sth sample in a circle around the central pixel Yc. P is a number of
samples in a circular neighborhood of radius R. The function in the sum is then defined as:

sign (Ys − Yc) =

{
0 if Ys < Yc

1 if Ys ≥ Yc

. (1.15)

LBP - Example
Here is an example of LBP8,3 feature computation taken from presentation [3]:

250 60 64
63 65 190
23 56 203

1 0 0
0 � 1
0 0 1

20 21 22

23 � 24

25 26 27

1 0 0
0 � 16
0 0 128

image window sign LBP weights sign × weight

LBP8,1 = 1 + 16 + 128 = 145

C = (250 + 190 + 203)/3− (60 + 64 + 63 + 23 + 56)/5

= 161, 13 contrastmeasure

Rotational Invariant LBP - LBP ri
P,R

To make the LBP invariant to rotations following operation has to be done before the histogram
creation:

LBP ri
P,R = min{ROR(LBPP,R, i) | i = 0, 1, . . . , P − 1}. (1.16)

Function ROR(x, i) is bitwise right shift in circle with the P-bit number x that is repeated i
times. This simple rule makes the LBP ri

P,R rotation invariant to rotations by 360
P

◦.

Natively Monospectral Features 7

Uniform rotational Invariant LBP - LBP riu2
P,R

The LBP riu2
P,R is a further extension to LBP ri

P,R. In this LBP extension/variation, only uniform
features are kept. For that, in the original paper [9] introduced U(x) measure, which counts the
number of transitions in the “pattern” x. That means that U(001110002) = 2 and U(001000012) =
4. After the feature extraction the uniform “patterns” keep theirs value and for all non-uniform
“patterns” is assigned specific value as follows [9]:

LBP riu2
P,R =

{
LBP ri

P,R if U(LBP ri
P,R) ≤ 2

P + 1 if otherwise
. (1.17)

1.2.4 Median Binary Pattern - MBP
MBP is a slight variation of LBP, where the central pixel is changed for a median from all
samples, including the central one [11].

So the computation is following:

MBPP,R =

P−1∑
s=0

sign (Ys −median) 2s, (1.18)

sign (Ys −median) =

{
0 if Ys < median

1 if Ys ≥ median
. (1.19)

1.2.5 Centralised Binary Pattern - CBP
The CBP is a modified version of LBP, and the change lies in not comparing the center point to
outer ones but rather comparing opposite samples on the circle around the center pixel. Most
significant bits represent the significance of the central pixel to its neighborhood. So there is
P
2 + 1 bits in total and the value is computed as following [12]:

CBPP,R =

P/2−1∑
s=0

sign
(
Ys − Ys+P/2

)
2s +

+ sign

(
Yc −

1

P + 1

(
P−1∑
s=0

Ys + Yc

))
2P/2, (1.20)

sign (Ys − Yc) =

{
0 if Ys − Yc < τ

1 if Ys − Yc ≥ τ
. (1.21)

where τ is the manually specified threshold.

1.2.6 Completed Linear Binary Pattern - CLBP
These features use the sign and the magnitude of the difference from which the sign is computed.
So when the Ys is subtracted by Yc, the sign and absolute value (magnitude) is kept separately.
In addition, the central pixel is also compared to threshold µ, the mean of all samples, central and
neighboring ones. The CLBP has three components CLBP_SP,R, CLBP_MP,R, CLBP_CP,R

which are computed as follows:

8 Research

CLBP_SP,R =

P−1∑
s=0

sign (Ys − Yc) 2
s, (1.22)

CLBP_MP,R =

P−1∑
s=0

t(|Ys − Yc|, µ|Ys−Yc|)2
s, (1.23)

CLBP_CP,R = t(Yc, µ), (1.24)

t(x, c) =

{
1 if x ≥ c
0 otherwise , (1.25)

sign (x) =

{
−1 if x < 0
1 if x ≥ 0

. (1.26)

CLBP - Example
Here is example from presentation [3]:

250 60 64
63 65 190
23 56 203

185 −5 −1
−2 � 125
−42 −9 138

1 −1 −1
−1 � 1
−1 −1 1

185 5 1
2 � 125
42 9 138

image window local differences sign magnitude

1.2.7 Dominant Local Binary Patterns - DLBP
The DLBP is an extension of the original LBP and its histogram representation. The method
keeps only the most prominent values in the image. The extended process of DLBP is the
following [10]:

1. Construct the histogram of the standard LBPP,R) with chosen parameters P and R,

2. Sort the histogram bins in descending order of the value frequency,

3. Find the number of the most prominent patterns. That means a minimum amount of pat-
terns that still contain 80% pattern occurrences

n = argmin
n

(∑n−1
i=0 h(i)∑2m−1
i=0 h(i)

≥ 80%

)
, (1.27)

4. Choose the most prominent patterns from the previous point,

5. The chosen occurrence frequencies create the feature vector.

1.2.8 Local Binary Patterns Histogram Fourier Features -
LBP-HF

Local Binary Patterns Histogram Fourier Features is an extension of classical LBP riu2
P,R . They

are defined as [8]:
LBP-HF = F{LBP riu2

P,R }, (1.28)

where F is Fourier transformation.

Natively Monospectral Features 9

1.2.9 Autocorrelation Function - ACF (AF)
The autocorrelation function measures and represents the texture’s contrast, coarseness, and reg-
ularity [13]. Examining the resulting function shows the characteristics regarding high regularity
when it contains periodical peaks. Conversely, if the texture’s coarseness and regularity seem
random, the decay is visible in the autocorrelation function.

The autocorrelation function ρ(x, y) for of a two-dimensional texture is calculated as [13]:

ρ(s) =

1
(N−|s1|)(M−|s2|)

∑
r1

∑
r2
YrYr+s

1
NM

∑
r1

∑
r2
Y 2
r

, (1.29)

where r = [r1, r2] is the coordinate within image (signal), and s = [∆r1,∆r2]. Yr is then the
pixel of the image (signal) at given coordinates and Yr+s is the shifted version of the input.

1.2.10 Tamura Features - TF
Tamura Features are described as ”Textural features corresponding to human visual perception
are useful for optimum feature selection and texture analyzer design. We approximated six basic
textural features in computational form, namely, coarseness, contrast, directionality, line-likeness,
regularity, and roughness.” [14].

Tamura Features - Coarseness
The Coarseness computed in four steps [14]:

1. Calculate local average at point (x, y) in area of size 2k × 2k.

αk(x, y) =

x+2k−1∑
x−2k−1

y+2k−1∑
y−2k−1

Yx,y

22k
k = 1, 2, . . . , 32, (1.30)

where Yx,y is an image pixel (gray) at coordinates (x, y).

2. Create local average differences. Take differences of two opposite neighborhoods around the
point (x, y).
Horizontal difference:

δk,h = |αk(x+ 2k−1, y)− αk(x− 2k−1, y)|. (1.31)

Vertical difference:
δk,v = |αk(x, y + 2k−1)− αk(x, y − 2k−1)|. (1.32)

3. Choose at each point the size that gives the highest value (maximizing the local difference).
So it means finding biggest value:

εbest(x, y) = 2k, (1.33)
where:

δk = max{δ1,h, . . . , δ32,h, δ1,v, . . . , δ32,v. (1.34)

4. The final step in which the average is created from εbest(x, y) values is:

Fcoarseness =
1

MN

M∑
i=1

N∑
j=1

εbest(i, j), (1.35)

where M,N is the size of the image.

10 Research

Tamura Features - Contrast
The contrast is computed as [14]:

Fcontrast =
σ

α0.25
4

, (1.36)

where
α4 =

µ4

σ4
, (1.37)

in which the µ4 is the fourth moment and σ2 is variance.

Tamura Features - Directionality
Directionality is computed with following guide [14]:

Gradient magnitude |4G| is defined as:

|4G| = |4H |+ |4V |
2

. (1.38)

Local edge direction θ is defined as:

θ = tan−1

(
4V

4H

)
+

π

2
, (1.39)

where 4V ,4H are the horizontal and vertical differences measured by these operators:

4V =

 1 1 1
0 0 0
−1 −1 −1

 , (1.40)

4H =

−1 0 1
−1 0 1
−1 0 1

 . (1.41)

Following are cut descriptions from the last two steps from the original paper[14].
The first step is the following. The desired histogram HD can be obtained by quantizing θ

and counting the points with the magnitude |4G| over the threshold t; i.e.:

HD(k) =
Nθ(k)∑n−1
i=0 Nθ(i)

, k = 0, 1, . . . , n− 1, (1.42)

where Nθ(k) is the number of points at which (2k − 1) π
2n ≤ θ < 2k+1

2n and |4G| ≥ t, n is no
of bins.

The directionality property can be then calculated in second step:

Fdirectionality = 1− rnp

np∑
p

∑
φ∈wp

(φ− φp)
2HD(φ), (1.43)

where np is number of peaks, φp is pth peak position of HD, wp is range of pth peak between
valleys, r is normalising factor related to quantising levels of φ, φ is quantised direction code
(cyclically in modulo 180).

Tamura Features - Line-likeness
Line-likeness of Tamura features are computed as follows [14]:

Fline−likeness =

∑n
i

∑n
j Pd(i, j) cos

∣∣(i− j) 2πn
∣∣∑n

i

∑n
j Pd(i, j)

, (1.44)

where Pd is the n× n local direction co-occurance matrix of points at distance.

Natively Monospectral Features 11

Figure 1.1 Maximum response filters MR8 (MR - The Maximum Response Set) with 8 maximum
responses

Tamura Features - Roughness
Roughness is an addition of the following components [14]:

Froughness = Fcoarseness + Fcontrast. (1.45)

Tamura Features - Regularity
We take partitioned sub-images and we consider the variation of each feature in each sub-image:

Fregularity = 1− r(σcoarseness + σcontrast + σdirectionality + σline−likeness), (1.46)

where σxxx(eg.: σcontrast) is the standard deviation of Fxxx(eg.: Fcontrast) , r is a normalizing
factor.

1.2.11 Textons
Textons introduced in [15] are representative responses of an image to a set of filters of size I. The
response to a set of filters of size I is then represented by a vector of responses x = [x1, . . . , xI] for
each pixel. The representative responses (textons) are the centroids of clusters of all responses
that are obtained using the k-means algorithm. The number of textons is influenced by the
parameter k for k-means and their dimensionality by the number of filters.

For the computation of responses and subsequent extraction of Textons, the MR8 filter bank
is recommended by the original paper for its rotational invariance and lower dimensionality of the
created textons compared to other filter banks. The MR8 filter bank is visualized in Figure 1.1.
The first three columns representing edge filters (first derivatives of elliptical Gaussian functions)
are at three scales. The following three columns are bar filters (Laplacians of elliptical Gaussian
functions) again at three scales, and the last two columns represent rotationally invariant filters,
where the first one is a Gaussian function and the second one is its Laplacian.

The MR8 filter bank is used to compute the response vector using the image responses with
all filters (separately for each pixel). Then the absolute maximum response across filters in
the columns (as shown in the visualization) is selected, achieving a certain level of rotational
invariance and reducing the dimensionality of features. In the end, the texton will consist of 3
responses for three different scales of edge filters, similarly, another three responses for bar filters,
and the rest will be composed of 2 responses for two rotationally invariant filters.

A texton can be assigned to a pixel in such a way that the closest (L2 distance) texton to
the response vector for that pixel is found. After assigning a texton to each pixel in the image,

12 Research

scale 1 scale 0.5 scale 0.25

blur 0 original
image scaled by 0.5 scaled by 0.25

blur 1 blurred blurred and
scaled by 0.5 …

blur 2 blurred
twice … …

Table 1.3 The way in which the image is scaled and blurred in SIFT

we call it a texton map. A histogram then makes image representation (features) of textons in
a texton map.

1.2.12 SIFT
Local Scale-Invariant Features (SIFT) are popular features, and one of their use cases is object
matching in an image [2]. The features are extracted from the image in the following way.

First, the image is scaled, and the scaled images are blurred with Gaussian blur in a way
illustrated in table 1.3 (the number of blurs and scales is variable, meaning the size of the table
is variable).

We obtain n · m images Y , where n is the number of scales and m is the number of blurs.
From that, we compute the Difference of Gaussians DoG by subtracting images in the following
way:

DoGi,j = Y i,j − Y i,j+1, n ∈ n̂, j ∈ m̂ \ {m− 1}. (1.47)

From DoG matrices, we find local maxima and minima and filter them by keeping only those
detected across different scales (at the same coordinates). The kept local extremes are called
keypoints, further filtered to keep only those with high contrast.

To make the keypoints rotational invariant, we calculate the magnitudes and orientations for
pixels in the area around the keypoint. From the orientations, a histogram is created that solves
the problem by shifting the highest peak to a predetermined place and keeping the angle of the
shift as the orientation of the keypoint.

To describe the keypoint, the area around the keypoint is divided into 16 regions of size 4×4,
and the samples are taken in a rotational invariant way, as illustrated in the image from original
patent [16] in figure 1.2. The descriptor is then made by 128 numbers, where there is a histogram
for each of the 16 regions with eight bins for sample pixel orientation frequency. The histogram
is normalized.

Natively Multispectral Features 13

Figure 1.2 Value sampling during SIFT descriptor creation. Source: SIFT patent [16]

1.3 Natively Multispectral Features
Unlike the previously described features in this section, they are natively multispectral.

1.3.1 Markovian Multispectral Features
We will describe the approach from the paper [17]. We will provide here a brief description of
the features. First there is a multispectral image Y composed of C spectra (image planes) and
each pixel at location r = [x, y] is then a vector Yr = [Yr,1, · · · , Yr,C]

T . There is the assumption
that the pixel can be represented as a linear combination of its neighboring pixels:

Yr = γZr + εr, Zr = [Y T
r−s : ∀s ∈ Ir]

T , (1.48)

where Zr is data vector of a size Cη × 1 with multiindices r, s, t λ = [A1, · · · , Aη] is the
parameter matrix of size C × Cη. The λ matrix contains square submatrices As. As defined
by the equation 1.3.1, the η is equal to the size of the neighborhood, η = cardinality(Ir). The
last unexplained element in the equation is the εr, a noise vector with zero mean and unknown
covariance matrix, the same for each pixel. The key Markovian idea is in the texture analysis,
which goes in the direction of t in the image raster. The λ matrix must be estimated to store
the features. The paper then proposes to estimate the matrix by numerically robust statistics
based on the given history of the CAR process.

1.3.2 Generalized Co-occurrence Matrix
The generalized Co-occurrence Matrix (GCM) is based on the (gray-level) co-occurrence matrix
(GLCM). The gray level stands for the fact that the GLCM is calculated from one spectrum,
usually a gray scale of an image. However, it can be generalized to more than just images.

The co-occurrence matrix P is defined as follows [18]:

Pi,j = count({pair(i, j) | Yr = i ∧ Yr+s = j : ∀s ∈ Ir}), (1.49)

where Yr is an image pixel at coordinates r = (x, y) and Ir is the neighborhood of such a pixel.
Example of GLCM is shown in table 1.4.

14 Research

A C B D
D A C D
B B A C
D C D A

A B C D
A 6 4 7 5
B 4 2 5 7
C 7 5 4 7
D 5 7 7 2

Table 1.4 Matrix (left) and its gray-level co-occurrence matrix (right)

For gray-level images, the co-occurrence matrix is simple. However, for the multispectral
images, it gets more complicated. Instead of one value as a pixel, there is a vector of values.
The solution proposed by paper [18] is to create color classes so that every possible pixel vector
has assigned a class. The classes are determined during the training phase. The co-occurrence
matrix equation is then as follows:

Pωi,ωj
= count({pair(i, j) | Ym,r = ωi ∧ Yn,r+s = ωj : ∀s ∈ Ir}), (1.50)

where m,n are image spectra and ωi, ωj are color classes.
Other papers like [19] use the term generalized co-occurrence matrix, but they do not consider

multiple spectra.

Chapter 2

Analysis

In this chapter, we will discover and analyze one already existing and popular benchmark that
we can get inspired by. Next, we will look at technologies we might use to develop the online
portal and the system backing up that portal.

2.1 Mosaic

We want to create an online portal for measuring texture feature quality, and we have luck because
there is already a similar benchmark called The Prague Texture Segmentation Datagenerator
and Benchmark, but further we will use name Mosaic, which is something as the unofficial name
for the web portal [20]. The portal is developed by the Institute of Information Theory and
Automation of the Czech Academy of Science, Pattern Recognition Department. The Mosaic is
a tool to test segmentation problem solutions. It works this way: the user downloads task data
and solves the segmentation problem with their algorithm, then uploads the result into Mosaic,
and the portal evaluates the results and calculates many criteria. The segmentation solution will
probably use features of some kind, but the whole solution would be more complex and contain
more processing, like classification and so on.

2.1.1 Using the Mosaic Portal
Suppose we open a website on mosaic.utia.cas.cz we get to the front page; that page’s details
are shown in figure 2.1. There is some introductory text, but the part we will describe is the left
navigation bar with sections and subsections.

The first section is the already described introduction, and the following one contains the
user account option, login, and registration. The visitor already has options available without
being a registered user.

In the section Data, they can download generated data (segmentation problem task) and
upload the results to get the evaluation. A registered user has more options to generate mosaic
images. They can create custom mosaics for their testing and evaluation or upload edge maps
and further modify the edges to be more squiggly.

The section Results is unchanged for users or visitors; there, they can see the results of other
people in three different subsections. In each subsection, they can further filter the results by
predefined filters.

Comparison is a section shown only to registered user, there they can compare ground truth
and their results in detail.

15

mosaic.utia.cas.cz

16 Analysis

Figure 2.1 Detail of the Mosaic portal Introduction for a visitor (on the left) and a registered user
(on the right). Source: mosaic.utia.cas.cz

Because ICPR2014 contest is only a link to the contest website, the section View is the
last one. There the only sub-section visible to registered users but not to visitors is textures(an-
imated). In all but forum section, users or visitors can view what other users have uploaded.
The forum sub-section contains mainly problems or questions and advises answers to them.

2.1.2 User Interface
In this section, we analyze the user interface of Mosaic and the layout of visual elements. The
example we will discuss is shown in figure 2.2.

Layout of Visual Elements
From the figures 2.2 and 2.1, we can see two main elements on every screen. It is the top bar
with the name and the left-sided navigation bar with the sections. We see the bar as a perfect
indication for the user to know where they are. However, the bar is unnecessarily big, and a
smaller version only at the top of the left-sided navigation bar would have the same effect, and
there would be more space on the screen. We think that if a user clicks on the logos of the
institutes in the top left corner, it takes them to specific pages. The same place is commonly
used for the logo of the currently used system, and when clicking, it leads to the home page, but
here the same effect has the Introduction section just below the logos. We like how the left-sided
navigation bar behaves. The location of the current page is always highlighted. This way, the
user always knows where they are. The only downside is that some sections are clickable and
correspond to some pages, but others are not.

As seen in figure 2.2, the cards on the page have logical division, and one can see what text

mosaic.utia.cas.cz

Mosaic 17

Figure 2.2 Example of Mosaic user interface. Source: mosaic.utia.cas.cz

mosaic.utia.cas.cz

18 Analysis

belongs to which part. The page does have a differentiation of text with and without links, but
the contrast between these two in color is too small. Here are mainly two patterns that we like,
and we should also consider them in our system. The first is the partitioning, and the second is
the explanation notes at the top of the page. The last interesting thing we want to note is that
there are some shortcuts like the buttons for links BIB, WEB and DOC. These might not be
important since they are on the detailed pages, but for experienced users, this is a good help in
work productivity.

Theme
Even though the page design is already dated, we can take good inspiration in two areas. The
first one is blue in color. Not only the color matches the institute coloring scheme, but also it is
a commonly used color across scientific websites. Another thing is a good pattern of flat surfaces
marking that the elements on one flat surface belong to each other, and the essential division is
highlighted with straight lines. When used as shown in figure 2.2, it is clear for all the elements
to which division they belong.

2.2 Feature evaluation technology
We have to choose a programming language for developing our benchmark. We need out of the
programming language to be good in areas like images, arrays, and mathematics. In addition
to that, it is an advantage if the language is well-built for web or HTTP API development.
All requirements are met in the case of Python [21]. The language has a library NumPy [22]
that implements an extensive amount of features with arrays of varying dimensions and types.
The library has all the mathematical functions we need for statistics and other mathematical
calculations on arrays. There are also Computer vision libraries like OpenCV [23] or scikit-image
[24]. Both libraries can be utilized for feature extraction, image loading and saving, and other
image operations. As a bonus, both of them work with NumPy. Python has a wrapper OpenEXR
[25] for the same named imaging format, which allows storing image-like data in various data
types, spectra, and compression. Such a format is well suited for general feature storage.

2.3 Server technology
We have chosen Python as a programming language for the feature evaluation implementation.
As a second step, we have to choose a web framework or library to help us implement the client
part of the whole system (application). There are two popular options in Python for such use
cases: Flask [26] and Django [27].

Flask
According to its description, it is Flask meant to be a lightweight microframework allowing the
creation of traditional websites or APIs. It is not made for large projects but rather for the
smaller ones. Where other frameworks offer rich abstraction layers Flask does not implement
that by itself but is made to allow for other libraries and frameworks to handle each area. Of the
biggest websites using Flask is Pinterest probably the most popular. Pinterest is a social network
for sharing images with others. The website can be seen in figure 2.3 Pinterest transitioned from
Django to Flask because the developers wanted to implement more of their custom code, and
that was what Flask gave them [28].

Server technology 19

Figure 2.3 Pinterest, big social network build with the help of Flask. Source: pinterest.com

Django
On the other hand, Django is a high-level framework that includes everything one could need
in web development. It has its system of managing URLs and is full-featured in terms of speed,
scalability, and security. There are dozens of enormous internet websites that are claimed to use
Django at least at one point. One is the website of Bitbucket, a versioning system [29]. The web
is shown in the figure: 2.4.

Comparison
We have shown that both frameworks are competent and modern websites are built with their
help. We go further and analyze all the advantages and disadvantages of both systems regarding
our needs, and we list them as follows:

Django

+ Django is popular and offers a large community. That brings a lot of support from other
developers and a good amount of materials on the internet.

+ It has features in terms of security and authentication.
+ Many features are implemented, and it would allow us less programming to achieve some

specific functionalities.
− With the complexity comes a steeper learning curve. That is a significant disadvantage

since we plan to involve many technologies from which many we have to study.
− It is quite heavy for our needs, and it might lead to a complexity overhead in the case of

using Django.

Flask

+ Flask is light and flexible, which might be an advantage for our project, mainly in the
early stages.

+ With flask, we can choose the features we want by importing other modules.
+ The framework is simple and has a shallow learning curve, allowing prototyping and a

faster start.

pinterest.com

20 Analysis

Figure 2.4 Bitbucket, a versioning system that is said to be built with Django. Source: bitbucket.org

+ It is well suited to create an API with it. In that case, we could have a configuration with
a standalone client application served by the server.

− Despite the popularity of Flask growing, the community is not as large and thus offers
fewer materials to developers.

− Because it is a rather small framework, it needs to have other features installed via other
modules or implemented. That might lead to more work in the later stages of the app
development.

− Its security is not as complete as that of Django and many parts need to be configured or
completed by the developer.

2.4 Client portal technology

We have decided to use a cross-platform framework because we can use multiple platforms.
Currently, we are interested mainly in developing a web application that could be created by
Flask or Django only, but we see use cases for native-like applications as well. One such use case
is running feature evaluation or extraction locally. We want to pre-select the technology based
on the popularity of the framework and the community size. That is usually a good indicator
of the capabilities and usability of the technology. We consider two sources: Google Trends and
Stack Overflow. The results are shown in figure 2.5.

We see on the left the development of the interest rating by Google. There we see the three
most searched frameworks are Flutter, Ionic Framework, and React Native. On the right are
visualized numbers of questions at Stack Overflow, and we can see that Ionic Framework is last.
Because of that, we think that the popularity in the search is created from the fact that ionic
is a word by itself, so it is included in searches of people looking for something other than the
framework. We select only Flutter and React Native. We want to note that, after the change of
Google interest rating, both Flutter and React Native moved higher, but the lead is not that big
in the number of questions asked about Flutter. We think that one explanation is a connection
with it being a product developed by Google. However, Flutter is probably still the most popular
researched technology.

bitbucket.org

Tasks Queuing 21

Figure 2.5 Crossplatform frameworks popularity. On the left is the interest rating of searched terms
created by Google from Google searches for five years. On the right is the number of questions at Stack
Overflow assigned with a tag of each framework. The vertical line is indicating the time when Google
changed their calculations of interest rating. Data source: Google Trend (interest), Stack Overflow
(questions, April 2023)

2.4.1 React Native
React Native is the younger sibling of React and it was created by Meta (Facebook at that time)
[30]. Unlike the React, this framework is advertised and focused mainly on mobile applications,
but it is possible to use the framework for Windows or the web. We see that as a disadvantage
because we do not want to deploy the benchmark client application on mobile devices. It uses
HTML and offers some basic widgets and elements, but we think that with React Native, we
would inevitably be dependent on third-party packages.

2.4.2 Flutter
Flutter is similar to React Native in being a cross-platform framework, and its most considerable
popularity comes from developing mobile applications [31]. We see a significant advantage of
Flutter over the other framework in more profound and broader support of other than mobile
platforms. That is an essential point for us since we want to develop applications for the web
and optionally for personal computers. Another advantage we see in its philosophy is including
everything the developer would need in the framework out of the box without any other packages.
The developers of the framework created extensive documentation with live examples. We see
one substantial disadvantage: the Flutter application for the web is loading slowly at the start
because of its size. The code is written in Dart programming language and then translated into
JavaScript, leading to enormous-sized scripts and long download times. On the other side, the
code gets translated to native code on other platforms (Windows, Linux, IOS, Android), which
should lead to relatively high performance. That will be an advantage if we consider deploying
the application on such platforms now or later.

2.5 Tasks Queuing
We would like to utilize the job queuing library to distribute work across multiple processes. We
prepared a specific case of what we want from the producer-consumer model. This way, we can
better decide on which technology to use. In our case, the producer is a Python application, and

22 Analysis

get results

enqueue task

Python
application

evaluate
features

evaluate and
extract features

Task broker
(Task enquing)

store results

Consumer 1

Experiment
database

store results

Consumer 2

Figure 2.6 Task queuing requirement

Celery Dramatiq Redis Queue
Simplicity no good great
Community size the biggest medium medium
Easy configuration no yes yes
Documentation good good good
Platform support good good not for Windows

Table 2.1 Analysis and comparison of task queuing libraries according to our needs

consumers are running feature evaluation or/and extraction code. Our conception is illustrated
in figure 2.6. We need simple distribution and management of consumers that would evaluate
and optionally extract features from input data. The model is created so that the Python
application pushes a specific task into the broker, and then the broker assigns the task to one
of the available consumers. This way, we can quickly achieve scalability on one computational
device by setting the number of consumers. After feature evaluation, the consumer stores the
results to the database, and the application gets the results from the database. This approach,
together with the database, saves us programming with asynchronous computation.

We do not have any special requirements for such a queuing library other than it is simple
and easy to start. We have pre-selected three libraries, and we will evaluate them according to
our needs. These libraries are all for Python, and we list them as follows: Celery [32], Dramatiq
[33] and Redis Queue [34]. Our analysis of these libraries is then concluded in table 2.1.

As best options seem to be Dramatiq and Redis Queue, and as a bonus, they are built similarly,
so if we decide to go for Redis Queue and find later that Windows is a crucial server platform
for us, it will not be difficult to switch to Dramatiq.

2.6 Database Systems

At last, we will analyze data stores. We want to use a database that would be flexible and
preferably schema-free or schema-optional. That would allow saving data in various formats,
which is inevitable. The features we will work with are all different, and we need to capture
information about experiment records in one group. That would be difficult with traditional
relational databases but not with well-suited NoSQL database management systems. We will
need to store information for all the experiments, and we do not need advanced join queries on
the data. Most usually, we are going to do simple queries on one resource. Those requirements
lead to document-based databases. One such database is MongoDB [35]. As described in the
subsection dedicated to MongoDB, we should preferably use another database to store user data.
Therefore there are two subsections, one about MongoDB and the second about SQLAlchemy.

Database Systems 23

2.6.1 MongoDB

MongoDB is a NoSQL document database that stores native data in binary JSON files [35]. It
is Open Source but does not come with a completely free license.

There are two versions of the database. The first one is Community Edition, which can be
used for most use cases but offers online access to MongoDB or it is derivative. This is not a
problem for us because this limitation is meant only to restrict competition that would use the
MongoDB without participating in its development. There are missing some features that are
included in paid Enterprise Server. Anyway, the free version is still available for commercial use
as well. We are developing an online portal for research, so there should not be any licensing
problems, but some security features are missing. That is not a problem for storing general data
or experiments, but for storing sensitive user data, that might be a problem. Maybe not now,
but this could be the Achilles heel in future development. So, it is advisable to consider storing
this specific data in another database.

We expect the database to fit our needs, but it is not guaranteed. Therefore, we analyze its
query and store data capabilities in contrast to our needs.

Queries in MongoDB

MongoDB has its query language for Data querying and interfaces it in various programming
languages, including Python. We create a list of our requirements for the database, and if it
is fulfilled in all points, there will not be any problem in using this database. The list is the
following, including notes:

Selecting records by id. FULFILLED Note: can be achieved with selectOne(<ID>) func-
tion.

Filter records. FULFILLED Note: can be achieved with find function together with filters
and filter operators. One such filter with an operator greater and equal could be {name :
"New", count : {$gt : 5 }}.

Append data from another group (collection in MongoDB). FULFILLED Note: There is
only the left outer join available in the form of {$lookup} operator that can be used in the
aggregate query function.

Data Storing in MongoDB

We want to store mainly experiment data in the database. These data are different from other
data. We expect to be able to store something as follows:

24 Analysis

[
{

"id" : 0,
"experiment_type" : "A",
"specific_A_statistic" : 54,
"detailed_data" :
{

"x" : 5,
"y" : "2D"

}
},
{

"id" : 0,
"experiment_type" : "B",
"specific_B_statistic" : ["M", "K", "L"],
"detailed_data" :
{

"x" : 65,
"y" : "3D",
"z" : "z-data are longer than y-data"

}
}

]

Code listing 2.1 Example of a document we need to store

We can see that it is a regular JSON file, and it implies that the data can be stored in
MongoDB. Therefore we can use that database to store our data.

2.6.2 SQLAlchemy
For tracking registered users, we want to use a database management system that offers good
security options. The conditions of the MongoDB Community Edition limit the security options.
Therefore we might go with the option of splitting the saved data into two databases. This way,
we would get the properties we want from the document database (MongoDB) and the security
for the user tracking.

MongoDB has a good library for connecting from Python code, so we want to look for
something similar. SQLAlchemy is an Object-Relational Mapping (ORM) for [36]. It supports
many database management systems, with the most notable examples being SQLite, Postgresql,
MySQL, Oracle, MS-SQL and Firebird. This allows an easy transition between these DBMS men-
tioned. The databases have their specifics and use cases. We could start with lightweight SQLite
and later transition to something more featured, complex and powerful. If we use SQLAlchemy
we will be able to change the user database according to our needs.

Chapter 3

Textural Features Information
Quality Methodology

One cannot take the extracted features and tell if they are good or not. They are specific data
and so the approach to measure textural features information quality has to be specific as well.
Currently, there is no generalized and commonly used way on how to measure performance of
the textural features and what qualities they have. There is a big obstacle on the way to measure
all or at least majority of the features. The obstacle was already mentioned, it is the uniqueness
of each feature. If we want to create a benchmark that would be able to measure a wide range
of different features we have to solve this problem. We overcame that with a categorization of
the features and with these categories we are able to calculate statistics of the features from a
few generalized categories instead of dozens of unique ones. In this chapter we first explain the
categorization and then we elaborate the explanation of feature properties and quality.

3.1 Features Categorization
As described there is a need for an abstraction layer in order to measure the properties of features
in a general way for a wide variety of them. We have chosen to study a set of features and based
on these create the categorization. The list of them is following: LBP family (LBP, LBPRI,
MBP, CBP, CLBP, DLBP, LBP_H); HOG [37]; Gabor features [38]; ACF [39]; LAWS [4];
Tamura features; Haralick features[40]; Textons; VS-LWIR [41]; ORB [42]; SIFT; SURF [43];
FAST [44]; BRIEF [45]; GCM [18]; Markovian features [46]. Based on the examination of the
features we have distinguished two main groups: per-pixel and per window features. We think
the division is good and complete, because each category properties are to a big extent opposite
to each other.

3.1.1 Per-pixel Features
When the features are calculated and stored for every pixel, we call them per-pixel features. The
resulting size depends on the input texture size and spectra count. These features are good in
representing local relationships around the pixels. They are usually computationally cheap and
thus they are good for-real time image segmentation. On the other hand, the dimensionality of
the features is the same as of the image or higher and in order to be used for image classification
the dimensionality has to be usually reduced for reliable learning. Such reduction could be a
histogram, frequencies of each value; we elaborate the description of constructing histogram from
general per-pixel features later.

25

26 Textural Features Information Quality Methodology

3.1.2 Per-window Features
The per-window features are extracted from the whole image window and they represent the
whole window and its specifics. The window can be an image or only a smaller part of an image.
Because they represent the whole window (an image), they are good for image classification
without any further processing. Unlike per-pixel features they are limited in representing local
relationships in the image without any modification. But they can be computed for a selected
window around a pixel or point and represent that area around as it would be an image. This
way, they can be used for image segmentation as well, but with greater computational cost.

3.1.3 Representation Sub-division
We have divided the two main division groups into sub-groups which are finer and more finely
defined. To represent the internal structure of the stored data for each sub-groups we need
unique metadata for each group.

Per-pixel
For the per-pixel we have only one sub-group called vector. For each pixel is stored one and the
features are represented by stacked matrices. The number of matrices is equal to the length of the
vector and they have the same size as the original image. This way, each pixel has one i-th vector
element in the i-th matrix at the pixel coordinates. The vector might consist only of one element
like in the case of LBP and the expected element type is a number. This representation has
the advantage of a potentially less occupied storage space, that it can be stored in multispectral
image formats like OpenEXR, that implement compression.

This representation might lead to higher memory workload, but there is a way around on
how to avoid that. Explained in detail, if the matrices are stored in memory independently,
the elements are partitioned far away on the memory physically which leads to lower number
of CPU cache hits and thus lower processing speeds. This can be avoided by representing the
features in memory as one matrix full of vectors, where the matrix and vectors are only virtual
and physically only one offset vector is used. This way the CPU cache management system will
be able to provide higher numbers of cache hits and the implementation will be faster in general.
We wanted to point out that for processing different representations of these features might be
considered, but it all depends on the algorithm used for feature processing.

Per-window
For the per-window we have 4 sub-groups called vector, histogram, list, big matrix.

Per-window vector is similar to the previously mentioned one, but there is only one for the
whole image window. The vector elements are numbers and they might have optionally some
meaning like in the case of Tamura Features. In that case each number in the vector is each
calculated statistic of the mentioned features.

Histogram is a special case of vectors, because it makes sense to display it in a graph and
for general vectors not. In case of histogram the additional information is mandatory and each
element in histogram represents frequency of some specific value. The information about the
value should be kept.

List is a vector which contains another vector and optionally a second vector with (x, y)
image coordinates.

Big matrix is the last and most general of per-window sub-groups. It is a useful group for
storing parameters of something like parameters of Markovian Features. The big-matrix consists
of other matrices stored in it. The metadata has to keep the amount of offset between the
sub-matrices.

Features Categorization 27

26 14 20 16 15

Figure 3.1 Converting Per-pixel to Per-window Features illustrated with histogram creation from
per-pixel features using the k-means clustering

Categorization of Presented Features
We show the previously explained categorization on studied features as follows:

Per-pixel

Vector: LBP (LBPri, MBP, CBP, CLBP, DLBP), HOG (orientations only), Gabor,
ACF, LAWS

Per-window

Vector: Tamura, Haralick
Histogram: HOG, Textons, LBP_H
List: ORB, SIFT, SURF, FAST, BRIEF, VS-LWIR
Big matrix: GCM, Markovian features

3.1.4 Converting Per-pixel to Per-window Features
We proposed to use histogram in order to convert per-pixel vector to per-image histogram, but
there is a problem that we cannot generalize the value ranges used for histogram creation.
Features like LBP have in vector a number that takes on one from 256 values, but other features
have floating point numbers in the vector from unknown range.

We have a solution to this problem. We collect all vectors from training images and run k-
means algorithms on them. We set k = 256 and then we save the created centers. These centers
are afterwards used to assign feature vectors to each histogram bins. Each feature vector is then
assigned to the bin by finding the closest center using the L2 norm. The process is illustrated at
the figure 3.1. On the left are all the vectors (x, y) and found centers, the distribution and the
bins are visualized with a Voronoi diagram. On the right is the created diagram.

3.1.5 Converting Per-window to Per-pixel Features
Converting the features from per-window to per-pixel is simpler than the opposite way. To
extract per-window features for every pixel, the features have to be extracted from the area

28 Textural Features Information Quality Methodology

around every pixel. Note that by converting the per-window features to per-pixel features that
list is not converted to vector but rather to something we would call per-pixel list, the same goes
for the matrix. But in the case of per-image vector and histogram we can approach the converted
features as per-pixel vector.

3.1.6 Multispectral and Monospectral Features
Last but not least there is a difference between multispectral and monospectral features. Monospec-
tral ones are extracted from one spectrum only, however we can extract features from every
spectrum one by one. By doing that we are achieving multispectral abilities, but not natively.
Some features are natively multispectral and they are being extracted from multiple spectra at
once.

3.2 Statistics
There is no commonly used measure to tell how good the features are. We can tell that the
features have performed well in some problem solving or in some specific cases but it is hard to
generalize that. We still try to do that. We want to measure some statistics and based on them
we would like to get some insight. For that we propose following statistics:

Entropy,

Pearson correlation coefficient,

Mutual information,

Memory size.

We think it is helpful to measure these statistics on both the image and the features. This way
we can see whether there was gain or not in entropy or other statistics. The memory size is then
not a typical mathematical measure, but it can be a good lead on if the dimensionality grows
or decreases and it is also desired information if the features have to be used somewhere with
limited memory availability.

3.3 Classification Statistics
As mentioned earlier, one way to decide whether the features are useful or not is to use them to
solve some problem and then decide on how well they performed. Because of that we propose to
use image classification problems, which is common, to measure the performance of the features.

3.3.1 Supervised Classification
We want to use a simple approach. At the beginning we have a training and test image set
containing one image per textural class in the training set and a variable amount of images in
the test set. We extract features from all images and try to classify these from the test set.
Based on that we can measure the success rate of the classification and use it as a statistic.

Furthermore, we can modify this approach and get more statistics. If we transform the
test images with some given transformation and then classify them we get a success rate in
classification of degraded images. This rate together with the success rate of the unchanged
images can then indicate the invariance of features to these transformations. There could be
many transformation done, but we list the basic ones as follows:

Scale,

Overview 29

Figure 3.2 Segmentation problem task from Mosaic portal. Source: mosaic.utia.cas.cz

Rotation,

Noise addition,

Illumination change,

Affine transformation.

3.3.2 Unsupervised Classification
Similarly to previously mentioned supervised classification method, where would be most prob-
ably used the per-window features, in unsupervised method we propose similar approach for
per-pixel features. The per-pixel features are ready for image segmentation without any modifi-
cation. We propose to calculate similar statistics as previously but with the segmentation task.
The Mosaic portal is focused on image segmentation and it offers data with various transforma-
tions as well together with the right solution as shown in figure 3.2. On the left one can see noise
and rotation applied to the texture and on the right the ground truth.

3.4 Overview
In the end we want to connect all what we have described and create a benchmarking methodol-
ogy. We have illustrated it with a diagram in the figure 3.3. At the beginning we have the image
dataset. From there we measure the classification statistics and basic statistics independently.

The basic statistics (entropy, etc.) are extracted from all the images, but first the images are
split to individual image spectra if the features are monospectral. From the features are then
calculated the statistics (and from the original images).

The process to obtain basic statistics is quite straightforward, but there are more steps in
order to calculate the classification success rates. We want to make the process as general as
possible, so we don’t use some images for training and some for testing. As it can be seen we
split the images in half in order to create train and test sets. For the test set are also added
transformed versions of the images. Similarly to basic statistics the features are extracted from
each image spectrum independently if they are monospectral. In case of converting the features
from per-pixel to per-window, there has to be calculated the centers from the training set before
the classification and conversion. Processioning has to be also done in case if the features do
not all have the same size. Afterwards we train the classifier with train textural features and

mosaic.utia.cas.cz

30 Textural Features Information Quality Methodology

classify all the images. From that we calculate the success rate simply by dividing the number
of successful classified images by total count.

Overview 31

split to spectra

split images into halves

calculate results

classify the features of each image and its
transformations

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

transform images
(unchange, rotate,

scale, ...)

split to spectra

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

89

255 126

5656

56 56

98

7

extract featuresextract features

feed train features feed test features

Classification
statisticsStatistics

calculate statistics

split to spectra

extract features

Figure 3.3 Overview of the texture quality extraction methodology and state of data in the process

32 Textural Features Information Quality Methodology

Chapter 4

Implementation

The ultimate goal of the thesis is to measure textural feature informational quality and in order
to do that we have to create a web portal that would allow users to benchmark features. We have
studied many features and based on that we have proposed a feature benchmarking methodology.
We have implemented and included it into a system that together creates and supports the web
portal feature benchmarking. We have decided to go with a way to develop the portal not only
as a web application but also as an application for multiple platforms, with the goal to deliver
the web application for now and keep the doors open for other platforms.

We would like to remind, that we call the feature extraction and calculation of experiment
statistics.

Note: We use the term experiment for the entity representing the test of feature extraction
with given parameters and additional information. We use it for a record about it but also for
the process.

4.1 Architecture
We have decided to decide the systems into three plus one main parts as shown in figure 4.1.
Three parts are implemented by us and the fourth is the database MongoDB system. Those
parts, but can be deployed on independent servers but they might run on one as well without
any issues. There is also clear division between backend and frontend, where frontend contains
only the client app and backend is made out of the rest three parts.

Frontend
As it can be seen in the mentioned figure 4.1 the client app can run in the browser but as a
native application as well, because it is a standalone application. But for its proper working it
needs connection to the backend communication server via the REST API.

Backend
We are referring to the same figure 4.1, the backend front face is the REST API of the commu-
nication server. The communication server takes care of authentication, user management and
serves simple requests. The computationally expensive tasks are delegated to the solver server
by the REST API of that server. Components in both of these servers communicate with the
MongoDB database in the database server. Note that the communication service (component
in communication server) has its own database of users. The solver server is the most complex

33

34 Implementation

Figure 4.1 Deplyoement diagram of the benchmark

component wise. There is the component experiment deployer that exposes the API to the com-
munication service. This component receives requests for executing experiments and retrieving
data from these already executed ones. It also takes care of the datasets. The datasets and ex-
periments are interconnected closely, therefore they are managed by the deployer. The deployer
then puts tasks into Redis Queue and the solver service consumes those tasks and handles the
feature extraction by executing either binary or python script. The binary or python script is
used to extract one specific type of features.

4.1.1 Scalability
The system is currently scalable only vertically by creating more consumers (solver services) at
the solver server, as it is shown in figure 4.2. But with little changes in the code the system can
be scaled both vertically and horizontally. This is shown in figure 4.3 and it could be done by
changing the redirection of a computationally expensive request to the least loaded solver server.
Such change could be done by simple revolver redirection. It means that in the case of n solver
servers each server will receive the next request after n−1 requests which are sent to other solver
servers.

4.1.2 User management
User data is stored in a separate database for security reasons, because the community version
of MongoDB is lacking the full featured security. The database is an SQL relational database with
one table user with fields id, private_id, name, surname, email, institution, information
and password_hash.

Architecture 35

Solver server

Communication
service

Experiment
deployer

Solver service

Solver service

Solver service

Redis QueueREST API1 1 1 - n

Figure 4.2 Current system scalability with cardinalities and communication channels described at
the bottom

Solver server 2

Solver server 1

Communication
service

Experiment
deployer 1

Solver service

Solver service

Solver service

Redis QueueREST API1 1 - n 1 - n

Experiment
deployer 2

Solver service

Solver service

Solver service

Figure 4.3 Scalability of the system. This is how the scalability was planned, but to realize this
reconfiguration and programming are needed in the communication service. The cardinalities and com-
munication channels are described at the bottom.

36 Implementation

4.2 Client Application
The client application is the face of the web portal and in this part we will talk about it as
an application or app. To implement this part we have decided to go for for following setup of
technologies (the list contains only these most significant):

Dart - programming language,

Flutter - multiplatform framework,

go_router - application navigation routing,

Shared preferences plugin - short time multiplatform data storing.
The application is currently compatible for Web and Linux, but if tested there should not be
any problem with other platforms like Windows and macOS. Mobile platforms are not planned
to be included, because the screen layout is not developed for vertical screens.

4.2.1 Mosaic UI Inspiration
The design is described in many places but here we want to describe the similarities with the
Mosaic portal [20]. Our application is following two main patterns. The first one is the location of
the navigation bar, which is located on the left side and the sections are similar in their behavior.
We illustrate that in the figure 4.4. There is some view of other users and their experiments or
input benchmark data. There are also sections where to create experiments. Second similarity
is the logical division and hierarchy. For example when one wants to see the users they have to
first select the user and then select the users experiments. It is important to note that Mosaic
portal is much more complex and we are mentioning similarities and not comparing systems.

4.2.2 Data download Optimizations
The features might be big data up to hundreds of megabytes. In our application we want to not
only allow for feature download but also visualization. The visualized data are usually smaller
than the original data in case of features, but in the case that there are hundreds of extracted
features (meaning a set of features from the whole image) the size might be quite big. In order
to minimize the network workload in case that user opens an experiment page the features are
moved to a separate window. But even after the user views the features, only those that are
visible on the screen are loaded. This is called lazy loading and it saves a lot of data, because
when used in a scrolling view on the screen the data are loaded just in time before the user sees
them. This optimization was not only implemented for features view but also for dataset view.

4.2.3 Visualization
All the features are visualized if possible. This way, the user can take a look at the extracted
features without downloading them to their own machine, unzipping them and viewing them.
Despite that it does not offer as much precision and information it is much faster and convenient
for quick looks.

4.2.4 Routing
Inside of the application are implemented defined navigation routes. That is important for web
functionalities. Every location in the application has its specific route and the user can navigate
with the route to this specific place by copying the route into the address bar in the browser.
This can also be used in the future for creation of links to the application (sharing, etc.).

Communication Server 37

Figure 4.4 Similarities of our application and Mosaic. Source: our application (right) and mosaic.
utia.cas.cz (left)

4.3 Communication Server
The communication server is the part where the most communication happens. It serves all
requests of the client application (or user using the API) and it behaves as a facade of the
system. Thanks to this server the whole backend system seems like a monolithic application
to the outside, but inside it is divided to independent components. However it is not a simple
facade, it has internally implemented logic as well, it handles authentication, simple requests,
delegates and computationally expensive tasks to the solver server and works as a proxy for
downloading data from the solver server. The communication API is described in A.1. Used
technologies to build this server are:

Python - programming language,

Flask - multiplatform framework,

SQLAlchemy - Object Relational Mapper for SQL,

PyMongo - communication with MongoDB database.

4.3.1 Authentication
The authentication of the users is provided by JSON Web Token. The user get an encoded token
at the login and uses the token for authentication every time during communication with secured
API resources and methods.

4.3.2 Task delegation
The communication service is delegating all experiment execution tasks. It delegates the task
to the solver and until the state in the database is not finished it is not returning results upon

mosaic.utia.cas.cz
mosaic.utia.cas.cz

38 Implementation

Communication
server Solver server

:Communication
service

:Experiment
deployer

POST /experiment/<id>

experiment executed

POST /experiment/<id>/result

return, 200 (OK)

GET /experiment/<id>/result

GET /experiment/<id>/result

return, 204 (No content)

return, 200 (OK)

execute
experiment

finished

Figure 4.5 Execution of the experiment and obtaining the results

request as shown in the figure 4.5. The communication server is recognizing the state of the
experiment from the MongoDB database and until the experiment is not in finished state the
communication server cannot answer any requests on the result resource. The experiment is not
finished until the solver is not finished and writes the results to MongoDB database.

4.4 Solver Server
The solver server is the part which is supposed to execute the experiments. The Solver server
is accessible by the solver API provided by solver service. The API is explained in section A.2.
The main technologies used in the server are following:

Python - programming language,

Flask - web framework for Python,

Redis Queue - library with purpose to simplify task distribution (consument, producent sys-
tem) using Redis database engine,

OpenCV - used for computer vision functionalities, image loading, processing and classifica-
tion,

scikit-image - used for image processing and feature extraction,

OpenEXR - data (image) loading,

PyMongo - communication with database.

Input and Output Formats 39

Communication
server Solver server

:Communication
service

:Experiment
deployer :Redis Queue :Solver service :Binary/Script

POST /experiment/<id>

enqueue

run worker
run extraction

experiment executed

run extraction

run extraction

finished

Figure 4.6 Execution of the experiment inside of the Solver server

4.4.1 Solver Server Architecture
This part is probably the most complex out of the whole system. It is divided into few compo-
nents, of which one is the experiment deployer, which provides an API that serves the incoming
requests and if there is a computationally demanding request it enqueues that requested task
into the queue. It is a simple producer consumer queue implemented using the Redis Queue. The
Redis Queue manages consumers that process the enqueued tasks (experiments). The worker
is called solver service, it picks up tasks from the queue and solves them. First it coordinates the
feature extraction by running binaries or python scripts depending on how the features are im-
plemented. After the extraction, it is responsible for the feature evaluation of the informational
quality of the extracted features and writes it into MongoDB database using PyMongo.

4.4.2 Task Solving Process
Upon the arrival of the message from the communication server, the Experiment deployer en-
queues the task into a queue as shown in figure 4.6. If there is some waiting consumer (solver
service), it takes the task (experiment) and starts to solve it. The feature extraction is being run
in binaries or by Python scripts. There are many rounds of extraction from all input images and
also from the images modified for classification statistics. After the extraction the solver service
evaluates the results and stores them into MongoDB database and changes the experiment state
as finished.

4.5 Input and Output Formats

In order to be able to store the features in standardized way according to our categorization we
have to define the storage format for all of the features sub-categories. In this section we will do

40 Implementation

that for each sub-category. We plan to use as many image formats, because they usually come
with compression. The format that is most suitable for that is OpenEXR.

4.5.1 Per-pixel Vector
Per-pixel vector should be stored in an multispectral image format. We propose the OpenEXR
format, which can store a variable number of spectra. Such a multispectral image format consists
of as many image planes as many spectra. Pixel in the i-th image plane belongs to the i-th element
of the pixel vector (pixel value).

4.5.2 Per-window Vector
Per-window vector format is a simple one. The features are saved in JSON file with two arrays.
The features are stored in an array called descriptor and there is a second same sized array
called labels. Descriptor contains vector elements (numbers) and labels contain strings that are
explaining short texts or numbers of the vector element at the same position in the array. One
example is following:

{
"desriptor" : [0.3, 3.6, 25.3, 30],
"labels" : ["correlation", "contrast", "1", "2"]

}

Code listing 4.1 Example JSON file with per-window vector features

4.5.3 Per-window Histogram
This format is similar to per-window vector, it is stored in JSON file and it also contains two
arrays. First array is called histogram and second labels and contains descriptions of the same
placed elements in the first array. Example is as follows:

{
"histogram" : [0.5, 0.25, 0.125, 0.125],
"labels" : ["A", "B", "C", "D"]

}

Code listing 4.2 Example JSON file with per-window histogram features

4.5.4 Per-window List
This format is a bit different from the two previous ones but not by a big margin. It still con-
tains two (or one) same sized arrays, from which first is mandatory and is called descriptors
and contains an array of same sized arrays with numbers. Second one is optional, its name
is keypoints and it contains two element arrays, the elements are column and row indices
from the original image. It is intended to represent the pixel coordinates (can be floating
point numbers) from where the feature descriptor was extracted from. Example is following:

User Interface 41

{
"keypoints" : [

[253.62083435058594, 97.55615234375],
[493.7390441894531, 308.5539855957031],
[250.71405029296875, 361.7027893066406]

],
"descriptors" : [

[1.26, 226, 3.2, 0.4, 5.2, 6032, 7.002, 812.0, 9.04, 1234],
[14.0, 5.0, 0.0, 0.0, 1.0, 14.0, 117.0, 119.0, 19.0, 18.0],
[53.2, 5.3, 0.0, 1.1, 2.3, 1.03, 12.03, 123.0, 0.03, 0.01]

]
}

Code listing 4.3 Example JSON file with per-window list features

4.5.5 Per-window Big Matrix
This format is not yet fully implemented in the benchmark, but we have prepared the benchmark
to work with the format. The format is implemented as a big matrix full of same sized matrices.
To know the offset we have to have a JSON file with metadata information about the matrix.
The file might look as follows:
{

"x_offset" : 25,
"y_offset" : 28,

}

Code listing 4.4 Example of metadata JSON file for the per-window big matrix features

The data are then stored in image format allowing floating point numbers. There is a plan to
support and implement it with OpenEXR format.

4.6 User Interface
As we described above, we have developed the client web application which and this section is
dedicated to the description of its user interface development and testing. First we started to
analyze the Mosaic web portal [20] (described above) and other scientific portals so we would be
able to mimic commonly used patterns among these portals. Then we came up with an idea of
what the application will do and created a mockup based on that. We have iteratively made the
mockup better with iterative user interface testing. However later during the implementation,
we have had to make compromises. The elaborated description of mentioned steps in the app
user interface creation is following.

4.6.1 Initial Idea
By analyzing the Mosaic portal we found out that the portal has to have some organization of
its own experiments but also an option to view experiments of others and to see available inputs.
Besides that we saw that the Mosaic used a user registration system and then the users could keep
saved experiments with their account. From Mosaic and other scientific web applications, we
found out that the most popular color is blue and most of the applications used design not very
different from what would people expect from regular applications. The most common design
was a mix of minimalism with material design. Buttons usually had icons and the applications
used more simple graphs rather than less complex ones. By that time our idea was made up
from following points:

42 Implementation

Main user goal - experimenting with features,

Expected top level hierarchy - own experiments, publicly visible experiments and input
data view,

Design language - material, flat, minimalistic,

Color scheme - blue,

Visualization elements - simple and specialized to visualize one thing.

4.6.2 User Interface Mockups and Testing

We did a multiphase cognitive walkthrough test and for every phase we have created a new
mockup based on the previous one except the first one. We had two tests and three mockups
made, one initial and two based on testing feedback. The test records are included in the
appendix B, there are explanations of the scenarios, images from all mockups and feedback
summary from both tests. The progress is well presented there side by side. The whole process
could be simplified as follows:

1st phase

1. Mockup creation based on initial idea

2. Cognitive walkthrough test

2nd phase

1. Mockup update based on previous feedback

2. Cognitive walkthrough test

3rd phase

1. Mockup update based on previous feedback

We created the mockups in the online drawing tool meant for user interface drafts. First we
wrote the scenarios on expected user goals and then we drew screen drafts. This way we had only
images for expected walkthrough, but it made the testing simpler, without longer wondering and
we have still got the chance to find out most of the faults as if it would be interactive. Both tests
have been executed with following methodology:

User Interface 43

1. Preparation

a. Create scenario screens
b. Prepare calm and private room
c. Set screen and voice recording

2. Execution

a. Invite a participant (user)
b. Accommodate participant (off topic question or talk)
c. Describe tested product
d. Explain what testing entails
e. Go through scenarios

Introduce the scenario (what user wants, initial location, etc.)
Observe participants behavior
Ask supplementary questions

f. Ask for additional opinion on the application and how they felt
g. Thank the participant

3. Gather and analyze

a. Write down notes from the records
b. Analyze the notes and propose improvements

4.6.3 Current State of User Interface
The mockups have been quite generous in terms of functionality and it wouldn’t be possible for
us to implement everything and also implement the benchmarking algorithms, thus we made
compromises and made the benchmark simpler. Such a compromise is the search bar exclusion
but not all were compromises. We have removed the option to create nested folders with exper-
iments, because we don’t think users would use them anyway. This way, the system is simpler
and cleaner.

Layout
The main layout of the application stays the same for all screens but registration and login page.
The layout is simple, we illustrate it in the figure 4.7. It consists of a left sided navigation bar
and the rest is content. There is one more element that can be found also on most of the pages
and it is the title with navigation arrow button (go-back button) and edit button. The go-back
button navigates back in the route of a given category (My experiments, Public view, etc.) and
the edit button leads to editing mode if possible.

44 Implementation

Figure 4.7 Main layout in the application

Brief Walkthrough
Here we are explaining the designed form of implemented user interface with few examples.

First we show an example in figure 4.8 with a pattern that occurs on a lot of screens. The
patterns are the listed clickable bars, that visualize an user or an experiment. The public view
serves the purpose of giving an overview of published experiments of other users organized by
users.

Second example is a page of an experiment in the figure 4.9. There we can see that the
page is scrollable (most pages are) and is divided into three sections by vertical lines. First
is the general information about the experiment. There are tags, description, link and action
buttons like download or delete (published experiment cannot be deleted, therefore the button
is inactive). Second part shows the selected parameters for the experiment, if the experiment is
not yet executed (the button run was clicked) the parameters can be changed. The third part
is only visible after the experiment is executed and finished. It contains the feature evaluation
(more in section 5.1) and option to view the visualization of extracted features (more in section
5.2).

In the figure 4.10, there is an experiment settings page, which was successfully submitted.
All the other forms follow a similar design and on an action, the resulting status is displayed at
the bottom of the screen.

Figure 4.8 View of all registered users in the application

User Interface 45

Figure 4.9 View of one of the published examples of experiments

Figure 4.10 View of successfully submitted experiment settings form

46 Implementation

Figure 4.11 Examples of clickable elements in the application: buttons (B, C), tabs (A) and links
(B)

Clickable elements
There are not only buttons that are clickable but also tabs and links, all the examples are shown
in figure 4.11. All of these have animations when the user hovers with the mouse over them.
There are also elements that are buttons themselves but carry data. They can be seen as C in
the figure. They behave and look similarly as buttons, but they contain additional information.
This pattern is the same for the whole application.

Chapter 5

Exemplary Results

In this chapter, we will show what the results in the benchmark look like. First, we will show
the calculated statistics and also the visualized features. The features are shown in a separate
window. These two parts will not fit together because of the visualization size on the screen.

5.1 Statistics
The calculated statistics are shown in figure 5.1. There are all the so-called basic statistics and
also the classified statistics. The averaged statistics and the classification results are shown for
the whole dataset, and the statistics for each image are shown in a table. The features are
extracted from multiple spectra of the image, which is the reason why they have to be averaged
for the image. The table size will be variable based on stored statistics and the number of input
images. Similarly, the statistics will be variable. If some statistics are not in the results, the web
portal will not show them.

47

48 Exemplary Results

Figure 5.1 Exemplar view of statistics for LBP_H

Features 49

5.2 Features
This section shows examples of implemented views of features inside the web portal. These views’
purpose is to visualize to the user how the features could look like. Every page is divided into
logical parts for every input image. For every input image, we then visualized results for each
spectrum. The results are scaling with the window size, and for some features, it is necessary
to view them on fullscreen to get the best experience. Otherwise, more information is needed in
the visualization, and especially for features like LBP, the features begin to look like noise, as
shown in figure of fig:ppv-features. The features view is used for lazy loading because the size of
the features might be relatively large, and there are dozens of images in the dataset. Together
it might lead to an excessive network workload.

50 Exemplary Results

Figure 5.2 Exemplar scroll window view of per-pixel vector features (LBP)

Features 51

Figure 5.3 Exemplar scroll window view of per-window histogram features (LBP_H)

52 Exemplary Results

Figure 5.4 Exemplar scroll window view of per-window list features (SIFT)

Chapter 6

Conclusion

We fulfilled all three main points from the diploma thesis assignment. We researched many types
of textural, monospectral, and multispectral features. We have explained how to extract natively
monospectral features from multispectral images to make them multispectral, but we have also
researched a few natively multispectral features. Based on the gained knowledge, we proposed a
general methodology for measuring textural features and informational quality and implemented
it in the benchmark, for which we created a web portal to access the benchmark. We made the
benchmark system robust enough for future development. We want to describe where we got
and what upgrades the benchmark could get.

6.1 Current State of Development
Currently, most of the benchmarking methodology is implemented, and the benchmark measures
implemented features. The system is easily expandable in terms of new algorithms or new
measuring methods. New features can be added to the benchmark only by adding a record with
details to the database and including Python script or binary with feature implementation. For
that, no line of code of the benchmark does not have to be changed. The system is also prepared
to introduce new statistics because the client application is not hardcoded to some specific set
of features, but for that, the addition of new code into the solver service is needed to include
new statistics, but no code has to be changed. There is little exception to the exclusion of
code changes; there is a need to widen the application dictionary of the machine to human code
translator. Otherwise, the application will show only underscored texts.

The system is closed from the outside, but anyone can register, create their own experiments,
and share them with others. They can manipulate and experiment with different parameters of
the feature-extracting algorithms. If users want to download the result and process it further,
they can download standardized metadata, statistics, and all the extracted features from the
benchmark and do what they wish.

6.2 Future Outlook

As we explained before, we made the benchmark robust enough to be expandable, so there is a
wide range of possible extensions and improvements.

The first extension we see is to add an option to upload own features the user, and the bench-
mark would then only measure the informational quality of the features. This will significantly
expand the functionality and usefulness of the benchmark for intentional users.

53

54 Conclusion

Another area is to add as many feature algorithms as possible. That would also improve the
benchmark’s value because it will provide users more value for using the benchmark by offering
dozens of built-in algorithms to experiment with. With that being interconnected, the choice is
to make an option to allow users to test changes of some parameters so that they would set all
parameters but one for which they would set the range and number of steps.

Another option would be to add new datasets for statistics like the classification success rate
but with the segmentation task. We plan to prepare more statistics (criteria), the analysis of
which will be the subject of a future scientific article.

The last improvement with a good ratio of development cost and impact we see is to add a
publicly accessible page with published experiments so anyone can see them. However, this last
one might be complicated and will involve changes not only in the client app but also in the
communication API.

6.3 Final Words
We have created a solid base for the benchmark to be developed further, and the mentioned
improvements would provide enough value for the benchmark to be an excellent product to be
used by researchers around the globe. Our work was successful because it laid the ground for
future development, but not only that, it is already a functional system that provides good
insight into textural feature information quality. The system is scalable, expandable, and ready
to provide practical information for the researchers.

Appendix A

API documentation

This is the documentation of the two rest APIs implemented. Both are implemented as restful
of level 2 majority. Some resource methods are locked with authentication, this is marked with
capital letter L, and free accessible methods are marked with capital letter U.

A.1 Communication API
Communication API is provided by Communication Server.

Resources:
Experiment

POST /experiment L creates a new experiment.
GET /experiment L returns all experiments owned by users or published ones. Experi-
ments are returned without results.
Query parematers:
public is a boolean value and it filters published and unpublished experiments.
user is an id of a user, experiments of other users are filtered out.
GET /experiment/<id> L returns an experiment of given id including information about
results.
PUT /experiment/<id> L updates experiment of given id.
DELETE /experiment/<id> L deletes experiment of given id.
Result
∗ POST /experiment/<id>/result L executes incomplete experiment.
∗ GET /experiment/<id>/result L returns results of an experiment of given id.
∗ GET /experiment/<id>/result/<name> L returns the result file of a given name (the

names are saved in the results).

Public

GET /public U allows downloading data and files without authentication. It uses public_access
random identifier which is long enough to provide security for accessing the resources. This
and one second query parameter has to be used to download the resource.
Query parameters:
public_access is a string identifier needed in order to identify the resource and create

55

56 API documentation

privacy for accessed resources.
metadata specifies download of an experiment metadata (parameter value is not taken into
account). experiment_results specifies download of an experiment features (parameter
value is not taken into account).

Dataset

GET /dataset U returns list of all available datasets.

GET /dataset/<id> U returns dataset metadata of given id.
Query parameters:
download if specified the method returns a zipped dataset folder instead of returning
metadata.
Image
∗ GET /dataset/<id>/image/<name> U returns dataset image, where dataset is specfied

by id and image by its name.

Algorithms

GET /algorithms U returns a list of all implemented algorithms in the system.

User

POST /user U is used to register an user.
GET /user L returns a list of all users in the system.
GET /user/<id> L returns specified user detail.
PUT /user/<id> L updates users information. password_change if specified the endpoint
is expecting data for password change in the request body.
Login
∗ POST /user/login U checks authentication details and returns security token if all is

correct.

A.2 Solver API
Solver API is provided by Solver Server.

Resources:
Experiment

GET /experiment/<id> U returns zipped experiment folder.
Result
∗ POST /experiment/<id>/result U executes experiment of given id.
∗ GET /experiment/<id>/result/<name> U returns experiment result of given name.

Experiment has to be specified by id.

Dataset

GET /dataset/<id> U returns zipped dataset folder.
Image
∗ GET /dataset/<id>/image/<name> U returns a file of given name from the dataset

with given id.

Appendix B

UI testing

In this appendix we describe the used scenarios in the user interface testing and what steps we
have expected for the users to use in order to achieve specific tasks that have been given to
them. The images of the app screen have been given to them in the same order (app mock-up
was used) that is used here. The three phases of the mock-up development are visually separated
and marked with their numbers (1,2 or 3).

Note: During the testing, first was used the name test for an experiment or set for a folder.

B.1 Scenario A - Create experiment
User goal: to experiment with features

Task description: Create new experiment in a folder named New methods (Test set name
in first phase) and explain how would you finish following sub-tasks:

1. Add new images as inputs,
2. Change radius to 5 for method LBP, image vegetables.jpg,
3. Change name of the experiment,
4. Run the experiment to get the results.

.

Intended steps:

1. Screen B.1: click on New methods (Test set name in first phase)
2. Screen B.2: click on New experiment (Test set name in first phase)
3. Screen B.3: pictures can be added by clicking Choose image(s) or by Add images, radius

can be changed by writing number 5 at the place of 3 right to text Radius, name of the test
can be changed by clicking the pencil icon button (the one next to the name), experiment
could be run by clicking button run

Cognitive walkthrough notes summary:

First phase
∗ (B.1, B.2) Test set is a confusing naming, Folder would be better.
∗ (B.1, B.2) The experiments tabs do not look clickable. It would be better if they would

be underlined or marked as buttons

57

58 UI testing

∗ (B.1, B.2) Graphical differentiation between experiments and folders is not clear enough
∗ (B.1, B.2) There is a problem with the question of how deep can be the folder hierarchy
∗ (B.3) There is a confusion how to run the inputs or in which order they are completed

or whether each input is already finished
∗ (B.3) Reset values would suit the same called button better than Set default values
∗ (B.3) Users expect auto-save after writing a value in the form and clicking elsewhere
Second phase
∗ (B.1) Users expect to open a folder with double click
∗ (B.3) Users think that after changing the radius value the value is saved if there is no

button save
∗ (B.3) When changing the data, some indication showing success or failure would come

in handy for the users
∗ (B.3) There are too many (two) icon buttons to change the description/name of the

experiment, one would be easier to understand

Scenario A - Create experiment 59

Figure B.1 Root folder of My experiments (Scenario A)

60 UI testing

Figure B.2 New methods folder (Scenario A)

Scenario A - Create experiment 61

Figure B.3 New user experiment (Scenario A)

62 UI testing

B.2 Scenario B - Download experiment data
User goal: discovery of other works

Task description: Find the best (highest score) published result in the entire benchmark
app

Intended steps:

1. Screen B.4: click on Public space tab
2. Screen B.5: click on LBP test tab (New LBP approach in third phase and Playing with

LBP in second one)
3. Screen B.6: final screen

Cognitive walkthrough notes summary:

First phase
∗ (B.4) There is a common confusion across all users about the difference between Public

space and Shared tests
∗ (B.5) Users are not able to recognize what is a best test. They recommend different

ways of making it more visible (colors, own column)
∗ (B.5) Users do not understand the numbering alone as a ranking, there is a need to add

some score to it as well according to them
Second phase
∗ (B.4) The upper placed tabs are not as intuitive as left sided tabs would be
∗ (B.5) The recognition of a best result is not instant but a lot faster than in the first

phase and successful with all users
∗ (B.5) As a researcher the user would be interested in the algorithm details, so some

links leading to pages with source code or a paper would be helpful
∗ (B.4, B.5, B.6) Name My experiments is better naming then My tests

Scenario B - Download experiment data 63

Figure B.4 Root folder of My experiments (Scenario B)

64 UI testing

Figure B.5 Public space

Scenario B - Download experiment data 65

Figure B.6 Best public experiment

66 UI testing

B.3 Scenario C - Publish experiment
User goal: sharing own work among others

Task description: Publish your experiment named Playing with LBP to be visible by other
users.

Intended steps:

1. Screen B.7: click on Playing with LBP
2. Screen B.8: click on Publish experiment button (Manage sharing in first phase)
3. Screen B.9: click on Publish button (change state of Private toggle by clicking on the

toggle and confirming with Save options)

Cognitive walkthrough notes summary:

First phase
∗ (B.7) It is not clear what are folders and what are experiments/tests. Users recommend

adding folder icons or grouping each together
∗ (B.9) Name the text private next to the switch as public instead and make it off by

default
∗ (B.9) User recommends creating a feature to add colleagues with buttons instead of

writing (each button for each colleague with their name)
∗ (B.9) When using the switch/toggle user expect it to do auto-save without using the

save button at the bottom, because it happens so in other systems as well
Second phase
∗ All goes as expected
∗ (B.9) Information that text is public is small. User recommends to add the information

whether the test is public on a place of the Publish experiment after publishing (dynamic
behavior of the user interface)

∗ User proposes to add some help descriptions (icons with question mark). When hovering
over them the system would offer some text help (extra description)

Scenario C - Publish experiment 67

Figure B.7 Root folder of My experiments (Scenario C)

68 UI testing

Figure B.8 Private completed experiment

Scenario C - Publish experiment 69

Figure B.9 Sharing settings of an experiment

70 UI testing

B.4 Scenario D - Go back to root folder
User goal: own experiments management

Task description: You are in a folder inside of the folder hierarchy, find way to get to home
folder´ (My tests in first phase) and navigate there

Intended steps:

1. Screen B.10: click on button with left arrow icon or clicking in the path on text home (or
in my tests in first phase) or by clicking on My experiments tab (My tests in first phase)

2. Screen B.11: final screen

Cognitive walkthrough notes summary:

First phase
∗ (B.10) There is a confusion of the users where exactly they are in the system
∗ (B.10) The users are able to use different variants of going back in the hierarchy. But

they mostly use the arrow back or My tests tab, one user will try clicking in the path.
However the arrow back icon button is the first choice for all users

Second phase
∗ (B.10) Users know what to do. One user says that if they moved from the upper folder

to the current one, they can use the browser go back button as well
∗ (B.10) If the list is long, there might be some button at the bottom to go to the top of

the page.
∗ (B.10) Users see similarity with Google Drive and they expect this system to behave

similarly
∗ (B.10) Users expect to move the folders and experiments by dragging like in Google

Drive or with keyboard shortcuts

Scenario D - Go back to root folder 71

Figure B.10 New methods folder (Scenario D)

72 UI testing

Figure B.11 Root folder of My experiments (Scenario D)

Scenario E - Go back to experiment folder 73

B.5 Scenario E - Go back to experiment folder
User goal: own experiments management

Task description: You are in one of your finished experiments inside of the folder hierarchy,
find way to a folder containing this experiment

Intended steps:

1. Screen B.12: click on button with left arrow icon or clicking in the path on text home (or
in my tests in first phase)

2. Screen B.13: final screen

Cognitive walkthrough notes summary:

First phase
∗ (B.12) All goes well
∗ (B.12) The go back icon button should be on the left of the path so there are not buttons

(second is the edit button) together
∗ (B.12) The navigation path parts could be underlined to imitate links, so they looks

more clickable
Second phase
∗ (B.12) All goes as expected.

74 UI testing

Figure B.12 New user experiment (Scenario E)

Scenario E - Go back to experiment folder 75

Figure B.13 New methods folder (Scenario E)

76 UI testing

B.6 Scenario F - Change password
User goal: secure own experiments

Task description: Change your password for a new one

Intended steps:

1. Screen B.14: click on the tab with a person icon (then click on a User settings in the
dropdown menu)

2. Screen B.15: write old password in field named as Old Password and new password twice
in field New Password and Repeat new password. At last click on Save password button

Cognitive walkthrough notes summary:

First phase
∗ (B.15) Log-out should be on the top bar itself and not in the settings. It would be best

in the common dropdown menu with the personal settings
∗ (B.15) It is dangerous to have a new password option without repeating the old one
∗ (B.15) Despite being logged into the app, in the text fields is not already stored personal

information.
∗ (B.15) Name Save password would be better then Change password
Second phase
∗ (B.14) User likes the dropdown menu
∗ (B.15) The have you forgotten password link is a bit extra they think. Users say it is

already by the login, so they would be looking for it there
∗ (B.15) Each block (gray blocks) in the settings should have some title.

Scenario F - Change password 77

Figure B.14 Root folder of My experiments (Scenario F)

78 UI testing

Figure B.15 User settings

Scenario G - Filter images 79

B.7 Scenario G - Filter images
User goal: manage own inputs

Task description: You are viewing the images but you want to see aerial images only, try
to filter out other ones so you get only satellite photos

Intended steps:

1. Screen B.16: click on aerial tag rounded button (in first phase by writing in the filter
category:aerial)

2. Screen B.17: final screen

Cognitive walkthrough notes summary:

First phase
∗ (B.16) Users think that the current state of selecting images is not very intuitive for

them. They see it more as a tool for advanced users. It was the main point of all users
∗ (B.16) The images should be numbered so the user has better sense orientation on the

page
Second phase
∗ (B.16) The users say that the tool is usable but only until there is not hundred and

more tags. For that it would need another tool
∗ (B.16) Users are noticing that some of the tags mentioned in the selection tool up to

three times, that seems redundant to them
∗ (B.16) They do not understand the difference between tags and category
∗ (B.16) At best the selection tool should be in a new window and be more elaborate.

The most popular tags could stay there
∗ (B.16) In a process of adding images there should be some advice if the tag does not

match any existing so the user can beware of mistyping

80 UI testing

Figure B.16 Available images

Scenario G - Filter images 81

Figure B.17 Selected images

82 UI testing

B.8 Other feedback
First phase

Thinks that naming tests is confusing, because it is an overused word and experiment is a
more descriptive term.
The search bar should be closely above the content.
Movement in the application would correspond to the URL. With that the user could make
bookmarks.
It is all in gray tones and not much visually appealing.
The rounded corners combined with sharp corners do not look good.
More icons describing the buttons would be helpful.

Second phase

Dragging or right-click dialog would be good for moving folders and experiments around
the folder hierarchy.
It would be good if the tabs in the bar would look like buttons, similarly to browsers.
The top bar is not well visible for the users. They would need it more vibrant and colorful.

Bibliography

1. HAINDL, Michal; FILIP, Jiri. Visual texture: Accurate material appearance measurement,
representation and modeling. Springer Science & Business Media, 2013.

2. LOWE, D.G. Object recognition from local scale-invariant features. In: Proceedings of the
Seventh IEEE International Conference on Computer Vision. 1999, vol. 2, 1150–1157 vol.2.
Available from doi: 10.1109/ICCV.1999.790410.

3. HAINDL, Michal. Textural Features. Prague: FIT CTU in Prague, 2022.
4. LAWS, Kenneth I. Rapid texture identification. In: Image processing for missile guidance.

1980, vol. 238, pp. 376–381.
5. LAWS, Kenneth I. Textured image segmentation. 1980. Tech. rep. University of Southern

California Los Angeles Image Processing INST.
6. MANJUNATH, Bangalore S; MA, Wei-Ying. Texture features for browsing and retrieval of

image data. IEEE Transactions on pattern analysis and machine intelligence. 1996, vol. 18,
no. 8, pp. 837–842.

7. OJALA, Timo; PIETIKÄINEN, Matti; HARWOOD, David. A comparative study of texture
measures with classification based on featured distributions. Pattern Recognition. 1996,
vol. 29, no. 1, pp. 51–59. issn 0031-3203. Available from doi: https://doi.org/10.1016/
0031-3203(95)00067-4.

8. AHONEN, Timo; MATAS, Jiřı́; HE, Chu; PIETIKÄINEN, Matti. Rotation invariant image
description with local binary pattern histogram fourier features. In: Scandinavian conference
on image analysis. 2009, pp. 61–70.

9. OJALA, Timo; PIETIKAINEN, Matti; MAENPAA, Topi. Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns. IEEE Transactions on
pattern analysis and machine intelligence. 2002, vol. 24, no. 7, pp. 971–987.

10. LIAO, Shu; LAW, Max WK; CHUNG, Albert CS. Dominant local binary patterns for
texture classification. IEEE transactions on image processing. 2009, vol. 18, no. 5, pp. 1107–
1118.

11. HAFIANE, Adel; SEETHARAMAN, Guna; ZAVIDOVIQUE, Bertrand. Median binary
pattern for textures classification. In: International Conference Image Analysis and Recog-
nition. 2007, pp. 387–398.

12. FU, Xiaofeng; WEI, Wei. Centralized binary patterns embedded with image euclidean dis-
tance for facial expression recognition. In: 2008 Fourth International Conference on Natural
Computation. 2008, vol. 4, pp. 115–119.

83

https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/https://doi.org/10.1016/0031-3203(95)00067-4
https://doi.org/https://doi.org/10.1016/0031-3203(95)00067-4

84 Bibliography

13. FUJII, Kenji; SUGI, Shinofu; ANDO, Yoichi. Textural properties corresponding to visual
perception based on the correlation mechanism in the visual system. Psychological Research.
2003, vol. 67, no. 3, pp. 197–208.

14. TAMURA, Hideyuki; MORI, Shunji; YAMAWAKI, Takashi. Textural features correspond-
ing to visual perception. IEEE Transactions on Systems, man, and cybernetics. 1978, vol. 8,
no. 6, pp. 460–473.

15. VARMA, Manik; ZISSERMAN, Andrew. A statistical approach to texture classification
from single images. International journal of computer vision. 2005, vol. 62, pp. 61–81.

16. LOWE, David G. Method and apparatus for identifying scale invariant features in an image
and use of same for locating an object in an image. U.S. pat. 1999-03-08.

17. VÁCHA, Pavel; HAINDL, Michal. Texture recognition using robust Markovian features. In:
Computational Intelligence for Multimedia Understanding: International Workshop, MUS-
CLE 2011, Pisa, Italy, December 13-15, 2011, Revised Selected Papers. 2012, pp. 126–137.

18. HAUTA-KASARI, Markku; PARKKINEN, Jussi; JAASKELAINEN, T; LENZ, Reiner.
Generalized co-occurrence matrix for multispectral texture analysis. In: Proceedings of 13th
International Conference on Pattern Recognition. 1996, vol. 2, pp. 785–789.

19. DAVIS, Larry S.; JOHNS, Steven A.; AGGARWAL, J. K. Texture Analysis Using Gen-
eralized Co-Occurrence Matrices. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 1979, vol. PAMI-1, no. 3, pp. 251–259. Available from doi: 10.1109/TPAMI.
1979.4766921.

20. MIKEŠ, Stanislav; HAINDL, Michal. Texture Segmentation Benchmark. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence. 2022, vol. 44, no. 9, pp. 5647–5663.
issn 0162-8828. Available from doi: 10.1109/TPAMI.2021.3075916.

21. Python [online]. Delaware, United States of America: Python Software Foundation, c2023
[visited on 2023-04-22]. Available from: https://www.python.org/.

22. HARRIS, Charles R.; MILLMAN, K. Jarrod; WALT, Stéfan J van der; GOMMERS, Ralf;
VIRTANEN, Pauli; COURNAPEAU, David; WIESER, Eric; TAYLOR, Julian; BERG, Se-
bastian; SMITH, Nathaniel J.; KERN, Robert; PICUS, Matti; HOYER, Stephan; KERK-
WIJK, Marten H. van; BRETT, Matthew; HALDANE, Allan; FERNÁNDEZ DEL RÍO,
Jaime; WIEBE, Mark; PETERSON, Pearu; GÉRARD-MARCHANT, Pierre; SHEPPARD,
Kevin; REDDY, Tyler; WECKESSER, Warren; ABBASI, Hameer; GOHLKE, Christoph;
OLIPHANT, Travis E. Array programming with NumPy. Nature. 2020, vol. 585, pp. 357–
362. Available from doi: 10.1038/s41586-020-2649-2.

23. BRADSKI, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools. 2000.
24. VAN DER WALT, Stefan; SCHÖNBERGER, Johannes L; NUNEZ-IGLESIAS, Juan; BOULOGNE,

François; WARNER, Joshua D; YAGER, Neil; GOUILLART, Emmanuelle; YU, Tony.
scikit-image: image processing in Python. PeerJ. 2014, vol. 2, e453.

25. SANGUINARIOJOE. OpenEXR. 2022. Version 1.3.9. Available also from: https://pypi.
org/project/OpenEXR/. Computer Software.

26. Flask [online]. The Pallets Projects, 2023 [visited on 2023-04-22]. Available from: https:
//flask.palletsprojects.com/en/2.2.x/.

27. Django [online]. United States of America: Django Software Foundation, 2023 [visited on
2023-04-22]. Available from: https://www.djangoproject.com/.

28. POTGIETER, Gericke. Why did Pinterest move from Django to Flask [online]. Mountain
View: Quora, Inc., 2023 [visited on 2023-04-22]. Available from: https://www.quora.com/
Why-did-Pinterest-move-from-Django-to-Flask.

https://doi.org/10.1109/TPAMI.1979.4766921
https://doi.org/10.1109/TPAMI.1979.4766921
https://doi.org/10.1109/TPAMI.2021.3075916
https://www.python.org/
https://doi.org/10.1038/s41586-020-2649-2
https://pypi.org/project/OpenEXR/
https://pypi.org/project/OpenEXR/
https://flask.palletsprojects.com/en/2.2.x/
https://flask.palletsprojects.com/en/2.2.x/
https://www.djangoproject.com/
https://www.quora.com/Why-did-Pinterest-move-from-Django-to-Flask
https://www.quora.com/Why-did-Pinterest-move-from-Django-to-Flask

Bibliography 85

29. Django Success Story Bitbucket [online]. Richmond District: Internet Archive [visited on
2023-04-22]. Available from: https://web.archive.org/web/20110317200833/http:
//code.djangoproject.com/wiki/DjangoSuccessStoryBitbucket.

30. React Native [online]. Menlo Park, California: Meta Platforms, Inc., c2023 [visited on
2023-04-22]. Available from: https://reactnative.dev/.

31. Flutter [online]. Mountain View: Google Inc., 2023 [visited on 2023-04-22]. Available from:
https://flutter.dev/.

32. Celery [online]. Ask Solem & contributors, c2021 [visited on 2023-04-22]. Available from:
https://docs.celeryq.dev/en/stable/index.html.

33. Dramatiq: Background task processing library for Python [online]. CLEARTYPE SRL.,
c2019 [visited on 2023-04-22]. Available from: https://dramatiq.io/index.html.

34. RQ (Redis Queue) [online]. Netherlands: Vincent Driessen, 2023 [visited on 2023-04-22].
Available from: https://python-rq.org/.

35. MongoDB [online]. New York, USA: MongoDB, Inc., 2023 [visited on 2023-04-25]. Available
from: https://www.mongodb.com/.

36. SQLAlchemy [online]. SQLAlchemy authors and contributors, 2023 [visited on 2023-04-25].
Available from: https://www.sqlalchemy.org/.

37. DALAL, Navneet; TRIGGS, Bill. Histograms of oriented gradients for human detection.
In: 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05). 2005, vol. 1, pp. 886–893.

38. DAUGMAN, John G. High confidence visual recognition of persons by a test of statistical
independence. IEEE transactions on pattern analysis and machine intelligence. 1993, vol. 15,
no. 11, pp. 1148–1161.

39. KREUTZ, Martin; VÖLPEL, Bernd; JANßEN, Herbert. Scale-invariant image recognition
based on higher-order autocorrelation features. Pattern Recognition. 1996, vol. 29, no. 1,
pp. 19–26.

40. HARALICK, Robert M; SHANMUGAM, Karthikeyan; DINSTEIN, Its’ Hak. Textural fea-
tures for image classification. IEEE Transactions on systems, man, and cybernetics. 1973,
no. 6, pp. 610–621.

41. AGUILERA, Cristhian; BARRERA, Fernando; LUMBRERAS, Felipe; SAPPA, Angel D.;
TOLEDO, Ricardo. Multispectral Image Feature Points. Sensors. 2012, vol. 12, no. 9,
pp. 12661–12672. issn 1424-8220. Available from doi: 10.3390/s120912661.

42. RUBLEE, Ethan; RABAUD, Vincent; KONOLIGE, Kurt; BRADSKI, Gary. ORB: An
efficient alternative to SIFT or SURF. In: 2011 International conference on computer vision.
2011, pp. 2564–2571.

43. BAY, Herbert; ESS, Andreas; TUYTELAARS, Tinne; VAN GOOL, Luc. Speeded-up robust
features (SURF). Computer vision and image understanding. 2008, vol. 110, no. 3, pp. 346–
359.

44. ROSTEN, Edward; DRUMMOND, Tom. Machine learning for high-speed corner detection.
In: Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz,
Austria, May 7-13, 2006. Proceedings, Part I 9. 2006, pp. 430–443.

45. CALONDER, Michael; LEPETIT, Vincent; STRECHA, Christoph; FUA, Pascal. Brief:
Binary robust independent elementary features. In: Computer Vision–ECCV 2010: 11th
European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010,
Proceedings, Part IV 11. 2010, pp. 778–792.

46. REMEŠ, Václav; HAINDL, Michal. Bark recognition using novel rotationally invariant mul-
tispectral textural features. Pattern Recognition Letters. 2019, vol. 125, pp. 612–617. issn
0167-8655. Available from doi: https://doi.org/10.1016/j.patrec.2019.06.027.

https://web.archive.org/web/20110317200833/http://code.djangoproject.com/wiki/DjangoSuccessStoryBitbucket
https://web.archive.org/web/20110317200833/http://code.djangoproject.com/wiki/DjangoSuccessStoryBitbucket
https://reactnative.dev/
https://flutter.dev/
https://docs.celeryq.dev/en/stable/index.html
https://dramatiq.io/index.html
https://python-rq.org/
https://www.mongodb.com/
https://www.sqlalchemy.org/
https://doi.org/10.3390/s120912661
https://doi.org/https://doi.org/10.1016/j.patrec.2019.06.027

86 Bibliography

Media attachment contents

readme.txt................................brief description of the attached media contents
benchmark...folder with benchmark source codes

communication-server folder with Python codes of the communication server
solver-server............................ folder with Python codes of the solver server
client-app folder with dart codes of the client app

thesis
source ... source of the thesis in LATEX format
thesis.pdf .. thesis text in PDF format

87

	Acknowledgments
	Declaration
	Abstract
	Alphabetical list of abbreviations
	Introduction
	Research
	Textural Feature Extraction Algorithms
	Monospectral and Multispectral Features

	Natively Monospectral Features
	Laws Filter Masks
	Gabor Features
	Local Binary Patterns
	Median Binary Pattern - MBP
	Centralised Binary Pattern - CBP
	Completed Linear Binary Pattern - CLBP
	Dominant Local Binary Patterns - DLBP
	Local Binary Patterns Histogram Fourier Features - LBP-HF
	Autocorrelation Function - ACF (AF)
	Tamura Features - TF
	Textons
	SIFT

	Natively Multispectral Features
	Markovian Multispectral Features
	Generalized Co-occurrence Matrix

	Analysis
	Mosaic
	Using the Mosaic Portal
	User Interface

	Feature evaluation technology
	Server technology
	Client portal technology
	React Native
	Flutter

	Tasks Queuing
	Database Systems
	MongoDB
	SQLAlchemy

	Textural Features Information Quality Methodology
	Features Categorization
	Per-pixel Features
	Per-window Features
	Representation Sub-division
	Converting Per-pixel to Per-window Features
	Converting Per-window to Per-pixel Features
	Multispectral and Monospectral Features

	Statistics
	Classification Statistics
	Supervised Classification
	Unsupervised Classification

	Overview

	Implementation
	Architecture
	Scalability
	User management

	Client Application
	Mosaic UI Inspiration
	Data download Optimizations
	Visualization
	Routing

	Communication Server
	Authentication
	Task delegation

	Solver Server
	Solver Server Architecture
	Task Solving Process

	Input and Output Formats
	Per-pixel Vector
	Per-window Vector
	Per-window Histogram
	Per-window List
	Per-window Big Matrix

	User Interface
	Initial Idea
	User Interface Mockups and Testing
	Current State of User Interface

	Exemplary Results
	Statistics
	Features

	Conclusion
	Current State of Development
	Future Outlook
	Final Words

	API documentation
	Communication API
	Solver API

	UI testing
	Scenario A - Create experiment
	Scenario B - Download experiment data
	Scenario C - Publish experiment
	Scenario D - Go back to root folder
	Scenario E - Go back to experiment folder
	Scenario F - Change password
	Scenario G - Filter images
	Other feedback

	Media attachment contents

