
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

P4 Language Server

Bc. Ondřej Kvapil

Ing. Viktor Puš, Ph.D., MBA

Informatics

System Programming

Department of Theoretical Computer Science

until the end of summer semester 2023/2024

Instructions

Familiarize yourself with the P4 language, program parsing with error recovery, and the

domain of language servers.

Make a language server requirement analysis, including some unique aspects of P4:

Packet header parsing constructs, support for various target architectures, and frequent

use of compiler-specific or target-specific pragmas.

Design a P4 language server that provides autocompletion, go-to-definition and other

common features, and can be integrated in VSCode.

Implement the language server and show its integration to VSCode.

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 24 November 2022 in Prague.

Master’s thesis

P4 LANGUAGE SERVER

Bc. Ondřej Kvapil

Faculty of Information Technology

Katedra teoretické informatiky

Supervisor: Ing. Viktor Puš, Ph.D. MBA

2023-05-04

Czech Technical University in Prague

Faculty of Information Technology

© 2023 Bc. Ondřej Kvapil. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at Czech Technical
University in Prague, Faculty of Information Technology. The thesis is protected by the Copyright Act and its usage
without author’s permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Kvapil Ondřej. P4 Language Server. Master’s thesis. Czech Technical University in Prague,

Faculty of Information Technology, 2023.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

Summary ix

Acronyms x

Introduction 1

1 The P4 Language 5
1.1 What’s in a switch . 5

1.2 A tour of P416 . 8

1.2.1 Syntax and semantics . 8

2 Language Server Architecture 23
2.1 The fruits of semantic support . 24

2.1.1 Code comprehension in LSP . 24

2.1.2 Coding features in LSP . 25

2.2 Lessons from the compiler world . 27

2.2.1 The pipeline . 27

2.2.2 The pipeline as a sequence of queries . 29

3 Design 31
3.1 The P4 Analyzer pipeline . 31

3.1.1 Lexical analysis . 31

3.1.2 The preprocessor . 32

3.1.3 The parser . 33

3.1.4 Abstract syntax trees . 37

3.2 Query-based memoization . 40

3.2.1 Integrating with the file system . 41

4 Results 43
4.1 Overview of implemented features . 43

4.2 Benchmarking . 44

4.3 The open-source project . 46

4.4 Future work . 46

A Sample appendix 53

Contents of the enclosed medium 59

iii

List of Figures

1.1 The original P414 abstract forwarding model, taken from [1]. 6

1.2 P416 program interfaces for an abstract architecture with two programmable blocks,

taken from [4]. 8

1.3 An abstract overview of a P4 parser. The states inside the grey circle are accessible to

user code. 14

2.1 Find References in Visual Studio Code via rust-analyzer. 24

2.2 Code comprehension -related requests in LSP 3.17. 25

2.3 Signature help in VS Code for Rust shows a pop-up with documentation as well as the

signature of the callee, highlighting the parameter under cursor. 25

2.4 Coding language features in LSP 3.17. 26

2.5 The Haskell Language Server project supports in-editor expression evaluation in com-

ments prefixed with >>> and checking QuickCheck properties in comments starting

with prop>. 26

3.1 Syntax of parsing expression grammars. 34

4.1 Autocompletion in Visual Studio Code. The blue items are suggested from definitions

recognised by the parser, while grey items are simply identifiers in the preprocessed

token stream. 43

4.2 The set of suggested identifiers depends on preprocessor directives. 44

4.3 The preprocessor continues to produce output even in the presence of several errors. . 45

4.4 Rudimentary support for go-to definition is also available. 46

List of Tables

4.1 Lexer and parser timings, statistics of 100 samples. 45

iv

List of code listings

1.1 An extern object specifying the interface to the target’s checksum unit. 10

1.2 A structured annotation on a table. 11

1.3 The conceptual model of the state of a P4 parser. 12

1.4 The intrinsic extern that facilitates data extraction. 12

1.5 An example of data extraction in a P416 parser. 13

1.6 The interface of the verify built-in. 13

1.7 A function declaration in P416. 13

1.8 Parser value sets, an advanced P4 feature for changing parser behaviour at runtime

from the control plane. 14

1.9 Parsers can instantiate and invoke other parsers as subroutines. 14

1.10 A P416 control block. 15

1.11 A P416 action. 15

1.12 Use of the actions table property in P4 16. 17

1.13 The synthetic P4 code generated for a table. 18

1.14 An example of direct type invocation. 19

1.15 An example of a parser with constructor parameters. 19

1.16 An example of a P416 deparser. 20

1.17 The packet out extern. 20

3.1 P416 preprocessor example . 33

3.2 Example grammar in our DSL. 35

3.3 The signature of the ast node! macro. 38

3.4 The main body of the ast node! macro generates newtypes for SyntaxNodes and im-

plements AstNode for them. 38

3.5 The optional methods section of the ast node! macro’s body. 39

3.6 An example of trivia annotations and doc comments in the grammar DSL. 40

4.1 The grammar used in the parser benchmark. 47

v

I would like to thank Timothy Roberts and Adam Reynolds for their kindness
and support of my internship during challenging times at Intel. Thanks to
my supervisor, Viktor Puš, without whose enthusiasm I would never have
applied for the internship. And, last but not least, thanks to my family and
friends for making my life better than I deserve.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of information

in accordance with the Guideline for adhering to ethical principles when elaborating an academic final

thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No.

121/2000 Coll., the Copyright Act, as amended. In accordance with Section 2373(2) of Act No. 89/2012

Coll., the Civil Code, as amended, I hereby grant a non-exclusive authorization (licence) to utilize this

thesis, including all computer programs that are part of it or attached to it and all documentation thereof

(hereinafter collectively referred to as the ”Work”), to any and all persons who wish to use the Work.

Such persons are entitled to use the Work in any manner that does not diminish the value of the Work

and for any purpose (including use for profit). This authorisation is unlimited in time, territory and

quantity.

In Prague on 2023-05-04 .

vii

Abstract

The P4 language is used for configuring programmable network processors. Despite its popularity in the

Software Defined Networking field, it suffers from a lack of modern developer tooling. In this thesis,

we design and implement a language server for the P4 language, which provides support for lexical

analysis, preprocessing, and parsing. On these foundations, we build support for autocompletion, error

reporting, and navigation in the source code. The language server is implemented in the Rust language

and integrated into the Visual Studio Code development environment.

Keywords language server protocol, language server, parsing, semantic analysis, P4, SDN, developer

tools

Abstrakt

Jazyk P4 je použı́ván pro konfiguraci programovatelných sı́t’ových procesorů. Navzdory své popularitě

v odvětvı́ Software Defined Networking ale zaostává co se podpory programátora týče. V této práci

navrhujeme a implementujeme language server pro jazyk P4, který poskytuje podporu pro lexikálnı́

analýzu, preprocessing a syntaktickou analýzu. Na těchto základech stavı́me automatické doplňovánı́,

reporting chyb a navigaci ve zdrojovém kódu. Language server je implementován v jazyce Rust a inte-

grován do vývojového prostředı́ Visual Studio Code.

Klı́čová slova language server protocol, language server, syntaktická analýza, sémantická analýza,

P4, SDN, vývojářské nástroje

viii

Summary

Introduction

We open with an overview of the networking setting

that led to the development of the P4 language. After

a brief survey of existing tooling, we decide to imple-

ment our own.

The P4 Language

Next, we delve into the details of P4 to better under-

stand the commonalities and differences between it

and conventional programming languages.

Language Server Architecture

We explore the language server protocol and exist-

ing LSP-compliant tools. We also survey architec-

tural themes in conventional compilers and pluck a

few ripe ideas for our own use later.

Design

In this chapter, we detail the design of our language

server. We go over the key abstractions and algo-

rithms, motivating our design decisions along the

way.

Results

The final chapter closes with lessons learned, our

implementation’s strengths, and areas where it falls

short. We conclude with a discussion of future work.

ix

Acronyms

API application programming interface.

ASIC application-specific integrated circuit.

AST abstract syntax tree.

CFG context-free grammar.

CPU central processing unit.

CST concrete syntax tree.

DSL domain-specific language.

FPGA field-programmable gate array.

FSM finite state machine.

IR intermediate representation.

LLVM Low-Level Virtual Machine.

LSP Language Server Protocol.

LTO link-time optimization.

ONF Open Networking Foundation.

P4 Programming Protocol-independent Packet Processors.

PEG parsing expression grammar.

REPL read-eval-print loop.

SDN software-defined networking.

XML eXtensible Markup Language.

YACC Yet Another Compiler-Compiler.

x

Introduction

. . . in which we get to know the context that gave rise to the P4 language and the challenges we set out
to overcome.

Programming Protocol-independent Packet Processors (P4) is a domain-specific language for program-

ming network switches. Its release started a shift in the field of software-defined networking (SDN)

which, up to that point, relied heavily on fixed-function hardware for high-performance networking

applications. Similarly to how the C language became a de facto portable assembler, abstracting over

the details of each microprocessor, P4 abstracts over the details of network processors by presenting a

deeply customizable interface shared by networking software and hardware alike.

Unlike previous approaches in SDN, P4 does not have built-in support for common network pro-

tocols like TCP, IP, or Ethernet. Instead, it provides protocol-independent constructs that users can

leverage in order to define arbitrary protocols and instruct a flexible network switch on how to handle

them. This programmability lets a network engineer specify the configuration and packet processing

steps of a router architecture independently of the underlying machinery.

The newfound flexibility of network processor programming that P4 enables does not get a chance

to shine on traditional network hardware, which is built for a predetermined set of protocols and pro-

cessing functions. The real power of P4 is unlocked by programmable network processors, which can

be reconfigured to support novel protocols and forwarding setups. The commercial sector answered the

call for such hardware, for example in Intel’s Tofino line of chips.
1

P4 became wildly popular in SDN since its introduction in 2014[1], sparking both research and

commercial applications. Three years later, P4 underwent a major redesign[2], which simplified the

syntax and removed special-purpose language constructs in favour of more general solutions.
2

The

redesigned language is known as P416 [4] and its specification has since received more incremental

updates.

A Growing Community

P4 gave rise to a varied ecosystem of commercial offerings of both hardware and software. It spawned

several academic projects that investigated its semantics[5], allocation to heterogeneous hardware[6],

open-source network testing[7], and sketch-based monitoring[8], among many others[9]. The Open

Networking Foundation (ONF) maintains[10] an open-source reference implementation of a P416

3
com-

1https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
2
Specifically, features like counters and checksum units were replaced by externs, a universal construct for specifying ad-

ditional hardware capabilities not explicitly covered by the core syntax. The language shrank from over 70 to less than 40 key-

words[3].

3
Although primarily developed for P416 since the revision of the language, it is also capable of migrating P414 programs to

P416 or directly compiling them.

1

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html

2 Introduction

piler frontend and midend, along with several backends:

p4c-bm2-ss Targets a sample software switch for testing purposes.

p4c-dpdk Targets the DPDK software switch (SWX) pipeline[11].

p4c-ebpf Generates C code which can be compiled to eBPF and then loaded in the Linux kernel.

p4test A source-to-source P4 translator for testing, learning compiler internals and debugging.

p4c-graphs Generates visual representations of P4 programs.

p4c-ubpf Generates eBPF code that runs in user-space.

p4tools A platform for P4 test utilities, includes a test-case generator for P4 programs.

All of these components are open source. The frontend and midend of the reference compiler provide

a foundation for hardware vendors to support P4 in their products and serve the community in resolving

discrepancies between commercial compilers and the language specification.

Despite this growth, P4 has only mediocre support for real-time feedback to the programmer – the

vast majority of open and commercial tools rely on compiler output to provide semantic insight into a P4

program[12], or, as evidenced by the open backends, are parts of the compiler proper. This is a problem,

because the compiler was not designed for interactive use. Compilations of complex programs can

take over an hour to complete. Long feedback loops hamper development. What’s more, information

provided by the compiler frontend is very limited – the compiler typically reports at most one error

message with very little (if any) explanation. The lack of an integration between the compiler and

development environments is an obstacle to new users and a neglected area of P4 developer experience.

Even an ergonomic presentation of error and warning messages would be a large improvement.

We can do far better, as interactive editing support for conventional programming languages clearly

demonstrates. Integrated developer environments provide many features that P4 programmers can only

dream of, including autocompletion, documentation pop-ups, real-time diagnostics, code navigation,

automatic formatting, and refactoring. These features are not only convenient, but also improve the

quality of software by reducing the cognitive load on the programmer.

Language Servers to the Rescue

Over the last decade, language servers became a popular architecture[13] for providing semantically in-

formed editing features in integrated developer environments and lightweight source code editors alike.

Although examples of language server -like tools predate their standardization[14], a major milestone

in their development was the introduction of the Language Server Protocol (LSP). The support of LSP

in Visual Studio Code seeded an ever-growing environment of cross-platform tooling for a variety of

programming, configuration, specification, and markup languages. Their success can be attributed in

part to the investment by Microsoft. However, LSP as a standard has much technical merit.

Before the introduction of a common communication interface between language-specific tooling

and a given source code editor, implementors had to create and maintain extensions for any number

of different environments, often in several programming languages. For example, take an editor plu-

gin providing smart completion and ”go to definition” features for the Python programming language.

Suppose the author aims to extend Vim, Emacs, and IntelliJ IDEA. They would therefore have to reimple-

ment the given functionality in vimscript, Emacs Lisp, and a JVM-based language. Even though recent

innovations in classical text editors
4

have partly moved away from using their own DSL’s, the author

is still burdened with three times the implementation work, as every development environment API is

different.

4
One such project is a fork and refactoring of Vi IMproved, Neovim: https://github.com/neovim/neovim.

https://github.com/neovim/neovim

Introduction 3

The solution to this problem is to split editor extensions according to the client-server model. The

major implementation work for domain-specific functionality resides on the server side, whereas the

client is only a relatively thin wrapper that adapts a given editor’s API. Implementors can build many

thin clients for different development environments that all connect to the same language server. LSP’s

raison d’être is support of this model in Visual Studio Code.

Codenvy, Microsoft, and Red Hat collaborated on standardizing the protocol to enable other tools

to benefit from a shared ecosystem[15, 16].

Combining the two
With these developments in mind, we would like to embark on the journey of supporting the P4 pro-

grammer in their development efforts. By building a language server, we aim to bridge the tooling gap

and bring real-time feedback into the P4 programmer’s development environment.

A note about authorship
This work concerns the P4 Analyzer project, designed and developed primarily by Timothy Roberts

and me,
5

as a part of my internship at Intel. Tim was largely in charge of managing the integration

into the Visual Studio Code editor, the server’s compliance with the Language Server Protocol, and the

networking aspects of the project.
6

I was responsible for the implementation of the analyzer core, which

involved the lexing, preprocessing, and parsing of P4 code, designing the incremental computation

architecture of the project, the interfaces the analyzer core exposes, and the abstractions used within.

To avoid problems of authorship, this thesis focuses on the analyzer core, which is an isolated module

that I was largely in charge of. I can honestly claim that, at the time of writing, all the code in the

analyzer-core crate is my own. On the other hand, P4 Analyzer is a large project with even larger

ambitions. Tim and I were both involved in large design decisions.

5
With recent help from Andrew Foot and Yusuf Adam.

6
This involved unhealthy doses of both asynchronous code and Rust borrow checker errors, for which I can only offer sincere

thanks and condolences. Tim somehow managed to stay optimistic and kind throughout. He rocks!

4 Introduction

Chapter 1

The P4 Language

. . . in which we delve into the syntax and semantics of P4, explain its use cases, and discuss the differences
to conventional programming languages.

The expressive power of a programming language arises from its strictures and not from its
affordances.

– Robert Harper, 2019 [17]

One of the original motivations behind P4 was the need for restriction. While other domain-specific

languages, such as Click[18], existed at the time, their embeddings within general-purpose program-

ming languages made it difficult to analyze data dependencies crucial for scheduling parallel execution.

The expressiveness of a language complicates its efficient compilation.

Rather than embedding P4 in an existing language, these considerations motivated a clean-slate

design. However, to understand why is packet processing any different from tasks suited to general-

purpose programming languages, we first need to familiarise ourselves with the switching architecture.

1.1 What’s in a switch

[Packet switching is] the routing and transferring of data by means of addressed packets so that a
channel is occupied during the transmission of the packet only, and upon completion of the trans-
mission the channel is made available for the transfer of other traffic.

– Fiber optics standard dictionary [19]

In the following text, we choose to use switch to mean a general packet switching device. Such

a device could be a dedicated piece of hardware or a software solution running on a general-purpose

computer.

Traditionally, these devices were implemented by fixed-function hardware. Various networking

protocols were built directly into the circuitry, which made these switches efficient, but inflexible. It

is impossible to reconfigure a fixed-function application-specific integrated circuit (ASIC) to process a

protocol it was not explicitly designed for in advance. If a new, backward-incompatible version of a

given protocol emerges, or if a hardware error is found in the chip, the network administrators need

to perform a costly hardware replacement in order to support or circumvent it, respectively. Moreover,

fixed-function hardware design is a lengthy and resource-intensive process. It may take several years

before an updated fixed-function chip hits the market.

The innovation of recent years is the introduction of programmable network processors, which can

change the set of supported protocols on the fly. These are similar to FPGAs in their reconfigurability,

5

6 The P4 Language

Figure 1.1 The original P414 abstract forwarding model, taken from [1].

but specialised to packet switching and routing, which makes them more efficient. A programmable

network switch has typically no prior knowledge of networking protocols but contains efficient cir-

cuitry for parsing and pattern-matching in order to support arbitrary
1

protocols uploaded to the chip as

microcode. While programmable networking hardware does incur a penalty for reconfigurability, when

it comes to efficiency, it sits between fixed-function devices and completely general-purpose solutions.

Other implementations of packet switching are also common. The already mentioned field-pro-

grammable gate arrays can be programmed to simulate programmable or fixed-function networking

hardware, and thus allow an even higher degree of flexibility. Naturally, FPGAs are less efficient than

the circuits they simulate. Finally, there are software switches, programs for widespread processor ar-

chitectures and operating systems, such as x86 and Linux. A software switch represents the peak of

flexibility, programmability, and requires no special hardware other than what is already commonly

present in conventional computers. Purely software-based solutions cannot compete in energy effi-

ciency with any of the other approaches, but are often useful for testing and in small-scale networks.

To support network configurations regardless of their physical implementation, the original P4 pa-

per defines the target-independent abstract forwarding model, outlined in Figure 1.1. There is a key

conceptual split in the architecture, common in packet processing in general, of the data plane and the

control plane. We will meet these terms over and over, so let us define them here.

Data plane is the part of the switch responsible for packet processing, i.e. all the hard work of manip-

ulating bits in the arriving packets and choosing where to send the packets next. It is the part that is

programmable in P4, though it is unchanging in traditional packet processing approaches. The data

plane is responsible for packet parsing, pattern-matching, and rewriting.

Control plane is the part of the switch responsible for configuration. It is not programmable in P4,

but P4 programs implicitly define a software interface for it. The control plane is responsible for

1
To some degree of complexity supported by the circuit.

What’s in a switch 7

uploading forwarding rules to the data plane, extracting data from special fixed-function devices

(such as throughput counters), and reconfiguring the flexible parts of the P4 program at runtime. A

control plane program could be a simple Python script or a C++ application.

Parallels to general-purpose computing

It is helpful to think of the data plane as an infrequently changing program running on a network chip.
2

It defines the protocols the switch can handle and the stages of packet processing the switch performs,

but not the concrete forwarding rules, which can change at runtime.

In contrast, the control plane typically runs on a general-purpose computer and uses the data plane

as a coprocessor. It uploads forwarding rules (e.g. which subnet to forward an arriving packet to)

to coprocessor-specific memory. The interface between the control plane and the data plane depends

entirely on the P4 program that the data plane runs, and relies on a hardware link between the two,

such as PCI Express.

The abstract forwarding model assumes an end-to-end data plane pipeline split into ingress and

egress parts. An arriving packet is first parsed to recognize the headers present therein. These headers

then travel through the pipeline’s match-action units. Each match-action unit performs limited pattern-

matching and rewriting on the parsed packet header – complex P4 code can map to a sequence of

several match-action units. This part of the pipeline is partially configured at runtime by the control

plane, usually by forwarding rules defined in software.

To relate match-action units to conventional computing, they are similar to cycles in a CPU pipeline.

In fact, the entire abstract forwarding model can be thought of as the unrolling of a limited number of

cycles of a CPU pipeline. This corresponds well to P4’s lack of looping constructs.

Packet headers (supplemental data placed at the beginning of a packet) are a central concept in

packet processing, and therefore also in the P4 language. The abstract forwarding model assumes that

the packet is split into two parts: the header and the payload. Only the header proceeds into the match-

action pipeline.
3

The model assumes that the payload is handled separately by the device and is thus

not available for pattern-matching.

Keeping it high-level
While the presented forwarding model gives a good overview, it is not the full picture. A notable omis-

sion is packet output. If the P4 program implements a switch, how does the packet exit the pipeline?

How does it select the output port? And how does the switch filter out packets that should not be

forwarded?

These questions touch on the issue of supporting use-cases and functionality too granular to be

part of the abstract forwarding model. While they may seem like blatant oversights, these omissions of

packet processing details are deliberate. P4 supports both output port selection and packet filtering via

packet metadata. Intrinsic metadata is a target-dependent data structure that stores information about a

given packet and is available to the P4 program at every stage of the pipeline, including parsing. Meta-

data may include the input port and other information provided by the device. Crucially, the metadata

is typically mutable, and contains fields and flags for the output port, recirculation, packet dropping,

and other features.

The final stage of the processing pipeline in programmable network hardware involves deparsing,

i.e. serializing the packet header back into a bitstream. As we will see on page 20, deparsing is a case of

a more general control mechanism that does not need special treatment in the abstract model.

The design philosophy of reliance on general-purpose constructs, such as metadata or externs

(which we will see later), underpins much of the P4 language, and its effects can be seen in many facets

of the P416 revision. It makes the language both simpler, as it avoids accumulating narrow use-case

features, and more flexible, since it generalizes to platforms to which these concepts do not translate.

2
Even though, as discussed, it could reside entirely in software.

3
Although what part of the packet actually is “the header” is entirely up to the P4 program.

8 The P4 Language

Figure 1.2 P416 program interfaces for an abstract architecture with two programmable blocks, taken from [4].

1.2 A tour of P416

This section largely mirrors the P416 language specification. It does not cover the entire language, but

should serve as a decent introduction to its most important features, while attempting to draw some

parallels to conventional programming languages and terms of general-purpose computing.

A P4 program specifies a mapping of vectors of bits – a bitvector endomorphism. Every P4 program

terminates; the language has no looping constructs and no recursion, a compiler can thus determine the

precise maximum runtime of a program statically.

P4 is therefore not a programming language for von Neumann architectures. Instead, its abstract

model assumes the target machine to be some sort of network processor with programmable blocks

embedded in a static pipeline. The overhaul into P416 slightly redefined the abstract forwarding model,

as can be seen in Figure 1.2. This diagram focuses on the interfaces of the P4 program and points out

metadata, which deserves a special mention.

Practical implementations of P4-configurable network hardware often need to track information not

included in the packet headers. This is especially the case for devices with multiple pipelines, such as

the one outlined in Figure 1.2, where the partial computation results from one pipeline need to travel

to the next in order to continue processing. The nature of passing such metadata is heavily target-

dependent, however. Some architectures may include explicit side-channels for metadata and reflect this

in the interfaces they provide to user code, while other targets demand that the user includes metadata

explicitly in the packet headers. In other words, the user metadata channel in P416’s abstract forwarding

model is purely conceptual.

1.2.1 Syntax and semantics
P416 syntax is reminiscent of imperative programming languages in the C family. It uses prefix notation

for typed bindings, braces for lexical scoping blocks, and semicolons to separate statements. Its expres-

sion syntax is very similar to C as well. However, instead of functions or procedures, the dominant top

level constructs for executable code are control blocks and parsers, neither of which has a close relative

in the world of conventional general-purpose computing.

The semantics of P416 is defined entirely in terms of abstract machines executing imperative code. A

A tour of P416 9

conforming compiler is free to rewrite the P416 program as long as it maintains the observable behaviour

of all abstract machines involved. Unfortunately, the specification gives no formal treatment of these

machines; they are described only in natural language and pseudocode.

The authors of the specification acknowledge that undefined behaviour has been the cause of many

problems in conventional languages and deliberately try to avoid it. However, several constructs in the

language are still underspecified and users may run into undefined behaviour, for example by accessing

the field of an invalid header.

Types
P416 is a statically typed language with a type system designed for precise bit-level control of data layout.

There are 9 primitive types:

The void type. In a classic case of ignorance of basic type theory, the specification claims that void
has no values, even though calls to methods returning void happily return without terminating

execution. Clearly, void corresponds to the unit type with exactly one value, even though P416 does

not let the user name it.

The error type, which is used to convey errors in a target-independent, compiler-managed way.

The string type, which can be used only for compile-time constant string values.

The match kind type, which is used for describing the implementation of table lookups.

bool, which represents Boolean values.

int, which represents arbitrary-sized constant integer values, and only exists at compile time.

Bit-strings of fixed width, denoted by bit<>.

Fixed-width signed integers represented using two’s complement int<>.

Bit-strings of dynamically-computed width with a fixed maximum width varbit<>.

The inclusion of a boolean type that is semantically distinct from a bit-string or an integer frees

the design to give bitwise operators (&, |, ˆ) higher precedence than relation operators (<, >, <=, >=).

The type system catches attempts to use bitwise operators on boolean values and logical operators on

bit-strings.

Types can be combined to form derived types by means of 12 type constructors:

enum

header, conceptually a struct with an implicit bit indicating validity. The validity of a header is

determined by a parser: a header is valid if the parser that loads it ends in the accepting state.

header stacks

struct, as known from C.

header union

tuple

type specialization

extern

parser

10 The P4 Language

Code listing 1.1 An extern object specifying the interface to the target’s checksum unit.

extern Checksum 16 {
Checksum 16(); // constructor
void clear (); // prepare unit for computation
void update <T>(in T data); // add data to checksum
void remove <T>(in T data); // remove data from existing checksum
bit <16> get (); // get the checksum for the data added since last clear

}

control

package

type, which the specification does not list under derived types. It serves the role of Haskell’s

newtype construct, i.e. it introduces a new name for an existing type. In P416, this means that

conversions between the new type and its right-hand side require explicit casts.

In a questionable decision to assert the design of compiler internals, the specification also includes

synthesized set and function types, which we will not discuss here.

extern objects and functions
Before diving into the bulk of the syntactical forms that dominate user-written P4 code, we need to

introduce the general concept of externs.

extern objects and functions describe interfaces to facilities provided by the architecture, as well

as certain built-in language constructs.
4

For example, the extern object in Listing 1.1 allows P4 code to

utilize a fixed-function checksum unit provided by the target. The object specifies no implementation for

the listed constructors and methods, rather, the target platform implements the asserted functionality

intrinsically, e.g. by fixed-function circuitry.

To invoke a method of the checksum unit, the user needs first to instantiate the extern object.

Instantiation is the declaration of a type with a constructor. This syntactic form is shared among

extern objects, control blocks, parsers, and packages alike. The effect of an instantiation is to

allocate the corresponding object, binding it to the specified name.

The compiler is in charge of mapping instances of externs to the target architecture (i.e. performing

the allocation of resources on the target). If it does not find a mapping, either because the target does

not support the extern or does not have the resources to fit all its instances, the compilation fails with

an error.

An extern object may contain abstract methods. Methods with this modifier require the extern
instantiation to provide an implementation for them.

extern objects and functions were already present in P414 version 1.1, but P416 fully embraced these

constructs. This helped to both simplify and generalize the language and led to the elimination of several

less general concepts. For example, P414 had dedicated syntax for checksum units.

Imports and the core library
Although not a language construct in its own right, the P4 core library is a set of common program-

ming definitions distributed together with language tooling. Unlike preludes in certain programming

languages, the core library is not automatically included in every P4 program and must be imported

4
Such as the packet in intrinsic in Listing 1.4

A tour of P416 11

Code listing 1.2 A structured annotation on a table.

@MyAnnotation [1, 2, 3]
table myTable { /* ... */ }

explicitly with the preprocessor directive #include <core.p4>. P416 does not have a module system

and relies solely on the C preprocessor (or a sufficiently capable subset thereof) for code reuse.

Another typical inclusion in a P4 source file is that of the target-specific architecture description.

This is a library P4 file with at least a package declaration. The package construct is very similar to

a parser, except that it has no body and no runtime behaviour. Instead, a top-level package instance

matching the architecture’s declaration serves as a conceptual entry point for the program, defining the

used parser, control block, and extern instances by passing them to the package constructor.

L-values
P416 has a concept of l-values, reminiscent of C. An l-value is an expression that denotes a memory cell

that can be assigned to. These include

variables; identifiers of a base or derived type,

fields of structs, headers, and header unions, and

the results of bit-slice operators (e.g. pkt[0:7]).

Annotations
Almost all syntactical constructs in P416 can be modified by annotations (see Listing 1.2). These

come in two flavours, structured and unstructured, depending on the restrictions imposed on their

arguments. Unstructured annotations can take arbitrary token streams as their arguments, so long as

the parentheses in these token streams are balanced.

Very few annotations are built into the language, so we will not discuss them in depth, but they

provide an important avenue for target-specific extension of the language.

Functions and parametrized code
Functions in P4 come in several flavours. The first kind is known as function declarations and is per-

haps the closest relative of procedures in conventional imperative programming languages. The major

difference is that all parameters to a P4 function need to include a direction.

parameter direction is either in, out, or inout. in indicates a read-only parameter with a defined

value, out indicates a read-write parameter whose value is initially undefined upon entering the

function body, and inout indicates a read-write parameter with a defined value.

Only l-values can be passed as out and inout parameters. The execution of the function call can

change the value of an out or inout parameter’s corresponding l-value. Note that P4 functions can

combine out parameters and return values.

Parameter directions are P4’s way of introducing a limited form of references, themselves a princi-

pled approach to pointers. Parametrized P4 code follows a copy in / copy out calling convention, which

makes functions easy to reason about and limits side effecting behaviour of extern methods. We will

discuss this later on page 21.

12 The P4 Language

Code listing 1.3 The conceptual model of the state of a P4 parser.

ParserModel {
error parseError ;
onPacketArrival (packet p) {

ParserModel . parseError = error. NoError ;
goto start;

}
}

Code listing 1.4 The intrinsic extern that facilitates data extraction.

extern packet_in {
void extract <T>(out T headerLvalue);
void extract <T>(out T varSizeHeader , in bit <32> varFieldSizeBits);
T lookahead <T >();
bit <32> length (); // May be unavailable in some architectures
void advance (bit <32> bits);

}

Parsers
Another construct for parametrized code are parser declarations. A P4 parser describes a finite state

machine whose job is to recognize valid packets and load their headers into the storage facilities of

the target. Parser declarations define all the states of the FSM, except the implicit built-in accept and

reject states. Each parser has to contain at least the initial start state. During parsing, the parser

can manipulate local state in the form of variables and extern instantiations. These are defined directly

in the parser declaration block, before listing any states, meaning that the type of this local context is

statically known and independent of the state the parser may appear in at runtime. In other words,

parser declarations follow lexical scoping.

States can introduce lexically-scoped local variables, but not additional externs. Other statements

like conditionals, assignments, or method calls are also allowed. The specification explicitly points

out that specific target architectures can place restrictions on the set of constructs and operations a

programmer can use within a parser.

P416 parser declarations unrestricted by the target architecture may appear very similar to conven-

tional imperative code, and reminiscent of other function-like constructs the language offers. The crucial

parser-only features are data extraction, pattern-matching, error handling, and state transitions.

Data extraction moves information from the input packet into memory available for pattern-matching

further down the pipeline, typically registers or similar containers. To facilitate this operation, the P4

core library contains an intrinsic
5 extern definition called packet in which represents incoming pack-

ets. This special extern cannot be manually instantiated, but it is instantiated implicitly for every parser

parameter of type packet in. This allows parser states to invoke the methods of the extern, shown in

Listing 1.4.

Parser abstract machine
A parser semantically manipulates a ParserModel data structure.

The meaning of accept and reject states is architecture-dependent. For example, a rejected packet

may be dropped or passed to the next block of the processing pipeline.

Parser transitions are analogous to goto statements or parameter-less tail calls.

5
By an “intrinsic,” we mean a language feature that somehow invokes a mechanism native to the host architecture, one that

could not be defined in the language itself, or not as efficiently, and needs to be hard-coded in the compiler.

A tour of P416 13

Code listing 1.5 An example of data extraction in a P416 parser.

struct Result { Ethernet_h ethernet ; /* more fields omitted */ }
parser P(packet_in b, out Result r) {

state start {
b. extract (r. ethernet);

}
}

Code listing 1.6 The interface of the verify built-in.

extern void verify (in bool condition , in error err);

An example of extraction of fixed-width data can be seen in Listing 1.5.

Data extraction and computation within parser states subsumes the stateful part of a finite state

machine. Because isolated states would not be very useful on their own, P4 parsers can specify state

transitions using the transition statement. The target of the transition can be either given statically

or computed. A missing transition statement at the end of a state block implies a transition into the

reject state.

select expressions

Another parser-specific construct facilitates the computation of transition targets by pattern-matching

on extracted data. The select expression tries to match a value against a number of patterns and

evaluates to a state, if successful. Otherwise, it triggers a runtime error with code error.NoMatch.

The patterns of a select expression can contain integer literals, bit masks, ranges, don’t-care values,

tuples (when matching on multiple values simultaneously), or, on some architectures, parser value sets
specified at runtime by the control plane.

While error-handling already happens implicitly in select expressions, the verify statement, de-

fined in Listing 1.6, allows the programmer to ergonomically check arbitrary assertions about the parsed

data. Passing false as the first argument to verify immediately transitions to the reject state, set-

ting the parser error to the code given as the second argument. Otherwise, execution proceeds with the

next statement.

Control blocks
While parsers execute at the very frontier of the pipeline, the bulk of packet processing happens

in the previously mentioned match-action units. P4 has another parametrized construct for expressing

entire sequences of pattern-matching and rewriting steps: control blocks. An example of one is shown

in Listing 1.10.

A control block has a name and can take type and value parameters. The body of a control block be-

gins with declarations of constants, variables, and instantiations. It follows with definitions of actions.

Code listing 1.7 A function declaration in P416.

bit <32> max(in bit <32> left , in bit <32> right) {
return (left > right) ? left : right;

}

14 The P4 Language

start

accept

reject

Figure 1.3 An abstract overview of a P4 parser. The states inside the grey circle are accessible to user code.

Code listing 1.8 Parser value sets, an advanced P4 feature for changing parser behaviour at runtime from the

control plane.

struct vsk_t {
@match (ternary)
bit <16> port;

}
value_set <vsk_t >(4) pvs;
select (p.tcp.port) {

pvs: runtime_defined_port ;
_: other_port ;

}

Code listing 1.9 Parsers can instantiate and invoke other parsers as subroutines.

parser ipv4 _parser (packet_in packet , out IPv4 ipv4) { /* ... */ }
parser main_parser (packet_in packet , out Headers h) {

ipv4 _parser () instance ;

state subroutine {
instance . apply(packet , h.ipv4);
// execution proceeds if the sub - parser
// ends in accept state
transition accept ;

}
}

A tour of P416 15

Code listing 1.10 A P416 control block.

control MyIngress (inout headers hdr ,
inout metadata meta ,
inout standard_metadata_t standard_metadata) {

action drop () {
mark_to_drop (standard_metadata);

}
action set_nhop (bit <48> nhop_dmac , bit <32> nhop_ipv 4, bit <9> port) {

hdr. ethernet . dstAddr = nhop_dmac ;
hdr.ipv4. dstAddr = nhop_ipv 4;
standard_metadata . egress_spec = port;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}
table ecmp_nhop {

key = {
meta. ecmp_select : exact;

}
actions = {

drop;
set_nhop ;

}
size = 2;

}
apply {

if (hdr.ipv4. isValid () && hdr.ipv4.ttl > 0) {
ecmp_nhop . apply ();

} else {
drop ();

}
}

}

Code listing 1.11 A P416 action.

action ipv4 _forward (macAddr_t dstAddr , egressSpec_t port) {
standard_metadata . egress_spec = port;
hdr. ethernet . srcAddr = hdr. ethernet . dstAddr ;
hdr. ethernet . dstAddr = dstAddr ;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}

16 The P4 Language

Actions
A P4 action, seen in Listing 1.11, is a piece of code that directly manipulates packet headers. At a

first glance, actions should be immediately familiar to imperative programmers, since they resemble

functions with no return value. Their bodies are each comprised of a series of statements, which are

executed sequentially,
6

with the restriction that actions cannot contain table, control, or parser
applications.

Additionally, there are two important restrictions on action parameter lists:

1. Parameters with no direction must all come at the end of the parameter list. These directionless

parameters indicate action data, and can either be provided by the program, just like in parameters,

or by the control plane software.

2. Action parameters cannot have extern types.

Tables
The second major P4 construct that appears exclusively within control blocks are tables. Whereas an

action specifies the operations performed on packet headers when pattern-matching succeeds, a table

informs a match-action unit of the target how to perform the pattern-matching and what actions to

invoke.

Analogy to functional programming

Functional programmers will note that tables and actions together seem like a low-level decomposi-

tion of pattern-matching from Haskell or Scala. This is a fairly accurate analogy, except that, whereas

pattern-matching constructs in a programming language are typically fixed at compilation time, P4

tables are configurable at runtime by the control plane. Furthermore, P4’s pattern-matching operates

at the bit level and offers certain string-like facilities.

A table declaration is simultaneously an instantiation in the enclosing control block. The dec-

laration lists various properties of the table, given as key-value pairs. It has at least the mandatory

key and actions properties, which specify an expression used for computing the lookup key and

the set of actions the table can invoke, respectively. A table declaration can optionally also include

default action, entries, and/or size properties, which specify the action invoked when no other

actions match,
7

a predefined set of entries for the table, and the desired size for the table. Compilers can

choose to extend this standard set of properties with additional target-specific key-value pairs.

The programmer can optionally declare table properties as const. This keyword ensures that the

control plane cannot change the property’s value at runtime. Somewhat confusingly, some properties

are implicitly const, including the standard properties key, actions, and size. On these, the const
keyword has no effect.

key The key table property specifies the scrutinee of pattern-matching. Grammatically, the key is a

sequence of rows where each row contains the expression to match on, the kind of matching to

perform, and a list of optional annotations.

The possible kinds of pattern-matching are exact, ternary, and lpm, all defined as part of the

match kind construct in the core library. A match kind behaves like an enumeration, it lists a

number of mutually-exclusive variants. The semantics of the match kind variants is not given, it

depends on the compiler and target architecture.

6
At least from the perspective of the programmer.

7
The default action property defaults to the built-in NoAction when not specified.

A tour of P416 17

Code listing 1.12 Use of the actions table property in P4 16.

action a(in bit <32> x) { /* ... */ }
bit <32> z;
action b(inout bit <32> x, bit <8> data) { /* ... */ }
table t {

actions = {
// a;
// - illegal , x parameter must be bound
a(5); // binding a’s parameter x to 5
b(z); // binding b’s parameter x to z
// b(z, 3);
// - illegal , cannot bind directionless data parameter
// b();
// -- illegal , x parameter must be bound
// a(table2 .apply (). hit ? 5 : 3);
// -------------- illegal , cannot apply a table here

}
}

Key elements can be renamed with optional @name annotations to give them readable names in the

control plane API.

actions The actions table property lists all the actions a table can invoke at runtime, separated by

semicolons.

The specification mandates that action names of actions in the actions list have to be distinct. That

is, two actions of the same name cannot appear in the actions list, even if they come from different

scopes and could be disambiguated with fully qualified paths in other contexts.

An overview of the valid and illegal usages of the actions table property is given in Listing 1.12. The

examples highlight the distinction of action parameters with and without direction. The directionless

parameters, also known as action data, are used to communicate data between the control plane and

the data plane at runtime, and therefore cannot be bound in the P4 program. Haskell enthusiasts may

note that the distinction between compile time and runtime -bound values is somewhat reminiscent

of second-class functions.

default action The default action table property specifies the action invoked when no other ac-

tions match. The value of this property is an expression that invokes the action in question, binding

parameters with directions similarly to an actions list entry. It introduces an interesting redun-

dancy in the P416 language, since the programmer needs to also include the default action in the

actions list. Moreover, the default action and the entry in the list have to be syntactically identi-

cal, except for the directionless parameters. Since there is no action data for the default action at

runtime, the default action property has to specify them all. The directionless parameters are

evaluated at compile time.

A table without a default action property that does not match a given packet has no impact on

packet processing, it is effectively skipped.

entries The optional entries property preconfigures a table’s entries. This can serve to either ini-

tialize the table or, with the help of const, turn it into a static construct that cannot be modified on

the control plane side.

size The optional size property indicates the number of table entries the table should support at

runtime. It is a compile-time known integer. The interpretation of size depends largely on details

of the target architecture, casting some doubt on why it was included in the core language. Some

18 The P4 Language

Code listing 1.13 The synthetic P4 code generated for a table.

enum action_list (T) {
// the name of each enum variant is the name of an action
action_ 1,
action_ 2,
...
action_n

}
struct apply_result (T) {

bool hit;
bool miss;
action_list (T) action_run ;

}

targets may require every table to specify a size, others may use it merely as a hint during dynamic

resource allocation, others still may guarantee that a successfully compiled table can fit at least size
entries. In general, none of these are the case.

Tables can specify additional properties outside of the base set provided by the P416 specification.
8

Control block semantics
Invoking actions: actions can be invoked either implicitly or explicitly. Implicit invocations come from

tables during match-action processing. Explicit invocations are calls from control blocks or other

actions. In the explicit invocation case, directionless parameters follow in parameter semantics.

A table can be invoked explicitly by calling its apply method. This method is synthetic; it is gener-

ated by the compiler. Its return type is a synthetic struct shared with other actions in a given table.

The compiler generates an enum and a struct for each table, both of which can be seen in Listing 1.13.

Here we see a rationale for the requirement that an action list cannot contain two actions with the

same name. The restriction ensures that the corresponding enum variants never clash.

The fields in the apply result(T) struct indicate whether the table hit or missed and which

action was executed.
9

The hit and miss fields are mutually-exclusive, exactly one of them is set when

the action returns.

The match-action pipeline abstract machine
Although the P416 specification does not define an abstract machine for the match-action pipeline, it

does describe the semantics by analogy to imperative programs.

The body of a control block is executed serially, as a sequence of imperative statements. The syntax

restricts the control block body such that the bulk of code within is limited to a special sub-block intro-

duced with the apply keyword. The apply sub-block is the only place where tables can be explicitly

invoked. The control can also invoke other controls or explicitly invoke actions by calling their apply
methods, although it cannot invoke parsers.

The apply block can contain return and exit statements. A return statement immediately ter-

minates execution of the control block and returns control to the caller. An exit statement terminates

execution of the entire control block call chain.

A control block can invoke subroutines in the form of other controls during its execution. This

requires prior instantiation of the sub-controls, either in the calling control block’s body or prior to

invoking a calling control block that is passed a control instance as a parameter. However, P416 offers

8
The specification lists several motivated examples.

9action run will be set to the variant corresponding to the table’s default action on a table miss.

A tour of P416 19

Code listing 1.14 An example of direct type invocation.

control Callee (/* parameters omitted */) { /* ... */ }

control Caller (/* parameters omitted */) {
apply {

// Callee can be treated as an instance
Callee .apply (/* arguments omitted */);

}
}

// the Caller definition above desugars to the following

control Caller (/* parameters omitted */) {
// local instance of Callee
@name(" Callee ") Callee () Callee_inst ;
apply {

// Callee_inst is simply applied
Callee_inst . apply (/* arguments omitted */);

}
}

Code listing 1.15 An example of a parser with constructor parameters.

// a parser with one constructor parameter
parser GenericParser (packet_in b, out Packet_header p)

(bool udpSupport) {
// ...

}
...
// the instantiation specifies all constructor parameters
// topParser is a GenericParser where udpSupport = false
GenericParser (false) topParser ;

syntax sugar for the common case of using a sub-control exactly once. This shortcut is known as direct
type invocation and works even for controls with constructor parameters, discussed in the next section.

An example can be seen in Listing 1.14.

Abstraction via constructor parametrization
Although parsers and control blocks take parameters, these only define the interface between P4 code

and the target architecture. This makes abstraction difficult, as expressing control blocks or parsers with

similar structure requires either code duplication or a reliance on preprocessor macros.
10

To address this

problem, P416 supports constructor parameter lists. Constructor parameters are given in secondary, op-

tional parameter lists, available to control blocks and parsers. Syntactically, they follow the regular

parameters of the given construct. However, at the site of instantiation, the values of constructor pa-

rameters directly follow the type name.

All constructor parameters must be directionless. Instantiations must bind all constructor parame-

ters to compile-time known values. Constructor parametrization offers a light form of templating that

is sufficient for many use cases and saves the user from substituting generic parsers and control blocks

by hand.

10
Which would be a rather dreadful affair.

20 The P4 Language

Code listing 1.16 An example of a P416 deparser.

control Deparser (inout headers hdr , packet_out packet) {
apply {

packet .emit(hdr. ethernet);
packet .emit(hdr.ipv4);
if (hdr.ipv4. isValid ()) {

if (hdr.ipv4. protocol == IPProtocol .UDP) {
packet .emit(hdr.udp);

}
if (hdr.ipv4. protocol == IPProtocol .TCP) {

packet .emit(hdr.tcp);
}

}
}

}

Code listing 1.17 The packet out extern.

extern packet_out {
void emit <T>(in T data);

}

Deparsing
Deparsing is the inverse of parsing, i.e. the process of converting packet headers from their semantic

representation back into a sequence of bytes. A careful reader will observe that the original P414 for-

warding model from Figure 1.1 does not include this step. Indeed, a deparser is not necessary if the

device does not rewrite packets. For example, certain architectures may rely solely on metadata to com-

municate information about packet forwarding from the data plane and possibly include a rewriting

step outside the P4 model.

Nevertheless, deparsing is a common step for many network processors and P416 fully supports

it. However, the language does not include any special syntax for deparsing, which speaks somewhat

to its generality. P416 deparsers are expressed by means of control blocks combined with the special

packet out extern. A value of type packet out denotes a buffer containing the packet to be sent

out.

Listing 1.16 shows an example deparser. The emit method of the packet out extern appends the

given data to the packet buffer. The behaviour of a call to emit has different semantics, depending on

the type of data being emitted.

Headers are emitted only if valid. If the header is invalid, the call to emit behaves like a no-op.

Header stacks have their elements emitted recursively.

Header unions and structs have their fields emitted recursively.

enums and errors cannot be serialized. It is illegal to invoke emit directly or indirectly (through im-

plicit recursive behaviour) on these types.

Base types are emitted as-is, but only indirectly. It is illegal to explicitly invoke emit on a base type.

The recursive behaviour of emit always follows the order of declarations in the P4 source code.

A tour of P416 21

Calling convention
In order to simplify reasoning about function-like constructs, P416 follows the call by copy in / copy out
calling convention. The specification describes the exact steps a conforming implementation needs to

go follow in general
11

to evaluate a function call expression.

1. Arguments are evaluated from left to right as they appear in the function call expression.

2. If a parameter has a default value and no corresponding argument is supplied, the default value
is used as an argument.

3. For each out and inout argument the corresponding l-value is saved (so it cannot be changed by
the evaluation of the following arguments). This is important if the argument contains indexing
operations into a header stack.

4. The value of each argument is saved into a temporary.

5. The function is invoked with the temporaries as arguments. We are guaranteed that the tempo-
raries that are passed as arguments are never aliased to each other, so this “generated” function
call can be implemented using call-by-reference if supported by the architecture.

6. On function return, the temporaries that correspond to out or inout arguments are copied in
order from left to right into the l-values saved in Step 3.

– P416 Language Specification v1.2.3 — p4.org [4]

The calling convention gives calls
12

a semantics that ensures arguments cannot alias one another

and impure functions cannot hold references to P4 code. This design is ultimately motivated by the need

to control the side effects of extern functions and methods, which are arbitrarily powerful. The copy

in / copy out calling convention lets compilers reason about programs in the presence of externs.

The P4 abstract machine
Throughout this chapter, we have occasionally referred to some values as “evaluated at compile time” or

“compile time -bound.” A reader familiar with staged programming, dependent types, or C++ template

instantiation may worry for the compiler performance that unrestricted compile-time evaluation entails.

Fortunately, the P416 specification has a rigorous definition for these terms and clarifies the extent to

which a P4 compiler must evaluate a program during translation.

Compile-time known values are generally constants and stateless constructs that themselves only

depend on other compile-time known values. Since P4 has no loops, no recursion, and no complex

metaprogramming facilities, the set of compile-time known values is finite and can be evaluated in a

single pass.

A P4 program is evaluated in two stages, statically at compile time and dynamically at runtime. The

notion of compile-time evaluation in P4 is closely related to resource allocation of the target device.

Static evaluation proceeds in the order that declarations appear in the source file, beginning at the top

level and recursing into lexical scopes. This pass resolves compile-time known values and determines

the full set of stateful objects that need to be allocated in order to accommodate the program on the

target device.

11
Compiler optimizations could, in specific cases, eliminate some of these steps, provided prior analysis determines such opti-

mizations correct.

12
Of all function-like constructs.

22 The P4 Language

Control plane API
A P4 compiler generates methods for interacting with data plane constructs that can be in any way

controlled or configured at runtime. These are:

value sets

tables

keys

actions

extern instances

To disambiguate references from the control plane to these entities, P416 requires that each such

entity has a unique fully qualified name. Additionally, control block and parser instances also need

unique names, because they contain constructs from the above list.

The P416 specification lays out in detail what names are given to various syntax forms, but these

technicalities are not relevant for the purposes of this thesis. Generally, the control plane name corre-

sponds to the accessor syntax of the construct in P4 code. For example, a slice of the four least significant

bits of the bit string s (s[3:0]) is named s[3:0] in the control plane API. The only thing to note here

is that in cases where a name is not given straightforwardly, the compiler requires a @name annotation

to be attached to the construct. @name can also be used to rename other constructs. The second annota-

tion controlling naming is @hidden, which can be used to hide constructs from the control plane API.

Hidden constructs are not subject to the unique name requirement.

Dynamic evaluation
A P4 program defines the parsers, control blocks, externs, and other constructs that make up the data

plane. However, it is up to the target architecture to decide how and when are all these execution blocks

evaluated at runtime. Packet processing systems often operate concurrently, so the P416 specification

lays out a concurrency model for the data plane.

Without externs, the semantics of concurrent executions is trivial
13

: every parser and control block

is executed in a separate thread with only thread-local storage. Therefore, concurrent executions cannot

interfere, regardless of their interleaving.

externs pose a challenge, however, as their instances are shared between concurrent executions.

The use of externs can thus lead to data races. To combat this, P416 demands that executions of method

calls on extern instances are atomic. Moreover, users can place the @atomic annotation on arbitrary

blocks of code to make their execution atomic as well. The specification mandates that a compiler which

cannot guarantee the requested atomicity must reject the program.

13
Although still very informal, as the concurrency model is only described in English and without much care to define every

referenced term.

Chapter 2

Language Server Architecture

. . . in which we introduce language servers in general and the Language Server Protocol in particular,
outline their relationship to other classes of language tooling, and look at high-level architectural deci-
sions that their use-cases imply.

Language servers have a lot in common with compilers. Like compilers, they have to build up a semantic

model of a program and provide useful diagnostics for invalid or suspicious input along the way. Unlike

a compiler, a language server needs to maintain the semantic model over the course of an editing session.

Rather than operating in batch mode, a language server runs continuously and is expected to provide

feedback within milliseconds.

However, language servers need neither to produce compilation artifacts nor to optimise the pro-

grams they process. Instead, they are effectively special-purpose query engines. Their output is a data

structure optimised for fast querying, such as finding references, definitions, or providing context-

sensitive completion suggestions. From that point of view, it could seem like a language server is merely

a compiler frontend with very little backend logic. Unfortunately, this is not the case.

The requirement for real-time feedback to the developer is the primary constraint on a language

server’s design. For all but the most basic languages and features, instant feedback requires an incre-

mental computation approach and management of state that persists across updates to source files. The

second most important consideration, and one to a large extent not shared with compilers, is resilience

to errors. While a compiler generally expects well-formed input, a language server deals with all sorts

of intermediate states of a document, including files with many syntactic errors, invalid encodings, or

unsaved buffers outside the filesystem.

To make matters worse, while compiler frontend implementations are often guided by a language

specification,
1

the space of invalid programs is unconstrained. Developers of language servers have

to guess what intermediate states a program goes through during development and how to respond

to them. Generating meaningful semantic models from invalid input is a challenging task, but doing

so is often crucial for developers. For example, smart auto-completion in statically typed languages is

expected to provide type-correct suggestions, even as the document being edited is type-incorrect, and

often semantically or even syntactically invalid.

In this chapter, we explore the status quo of language servers, how they differ from conventional

batch-processing compilers, how this gap may narrow in the future, and what makes building interactive

language tooling difficult.

1
Even if, usually, an informal one.

23

24 Language Server Architecture

2.1 The fruits of semantic support

The largest language servers conforming to LSP offer a wide variety of features. The vast majority of

the API surface is optional, however. Upon establishing a connection, the client and server exchange

information about their respective capabilities, establishing a subset of LSP they both support.

The functionality of LSP comes in two main flavours: code comprehension and coding features. The

former subsumes utilities which ease reading and navigating through code, such as Hover (where the

editor displays details about an object under the pointer), Go to Definition, Find References, etc. Utilities

like diagnostics, auto-completion, or code actions are more relevant to the programmer at the time they

are authoring code and belong in the latter category.

Next, we will delve into both categories and take a closer look at what they offer.

2.1.1 Code comprehension in LSP
Code comprehension functionality takes up the majority of LSP’s API surface and has been growing

during the protocol’s evolution. At the time of writing, the latest stable LSP release is version 3.17. The

central features, already present in the initial specification of the protocol, are Go to Definition, Find

References, Document Highlight, Document Link, Hover, Code Lens, and Document Symbols.

Figure 2.1 Find References in Visual Studio Code via rust-analyzer.

Go to Definition and Find References are present in some of the oldest code comprehension tools,

dating back at least to the Unix utility ctags[20]. These let the editor jump from a symbol’s use-site

to its definition and vice versa, just as their names imply. LSP’s Document Highlight request does not

provide syntax highlighting, rather, it serves to visually assist the programmer with locating references

of a given symbol without having to explicitly invoke the Find References feature. Document Highlight

could be merged with Find References functionality, but the LSP maintainers choose to keep them sepa-

rate and allow Document Highlight to report imprecise (“fuzzy”) matches. A response to the Document

Link request lists the hyperlinks embedded in the document. Document Symbols provides a potentially

hierarchical overview of the symbols of a document, which serves the “outline” feature of modern edi-

tors: a tree overview of a program’s constructs, such as modules, classes, fields, and methods. The Hover

feature provides additional contextual information when navigating code. It is typically implemented

The fruits of semantic support 25

1. Go to Declaration

2. Go to Definition (original)

3. Go to Type Definition

4. Go to Implementation

5. Find References (original)

6. Prepare Call Hierarchy

7. Call Hierarchy Incoming Calls

8. Call Hierarchy Outgoing Calls

9. Prepare Type Hierarchy

10. Type Hierarchy Super Types

11. Type Hierarchy Sub Types

12. Document Highlight (original)

13. Document Link (original)

14. Document Link Resolve (original)

15. Hover (original)

16. Code Lens (original)

17. Code Lens Refresh

18. Folding Range

19. Selection Range

20. Document Symbols (original)

21. Semantic Tokens

22. Inlay Hint

23. Inlay Hint Resolve

24. Inlay Hint Refresh

25. Document Color

Figure 2.2 Code comprehension -related requests in LSP 3.17.

Figure 2.3 Signature help in VS Code for Rust shows a pop-up with documentation as well as the signature of

the callee, highlighting the parameter under cursor.

by the client rendering a pop-up box of documentation for a given symbol. Finally, Code Lens is a ver-

satile editor feature for displaying additional information at a given position in a document, such as the

number of references of a type or the code metrics of a procedure[21]. It can trigger an action when

activated, which is used by some servers to run tests or open a Find References dialog.

2.1.2 Coding features in LSP
A shorter but no less important range of API calls supports the developer right when they are authoring

code. The main features are auto-completion, signature help, formatting, and symbol renaming.

Auto-completion offers to fill in code as the programmer is typing, supports ranking results based

on their relevance, on both the server and the client side, and can include a “quick info” description for

each option. Signature help shows parameter name and type information when calling a procedure,

method, or function. Formatting allows a language server to rewrite a document upon request, for

example to conform to a particular code style. The LSP formatting functionality can format either the

entire document, a selected range, or reactively an arbitrary part of the document as the user types.

26 Language Server Architecture

1. Inline Value

2. Inline Value Refresh

3. Moniker

4. Completion Proposals (origi-

nal)

5. Completion Item Resolve

(original)

6. Publish Diagnostics

7. Pull Diagnostics

8. Signature Help (original)

9. Code Action

10. Code Action Resolve

11. Color Presentation

12. Formatting (original)

13. Range Formatting (original)

14. On type Formatting (origi-

nal)

15. Rename (original)

16. Prepare Rename

17. Linked Editing Range

Figure 2.4 Coding language features in LSP 3.17.

Finally, symbol renaming performs a context-sensitive workspace-wide rename of a given symbol.

Later LSP revisions added high-level features not universally applicable to all programming lan-

guages. For instance, version 3.16 added linked editing, which some conforming implementations use to

update opening and closing XML tags seamlessly without the user specifically triggering a rename ac-

tion. Version 3.17 introduced type hierarchy requests, relevant only to programming languages with sub-

typing. On the other hand, more general facets of the protocol see creative use in unintended contexts.

One example is the use of lenses and special comments in the Haskell Language Server project[22] to

provide REPL-like functionality. Another is the LTEX Visual Studio Code extension[23], which provides

spell and grammar checking in Markdown and LATEX documents, as well as in programming language

comments. Even though LSP has no built-in support for extracting the comments of a document or for

spell checking in general, LTEX achieves this with a combination of non-LSP APIs and by leveraging

LSP diagnostics and code actions to provide suggested spellings.

Figure 2.5 The Haskell Language Server project supports in-editor expression evaluation in comments prefixed

with >>> and checking QuickCheck properties in comments starting with prop>.

Lessons from the compiler world 27

Language servers for popular technologies

Many of the most widely used programming languages have corresponding language server im-

plementations. The table below presents VS Code extensions and programming languages in

order of their install count and popularity, respectively. The number of extension installations

is tracked by the VS Code marketplace (https://marketplace.visualstudio.com/search?
target=VSCode&category=Programming%20Languages&sortBy=Installs).

Rank VS Code extension Popular languages, according to StackOverflow[24]

1 Python Python

2 C/C++ Java

3 Java C#

4 C# C/C++

5 Go PHP

6 PHP PowerShell

7 PowerShell Go

8 Dart Rust

9 Ruby Dart

10 Rust Ruby

We have chosen to exclude some technologies from this comparison. JavaScript, TypeScript, CSS, and

HTML support is built into VS Code and therefore does not show up in VS Code marketplace statistics

for installed language extensions. SQL, while popular, has too many dialects to present a faithful

picture through the lens of extension installations alone. These technologies were in turn filtered out

from StackOverflow’s list of most popular languages to highlight the differences in ranking.

2.2 Lessons from the compiler world

We have previously established how closely does the task of implementing language servers relate to

writing compilers. Let us expand on the possible architectural similarities of the two kinds of language

tools in this section.

2.2.1 The pipeline
Traditional compiler architectures build around a pipeline approach. The compiler begins with a fron-

tend, typically composed of a lexer
2
, a parser, and a step of semantic analysis. The second major part is

the backend, a combination of an optimiser and a code generator. The lexer ingests bytes of text, turn-

ing them into tokens for the parser. The parser matches the tokens against the productions of a given

language’s grammar, producing abstract syntax trees. Semantic analysis then verifies that the parsed

program adheres to the language’s semantic restrictions. For example, semantic analysis ensures that

variables can only be referenced after their declaration or definition, break statements can only appear

in the bodies of loops, and the program follows typing rules.

2
Although the lexer/parser distinction is maintained, partly for historical reasons, in many modern compilers, the jobs of

lexers and parsers are conceptually identical. These compositional algorithms transform input of one type (usually a string) into

output of another, verifying certain properties along the way. Concretely, they match the input against some grammar.
3

3
A keen reader will note that without restrictions on the class of grammars, this statement makes the description no more

concrete.

https://marketplace.visualstudio.com/search?target=VSCode&category=Programming%20Languages&sortBy=Installs
https://marketplace.visualstudio.com/search?target=VSCode&category=Programming%20Languages&sortBy=Installs

28 Language Server Architecture

Is it the frontend’s responsibility to identify and report user errors, terminating the compiler pipeline

as soon as it identifies invalid input. This is a practical choice, since later stages of the compiler can as-

sume the program valid and not worry about possible errors. Furthermore, computation of the backend

stages would be wasted on invalid input anyway, as the compiler could give no guarantees about the

produced executable form.
4

One important step that typically happens on the frontend/backend boundary is lowering. This pro-

cess turns the AST obtained and validated by previous stages into the compiler’s intermediate represen-
tation (IR). The IR represents a simplified language devoid of syntactical sugar and various programmer-

facing niceties. For example, various types of conditional expressions are usually represented by a single

IR instruction.
5

Similarly, different forms of loops lower to a few canonical translations. Freedoms in the

source-level code style are eliminated to make reasoning about the program further down the pipeline

easier. Nested expressions are flattened using short-lived local variables, often imposing an evaluation

order. Overall, intermediate representations tend to be semantically closer to the target architecture.

After lowering, the backend takes over. The optimizer, if it is involved in the compilation, itera-

tively transforms the IR in a series of analysis and rewriting steps that attempt to minimise certain cost

functions.
6

Optimization can sometimes cross the boundaries of source-level code. That is, certain IR

programs do not have a corresponding source program, because the lowering phase is not a surjec-

tive mapping. This is a necessary freedom for eliminating overhead in implementations of high-level

programming languages, but makes mapping issues in the final executable more difficult.
7

Finally, the pipeline terminates in a code generation phase which emits the final executable form.

This step requires rewriting the IR program in order to fit the target constraints. The amount of work

the compiler needs to do in this last stage depends on the semantic differences between the structure

of the intermediate representation and the target language. It could be as simple as writing the IR to

an output file, if the intermediate and target languages perfectly match. For conventional processor

targets, however, code generation necessitates at least instruction selection and register allocation, as

well as maintaining some level of conformance to standard calling conventions.

Where the pipeline falls short
In recent years, the feedback loop from writing code to executing it has gotten shorter and shorter.

The case for early feedback is simple: programmers want results as soon as possible. Moreover, since

the programmer typically uses the compiler in an online fashion, changes to the source files tend to be

small and local. Compiling small changes in the source program often only requires small changes to

the output. With proper caching, most information can be reused from previous runs of the compiler.

With semantic language support receiving more and more attention, the overlap between compilers

and interactive language tooling is only getting clearer. Both classes of programs now need to maintain

and incrementally update databases of semantic information about the codebase in order to respond

quickly to user requests. With semantic information at hand, it is only natural for both classes to in-

tegrate tightly with editors and development environments to provide features reliant on high-level

information. Both compilers and language servers should be resilient to errors in the user input and

continue processing as far as is practical, for example to report semantic errors even in the presence of

syntactical issues. Just as with optimisers and other components useful across many frontends, reim-

plementing a lot of complicated functionality is tiresome and unnecessary.

Unfortunately, the well-established pipeline approach to compiler construction is, despite its many

innovations, difficult to adapt to the modern incremental workloads. The interfaces between stages do

not share a principled, universal structure, requiring each phase to implement its own variant of caching

4
Whether that is machine code in a platform-specific executable, bytecode for a virtual machine, source code in the case of

transpilers, or something else entirely.

5
Which may in fact conceptually be an instruction, or a node of the IR graph.

6
The actual cost functions may vary based on what steps the optimizer takes. For example, the metrics used for inlining can

differ from heuristics consulted for loop-invariant code motion.

7
Which is of major concern for debugging, and consequently one of the primary reasons why native executable debuggers

tend to operate better on programs compiled with fewer optimizations.

Lessons from the compiler world 29

and cache-invalidation. Running phases concurrently for independent sections of the input program can

be problematic, because older pipeline-based compilers often rely on global variables.
8

Conventional incremental compilers choose a granularity of input file, compilation unit, or module,

and often run several pipelines in parallel, culminating in a sequential step that combines the constituent

products into the final executable. This approach achieves very short compilation and recompilation

times for many programs, but tends to produce suboptimal code, since the optimiser can only see a

subset of the code and is limited in attempting whole-program optimisation and cross-module inlining.

Nowadays, linkers (the usual last step in the production of executables) counter this downside with

link-time optimization (LTO), trading linking time for better quality code. Running many pipelines

in parallel also tends to increase the size of the intermediate compilation artifacts, because dead code

elimination cannot safely remove unused definitions, possibly referenced by other compilation units.

2.2.2 The pipeline as a sequence of queries
With these new developments and performance constraints in mind, recent compiler construction tech-

niques put incremental computation at the centre of their design. For example, Roslyn,
9

a collection of

compilers and analysers for C# and Visual Basic, builds heavily on incremental computation. A Roslyn

compiler takes centre stage in a number of interactive and batch applications, maintaining a semantic

model of the codebase. Higher-level tools then query and update this model via several APIs designed

for static analysis, code refactoring, and other use-cases[25]. The entire stack is optimised for inter-

active use. For example, the parsers utilise a combination of persistent “green” abstract syntax trees

and transient “red” trees. The second, ephemeral type is built on-demand, optimised for querying, and

discarded with edits[26], while the “green” tree serves as the source of truth.

As more and more language tools interact with and rely on the compiler, compiler authors find

themselves adapting the pipelined architecture to emit additional intermediate artifacts. If this evolution

happens organically over long periods of time and without a methodical approach, compiler codebases

can degenerate into clouds of complex, intertwined code.

A possible remedy is to adapt the pipeline architecture in ways that make it simple to incrementalise

and memoize its stages. The key insight is that the pipeline is conceptually a collection of data-dependent

queries. If we express the compiler in the language of a general query engine, caching and incremental

computation features come for free. Propagating changes through the data dependency graph is sim-

ple, and this change processing subsumes cache invalidation. The interfaces between compiler queries

effectively become high-level APIs, with little extra work. These interfaces are shared with other appli-

cations, making integration simpler and less error-prone than in many traditional pipeline architectures,

which maintain separate sets of internal and external interfaces.

A functional approach
Even though the traditional pipeline and its query-based reimagination are conceptually close, their

implementations are vastly different. Typical compilers mutate global state during the course of a com-

pilation. If any stages produce additional data, they populate side channels in the form of global maps

and tables for further passes to use. This can lead to subtle compiler bugs when compiler passes are

added, removed, or reordered. Mutable state is also an obstacle to parallelism and makes it difficult to

reason about where exactly in the pipeline does one intermediate form change into another.

On the other hand, the query-based approach is inherently functional. Compiler passes are ordered

by their data dependencies and the amount of available parallelism is limited only by the number of

independent queries at a given stage. A query-based compiler should avoid using mutable state, so that

the query engine can correctly propagate changes and update memoized functions.
10

8
This is no fault of the architecture as a whole, but it is an important practical consideration.

9
This product is officially called The .NET Compiler Platform SDK but it is arguably better known under the Roslyn codename.

10
Some hidden mutability may still be beneficial for performance optimisations. For example, a hidden mutable map can serve as

a backing store for string interning. Naturally, the programmer needs to be vigilant around any such places in the implementation

30 Language Server Architecture

Queries in the wild
Although query-based approaches promise many benefits, their adoption in large compilers seems

scarce. Large compilers and compiler frameworks, including LLVM and p4c, still build on the tradi-

tional pipeline model.

One exception is The Rust compiler. Although it was not originally built around a query system,

one has been retrofitted into it. Major parts of the pipeline between rustc’s high-level IR and LLVM IR

are now implemented as incremental interdependent queries[27].

Smaller compiler projects have ventured further into the query-based realm of data dependencies

and memoization. Examples can be seen in Sixten,
11

Sixty,
12

and Eclair.
13

Olle Fredriksson developed a

dedicated library for query-based build systems dubbed rock14
that all three projects build on.

and verify that the introduced side-effects do not compromise correctness of the entire system.

11https://github.com/ollef/sixten
12https://github.com/ollef/sixty
13https://github.com/luc-tielen/eclair-lang
14https://github.com/ollef/rock

https://github.com/ollef/sixten
https://github.com/ollef/sixty
https://github.com/luc-tielen/eclair-lang
https://github.com/ollef/rock

Chapter 3

Design

The high-level architecture of the P4 Analyzer project marks a departure from conventional language

server designs in that it primarily targets WebAssembly and aims to run entirely within the Visual Studio

Code editor. This decision makes installation simpler for the end-user, cross-platform support easier for

the developers, and security policy conformance trivial for any security teams involved.

The main mode of operation is thus as follows: the language server runs in a WebAssembly worker

of the P4 Analyzer VS Code extension. The extension itself defines a simple TextMate[28] grammar

specification and serves as a thin client for the server. The main bulk of LSP functionality is delegated

to the editor. VS Code forwards edits to open files to the language server, which updates its model of

the workspace. When VS Code asks for completions, hover, diagnostics, or other features, the analyzer

recomputes necessary information on-demand and responds appropriately.

In addition to the WebAssembly executable, the P4 Analyzer project also compiles to a native bi-

nary that executes in a standalone process and communicates with an arbitrary LSP-compliant client

over a socket. However, the standalone language server requires support for certain features related to

filesystem functionality that fall outside the protocol specification. We will discuss these later.

3.1 The P4 Analyzer pipeline
The first step in our pipeline is lexical analysis. Somewhat unconventionally, our lexer produces tokens

even for the preprocessor (i.e. it analyses preprocessor directives). Our preprocessor then operates at

the lexeme level, rather than running separately as the first step. This requires a reimplementation of the

preprocessor, which is already necessitated by fault-tolerance and WebAssembly support requirements

anyway. On the upside, a custom preprocessor simplifies tracking of source positions, which are crucial

for accurate diagnostics.

3.1.1 Lexical analysis
The P416 specification defines a YACC/Bison grammar for the language. However, this grammar has

several flaws.

For example, it reuses the parserTypeDeclaration nonterminal in parserDeclarations but

imposes extra restrictions: a parser declaration may not be generic. This requires checking the child

production outside the grammar specification.

However, the primary issue is that the grammar design does not maintain a clean separation between

a parser and a lexer and requires these two components to collaborate.

The grammar is actually ambiguous, so the lexer and the parser must collaborate for parsing the
language. In particular, the lexer must be able to distinguish two kinds of identifiers:

31

32 Design

Type names previously introduced (TYPE IDENTIFIER tokens)
Regular identifiers (IDENTIFIER token)

The parser has to use a symbol table to indicate to the lexer how to parse subsequent appearances of
identifiers.

– P416 Language Specification v1.2.3 — p4.org [4]

The specification goes on to show an example where the lexer output depends on the parser state

and mentions that the presented grammar “has been heavily influenced by limitations of the Bison parser
generator tool.”

The tight coupling between the lexer and the parser, as well as the decision to remain in the confines

of an outdated parser generator despite its many drawbacks, are in our opinion examples of poor design

for a language born in the twenty-first century. We have elected not to follow this ambiguous grammar

specification in the P4 Analyzer project and instead build a pipeline that is tolerant to invalid input to

the fullest extent possible, while accepting the same language.

Our lexer’s task is to convert the input string into a stream of lexemes. The lexer is a standalone finite

state machine independent of any later stages in the pipeline. It has a secondary output for reporting

diagnostics, but this side channel is write-only.

Error tolerance
Error tolerance at the lexer level means proceeding with lexeme stream generation despite nonsensical

input. We emit a special error token whenever such input is encountered. Additionally, the lexer vali-

dates numeric constants, which can specify width, base, and signedness. These properties could be out

of bounds for a given literal. In these cases, the lexer should still produce a valid token while logging

an error-level diagnostic. The server can then report the diagnostic to the user once lexing completes.

3.1.2 The preprocessor
P416 requires support for a preprocessor, very similar to the C preprocessor, directly in the specification.

However, it does not ask implementors to support the entirety of cpp. Notably, only simple, parameter-

less macros are allowed. This is already enough to necessitate running the preprocessor before starting

the parser, however. Consider the code in Listing 3.1. These examples show how grammatically invalid

code may become valid and vice versa, based only on the right-hand sides of preprocessor macros.

An important consideration for a correct implementation of preprocessor directives is their context-

sensitive nature. Expressions for conditional inclusion in directives #if, #elif, and #ifdef are them-

selves subject to macro substitution and thus have to be kept in plain text or lexeme form until their

evaluation.

One more thing to note here is the mechanism of document inclusion. Before analysing a P416

source file (at least to some degree), the full extent of its dependencies is unknown and arbitrary. The

language has no module system and imposes no restriction on the paths a source file can include. This

poses a challenge for lexeme-level preprocessors, as a file needs to be lexed before it can be included. To

deal with this, a correct implementation should collect the paths a source file can depend on, lex their

contents, and include their lexemes in the preprocessed lexeme stream. This is of particular note in our

implementation, as the collection of dependencies reports this dependency set to the editor to set up

filesystem-level watches. Subsequent edits to the dependencies, or even to the dependency set itself,

can be processed incrementally.

Error tolerance
Error tolerance in the preprocessor means reporting errors and warnings about malformed input to

the user while continuing to interpret directives in the input stream on a best-effort basis. Mistakes in

preprocessor directives come in several flavours.

The P4 Analyzer pipeline 33

Code listing 3.1 P416 preprocessor example

define op +
// # define op 2

define paren)

header h {
bit <1> field;

}

control pipe(inout h hdr) {
Checksum 16() ck;
apply {

// arithmetic expression could be invalid
h.field = 1 op 3;
// a parse without prior macro substitution would fail
ck.clear(paren;
// this would parse correctly , but macro substitution
// will reveal a parse error
ck. update (op);

}
}

The directive itself may be malformed, either due to a typo in its name or a problem in some of its

arguments. The former case will simply be lexed as an unrecognized directive and reported as such.

It is possible to suggest fixes for common typos to the user. A problem in the directive’s argument or

arguments needs to be resolved based on its meaning. For example, an #include directive could point

to a non-existent file, the preprocessor should then report this error and proceed as if the file were not

included. This is likely to lead to further errors down the road, but without knowledge of the referenced

file’s contents, it is the best a preprocessor can do.

Another class of errors is semantic and context-sensitive in nature: a directive may be used in the

incorrect context or missing where it is expected. For example, a user may forget to add an #endif
directive, or include more than one #else directive for a condition. Unfortunately, guessing the user’s

intention when faced with any syntactic or semantic problems in the input is a tall order. No guarantees

of optimality can be given, as is often the case with similar heuristics. In the duplicate #else problem,

the preprocessor could be reasonably expected to either skip over the first #else’s body, the second

#else’s body, or assume either of the directives was inserted by accident and pretend it is not a part

of the input stream. We choose to skip the second #else’s body in our design, but other strategies are

equally valid.

3.1.3 The parser
The next natural step in the pipeline is the act of finding the productions of a P416 grammar that match

the preprocessed input program; parsing. While the steps up to this point are fairly simplistic and

efficient, parsing is a resource-intensive process. A language server is expected to provide real-time

feedback to the developer, including auto-completion suggestions updated with every keypress. Low

latency is crucial to the end-user and the parser lies on every critical path from user input to high-level

results shown in the editor’s interface. At the same time, a typical P416 program is likely to consist of

a long prefix that does not change between edits and a user-maintained suffix that changes frequently.

This is because a P416 program usually begins with #include directives referencing platform-specific

files with constants, error codes, extern definitions and other shared code. These constraints and con-

ditions are a very good fit for the field of incremental parsing.

34 Design

An incremental parser aims to reuse previously computed information about the input in response

to small perturbations. Our parser specifically builds on incremental packrat parsing[29], which places

few constraints on grammar design and is easy to implement in an extensible manner.

Packrat parsing[30] is a linear time algorithm for recognizing productions of a parsing expression

grammar (PEG). It relies heavily on memoization to avoid costly backtracking, at the expense of memory

overhead. Dubroy et al. augment the packrat memoization table to support incrementality. The result

is a parser that is at once simple, general, incremental, and efficient.

Our packrat parser conceptually handles parsing expression grammars[31], a class of unambigu-

ous grammars for context-free languages. PEGs are syntactically similar to context-free grammars.

However, the choice operator in CFGs is ambiguous, whereas PEGs use ordered choice, which greedily

attempts to match alternatives in order. The right-hand side of a parsing expression grammar rule can

also contain predicates, which attempt to match without consuming input. Predicates are useful for

positive and negative lookahead.

𝑒 ::= 𝜀 (empty string)

| t (terminal)

| 𝑒1𝑒2 (sequence)

| 𝑒1 |𝑒2 (ordered choice)

| 𝑒∗ (zero or more)

| 𝑒+ (one or more)

| 𝑒? (zero or one)

| &𝑒 (positive lookahead)

| !𝑒 (negative lookahead)

t ∈ tokens

Figure 3.1 Syntax of parsing expression grammars.

The syntax of typical parsing expression grammars can be seen in Figure 3.1. Our grammars are

slightly simpler: we implement neither positive lookahead nor the + and ? operators. Positive looka-

head can be simulated by nesting two negative lookaheads, and the + and ? operators can desugar to

combinations of general repetition, ordered choice, and the empty string. These decisions were made

to simplify the parser implementation, but in turn complicate the grammar with verbose and repetitive

definitions. It remains to be seen whether they survive future refactorings. A further restriction is that

all grammar rules must contain at most one level of nesting, i.e. the grammar must be given in a normal

form where the immediate subtrees of a rule’s right-hand side are all non-terminals.

Our design differentiates between a generic parser library and a parser built on it. Grammars are

defined using a small DSL implemented with Rust’s declarative macros. An example can be seen in

Listing 3.2. The grammar! macro expands to a data structure representing the grammar itself. This

structure can be passed to a smart constructor, which validates the grammar
1

and returns a parser. The

implementation interprets the grammar DSL at runtime.

If future testing and development necessitate optimization of the parser, there is room to build a

parser compiler for the DSL and generate a more efficient solution from the same grammar. Procedural

Rust macros
2

could take care of integrating the parser compiler into the build process.

1
Ensuring all referenced non-terminals are in fact defined, and that start is present.

2
While declarative macros can only perform a very restricted set of rewriting operations on token trees, procedural macros

can run arbitrary Rust code during expansion.

The P4 Analyzer pipeline 35

Code listing 3.2 Example grammar in our DSL.

grammar ! {
// The initial non - terminal is called ‘start ‘
start => p4 program ;
// The postfix ‘rep ‘ operator corresponds to Kleene star
ws => whitespace rep;
// Non - terminals can expand to terminals by wrapping the terminal in
// parentheses
whitespace => (Token :: Whitespace);

// The right hand side can also be a sequence separated by commas
p4 program => ws , top_level_decls , ws;
// ... or a choice separated by pipes
top_level_decls =>

top_level_decls_rep | top_level_decls_end | nothing ;
top_level_decls_rep => top_level_decl , ws , top_level_decls ;
top_level_decls_end => (Token :: Semicolon);

direction => dir_in | dir_out | dir_inout ;
// Rules can also match tokens against an arbitrary Rust pattern ,
// which is useful for identifying soft keywords
dir_in => { Token :: Identifier (i) if i == "in" };
dir_out => { Token :: Identifier (i) if i == "out" };
dir_inout => { Token :: Identifier (i) if i == "inout" };

}

Incremental updates
Since the parser is required to process incremental updates to the input sequence, it is not simply a

function from a sequence of tokens to a parse tree. Rather, the parser takes a reference to a read-write

lock of the input. It defines an apply edit method that acquires a write lock of the input sequence,

applies the change, invalidates relevant entries in the memoization table, and releases the lock.

To initiate parsing, the user invokes the parse method, which acquires a read lock on the input for

the duration of parsing.

Error reporting
Error handling in parsing is far more nuanced than in any of the previous steps, which is not surprising,

considering the relative complexity of the languages that the individual steps recognize and process. A

good parser should attempt to provide as much feedback as possible to the user, even when faced with

unexpected tokens. It is not enough to simply stop at the first error, and it is not enough to be imprecise

about the locations of problems in the source file. Both of these considerations pose some challenges.

The desire to continue parsing malformed input to provide feedback to the developer has a long

history[32]. Error recovery has been studied at length in parsing expression grammars as well[33, 34,

35, 36, 37]. The PEG case is interesting, because a packrat parser relies on failures to guide choice

selection. By the time a parsing failure propagates to the starting non-terminal, the information about

the context that led to it is lost.

Specifically, when encountering unexpected input, a packrat parser unwinds the stack to a “calling”

ordered choice operator, and attempts to parse the next alternative. The next alternative is likely the

wrong choice, however. The recently failed alternative should have matched, but encountered invalid

input. Thus, many other alternatives may fail before an error eventually propagates to the user. The end

result is that the programmer receives an unhelpful error message that could potentially come from a

position many tokens before the actual problem’s origin. This specific challenge has a popular practical

36 Design

solution in the form of the farthest failure heuristic[38]. It is based on the observation that the alternative

that should have matched will probably process the longest prefix of the token stream.

While the farthest failure heuristic addresses the location problem in many practical situations, it

is not a general solution. Worse, the imprecise error reporting of PEGs has other implications as well.

Notably, a common consideration for error messages is the suggestion of expected tokens to the user,

to provide a rudimentary selection of possible fixes. However, the compounding failures of PEG choice

operators grow the set of expected tokens, which makes the suggestions in error messages irrelevant.

Intuitively, the problem with PEG error reporting is that non-terminals deeper down the parse tree

have no way of distinguishing between an error in the input that will ultimately cause the overall parse

to fail, and an error that can be recovered from in an ordered choice operator higher up.

To address this problem, Maidl et al. conservatively extended the PEG formalism with error la-
bels[34]. Error labels semantically

3
stand for errors that a grammar rule can raise when encounter-

ing unexpected input. This differentiates errors caused by nonsensical input from benign parse failures,

and thus solves the problem of accurate error reporting in parsing expression grammars.
4

The extension

comprises several components:

The parsing expression grammar is extended with a finite set of labels 𝐿.

A special failure label fail, fail ∉ 𝐿, is also added to the grammar. This label indicates a benign

failure that can be caught by the ordered choice operator.

The grammar of parsing expression grammar right-hand sides is enriched with the throw operator,

which takes a label 𝑙 ∈ 𝐿 as an argument. An error thrown by throw cannot be caught by ordered

choice and thus indicates a parse error that should be immediately reported to the user.

Rules are modified to include instances of the throw operator.

The error label extension is reminiscent of exception handling in ordinary programming languages,

and indeed was originally modelled after it, complete with an extension of ordered choice playing (the

role of) catch[35]. However, the catch-like mechanism is not necessary for error recovery, so we will

not discuss it further.

Error labels returned by the parsing process can be mapped to readable error messages. Because

parsing terminates early, the set of expected tokens is kept accurate. In addition, having a single, obvious

point of failure also makes location tracking trivial.

Tracking source locations
Tracking precise source locations is a common requirement for compilers and is arguably even more

important for language servers. Our lexer provides the precise span of source code for every token and

our preprocessor keeps track of where a token came from during file inclusion. It is important to track

the entire “inclusion path” for every token, which consists of segments of file identifiers and spans, since

a single file can be included multiple times from multiple locations, with or without detours through

other files.

The consideration for the parser here is twofold, namely, to continue to track the source locations

of tokens and grammar productions in the format provided by the preprocessor, and to maintain incre-

mentality while doing so.

The first consideration requires some care in pattern-matching of tokens – the grammar DSL is not

intended to pattern-match on token inclusion paths. Additionally, an important question is how to

assign inclusion paths to grammar productions. This is trivial for terminals, lookahead, and alterations.

The interesting case is how to handle sequences and repetitions. While a grammar production could, in

theory, store the set of all inclusion paths that it depends on, doing so is wasteful and not very helpful.

Instead, we can inspect the inclusion paths of the first and the last token in the sequence or repetition.

3
In the sense that we are adding semantic information to the process that analyzes syntax.

4
At the expense of extensive manual annotations of the grammar. See [37] for a possible remedy.

The P4 Analyzer pipeline 37

If these two paths match (meaning they differ at most in the last span), we can simply use this path,

adjusting the final span. This loses information about tokens from the middle of the sequence, but note

that subtrees will still include it. If the two paths do not match, we can take their longest common suffix,

again adjusting the last span.
5

To maintain incrementality, the parser needs to reuse previous parse results in response to small

changes of the input. Using actual token spans would be problematic, since a single character change

could invalidate the spans of potentially all tokens in the file. Instead, the parser needs to work with the

relative notion of token count. Every CST node stores the number of tokens that it spans (the number

of tokens in its subtree). A traversal of the CST can then reconstruct the absolute offset of each node

without ever explicitly storing it.

One more thing to note here is that the units of offsets in the CST, and therefore of the reconstructed

spans, are individual tokens. These need to be converted to spans in the source text before being reported

to the user.

3.1.4 Abstract syntax trees
The presented packrat parser produces a concrete syntax tree (CST). A concrete syntax tree is a full-

fidelity representation of a grammar production, meaning it includes all tokens and non-terminals,

including comments, whitespace, and intermediate non-terminals introduced to circumvent the con-

straints of the grammar DSL. Preserving full-fidelity syntax trees is important to maintain the parser’s

incremental performance and avoid expensive backtracking, but CSTs include a lot of state that is unim-

portant to further processing and analysis steps.

Moreover, the shape and types of these trees are determined by the structure of the grammar. That

is, nodes in a CST are alterations, repetitions, sequences, etc. Analysis code would instead prefer a typed

API to access the semantic, abstract nodes in the syntax tree, without interference from trivia tokens

and non-terminals.

Tree abstractions

These use cases are covered by AST translation. The ast module provides three layers of abstraction

over CSTs: GreenNodes, SyntaxNodes, and AstNodes.

A GreenNode wraps a successful parsing result (an ExistingMatch<P4GrammarRules, Token>)

in a reference-counted cell, to simplify reuse. It provides a children method that returns an iterator

over the children of a node. This iterator is a heap-allocated dyn type to smooth over differences in the

backing CST node.
6

The children are GreenNodes themselves, wrapped transparently by the iterator.

GreenNodes form immutable, functional trees. They are cheap to clone (thanks to reference counting)

and can be structurally shared, although not between threads.
7

A SyntaxNode is a zipper data structure that maintains a parent pointer (and therefore the path to

the root of the tree) along with the absolute offset in tokens. It again provides a children method

with an iterator that yields SyntaxNodes. These zippers are useful for traversing GreenNodes. A

SyntaxNode also carries a reference to the grammar definition and keeps track of the non-terminal

that it is in, by storing it alongside the parent pointer. This is important, as neither the GreenNode nor

the CST provide this information.

Finally, an AST node is a typed wrapper around a SyntaxNode. Unlike the previous two types,

it is not a single struct. Instead, there is a different type for each AST node, but all of them share

a common interface via the AstNode trait. This trait provides methods to cast a SyntaxNode to a

particular AstNode type, to access the backing SyntaxNode, and to intuit the node’s offset and span.

5
Note that our implementation is incomplete in this regard and presently only reports token spans local to the parsed file.

6
Future extension and optimisation efforts may decide to change the CST representation to avoid such indirections in tree

traversals.

7
This could be amended by using atomic reference counting cells instead.

38 Design

Code listing 3.3 The signature of the ast node! macro.

macro_rules! ast_node {
($non_terminal :ident $(, methods : $($method :ident) ,+)?) => {

paste! {
// see later listings for the body of this macro

}
};

}

Code listing 3.4The main body of the ast node! macro generates newtypes for SyntaxNodes and implements

AstNode for them.

#[derive (Debug , Clone , PartialEq , Eq , PartialOrd , Ord , Hash)]
pub struct [< $non_terminal :camel >] {

syntax : SyntaxNode ,
}

impl AstNode for [< $non_terminal :camel >] {
fn can_cast (node: & SyntaxNode) -> bool {

node.kind () == P4 GrammarRules :: $non_terminal
}

fn cast(node: SyntaxNode) -> Option <Self > {
if node.kind () == P4 GrammarRules :: $non_terminal {

Some(Self { syntax : node })
} else {

None
}

}

fn syntax (& self) -> & SyntaxNode { &self. syntax }
}

// continues with optional methods

Many AST nodes share the binary representation with their underlying SyntaxNodes, meaning they

only have a single field of the SyntaxNode type. Additionally, the implementations of the AstNode
trait are often structurally similar. To avoid code duplication and simplify maintenance, the ast module

provides the ast node! macro, through which most AST nodes are defined.

The signature and top level of the macro are shown in Listing 3.3. Note the inclusion of the paste!
block: the paste crate

8
provides means for converting the case of identifiers. We use this throughout

the ast node! macro to generate the struct name from the name of the non-terminal. Rust types

are conventionally written in camel case while methods, as well as our non-terminals, have snake case

names.

The body of the macro defines the struct and implements the AstNode trait for it. To generate

documentation comments, the macro’s body gives AST node structs the doc attribute. The line can

be seen below, it was omitted from Listing 3.4 to avoid confusing the lexer:

#[doc = "AST node for [‘P4GrammarRules::" $non terminal "‘]."]
Finally, the invocation of ast node! can optionally contain a list of methods to implement on the

struct itself, outside the scope of the AstNode trait. The implementation of this functionality can be

8https://crates.io/crates/paste

https://crates.io/crates/paste

The P4 Analyzer pipeline 39

Code listing 3.5 The optional methods section of the ast node! macro’s body.

$(impl [< $non_terminal :camel >] {
$(

#[doc = "Fetch the ‘" $method "‘ child of this node ."]
pub fn $method (

&self
) -> impl Iterator <Item = [< $method :camel >]> {

fn go(
node: SyntaxNode

) -> Box <dyn Iterator <Item = SyntaxNode >> {
match node. trivia_class () {

TriviaClass :: SkipNodeAndChildren =>
Box :: new(std :: iter :: empty ()),

TriviaClass :: SkipNodeOnly =>
Box :: new(node. children (). flat_map (go)),

TriviaClass :: Keep =>
Box :: new(std :: iter :: once(node)),

}
}

self. syntax ()
. children ()
. flat_map (go)
. filter_map ([< $method :camel >]:: cast)

}
)+

})?

seen in Listing 3.5. These generated methods provide type-safe access to children while transparently

handling both the skipping of trivia nodes and invalid underlying CSTs. Each returns an iterator without

a guarantee of exactly how many children will be iterated over, smoothing over issues of arity. It is up

to the users of this API to detect and report such errors.

The entire AST translation layer was inspired by the internals of rust-analyzer,
9

an LSP-compliant

language server for Rust. While rust-analyzer’s syntax tree manipulations work with a different under-

lying representation and rely on a recursive descent parser, the high-level interfaces, the split between

GreenNodes, SyntaxNodes, and AstNodes, as well as the heavy reliance on code generation, are all mo-

tivated directly by rust-analyzer’s developer documentation. We would like to thank the rust-analyzer

developers for maintaining a comprehensive high-level documentation of their approach and including

known alternative approaches, e.g. from Roslyn and IntelliJ, that other developers can learn from.

Identifying trivia nodes
The reader will observe that we have carelessly included a previously undiscussed type in the ast node!
macro’s body: the TriviaClass enum. Listing 3.5 makes it quite clear that the TriviaClass type

determines which subtrees to iterate over when invoking a generated method of an AstNode type.

Our grammar DSL has a few extra features. The author of a grammar can identify the trivia non-

terminals by including annotations in the grammar definition. Listing 3.6 shows how to use these anno-

tations. By default, every non-terminal has a TriviaClass of Keep, which means it will be enumerated

by an AstNode’s iterator.

It is worth noting that the macro for defining the P4 grammar is also the source of truth for the set of

non-terminals: it simultaneously defines the P4GrammarRules enum. This is very useful for developers,

9https://rust-analyzer.github.io/

https://rust-analyzer.github.io/

40 Design

Code listing 3.6 An example of trivia annotations and doc comments in the grammar DSL.

grammar! {
@SkipNodeAndChildren at_symbol close_paren ;
@SkipNodeOnly maybe_direction parameter_comma ;

/// Semantic non - terminal that marks an identifier as a definition .
///
/// For example , in ‘parser MyParser <T>(inout T x) { }‘,
/// ‘MyParser ‘, ‘T‘, and ‘x‘ are all definitions ,
/// and possible targets for go -to definition .
definition => ident;

// other non - terminals omitted
}

since it avoids code duplication and enables features like go-to definition or find references right in the

grammar definition. Using an enum to represent non-terminals is also a requirement for exhaustiveness

checking, in case any later steps in the pipeline require it. The grammar DSL forwards documentation

comments above productions to the variants of P4GrammarRules.

3.2 Query-based memoization

In section 2.2.2, we have touched on the query-based approach in certain modern compilers, and some

of its implications regarding scalability and parallelism for large incremental systems. Motivated by the

query system in the Rust compiler and other incremental computation projects, some of the developers

behind rust-analyzer and the Rust compiler proper have developed an incremental computation library

called Salsa.

Salsa lets the Rust programmer structure their program as a graph of interdependent query-like

computations. All the user needs to do is set up data structures representing the inputs to the sys-

tem and the intermediate products of its computation. Equipped with a set of library-defined macros

and attributes, the user can then annotate functions in their program such that they are automatically

memoized in a Salsa database.

Salsa macros transform user-provided structs into simple numerical identifiers. Each field of a

struct gets a method which takes as a parameter a reference to the Salsa database. Calling this method

extracts the object’s associated data from the database, either by cloning or by returning a reference.

This choice is, too, governed by a macro.

Apart from Salsa-tracked intermediary values and inputs to the system, Salsa also supports auto-

matic interning of (using the same type transformation as for other values) and side-channels for extra

output. These side channels are conceptually monoids, a Salsa computation can push new values to the

side channel. One can query the database for the entire log of values for a given invocation of a Salsa

computation. Since computations are keyed by their inputs, the inputs have to be provided in this case

as well.

Salsa’s monoids are known as “accumulators.” P4 Analyzer uses them for diagnostic output. The

type of diagnostics is shared among the lexer, the preprocessor, and the parser. Each of these steps is

driven by a Salsa computation, itself driven by a request to extract its data from the database (computing

on-demand when necessary). The user can then extract the diagnostics for any of these steps.

Salsa implements a pull model. Each tracked computation (a function annotated with a special

macro) informs the system of the dependencies on other computations or inputs. The library keeps note

of these dependency edges. Naturally, for dependency tracking to work correctly, Salsa computations

must depend solely on their inputs. In general, they should avoid any side effects.

Query-based memoization 41

All these functionalities are packaged up in the Analyzer type provided by the analyzer-core
crate. This is the single point of contact between the analyzer core and the surrounding machinery for

LSP integration. The core knows nothing of the protocol used to communicate with clients.

3.2.1 Integrating with the file system
A major simplification in the P4 Analyzer design compared to rust-analyzer is that we rely on a single

source of truth for the contents of buffers and files on-disk alike. All of these are provided by the editor.

Updates to open files are already handled by LSP, but an #include directive pointing to an unopened

file would pose a problem. To work around this, we rely on VS Code’s workspace API, which allows an

extension to watch for changes to unopened files.

The reason why P4 Analyzer does not follow this approach is historical: the addition of the workspace

API to VS Code is a recent development that has not yet made it to other editors.

42 Design

Chapter 4

Results

Our implementation lays the foundation for the P416 language server and verifies the feasibility of the

design decisions made in chapter 3. We have implemented the P4 Analyzer pipeline, which consists

of the lexer, the preprocessor, a generic parser library, and a proof-of-concept grammar for P416. P4

Analyzer integrates tightly with Visual Studio Code and other LSP clients, providing autocompletion,

diagnostics, and limited go-to-definition functionality. The server is resilient to common errors in user

input. The project’s integration with VS Code ensures that the core analyzer is restarted if it encounters

fatal errors.

4.1 Overview of implemented features

Figure 4.1 Autocompletion in Visual Studio Code. The blue items are suggested from definitions recognised by

the parser, while grey items are simply identifiers in the preprocessed token stream.

The lexer and preprocessor parts of the pipeline have been implemented quite thoroughly, with good

error recovery and feature sets on par with the design presented in chapter 3. Lexer and preprocessor

43

44 Results

Figure 4.2 The set of suggested identifiers depends on preprocessor directives.

error channels propagate to the LSP client with understandable error messages. The preprocessor, in

particular, attempts to recover from missing or superfluous directives, and suggests possible fixes to the

user. It also detects circular file inclusion problems.

One feature that is currently lacking is the precise tracking of source locations via the “inclusion

path” mechanism. This requires some changes in the preprocessor, but not a significant refactor. One

more concern is the evaluation of complex conditions for conditional inclusion directives. If the con-

dition contains references to macros outside the defined construct, these macros could, depending on

their definition, change the syntactic meaning of the condition, and therefore influence evaluation. A

simple fix for this issue is to store conditions as strings and parse them on-demand after performing

macro expansion, at the expense of some computational overhead. However, such use cases are rare, so

this is not considered a priority for the project.

The parser, on the other hand, is only a proof-of-concept. While the test suite indicates that the

library handles edits correctly, integrating this custom approach to incrementality with the Salsa library

is not straightforward. Currently, the parser reparses preprocessed token streams from scratch. Parsing

is still memoized as a Salsa query, so it happens on-demand and only after edits. Error labels, discussed

in the parser design section, have not been implemented yet, and the parser still reports at most one

error to the user.

While we deem the abstract syntax tree API rather robust, owning to its success in the rust-analyzer

project, its scope and usefulness hinges on a well-designed grammar for the P416 language. The cur-

rent grammar is very lacking in this regard. The go-to definition functionality relies on the semantic

definition non-terminal and its correct use in the grammar. Currently, it does not respect lexical

scoping – the grammar requires a larger overhaul, possibly supported by extensions to the supported

PEG constructs, in order to meaningfully recognise scoped syntactic constructs.

4.2 Benchmarking

An important consideration for an interactive developer tool is its performance. Our test suite includes

lexer and parser throughput measurements in the form of micro-benchmarks based on the criterion
library.

1

Table 4.1 shows the results of the throughput benchmarks. Some context is necessary to understand

these measurements.

1https://crates.io/crates/criterion

https://crates.io/crates/criterion

Benchmarking 45

Figure 4.3 The preprocessor continues to produce output even in the presence of several errors.

Benchmark Min Mean Max

lexer baseline 4.95 ms 5.00 ms 5.06 ms

lexer timing 130.46 ms 132.41 ms 134.61 ms

parser baseline 0.31 ms 0.31 ms 0.31 ms

parser timing 187.33 ms 189.38 ms 191.63 ms

Table 4.1 Lexer and parser timings, statistics of 100 samples.

Lexer baseline This benchmark measures only the overhead of copying the input and converting it

from a UTF-8 string into a vector of individual codepoints. It does not involve the lexer at all.

Lexer timing This benchmark runs our lexer on example P416 code adapted from the specification[4].

This is roughly 200 lines of code, concatenated with itself 1, 000 times. The total measurement is the

time it takes to lex this input (200, 000 lines, about 4.8 megabytes when packed as UTF-8).

Parser baseline The parser baseline measures the overhead of constructing a parser and initializing it

with input. It is measured on the same input string and grammar as the parser timing benchmark.

It copies the input string into a vector (similarly to the lexer baseline), then back into a UTF-8 string.

This benchmark does not invoke the parser.

Parser timing This benchmark measures the time it takes to parse a long arithmetic expression in a

simple grammar, shown in Listing 4.1. The expression is a randomly generated sequence of integers,

with addition and subtraction operations interspersed throughout. The input string has only 100, 000

characters. Note that input generation is not a part of the benchmark and that the benchmark

harness verifies that the expression parses correctly before initiating the measurement.

As the measurements show, the lexer is fast with throughput well over one million lines of P4, or

over 30 megabytes per second. The parser is significantly slower: when operating on character tokens

46 Results

Figure 4.4 Rudimentary support for go-to definition is also available.

(Unicode code points), it can only parse roughly 0.5 megabytes per second.
2

4.3 The open-source project

P4 Analyzer was open-sourced on April 18, 2023. The project is available on GitHub under the umbrella

of the P4 language organization.
3

It is permissively licensed under the terms of the Apache 2.0 license.

Despite its fairly quiet release, it gathered significant attention both internally within Intel and from the

P4 community.

We have discovered that in 2023, a research group at McMaster University has independently started

a very similar project. Their P416 language server is also developed in Rust and is available from the

ACE Design organization’s GitHub.
4

We have since gotten in touch with the researchers working on it

and are looking for ways to collaborate.

4.4 Future work

As is clear from our results so far, there is much more work left to be done. After finalising the parser,

future development efforts should aim to cover more of the API surface of LSP and provide useful fea-

2
Assuming a packed representation, to relate to the given lexer measurements, even though, in this case, the parser works

with a vector of 4-byte characters instead.

3https://github.com/p4lang/p4analyzer
4https://github.com/ace-design/p4-lsp

https://github.com/p4lang/p4analyzer
https://github.com/ace-design/p4-lsp

Future work 47

Code listing 4.1 The grammar used in the parser benchmark.

let grammar = grammar! {
start => num , expr_chain ;
expr_chain => expr_choice rep;
expr_choice => add_chain | sub_chain ;
add_chain => plus , num;
sub_chain => minus , num;
plus => "+";
minus => "-";
num => digit , many_digits ;
many_digits => digit rep;
digit => n0 | n1 | n2 | n3 | n4 | n5 | n6 | n7 | n8 | n9;
n0 => "0";
n1 => "1";
// etc.

};

tures. In particular, we would like to develop lints
5

and code navigation features built on the AST

abstraction framework. Rust makes usage of iterators ergonomic and efficient. We remain optimistic

that the architecture of P4 Analyzer presented in this thesis will serve future extensions well.

5
Soft warnings about code style and possible bugs.

48 Results

Conclusion

We have designed a complex and incremental query-based language server architecture for the P416

language, including the lexing, preprocessing, and incremental parsing steps. We have implemented a

proof-of-concept language server based on this architecture in Rust and integrated it with Visual Stu-

dio Code using the Language Server Protocol. The language server provides lexer and parser -based

autocompletion, diagnostics for lexer, preprocessor, and parser errors, as well as go-to definition func-

tionality for a subset of the P416 language.

The code base is open to extensions and based on innovative designs from modern compilers and

language tooling. All implemented features are backend-agnostic.

49

50 Results

Work in progress

51

52 Results

Appendix A

Sample appendix

Whatever doesn’t belong to the main part should be put here.

53

54 Sample appendix

Bibliography

1. BOSSHART, Pat; DALY, Dan; GIBB, Glen; IZZARD, Martin; MCKEOWN, Nick; REXFORD, Jen-

nifer; SCHLESINGER, Cole; TALAYCO, Dan; VAHDAT, Amin; VARGHESE, George, et al. P4: Pro-

gramming protocol-independent packet processors. ACM SIGCOMM Computer Communication Re-
view. 2014, vol. 44, no. 3, pp. 87–95.

2. BUDIU, Mihai; DODD, Chris. The P416 Programming Language. SIGOPS Oper. Syst. Rev. 2017,

vol. 51, no. 1, pp. 5–14. issn 0163-5980. Available from doi: 10.1145/3139645.3139648.

3. CONSORTIUM, The P4 Language. P416 Language Specification v1.0.0 — p4.org [online]. 2017. [vis-

ited on 2023-03-06]. Available from: https://p4.org/p4- spec/docs/P4- 16- v1.0.0-
spec.html#sec-p4-language-evolution--comparison-to-previous-versions-p4-
v10v11.

4. CONSORTIUM, The P4 Language. P416 Language Specification v1.2.3 — p4.org [online]. 2022. [vis-

ited on 2023-03-06]. Available from: https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html.

5. DOENGES, Ryan; ARASHLOO, Mina Tahmasbi; BAUTISTA, Santiago; CHANG, Alexander; NI,

Newton; PARKINSON, Samwise; PETERSON, Rudy; SOLKO-BRESLIN, Alaia; XU, Amanda; FOS-

TER, Nate. Petr4: formal foundations for p4 data planes. Proceedings of the ACM on Programming
Languages. 2021, vol. 5, no. POPL.

6. SULTANA, Nik; SONCHACK, John; GIESEN, Hans; PEDISICH, Isaac; HAN, Zhaoyang; SHYAMKU-

MAR, Nishanth; BURAD, Shivani; DEHON, André; LOO, Boon Thau. Flightplan: Dataplane Disag-

gregation and Placement for P4 Programs. In: NSDI. 2021, vol. 21, pp. 571–592.

7. ANTICHI, Gianni; SHAHBAZ, Muhammad; GENG, Yilong; ZILBERMAN, Noa; COVINGTON, Adam;

BRUYERE, Marc; MCKEOWN, Nick; FEAMSTER, Nick; FELDERMAN, Bob; BLOTT, Michaela, et

al. OSNT: Open source network tester. IEEE Network. 2014, vol. 28, no. 5, pp. 6–12.

8. NAMKUNG, Hun; LIU, Zaoxing; KIM, Daehyeok; SEKAR, Vyas; STEENKISTE, Peter; LIU, G; LI, A;

CANEL, C; PHILIP, AA; WARE, R, et al. Sketchlib: Enabling efficient sketch-based monitoring on

programmable switches. In: 19th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 22). 2022, pp. 743–759.

9. LIATIFIS, Athanasios; SARIGIANNIDIS, Panagiotis; ARGYRIOU, Vasileios; LAGKAS, Thomas. Ad-

vancing SDN from OpenFlow to P4: A Survey. ACM Computing Surveys. 2023, vol. 55, no. 9, pp. 1–

37.

10. Open Networking Foundation – p4c; P4 Language Consortium — p4.org [online]. [visited on 2023-

03-07]. Available from: https://p4.org/products/p4c/.

11. 9. DPDK Release 20.11 2014; Data Plane Development Kit 23.03.0-rc1 documentation — doc.dpdk.org
[online]. [visited on 2023-03-06]. Available from: https://doc.dpdk.org/guides/rel_notes/
release_20_11.html.

55

https://doi.org/10.1145/3139645.3139648
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html#sec-p4-language-evolution--comparison-to-previous-versions-p4-v10v11
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html#sec-p4-language-evolution--comparison-to-previous-versions-p4-v10v11
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html#sec-p4-language-evolution--comparison-to-previous-versions-p4-v10v11
https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html
https://p4.org/products/p4c/
https://doc.dpdk.org/guides/rel_notes/release_20_11.html
https://doc.dpdk.org/guides/rel_notes/release_20_11.html

56 Bibliography

12. Intel – P4 Insight; P4 Language Consortium — p4.org [online]. [visited on 2023-03-07]. Available

from: https://p4.org/products/intel-p4-insight/.

13. BARROS, Djonathan; PELDSZUS, Sven; ASSUNÇÃO, Wesley KG; BERGER, Thorsten. Editing sup-

port for software languages: implementation practices in language server protocols. In: Proceed-
ings of the 25th International Conference on Model Driven Engineering Languages and Systems. 2022,

pp. 232–243.

14. BOUR, Frédéric; REFIS, Thomas; SCHERER, Gabriel. Merlin: a language server for OCaml (expe-

rience report). Proceedings of the ACM on Programming Languages. 2018, vol. 2, no. ICFP, pp. 1–

15.

15. HANDY, Alex. Codenvy, Microsoft and Red Hat collaborate on Language Server Protocol - SD Times
— sdtimes.com [online]. [visited on 2023-03-07]. Available from: https://sdtimes.com/che/
codenvy-microsoft-red-hat-collaborate-language-server-protocol/.

16. KRILL, Paul. Microsoft-backed Language Server Protocol strives for language, tools interoperability —
infoworld.com [online]. [N.d.]. [visited on 2023-03-07]. Available from: https://www.infoworld.
com/article/3088698/microsoft-backed-langauge-server-protocol-strives-for-
language-tools-interoperability.html.

17. HARPER, Robert. Practical Foundations for Programming Languages [1/4] – Robert Harper – OPLSS
2019 [online]. 2019-06-19. [visited on 2023-03-07]. Available from: https://youtu.be/8cXl2Tfhy_
Q?t=2169.

18. KOHLER, Eddie; MORRIS, Robert; CHEN, Benjie; JANNOTTI, John; KAASHOEK, M Frans. The

Click modular router. ACM Transactions on Computer Systems (TOCS). 2000, vol. 18, no. 3, pp. 263–

297.

19. WEIK, Martin. Fiber optics standard dictionary. Springer Science & Business Media, 2012.

20. HIEBERT, Darren. Exuberant Ctags — ctags.sourceforge.net [online]. [visited on 2023-03-14]. Avail-

able from: https://ctags.sourceforge.net/.

21. KENCANA, Gilang Heru; SALEH, Akuwan; DARWITO, Haryadi Amran; RACHMADI, R Rizki;

SARI, Elsa Mayang. Comparison of maintainability index measurement from Microsoft Codelens

and line of code. In: 2020 7th International Conference on Electrical Engineering, Computer Sciences
and Informatics (EECSI). IEEE, 2020, pp. 235–239.

22. Haskell Language Server – GitHub.com [online]. [visited on 2023-03-15]. Available from: https:
//github.com/haskell/haskell-language-server.

23. LTEX [online]. [visited on 2023-03-15]. Available from: https://valentjn.github.io/ltex/
faq.html#whats-the-difference-between-vscode-ltex-ltex-ls-and-languagetool.

24. Stack Overflow Developer Survey 2022 [online]. 2022-06-22. [visited on 2023-03-16]. Available from:

https://survey.stackoverflow.co/2022.

25. [online]. [visited on 2023-04-04]. Available from: https://learn.microsoft.com/en- us/
dotnet/csharp/roslyn-sdk/compiler-api-model?source=recommendations.

26. [online]. 2012-06-08. [visited on 2023-04-04]. Available from: https://ericlippert.com/2012/
06/08/red-green-trees/.

27. TEAM, Rust compiler. Rust Compiler Development Guide [online]. [visited on 2023-04-04]. Available

from: https://rustc-dev-guide.rust-lang.org/overview.html#queries.

28. GRAY, James Edward. TextMate: Power Editing for the Mac. Raleigh, NC: Pragmatic Programmers,

2007.

29. DUBROY, Patrick; WARTH, Alessandro. Incremental packrat parsing. In: Proceedings of the 10th
ACM SIGPLAN International Conference on Software Language Engineering. 2017, pp. 14–25.

30. FORD, Bryan. Packrat parsing: simple, powerful, lazy, linear time, functional pearl. ACM SIGPLAN
Notices. 2002, vol. 37, no. 9, pp. 36–47.

https://p4.org/products/intel-p4-insight/
https://sdtimes.com/che/codenvy-microsoft-red-hat-collaborate-language-server-protocol/
https://sdtimes.com/che/codenvy-microsoft-red-hat-collaborate-language-server-protocol/
https://www.infoworld.com/article/3088698/microsoft-backed-langauge-server-protocol-strives-for-language-tools-interoperability.html
https://www.infoworld.com/article/3088698/microsoft-backed-langauge-server-protocol-strives-for-language-tools-interoperability.html
https://www.infoworld.com/article/3088698/microsoft-backed-langauge-server-protocol-strives-for-language-tools-interoperability.html
https://youtu.be/8cXl2Tfhy_Q?t=2169
https://youtu.be/8cXl2Tfhy_Q?t=2169
https://ctags.sourceforge.net/
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://valentjn.github.io/ltex/faq.html#whats-the-difference-between-vscode-ltex-ltex-ls-and-languagetool
https://valentjn.github.io/ltex/faq.html#whats-the-difference-between-vscode-ltex-ltex-ls-and-languagetool
https://survey.stackoverflow.co/2022
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/compiler-api-model?source=recommendations
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/compiler-api-model?source=recommendations
https://ericlippert.com/2012/06/08/red-green-trees/
https://ericlippert.com/2012/06/08/red-green-trees/
https://rustc-dev-guide.rust-lang.org/overview.html#queries

Bibliography 57

31. FORD, Bryan. Parsing expression grammars: a recognition-based syntactic foundation. In: Proceed-
ings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 2004,

pp. 111–122.

32. GRAHAM, Susan L; RHODES, Steven P. Practical syntactic error recovery. Communications of the
ACM. 1975, vol. 18, no. 11, pp. 639–650.

33. REDZIEJOWSKI, Roman R. Mouse: from parsing expressions to a practical parser. In: Concurrency
specification and programming workshop. 2009.

34. MAIDL, André Murbach; MASCARENHAS, Fabio; IERUSALIMSCHY, Roberto. Exception handling

for error reporting in parsing expression grammars. In: Programming Languages: 17th Brazilian
Symposium, SBLP 2013, Brası́lia, Brazil, October 3-4, 2013. Proceedings 17. Springer, 2013, pp. 1–15.

35. MEDEIROS, Sérgio de; MASCARENHAS, Fabio. A parsing machine for parsing expression gram-

mars with labeled failures. In: Proceedings of the 31st Annual ACM Symposium on Applied Comput-
ing. 2016, pp. 1960–1967.

36. MEDEIROS, Sérgio de; MASCARENHAS, Fabio. Syntax error recovery in parsing expression gram-

mars. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing. 2018, pp. 1195–

1202.

37. MEDEIROS, Sérgio Queiroz de; JUNIOR, Gilney de Azevedo Alvez; MASCARENHAS, Fabio. Au-

tomatic syntax error reporting and recovery in parsing expression grammars. Science of Computer
Programming. 2020, vol. 187, p. 102373.

38. FORD, Bryan. Packrat parsing: a practical linear-time algorithm with backtracking. 2002. PhD thesis.

Massachusetts Institute of Technology.

58 Bibliography

Contents of the enclosed medium

readme.txt ... stručný popis obsahu média

exe ... adresář se spustitelnou formou implementace

src
impl..zdrojové kódy implementace

thesis... zdrojová forma práce ve formátu LATEX

text..text práce

thesis.pdf ... text práce ve formátu PDF

59

	Acknowledgments
	Declaration
	Abstract
	Summary
	Acronyms
	Introduction
	The P4 Language
	What's in a switch
	A tour of P4 16
	Syntax and semantics

	Language Server Architecture
	The fruits of semantic support
	Code comprehension in LSP
	Coding features in LSP

	Lessons from the compiler world
	The pipeline
	The pipeline as a sequence of queries

	Design
	The P4 Analyzer pipeline
	Lexical analysis
	The preprocessor
	The parser
	Abstract syntax trees

	Query-based memoization
	Integrating with the file system

	Results
	Overview of implemented features
	Benchmarking
	The open-source project
	Future work

	Sample appendix
	Contents of the enclosed medium

