
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Implementation of OntoUML schemas in graph databases –

case study

Bc. Jiří Zikán

Ing. Michal Valenta, Ph.D.

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2022/2023

Instructions

The aim of the thesis is to investigate the suitability of graph databases and the

implementation of integrity constraints for implementing models expressed in the

OntoUML notation. There is work that has been done on the implementation of OntoUML

constructs in relational databases. Graph databases may be better suited for this task.

The result of this work can provide a basis for technical publications and also a basis for

implementing a specific procedure for transforming an OntoUML schema into a graph

database in the OpenPonk tool. The actual implementation of the transformation in

OpenPonk can then be implemented as another bachelor's or master's thesis.

1. Familiarize yourself with the current state of the OntoUML specification, which is still

evolving.

2. Familiarize yourself with at least two graph databases (such as Neo4j and Janus Graph)

and their implementation of checking integrity constraints.

3. Together with your supervisor, propose suitable model examples of OntoUML schemas

and propose their implementation in the chosen graph database (or both).

4. Execute and test the implementation.

5. Discuss the results.

Electronically approved by Ing. Michal Valenta, Ph.D. on 8 June 2022 in Prague.

Master’s thesis

Implementation of OntoUML schemas in
graph databases – case study

Bc. Jiř́ı Zikán

Department of Software Engineering
Supervisor: Ing. Michal Valenta, Ph.D.

April 30, 2023

This thesis is dedicated to the loving memory of my dear grandfather,
RNDr. Milan Kočǐŕık, CSc. (1940-2023).

Acknowledgements

In the first place, I would like to express my sincere gratitude to my supervisor
Ing. Michal Valenta, Ph.D., for his guidance, patience, motivation, and always
an optimistic point of view. His expertise led me to the topic of my thesis,
and his continuous support enabled me to complete it.

Besides my supervisor, I would like to express my special thank to my
dearest Ing. Kristýna Panešová for her understanding, encouragement, and
kindness, not only during the time I spent writing this thesis.

Also, I would like to thank my dear friend Ing. Jan Kuběna for his support
and valuable advice related to the topic of this thesis.

Last but not least, my thanks go to all members of my family for the care,
support, and background with which they have provided me. Without them,
none of this would indeed be possible.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in partic-
ular that the Czech Technical University in Prague has the right to conclude
a license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on April 30, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Jǐŕı Zikán. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Zikán, Jǐŕı. Implementation of OntoUML schemas in graph databases – case
study. Master’s thesis. Czech Technical University in Prague, Faculty of Infor-
mation Technology, 2023.

Abstrakt

Diplomová práce se zabývá transformaćı ontologických konceptuálńıch mo-
del̊u do grafových databáźı a implementaćı souvisej́ıćıch integritńıch omezeńı.
Jako prvńı tato práce analyzuje vhodnost několika rozd́ılných grafových da-
tabázových systémů a zd̊uvodňuje volbu grafové databáze Neo4j jakožto nej-
vhodněǰśı pro daný účel. Dále práce představuje obsáhlou proceduru pro trans-
formaci OntoUML diagramů do seznamu specifických integritńıch omezeńı
a popisuje implementaci těchto integritńıch omezeńı v Neo4j. Zmı́něná pro-
cedura je následně použita pro instanciaci ukázkového OntoUML modelu. In-
stanciovaný model je také d̊ukladně otestován s ćılem zpětně ověřit správnost
transformačńı procedury. Nakonec práce pojednává o dosažených výsledćıch
a zabývá se možným navazuj́ıćım výzkumem. Ve výsledku tato práce ukazuje,
že je možné provést instanciaci validńıho OntoUML modelu do grafové da-
tabáze, ale bohužel neńı možné použ́ıt stejné principy instanciace pro všechny
typy grafových databáźı.

Kĺıčová slova ontologické konceptuálńı modelováńı, transformace koncep-
tuálńıch model̊u, vývoj ř́ızený modely, grafové databáze, OntoUML, Neo4j

ix

Abstract

The master’s thesis deals with the transformation of ontological conceptual
models into graph databases and with the implementation of related integrity
constraints. At first, the thesis analyzes the suitability of several different
graph database systems and justifies the choice of the Neo4j graph database
as the most suitable one for the given purpose. Next, it introduces a compre-
hensive procedure for the transformation of OntoUML diagrams into a list of
specific integrity constraints and describes the precise implementation of these
integrity constraints in the Neo4j. The mentioned procedure is subsequently
used for the instantiation of an example OntoUML model. Instantiated model
is also tested in order to verify the correctness of the transformation proce-
dure. Finally, the thesis discusses the achieved results and addresses possible
future work. As a result, this thesis shows that it is possible to instantiate
a valid OntoUML model in a graph database, yet it is not possible to use the
same principles of instantiation for all types of graph databases.

Keywords ontological conceptual modeling, transformation of conceptual
models, model-driven development, graph databases, OntoUML, Neo4j

xi

Contents

Introduction 1

1 OntoUML 3
1.1 Types and Individuals . 3
1.2 Identity and Sortality . 4
1.3 Rigidity . 4
1.4 Existential dependence . 5
1.5 Class stereotypes . 5
1.6 Relationship stereotypes . 7

2 Graph databases 9
2.1 SQL versus NoSQL databases 9
2.2 Graph models and properties 10
2.3 Neo4j . 12
2.4 JanusGraph . 12
2.5 TigerGraph . 13

3 Example OntoUML model 15

4 Analysis of database suitability 17
4.1 Criteria of suitability . 17
4.2 Suitability of considered databases 18

5 Design of model instantiation 21
5.1 Mapping between OntoUML and Neo4j constructs 21
5.2 Transformation of OntoUML into integrity constraints 24

5.2.1 Integrity constraints imposed by attributes 24
5.2.2 Integrity constraints imposed by stereotypes 26
5.2.3 Integrity constraints imposed by generalizations 27
5.2.4 Integrity constraints imposed by associations 29

xiii

5.3 Implementation of integrity constraints in Neo4j 30
5.3.1 Constraint to check if a property is unique 31
5.3.2 Trigger to check a data type of a property 31
5.3.3 Trigger to check if a property is present 32
5.3.4 Trigger to check if a label is in a combination 32
5.3.5 Trigger to check if a label is not in a combination 34
5.3.6 Triggers to check if a relationship is present 34

6 Instantiation of example model 37
6.1 Automated transformation tool 37
6.2 Kinds and Properties . 40
6.3 Subkinds . 42
6.4 Categories . 43
6.5 Phases . 44
6.6 Roles, RoleMixin and Relator 46

7 Testing of instantiated model 49
7.1 Positive testing . 49
7.2 Negative testing . 51

7.2.1 Kinds and Properties 51
7.2.2 Subkinds . 53
7.2.3 Categories . 54
7.2.4 Phases . 55
7.2.5 Roles, RoleMixin and Relator 57

7.3 Automated testing . 59

8 Discussion 61
8.1 Benefits of proposed approach 61
8.2 Possible issues of proposed approach 62
8.3 Future works . 63

Conclusion 65

Bibliography 67

A Abbreviations 73

B Procedure transforming OntoUML diagrams 75

C Input C# representation of the example model 77

D Output constraint names of the instantiated model 79

E Testing data for the instantiated model 81

F Content of the enclosed CD 83

xiv

List of Figures

1.1 Taxonomy of endurant types in UFO – class diagram 5

3.1 Example OntoUML model – class diagram 16

6.1 OntoUML diagram metamodel – class diagram 38
6.2 Neo4j constraint model – class diagram 39
6.3 DiagramInstantiator design model – class diagram 40
6.4 Example OntoUML model (Kinds) – class diagram 40
6.5 Example OntoUML model (Subkinds) – class diagram 42
6.6 Example OntoUML model (Categories) – class diagram 43
6.7 Example OntoUML model (Phases) – class diagram 45

7.1 Visualization of inserted testing data – labeled-property graph . . 50
7.2 Results of NUnit automated testing utility – screenshot 59

xv

List of Tables

4.1 Comparison of graph database system features 19

5.1 Mapping between OntoUML and Neo4j constructs 23
5.2 Meaning of Neo4j constructs in the context of OntoUML 23

7.1 Summary results of positive testing 51
7.2 Summary results of negative testing 58

xvii

List of Listings

1 Pseudocode adding ICs to ensure data type of attributes 24
2 Pseudocode adding ICs to ensure presence of attribute values . 25
3 Pseudocode adding ICs to ensure uniqueness of ID attributes . 25
4 Pseudocode adding ICs to ensure all instances have an identity 26
5 Pseudocode adding ICs to ensure instances have a single identity 27
6 Pseudocode adding ICs to ensure generalizations between classes 28
7 Pseudocode adding ICs to ensure GS IsDisjoint property 28
8 Pseudocode adding ICs to ensure GS IsCovering property . . . 29
9 Pseudocode adding ICs to ensure presence of associations . . . 30
10 Template of constraint to check if a property is unique 31
11 Template of trigger to check a data type of a property 31
12 Template of trigger to check if a property is present 32
13 Pseudocode calculating prerequisite inputs for trigger templates 33
14 Template of trigger to check if a label is in a combination . . . 33
15 Template of trigger to check if a label is not in a combination . 34
16 Template of trigger to check if a relationship is present (assign) 35
17 Template of trigger to check if a relationship is present (remove) 35
18 Template of trigger to check if a relationship is present (delete) 36
19 Constraints of instantiated example model – Kinds 41
20 Constraints of instantiated example model – Subkinds 43
21 Constraints of instantiated example model – Categories 44
22 Constraints of instantiated example model – Phases 46
23 Constraints of instantiated example model – Roles, RoleMixin . 47
24 Configuration enabling database triggers in Neo4j 50
25 Names of negative test cases for Kinds 51
26 Negative test of attribute value datatype – Kinds 52
27 Negative test of attribute value presence – Kinds 52
28 Names of negative test cases for Subkinds 53
29 Negative test of IsCovering GS property – Subkinds 53
30 Negative test of IsDisjoint GS property – Subkinds 54

xix

LIST OF TABLES

31 Names of negative test cases for Categories 54
32 Negative test of assigned identity – Categories 55
33 Negative test of generalization – Categories 55
34 Names of negative test cases for Phases 55
35 Negative test of generalization – Phases 56
36 Negative test of IsCovering GS property – Phases 56
37 Names of negative test cases for Roles 57
38 Negative test of assigned identity – Roles 57
39 Negative test of association presence – Roles 58

xx

Introduction

With the rapid development of information and communication technolo-
gies, the demand for high-quality and high-complex software products is also
rapidly increasing. An obvious consequence of the growing demand is the
growing number of business entities involved in software development. Un-
fortunately, in practice, it can be observed that there exist many companies
which are still unable to properly use software engineering methodologies and
implement a truly systematic approach to software development. This fact can
potentially have a very negative impact on the delivery time, price, and also
on the overall quality of their software products.

Without any doubt, one of the most crucial instruments for a systematic
approach to software development is conceptual modeling. Conceptual model-
ing is a key part of the methodology called model-driven development (MDD),
but its importance in software engineering goes further beyond. Although
there already exist well-founded methodologies for conceptual modeling that
are based on coherent formal theories and allow their users to create compre-
hensive conceptual models, their use is still not part of the common practice
of many, especially smaller software development companies. The real way to
convince these software companies to use such methodologies is to improve
the connection between the resulting conceptual models and their actual im-
plementation in today’s commonly used software development technologies,
i.e., popular programming languages and database systems.

This master’s thesis deals explicitly with the conceptual modeling language
OntoUML and the related formal theory of Unified Foundational Ontology
(UFO). Since researchers are well aware of the issues outlined above, research
has already been conducted dealing with practical methods of transforming
OntoUML conceptual models into relational databases [1][2]. Although rela-
tional databases are still among the most used database systems, other types
of databases, such as graph databases, are also becoming very popular today
thanks to their significant advantages in specific use cases, including social
networking or data lineage.

1

Introduction

This thesis aims to investigate the suitability of graph databases and the
implementation of integrity constraints for the instantiation of models ex-
pressed in the OntoUML notation. In accordance with the set goal, the thesis
attempts to verify the following research hypotheses:

H1 It is hypothesized that it is possible to instantiate a valid OntoUML model
in a graph database and implement all necessary integrity constraints.

H2 It is hypothesized that it is possible to use the same principles of instan-
tiation for all graph databases.

In order to verify the research hypothesis, the thesis primarily contains
a case study that demonstrates the proposed way of how can be the example
OntoUML model instantiated in the chosen graph database, including the
implementation of all necessary integrity constraints resulting from the model
and given by underlying theory. The knowledge gained during this case study
will become the basis for future research in this area and specifically for the
implementation of procedures enabling the fully automated transformation
of the OntoUML conceptual models into graph databases. These procedures
will subsequently serve not only software developers to ensure the integrity of
data in their information systems but also domain experts in the design and
validation of OntoUML models describing their domain of interest.

The structure of this master’s thesis consists of eight subsequent chapters.
The first chapter deals with the ontological conceptual modeling language
OntoUML, its important constructs, and related formal theories, which are
essential for the conducted case study. The second chapter describes the enu-
meration of selected graph database systems, their properties, capabilities,
and their integrity constraints mechanisms. The third chapter introduces the
example OntoUML model and related problem domain on which the instanti-
ation in a graph database is later demonstrated. The fourth chapter analyzes
the suitability of individual graph database systems and justifies the choice
of the Neo4j graph database as the most suitable one for the instantiation
of OntoUML models. The fifth chapter deals with the design of model in-
stantiation – defines the mapping between OntoUML and Neo4j constructs,
precisely describes the way of transformation of OntoUML constructs into the
set of integrity constraints, and specifies methods for implementation of these
integrity constraints in the Neo4j database system. The sixth chapter demon-
strates the practical application of the proposed approach on instantiation
of the example OntoUML model. The seventh chapter deals with the testing
of the instantiated model and test-case-based verification that all necessary
integrity constraints are preserved. Finally, the last chapter discusses the ben-
efits and possible issues of the proposed approach and outlines where research
in this area should go further.

2

Chapter 1
OntoUML

OntoUML is an ontology-driven structural modeling language grounded on
the Unified Foundational Ontology. It is built as an extension of a popu-
lar general-purpose Unified Modeling Language (UML) [3]. Its models capture
type-level structures expressed by modified UML class diagrams together with
constraints written in the Object Constraint Language (OCL). The basis for
the previous version of the OntoUML was initially proposed in Giancarlo
Guizzardi’s Ph.D. thesis in 2005 [4]. Recently, the previous OntoUML, to-
gether with the underlying UFO, was redefined by a set of publications into
a newer version of OntoUML termed OntoUML 2.0 [5] [6] [7].

As an extension of UML, OntoUML defines a set of class and association
stereotypes carrying a specific ontological meaning defined by the underlying
theory. Together with a set of additional syntactic constraints, it is ensured
that every valid OntoUML model is compliant with the UFO [5, sec. 4].

This modeling language is designed to facilitate the development of precise
and expressive domain-specific models that are well-aligned with the under-
lying ontology. According to its authors, there is empirical evidence showing
that OntoUML also significantly improves the quality of conceptual models
without requiring additional effort to produce them [6, sec. 1].

1.1 Types and Individuals

In the UFO, there exist two distinct sorts of things – Types and Individuals.
Types are abstract things whose purpose is to classify common characteris-
tics of Individuals. Individuals are concrete things that instantiate Types and
follow their characterizations. Unlike in the standard theory of object-oriented
paradigm (OOP), in the theory of the UFO, an Individual can be an instance
of multiple Types at the same time [8, sec. 3.1].

Types can be more closely divided into Endurant Types and Relation Types.
Instances of Endurant Types exist in time and can change in a qualitative
way while maintaining their identity [9, sec. 2]. In the OntoUML, Endurant

3

1. OntoUML

Types are represented as classes, while Relation Types are represented as
relationships between classes [6, sec. 4].

From the perspective of formal theory, there exists an instantiation re-
lation between the Type and its instantiating Individual. Types are defined
as things that can be instantiated, while Individuals are things that cannot.
Moreover, between Types, there exists a specialization relation. If a subtype is
a specialization of a supertype, all instances of the subtype are also instances
of the supertype. The theory of the UFO also states that anytime two Types
have a common instance, they have to share a supertype or a subtype for this
instance [10, sec. 2.1].

1.2 Identity and Sortality

The theory of UFO precisely distinguishes several different sorts of Endurant
Types based on their modal properties. The first considered modal property
is called Sortality and is closely related to the principle of identity.

Identity itself is the ability of every Individual to be distinguished from
others. An Individual maintains this ability by following some principle of
identity. The principle of identity is a definition of the way in which two
instances can be determined to be the same Individual [4, ch. 4].

Based on the identity principle, there exist two different sorts of Endurant
Types. Sortals are Endurant Types that provide an identity principle that all
their instances follow. Sortals can further be divided according to whether they
provide the identity principle themselves (termed Ultimate Sortals) or have
inherited this ability from their supertype. On the other hand, the NonSortals
are Endurant Types that do not provide any identity principle [11, sec. 3.1].
Its purpose is to aggregate common properties of different Sortals.

Axioms of the UFO state that every Individual must follow exactly one
principle of identity. Several implications follow from this statement. From the
perspective of Individuals, every Individual must be an instance of exactly
one Ultimate Sortal. On the contrary, NonSortals themselves cannot have any
direct instances. From the perspective of Endurant Types, Ultimate Sortals
cannot specialize different Ultimate Sortals; all Sortals must specialize exactly
one Ultimate Sortals; and NonSortals cannot specialize any Sortals [7, sec. 3].

1.3 Rigidity

Endurant Types are further divided by the second considered modal property
called Rigidity. This modal property determines if instances of a given En-
durant Type must remain its instances under various circumstances [4, ch. 4].

Based on the Rigidity, there exist three different sorts of Endurant Types.
Firstly, instances of Rigid Endurant Types have to be their instances under
all circumstances. It means that these Endurant Types classify their instances

4

1.4. Existential dependence

necessarily. Secondly, instances of AntiRigid Endurant Types are not their
instances under some circumstances. It means that these Endurant Types
classify their instances accidentally. Lastly, some instances of SemiRigid En-
durant Types have to be their instances under all circumstances, while others
do not. It means that these Endurant Types classify some of their instances
necessarily and some accidentally [8, sec. 3.3].

1.4 Existential dependence

Orthogonally to the division described above, the UFO also divides Endurant
Types according to whether they are existentially dependent or not. Existen-
tial dependence means that the existence of a dependent thing implies the
existence of the thing on which it depends. Instances of Substantial Types
are existentially independent, while instances of Moment Types existentially
depend on other Individuals [10, sec. 1.1].

The UFO further distinguishes three sorts of Moment Types: Relator
Types, Quality Types, and Mode Types. Relator Types are Moment Types
whose instances have the ability to connect other instances of Endurant Types.
They mediate relations between them, serve as so-called truthmakers and carry
the properties belonging to the relations themselves. Quality Types are Mo-
ment Types whose instances represent intrinsic properties of related entities
which have a structured value, i.e., can be mapped to some quality space.
On the contrary, Mode Types are Moment Types whose instances represent
intrinsic properties of related entities that have no structured value [3].

1.5 Class stereotypes

All ontological distinctions related to Endurant Types mentioned above are
captured by the UML class diagram, which can be found in Figure 1.1.

Figure 1.1: Taxonomy of endurant types in UFO [5] – class diagram

Since the OntoUML follows these ontological distinctions, every class of the
OntoUML diagram must be decorated with exactly one stereotype that reflects
the ontological and modal properties of its instances. The class stereotypes
corresponding to different properties are as follows [7, sec. 4]:

5

1. OntoUML

• «kind»: classes that are Substantial Ultimate Rigid Sortals whose in-
stances are existentially independent regular objects,

• «relatorKind»: classes that are Moment Ultimate Rigid Sortals whose
instances are existentially dependent Relators,

• «qualityKind»: classes that are Moment Ultimate Rigid Sortals whose
instances are existentially dependent Qualities,

• «modeKind»: classes that are Moment Ultimate Rigid Sortals whose
instances are existentially dependent Modes,

• «subkind»: classes that are Rigid Sortals whose instances follow the
identity principle given by Ultimate Sortal,

• «phase»: classes that are relationally independent AntiRigid Sortals
whose instances follow the identity principle given by Ultimate Sortal,

• «role»: classes that are relationally dependent AntiRigid Sortals whose
instances follow the identity principle given by Ultimate Sortal,

• «categoty»: classes that are Rigid NonSortals whose instances may
follow different identity principles,

• «phaseMixin»: classes that are relationally independent AntiRigid
NonSortals whose instances may follow different identity principles,

• «roleMixin»: classes that are relationally dependent AntiRigid Non-
Sortals whose instances may follow different identity principles,

• «mixin»: classes that are SemiRigid NonSortals whose instances may
follow different identity principles.

In order to achieve conformity with UFO, OntoUML includes, in addition
to stereotypes, a list of syntactic constraints based on individual axioms of
this theory. These syntactic constraints are as follows [5, sec. 4]:

1. Every class must be decorated with exactly one stereotype.

2. Every non-Ultimate Sortal specializes an Ultimate Sortal.

3. An Ultimate Sortal cannot specialize another Ultimate Sortal.

4. A class cannot specialize more than one Ultimate Sortal.

5. A Rigid Type cannot specialize an AntiRigid Type.

6. A SemiRigid Type cannot specialize an AntiRigid Type.

7. A NonSortal cannot specialize a Sortal.

8. For every NonSortal, there must be a Sortal that specializes this Non-
Sortal or specializes a NonSortal supertype common to both.

6

1.6. Relationship stereotypes

1.6 Relationship stereotypes

Similar to the Endurant Types, the UFO distinguishes a large number of
different Relation Types based on their ontological properties. It is important
to mention that the original ontological distinction regarding Relation Types
presented in [4] can now be considered partially obsolete and has been changed
by the new formal theory of UFO introduced in [6].

According to the new formal theory of the UFO, in the first ontological
distinction, Relation Types are closely divided into Internal Relation Types
(which can be defined in terms of the intrinsic properties of related entity)
and External Relation Types (which cannot be defined in terms of the intrinsic
properties of related entity) [6, sec. 3].

In the second ontological distinction, Relation Types are further divided
into Descriptive Relation Types (which hold in virtue of some Moment of the
related entity) and NonDescriptive Relation Types (which hold because of the
related entity as a whole) [6, sec. 2.2].

In the OntoUML, these two ontological distinctions described above are
reflected by the following association stereotypes [6, sec. 4]:

• «characterization»: associations that are External NonDescriptive
and connect Quality or Mode Types to the Endurant Types in which
their instances inhere,

• «mediation»: associations that are External NonDescriptive and bind
Relator Types to all Endurant Types mediated by them,

• «external dependence»: associations that are External NonDescrip-
tive and bind externally dependent Mode Types to Endurant Types on
which their instances depend,

• «comparative»: associations that are Internal Descriptive; represent
comparative relations; and their truthmakers are Internal NonDescrip-
tive relations holding between common Qualities of the related entities,

• «material»: associations that are External Descriptive and hold in
virtue of Relator Types or externally dependent Mode Types that are
bound to the related entities,

• «historical»: associations that are External NonDescriptive; represent
historical relations; and their truthmakers are Events.

Also, in this case, the OntoUML has to include a list of syntactic con-
straints to ensure compliance with the axioms of the UFO. Syntactic con-
straints regarding the Relation Types are as follows [6, sec. 5]:

7

1. OntoUML

1. Associations decorated as «material» must have a derivation associa-
tion towards a class decorated as «modeKind» (one-sided relations) or
«relatorKind» (other relations).

2. Classes decorated as «modeKind» and connected, through derivation,
to some «material» relation must have a «characterization» relation to-
wards one of the related classes and an «external dependence» relation
towards the other.

3. Classes decorated as «relatorKind» and connected, through derivation,
to some «material» relation must have a «mediation» relation towards
each related class.

4. Classes decorated as «modeKind» and connected, through part-of re-
lation, to some «relatorKind» must have a «characterization» relation
towards one of the classes mediated by the Relator.

5. Classes decorated as «modeKind» and connected, through part-of rela-
tion, to some «relatorKind» must have an «external dependence» rela-
tion towards at least one of the classes mediated by the Relator.

6. Associations decorated as «comparative» must have a derivation associ-
ation towards a class decorated as «qualityKind».

7. Classes decorated as «qualityKind» and connected, through derivation,
to some «comparative» relation must have a «characterization» relation
towards a related class or towards its superclass.

Besides the ontological distinctions of Relation Types mentioned above,
the UFO also distinguishes several sorts of Relation Types belonging to the
group of so-called Meronymic Relation Types. These Relation Types reflect
different sorts of Part-Whole relations. In the OntoUML, they are represented
as compositions [4, sec. 8.3]. However, since this thesis does not deal with these
types of relations in its practical part, they are not discussed any further in
this chapter.

8

Chapter 2
Graph databases

A database can be defined as an organized self-describing collection of inter-
related data records. In order to define, store, maintain, share, and control
access to the database, a specialized software called database management
system (DBMS) is used [12, ch. 1]. There exist various types of DBMS that
differ in the model according to which they work with processed data.

2.1 SQL versus NoSQL databases

From a historical point of view, the relational model can be denoted as the
most significant one [13, ch. 1]. In this model, all data is represented as rela-
tions. A relation can be stored as a two-dimensional table-like structure, where
the columns represent relation attributes, rows represent unique records, and
specific values are located at the intersection of a given row and column. Re-
lationships in the relational model are represented as values in the dependent
table that references identifiers of records in the referenced table. For querying
relational databases (RDB), the declarative domain-specific Structured Query
Language (SQL) is typically used [14, ch. 1].

Relational databases have some characteristics that can be considered stan-
dard to the present day. First, they have a strictly defined schema expressed
directly in the SQL language [13, ch. 10]. Second, in terms of transactional
data processing, they guarantee properties expressed by the ACID acronym
(atomicity, consistency, isolation, durability) [15, sec. 3].

Thanks to the properties mentioned above, relational databases are es-
pecially suitable for storing loosely connected data with a strictly defined
structure. This type of data was common in information systems at the end of
the last century. However, along with technological progress, nowadays, there
is a need to process data falling into the category called Big Data. These data
are characterized by their high volume, velocity, and variety, and relational
databases reach their limits when processing them [16, sec. 1].

9

2. Graph databases

As an alternative to relational databases, a group of databases dubbed
NoSQL (”Not only SQL”) have emerged. NoSQL databases usually do not
use SQL as their primary query language and are typically characterized by
relaxing or simplifying some of the features standardly provided by relational
databases [15, sec. 5]. For example, these databases often do not have any
strictly defined schema (they are termed schema-less) and are thus able to
adapt more easily to process highly-variable data. Also, instead of providing
very strict ACID properties of transaction processing, some of them provide so-
called BASE properties (basically available, soft state, eventually consistent)
aimed at the high availability of data at the cost of temporarily limiting their
consistency. Thanks to these facts, NoSQL databases achieve better scalability
and higher performance than relational databases in certain situations and
thus are more suitable for processing specific types of data which can be found
in today’s information systems [16, sec. 3].

Since the term NoSQL is very loosely defined, there is a large number of
NoSQL databases with entirely different properties and features. From the
point of view of their data model, NoSQL databases can usually be classified
into the following four groups [17, appx. A]:

1. Key-value stores – consists of a distributed list of key-value pairs,

2. Document stores – consists of hierarchically structured documents,

3. Column stores – consists of tables whose rows contain arbitrary columns,

4. Graph databases – consists of a set of vertices and edges between them.

All NoSQL databases belonging to the groups enumerated above have their
own advantages and disadvantages and are suitable for processing different
types of data. Henceforward, this thesis continues to deal only with the group
of graph databases.

2.2 Graph models and properties

Graph databases (GDB) are types of database management systems that rep-
resent and store data in graph structures as defined in Graph Theory. In com-
parison with other types of DBMS, graph databases are especially suitable for
processing complex and highly interconnected data [18, p. 13]. For this rea-
son, they are often applied in areas where information about interconnectivity
or topology is more important than the underlying data itself – for example,
social networking, bioinformatics, or semantic web [19]. However, since graphs
can be considered extremely versatile, flexible, and expressive general-purpose
structures, they can be used to represent almost any kind of real-world data
in any application domain [17, p. 2].

10

2.2. Graph models and properties

One of the most commonly used data models in graph databases is called
property graph. Data in this model are represented as a set of vertices and
edges, along with properties attached to both of them. In the property graph,
vertices usually represent entities in the data, and edges represent the con-
nections between those entities. Edges are oriented, and the number of them
between two vertices is not limited. Both vertices and edges are uniquely iden-
tified. Properties, which are key-value pairs, can be attached to vertices and
edges to provide additional information about them [20, sec. 1]. The property
graphs can be more closely divided into the following two types [21]:

1. Labeled-property graph – vertices and edges are assigned with text labels;
the only purpose of the labels is to group vertices or edges; no additional
logic is associated with them,

2. Typed-property graph – vertices and edges are assigned with types or
classes; types define the structure of the vertices and edges within the
graph, including the properties they can have.

Besides the property graph, there also exist other data models used in
graph databases. For example, hypergraphs, in which an edge can connect any
number of vertices, or triples, the subject-predicate-object data structure used
in the semantic web [17, p. 207-208].

The properties of individual graph databases strongly depend on the way
they store and process graph structures. From this perspective, they can be
divided into native and non-native graph databases. Native graph databases
process and store all data directly in the form of graph structures. On the
contrary, non-native graph databases only offer a graph interface over some
other non-graph databases, and graph structures need to be serialized into
some other model, for example, a relational one [20, sec. 2.1].

Native graph databases provide significant performance advantages in pro-
cessing queries that require graph traversal – for example when executing
common graph algorithms such as breadth-first search (BFS) or depth-first
search (DFS). It is because native graph databases are optimized in a way that
traversing a single edge is possible in constant time. For comparison, in the
case of relational databases, graph traversals over highly interconnected data
would involve complex and performance-demanding join operations, which
would make these traversals very inefficient [22].

One method that some native graph databases use to achieve constant
time traversal is called index-free adjacency. With index-free adjacency, all
vertices directly reference their connected neighbors without the need for any
type of global adjacency index [23]. However, such an approach also has some
disadvantages. Queries that do not use graph traversals can have worse perfor-
mance. Also, it can be inefficient when vertices with a large number of edges
are modified or deleted [24].

11

2. Graph databases

2.3 Neo4j

Neo4j is a graph database management system written in Java language that
is designed to store, manage, and query large-scale graph data. It was first
released in 2007 by Neo4j, Inc., and has since become one of the most widely
used graph databases in the world [25]. The key features and properties of
Neo4j are the following:

1. Property graph model – it uses the labeled-property graph data model
and enables the assignment of multiple labels to a single vertex [26].

2. Native graph storage and processing – it stores data in a native graph
format and utilizes index-free adjacency [27].

3. Schema-free database – it does not require any predefined data schema
and provides a high level of flexibility [28].

4. High scalability – it is designed to handle large-scale graph datasets and
has the ability to distribute data across multiple nodes [29].

5. ACID compliant – it provides strong transactional guarantees that en-
sure data integrity and consistency [30].

6. Cypher query language – it provides declarative query language with
SQL-like syntax specifically designed for working with graph data [31].

7. Triggers and APOC library – it provides support for database triggers
and an extensive library of useful procedures called APOC [32].

8. Graph algorithms – it includes built-in graph algorithms, such as the
PageRank or shortest path, that can be used to analyze graph data [33].

2.4 JanusGraph

JanusGraph is another graph database management system that enables users
to store and manage large-scale graph data. It is a project under The Linux
Foundation and includes participants from Expero, Google, GRAKN.AI, Hor-
tonworks, IBM, and Amazon [34]. It was created in 2017 as an open-source fork
of the TitanDB [35]. JanusGraph addresses some of the limitations of other
graph databases by combining their features with features of column-family
stores. The key features and properties of JanusGraph are the following:

1. Property graph model – it uses the labeled-property graph data model
but enables only one label to be assigned to a single vertex [36].

2. Non-native graph database – it uses a global adjacency index and pro-
vides a graph data model on top of the existing storage layer [37].

12

2.5. TigerGraph

3. Various storage backends – it can store graph data into various backends
such as Apache Cassandra, Apache HBase, and Oracle BerkeleyDB [38].

4. Data schema definition – it enables the definition of a data schema com-
prised of the edge labels, property keys, and vertex labels [39].

5. Distributed graph database – it is designed to scale out across multiple
machines, supports horizontal scaling and partitioning [40].

6. Tunable consistency and durability – it offers configurable consistency
and durability, thus allowing tuning for optimal performance [41].

7. Gremlin query language – it provides functional traversal language for
querying graph data, with support for many graph algorithms [42].

2.5 TigerGraph

TigerGraph is a native graph database system that provides high-performance
graph storage and processing for analyzing large and complex datasets. It was
designed to handle real-time data and advanced analytics applications that
require complex traversals of large-scale graphs. TigerGraph was developed
by TigerGraph Inc. and released in 2017 as a commercial product [43]. The
key features and properties of TigerGraph are the following:

1. Property graph model – it uses a typed-property graph data model that
can handle a wide range of complex data types and relationships [44].

2. Distributed native graph database – it is a distributed native graph
database optimized for processing and analyzing large-scale graphs [45].

3. Strict data schema – it has a strict definition of a data schema comprised
of the types of entities, vertices, and edges [44].

4. High performance – it is designed for high performance and can handle
real-time graph data queries with low latency [45].

5. ACID compliant – it provides strong transactional guarantees that en-
sure data integrity and consistency [46].

6. GSQL query language – it provides declarative query language that is
optimized for querying graph data [47].

7. Lack of database triggers support – it does not provide any built-in
support for database triggers or change data capture [43].

8. Advanced graph algorithms – it includes advanced graph algorithms such
as parallel subgraph enumeration or k-core decomposition [48].

13

Chapter 3
Example OntoUML model

In order to carry out the intended case study, it is necessary to select a suit-
able problem domain and introduce an example OntoUML model, on which
the instantiation in a graph database can be later demonstrated. There are two
general requirements for the selection of a suitable problem domain. The first
requirement is that any technically educated person without specific expertise
should be able to understand the selected problem domain. The second re-
quirement is that this problem domain has to be adequately complex to cover
a sufficient number of OntoUML constructs.

The selected problem domain is related to the ontology of electrical devices
and their electrical power sources. Final ontology is described by the proposed
example OntoUML model that can be found in Figure 3.1. Below, this chap-
ter also provides a detailed textual description of the individual entities and
attributes found in the problem domain.

The example model consists of three different Kinds – ElectricalDevice,
DCPowerSupply, and Battery. An ElectricalDevice represents any device
that needs electricity to operate. For its function, the ElectricalDevice
needs an energy source – such as a DCPowerSupply or a Battery – that is capa-
ble of providing a nominalVoltage and a nominalCurrent. A DCPowerSupply
is a device capable of converting an AC inputVoltage to a nominal DC out-
put voltage and is rated for a specific maximalCurrent. A Battery represents
a set of electrochemical cells that are able to provide a maximalVoltage when
they are fully charged and a minimalVoltage when they are discharged.

There exist two different Subkinds of Battery. A Rechargeable battery is
a battery that can have its chemical reactions reversed and can be repeatedly
recharged. The number of full charges of the Rechargeable battery during
its lifetime is referred to as cyclelife. A Nonrechargeable battery, on the
other hand, is a battery whose chemical reaction cannot be reversed, and
therefore it can be discharged only once. The number of months that the
Nonrechargeable battery can be stored without becoming unfit for use is
referred to as shelflife.

15

3. Example OntoUML model

A DCPowerSupply and a Battery belong to a DCVoltageSource Category.
They both have their nominalVoltage and as DC sources, they are able to
provide an actualVoltage under a specific load. The Battery also belongs
to a Category of EnergyStorage and therefore it has a capacity.

A Battery can be in three Phases based on its actualVoltage – Charged,
Discharged, or Used. In the case of a Charged battery, there is a certain
chargeDate when was the Battery fully charged. Likewise, in the case of a
Discharged battery, there is a dischargeDate. Also, in the case of a Used
battery, there exists a lastUseDate when was the Battery last used.

In the case a DCPowerSupply or a Battery has been connected to an
ElectricalDevice, they both act in a Role of a ConnectedDCPowerSupply or
a ConnectedBattery respectively. Since both Roles share the same attribute,
i.e., the drawnCurrent by a ConnectedElectricalDevice, this attribute and
the common relationship are represented by a ConnectedDCVoltageSource
RoleMixin. The physical connection itself, which has a specific resistance,
is represented by an ElectricalConnection Relator.

Figure 3.1: Example OntoUML model – class diagram

16

Chapter 4
Analysis of database suitability

Graph databases are designed to store and manage data in a highly intercon-
nected manner [18, p. 14]. Therefore, they should be well suited for represent-
ing various structures of specific types found in OntoUML models. However,
there are many constraints resulting from the OntoUML notation, and it is
questionable whether particular graph database systems and their integrity
constraint mechanisms are able to preserve them correctly.

Before the example OntoUML model presented in the last chapter can be
instantiated in a graph database, it is essential to analyze the capabilities and
other properties of all considered graph database systems. After that, based
on a set of appropriate criteria, the most suitable graph database system for
this specific use case can be chosen.

4.1 Criteria of suitability

In terms of choosing the most suitable graph database system for OntoUML
model instantiation, it is necessary to primarily consider what kind of graph
model it uses and what kind of integrity constraint mechanisms are available.
The first criterion determines the possible ways of mapping between constructs
of the OntoUML and a particular graph database. The second criterion will
considerably influence how the constraints resulting from the OntoUML no-
tation can be implemented.

As described in chapter 2 of this thesis, the most common graph database
models can be, in terms of their vertices, divided into labeled-property graph
models and typed-property graph models. In the typed-property graph model,
each vertex has an individual type assigned to it that determines what proper-
ties and possible relationships the given vertex can have [21]. If the inheritance
between types, as an essential element of OntoUML, should be directly im-
plemented in this graph model, it would have to be natively supported by the
database engine. Otherwise, it would not be possible for a single vertex to be
an instance of two different types at the same time. Even if the inheritance is

17

4. Analysis of database suitability

natively supported, there could be a problem with multiple inheritance, which
is also common in OntoUML [49]. Without database engine native support,
there still exists a possibility of using some workarounds similar to the ap-
proach for relational databases. For example, create one type for each class of
the OntoUML model and then copy properties of a parent to all children [8].
In such a case, however, it would be necessary for the database engine to at
least support a sufficiently strong integrity constraint mechanism to handle
all possible inconsistencies that arise from this approach.

Compared to the first graph model discussed, the labeled-property graph
model provides a significantly higher degree of freedom. In this model, la-
bels are nothing more than text markers assigned to a given vertex, and no
additional logic has to be associated with them [50, ch. 2]. Thus, it is theoret-
ically possible to implement inheritance by mapping types to labels and then
assigning multiple labels to a single vertex. Unfortunately, there also exist
some problems associated with this approach. First, some database engines,
although using the labeled-property graph model, do not support assigning
more than one label to a single vertex. Second, since the assignment of a label
to a given vertex does not ensure setting necessary properties with the correct
data types, the database engine needs to provide a sufficiently strong integrity
constraint mechanism to be possible to ensure it manually.

As mentioned above, the provided mechanisms of integrity constraints are
another significant criterion when choosing a graph database suitable for On-
toUML model instantiation. Many graph database systems provide standard
integrity constraints such as not null or unique constraints, following the
common practice of relational database systems [51][52]. However, these ele-
mental constraints, especially in the case of graph databases with the labeled-
property graph model, cannot ensure everything necessary to preserve the
integrity of the instantiated OntoUML model. The only sufficiently effective
tool for this purpose is database triggers, i.e., full-fledged code executed in
case of certain data manipulation events. Thanks to database triggers, for
example, it can be ensured that one label can only be assigned to a vertex
simultaneously with another label. Following this, it is possible to create a spe-
cific hierarchy and additional logic associated with labels. Unfortunately, as
discussed below, only some graph database systems support database triggers.

4.2 Suitability of considered databases

After considering all the above-mentioned criteria, the suitability of individual
graph database systems can be evaluated. The TigerGraph database system
has two fundamental shortcomings in this case. The first shortcoming is that
this database system uses the typed-property graph model, but at the same
time, it does not provide any native support for type inheritance [44]. The
second major shortcoming is that this database system does not support any

18

4.2. Suitability of considered databases

mechanism of database triggers [43]. These two facts effectively prevent the
use of TigerGraph for the instantiation of the OntoUML model. Therefore this
database system cannot be considered suitable in this case.

The capabilities of the JanusGraph database seem to be much better for
the intended use case. JanusGraph uses the labeled-property graph model
[53, p. 523], which provides sufficient freedom to implement a custom label-
based inheritance, including multiple inheritance. Furthermore, JanusGraph,
or rather some of its storage backends, supports database triggers [35], which
allows the implementation of almost any additional logic. But unfortunately,
there still exists one major problem with JanusGraph. This database system
does not allow multiple labels assignment for a single vertex [39]. Although it
could be possible to implement the necessary inheritance in ways similar to
relational databases, such an approach cannot be considered nearly as elegant
compared to the inheritance based on multiple label assignments.

Fortunately, the last considered database system, Neo4j, does not have
the same problem. It also uses the labeled-property graph model, but addi-
tionally, this database system allows any number of labels to be assigned to
a single vertex [26]. Another advantage of Neo4j is that it provides a very
convenient interface for database triggers within its library for creating user-
defined procedures and functions called APOC. Thanks to this library, it is
possible to create triggers directly in the native Cypher query language [32].
Based on these facts, the Neo4j database can be considered suitable for the
OntoUML model instantiation. A summary overview of the described features
of individual database systems can be found in Table 4.1.

Table 4.1: Comparison of graph database system features

Feature TigerGraph JanusGraph Neo4j
graph model typed labeled labeled
data scheme yes yes optional
inheritance support no – –
multiple labels – no yes
database triggers no yes yes

19

Chapter 5
Design of model instantiation

Based on the analysis of graph database suitability, the Neo4j database sys-
tem is henceforward used in this case study for instantiation of the example
OntoUML model. After choosing a suitable graph database, it is now pos-
sible to accurately design how to map and transform individual OntoUML
constructs to the constructs available in the model of the selected database
system and how to preserve all necessary constraints using Neo4j integrity
constraint mechanisms.

5.1 Mapping between OntoUML and Neo4j
constructs

For a description of the mutual mapping, it is first necessary to enumerate the
individual constructs available in OntoUML and Neo4j models. As mentioned
in the previous chapter, the Neo4j graph database system uses a labeled-
property graph model. This graph model consists of four elemental constructs:

• labels,

• vertices (nodes in Neo4j),

• edges (relationships in Neo4j),

• properties (key-value pairs).

The graph itself consists of a set of vertices together with a set of edges
between them. All edges in the graph are directed and have a start and an end
vertex. Nevertheless, it is still possible to traverse the edges in both directions.
Individual vertices can be assigned multiple labels to be divided into groups.
Both vertices and edges can contain data in the form of key-value pairs called
properties [17, p. 26-27].

21

5. Design of model instantiation

The OntoUML is an extension of the UML modeling language, and its
models can be expressed by modified UML class diagrams. These diagrams
differ in the presence of ontologically motivated stereotypes associated with
classes and relationships, but on the other hand, they omit some UML ele-
ments, such as interfaces or aggregations [4, ch. 8]. This thesis further deals
with the following key UML class diagram constructs, as they are present in
the representation of the example OntoUML model:

• classes,

• stereotypes (of classes or associations),

• attributes (with their names, data types and multiplicities),

• generalizations (with related generalization sets),

• associations (with their multiplicities).

Classes, as first-class citizens of the UML class diagrams, describe group-
ings of objects with the same structure, constraints, and semantics [54, p. 40].
Stereotypes give classes and other OntoUML constructs precise ontological
meaning. Based on assigned stereotypes, classes represent different endurant
types [7, ch. 4]. Attributes contained in classes ensure the presence and struc-
ture of data belonging to all instances of a given class [55, p. 42]. Generaliza-
tions are a type of relationship between classes where the special class (sub-
class) is based on the general class (superclass) and inherits its features. The
special class can add new features but still remains compatible with the gen-
eral class [56, p. 98]. Generalizations can also be combined into generalization
sets. Generalization sets can have two different properties. The IsComplete
property determines if an instance of the superclass must also be an instance
of one of the subclasses. On the other hand, the IsDisjoint property speci-
fies if any two subclasses can have common instances[57, p. 618]. Associations
are a different type of relationship indicating that instances of one class are
somehow connected to instances of another class [56, p. 197].

Although it might seem at this point that the transformation between
the constructs of the OntoUML model and the labeled-property graph model
could be relatively straightforward, it is essential to realize that the two models
describe semantically different things at different levels of perception. While
the OntoUML model describes the structure and interdependencies between
types (classes), the labeled-property graph model captures concrete individu-
als (instances) and the data associated with them. Similar to how an object
instantiates a class, a labeled-property graph model can become an instance
of an OntoUML model. It is only necessary to ensure that all data represented
by elements of the labeled-property graph model follow the rules given by the
OntoUML model.

22

5.1. Mapping between OntoUML and Neo4j constructs

As outlined in the previous chapter, the crucial elements that enable the
interconnection between both models are the labels. The first rule of pro-
posed mapping is that all classes from the OntoUML model become labels
in the labeled-property graph model. Unfortunately, this is the only mapping
between constructs of both models that can be done directly. All other con-
structs of the OntoUML model have to become specific integrity constraints
(ICs) in the Neo4j database system. The purpose of these integrity constraints
is to ensure the correct form of instances represented by constructs from the
labeled-property graph model.

Table 5.1: Mapping between OntoUML and Neo4j constructs

OntoUML constructs Neo4j constructs
classes labels
attributes IC (ensuring properties on vertices)
stereotypes IC (ensuring the combination of labels)
generalizations IC (ensuring the combination of labels)
associations IC (ensuring the presence of edges)

As can be seen in Table 5.1, several different types of integrity constraints
arise based on the individual OntoUML model constructs. The exact meaning
of different types of these integrity constraints and specific methods of their
implementation in the Neo4j graph database system are discussed in detail in
the following sections.

In the same way, as it is possible to describe the equivalents of OntoUML
constructs in the Neo4j database system, it is also possible to infer the re-
verse meaning of the constructs found in the labeled-property graph model
in the context of OntoUML. Firstly, all graph vertices (nodes) represent in-
stances of classes determined by the labels assigned to them. Secondly, all
edges (relationships) between connected vertices represent instances of binary
associations between corresponding classes. And finally, all property names
on vertices correspond to the names of particular attributes, and all property
values represent values of these attributes. All the facts mentioned above are
summarized in Table 5.2.

Table 5.2: Meaning of Neo4j constructs in the context of OntoUML

Neo4j constructs meaning in the context of OntoUML
labels classes
vertices (nodes) instances of classes
edges (relationships) instances of associations
properties (keys) names of attributes
properties (values) values of attributes

23

5. Design of model instantiation

5.2 Transformation of OntoUML into integrity
constraints

The description of the mutual mapping between OntoUML and Neo4j con-
structs revealed that some OntoUML constructs do not have a direct equiva-
lent in the labeled-property graph model and, therefore, must be implemented
as general integrity constraints. This section discusses in detail what ICs need
to be added to the Neo4j database system to adhere to the semantics re-
sulting from the individual OntoUML constructs. The set of all pseudocodes
presented in this section can be understood as a procedure for the transfor-
mation of the OntoUML diagrams into Neo4j ICs. The specific methods of
implementation of the proposed ICs in the Neo4j database system are later
described in the section 5.3. An important assumption for the following con-
siderations is that the input OntoUML diagram must be valid and meet all
the syntactic constraints based on the UFO theory.

5.2.1 Integrity constraints imposed by attributes

Integrity constraints imposed by attributes must ensure that all vertices con-
tain correct properties with valid values with respect to the attributes of classes
corresponding to the labels these vertices are assigned. There exist three differ-
ent types of integrity constraints imposed by the semantics of class attributes,
their data types, and multiplicities.

The first type of integrity constraint ensures that the property values of
vertices are valid with respect to the data types of corresponding class at-
tributes. The pseudocode in Listing 1 iterates through all attributes of all
classes in the input diagram and adds the PROPERTY MUST BE OF DATATYPE IC
to ensure that the values of a given property on the vertices with a given label
match a provided data type. As the input argument of the added IC, the name
of a class represents the name of a label, the name of an attribute represents
the name of a property, and the name of an attribute’s data type corresponds
to the equivalent data type from the Neo4j APOC library.

1 //INPUT: valid OntoUML diagram; OUTPUT: list of constraints
2 foreach (Class c in diagram.Classes)
3 foreach (Attribute a in c.Attributes)
4 Constraints.Add(PROPERTY_MUST_BE_OF_DATATYPE,
5 c.Name, //labelName
6 a.Name, //propertyName
7 a.DataType.Name //dataTypeName
8);

Listing 1: Pseudocode adding ICs to ensure data type of attributes

24

5.2. Transformation of OntoUML into integrity constraints

The second type of integrity constraint ensures the presence of proper-
ties corresponding to the mandatory attributes. An attribute can be consid-
ered mandatory if the lower bound of its multiplicity is higher than zero.
The pseudocode in Listing 2 iterates through all attributes of all classes
in the input OntoUML diagram. If the attribute is mandatory, it adds the
PROPERTY MUST BE PRESENT IC to ensure the presence of a given property on
the vertices with a given label. As the input argument of the added IC, the
name of a class represents the name of a label, and the name of a mandatory
attribute represents the name of a property.

For simplicity, since there are no such cases in the example OntoUML
model, it is assumed that the upper bound of the attribute multiplicity can
be at most one. Therefore this thesis does not deal with the constraints of
attribute multiplicity upper bound in any way.

1 //INPUT: valid OntoUML diagram; OUTPUT: list of constraints
2 foreach (Class c in diagram.Classes)
3 foreach (Attribute a in c.Attributes)
4 if (a.Multiplicity.LowerBound > 0)
5 Constraints.Add(PROPERTY_MUST_BE_PRESENT,
6 c.Name, //labelName
7 a.Name //propertyName
8);

Listing 2: Pseudocode adding ICs to ensure presence of attribute values

The third type of integrity constraint ensures the uniqueness of property
values corresponding to the identity attributes. The pseudocode in Listing 3
iterates through all attributes of all classes in the input diagram. If the at-
tribute is an identity attribute, it adds the PROPERTY MUST BE UNIQUE IC to
ensure the uniqueness of a given property on the vertices with a given label.
As the input argument, the name of a class represents the name of a label,
and the name of an identity attribute represents the name of a property.

1 //INPUT: valid OntoUML diagram; OUTPUT: list of constraints
2 foreach (Class c in diagram.Classes)
3 foreach (Attribute a in c.Attributes)
4 if (a.IsID)
5 Constraints.Add(PROPERTY_MUST_BE_UNIQUE,
6 c.Name, //labelName
7 a.Name //propertyName
8);

Listing 3: Pseudocode adding ICs to ensure uniqueness of ID attributes

25

5. Design of model instantiation

5.2.2 Integrity constraints imposed by stereotypes

Integrity constraints imposed by stereotypes must ensure that all vertices are
assigned valid combinations of labels with respect to the ontological meaning
given by stereotypes of corresponding classes. From the perspective of in-
stances, two different types of integrity constraints imposed by the semantics
of class stereotypes are considered.

The first type of integrity constraint follows an axiom of UFO theory,
which states that every instance must have an identity [5, sec. 3]. This axiom
always holds for all instances of Sortals since they either provide the identity
themselves or have inherited it from their ancestor. In the case of NonSortals, it
must be ensured that they cannot have any direct instances. All their instances
must simultaneously be instances of a Sortal that is either a subclass of a given
NonSortal or a subclass of a common NonSortal superclass.

The pseudocode in Listing 4 iterates through all classes in the input dia-
gram. First, for each class that has a NonSortal stereotype (does not have an
identity), it determines a list of related Sortals, which are classes that have an
identity and, at the same time, their superclasses include either NonSortal it-
self or any of its superclass. Then, to simplify the resulting integrity constraint,
the pseudocode further determines a list of intransitively related Sortals, which
are related Sortals whose superclasses do not contain other related Sortals. Fi-
nally, the pseudocode adds the LABEL MUST BE IN COMBINATION IC to ensure
that the label corresponding to the given NonSortal class is in a combination
with any label representing an intransitively related Sortal.

1 //INPUT: valid OntoUML diagram; OUTPUT: list of constraints
2 foreach (Class c in diagram.Classes)
3 if (not c.Stereotype.HasIdentity)
4 {
5 relatedSortals = diagram.Classes
6 .Filter(r => r.Stereotype.HasIdentity)
7 .Filter(r => r.Superclasses
8 .Exists(s => c.Equals(s) or c.Superclasses.Contains(s)));
9 intransitivelyRelatedSortals = relatedSortals

10 .Filter(i => i.Superclasses
11 .ForAll(s => not relatedSortals.Contains(s)));
12 Constraints.Add(
13 LABEL_MUST_BE_IN_COMBINATION,
14 c.Name, //labelName
15 intransitivelyRelatedSortals.Map(i => i.Name) //otherLabelNames
16);
17 }

Listing 4: Pseudocode adding ICs to ensure all instances have an identity

26

5.2. Transformation of OntoUML into integrity constraints

The second type of integrity constraint follows another crucial axiom of
UFO theory, which states that every instance must have at most one identity
[10, sec. 2]. If this axiom is to hold, it must be ensured that any instance
cannot instantiate more than a single identity provider.

The pseudocode in Listing 5 iterates through all classes in the input
OntoUML diagram. For each class that is an identity provider (has stereo-
type Kind, Relator, Quality, or Mode), the pseudocode first determines
a list of all other identity providers in the input diagram. Then, in the case
the list of other identity providers is not empty, the pseudocode adds the
LABEL CANNOT BE IN COMBINATION integrity constraint to ensure that the la-
bel corresponding to the given identity provider is never in a combination
with any other label representing another identity provider.

1 //INPUT: valid OntoUML diagram; OUTPUT: list of constraints
2 foreach (Class c in diagram.Classes)
3 if (c.Stereotype.ProvidesIdentity)
4 {
5 otherIdentityProviders = diagram.Classes
6 .Filter(p => p.Stereotype.ProvidesIdentity)
7 .OtherThan(c);
8 if(otherIdentityProviders.Count > 0)
9 Constraints.Add(

10 LABEL_CANNOT_BE_IN_COMBINATION,
11 c.Name, //labelName
12 otherIdentityProviders
13 .Map(p => p.Name) //otherLabelNames
14);
15 }

Listing 5: Pseudocode adding ICs to ensure instances have a single identity

5.2.3 Integrity constraints imposed by generalizations

Integrity constraints imposed by generalizations must ensure that all vertices
are assigned valid combinations of labels with respect to the generalizations
between corresponding classes. The definition of generalization is included
among the axioms of UFO theory. It states that if a superclass is a general-
ization of the subclass, all instances of the subclass are also instances of the
superclass [7, sec. 3]. Furthermore, if generalizations are combined into gen-
eralization sets (GS), it is also necessary to ensure that all instances adhere
to the properties of generalization sets (IsDisjoint and IsCovering properties).
There exist three different types of integrity constraints imposed by the gen-
eralizations and generalization sets.

27

5. Design of model instantiation

The first type of integrity constraint ensures that for a given generalization,
all instances of a subclass are always also instances of a superclass. The pseu-
docode in Listing 6 iterates through all generalizations in the input OntoUML
diagram and adds the LABEL MUST BE IN COMBINATION integrity constraint to
ensure that every label representing subclass is always in a combination with
the label representing corresponding superclass.

1 //INPUT: valid OntoUML diagram; OUTPUT: list of constraints
2 foreach (Generalization g in diagram.Generalizations)
3 Constraints.Add(
4 LABEL_MUST_BE_IN_COMBINATION,
5 g.Subclass.Name, //labelName
6 { g.Superclass.Name } //otherLabelNames
7);

Listing 6: Pseudocode adding ICs to ensure generalizations between classes

The second type of integrity constraint ensures that if individual general-
izations are combined into a generalization set with the IsDisjoint property,
instances of one subclass are never the instances of another subclass from this
generalization set. The pseudocode in Listing 7 iterates through all general-
ization sets in the input OntoUML diagram. For each generalization set with
IsDisjoint property, the pseudocode further iterates through all subclasses in
this generalization set and adds the LABEL CANNOT BE IN COMBINATION in-
tegrity constraint to ensure that the label representing one subclass in not in
a combination with any other label representing another subclass in a given
generalization set.

1 //INPUT: valid OntoUML diagram; OUTPUT: list of constraints
2 foreach (GeneralizationSet gs in diagram.GeneralizationSets)
3 if (gs.IsDisjoint)
4 {
5 foreach (Class c in gs.Subclasses)
6 Constraints.Add(
7 LABEL_CANNOT_BE_IN_COMBINATION,
8 c.Name, //labelName
9 gs.Subclasses

10 .OtherThan(c)
11 .Map(s => s.Name) //otherLabelNames
12);
13 }

Listing 7: Pseudocode adding ICs to ensure GS IsDisjoint property

28

5.2. Transformation of OntoUML into integrity constraints

The third type of integrity constraint ensures that if individual general-
izations are combined into a generalization set with the IsCovering property,
instances of a superclass are always also instances of at least one subclass of
this generalization set. The pseudocode in Listing 8 iterates through all gener-
alization sets in the input diagram. For each generalization set with IsCovering
property, the pseudocode adds the LABEL MUST BE IN COMBINATION integrity
constraint to ensure that the label representing superclass is in a combination
with any label representing a subclass.

1 //INPUT: valid OntoUML diagram; OUTPUT: list of constraints
2 foreach (GeneralizationSet gs in diagram.GeneralizationSets)
3 if (gs.IsCovering)
4 {
5 Constraints.Add(
6 LABEL_MUST_BE_IN_COMBINATION,
7 gs.Superclass.Name, //labelName
8 gs.Subclasses
9 .Map(s => s.Name) //otherLabelNames

10);
11 }

Listing 8: Pseudocode adding ICs to ensure GS IsCovering property

5.2.4 Integrity constraints imposed by associations

Integrity constraints imposed by associations must ensure that the correct
number of edges between vertices is present with respect to the associations
between classes corresponding to the labels these vertices are assigned. The
correct number of edges that must be present is given by the multiplicities at
the individual association ends.

Several simplifications are made in terms of associations since only the
constraints necessary for the instantiation of the example OntoUML model
are discussed in this thesis. First, although associations of any arity can exist
in UML, this thesis considers only binary associations. Second, since there
is no association in the example OntoUML model whose multiplicity has a
limited upper bound, this thesis does not deal with the constraints ensuring
that the maximum number of edges has not been exceeded.

The only type of constraint that needs to be treated under the conditions
stated above is the presence of edges representing associations mandatory for
a given class. An association can be considered mandatory for a given class if
the lower bound of multiplicity at the related association end is higher than
zero. In such a case, at least one edge connected to a vertex with a label
representing a given class must be present.

29

5. Design of model instantiation

The pseudocode in Listing 9 iterates through all binary associations that
are present in the input OntoUML diagram. If the lower bound of multiplicity
at any of the two association ends is greater than zero, the associated class at
that association end is considered mandatory, and the second related class on
the opposite association end must be in association with it. In this case, the
pseudocode adds the RELATIONSHIP MUST BE PRESENT integrity constraint to
ensure that there is at least one edge for every vertex with a label correspond-
ing to the related class that leads to a vertex with a label corresponding to
the mandatory class.

1 //INPUT: valid OntoUML diagram; OUTPUT: list of constraints
2 foreach (BinaryAssociation a in diagram.Associations)
3 {
4 if(a.FirstMultiplicity.LowerBound > 0)
5 constraints.Add(RELATIONSHIP_MUST_BE_PRESENT,
6 a.SecondClass.Name //relatedLabelName
7 a.FirstClass.Name, //mandatoryLabelName
8);
9 if (a.SecondMultiplicity.LowerBound > 0)

10 constraints.Add(RELATIONSHIP_MUST_BE_PRESENT,
11 a.FirstClass.Name //relatedLabelName
12 a.SecondClass.Name, //mandatoryLabelName
13);
14 }

Listing 9: Pseudocode adding ICs to ensure presence of associations

5.3 Implementation of integrity constraints in
Neo4j

The previous section described in detail how an OntoUML model represented
as a class diagram can be systematically transformed into a list of specific
integrity constraints. In order to create an instantiation of the OntoUML
model in the target database technology, it is necessary to further describe
the way in which the particular integrity constraints should be implemented
using the Neo4j integrity constraint mechanisms.

For implementing proposed integrity constraints in the Neo4j database
system, it is primarily required to use database triggers in most cases, as
the additional logic resulting from most of the proposed integrity constraints
is more complex than the logic provided by basic Neo4j built-in constraints.
This section presents how to implement all necessary constraints and database
triggers in Neo4j using the Cypher language and the APOC library.

30

5.3. Implementation of integrity constraints in Neo4j

5.3.1 Constraint to check if a property is unique

The first integrity constraint used in the transformation of the OntoUML
model is denoted as PROPERTY MUST BE UNIQUE. It is the only integrity con-
straint that can be directly implemented by the Neo4j built-in constraint mech-
anism. The template of a constraint creation statement in Listing 10 creates
a new constraint that ensures a unique value of a property with specified
propertyName for a node having a provided labelName.

1 //CONSTRAINT: PROPERTY_MUST_BE_UNIQUE
2 //INPUT: labelName, propertyName
3 CREATE CONSTRAINT {labelName}_{propertyName}_must_be_unique IF NOT EXISTS
4 FOR (node:{labelName}) REQUIRE node.{propertyName} IS UNIQUE

Listing 10: Template of constraint to check if a property is unique

5.3.2 Trigger to check a data type of a property

The second integrity constraint used in the transformation of the OntoUML
model is denoted as PROPERTY MUST BE OF DATATAYPE and must be imple-
mented using a database trigger. The template of trigger query in Listing 11
first obtains all nodes having a label with specified labelName that have
been assigned a new label or a new property. Then, in the case specified
propertyName exists on any of obtained nodes, it validates if the value of this
property corresponds to a provided dataTypeName.

1 //CONSTRAINT: PROPERTY_MUST_BE_OF_DATATAYPE
2 //INPUT: labelName, propertyName, dataTypeName
3 UNWIND (
4 apoc.trigger.nodesByLabel($assignedLabels, "{labelName}") +
5 apoc.trigger.nodesByLabel($assignedNodeProperties, "{labelName}")
6) AS node
7 CALL apoc.util.validate(
8 exists(node.{propertyName}) and not
9 apoc.meta.cypher.isType(node.{propertyName}, "{dataTypeName}"),

10 "{propertyName} property of {labelName} must be of datatype
{dataTypeName}",↪→

11 null
12)
13 RETURN null

Listing 11: Template of trigger to check a data type of a property

31

5. Design of model instantiation

5.3.3 Trigger to check if a property is present

The third integrity constraint used in the transformation of the OntoUML
model is denoted as PROPERTY MUST BE PRESENT. In the case of Neo4j En-
terprise Edition, it would be possible to implement this integrity constraint
using a built-in constraint mechanism. However, in order to maintain gener-
ality for all Neo4j editions, this integrity constraint is also implemented using
a database trigger. The template of trigger query in Listing 12 first obtains all
newly created nodes or nodes that have been assigned a new label or property.
Then, for all obtained nodes that have a label with specified labelName, it
validates if the property with provided propertyName is present.

1 //CONSTRAINT: PROPERTY_MUST_BE_PRESENT
2 //INPUT: labelName, propertyName
3 UNWIND (
4 $createdNodes +
5 apoc.trigger.nodesByLabel($assignedLabels, "{labelName}") +
6 apoc.trigger.nodesByLabel($removedNodeProperties, "{labelName}")
7) AS node
8 CALL apoc.util.validate(
9 apoc.label.exists(node, "{labelName}") and not

10 exists(node.{propertyName}),
11 "{propertyName} property of {labelName} must be present",
12 null
13)
14 RETURN null

Listing 12: Template of trigger to check if a property is present

5.3.4 Trigger to check if a label is in a combination

The fourth integrity constraint used in the OntoUML model transformation is
denoted as LABEL MUST BE IN COMBINATION and must be implemented using
a database trigger. For the implementation of this constraint, it is impossible to
create a template of a database trigger based only on simple text substitution,
but it is necessary to preprocess the inputs into the required form.

Based on the input list of otherLabelNames, the pseudocode in Listing 13
determines three specific text strings that become the parts of the follow-
ing trigger template. The first text string called nodesByLabelString is used
to select all nodes on which any of the labels from the otherLabelNames
list have been removed. It is created by wrapping label names from the
otherLabelNames list with the nodesByLabel function and then concate-
nating these functions into a single string. The second text string called

32

5.3. Implementation of integrity constraints in Neo4j

labelExistsString is used to validate whether a node has assigned any of
the labels from the otherLabelNames list. It is created by wrapping label
names from the otherLabelNames list with the exists function and then
concatenating these functions into a single string. The last text string called
otherNamesOrString is used in a trigger validation message and is created by
concatenating label names from the otherLabelNames list.

1 //INPUT: otherLabelNames
2 //OUTPUT: nodesByLabelString, labelExistsString, otherNamesOrString
3 nodesByLabelString = otherLabelNames
4 .Map(el => "apoc.trigger.nodesByLabel($removedLabels, \"{el}\")")
5 .Reduce((acc, el) => "{acc} + {el}");
6 labelExistsString = otherLabelNames
7 .Map(el => "apoc.label.exists(node, \"{el}\")")
8 .Reduce((acc, el) => "{acc} or {el}");
9 otherNamesOrString = otherLabelNames

10 .Reduce((acc, el) => "{acc} or {el}");

Listing 13: Pseudocode calculating prerequisite inputs for trigger templates

Using the preprocessed inputs, the template of trigger query in Listing 14
first obtains all nodes to which a new label having the specified labelName has
been assigned or on which any label from the otherLabelNames list has been
recently removed. Then, for all obtained nodes having a label with the specified
labelName, it validates if any label with a name from the otherLabelNames
list is simultaneously present.

1 //CONSTRAINT: LABEL_MUST_BE_IN_COMBINATION
2 //INPUT: labelName, nodesByLabelString, labelExistsString, otherNamesOrString
3 UNWIND (
4 apoc.trigger.nodesByLabel($assignedLabels, "{labelName}") +
5 {nodesByLabelString}
6) AS node
7 CALL apoc.util.validate(
8 apoc.label.exists(node, "{labelName}") and not
9 ({labelExistsString}),

10 "{labelName} label must be in a combination with {otherNamesOrString}
labels",↪→

11 null
12)
13 RETURN null

Listing 14: Template of trigger to check if a label is in a combination

33

5. Design of model instantiation

5.3.5 Trigger to check if a label is not in a combination

The fifth integrity constraint used in the transformation of the OntoUML
model is denoted as LABEL CANNOT BE IN COMBINATION. This integrity con-
straint must be implemented using a database trigger, and as in the previous
case, the provided inputs must be preprocessed into the form of concatenated
text strings. Only this way it is possible to create the appropriate trigger
template. Also, in this situation, it is possible to use the already described
pseudocode in Listing 13 for the input preprocessing.

The template of trigger query in Listing 15 first obtains all nodes to which
a new label with the specified labelName has been assigned. Then, for all
obtained nodes, the trigger query validates if there is not present any label
with a name from the otherLabelNames list.

1 //CONSTRAINT: LABEL_CANNOT_BE_IN_COMBINATION
2 //INPUT: labelName, labelExistsString, otherNamesOrString
3 UNWIND (
4 apoc.trigger.nodesByLabel($assignedLabels, "{labelName}")
5) AS node
6 CALL apoc.util.validate(
7 {labelExistsString},
8 "{labelName} label cannot be in a combination with {otherNamesOrString}

labels",↪→

9 null
10)
11 RETURN null

Listing 15: Template of trigger to check if a label is not in a combination

5.3.6 Triggers to check if a relationship is present

The last integrity constraint used in the transformation of the OntoUML
model is denoted as RELATIONSHIP MUST BE PRESENT. In the case of this in-
tegrity constraint, there is no need to preprocess the inputs, but for reasons
given by the internal implementation of the database trigger mechanism in the
Neo4j database system, this constraint needs to be implemented using three
independent database triggers. All three database triggers validate if the node
assigned the specified relatedLabelName has a relationship with the node
assigned the provided mandatoryLabelName, but each of the triggers is tied
to a different type of data modification event.

The first trigger is tied to the event of label assignment. The template of
trigger query in Listing 16 first obtains all nodes to which a new label with
the relatedLabelName has been assigned. Then, for all obtained nodes, it val-

34

5.3. Implementation of integrity constraints in Neo4j

idates if the number of related nodes assigned with the mandatoryLabelName
is greater than zero. In that case, it is ensured that at least one relationship
leads from the related node to the mandatory node.

1 //CONSTRAINT: RELATIONSHIP_MUST_BE_PRESENT (label assignment event)
2 //INPUT: relatedLabelName, mandatoryLabelName
3 UNWIND (
4 apoc.trigger.nodesByLabel($assignedLabels, "{relatedLabelName}")
5) AS node1
6 CALL apoc.util.validate(
7 SIZE([(node1)--(n2:{mandatoryLabelName}) | n2]) < 1,
8 "{relatedLabelName} must be in relationship with {mandatoryLabelName}",
9 null

10)
11 RETURN null

Listing 16: Template of trigger to check if a relationship is present (assign)

The second trigger is tied to the event of label removal. The template of
trigger query in Listing 17 first obtains all nodes on which a label with the
mandatoryLabelName has been recently removed. Then, it obtains all nodes
that were related to the previously obtained nodes and are assigned with
relatedLabelName. Finally, it validates if the number of related nodes that
are still assigned with mandatoryLabelName is greater than zero. This ensures
that at least one relationship leads from the related node to the mandatory
node, although the label on some of the mandatory nodes has been removed.

1 //CONSTRAINT: RELATIONSHIP_MUST_BE_PRESENT (label removal event)
2 //INPUT: relatedLabelName, mandatoryLabelName
3 UNWIND (
4 apoc.trigger.nodesByLabel($removedLabels, "{mandatoryLabelName}")
5) AS node2
6 UNWIND (
7 [(n1:{relatedLabelName})--(node2) | n1]
8) AS node1
9 CALL apoc.util.validate(

10 SIZE([(node1)--(n2:{mandatoryLabelName}) | n2]) < 1,
11 "{relatedLabelName} must be in relationship with {mandatoryLabelName}",
12 null
13)
14 RETURN null

Listing 17: Template of trigger to check if a relationship is present (remove)

35

5. Design of model instantiation

The last database trigger is tied to the event of relationship deletion. The
template of trigger query in Listing 18 first obtains all recently deleted re-
lationships. Then, it obtains an aggregated list of all start and end nodes of
recently deleted relationships. Finally, for all obtained nodes assigned with
specified relatedLabelName, the trigger query validates if the number of re-
lated nodes assigned with the provided mandatoryLabelName is greater than
zero. It ensures that at least one relationship leads from the related node to
the mandatory node, although one of the relationships has been deleted.

1 //CONSTRAINT: RELATIONSHIP_MUST_BE_PRESENT (relationship deletion event)
2 //INPUT: relatedLabelName, mandatoryLabelName
3 UNWIND (
4 $deletedRelationships
5) AS rel
6 UNWIND (
7 [apoc.rel.startNode(rel), apoc.rel.endNode(rel)]
8) AS node1
9 CALL apoc.util.validate(

10 apoc.label.exists(node1, "{relatedLabelName}") and
11 (SIZE([(node1)--(n2:{mandatoryLabelName}) | n2]) < 1),
12 "{relatedLabelName} must be in relationship with {mandatoryLabelName}",
13 null
14)
15 RETURN null

Listing 18: Template of trigger to check if a relationship is present (delete)

36

Chapter 6
Instantiation of example model

Using the comprehensive procedure for the transformation of the OntoUML
diagrams designed in the previous chapter, the example OntoUML model can
now be instantiated in the Neo4j database system. Since it is necessary to
use a considerable number of integrity constraints for correct instantiation
and preserving all the semantics, manual transformation according to the de-
scribed procedure would be a very complex task with a high risk of errors. For
that reason, an automated transformation tool written in C# programming
language has been created as a part of this thesis.

This chapter first introduces this automated transformation tool and then
describes the instantiation of the example model in several subsequent steps, in
which additional constructs and classes with additional stereotypes are grad-
ually added. Since the complete Cypher code of all Neo4j integrity constraints
would be too long, only names and input arguments of necessary integrity
constraints are provided in this chapter. The complete Cypher code of the in-
stantiated model, having almost a thousand lines, can be found as the content
of the enclosed CD.

6.1 Automated transformation tool

The automated tool for the transformation of the OntoUML models, which
has been created based on the designed transformation procedure, is called
DiagramInstantiator. It is a CLI application built on the .NET 6.0 cross-
platform framework in C# programming language. The source code of this
application can also be found as the content of the enclosed CD.

The input of this application can be any syntactically and semantically
valid OntoUML diagram. For the purposes of this thesis, the input diagram is
represented directly by code in C# language. However, the application can be
easily modified in the future to allow the input diagram representation to be
loaded from standard formats such as XML or JSON, whereas these formats
can be exported, for example, from OntoUML modeling tools.

37

6. Instantiation of example model

In order to be able to represent the input OntoUML diagram with C# code
and subsequently work with it using the object-oriented paradigm (OOP), the
application contains its own OntoUML diagram metamodel adapted to the
needs of this thesis. Classes of this metamodel define all the essential elements
of the UML class diagram, as they are listed and described in section 5.1.
A complete description of the OntoUML diagram metamodel, which is itself
described using a UML class diagram, can be found in Figure 6.1.

Figure 6.1: OntoUML diagram metamodel – class diagram

The object representation of an input OntoUML diagram is according to
the procedure described in section 5.2 transformed by the created application
into the set of Neo4j integrity constraints. In order to work effectively with
them, each type of Neo4j integrity constraint described in section 5.3 also has
its own object representation.

Every concrete class which can be found in Figure 6.2 encapsulates a tem-
plate of Neo4j constraint or a template of Neo4j database trigger together
with all of the necessary input parameters. Since all of these classes share
some capabilities, there is an abstract Constraint class from which concrete
classes representing integrity constraints inherit these capabilities. In addition,
this abstract class provides a uniform interface for working with all considered
types of integrity constraints.

38

6.1. Automated transformation tool

Each object created based on these classes represents one specific integrity
constraint and has the ability to generate the output in the form of corre-
sponding Neo4j Cypher code. The generated output code can either contain
only comments with the names and input arguments of individual integrity
constraints for documentation purposes or can contain a full-fledged Cypher
code, including constraint creation statements and database triggers.

Figure 6.2: Neo4j constraint model – class diagram

In addition to the OntoUML diagram metamodel and to the classes rep-
resenting all the individual Neo4j integrity constraints, the application itself
primarily consists of three main classes ensuring its functionality. These classes
and their dependencies on the other parts of the application are described by
the design model, which can be found in Figure 6.3.

The first class, called Instantiator, represents a type of object that is able
to transform between object representations of the OntoUML diagram and
Neo4j integrity constraints. For each OntoUML construct, this class contains
a method whose code matches the pseudocode described in section 5.2 and
which provides a list of corresponding constraints.

The second class, called Generator, represents a type of object that is able
to generate Cypher code based on elements of a given OntoUML diagram. For
this purpose, it uses the capabilities of the Instantiator class, which it con-
tains, and subsequently, the abilities of objects representing specific integrity
constraints. Each method of this class has a parameter that decides whether
only comments or full-fledged Cypher code should be generated.

39

6. Instantiation of example model

The last class, called Program, represents an entry point of the entire
application. This class first creates an object representation of the OntoUML
diagram based on the provided input C# code. The input code corresponding
to the example OntoUML model can be found in Appendix C. The Program
class then uses the Generator class to generate the corresponding output code
and writes it to the output text file. The entire output code (comments only)
generated based on the example OntoUML model can be found in Appendix D.
Its parts are separately discussed below in the following sections.

Figure 6.3: DiagramInstantiator design model – class diagram

6.2 Kinds and Properties

In the first step of the example OntoUML model instantiation, all classes with
a Kind stereotype are transformed together with all their attributes. There are
three different Kinds in the example model – Battery, ElectricalDevice,
and DCPowerSupply. The state of the instantiation after the first step is spec-
ified by the OntoUML diagram, which can be found below in Figure 6.4.

Figure 6.4: Example OntoUML model (Kinds) – class diagram

40

6.2. Kinds and Properties

Names and input arguments of integrity constraints corresponding to the
first instantiation step are listed in Listing 19. In the first place, the set of
PROPERTY MUST BE OF DATATYPE ICs ensures the correct data type for every
attribute of all three transformed classes. Furthermore, since all these at-
tributes can be considered mandatory according to their default multiplicity,
there also must be the PROPERTY MUST BE PRESENT IC for each of them. Also,
in the case of classes with the Kind stereotype, there are ID attributes, whose
uniqueness must be ensured by the PROPERTY MUST BE UNIQUE IC. Finally, the
last set of LABEL CANNOT BE IN COMBINATION ICs ensures that nothing can be
an instance of two different Kinds and have two identities.

1 // ----- ATTRIBUTES
2 PROPERTY_MUST_BE_OF_DATATYPE(ElectricalDevice, id, INTEGER)
3 PROPERTY_MUST_BE_OF_DATATYPE(ElectricalDevice, nominalCurrent, FLOAT)
4 PROPERTY_MUST_BE_OF_DATATYPE(ElectricalDevice, nominalVoltage, FLOAT)
5 PROPERTY_MUST_BE_OF_DATATYPE(DCPowerSupply, id, INTEGER)
6 PROPERTY_MUST_BE_OF_DATATYPE(DCPowerSupply, inputVoltage, FLOAT)
7 PROPERTY_MUST_BE_OF_DATATYPE(DCPowerSupply, maximalCurrent, FLOAT)
8 PROPERTY_MUST_BE_OF_DATATYPE(Battery, id, INTEGER)
9 PROPERTY_MUST_BE_OF_DATATYPE(Battery, maximalVoltage, FLOAT)

10 PROPERTY_MUST_BE_OF_DATATYPE(Battery, minimalVoltage, FLOAT)
11 PROPERTY_MUST_BE_PRESENT(ElectricalDevice, id)
12 PROPERTY_MUST_BE_PRESENT(ElectricalDevice, nominalCurrent)
13 PROPERTY_MUST_BE_PRESENT(ElectricalDevice, nominalVoltage)
14 PROPERTY_MUST_BE_PRESENT(DCPowerSupply, id)
15 PROPERTY_MUST_BE_PRESENT(DCPowerSupply, inputVoltage)
16 PROPERTY_MUST_BE_PRESENT(DCPowerSupply, maximalCurrent)
17 PROPERTY_MUST_BE_PRESENT(Battery, id)
18 PROPERTY_MUST_BE_PRESENT(Battery, maximalVoltage)
19 PROPERTY_MUST_BE_PRESENT(Battery, minimalVoltage)
20 PROPERTY_MUST_BE_UNIQUE(ElectricalDevice, id)
21 PROPERTY_MUST_BE_UNIQUE(DCPowerSupply, id)
22 PROPERTY_MUST_BE_UNIQUE(Battery, id)
23 // ----- STEREOTYPES
24 LABEL_CANNOT_BE_IN_COMBINATION(ElectricalDevice, {DCPowerSupply, Battery,

ElectricalConnection})↪→

25 LABEL_CANNOT_BE_IN_COMBINATION(DCPowerSupply, {ElectricalDevice, Battery,
ElectricalConnection})↪→

26 LABEL_CANNOT_BE_IN_COMBINATION(Battery, {ElectricalDevice, DCPowerSupply,
ElectricalConnection})↪→

27 LABEL_CANNOT_BE_IN_COMBINATION(ElectricalConnection, {ElectricalDevice,
DCPowerSupply, Battery})↪→

Listing 19: Constraints of instantiated example model – Kinds

41

6. Instantiation of example model

It is important to mention that at this point, it is already necessary
to consider the existence of the ElectricalConnection class, which is
otherwise transformed only in the fifth instantiation step. Like the other
classes with the Kind stereotype, this class with the Relator stereotype pro-
vides its own identity and, therefore, must also be included in the set of
LABEL CANNOT BE IN COMBINATION ICs.

6.3 Subkinds

In the second step of the example model instantiation, all classes with a Sub-
kind stereotype are transformed. There exist two different Subkinds in the
example model – Rechargeable and Nonrechargeable, both are subclasses
of the Battery class. The cumulative state after the second instantiation step
is specified by the OntoUML diagram, which can be found below in Figure 6.5.

Figure 6.5: Example OntoUML model (Subkinds) – class diagram

Names and input arguments of integrity constraints corresponding to
the second instantiation step are listed in Listing 20. As in the previ-
ous instantiation step, there are the PROPERTY MUST BE OF DATATYPE and
the PROPERTY MUST BE PRESENT ICs representing the attributes of newly
added classes, their data types and mandatority. Moreover, the first two
LABEL MUST BE IN COMBINATION ICs represent the generalizations between
the Battery class and both Subkind classes. Since both generalizations are
combined into the generalization set, ICs that ensure its properties also have
to be present. The last LABEL MUST BE IN COMBINATION IC represents the
IsCovering property and ensures that any instance of the Battery class is
also an instance of either the Rechargeable class or the Nonrechargeable
class. Finally, the last two LABEL CANNOT BE IN COMBINATION ICs represent
the IsDisjoint property and ensure that any instance of the Rechargeable
class cannot be an instance of the Nonrechargeable class and vice versa.

42

6.4. Categories

1 // ----- ATTRIBUTES
2 PROPERTY_MUST_BE_OF_DATATYPE(Rechargeable, cyclelife, INTEGER)
3 PROPERTY_MUST_BE_OF_DATATYPE(Nonrechargeable, shelflife, INTEGER)
4 PROPERTY_MUST_BE_PRESENT(Rechargeable, cyclelife)
5 PROPERTY_MUST_BE_PRESENT(Nonrechargeable, shelflife)
6 // ----- GENERALIZATIONS
7 LABEL_MUST_BE_IN_COMBINATION(Rechargeable, {Battery})
8 LABEL_MUST_BE_IN_COMBINATION(Nonrechargeable, {Battery})
9 // ----- GENERALIZATION SETS

10 LABEL_MUST_BE_IN_COMBINATION(Battery, {Rechargeable, Nonrechargeable})
11 LABEL_CANNOT_BE_IN_COMBINATION(Rechargeable, {Nonrechargeable})
12 LABEL_CANNOT_BE_IN_COMBINATION(Nonrechargeable, {Rechargeable})

Listing 20: Constraints of instantiated example model – Subkinds

6.4 Categories

In the third step of the example model instantiation, all abstract classes
with a Category stereotype are transformed. Two different Categories exist in
the example model – EnergySource and DCPowerSource, representing super-
classes of previously transformed Kinds. The cumulative state after the third
instantiation step is specified by the OntoUML diagram below in Figure 6.6.

Figure 6.6: Example OntoUML model (Categories) – class diagram

43

6. Instantiation of example model

Names and input arguments of integrity constraints corresponding to the
third instantiation step are listed in Listing 21. As can be seen in this listing,
attributes of the newly added classes are transformed in the same way as in
the previous instantiation steps. The main difference from the previous instan-
tiation steps is that classes with the Category stereotype are NonSortals, and
thus it is necessary to ensure their instances always have an identity. For this
reason, the first two LABEL MUST BE IN COMBINATION ICs ensure that instances
of the EnergySource class or the DCPowerSource class are also instances of
their direct Sortal subclasses, and obtain an identity from them. Besides that,
the last three LABEL MUST BE IN COMBINATION ICs represent generalizations
between the superclasses with Category stereotypes and all their subclasses. In
the case of the DCPowerSource superclass, its generalizations are likewise com-
bined into a generalization set, but this time only with the IsDisjoint property.
Therefore, the last two LABEL CANNOT BE IN COMBINATION ICs ensure that all
instances of the Battery class and all instances of the DCPowerSupply class
are entirely disjoint.

1 // ----- ATTRIBUTES
2 PROPERTY_MUST_BE_OF_DATATYPE(EnergyStorage, capacity, FLOAT)
3 PROPERTY_MUST_BE_OF_DATATYPE(DCVoltageSource, actualVoltage, FLOAT)
4 PROPERTY_MUST_BE_OF_DATATYPE(DCVoltageSource, nominalVoltage, FLOAT)
5 PROPERTY_MUST_BE_PRESENT(EnergyStorage, capacity)
6 PROPERTY_MUST_BE_PRESENT(DCVoltageSource, actualVoltage)
7 PROPERTY_MUST_BE_PRESENT(DCVoltageSource, nominalVoltage)
8 // ----- STEREOTYPES
9 LABEL_MUST_BE_IN_COMBINATION(EnergyStorage, {Battery})

10 LABEL_MUST_BE_IN_COMBINATION(DCVoltageSource, {DCPowerSupply, Battery})
11 // ----- GENERALIZATIONS
12 LABEL_MUST_BE_IN_COMBINATION(Battery, {EnergyStorage})
13 LABEL_MUST_BE_IN_COMBINATION(DCPowerSupply, {DCVoltageSource})
14 LABEL_MUST_BE_IN_COMBINATION(Battery, {DCVoltageSource})
15 // ----- GENERALIZATION SETS
16 LABEL_CANNOT_BE_IN_COMBINATION(DCPowerSupply, {Battery})
17 LABEL_CANNOT_BE_IN_COMBINATION(Battery, {DCPowerSupply})

Listing 21: Constraints of instantiated example model – Categories

6.5 Phases

In the fourth step of the example model instantiation, all classes with a Phase
stereotype are transformed. In the example model, the already transformed
Battery class with the Kind stereotype can be in one of three states repre-

44

6.5. Phases

sented by the following three Phases – Charged, Used, or Discharged. The
cumulative state after the fourth instantiation step is specified by the On-
toUML diagram below in Figure 6.7.

Figure 6.7: Example OntoUML model (Phases) – class diagram

Names and input arguments of integrity constraints corresponding to
the fourth instantiation step are listed in Listing 22. The transformation of
classes with the Phase stereotype can be considered almost identical to the
transformation of classes with the Subkind stereotype. It is given by the
fact that both stereotypes denote Sortals classes that do not provide iden-
tity and differ primarily in their rigidity. However, since there is no point
in treating rigidity within the proposed transformation, as discussed and
explained in chapter 8, the only difference is that classes with the Phase
stereotype must always be found in the generalization set with both IsCover-
ing and IsDisjoint properties. Regarding the listed integrity constraints, the
PROPERTY MUST BE OF DATATYPE ICs and the PROPERTY MUST BE PRESENT ICs
again represent attributes of newly transformed classes. Likewise, the first
three LABEL MUST BE IN COMBINATION ICs represent generalizations between
the Battery superclass and all three subclasses with Phase stereotype. As
mentioned above, even in this case, the generalizations are combined into
a generalization set with both IsCovering and IsDisjoint properties. Therefore
the last LABEL MUST BE IN COMBINATION IC ensures that instances of the
Battery superclass are always instances of one of the Phase subclass and the
last three LABEL CANNOT BE IN COMBINATION ICs ensure that all instances of
Phase subclasses are mutually disjoint.

45

6. Instantiation of example model

1 // ----- ATTRIBUTES
2 PROPERTY_MUST_BE_OF_DATATYPE(Charged, chargeDate, DATE)
3 PROPERTY_MUST_BE_OF_DATATYPE(Used, lastUseDate, DATE)
4 PROPERTY_MUST_BE_OF_DATATYPE(Discharged, dischargeDate, DATE)
5 PROPERTY_MUST_BE_PRESENT(Charged, chargeDate)
6 PROPERTY_MUST_BE_PRESENT(Used, lastUseDate)
7 PROPERTY_MUST_BE_PRESENT(Discharged, dischargeDate)
8 // ----- GENERALIZATIONS
9 LABEL_MUST_BE_IN_COMBINATION(Charged, {Battery})

10 LABEL_MUST_BE_IN_COMBINATION(Used, {Battery})
11 LABEL_MUST_BE_IN_COMBINATION(Discharged, {Battery})
12 // ----- GENERALIZATION SETS
13 LABEL_MUST_BE_IN_COMBINATION(Battery, {Charged, Used, Discharged})
14 LABEL_CANNOT_BE_IN_COMBINATION(Charged, {Used, Discharged})
15 LABEL_CANNOT_BE_IN_COMBINATION(Used, {Charged, Discharged})
16 LABEL_CANNOT_BE_IN_COMBINATION(Discharged, {Charged, Used})

Listing 22: Constraints of instantiated example model – Phases

6.6 Roles, RoleMixin and Relator

In the last step of the example model instantiation, all classes with Role and
RoleMixin stereotypes are transformed. In the example model, there exist
three different Roles – the ConnectedElectricalDevice as a Role of the
ElectricalDevice Kind, the ConnectedBattery as a Role of the Battery
Kind, and the ConnectedDCPowerSupply as a Role of the DCPowerSupply
Kind. Although the last two Roles have different identity providers, they
still share a common attribute and a common association, which they inherit
from ConnectedDCPowerSource RoleMixin. Since the mandatory association
of RoleMixin must be implemented using the class with the Relator stereotype,
the ElectricalConnection Relator is as well transformed in this instantia-
tion step. The final state of instantiation after the last step is specified by the
OntoUML diagram in Figure 6.7, which can be found in chapter 3.

Names and input arguments of integrity constraints corresponding to the
last instantiation step are listed in Listing 23. This instantiation step can
be considered the most complex of all, as it includes all types of designed
integrity constraints. First, in addition to the already standard transfor-
mation of attributes using the PROPERTY MUST BE OF DATATYPE ICs and the
PROPERTY MUST BE PRESENT ICs, there is also the PROPERTY MUST BE UNIQUE
IC, as the ElectricalConnection class with Relator stereotype is another
identity provider, and its ID attribute must be unique. Second, regarding
the transformation of the semantics of class stereotypes, integrity constraints
ensuring that instances of the ElectricalConnection class are not simulta-

46

6.6. Roles, RoleMixin and Relator

neously instances of another identity provider have already been added in the
first instantiation step. Besides that, the first LABEL MUST BE IN COMBINATION
IC ensures that instances of the ConnectedDCVoltageSource NonSortal class
get their identity from one of its Sortal subclasses. Third, the generaliza-
tions between Roles and Kinds and between Roles and RoleMixin are rep-
resented by another five LABEL MUST BE IN COMBINATION ICs. Since some
generalizations here are once more combined into a generalization set, the
last two LABEL CANNOT BE IN COMBINATION ICs represent its IsDisjoint prop-
erty. Finally, the last four RELATIONSHIP MUST BE PRESENT ICs represent
the mandatory binary associations between ConnectedElectricalDevice,
ElectricalConnection, and ConnectedDCVoltageSource classes.

1 // ----- ATTRIBUTES
2 PROPERTY_MUST_BE_OF_DATATYPE(ElectricalConnection, id, INTEGER)
3 PROPERTY_MUST_BE_OF_DATATYPE(ElectricalConnection, resistance, FLOAT)
4 PROPERTY_MUST_BE_OF_DATATYPE(ConnectedDCVoltageSource, drawnCurrent, FLOAT)
5 PROPERTY_MUST_BE_PRESENT(ElectricalConnection, id)
6 PROPERTY_MUST_BE_PRESENT(ElectricalConnection, resistance)
7 PROPERTY_MUST_BE_PRESENT(ConnectedDCVoltageSource, drawnCurrent)
8 PROPERTY_MUST_BE_UNIQUE(ElectricalConnection, id)
9 // ----- STEREOTYPES

10 LABEL_MUST_BE_IN_COMBINATION(ConnectedDCVoltageSource, {ConnectedBattery,
ConnectedDCPowerSupply})↪→

11 // ----- GENERALIZATIONS
12 LABEL_MUST_BE_IN_COMBINATION(ConnectedElectricalDevice, {ElectricalDevice})
13 LABEL_MUST_BE_IN_COMBINATION(ConnectedDCPowerSupply,

{ConnectedDCVoltageSource})↪→

14 LABEL_MUST_BE_IN_COMBINATION(ConnectedBattery, {ConnectedDCVoltageSource})
15 LABEL_MUST_BE_IN_COMBINATION(ConnectedDCPowerSupply, {DCPowerSupply})
16 LABEL_MUST_BE_IN_COMBINATION(ConnectedBattery, {Battery})
17 // ----- GENERALIZATION SETS
18 LABEL_CANNOT_BE_IN_COMBINATION(ConnectedDCPowerSupply, {ConnectedBattery})
19 LABEL_CANNOT_BE_IN_COMBINATION(ConnectedBattery, {ConnectedDCPowerSupply})
20 // ----- ASSOCIATIONS
21 RELATIONSHIP_MUST_BE_PRESENT(ConnectedElectricalDevice, ElectricalConnection)
22 RELATIONSHIP_MUST_BE_PRESENT(ElectricalConnection, ConnectedElectricalDevice)
23 RELATIONSHIP_MUST_BE_PRESENT(ElectricalConnection, ConnectedDCVoltageSource)
24 RELATIONSHIP_MUST_BE_PRESENT(ConnectedDCVoltageSource, ElectricalConnection)

Listing 23: Constraints of instantiated example model – Roles, RoleMixin

47

Chapter 7
Testing of instantiated model

As the last step of the conducted case study, it is necessary to verify that
the proposed procedure for the transformation of OntoUML diagrams in the
Neo4j database system can be considered correct. Since the aim of this thesis
is not to provide complete formal proof of the correctness of the proposed
procedure, the verification is based on a series of test cases testing different
aspects of the instantiated example OntoUML model.

Testing is divided into two subsequent phases. In the first phase of positive
testing, it is verified whether the instantiated model behaves as expected when
using only valid testing data. In the second phase of negative testing, a series of
test data manipulation Cypher queries that violate the semantics given by the
OntoUML model is gradually executed. Then, it is verified if their execution
is prevented by the relevant integrity constraints. In addition, the last section
of this chapter also describes how this process can be automated so that the
testing can be performed flawlessly whenever the transformation procedure is
changed or extended.

7.1 Positive testing

Positive testing aims to determine whether an instantiated example model can
be successfully deployed on the actual Neo4j database system and whether it
is possible to load valid testing data into it. The instantiated example model
consists of a total of 87 separate integrity constraints represented mainly by
database trigger add statements. In Appendix D, there are only names and
input arguments of generated ICs, while the complete Cypher code of the
instantiated model can be found on the enclosed CD.

The Cypher code representing the instantiated model is designed for the
Neo4j in version 4.4.18 with the APOC library installed in version 4.4.0.14.
These versions are henceforward used for the entire process of testing described
below. In order to enable database triggers in the Neo4j, it is necessary to
create an apoc.conf configuration file and add two lines specified in Listing 24.

49

7. Testing of instantiated model

1 apoc.trigger.enabled=true
2 apoc.trigger.refresh=60000

Listing 24: Configuration enabling database triggers in Neo4j

On a properly set up Neo4j database, the instantiated model can be de-
ployed by simply running the corresponding Cypher code using tools such
as Neo4j Browser or Neo4j Cypher Shell. This first part of positive testing
proves that all 87 Cypher statements are syntactically correct and that the
instantiated model can be successfully deployed. The presence of all deployed
integrity constraints can be confirmed using the CALL apoc.trigger.list()
and the SHOW CONSTRAINTS commands.

After successful deployment, it is now possible to load testing data into the
database. The Cypher code for insertion of valid testing data can be found
in Appendix E. This testing data includes the creation statements of three
different electrical devices, one rechargeable battery, one DC power supply, and
electrical connections between the first two electrical devices and suitable DC
power sources. Even in this case, it is possible to insert testing data simply by
running the above-mentioned Cypher code. This second part of positive testing
proves that all 7 nodes and 4 relationships can be successfully inserted, and
their insertion does not violate any of the 87 previously deployed ICs. Inserted
testing data can be shown using the MATCH (n) RETURN n commands.

Figure 7.1: Visualization of inserted testing data – labeled-property graph

Visualization of inserted testing data can be seen in Figure 7.1. Circles
represent nodes as instances of classes as well as lines represent relationships as
instances of associations. Different colors of nodes denote different Kinds – blue
corresponds to ElectricalDevice, yellow indicates ElectricalConnection,
red matches Battery, and green denotes DCPowerSupply. Numbers on nodes
describe values of ID attributes.

50

7.2. Negative testing

A summary overview describing the results of both steps of positive testing
can be found below in Table 7.1.

Table 7.1: Summary results of positive testing

Testing step # statements # successful
model deployment 87 87
valid data loading 7 7

7.2 Negative testing

Negative testing tries to verify that the deployed instantiated model contains
all of the necessary integrity constraints and that it is not possible to load
invalid data violating the semantics given by the original OntoUML model
into the database. The goal is not to test every single integrity constraint
but rather to test a sufficiently comprehensive sample of invalid data, based
on which it is already possible to detect potential integrity errors or, on the
contrary, to assume that the OntoUML model is instantiated correctly.

Negative tests are represented by data manipulation Cypher queries that
verify the presence and functionality of individual integrity constraints. Only
the names and several examples of these queries are listed in this chapter.
They are divided into subsections according to the corresponding step of the
example model instantiation. The complete list of negative test Cypher queries
can be found on the enclosed CD. As a default state for the correct execution
of these queries, it is assumed that the instantiated example OntoUML model
has already been deployed to the database and that valid testing data has
been loaded as a part of previous positive testing.

7.2.1 Kinds and Properties

The first set of negative tests verifies the correct instantiation of Kinds and
their properties. Names of 7 test cases from this set are listed in Listing 25.

1 TestPropertyDatatypeOnCreate()
2 TestPropertyDatatypeOnUpdate()
3 TestPropertyPresentOnCreate()
4 TestPropertyPresentOnRemove()
5 TestPropertyUniqueOnCreate()
6 TestPropertyUniqueOnUpdate()
7 TestNotCombinationSingleOnCreate()

Listing 25: Names of negative test cases for Kinds

51

7. Testing of instantiated model

The TestPropertyDatatypeOnCreate negative test attempts to create an
ElectricalDevice instance that has a String instead of a Float as a value
of the nominalVoltage attribute. As an example, the Cypher query of this
test can be seen in Listing 26. Similarly, the TestPropertyDatatypeOnUpdate
negative test attempts to update the nominalVoltage value of an existing
ElectricalDevice instance and change it to a String datatype. Execution
of both queries should be prevented by the PROPERTY MUST BE OF DATATYPE
integrity constraint.

1 //TEST: TestPropertyDatatypeOnCreate()
2 //FAIL PROPERTY_MUST_BE_OF_DATATYPE(ElectricalDevice, nominalCurrent, FLOAT)
3 CREATE (e
4 :ElectricalDevice {
5 id: 10,
6 nominalVoltage: "some text",
7 nominalCurrent: 0.025
8 });

Listing 26: Negative test of attribute value datatype – Kinds

The TestPropertyPresentOnCreate negative test attempts to create an
ElectricalDevice instance without setting a value for the nominalVoltage
attribute. In the same manner, the TestPropertyPresentOnRemove nega-
tive test attempts to remove the nominalVoltage attribute of an existing
ElectricalDevice instance. The Cypher query of the secondly mentioned
negative test can be seen in Listing 27. Execution of both negative test queries
should be prevented by the PROPERTY MUST BE PRESENT integrity constraint.

1 //TEST: TestPropertyPresentOnRemove()
2 //FAIL PROPERTY_MUST_BE_PRESENT(ElectricalDevice, nominalCurrent)
3 MATCH (e:ElectricalDevice {id: 1})
4 REMOVE e.nominalVoltage;

Listing 27: Negative test of attribute value presence – Kinds

The TestPropertyUniqueOnCreate negative test attempts to create an
ElectricalDevice instance with the value of id attribute that has been
already set to another ElectricalDevice instance. Almost identically, the
TestPropertyUniqueOnUpdate negative test attempts to update the value of
id attribute of one existing ElectricalDevice instance to the value that has
been already set to another existing ElectricalDevice instance. Execution of
both queries should be prevented by the PROPERTY MUST BE UNIQUE integrity
constraint.

52

7.2. Negative testing

The last TestNotCombinationSingleOnCreate negative test attempts to
create an ElectricalDevice instance that is a DCPowerSupply instance at the
same time. Although attribute values of both mentioned Kinds are correctly
set, execution of this negative test query should be prevented by corresponding
LABEL CANNOT BE IN COMBINATION integrity constraint since all the instances
can only have a single identity.

7.2.2 Subkinds

The second set of negative tests verifies the correct instantiation of Subkinds.
Names of 5 test cases from this set are listed in Listing 28.

1 TestInCombinationGeneralizationOnCreate()
2 TestInCombinationCompleteOnCreate()
3 TestInCombinationCompleteOnRemove()
4 TestNotCombinationDisjointOnCreate()
5 TestNotCombinationDisjointOnUpdate()

Listing 28: Names of negative test cases for Subkinds

The TestInCombinationGeneralizationOnCreate test attempts to cre-
ate a Rechargeable instance that is not a Battery instance at the same time.
Execution of this negative test query should be prevented by correspond-
ing LABEL MUST BE IN COMBINATION integrity constraint because there exists
a generalization between these two classes.

1 //TEST: TestInCombinationCompleteOnCreate()
2 //FAIL LABEL_MUST_BE_IN_COMBINATION(Battery, {Rechargeable, Nonrechargeable})
3 CREATE (b
4 :EnergyStorage :DCVoltageSource
5 :Battery :Charged {
6 id: 10,
7 capacity: 3.0,
8 actualVoltage: 1.45,
9 nominalVoltage: 1.2,

10 maximalVoltage: 1.45,
11 minimalVoltage: 1.2,
12 chargeDate: date("2022-10-28")
13 });

Listing 29: Negative test of IsCovering GS property – Subkinds

The TestInCombinationCompleteOnCreate negative test attempts to cre-
ate a Battery instance that is neither Rechargeable nor Nonrechargeable

53

7. Testing of instantiated model

instance. The Cypher query of this test can be seen in Listing 29. In a simi-
lar way, the TestInCombinationCompleteOnRemove negative test attempts to
remove a Rechargeable label of an existing Battery instance. Execution of
both test queries should be prevented by the LABEL MUST BE IN COMBINATION
integrity constraint as all mentioned classes are in a generalization set with
IsCovering property.

1 //TEST: TestNotCombinationDisjointOnUpdate()
2 //FAIL LABEL_CANNOT_BE_IN_COMBINATION(Nonrechargeable, {Rechargeable})
3 MATCH (b:Battery {id: 1})
4 SET b:Nonrechargeable
5 SET b += {shelflife: 18};

Listing 30: Negative test of IsDisjoint GS property – Subkinds

The TestNotCombinationDisjointOnCreate negative test attempts to
create a Rechargeable instance that is a Nonrechargeable instance at
the same time. Equivalently, the TestNotCombinationDisjointOnUpdate
negative test attempts to assign a Nonrechargeable label to an existing
Rechargeable instance. The Cypher query of the secondly mentioned nega-
tive test can be seen in Listing 30. Execution of both negative test queries
should be prevented by the corresponding LABEL CANNOT BE IN COMBINATION
integrity constraint as all the mentioned classes are in a generalization set
with IsDisjoint property.

7.2.3 Categories

The third set of negative tests verifies the correct instantiation of Categories.
Names of 4 test cases from this set are listed in Listing 31.

1 TestInCombinationHasIdentityOnCreate()
2 TestInCombinationGeneralizationOnCreate()
3 TestInCombinationGeneralizationOnRemove()
4 TestNotCombinationDisjointOnCreate()

Listing 31: Names of negative test cases for Categories

The TestInCombinationHasIdentityOnCreate negative test attempts to
create an EnergyStorage instance without being a Battery instance at the
same time. The Cypher query of this negative test can be seen as an example
in Listing 32. Execution of this negative test query should be prevented by
corresponding LABEL MUST BE IN COMBINATION integrity constraint since all
the instances must have an identity.

54

7.2. Negative testing

1 //TEST: TestInCombinationHasIdentityOnCreate()
2 //FAIL LABEL_MUST_BE_IN_COMBINATION(EnergyStorage, {Battery})
3 CREATE (e
4 :EnergyStorage {
5 capacity: 3.0
6 });

Listing 32: Negative test of assigned identity – Categories

The TestInCombinationGeneralizationOnCreate test attempts to cre-
ate a Battery instance that simultaneously is not an EnergyStorage instance.
Similarly, the TestInCombinationGeneralizationOnRemove negative test at-
tempts to remove a EnergyStorage label of an existing Battery instance. The
Cypher query of this test can be seen in Listing 33. Execution of both nega-
tive test queries should be prevented by the LABEL MUST BE IN COMBINATION
integrity constraint as there exists a generalization between both classes.

1 //TEST: TestInCombinationGeneralizationOnRemove()
2 //FAIL LABEL_MUST_BE_IN_COMBINATION(Battery, {EnergyStorage})
3 MATCH (b:Battery {id: 1})
4 REMOVE b:EnergyStorage;

Listing 33: Negative test of generalization – Categories

The last TestNotCombinationDisjointOnCreate negative test attempts
to create a Battery instance that is a DCPowerSupply instance at the same
time. Execution of this test query should be prevented by the corresponding
LABEL CANNOT BE IN COMBINATION integrity constraint because both classes
are in a generalization set with IsDisjoint property.

7.2.4 Phases

The fourth set of negative tests verifies the correct instantiation of Phases.
Names of 5 test cases from this set are listed in Listing 34.

1 TestInCombinationGeneralizationOnCreate()
2 TestInCombinationCompleteOnCreate()
3 TestInCombinationCompleteOnRemove()
4 TestNotCombinationDisjointOnCreate()
5 TestNotCombinationDisjointOnUpdate()

Listing 34: Names of negative test cases for Phases

55

7. Testing of instantiated model

The TestInCombinationGeneralizationOnCreate negative test tries to
create a Charged instance that simultaneously is not a Battery instance. The
Cypher query of this negative test can be seen below in Listing 35. Execu-
tion of this negative test query should be prevented by the corresponding
LABEL MUST BE IN COMBINATION integrity constraint as there exists a general-
ization between both classes.

1 //TEST: TestInCombinationGeneralizationOnCreate()
2 //FAIL LABEL_MUST_BE_IN_COMBINATION(Charged, {Battery})
3 CREATE (c
4 :Charged {
5 chargeDate: date("2022-10-28")
6 });

Listing 35: Negative test of generalization – Phases

The TestInCombinationCompleteOnCreate negative test tries to create
a Battery instance that simultaneously is not an instance of any of Phase
classes. The Cypher query of this test can be seen in Listing 36. In the same
manner, the TestInCombinationCompleteOnRemove negative test attempts
to remove a Charged label of an existing Battery instance. Execution of both
test queries should be prevented by the LABEL MUST BE IN COMBINATION in-
tegrity constraint since all mentioned classes are in a generalization set with
IsCovering property.

1 //TEST: TestInCombinationCompleteOnCreate()
2 //FAIL LABEL_MUST_BE_IN_COMBINATION(Battery, {Charged, Used, Discharged})
3 CREATE (b
4 :EnergyStorage :DCVoltageSource
5 :Battery :Rechargeable {
6 id: 10,
7 capacity: 3.0,
8 actualVoltage: 1.45,
9 nominalVoltage: 1.2,

10 maximalVoltage: 1.45,
11 minimalVoltage: 1.2,
12 cyclelife: 1000
13 });

Listing 36: Negative test of IsCovering GS property – Phases

The TestNotCombinationDisjointOnCreate negative test tries to create
a Charged instance that is a Used instance at the same time. In the same way,

56

7.2. Negative testing

the TestNotCombinationDisjointOnUpdate negative test attempts to assign
a Used label to an existing Charged instance. Execution of both negative
test queries should be prevented by the LABEL CANNOT BE IN COMBINATION
integrity constraint as all mentioned classes are in a generalization set with
IsDisjoint property.

7.2.5 Roles, RoleMixin and Relator

The last set of negative tests verifies the correct instantiation of Roles,
RoleMixin, and Relator. Names of 8 test cases are listed in Listing 37.

1 TestInCombinationHasIdentityOnCreate()
2 TestInCombinationHasIdentityOnRemove()
3 TestInCombinationGeneralizationMixinOnCreate()
4 TestInCombinationGeneralizationMixinOnRemove()
5 TestInCombinationGeneralizationKindOnCreate()
6 TestRelationshipPresentOnCreate()
7 TestRelationshipPresentOnRemove()
8 TestRelationshipPresentOnDelete()

Listing 37: Names of negative test cases for Roles

The TestInCombinationHasIdentityOnCreate negative test tries to cre-
ate a ConnectedDCVoltageSource instance that is neither ConnectedBattery
instance nor ConnectedDCPowerSupply instance. As an example, the Cypher
query of this negative test can be seen in Listing 38. Almost identically, the
TestInCombinationHasIdentityOnRemove negative test attempts to remove
a ConnectedBattery label of an existing ConnectedDCVoltageSource in-
stance. Execution of both negative test queries should be prevented by the
LABEL MUST BE IN COMBINATION IC since all instances must have an identity.

1 //TEST: TestInCombinationHasIdentityOnCreate()
2 //FAIL LABEL_MUST_BE_IN_COMBINATION(ConnectedDCVoltageSource, { ... })
3 MATCH (e:ElectricalDevice {id: 3})
4 SET e:ConnectedElectricalDevice
5 CREATE (c
6 :ConnectedDCVoltageSource {
7 drawnCurrent: 0.025
8 })-[:Mediation]->(r
9 :ElectricalConnection {id: 10, resistance: 0.05}

10)-[:Mediation]->(e);

Listing 38: Negative test of assigned identity – Roles

57

7. Testing of instantiated model

The TestInCombinationGeneralizationMixinOnCreate test tries to cre-
ate a ConnectedBattery instance that is not a ConnectedDCVoltageSource
instance. Similarly, the TestInCombinationGeneralizationMixinOnRemove
negative test attempts to remove a ConnectedDCVoltageSource label of an
existing ConnectedBattery instance. Execution of both negative test queries
should be prevented by the corresponding LABEL MUST BE IN COMBINATION IC
because there is a generalization between both classes.

The TestInCombinationGeneralizationKindOnCreate test attempts to
create a ConnectedBattery instance that simultaneously is not a Battery
instance. Execution of this negative test query should be prevented by the
corresponding LABEL MUST BE IN COMBINATION IC because also, in this case,
there is a generalization between these classes.

The TestRelationshipPresentOnCreate negative test attempts to cre-
ate an ElectricalConnection instance that does not have a relation-
ship with any ConnectedElectricalDevice instance. In a similar man-
ner, both the TestRelationshipPresentOnRemove negative test and the
TestRelationshipPresentOnDelete negative test attempt to simulate an
equivalent situation by removing a ConnectedElectricalDevice label of an
ElectricalDevice instance or by deleting the ElectricalDevice instance
completely. The Cypher query of the lastly mentioned negative test can be
seen in Listing 39. Execution of all three test queries should be prevented
by the RELATIONSHIP MUST BE PRESENT IC because a mandatory association
exists between the two mentioned classes.

1 //TEST: TestRelationshipPresentOnDelete()
2 //FAIL RELATIONSHIP_MUST_BE_PRESENT(ElectricalConnection, ...)
3 MATCH (e:ElectricalDevice {id: 1})
4 DETACH DELETE e;

Listing 39: Negative test of association presence – Roles

A summary overview describing the results of individual steps of negative
testing can be found below in Table 7.2.

Table 7.2: Summary results of negative testing

Testing step # test cases # successful
Kinds, Properties 7 7
Subkinds 5 5
Categories 4 4
Phases 5 5
Roles, RoleMixin 8 8
Total 29 29

58

7.3. Automated testing

7.3 Automated testing

Both positive and negative testing can be done by manually executing indi-
vidual Cypher queries of test cases from previous sections. However, such an
approach cannot be considered effective, especially not in a situation when
testing has to be often repeated during the change or extension of the trans-
formation procedure.

Fortunately, the process of testing can be easily automated. As a demon-
stration of this fact, the thesis contains the InstantiationTester utility,
also written in the C# language and using the NUnit framework. This frame-
work is usually used for unit testing applications written on top of the .NET
platform. However, in this case, the goal is not to test separate parts of the
automated transformation tool developed as a part of this thesis but rather to
test the procedure of transformation of OntoUML diagrams into Neo4j graph
database integrity constraints itself. The benefit of the NUnit framework is
that it can be used for this purpose as well.

The InstantiationTester utility contains a test method for every neg-
ative test mentioned in the previous section. Test methods are divided into
test suites according to their testing steps. Every test method connects to the
Neo4j database with preset credentials and tries to verify that the execution
of its negative test query is prevented by an integrity constraint mechanism.
The results of negative testing performed using this utility can be seen in
Figure 7.2.

Figure 7.2: Results of NUnit automated testing utility – screenshot

59

Chapter 8
Discussion

After the case study that demonstrates the example OntoUML model in-
stantiation in the Neo4j graph database has been successfully conducted, the
achieved results need to be further discussed. Therefore, this thesis’s last chap-
ter evaluates the benefits, possible issues, and some other aspects of the pro-
posed approach. Furthermore, because the concluded case study is intended
to serve as a basis for further technical publications in this field of research,
the last section of this chapter also addresses possible future work.

8.1 Benefits of proposed approach

The main benefit of the conducted case study is that the comprehensive pro-
cedure for the transformation of OntoUML diagrams in the Neo4j database
system has been successfully designed, used, and tested. The proposed proce-
dure already covers a significant part of the OntoUML, including most of the
OntoUML class stereotypes. Moreover, since the procedure is expressed with
algorithmic precision, it can be fully automated.

The possibility of full automation results in a considerable degree of con-
venience for all types of potential users. Thanks to this fact, the proposed
procedure can be used not only by software developers to ensure the integrity
of data in their information systems but also by domain experts during the
design and validation of OntoUML models describing their domain of interest.
The OntoUML diagrams can de facto become the high-level data schemas for
otherwise schema-free graph database systems.

Even though it might seem that the whole idea of this approach goes
against the philosophy of schema-free database systems, it is not the case.
Another benefit is that the instantiated models are closed to modifications
but still open for extension. In other words, it is still possible to add arbitrary
data to the database beyond the scope of the defined OntoUML model as long
as there is no violation of the semantics imposed by this model. The benefits
of the schema-free philosophy can thus be considered preserved.

61

8. Discussion

8.2 Possible issues of proposed approach

The first issue of the proposed approach is given by the fact that although
it covers a significant part of the OntoUML, there still exists a considerable
number of constructs whose instantiation needs to be addressed. It mainly
includes the Mixin class stereotype and most of the relationship stereotypes,
except for the Mediation stereotype. In addition to these stereotypes, it is
also necessary to resolve the instantiation of attributes with a multiplicity
higher than one and the instantiation of associations with a limited multiplicity
upper bound. The question remains whether the instantiation of the above-
mentioned OntoUML constructs in graph databases is possible or whether it
results in as yet undiscovered problems.

The second issue relates to another important part of OntoUML and UFO
theory, the rigidity principle, which also has not been addressed in this case
study. The reason is that by using the available integrity constraint mecha-
nisms, it cannot be ensured in a meaningful way that an instance of a rigid
type remains the instance of this type under all circumstances. Although it
would theoretically be possible, for example, to prevent the removal of a la-
bel representing a rigid type, it is not possible to prevent the deletion of the
entire instance and the creation of a new instance with the same identifier
that is no longer an instance of a given rigid type. Keeping a history of in-
stance identifiers and a list of associated rigid types would be necessary to
solve this problem. However, due to its complexity, such an approach would
not be considered applicable in practice.

The third problem arises from the need to use the OCL in the case of
more complex OntoUML models. While some OntoUML models, such as the
example OntoUML model, can be entirely expressed by only one UML class
diagram supplemented with the appropriate stereotypes, more complex On-
toUML models must also contain code in the OCL. Their semantics would
otherwise be impossible to express only by a class diagram itself. The trans-
formation of semantics captured using the OCL into graph database integrity
constraints represents another critical area of research that needs to be ad-
dressed in the future beyond the scope of this case study.

Another possible issue of the proposed approach is its performance. This
case study aims to provide a proof of concept, not to measure or try to estimate
the overall performance of the proposed solutions. However, as can be seen
from the conducted case study, a considerable number of integrity constraints
are required to ensure the semantics resulting from the example OntoUML
model. Therefore, with more complex OntoUML models, performance prob-
lems could occur due to the high number of complex integrity constraints.
Measuring the actual performance achieved by the proposed approach is an
important prerequisite for its subsequent practical use.

The last issue is that only the multi-labeled graph databases with pow-
erful enough constraint mechanisms can be used in the case of the proposed

62

8.3. Future works

approach. As explained in chapter 3, not all graph databases have the same
capabilities. Assigning multiple labels to one vertex is critical to express that
a given vertex represents an instance of multiple classes at the same time.
A sufficiently strong constraint mechanism is, in turn, necessary to preserve
the semantics resulting from the individual OntoUML constructs and axioms
of the UFO theory. Unfortunately, many graph databases do not meet these
two conditions.

8.3 Future works

Future technical publications based on this thesis should primarily address
the issues outlined in the previous section. The proposed procedure needs to
be extended to include an instantiation of the remaining class and relation-
ship stereotypes, different multiplicities of attributes or associations, and con-
straints written in the OCL. The ultimate goal should be to create a complete
procedure covering all concepts and elements of OntoUML.

Moreover, in this thesis, the proposed procedure has been tested only using
the set of appropriately chosen test cases. As part of future technical publica-
tions, formal proof using the modal logic should be made that the instantiated
models always satisfy all axioms of underlying UFO theory.

For future practical use, measuring the data manipulation performance
of models instantiated using the proposed procedure is necessary. It can be
assumed that the specific database triggers used in this thesis as a proof of
concept can be optimized to achieve better results. Measured performance
results should ideally be compared across multiple different graph databases.
This comparison, of course, includes modifying the proposed procedure for the
transformation of OntoUML models in other suitable multi-labeled property
graph databases. Further research should also provide a performance compar-
ison between models instantiated in graph and relational databases.

The last but no less important direction that future research should take
is the extension and improvement of tools enabling the automated transfor-
mation of OntoUML models. Reading the input data from standard formats
(e.g., JSON, XML) should be possible. Furthermore, there should be as close
a connection as possible with modeling tools such as OpenPonk. Also, deploy-
ing the transformed models to the target database should be made as easy as
possible. The goal is to maximize convenience. Only this way will real users
use the proposed procedure in practice.

63

Conclusion

This thesis aimed to investigate the suitability of graph databases and the
implementation of integrity constraints for the instantiation of models ex-
pressed in the OntoUML notation. In accordance with the set goal, the thesis
attempted to verify the following research hypotheses:

H1 It was hypothesized that it is possible to instantiate a valid OntoUML
model in a graph database and implement all necessary integrity con-
straints.

H2 It was hypothesized that it is possible to use the same principles of in-
stantiation for all graph databases.

As a preliminary step to achieve the set goal, a literature review summa-
rizing knowledge on topics related to this thesis was carried out. The first
part of this literature review defined and explained all necessary terms and
principles related to OntoUML and UFO theory. The second part then dealt
with graph databases, their specifics, and their capabilities.

As its main part, this thesis included a case study. Its purpose was to
demonstrate a proposed way of how can be an example OntoUML model
instantiated in a chosen graph database system.

At first, this case study introduced an appropriately chosen example On-
toUML model on which the instantiation in graph database could be demon-
strated. This example model was related to the ontology of electrical devices
and their electrical power sources.

Second, the case study analyzed the suitability of several different graph
database systems for the instantiation of the OntoUML models. This analysis
found that the graph databases with a multi-labeled property graph model
and database trigger support can be considered the most suitable. Based on
this finding, the Neo4j graph database system was hence used during the rest
of the case study since it met all the mentioned criteria.

65

Conclusion

Third, the case study designed the way of OntoUML model instantiation
in the Neo4j database. During the design process, the case study first de-
fined how the constructs of the OntoUML model could be mapped to the
constructs available in the Neo4j. Next, it introduced a comprehensive pro-
cedure for the transformation of OntoUML diagrams into a list of specific
integrity constraints. As a last step of the design process, it described the pre-
cise implementation of these integrity constraints in the Neo4j, mainly using
the database triggers and the APOC library.

Then, the case study carried out an instantiation of the example OntoUML
model according to the designed procedure. In order to perform this instantia-
tion most effectively and avoid possible errors, it also introduced an automated
transformation tool written in the C# programming language. The instanti-
ation itself was performed in several subsequent steps, in which additional
constructs and classes with additional stereotypes were gradually added. The
result of the instantiation was a list of integrity constraints preserving the
semantics given by the example OntoUML model.

Finally, the case study verified the correct instantiation of the example
OntoUML model through a series of test cases. The testing itself was divided
into two subsequent phases. In the first phase of positive testing, it was verified
that the instantiated model behaves as expected when using valid testing data.
In the second phase of negative testing, it was verified that the execution of
queries that violate the semantics given by the instantiated example OntoUML
model is prevented by the relevant integrity constraints. All test cases in both
testing phases were successful. As a result, the instantiation of the example
OntoUML model can be considered correct.

As its last part, this thesis contained a discussion of achieved results. This
discussion evaluated the benefits and the issues of the proposed approach and
also addressed possible future work following the outputs of this thesis.

Based on the successfully conducted case study that provided a tested code
of Neo4j integrity constraints corresponding to the example OntoUML model,
the research hypothesis H1 can be verified.

Based on the results of the conducted analysis of graph database suitability
as well as based on the conclusions of the final discussion, unfortunately, the
research hypothesis H2 has to be falsified.

In view of all the facts mentioned above – the results of the analysis of
graph database suitability, the overall outputs of the successfully conducted
case study, including the procedure for the transformation of OntoUML dia-
grams in the Neo4j database system, the conclusions of the final discussion,
and the verification or falsification of the set research hypotheses – the goal
of this thesis can be considered accomplished.

66

Bibliography

1. RYBOLA, Z.; PERGL, R. Towards OntoUML for software engineer-
ing: introduction to the transformation of OntoUML into relational
databases. In: Enterprise and Organizational Modeling and Simulation:
12th International Workshop, EOMAS 2016, Held at CAiSE 2016, Ljubl-
jana, Slovenia, June 13, 2016, Selected Papers 12. Cham: Springer, 2016,
pp. 67–83. isbn 978-3-319-49453-1.

2. GUIDONI, G. L.; ALMEIDA, J. P.; GUIZZARDI, G. Preserving Concep-
tual Model Semantics in the Forward Engineering of Relational Schemas.
Frontiers in Computer Science. 2022, vol. 4, p. 155.

3. SUCHÁNEK, M. OntoUML specification Documentation. In: OntoUML
community portal [online]. OntoUML Community, 2022 [visited on 2023-
03-12]. Available from: https://ontouml.readthedocs.io/_/downloa
ds/en/latest/pdf/.

4. GUIZZARDI, G. Ontological foundations for structural conceptual mod-
els. Enschede: Telematica Instituut / CTIT, 2005. isbn 90-75176-81-3.
PhD thesis. University of Twente.

5. GUIZZARDI, G.; FONSECA, C.; BENEVIDES, A. B.; ALMEIDA, J. P.;
PORELLO, D.; SALES, T. P. Endurant types in ontology-driven con-
ceptual modeling: Towards OntoUML 2.0. In: International conference
on conceptual modeling. Cham: Springer, 2018, pp. 136–150. isbn 978-3-
030-00847-5.

6. FONSECA, C.; PORELLO, D.; GUIZZARDI, G.; ALMEIDA, J. P.;
GUARINO, N. Relations in ontology-driven conceptual modeling. In: In-
ternational Conference on Conceptual Modeling. Cham: Springer, 2019,
pp. 28–42. isbn 978-3-030-33223-5.

7. GUIZZARDI, G.; FONSECA, C.; ALMEIDA, J. P.; SALES, T. P.;
BENEVIDES, A. B.; PORELLO, D. Types and taxonomic structures

67

https://ontouml.readthedocs.io/_/downloads/en/latest/pdf/
https://ontouml.readthedocs.io/_/downloads/en/latest/pdf/

Bibliography

in conceptual modeling: A novel ontological theory and engineering
support. Data & Knowledge Engineering. 2021, vol. 134, p. 101891.

8. RYBOLA, Z.; PERGL, R. Towards OntoUML for software engineering:
Transformation of kinds and subkinds into relational databases. Com-
puter Science and Information Systems. 2017, vol. 14, no. 3, pp. 913–
937.

9. ALMEIDA, J. P.; FALBO, R.; GUIZZARDI, G. Events as entities in
ontology-driven conceptual modeling. In: Conceptual Modeling: 38th
International Conference, ER 2019, Salvador, Brazil, November 4–7,
2019, Proceedings 38. Cham: Springer, 2019, pp. 469–483. isbn 978-3-
030-33223-5.

10. GUIZZARDI, G.; FONSECA, C.; ALMEIDA, J. P.; BOTTI BENEV-
IDES, A.; PORELLO, D.; PRINCE SALES, T. UFO: Unified founda-
tional ontology. Applied ontology. 2022, vol. 17, no. 1, pp. 167–210.

11. PERGL, R.; SALES, T. P.; RYBOLA, Z. Towards OntoUML for soft-
ware engineering: from domain ontology to implementation model. In:
Model and Data Engineering: Third International Conference, MEDI
2013, Amantea, Italy, September 25-27, 2013. Proceedings 3. Berlin:
Springer, 2013, pp. 249–263. isbn 978-3-642-41365-0.

12. RAJIV, C. Database Management System (DBMS): A Practical Ap-
proach, 5th Edition. New Delhi: S. Chand Publishing, 2016. isbn 978-
93-856-7634-5.

13. HARRINGTON, J. L. Relational Database Design and Implementation.
Cambridge: Elsevier Science, 2016. isbn 978-0-12-804399-8.

14. DARWEN, H. An Introduction to Relational Database Theory. Frederiks-
berg: Ventus Publishing, 2009. isbn 978-87-403-0202-8.

15. POKORNÝ, J. NoSQL databases: a step to database scalability in web
environment. In: Proceedings of the 13th International Conference on
Information Integration and Web-based Applications and Services. New
York: Association for Computing Machinery, 2011, pp. 278–283. isbn
978-1-4503-0784-0.

16. POKORNÝ, J. Integration of relational and NoSQL databases. Vietnam
Journal of Computer Science. 2019, vol. 6, no. 04, pp. 389–405.

17. ROBINSON, I.; WEBBER, J.; EIFREM, E. Graph databases: new op-
portunities for connected data. Sebastopol: O’Reilly Media, Inc., 2015.
isbn 978-1-491-93089-2.

18. RAJ, S. Neo4j High Performance. Birmingham: Packt Publishing Ltd.,
2015. isbn 978-1-78355-515-4.

68

Bibliography

19. SHIMPI, D.; CHAUDHARI, S. An overview of graph databases. In: IJCA
proceedings on international conference on recent trends in information
technology and computer science. New York: Foundation of Computer
Science, 2012, pp. 16–22. issn 0975 - 8887.

20. POKORNÝ, J. Graph databases: their power and limitations. In: Com-
puter Information Systems and Industrial Management: 14th IFIP TC
8 International Conference, CISIM 2015, Warsaw, Poland, September
24-26, 2015, Proceedings 14. Cham: Springer, 2015, pp. 58–69. isbn 978-
3-319-24369-6.

21. AVEY, B. Labeled vs Typed Property Graphs – All Graph Databases
are not the same. In: Geek Culture [online]. A Medium Corporation, 2021
[visited on 2023-01-20]. Available from: https://medium.com/geekcult
ure/labeled-vs-typed-property-graphs-all-graph-databases-ar
e-not-the-same-efdbc782f099.

22. DE VIRGILIO, R.; MACCIONI, A.; TORLONE, R. Model-driven design
of graph databases. In: Conceptual Modeling: 33rd International Confer-
ence, ER 2014, Atlanta, GA, USA, October 27-29, 2014. Proceedings 33.
Cham: Springer, 2014, pp. 172–185. isbn 978-3-319-12206-9.

23. MCCREARY, D. The Neighborhood Walk Story. In: Medium [online].
A Medium Corporation, 2018 [visited on 2023-01-20]. Available from:
https://dmccreary.medium.com/how-to-explain-index-free-adja
cency-to-your-manager-1a8e68ec664a.

24. WEINBERGER, C. Index Free Adjacency or Hybrid Indexes for Graph
Databases. In: ArangoDB Blog [online]. ArangoDB, Inc., 2016 [visited on
2023-01-20]. Available from: https://www.arangodb.com/2016/04/ind
ex-free-adjacency-hybrid-indexes-graph-databases/.

25. SOLIDIT GMBH. Neo4j System Properties. In: DB-Engines [online].
solidIT gmbh, 2023 [visited on 2023-01-21]. Available from: https://db
-engines.com/en/system/Neo4j.

26. NEO4J, INC. Graph database concepts. In: Neo4j Documentation [on-
line]. Neo4j, Inc., 2023 [visited on 2023-01-24]. Available from: https:
//neo4j.com/docs/getting-started/current/appendix/graphdb-c
oncepts/.

27. NEO4J, INC. Welcome to Neo4j. In: Neo4j Documentation [online].
Neo4j, Inc., 2023 [visited on 2023-01-24]. Available from: https://neo4
j.com/docs/getting-started/current/.

28. NEO4J, INC. Modeling designs. In: Neo4j Documentation [online].
Neo4j, Inc., 2023 [visited on 2023-01-24]. Available from: https://n
eo4j.com/docs/getting-started/current/data-modeling/modelin
g-designs/.

69

https://medium.com/geekculture/labeled-vs-typed-property-graphs-all-graph-databases-are-not-the-same-efdbc782f099
https://medium.com/geekculture/labeled-vs-typed-property-graphs-all-graph-databases-are-not-the-same-efdbc782f099
https://medium.com/geekculture/labeled-vs-typed-property-graphs-all-graph-databases-are-not-the-same-efdbc782f099
https://dmccreary.medium.com/how-to-explain-index-free-adjacency-to-your-manager-1a8e68ec664a
https://dmccreary.medium.com/how-to-explain-index-free-adjacency-to-your-manager-1a8e68ec664a
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/
https://db-engines.com/en/system/Neo4j
https://db-engines.com/en/system/Neo4j
https://neo4j.com/docs/getting-started/current/appendix/graphdb-concepts/
https://neo4j.com/docs/getting-started/current/appendix/graphdb-concepts/
https://neo4j.com/docs/getting-started/current/appendix/graphdb-concepts/
https://neo4j.com/docs/getting-started/current/
https://neo4j.com/docs/getting-started/current/
https://neo4j.com/docs/getting-started/current/data-modeling/modeling-designs/
https://neo4j.com/docs/getting-started/current/data-modeling/modeling-designs/
https://neo4j.com/docs/getting-started/current/data-modeling/modeling-designs/

Bibliography

29. NEO4J, INC. Clustering Introduction. In: Neo4j Operations Manual [on-
line]. Neo4j, Inc., 2023 [visited on 2023-01-24]. Available from: https:
//neo4j.com/docs/operations-manual/current/clustering/intro
duction/.

30. NEO4J, INC. Introduction. In: Neo4j Operations Manual [online]. Neo4j,
Inc., 2023 [visited on 2023-01-24]. Available from: https://neo4j.com
/docs/operations-manual/current/introduction/.

31. NEO4J, INC. Overview. In: Cypher Manual [online]. Neo4j, Inc., 2023
[visited on 2023-01-25]. Available from: https://neo4j.com/docs/cyp
her-manual/current/introduction/cypher_overview/.

32. NEO4J, INC. Triggers. In: APOC Documentation 4.4 [online]. Neo4j,
Inc., 2023 [visited on 2023-01-24]. Available from: https://neo4j.com
/labs/apoc/4.4/background-operations/triggers/.

33. NEO4J, INC. Graph algorithms. In: Neo4j Graph Data Science [online].
Neo4j, Inc., 2023 [visited on 2023-01-25]. Available from: https://neo4
j.com/docs/graph-data-science/current/algorithms/.

34. JANUSGRAPH AUTHORS. JanusGraph. In: JanusGraph Homepage
[online]. The Linux Foundation, 2023 [visited on 2023-01-29]. Available
from: https://janusgraph.org/.

35. SOLIDIT GMBH. JanusGraph System Properties. In: DB-Engines [on-
line]. solidIT gmbh, 2023 [visited on 2023-01-21]. Available from: https
://db-engines.com/en/system/JanusGraph.

36. JANUSGRAPH AUTHORS. Introduction. In: JanusGraph Documenta-
tion [online]. The Linux Foundation, 2023 [visited on 2023-02-02]. Avail-
able from: https://docs.janusgraph.org/.

37. JANUSGRAPH AUTHORS. JanusGraph Data Model. In: JanusGraph
Documentation [online]. The Linux Foundation, 2023 [visited on 2023-
02-02]. Available from: https://docs.janusgraph.org/advanced-top
ics/data-model/.

38. JANUSGRAPH AUTHORS. Storage Backends Introduction. In: Janus-
Graph Documentation [online]. The Linux Foundation, 2023 [visited on
2023-02-03]. Available from: https://docs.janusgraph.org/storage-
backend/.

39. JANUSGRAPH AUTHORS. Schema and Data Modeling. In: Janus-
Graph Documentation [online]. The Linux Foundation, 2023 [visited on
2023-02-02]. Available from: https://docs.janusgraph.org/schema/.

40. JANUSGRAPH AUTHORS. Graph Partitioning. In: JanusGraph Docu-
mentation [online]. The Linux Foundation, 2023 [visited on 2023-02-03].
Available from: https://docs.janusgraph.org/advanced-topics/pa
rtitioning/.

70

https://neo4j.com/docs/operations-manual/current/clustering/introduction/
https://neo4j.com/docs/operations-manual/current/clustering/introduction/
https://neo4j.com/docs/operations-manual/current/clustering/introduction/
https://neo4j.com/docs/operations-manual/current/introduction/
https://neo4j.com/docs/operations-manual/current/introduction/
https://neo4j.com/docs/cypher-manual/current/introduction/cypher_overview/
https://neo4j.com/docs/cypher-manual/current/introduction/cypher_overview/
https://neo4j.com/labs/apoc/4.4/background-operations/triggers/
https://neo4j.com/labs/apoc/4.4/background-operations/triggers/
https://neo4j.com/docs/graph-data-science/current/algorithms/
https://neo4j.com/docs/graph-data-science/current/algorithms/
https://janusgraph.org/
https://db-engines.com/en/system/JanusGraph
https://db-engines.com/en/system/JanusGraph
https://docs.janusgraph.org/
https://docs.janusgraph.org/advanced-topics/data-model/
https://docs.janusgraph.org/advanced-topics/data-model/
https://docs.janusgraph.org/storage-backend/
https://docs.janusgraph.org/storage-backend/
https://docs.janusgraph.org/schema/
https://docs.janusgraph.org/advanced-topics/partitioning/
https://docs.janusgraph.org/advanced-topics/partitioning/

Bibliography

41. JANUSGRAPH AUTHORS. Transactions. In: JanusGraph Documenta-
tion [online]. The Linux Foundation, 2023 [visited on 2023-02-03]. Avail-
able from: https://docs.janusgraph.org/interactions/transacti
ons/.

42. JANUSGRAPH AUTHORS. Gremlin Query Language. In: JanusGraph
Documentation [online]. The Linux Foundation, 2023 [visited on 2023-
02-03]. Available from: https://docs.janusgraph.org/getting-star
ted/gremlin/.

43. SOLIDIT GMBH. TigerGraph System Properties. In: DB-Engines [on-
line]. solidIT gmbh, 2023 [visited on 2023-01-21]. Available from: https
://db-engines.com/en/system/TigerGraph.

44. TIGERGRAPH, INC. Defining a Graph Schema. In: TigerGraph Docu-
mentation [online]. TigerGraph, Inc., 2023 [visited on 2023-01-25]. Avail-
able from: https://docs.tigergraph.com/gsql-ref/current/ddl-a
nd-loading/defining-a-graph-schema.

45. TIGERGRAPH, INC. Internal Architecture. In: TigerGraph Documen-
tation [online]. TigerGraph, Inc., 2023 [visited on 2023-01-26]. Available
from: https://docs.tigergraph.com/tigergraph-server/current
/intro/internal-architecture.

46. TIGERGRAPH, INC. Transaction Processing and ACID Support. In:
TigerGraph Documentation [online]. TigerGraph, Inc., 2023 [visited on
2023-01-29]. Available from: https://docs.tigergraph.com/tigergra
ph-server/current/intro/transaction-and-acid.

47. TIGERGRAPH, INC. GSQL Language Reference. In: TigerGraph Docu-
mentation [online]. TigerGraph, Inc., 2023 [visited on 2023-01-25]. Avail-
able from: https://docs.tigergraph.com/gsql-ref/current/intro
/.

48. TIGERGRAPH, INC. TigerGraph Graph Data Science Library. In:
TigerGraph Documentation [online]. TigerGraph, Inc., 2023 [visited on
2023-01-29]. Available from: https://docs.tigergraph.com/graph-ml
/current/intro/.

49. GUIDONI, G. L.; ALMEIDA, J. P.; GUIZZARDI, G. Transformation
of ontology-based conceptual models into relational schemas. In: In-
ternational Conference on Conceptual Modeling. Cham: Springer, 2020,
pp. 315–330. isbn 978-3-030-62521-4.

50. NEEDHAM, M.; HODLER, A. E. Graph Algorithms: Practical Examples
in Apache Spark and Neo4j. Sebastopol: O’Reilly Media, Inc., 2019. isbn
978-1-492-05781-9.

51. NEO4J, INC. Constraints. In: Cypher Manual [online]. Neo4j, Inc., 2023
[visited on 2023-01-24]. Available from: https://neo4j.com/docs/cyp
her-manual/current/constraints/.

71

https://docs.janusgraph.org/interactions/transactions/
https://docs.janusgraph.org/interactions/transactions/
https://docs.janusgraph.org/getting-started/gremlin/
https://docs.janusgraph.org/getting-started/gremlin/
https://db-engines.com/en/system/TigerGraph
https://db-engines.com/en/system/TigerGraph
https://docs.tigergraph.com/gsql-ref/current/ddl-and-loading/defining-a-graph-schema
https://docs.tigergraph.com/gsql-ref/current/ddl-and-loading/defining-a-graph-schema
https://docs.tigergraph.com/tigergraph-server/current/intro/internal-architecture
https://docs.tigergraph.com/tigergraph-server/current/intro/internal-architecture
https://docs.tigergraph.com/tigergraph-server/current/intro/transaction-and-acid
https://docs.tigergraph.com/tigergraph-server/current/intro/transaction-and-acid
https://docs.tigergraph.com/gsql-ref/current/intro/
https://docs.tigergraph.com/gsql-ref/current/intro/
https://docs.tigergraph.com/graph-ml/current/intro/
https://docs.tigergraph.com/graph-ml/current/intro/
https://neo4j.com/docs/cypher-manual/current/constraints/
https://neo4j.com/docs/cypher-manual/current/constraints/

Bibliography

52. ORIENTDB LTD. Graph Database Properties. In: OrientDB Manual
- version 2.2.x [online]. OrientDB Ltd., 2016 [visited on 2023-01-21].
Available from: https://orientdb.com/docs/2.2.x/Graph-Schema-P
roperty.html.

53. VAISMAN, A.; ZIMÁNYI, E. Data Warehouse Systems: Design and Im-
plementation. Berlin: Springer, 2022. Data-Centric Systems and Appli-
cations. isbn 978-3-662-65167-4.

54. CHONOLES, M. J.; SCHARDT, J. A. UML 2 For Dummies. New York:
Wiley, 2011. isbn 978-1-118-08538-7.

55. WEILKIENS, T.; OESTEREICH, B. UML 2 Certification Guide: Fun-
damental and Intermediate Exams. New York: Elsevier Science, 2010.
The MK/OMG Press. isbn 978-0-08-046651-4.

56. OBJECT MANAGEMENT GROUP. The OMG Specifications Catalog.
OMG Unified Modeling Language (OMG UML) Version 2.5 [online]. Ob-
ject Management Group, Inc., 2015 [visited on 2023-03-12]. Available
from: https://www.omg.org/spec/UML/2.5/PDF.

57. MILICEV, D. Model-Driven Development with Executable UML. Indi-
anapolis: Wiley, 2009. Wrox guides. isbn 978-0-470-53599-8.

72

https://orientdb.com/docs/2.2.x/Graph-Schema-Property.html
https://orientdb.com/docs/2.2.x/Graph-Schema-Property.html
https://www.omg.org/spec/UML/2.5/PDF

Appendix A
Abbreviations

AC Alternating Current

ACID Atomicity, Consistency, Integration, Durability

APOC Awesome Procedures On Cypher

BASE Basically Available, Soft State, Eventually Consistent

BFS Breadth-first search

CD Compact Disc

CLI Command Line Interface

DBMS Database Management System

DC Direct Current

DFS Depth-first search

GDB Graph Database

GS Generalization Set

GSQL Graph SQL

IC Integrity Constraint

JSON JavaScript Object Notation

MDD Model-driven Development

NoSQL Not only SQL

OCL Object Constraint Language

OOP Object-oriented Paradigm

73

A. Abbreviations

RDB Relational Database

SQL Structured Query Language

UFO Unified Foundational Ontology

UML Unified Modeling Language

XML Extensible Markup Language

74

Appendix B
Procedure transforming

OntoUML diagrams

1 foreach (Class c in diagram.Classes)
2 {
3 // ----- ATTRIBUTES
4 foreach (Attribute a in c.Attributes)
5 {
6 Constraints.Add(PROPERTY_MUST_BE_OF_DATATYPE,
7 c.Name,
8 a.Name,
9 a.DataType.Name

10);
11 if (a.Multiplicity.LowerBound > 0)
12 Constraints.Add(PROPERTY_MUST_BE_PRESENT,
13 c.Name,
14 a.Name
15);
16 if (a.IsID)
17 Constraints.Add(PROPERTY_MUST_BE_UNIQUE,
18 c.Name,
19 a.Name
20);
21 }
22
23 // ----- STEREOTYPES
24 if (not c.Stereotype.HasIdentity)
25 {
26 relatedSortals = diagram.Classes
27 .Filter(r => r.Stereotype.HasIdentity)
28 .Filter(r => r.Superclasses
29 .Exists(s => c.Equals(s) or c.Superclasses.Contains(s)));
30 intransitivelyRelatedSortals = relatedSortals
31 .Filter(i => i.Superclasses
32 .ForAll(s => not relatedSortals.Contains(s)));
33 Constraints.Add(
34 LABEL_MUST_BE_IN_COMBINATION,
35 c.Name,
36 intransitivelyRelatedSortals.Map(i => i.Name)
37);
38 }
39

75

B. Procedure transforming OntoUML diagrams

40 if (c.Stereotype.ProvidesIdentity)
41 {
42 otherIdentityProviders = diagram.Classes
43 .Filter(p => p.Stereotype.ProvidesIdentity)
44 .OtherThan(c);
45 if(otherIdentityProviders.Count > 0)
46 Constraints.Add(
47 LABEL_CANNOT_BE_IN_COMBINATION,
48 c.Name,
49 otherIdentityProviders
50 .Map(p => p.Name)
51);
52 }
53 }
54
55 // ----- GENERALIZATIONS
56 foreach (Generalization g in diagram.Generalizations)
57 {
58 Constraints.Add(
59 LABEL_MUST_BE_IN_COMBINATION,
60 g.Subclass.Name,
61 { g.Superclass.Name }
62);
63 }
64
65 // ----- GENERALIZATION SETS
66 foreach (GeneralizationSet gs in diagram.GeneralizationSets)
67 {
68 if (gs.IsDisjoint)
69 foreach (Class c in gs.Subclasses)
70 Constraints.Add(
71 LABEL_CANNOT_BE_IN_COMBINATION,
72 c.Name,
73 gs.Subclasses
74 .OtherThan(c)
75 .Map(s => s.Name)
76);
77 if (gs.IsCovering)
78 Constraints.Add(
79 LABEL_MUST_BE_IN_COMBINATION,
80 gs.Superclass.Name,
81 gs.Subclasses
82 .Map(s => s.Name)
83);
84 }
85
86 // ----- ASSOCIATIONS
87 foreach (BinaryAssociation a in diagram.Associations)
88 {
89 if(a.FirstMultiplicity.LowerBound > 0)
90 constraints.Add(RELATIONSHIP_MUST_BE_PRESENT,
91 a.SecondClass.Name
92 a.FirstClass.Name,
93);
94 if (a.SecondMultiplicity.LowerBound > 0)
95 constraints.Add(RELATIONSHIP_MUST_BE_PRESENT,
96 a.FirstClass.Name
97 a.SecondClass.Name,
98);
99 }

76

Appendix C
Input C# representation of the

example model

1 // ----- CLASSES & ATTRIBUTES
2 Class ED = new Class("ElectricalDevice", ClassStereotype.Kind);
3 ED.Attributes.Add(new ClassAttribute("id", DataType.Integer, true));
4 ED.Attributes.Add(new ClassAttribute("nominalCurrent", DataType.Float));
5 ED.Attributes.Add(new ClassAttribute("nominalVoltage", DataType.Float));
6 Class DCPS = new Class("DCPowerSupply", ClassStereotype.Kind);
7 DCPS.Attributes.Add(new ClassAttribute("id", DataType.Integer, true));
8 DCPS.Attributes.Add(new ClassAttribute("inputVoltage", DataType.Float));
9 DCPS.Attributes.Add(new ClassAttribute("maximalCurrent", DataType.Float));

10 Class BA = new Class("Battery", ClassStereotype.Kind);
11 BA.Attributes.Add(new ClassAttribute("id", DataType.Integer, true));
12 BA.Attributes.Add(new ClassAttribute("maximalVoltage", DataType.Float));
13 BA.Attributes.Add(new ClassAttribute("minimalVoltage", DataType.Float));
14
15 Class RBA = new Class("Rechargeable", ClassStereotype.Subkind);
16 RBA.Attributes.Add(new ClassAttribute("cyclelife", DataType.Integer));
17 Class NRBA = new Class("Nonrechargeable", ClassStereotype.Subkind);
18 NRBA.Attributes.Add(new ClassAttribute("shelflife", DataType.Integer));
19
20 Class ES = new Class("EnergyStorage", ClassStereotype.Category);
21 ES.Attributes.Add(new ClassAttribute("capacity", DataType.Float));
22 Class DCVS = new Class("DCVoltageSource", ClassStereotype.Category);
23 DCVS.Attributes.Add(new ClassAttribute("actualVoltage", DataType.Float));
24 DCVS.Attributes.Add(new ClassAttribute("nominalVoltage", DataType.Float));
25
26 Class CHBA = new Class("Charged", ClassStereotype.Phase);
27 CHBA.Attributes.Add(new ClassAttribute("chargeDate", DataType.Date));
28 Class UBA = new Class("Used", ClassStereotype.Phase);
29 UBA.Attributes.Add(new ClassAttribute("lastUseDate", DataType.Date));
30 Class DBA = new Class("Discharged", ClassStereotype.Phase);
31 DBA.Attributes.Add(new ClassAttribute("dischargeDate", DataType.Date));
32
33 Class CED = new Class("ConnectedElectricalDevice", ClassStereotype.Role);
34 Class EC = new Class("ElectricalConnection", ClassStereotype.Relator);
35 EC.Attributes.Add(new ClassAttribute("id", DataType.Integer, true));
36 EC.Attributes.Add(new ClassAttribute("resistance", DataType.Float));
37 Class CDCVS = new Class("ConnectedDCVoltageSource", ClassStereotype.RoleMixin);
38 CDCVS.Attributes.Add(new ClassAttribute("drawnCurrent", DataType.Float));
39 Class CBA = new Class("ConnectedBattery", ClassStereotype.Role);

77

C. Input C# representation of the example model

40 Class CDCPS = new Class("ConnectedDCPowerSupply", ClassStereotype.Role);
41
42 // ----- GENERALIZATIONS
43 Generalization BARBA = new Generalization(BA, RBA);
44 Generalization BANRBA = new Generalization(BA, NRBA);
45
46 Generalization ESBA = new Generalization(ES, BA);
47 Generalization DCVSDCPS = new Generalization(DCVS, DCPS);
48 Generalization DCVSBA = new Generalization(DCVS, BA);
49
50 Generalization BACBA = new Generalization(BA, CHBA);
51 Generalization BAUBA = new Generalization(BA, UBA);
52 Generalization BADBA = new Generalization(BA, DBA);
53
54 Generalization EDCED = new Generalization(ED, CED);
55 Generalization CDCVSCDCPS = new Generalization(CDCVS, CDCPS);
56 Generalization CDCVSCBA = new Generalization(CDCVS, CBA);
57 Generalization DCPSCDCPS = new Generalization(DCPS, CDCPS);
58 Generalization BACBA = new Generalization(BA, CBA);
59
60 // ----- GENERALIZATION SETS
61 GeneralizationSet BASubkindSet = new GeneralizationSet(new() { BARBA, BANRBA }, true,

true);↪→
62 GeneralizationSet DCVSKindSet = new GeneralizationSet(new() { DCVSDCPS, DCVSBA },

false, true);↪→
63 GeneralizationSet BAPhaseSet = new GeneralizationSet(new() { BACBA, BAUBA, BADBA },

true, true);↪→
64 GeneralizationSet CDCVSRoleSet = new GeneralizationSet(new() { CDCVSCDCPS, CDCVSCBA },

false, true);↪→
65
66 // ----- ASSOCIATIONS
67 BinaryAssociation ECCED = new BinaryAssociation(EC, CED, Multiplicity.OneToMany,

Multiplicity.OneToMany);↪→
68 BinaryAssociation CDCVSEC = new BinaryAssociation(CDCVS, EC, Multiplicity.OneToMany,

Multiplicity.OneToMany);↪→

78

Appendix D
Output constraint names of the

instantiated model

1 // ----- ATTRIBUTES
2 PROPERTY_MUST_BE_OF_DATATYPE(ElectricalDevice, id, INTEGER)
3 PROPERTY_MUST_BE_OF_DATATYPE(ElectricalDevice, nominalCurrent, FLOAT)
4 PROPERTY_MUST_BE_OF_DATATYPE(ElectricalDevice, nominalVoltage, FLOAT)
5 PROPERTY_MUST_BE_OF_DATATYPE(DCPowerSupply, id, INTEGER)
6 PROPERTY_MUST_BE_OF_DATATYPE(DCPowerSupply, inputVoltage, FLOAT)
7 PROPERTY_MUST_BE_OF_DATATYPE(DCPowerSupply, maximalCurrent, FLOAT)
8 PROPERTY_MUST_BE_OF_DATATYPE(Battery, id, INTEGER)
9 PROPERTY_MUST_BE_OF_DATATYPE(Battery, maximalVoltage, FLOAT)

10 PROPERTY_MUST_BE_OF_DATATYPE(Battery, minimalVoltage, FLOAT)
11 PROPERTY_MUST_BE_OF_DATATYPE(Rechargeable, cyclelife, INTEGER)
12 PROPERTY_MUST_BE_OF_DATATYPE(Nonrechargeable, shelflife, INTEGER)
13 PROPERTY_MUST_BE_OF_DATATYPE(EnergyStorage, capacity, FLOAT)
14 PROPERTY_MUST_BE_OF_DATATYPE(DCVoltageSource, actualVoltage, FLOAT)
15 PROPERTY_MUST_BE_OF_DATATYPE(DCVoltageSource, nominalVoltage, FLOAT)
16 PROPERTY_MUST_BE_OF_DATATYPE(Charged, chargeDate, DATE)
17 PROPERTY_MUST_BE_OF_DATATYPE(Used, lastUseDate, DATE)
18 PROPERTY_MUST_BE_OF_DATATYPE(Discharged, dischargeDate, DATE)
19 PROPERTY_MUST_BE_OF_DATATYPE(ElectricalConnection, id, INTEGER)
20 PROPERTY_MUST_BE_OF_DATATYPE(ElectricalConnection, resistance, FLOAT)
21 PROPERTY_MUST_BE_OF_DATATYPE(ConnectedDCVoltageSource, drawnCurrent, FLOAT)
22
23 PROPERTY_MUST_BE_PRESENT(ElectricalDevice, id)
24 PROPERTY_MUST_BE_PRESENT(ElectricalDevice, nominalCurrent)
25 PROPERTY_MUST_BE_PRESENT(ElectricalDevice, nominalVoltage)
26 PROPERTY_MUST_BE_PRESENT(DCPowerSupply, id)
27 PROPERTY_MUST_BE_PRESENT(DCPowerSupply, inputVoltage)
28 PROPERTY_MUST_BE_PRESENT(DCPowerSupply, maximalCurrent)
29 PROPERTY_MUST_BE_PRESENT(Battery, id)
30 PROPERTY_MUST_BE_PRESENT(Battery, maximalVoltage)
31 PROPERTY_MUST_BE_PRESENT(Battery, minimalVoltage)
32 PROPERTY_MUST_BE_PRESENT(Rechargeable, cyclelife)
33 PROPERTY_MUST_BE_PRESENT(Nonrechargeable, shelflife)
34 PROPERTY_MUST_BE_PRESENT(EnergyStorage, capacity)
35 PROPERTY_MUST_BE_PRESENT(DCVoltageSource, actualVoltage)
36 PROPERTY_MUST_BE_PRESENT(DCVoltageSource, nominalVoltage)
37 PROPERTY_MUST_BE_PRESENT(Charged, chargeDate)
38 PROPERTY_MUST_BE_PRESENT(Used, lastUseDate)
39 PROPERTY_MUST_BE_PRESENT(Discharged, dischargeDate)

79

D. Output constraint names of the instantiated model

40 PROPERTY_MUST_BE_PRESENT(ElectricalConnection, id)
41 PROPERTY_MUST_BE_PRESENT(ElectricalConnection, resistance)
42 PROPERTY_MUST_BE_PRESENT(ConnectedDCVoltageSource, drawnCurrent)
43
44 PROPERTY_MUST_BE_UNIQUE(ElectricalDevice, id)
45 PROPERTY_MUST_BE_UNIQUE(DCPowerSupply, id)
46 PROPERTY_MUST_BE_UNIQUE(Battery, id)
47 PROPERTY_MUST_BE_UNIQUE(ElectricalConnection, id)
48
49 // ----- STEREOTYPES
50 LABEL_MUST_BE_IN_COMBINATION(EnergyStorage, {Battery})
51 LABEL_MUST_BE_IN_COMBINATION(DCVoltageSource, {DCPowerSupply, Battery})
52 LABEL_MUST_BE_IN_COMBINATION(ConnectedDCVoltageSource, {ConnectedBattery,

ConnectedDCPowerSupply})↪→
53
54 LABEL_CANNOT_BE_IN_COMBINATION(ElectricalDevice, {DCPowerSupply, Battery,

ElectricalConnection})↪→
55 LABEL_CANNOT_BE_IN_COMBINATION(DCPowerSupply, {ElectricalDevice, Battery,

ElectricalConnection})↪→
56 LABEL_CANNOT_BE_IN_COMBINATION(Battery, {ElectricalDevice, DCPowerSupply,

ElectricalConnection})↪→
57 LABEL_CANNOT_BE_IN_COMBINATION(ElectricalConnection, {ElectricalDevice, DCPowerSupply,

Battery})↪→
58
59 // ----- GENERALIZATIONS
60 LABEL_MUST_BE_IN_COMBINATION(Rechargeable, {Battery})
61 LABEL_MUST_BE_IN_COMBINATION(Nonrechargeable, {Battery})
62 LABEL_MUST_BE_IN_COMBINATION(Battery, {EnergyStorage})
63 LABEL_MUST_BE_IN_COMBINATION(DCPowerSupply, {DCVoltageSource})
64 LABEL_MUST_BE_IN_COMBINATION(Battery, {DCVoltageSource})
65 LABEL_MUST_BE_IN_COMBINATION(Charged, {Battery})
66 LABEL_MUST_BE_IN_COMBINATION(Used, {Battery})
67 LABEL_MUST_BE_IN_COMBINATION(Discharged, {Battery})
68 LABEL_MUST_BE_IN_COMBINATION(ConnectedElectricalDevice, {ElectricalDevice})
69 LABEL_MUST_BE_IN_COMBINATION(ConnectedDCPowerSupply, {ConnectedDCVoltageSource})
70 LABEL_MUST_BE_IN_COMBINATION(ConnectedBattery, {ConnectedDCVoltageSource})
71 LABEL_MUST_BE_IN_COMBINATION(ConnectedDCPowerSupply, {DCPowerSupply})
72 LABEL_MUST_BE_IN_COMBINATION(ConnectedBattery, {Battery})
73
74 // ----- GENERALIZATION SETS
75 LABEL_MUST_BE_IN_COMBINATION(Battery, {Rechargeable, Nonrechargeable})
76 LABEL_MUST_BE_IN_COMBINATION(Battery, {Charged, Used, Discharged})
77
78 LABEL_CANNOT_BE_IN_COMBINATION(Rechargeable, {Nonrechargeable})
79 LABEL_CANNOT_BE_IN_COMBINATION(Nonrechargeable, {Rechargeable})
80 LABEL_CANNOT_BE_IN_COMBINATION(Charged, {Used, Discharged})
81 LABEL_CANNOT_BE_IN_COMBINATION(Used, {Charged, Discharged})
82 LABEL_CANNOT_BE_IN_COMBINATION(Discharged, {Charged, Used})
83 LABEL_CANNOT_BE_IN_COMBINATION(DCPowerSupply, {Battery})
84 LABEL_CANNOT_BE_IN_COMBINATION(Battery, {DCPowerSupply})
85 LABEL_CANNOT_BE_IN_COMBINATION(ConnectedDCPowerSupply, {ConnectedBattery})
86 LABEL_CANNOT_BE_IN_COMBINATION(ConnectedBattery, {ConnectedDCPowerSupply})
87
88 // ----- ASSOCIATIONS
89 RELATIONSHIP_MUST_BE_PRESENT(ConnectedElectricalDevice, ElectricalConnection)
90 RELATIONSHIP_MUST_BE_PRESENT(ElectricalConnection, ConnectedElectricalDevice)
91 RELATIONSHIP_MUST_BE_PRESENT(ElectricalConnection, ConnectedDCVoltageSource)
92 RELATIONSHIP_MUST_BE_PRESENT(ConnectedDCVoltageSource, ElectricalConnection)

80

Appendix E
Testing data for the

instantiated model

1 // ----- CLEAR
2 MATCH(n) DETACH DELETE (n);
3
4 // ----- ELECTRICAL DEVICES
5 CREATE (e1
6 :ElectricalDevice {
7 id: 1,
8 nominalVoltage: 1.2,
9 nominalCurrent: 0.025

10 });
11
12 CREATE (e2
13 :ElectricalDevice {
14 id: 2,
15 nominalVoltage: 5.0,
16 nominalCurrent: 0.2
17 });
18
19 CREATE (e3
20 :ElectricalDevice {
21 id: 3,
22 nominalVoltage: 12.0,
23 nominalCurrent: 1.5
24 });
25
26 // ----- BATTERIES
27 CREATE (b1
28 :EnergyStorage :DCVoltageSource
29 :Battery :Rechargeable :Charged {
30 id: 1,
31 capacity: 3.0,
32 actualVoltage: 1.45,
33 nominalVoltage: 1.2,
34 maximalVoltage: 1.45,
35 minimalVoltage: 1.2,
36 cyclelife: 1000,
37 chargeDate: date("2022-10-28")
38 });
39

81

E. Testing data for the instantiated model

40 // ----- DC POWER SUPPLIES
41 CREATE (s1
42 :DCVoltageSource
43 :DCPowerSupply {
44 id: 1,
45 actualVoltage: 4.95,
46 nominalVoltage: 5.0,
47 inputVoltage: 230.0,
48 maximalCurrent: 1.5
49 });
50
51 // ----- ELECTRICAL CONNECTIONS
52 MATCH (b:Battery {id: 1}), (e:ElectricalDevice {id: 1})
53 SET e:ConnectedElectricalDevice
54 SET b:ConnectedBattery:ConnectedDCVoltageSource
55 SET b += {drawnCurrent: 0.025}
56 CREATE (b)-[:Mediation]->(r
57 :ElectricalConnection {id: 1, resistance: 0.05}
58)-[:Mediation]->(e);
59
60 MATCH (s:DCPowerSupply {id: 1}), (e:ElectricalDevice {id: 2})
61 SET e:ConnectedElectricalDevice
62 SET s:ConnectedDCPowerSupply:ConnectedDCVoltageSource
63 SET s += {drawnCurrent: 0.25}
64 CREATE (s)-[:Mediation]->(r
65 :ElectricalConnection {id: 2, resistance: 0.01}
66)-[:Mediation]->(e);
67

82

Appendix F
Content of the enclosed CD

readme.txt......brief description of the content and deployment manual
data

01-procedure.txt pseudocode of the transformation procedure
02-input-csharp.cs C# representation of the example model
03-input-json.json.....JSON representation of the example model
04-comments.txt.........constraint names of the instantiated model
05-triggers.cql Neo4j constraints of the instantiated model
06-data.cql............valid testing data for the instantiated model
07-tests.cql negative tests for the instantiated model

exe
DiagramInstantiator-win-x64.exe.....executable file for Windows
DiagramInstantiator-linux-x64...........executable file for Linux

src
thesis.....................source code of the thesis in LATEX format
utilities

DiagramInstantiator source code of DiagramInstantiator
InstantiationTester..........source code of InstantiationTester

text
thesis.pdf........................ text of the thesis in PDF format

83

	Introduction
	OntoUML
	Types and Individuals
	Identity and Sortality
	Rigidity
	Existential dependence
	Class stereotypes
	Relationship stereotypes

	Graph databases
	SQL versus NoSQL databases
	Graph models and properties
	Neo4j
	JanusGraph
	TigerGraph

	Example OntoUML model
	Analysis of database suitability
	Criteria of suitability
	Suitability of considered databases

	Design of model instantiation
	Mapping between OntoUML and Neo4j constructs
	Transformation of OntoUML into integrity constraints
	Integrity constraints imposed by attributes
	Integrity constraints imposed by stereotypes
	Integrity constraints imposed by generalizations
	Integrity constraints imposed by associations

	Implementation of integrity constraints in Neo4j
	Constraint to check if a property is unique
	Trigger to check a data type of a property
	Trigger to check if a property is present
	Trigger to check if a label is in a combination
	Trigger to check if a label is not in a combination
	Triggers to check if a relationship is present

	Instantiation of example model
	Automated transformation tool
	Kinds and Properties
	Subkinds
	Categories
	Phases
	Roles, RoleMixin and Relator

	Testing of instantiated model
	Positive testing
	Negative testing
	Kinds and Properties
	Subkinds
	Categories
	Phases
	Roles, RoleMixin and Relator

	Automated testing

	Discussion
	Benefits of proposed approach
	Possible issues of proposed approach
	Future works

	Conclusion
	Bibliography
	Abbreviations
	Procedure transforming OntoUML diagrams
	Input C# representation of the example model
	Output constraint names of the instantiated model
	Testing data for the instantiated model
	Content of the enclosed CD

