
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Automated extraction of personal profiles from a university

domain using web scraping and NLP methods

Bc. Tomáš Lenoch

Ing. Stanislav Kuznetsov

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2023/2024

Instructions

The aim of the work is to design and implement a software application that utilises web

scraping and NLP methods for extracting personal information, including working

positions and affiliations, of university employees from the university domain website.

The quality of the extracted profiles may decline due to an insufficient amount of

information on the website. Therefore, the application must provide users with the

capability to verify and adjust the extracted profiles manually.

Instructions for elaboration:

1. Conduct thorough research on web scraping techniques and NLP methods for

information extraction.

2. Identify the sources of information on the university website that contain personal

information, work position, and affiliations of university employees.

3. Develop and implement a web scraping system to extract relevant information from

the university website with the help of NLP pre-trained models for data pre-processing

and analysis.

4. Integrate the web scraping and NLP components into a comprehensive software

application.

5. Develop user-friendly interfaces for the software application.

6. Test the software on a sample set of university websites to verify its effectiveness.

7. Document everything properly.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 18 February 2023 in Prague.

Reference:

1. Lan, Man & Yu, Zhe & Zhang, & Lu, Yue & Jian, Su & Lim, Chew. (2009). Which who are

they? people attribute extraction and disambiguation in web search results.

2. T., István & Farkas, Han, Xianpei & Zhao, Jun. (2009). CASIANED: People Attribute

Extraction based on Information Extraction.

3. Richárd & Jelasity, Márk. (2009). Researcher affiliation extraction from homepages.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 18 February 2023 in Prague.

Master’s thesis

AUTOMATED
EXTRACTION OF
PERSONAL PROFILES
FROM A UNIVERSITY
DOMAIN USING WEB
SCRAPING AND NLP
METHODS

Bc. Tomáš Lenoch

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Ing. Stanislav Kuznetsov
May 3, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Bc. Tomáš Lenoch. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Lenoch Tomáš. Automated extraction of personal profiles from a university
domain using web scraping and NLP methods. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2021.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

Introduction 1

I Theoretical 3

1 Problem definition 5
1.1 Data model . 6
1.2 Hierachical tree . 6

2 Information extraction 9
2.1 Natural language processing . 9
2.2 Part of Speech Tagging . 10
2.3 Named Entity Recognition . 10
2.4 Relationship Extraction . 11
2.5 Statistical Language Models . 11

2.5.1 n-gram Models . 12
2.5.2 Neural Language Models . 12
2.5.3 Word Embeddings . 12
2.5.4 Recurrent Neural Language Models . 13
2.5.5 Transformers . 13

3 Web Scraping 15
3.1 Web Scraping Tools . 15
3.2 Web Page Representation . 16

3.2.1 DOM Tree . 16
3.2.2 Semantic Tree . 17

4 Related works 19

II Practical 21

5 Design 23
5.1 Technologies . 23
5.2 Application Architecture . 23
5.3 Page Pipeline . 24

5.3.1 DOM Tree Construction . 25
5.3.2 Main Content Filtering . 25

iii

iv Contents

5.3.3 Semantic Tree Construction . 26
5.3.4 Page Features Extraction . 26
5.3.5 Page Type Tagging . 27

5.4 Page Scraper . 28
5.5 Entity Extractor . 28

5.5.1 Attribute Operations . 29
5.5.2 Affiliation Operations . 29

5.6 Academic Spider . 29
5.7 API Server . 31
5.8 GUI . 32

6 Evaluation 35
6.1 Reference data . 35
6.2 Metrics . 36
6.3 Phase 1 . 37
6.4 Phase 2 . 37
6.5 Summary and Possible Improvements . 38

7 Deployment 39

Conclusion 41

Contents of Enclosed Medium 47

List of Figures

1.1 Entity diagram . 6

2.1 Example of POS tagging on sequence with length n = 6 10
2.2 Example of NER task . 10
2.3 Example of NER entity ambiguity: In the first sentence, Cleveland is recognized

as a person entity and, in the second, as a geopolitical entity. 11
2.4 context of size 2 for the token ”Cleveland” . 12
2.5 Transformer architecture [15] . 14

3.1 Example of the DOM tree [24]. 16
3.2 Visualization of the algorithm for grouping nodes in FindPartition 17

5.1 Architecture of the application . 24
5.2 Scraping system component . 24
5.3 Adjusted DOM Tree . 25
5.4 Diagram of SCRAPE_ORGANIZATIONS activity . 30
5.5 Diagram of SCRAPE_PEOPLE activity . 31
5.6 Activity diagram of PeopleSpider . 32
5.7 Home page of the web interface . 32
5.8 Page displaying first-level Organization instances 33
5.9 Page displaying Person instances . 33

List of Tables

5.1 Predefined keywords and their categories . 27

6.1 Reference universities set . 36
6.2 Evaluation results of phase 1 . 37
6.3 Evaluation results of phase 2 . 38

List of code listings

v

First of all, I would like to thank my master’s thesis supervisor
Ing. Stanislav Kuznetsov, for his valuable comments and substantial
advice. Furthermore, I would like to thank all my family and those
who supported me while writing this thesis.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 3, 2023 .

vii

Abstract

This thesis deals with the development of a software application that can automatically extract
personal profiles of employees from university websites, using web scraping and natural language
processing (NLP) techniques. The extracted profiles include affiliations of the employees towards
organizational units within the university. In addition, a user-friendly graphical interface is pro-
vided in the application to verify and modify the extracted profiles. The component-based design
of the application allows for future adjustments to handle a more specific set of universities. The
performance of the application is evaluated on the set of manually scraped university websites.
The evaluation results suggest that the application can perform the required tasks. Further
testing is required in the future due to the limited size of the reference set.

Keywords automated web scraping, personal attribute extraction, automated personal profile
extraction, university employees

Abstrakt

Táto práca sa zaoberá vývojom softvérovej aplikácie, ktorá dokáže automaticky źıskavat’ per-
sonálne profily zamestnancov z webových stránok univerźıt pomocou techńık web scrapingu a
spracovania prirodzeného jazyka (NLP). Źıskané profily obsahujú pŕıslušnost’ zamestnancov k
organizačným jednotkám v rámci univerzity. Okrem toho je v aplikácii k dispoźıcii už́ıvatel’sky
pŕıvetivé grafické rozhranie na overovanie a úpravu źıskaných profilov. Dizajn aplikácie založený
na komponentoch umožňuje do budúcnosti úpravy na spracovanie špecifickeǰsieho okruhu uni-
verźıt. Výkonnost’ aplikácie sa hodnot́ı na množine dát ručne extrahovaných z univerzitných
webových stránok. Výsledky hodnotenia naznačujú, že aplikácia dokáže vykonávat’ požadované
úlohy. V budúcnosti je ale potrebné d’aľsie testovanie vzhl’adom na obmedzenú vel’kost’ referenčnej
množiny.

Kĺıčová slova automatizovaný web scraping, extrakcia osobných atribútov, automatizovaná
extrakcia personálnych profilov, univerzitńı zamestnanci

viii

Introduction

Universities have always played an important role in society by providing students with compre-
hensive and structured education, conducting research to advance knowledge, and contributing
to economic and social development. To effectively fulfill these roles, the university is divided into
smaller divisions, each with its responsibilities. This means that the organizational structures of
universities are usually very complex.

Knowledge of this organizational structure can be a valuable resource for businesses looking
to establish partnerships, identify potential talent, and develop new research and development
projects. It can help them identify departments with specialized expertise that can improve their
product and services. Moreover, knowing the exact personnel hierarchy of the organization of
interest will also help businesses to identify potential candidates for recruitment or collaboration.

Unfortunately, despite the significant benefits of understanding the organizational structures,
there is currently no standardized method for extracting and storing this information in a uni-
versally accessible format. Therefore, this thesis aims to develop a software application that can
extract this structure and export it in an easily readable format. We aim to solve this problem
by developing a software solution based on scraping websites of university domains with the help
of natural language processing methods.

The thesis structure is divided into a theoretical and a practical part. In the theoretical part,
we explore formal requirements that our application must satisfy. We also aim to describe current
approaches and methods in the areas of web scraping and natural language processing. In the
last chapter of the theoretical part, we review related works in this area. In the practical part,
we address the design of the application and its components. We also evaluate the performance
of the application on a set of university websites.

1

2 Introduction

Part I

Theoretical

3

Chapter 1

Problem definition

The main objective of this thesis is to develop a software application that uses web scraping and
natural language processing (NLP) to extract personal profiles of university employees from its
domain websites. Each profile must include the person’s full name and their work affiliation with
the university and its parts. Additionally, it can include contact information, such as email or
an office address.

Universities are organized into several sub-organizational parts, such as faculties, institutes,
and departments. Each sub-organization typically has different objectives and areas of expertise.
The main university website typically provides information about the organizational structure of
the university, including the web links to sub-organizations websites. Each sub-organization web-
site typically contains information about its activities, research interests, organizational struc-
ture, and employees. From these websites, it is then possible to extract this information using
web scraping methods. With the use of NLP methods, the extracted information can be then
transformed into valid personal profiles.

To ensure the universal functionality of the developed application, it must be capable of
handling any university domain that offers an English version of its website. To achieve this, the
application must meet the following functional requirements:

1. Transform any scraped website to its internal format, which allows the application to analyze
and extract the required data in a structured way.

2. Generate a hierarchical tree that represents the organizational structure of the examined uni-
versity This tree will provide a more profound understanding of the university’s organizational
structure.

3. Extract personal profiles from organizational units using NLP methods.

4. Provide a graphical interface that allows the users to confirm and edit the extracted data.
Due to the high variability and lack of reference data, automatic verification of the extracted
data is not feasible. Hence, the graphical interface allows the user to verify and correct any
inaccuracies.

In essence, to solve this problem, we need to construct a knowledge base for the input univer-
sity. The construction of this knowledge base includes solving subtasks of Information Extraction
task (IE) such as Part of Speech Tagging, Named Entity Recognition and Relationship Extrac-
tion.

5

6 Problem definition

1.1 Data model
In light of the functional requirements presented earlier, we need to define a data model that will
be able to represent the extracted data from university websites in a structured and machine-
readable format. To achieve this goal, we defined a data model consisting of three entities:
Organization, Person and Affiliation. The entity-relationship diagram of this model can be
seen in Figure 1.1.

Figure 1.1 Entity diagram

Each Organization entity represents either the university itself as the main organization
or as another sub-organizational unit within the university. It contains attributes such as the
organization’s name, domain, and URL of its website.

Each Person entity represents an employee of the university. It contains attributes such
as the person’s name, email, phone number, and website URL from which their data was ex-
tracted. Each Person entity is associated with a single Organization entity, which represents
the organizational unit with which the person is associated with. Finally, each Person entity
can have multiple Affiliation entities associated with it. The Affiliation entity has division
and position attributes. The division attribute represents the organizational unit’s name, and
the position attribute defines the person’s role within that unit. Every Person entity has an
implicit Affiliation associated with it, generated from the Organization it belongs to. Ad-
ditionally, other implicit Affiliation entities can be added recursively through parents of this
Organization.

1.2 Hierachical tree
With the data model defined in the previous section, we can now store the organizational struc-
ture of a university as a hierarchical graph tree H. The tree nodes are instances of Organization
entities. Since these instances can have associated Person instances, H can represent the com-
plete knowledge base of a university. Therefore, H is the only output parameter of the applica-
tion.

Hierachical tree 7

The input to the application is an Organization instance, which holds details about the
target university. This instance will become the root of the H. In order to precisely locate a
specific node in the tree, we will refer to i-th node at j-th level as ORGi,j . The level of a node is
determined by its distance from the root of the tree. This implies that the root node is denoted
as ORG0,0. Employing this notation, any node in the tree can be easily identified by specifying
its level and position within that level. For example, an instance in the third node at the second
level of the tree can be referred to as ORG2,1. Moreover, we can denote all nodes at level j as
ORG:,j .

The tree is iteratively constructed by the procedure BUILD_TREE shown in Algorithm 1.
A queue-based breadth-first search approach is used to iteratively explore the organizational
structure, extracting child organizations and adding them to the tree. Once all the founded
organizations are extracted, personal profiles are extracted from all nodes of H.

Algorithm 1 Construction of output tree H

1: procedure build tree(university : Organization)
2: H ← tree({university}, {})
3: Q← Queue({university})
4: while ¬Q.empty() do
5: active node← Q.pop()
6: children← scrape and extract organizations(active node)
7: if ¬children.empty() then
8: Q.insert(children)
9: H.add edges(active node, children)

10: for each org ∈ H.nodes() do
11: org.people← scrape and extract people(org)
12: return H

Methods on the lines 6 and 11 have similar functionality. They take Organization as an
input parameter and return a collection of Organization or Person instances, respectively. They
represent two pivotal processes in the application workflow.

8 Problem definition

Chapter 2

Information extraction

One of the first things we notice when looking at any data set is that it is either structured or
unstructured. Structured data is typically organized in a specific format, such as a relational
database. In contrast, unstructured data lacks an obvious structure and is often not easily
readable by computers. However, even seemingly unstructured data, such as human-written text,
may contain some structural elements, such as headings, paragraphs, or footnotes. Therefore,
we can view this type of data as semi-structured. This is particularly evident when analyzing
textual data found on websites, where data is often presented in its own unique structure [1].

The main objective of the IE task is to identify entities and relationships that are semantically
defined within unstructured or semi-structured textual data. The extracted information must be
saved in a format that will facilitate subsequent analysis and processing. While small data sets
can be processed by humans, the typical size of meaningful data sets today is beyond the scope
of manual processing [2].

Information extraction itself belongs to the area of Natural Language Processing. To properly
describe the necessary sub-tasks of IE, we must explore some basic terms and techniques in this
area.

2.1 Natural language processing

Using computational techniques to analyze linguistic data, such as documents or websites, is
called Natural Language Processing (NLP). The main goal of NLP is to use insights from lin-
guistics to build a structured representation of the natural language. This representation can be
focused either on syntactic or semantic features of the text. Typically, an NLP system comprises
a pipeline of components, where each component transforms input text in a more structured
way. The initial components within the NLP pipeline address tasks that refer to the low-level
text characteristics. In contrast, subsequent components are designed to analyze higher-level
concepts and relationships. The components use different techniques to process the text. These
techniques include rule-based methods like regular expressions and finite state automata, as well
as machine learning and statistical models. [3]

We need to introduce some basic terminology to describe the functionality of each pipeline
component. Before processing, the input text must be segmented into linguistic units, such as
words, punctuation, numbers, or alphanumerics. These units are commonly referred to as tokens
[4]. The process of splitting input text into tokens is called tokenization. This process may
involve additional steps, such as converting all letters to lowercase and eliminating stop words,
which are commonly used words like the and a. [5].

Based on this, we can define subsequent terms:

9

10 Information extraction

Sentence – Ordered sequence of tokens.

Corpus – Set of tokens or sentences.

Document – Collection of sentences.

Dictionary – Set of tokens in the corpus.

2.2 Part of Speech Tagging
Every language is constructed of its own vocabulary and grammar rules. The grammar rules
dictate how words can be combined to form meaningful sentences. Each word plays a role in
conveying the meaning of the sentence. In most European languages, we can label these roles
as nouns, verbs, pronouns, prepositions, adverbs, conjunctions, participles, and articles. The
task of classifying each word into one of these categories is called part-of-speech (POS) tagging.
Besides the basic categories, additional categories may be added depending on the problem being
solved.

According to [5], the classification of a word in a POS class is based on its grammatical rela-
tionship with neighboring words or the morphological properties of their affixes. POS classes can
generally be divided into two main categories – closed and open. Classes in the closed category
are those with relatively fixed membership, such as prepositions, articles, and conjunctions. The
open category includes classes like nouns, verbs, adjectives, and adverbs, which are typically
content words. This thesis will examine mostly nouns and noun phrases, as they usually refer to
entities we seek, such as persons, organizations, and locations.

The POS tagging process consists of assigning POS class yi to each xi token of sequence
x = x1, x2, . . . , xn−1, xn of length n and where x1, x2, . . . , xn−1, xn are word tokens. An example
of a tagged sentence is shown on Figure 2.1.

Peter(PROPN) used(VERB) to(PART) work(VERB) for(ADP) Alfred(PROPN).

Figure 2.1 Example of POS tagging on sequence with length n = 6

Words can have ambiguous meanings, and the POS class assigned to them is determined by
the grammatical and morphological structure of the sentence. Because of this, depending on the
context in which it is used, the word may be assigned to a various POS classes. However, several
words can be easily disambiguated based on the likelihood of their various tags. For instance,
the word ”book” may refer to a physical object or a written work, but the last mentioned sense
is significantly more prevalent. Given this, the common strategy is to choose the most common
class for the ambiguous word from the training set.[5]

Once a sentence is POS tagged, we acquire insights into its grammatical structure, thereby
allowing us to identify and extract all proper nouns from it. In order to recognize which semantic
entity they refer to, we need to solve another sub-task of IE, called Named Entity Recognition.

2.3 Named Entity Recognition

Peter (PERSON) used to work for Alfred (PERSON).

Figure 2.2 Example of NER task

The main goal of the Named Entity Recognition (NER) task is to identify named entities
like person names, organizations, or locations from the nouns and noun phrases in the sentence.
For example, if we look at the sentence in Figure 2.2, we can see that two people entities were

Relationship Extraction 11

recognized: ”Peter” and ”Alfred”. These recognized entities are useful in many other tasks
besides IE, such as question-answering and sentiment analysis.

One of the major problems in the NER task is determining boundaries for named entities.
Another problem is choosing the correct label for the recognized entity. In the Figure 2.3, we
can see an example where the same word refers to a different named entity. [5]

I called my brother Cleveland(PERSON)
Cleveland(GPE) is in Ohio(GPE).

Figure 2.3 Example of NER entity ambiguity: In the first sentence, Cleveland is recognized as a
person entity and, in the second, as a geopolitical entity.

There are generally three main approaches to creating a NER solving system: rule-based,
machine learning, and hybrid.

The rule-based approach is characterized by a collection of rules that experts have manually
crafted. These systems are usually used in specific domains where the knowledge of the experts
is highly beneficial. These systems are expensive to develop, not portable, and not applicable in
a different domain. NER systems based on machine learning have an advantage over rule-based
systems, as they can include more complex patterns and complex decision-making algorithms
by learning from real-world data. As with any machine learning system, we divided them by
type of training data into three main categories, which are supervised, semi-supervised, and
unsupervised. The hybrid-based approach combines the best parts of the approaches mentioned
above. These systems are more flexible and accurate than those that use only one approach. [6]

2.4 Relationship Extraction

Once named entities (NE) have been identified and extracted from text, various predefined rela-
tionships between them can be detected. Identifying these relationships is the primary objective
of the Relation Extraction (RE) task. The RE task can be divided into two steps. The first
step consists of identifying whether a relationship exists between the two entities. When this is
determined, the relationship is classified into a predefined category in the second step. [7]

In long documents, relationships between entities are typically identified based on the rela-
tionships between sentences. However, recognizing these relationships can be challenging because
we work with relatively short and unconnected sentences. Fortunately, we can make use of hyper-
link connections between the web pages to extract relationships between entities throughout the
entire website. This approach allows for the identification of relationships that would otherwise
be missed when analyzing individual sentences.

2.5 Statistical Language Models

The current trend is to use statistical language models to solve NLP tasks, including IE, as they
can effectively handle a wide range of tasks in this area. The main principle of these models is to
assign a probability to every possible sequence of tokens from the corpus they have been trained
on. Therefore, if we feed a language model a sentence, it will provide a probability for each token
in the sentence. The probability is based on the context in which the token is used. [8]

The context of a token is defined as a set of its neighbor tokens. In the Figure 2.4, we can see
that context of size 2 for the token ”Cleveland” in the example sentence contains tokens ”my”
and ”brother”. At its core, the context of the token represents the history of its preceding tokens.
Ideally, we want this history to be as long as possible.

12 Information extraction

I called my brother Cleveland.

Figure 2.4 context of size 2 for the token ”Cleveland”

2.5.1 n-gram Models
There are different approaches to building statistical language models for NLP tasks, the simplest
ones use n-grams to calculate the probability of tokens in a sentence. An n-gram is a sequence
of n tokens, where n = 1 or n = 2 are referred to as uni-gram and bi-gram, respectively. The
value of n is a hyperparameter of this group of models, which is set before the training process
begins. [5]

During the training of n-gram models for NLP tasks, the goal is to estimate the probability
of a token in a sentence based on its context, which consists of the n− 1 preceding tokens. The
token and its context together form an n-gram in the model. The probability of each token is
then determined by the frequency of all the different n-grams in the training corpus that contain
it as the last token. A limitation of n-gram models is that they struggle to capture long-term
dependencies between tokens when the value of n is small. If we increase the value of n to capture
these dependencies, then we require a much larger training corpus. Another drawback of these
models is that they cannot predict a token not included in the training corpus. [8].

2.5.2 Neural Language Models
In recent years, models based on neural networks have gained popularity in the area of NLP.
These models can learn complex patterns and relationships within large amounts of textual data,
making them highly effective for various NLP tasks. A specific type of statistical language model
that uses neural networks to approximate the probability distribution of tokens in a sentence is
called a neural language model.

These models can handle longer histories and generalize better over contexts of similar tokens
compared to n-gram models. They also have a more accurate prediction of the next token. On
the contrary, they are more complex, and therefore they are less interpretable. Additionally, they
require much larger training datasets to work accurately. [5]

By [9], the neural language model based on feed-forward neural network architecture com-
prises an input embedding layer, multiple hidden layers, and an output layer that returns a
probability distribution. The input embedding layer takes input data of a sequence of tokens
and converts each token into a fixed-size vector representation called word embedding. The
meaning of the words and their relationships with each other are captured by word embeddings,
which allow semantically similar words to be located close by in the vector space. In the hid-
den layers, the neural network processes the input embeddings and learns to identify patterns
in the training sequences. Each hidden layer consists of multiple neurons, and each neuron is
responsible for learning a specific feature or pattern in the input sequence. These features could
be as simple as identifying common prefixes or suffixes in words, or as complex as recognizing
grammatical structures and semantic relationships between the words. The output layer pro-
duces a probability distribution over the training corpus vocabulary. Each neuron in the output
layer corresponds to a word in the vocabulary, and its value represents the probability that the
corresponding word is the next in the sentence. This probability is calculated by applying a
softmax function to the output of the last hidden layer.

2.5.3 Word Embeddings
Using word embeddings enables neural language models to generalize better than n-gram models.
This implies that encoding tokens not present in the training corpus into a word embedding

Statistical Language Models 13

makes it possible to predict their probability. Formally, word embedding (or word vector) ew of
word w is a dense vector in a d-dimensional vector space, where d is significantly smaller than
the vocabulary size. The typical value of d used is between 50 to 1000. Each element of the
embedding vector ew represents a learned feature of the word w that captures its meaning and
context within the training corpus. [5]

In the embedding layer, neural language models can either learn embeddings in the train-
ing process or use pretrained static word embeddings generated from large corpuses containing
millions of words. The most common methods for generating static word embeddings include
word2vec [10], GloVe [11], or fastText [12].

2.5.4 Recurrent Neural Language Models
One of the primary limitations of feed-forward neural language models is their inability to handle
inputs with variable-length. Consequently, they struggle to capture long-range dependencies in
text, which is crucial for NER task. In order to recognize named entities in text, the model must
understand the context and relationships between different words and phrases. Furthermore,
named entities differ in length and the surrounding context words they occur with.

To address these challenges, models based on recurrent neural networks (RNN) are employed.
Unlike feed-forward models that take a fixed-size input and produce a fixed-size output, RNN
models can handle variable-length inputs and produce variable-length outputs. They can capture
long-range dependencies in text. The model can maintain a memory of previous inputs through
the use of recurrent connections. These connections allow information to flow from one time step
to the next. Because of this, they can capture the context and relationships between different
words and phrases over longer distances than a feed-forward model.

However, as described in [13], simple RNN models can only use information up to 5-10 time
steps into the past because of their gradient-based training process. When gradients are back-
propagated, their values decrease over each time step until they eventually vanish. This problem
is known as the vanishing gradient problem, which limits the ability of the model to update
weights effectively. To overcome this issue, an extension of RNN, named Long Short-Term
Memory (LSTM) [14], has to be used.

LSTM was specifically designed to address this problem by introducing specialized gated
neural units that can selectively remember or forget previous context over time. These units are
composed of 3 types of control gates: forget gate, input gate, and output gate. The forget gate
regulates how much of the previously remembered context should be forgotten. The input gate
controls how much of the input coming to the unit should be stored in its context. Lastly, the
output gate regulates the amount of the stored context that is sent as the output from the unit.

Although LSTM models have achieved great success in many NLP tasks, they still have
some limitations. One of the main drawbacks of RNN networks, including LSTMs, is their poor
suitability for parallel training due to their sequential processing of input tokens. To overcome
this issue and take advantage of parallel computing, a new neural network architecture called
Transformer [15] was introduced.

2.5.5 Transformers
Transformer is a type of neural network architecture that does not rely on recurrent connections,
such as LTSM. The reason for this is that all inputs are passed to the network simultaneously,
meaning there is no time-step concept for the inputs. This characteristic allows for the paral-
lelization of its training process, which results in faster computation times even when dealing
with large datasets. It is an encoder-decoder neural network, sometimes referred to as a sequence-
to-sequence network. Therefore, it consists of three main components. An encoder, which is a
neural network that encodes an input sequence of symbols (x1, . . . , xn) into a sequence of contex-
tualized representations z = (z1, . . . , zn). These representations z are then passed to a decoder

14 Information extraction

that generates an output sequence of symbols y = (y1, . . . , ym). In language modeling, the input
symbols are tokens, and the output symbols are probabilities of each token in the vocabulary,
forming a distribution. [15]

The encoder and decoder are composed of stacks of transformer blocks, as shown in Figure 2.5.
These blocks are made of linear layers, feed-forward networks, and self-attention layers. Self-
attention is a pivotal concept in transformers that allows them to extract and utilize information
from arbitrarily large contexts without the need for intermediate recurrent connections. In
simpler terms, it allows the network to calculate the relevance of the i-th token in the input
sequence to the other tokens in the sequence. These relationships are then stored in attention
vectors.

However, when working with long input sequences, a single attention vector struggles to
capture all the important relationships between the tokens. To resolve this issue, transformers
use multi-head attention layers, which consist of multiple self-attention networks with different
parameters, known as heads. Depending on its parameters, each head captures the relationships
between the tokens differently, and thus it outputs a specific attention vector. These distinct
output vectors are then combined into a final attention vector for the sequence, enabling trans-
formers to capture diverse relationships between tokens.

Since the input sequence is not processed sequentially, the transformer does not have infor-
mation about the absolute or relative positions of the tokens in the input. The solution to this
problem is to generate separate embeddings of the same dimension as the input embeddings
that capture the positions of the tokens in the sentence. By adding these positional embeddings
to the input embeddings. An augmented representation, which incorporates both the semantic
meaning of the token and its position in the sequence, is created.

The success of transformers can be attributed to their ability to parallelize training, process
large datasets, capture various relationships between tokens, and retain positional information.
With the introduction of pretrained transformer-based models, such as BERT [16] and RoBERTa
[17], which have demonstrated state-of-the-art performance on a variety of NLP tasks, including
POS tagging and NER. Transformers have become the preferred option for language modeling
and related NLP tasks.

Figure 2.5 Transformer architecture [15]

Chapter 3

Web Scraping

The internet is a great source of information, but it can be a daunting task to extract and
analyze data without the right tools and techniques. As more businesses and organizations seek
to produce data-driven products, web scraping has become an increasingly important tool.

Internet websites can present data that is only accessible through a web browser and do not
provide an option to save a personal copy of this information. In order to make this presented
data more accessible, web scraping techniques are employed. Web scraping is an automatic
process that extracts meaningful data from the HTML source code of an Internet website. The
extracted data is then stored in a central local database or a spreadsheet [18].

In everyday conversation, the terms ”website” and ”web page” are often used interchangeably.
In the context of web scraping, it is crucial to distinguish between the two. A web page is a
single document that can be accessed online through a unique URL. In contrast, a website is a
collection of related web pages whose URLs belong to the same web domain. Each web page is
designed to display information in a specific format and may contain hyperlinks to other web
pages, multimedia elements, and other interactive features.

Hypertext Transfer Protocol (HTTP) is a communication protocol that enables client appli-
cations to communicate with web servers. As defined in [19], the first phase of the web scraping
process, called the fetching phase, consists of obtaining the source code of a web page. During
this phase, the web scraping client sends an HTTP request to the web server and receives an
HTML response in return. In the second extraction phase, requested data is extracted using
libraries for HTML parsing, regular expressions, or XPath queries. XPath is an expression lan-
guage used to navigate and select elements within an XML or HTML document [20]. In the final
transformation phrase, extracted data is transformed into a more structured form suitable for
storage and presentation.

3.1 Web Scraping Tools

A working web scraping program requires proper technology to execute all three web scraping
phases. A common approach is to use multiple programming libraries that would help fulfill each
phase. Ideally, these libraries should be written in the same programming language.

There are numerous programming languages available for implementing web scraping pro-
grams with the use of libraries. One of the most popular options is Python, which we will use
to implement the application for this thesis. It natively supports communication through the
HTTP protocol. Additionally, it offers HTML parsing libraries, such as BeautifulSoup [21] and
lxml [22]. Moreover, another approach is to use more high-level frameworks that offer a more
comprehensive and efficient approach to web scraping. One of these frameworks is Scrapy [23],

15

16 Web Scraping

which is a fast Python web scraping framework that extracts structured data from websites. It
is based on spiders, which are classes that define how to crawl and how to extract data from
websites. They are designed to be flexible and customizable, allowing developers to handle a
broad range of scraping scenarios. Additionally, Scrapy has a powerful item pipeline system that
allows processing and manipulation of the scraped data.

3.2 Web Page Representation

Document

html

head body

title

"Sample Document"

h1 p

"An HTML Document" i "This is a" "document"

"simple"

Figure 3.1 Example of the DOM tree [24].

When retrieving the source HTML document via HTTP protocol during the initial fetching
phase, it is necessary to parse it into a format that a web scraping program can easily process.
The parsing process involves analyzing the HTML source code and transforming it into a tree-like
data structure that a web scraper program can easily navigate and access. This data structure
represents the hierarchical structure of the HTML document, with each element and attribute
mapped to its corresponding node in the tree. After parsing is complete, the web scraping
program can then traverse the tree and extract the desired data for further processing or analysis.

3.2.1 DOM Tree
One of the most popular data structures for the representation of HTML documents is Document
Object Model (DOM). The DOM represents the document as a tree-like structure called the
DOM tree. Nodes in this tree represent each element, attribute, and piece of text in an HTML
document. [25]

There are 3 main types of nodes: document, element, and textual. The document node is
the root of the DOM tree and represents the entire document. Element nodes represent HTML
tag elements such as <html>, <body>, <div>, and so on. These nodes represent the structural
components of the HTML document and contain information about the element’s tag name and
attributes. The textual content of the tag elements is represented by textual nodes. Furthermore,
more specific types of nodes can be used to represent the document structure in more detail. [24]

Libraries like BeautifulSoup and lxml provide a convenient way to automatically construct
the DOM tree from HTML source and provide a flexible interface to navigate, manipulate, and
modify the nodes of the tree. However, in some cases, manual construction of the DOM tree may

Web Page Representation 17

be necessary. This could happen, for example, if the desired structure of the tree is different from
the one generated by the automatic parsing. In such a case, the DOM tree must be manually
constructed by creating and linking nodes together into the desired hierarchy.

3.2.2 Semantic Tree
The goal of our thesis is to create a web scraper that can be used universally to scrape any
given university website. To achieve this, we require a representation that captures the key
features of a document regardless of its specific designed structure. We have found that the
DOM tree provides too low-level representation. Therefore, we aim to use a representation that
encapsulates high-level features of the document more abstractly. One such solution for high-level
representation is described in [26]. Most websites on the internet are generated from templates,
which ensures that the semantic schema of the website is consistent across all pages. The only
thing that changes is the content of the individual pages. In this paper, authors propose an
algorithm that automatically detects semantic structures in HTML documents. Their approach
is based on the observation that page elements with semantic similarities exhibit spatial locality
in the rendered view of the web page. They capture the spatial locality of the elements as a
similarity of root-to-leaf paths in the DOM tree. The principle of the algorithm is based on
restructuring the DOM tree by traversing it in a bottom-up manner and grouping nodes with
similar paths.

Algorithm 2 Construction of the semantic tree [26]
1: procedure PartitionTree(n : node of the DOM tree)
2: if n is a leaf node then
3: n.path← path from leaf to root
4: else if n has only one child node c then
5: PartitionTree(c)
6: group n and c to the new compound node m
7: m.path← c.path
8: replace n with m and remove n, c from the tree
9: else

10: for each child node c of n do
11: PartitionTree(c)
12: FindPartition(n)

The Algorithm 2 reconstructs a DOM tree into a semantic tree by grouping nodes with
similar paths in a bottom-up manner. It first traverses the tree from the root to the leaves using
recursion. If a leaf node is reached, its path from the leaf to the root is stored. If a node has only
one child, the algorithm proceeds to the child and groups the two nodes into a new compound
node that has the same path as the child node. In case when a node has more than one child,
the algorithm recursively processes each child and then calls the FindPartition procedure to
group the children into compound nodes based on their path similarity.

(a)

n

p1 p2 p3 p2 p3 p4

(c)

n

m1: (p1) m2: (p2, p3) m3: (p4)

(b)

n

p1 (p2, p3) (p2, p3) p4

Figure 3.2 Visualization of the algorithm for grouping nodes in FindPartition

18 Web Scraping

To group nodes, the algorithm of the procedure converts the paths of all nodes into a sequence
of strings, respecting the order of the nodes. For example, the string sequence α for tree (a) in
Figure 3.2 is p1.p2.p3.p2.p3.p4. The algorithm then identifies patterns in this string sequence by
finding the maximal repeating substring. By the paper’s definition, a substring γ is a maximal
repeating substring in a string β if it appears at least twice in β, its length multiplied by the
number of times it appears is at least half of the length of β, and it is the longest substring that
satisfies these conditions. In the example, the pattern for α is p2.p3.

The algorithm then groups nodes with paths that match the pattern into a new compound
node, with the pattern as its path value. In tree (b) of Figure 3.2, nodes with paths satisfying the
pattern are grouped into a compound node with new path (p2, p3). The algorithm repeats this
process until no more patterns can be found. The final output is the tree (c), with compound
nodes m1, m2, and m3. Note that m2 is composed of multiple nodes, while m1 and m3 are
compound nodes with only one node each.

Chapter 4

Related works

The focus of this chapter is to examine related works that are relevant to our task. The most
similar to our task is the Attribute Extraction (AE) task, which involves identifying and ex-
tracting specific attribute values associated with entities from unstructured textual data. In our
case, we are interested in the personal AE task, which involves extracting personal attributes.
To solve AE, many works were concluded in the third Web People Search campaign (WePS-3)
[27] in which participating teams had to resolve person name disambiguation problem and AE
for persons sharing the same name.

The solution from [28] achieved the best results in AE task. The authors developed a sys-
tem that handles both problems based on biographical attribute extraction. They adopted the
premise that relevant data for personal AE can be obtained from both textual parts and tables
of websites while removing undesired components such as navigation menus. In addition, short
text paragraphs with less than 60 characters and less than two verbs were removed. The au-
thors trained their own NER model to extract attributes, but the accuracy score was low. To
improve accuracy, they developed attribute-specific section selection modules and used simple
string matching to create a database of positive and negative paragraphs for each attribute.
They then extracted attributes from paragraphs containing at least one word from a set of pos-
itive words created from the positive paragraphs. The attribute extraction system described in
the work has two main components: a candidate attribute extraction module and an attribute
verification module. The approach involves marking potential attribute values in a paragraph
and then identifying which of these candidate values have been found. They also grouped similar
attributes into logical categories. This allows for a consistent approach to extracting attributes
of the same type and assumes subordinate relationships among related attributes.

In a system called CASIANED, presented in [29], authors developed a personal AE system
based on IE. The system extracts attributes from web pages. It consists of two function modules:
the attribute candidate generation module and the attribute candidate verification module. The
attribute candidate generation module identifies possible attributes for every attribute class
on a web page by recognizing named entities and noun phrases. Similarly to [28], attribute
classes are split into three categories based on named entity type. The candidate verification
module then verifies these candidates through classification. Authors mention that commonly
used NER systems lack performance when dealing with irregular text on web pages. Therefore,
it is difficult to establish precise boundaries for attribute values. To address this issue, they
use gazetteers generated from a prefilled knowledge base to recognize more complicated named
entities. Furthermore, they state that it is a challenging task to develop an AE system that
performs well on different kinds of websites. This is because they are usually noisy, irregular,
and multi-topical.

The authors of [30] have introduced a proficient approach for extracting diverse categories of

19

20 Related works

target person attributes from unprocessed web pages. The extraction process involves the use
of several techniques, such as NER, regular expression patterns, gazetteer-based matching, and
manually constructed rules based on web page cleaning. The authors have implemented two
web page cleaning algorithms – shallow and deep – which differ in the extent to which irrelevant
content is removed from the web page. The evaluation of the results has shown that deep web
cleaning enhances the precision of the extracted attributes, but it decreases the overall recall of
the results.

The ArnetMiner [31] system aims to extract and mine academic and social networks. One
of its parts automatically extracts researcher profiles from the web using a unified approach
based on Conditional Random Fields. This approach lies in three steps. In the first step, the
homepage of the researcher is found through analysis of web search results using SVM binary
classifier. The second step consists of tokenization of the web page text and heuristically tagging
each token. Their tokenization algorithm defines 5 types of tokens: standard word, special word,
image, term, and punctuation mark. Special word tokens are assigned tags, such as Position,
Affiliation, or Email, during the tagging process.

In the paper [32] authors have directed their attention towards the extraction of researcher
affiliations from their respective home web pages, rather than focusing on personal AE in general.
Their findings indicate that many of these home pages present their content in text-like form
instead of more structured. They apply filtering method based on string-matching to remove
irrelevant content from the web page. For the extraction process they opted to use entity-based
approach that uses custom NER system with narrow selection of NE entity classes that are
associated with university affiliations.

There is a range of techniques used by the authors to extract personal attributes, including
NER, gazetteers, regular expression patterns and manually constructed rules based on web page
cleaning. In addition, methods such as attribute-specific section selection and simple string
matching are developed to improve accuracy. The evaluation of these works reveals challenges
in developing AE systems that can perform well across different types of websites.

Part II

Practical

21

Chapter 5

Design

This chapter will explore the software design of our application. It will provide an overview of
the architecture, the components involved, and how they interact with each other to build a
hierarchical tree of an input university.

5.1 Technologies
We choose Python as the main technology for the implementation of our application because it
offers all the necessary libraries for the purpose of this thesis.

For web scraping tasks, we use a combination of Scrapy and BeautifulSoup libraries. Further-
more, we use spaCy [33], which is a free, open-source Python library for NLP. It offers fast and
efficient tools for tokenization, POS tagging, NER and other related tasks. We use spaCy with
a pretrained transformer model. To be able to work with graphs, we use Networkx [34], which is
a library for the creation and manipulation of graph structures.

In Chapter 1, we outlined the subtasks of the IE task that our application must perform in
order to extract desired entities defined in the data model presented in Section 1.1. To accomplish
this, we use the pretrained English language model en_core_web_trf, which is based on the
Transformer architecture and available implicitly through the spaCy library. This model has
been pretrained on the OntoNotes 5 dataset1, a large corpus of English text containing over 2
million words across various genres, including news articles, academic papers, and conversational
data. The model can produce state-of-the-art results in a wide range of NLP tasks, including
the subtasks of POS tagging and NER that are required for our application.

5.2 Application Architecture
The architecture of the developed application in this thesis consists of three main modules. The
Scraping System module includes all the business logic related to the scraping processes and
the construction of the output hierarchical tree H, as defined in Section 1.2. It consists of four
components, as shown in Figure 5.1.

The Academic Spider component is responsible for managing the crawling process of the
currently processed website through Scrapy spider classes. Every time a new web page is visited,
it is passed through the Page Pipeline component. The pipeline transforms the processed web
page into a semantic tree format and assigns it one of the predefined PAGE_TYPE tags. These tags
indicate whether the spider should scrape data from the processed web page and which scraping

1OntoNotes Release 5.0: https://catalog.ldc.upenn.edu/LDC2013T19

23

https://catalog.ldc.upenn.edu/LDC2013T19

24 Design

Figure 5.1 Architecture of the application

strategy class from the Page Scraper component should be employed for scraping. The scraping
strategy classes use methods from the Entity Detector component to extract entities and their
attributes from the processed web page.

Another crucial part of the application is the GUI module. It is implemented as a web
application developed in the Flask [35] framework, which is a lightweight web framework that
allows for rapid development of web applications. It allows users to view, edit, and export
extracted Organization and Person instances.

The last module of the application is an API Server, which serves as a bridge between the
web application and the Scraping System. It is implemented using Klein [36], which is a micro-
web framework. The API server receives requests from the GUI and directly calls the Scraping
System to scrape and extract the requested entities from the input website. Afterward, the API
server transforms the extracted data into JSON format and sends it back to the web application
as a response. In the next section, we will explore in detail each of the modules and their
components.

5.3 Page Pipeline

Figure 5.2 Scraping system component

The page pipeline component incorporates five stages, as shown in Figure 5.2. It takes the
downloaded HTML source document of the processed web page as input. As the output, it
returns a semantic tree as defined in Section 3.2 with an assigned set of page features and
PAGE_TYPE tag. This collection of outputs is passed as input to the Page Scraper component.

Page Pipeline 25

5.3.1 DOM Tree Construction
In the first stage of our pipeline, we start by constructing a DOM tree from the input HTML
source document. As we mentioned in Section 3.2.1, the DOM tree is a data structure that
effectively represents a web page. However, we need to adjust the DOM tree parsed automatically
by BeautifulSoup to meet our specific requirements.

In a typical DOM tree, leaf nodes represent textual content. However, in our adjusted tree,
we will store the values of textual nodes as attributes of their parent element nodes, using an
attribute named text. Additionally, we will remove the children of <a> element nodes and append
their text attribute values to the text attribute of their parent node. This means that each <a>
element node holds the textual content of its children in its text attribute. We will also ignore
the document node in the root and set its child as the new root. With these adjustments, we
simplified the structure of the DOM tree and made it more suitable for our purposes.

Furthermore, we will define two new attributes for the nodes: category and path. The category
attribute holds information about the type of element tag, which will help us detect the branch
that contains the main content section of the web page. The path attribute contains a sequence
of nodes representing the path from the root to the node. This information will allow us to
construct the semantic tree in the next stage of the pipeline.

Now we can refer to the adjusted DOM tree as D where V (D) = {d1, . . . , dn} is a set of its
n element nodes with additional attributes defined above. In Figure 5.3, is shown an example of
the adjusted DOM tree and its nodes. A full list of possible categories for tag element categories
can be found in the documentation of source code.

Document

div

a

h3 p

a

text: a.text + h3.text + p.text

path: "Document>div>a"

category: INLINE_TEXT_SEMANTICS

HTML attributes: ...

div

text: div.text

path: "Document>div"

category: CONTENT_SECTIONING

HTML attributes: ...

Figure 5.3 Adjusted DOM Tree

5.3.2 Main Content Filtering
The university websites are usually generated from predefined templates. Hence, there are
branches in the DOM tree that are identical for different web pages of the website. These
branches represent static sections of web page, such as the navigation menu, header, or footer
section. The main goal of this Page Pipeline stage is to remove these branches from D as they
are considered irrelevant to our research objectives. These branches only contribute to the size
of D and contain extraneous data.

If the website follows HTML5 [37] standard, the main content section and the static sections
can be easily identified either by specific attributes of element nodes of D or by their special
type. This allows for easy identification and removal of branches that represent static sections.

26 Design

On the contrary, if a website does not follow this standard, a heuristic approach can be employed
to detect the main content branch in D. We developed an approach based on [38], in which
authors identify the first node of the main content branch using the chars-nodes ratio (CNR).
Nevertheless, this approach encounters a challenge as we encounter web pages with varying
amounts of text in the main section. When the amount of text present is relatively small, the
navigation section is often misidentified as the main section. As a result, we have declined to
use this approach when processing web pages that do not conform to the HTML5 standard. In
such cases, we retain the original tree D, as it provides a more reliable representation of the web
page.

5.3.3 Semantic Tree Construction
Once the irrelevant branches are removed from D in the previous stage, it can be transformed
into a semantic tree described in Section 3.2. In the process of this transformation, semantically
similar nodes are grouped into the new compound nodes. Let S be the semantic tree constructed
from D by Algorithm 2, where V (S) = {s1, . . . , sm} is a set of m ≤ n compound nodes. A
compound node of S is a non-empty set of nodes from V (D), such that ∀si, sj ∈ V (S), si ̸= sj :
si ∩ sj = ∅. Note that all the nodes from D are contained in S.

5.3.4 Page Features Extraction
In the page features extraction stage, we extract a set of predefined page features that enable us
to recognize web pages which contain information related to either organizations or employees.
These features are extracted from the semantic tree S constructed in the previous stage. The
semantic tree comprises nodes encapsulating web page elements with the same semantic structure.
This provides us with a representation of the web page that is semi-independent from its original
structure.

The values of extracted page features are based on identifying and matching NE and a
predetermined set of keywords present in the text of the element nodes from S. To accomplish
this, we define a function text matches that takes an element node with text attribute as input
and returns a collection of matched NE and keywords. As previously mentioned in Section 5.3.3,
each element node in the adjusted DOM tree D is part of exactly one compound node in the
semantic tree S. Therefore, we can calculate the total number of matched NE and keywords in
a compound node by counting the outputs of text matches for its member element nodes.

The page features can be divided into two distinct categories based on the types of matches
used to obtain their values. These categories are NE-based features and keyword-based features.
Based on this distinction, we introduce two new attributes for the compound nodes in the
semantic tree S. These attributes are called ne tag and keyword tag and represent the most
frequently occurring matched NE and keyword categories, respectively. Moreover, we add these
attributes to the element nodes within a compound node, as more types of NE and keywords
can be recognized in their text attribute value.

5.3.4.1 NE-based features
NE-based features are extracted by identifying and matching NE found within the text of all
nodes in the semantic tree S. The NER recognition module we use can recognize numerous types
of named entities. However, we limit our focus to two specific types that are most relevant to
our task. These are names of people, which the module marks with the ”PERSON” label, and
names of organizations, which are marked with the ”ORG” label.

The following list presents a set of predefined NE-based features with their descriptions. The
⟨NE⟩ symbol represents one of the required types of NE.

Page Pipeline 27

count of ⟨NE⟩ the total number ⟨NE⟩ entities recognized in every node of S.

count of ⟨NE⟩ nodes the total number of compound nodes whose ne tag attribute value is
⟨NE⟩.

has ⟨NE⟩ in links True, if there exists more than one hyperlink element node that contains
⟨NE⟩, otherwise False.

has siblings in ⟨NE⟩ links True if in the compound node there are at least two hyperlink
element nodes with the same ne tag value as the compound node itself, otherwise False.

has ⟨NE⟩ in title True, if the title of the web page contains ⟨NE⟩, otherwise False

5.3.4.2 Keyword-based features
The recognition of NE in the text is not perfect. Although we only work with websites in English,
our application should be able to process websites of universities around the world. Hence, we
can encounter differences in vocabulary describing entities on the page, naming conventions or in
use of abbreviations and acronyms. These differences make it challenging to accurately identify
all NE with the pretrained model that we are using.

Fortunately, in the domain of universities, vocabulary for naming organizational units or work
positions follows a specific set of guidelines and conventions. For this reason, it is possible to
manually establish a vocabulary of keywords typically used to name these entities. We manually
collected the list of common naming keywords and divided them into three categories, as shown
in Table 5.1.

Category Keywords
Work Position professor, lecturer, teacher, instructor, assistant professor,

associate professor, dean, researcher, scientist, manager,
employee, member

Organizational unit department, faculty, school, college, institute, center, unit,
division, office, structure

Title of people page people, organization, persons, staff, structure, employees
Table 5.1 Predefined keywords and their categories

The first category includes a set of keywords commonly used to describe the job titles of
university personnel. The second category includes a set of keywords commonly used to describe
organizational units within the university. The last category consists of keywords commonly
used to describe titles of web pages that provide information about university employees. Based
on these categories, we designed the following set of binary keyword-based features:

has keyword work position True, if there exists an element node that contains any of the
words from the work position keyword set, otherwise False.

has keyword organizational unit True, if there exists an element node that contains any of
the words from the organizational unit keyword set, otherwise False.

has keyword organizational unit in title True, if the title of the web page contains any of
the words from the organizational unit keyword set, otherwise False

5.3.5 Page Type Tagging
In the last stage of the pipeline, the extracted page features are used to assign a PAGE_TYPE tag
to the processed web page. The web page can be assigned one of the following PAGE_TYPE tags:

28 Design

PAGE ORGANIZATIONS is assigned to a page that contains a list of organizational units.

PAGE SINGLE PERSON is assigned to a page that provides details about exactly one per-
son.

PAGE PEOPLE NO DATA is assigned to a page that contains a list of people with hy-
perlinks to a page tagged with PAGE_SINGLE_PERSON tag, which contains details about the
corresponding person.

PAGE PEOPLE DATA is assigned to a page containing a list of people with personal details
and no corresponding hyperlinks.

PAGE GENERAL is assigned to a page that does not satisfy the conditions of the previous
tags.

The tag is assigned to the page by a rule-based algorithm. From the tag definitions, it can be
deducted that certain page features are more relevant to some tags than others. Therefore, all
tags assigned a subset of page features that are relevant to them. Moreover, the algorithm has a
predefined set of conditions for each tag that values of selected page features must satisfy. The
conditions are assigned weights based on their importance. The algorithm then calculates the
relevancy score for each tag by taking the weighted average of the fulfilled conditions. Finally,
the tag with the highest relevancy score is assigned to the page.

5.4 Page Scraper
In order to extract meaningful data from the web page and parse it into a hierarchical tree
defined in Section 1.2, the system relies on a Page Scraper component, which implements a set
of scraping strategies. These strategies are classes with multiple methods that extract data from
the processed web page and parse it into a relevant set of entity instances. The entity type that
is returned depends on the PAGE_TYPE tag assigned to the processed web page. The semantic
tree S of the processed web page is passed as the input for these strategies. Each strategy class
uses specific functions, called operations, from Entity Extractor module to extract necessary
data from S. Once this data is obtained, strategies parse it and construct corresponding entity
instances. We define the following scraping strategies:

Organization strategy processes a page with PAGE_ORGANIZATIONS tag, and outputs a set of
Organization entity instances. It calls the necessary operations to obtain attribute data,
from which Organization instances are constructed. Afterward, it heuristically filters irrel-
evant and duplicate instances.

People strategy process a page with PAGE_PEOPLE_DATA or PAGE_PEOPLE_NO_DATA tag. It
calls the necessary operations to obtain attribute data, from which People instances are
constructed. If the processed page has PAGE_PEOPLE_NO_DATA tag, only values of the required
attributes are extracted, and the values of the remaining attributes are set after scraping the
related page with Person strategy.

Person strategy process a page with PAGE_SINGLE_PERSON tag. It requires a Person instance
into which are, after invoking necessary operations, assigned the extracted values of the
remaining attributes.

5.5 Entity Extractor
This component consists of several functions called operations. These operations were designed
as pure functions, meaning they do not have any side effects and always produce the same output

Academic Spider 29

when given the same input. They take the semantic tree S or one of its compound nodes as
required input arguments, with other support variables if necessary. They return data in a format
that can be consumed either by another operation or strategies from Page Scraper component.
All these functions apply heuristic approaches to identify and extract relevant elements in the
compound nodes using recognized NE and keywords.

In the following sections, we will explore critical operations that are called from Page Scraper
component strategies.

5.5.1 Attribute Operations
The operations described in this section aim to identify member tag elements within compound
nodes that contain the required attributes for creating instances of Organization and Person
entity classes, and to extract these attributes from them. If these attributes are missing, instanti-
ating the entity classes will not be possible. For Organization instances, the required attributes
are the name and url, while for Person instances, only the name attribute is required.

The operation ATTRIBUTES_FROM_LINKS is designed to extract required attributes from hyper-
links elements that contain a specific type of NE, passed as an argument, in their text attribute.
It checks each node of S to determine if it contains any hyperlink elements. If a hyperlink ele-
ment is found, the operation adds the part of the text attribute that was recognized as NE and
the value of its href attribute to the output. This operation is used in the Organization strategy
and the People strategy if the processed page has PAGE_PEOPLE_NO_DATA tag assigned.

When the People strategy is processing a page with PAGE_PEOPLE_DATA tag, it invokes the
operation ATTRIBUTES_FROM_TABLE. The main purpose of this operation is to extract the required
attributes for the Person entity. Additionally, it can extract other attributes if they are provided
on the processed web page. The operation assumes that information about people is arranged
in a table-like structure. Hence, it first identifies elements of this structure and then extracts
attribute values for the entity from their corresponding text.

5.5.2 Affiliation Operations
Operations explored in this section were designed to extract affiliations for a Person instance.
In the Figure 1.1, two attributes were defined for Affiliation entity, from which only division
is required. Therefore, these operations output a set of Affiliation entity instances, which are
then associated with the corresponding Person instance.

If a processed page is labeled with the PAGE_SINGLE_PERSON tag and is accessed through the
url attribute of a Person instance, the Person strategy will execute the AFFILIATIONS_FROM_PAGE
operation. This operation entails selecting element nodes from the compound node that possess
a ne tag attribute value of ’ORG’. Subsequently, a new instance of Affiliation is generated,
with the identified portion of the text serving as the value for the division attribute. The op-
eration then proceeds to search for the position attribute value, which may be located within
the element’s own text attribute or among the text attributes of its sibling element nodes. The
matching of the position value involves comparing the embedding vectors of noun phrases iden-
tified in the text of element nodes to the embedding vectors of keywords from the work position
category, as listed in Table 5.1.

5.6 Academic Spider

The last component of Scraping system is made of two Scrapy spiders that control the whole
scraping process. Spiders use components described in previous sections to navigate the website
of the input university domain and to build an output hierarchical tree H from the scraped data.

30 Design

The main goal of the first spider is to scrape relevant web pages of ORG0,0 website and
to extract its child Organization nodes, which will be put on the first level of H. We name
this spider OrganizationSpider, as it only extracts Organization instances. It uses the activity
SCRAPE_ORGANIZATIONS shown in Figure 5.4, to extract Organization instances.

Figure 5.4 Diagram of SCRAPE_ORGANIZATIONS activity

The SCRAPE_ORGANIZATIONS activity incorporates methods from other components of Scrap-
ing system to extract required instances. It iteratively scrapes pages of processed Organization
instance. Using pipeline from Page Pipeline component, it constructs its semantic tree and
assigns it a PAGE_TYPE tag. If the page has PAGE_ORGANIZATIONS tag, it calls Organization strat-
egy to extract instances. Finally, it assigns extracted instances to the processed Organization
instance. The function extract_links collects internal URLs from each hyperlink tag on the
page. Scrapy offers a mechanism that prevents duplicate requests for the same URL.

After the first level of H is filled with the n0 child nodes ORG0,1, . . . , ORGn0,1 of ORG0,0,
each of them is passed as the input to the second spider of this component, called PeopleSpider.
Organizations at this level represent bigger organizational units, such as faculties, colleges, or
institutes. These organizations tend to have their websites hosted on a subdomain of ORG0,0
domain. Hence, the OrganizationSpider must identify these subdomains and update the domain
attribute of extracted instances accordingly.

Because organizations on lower levels represent smaller organizational units like departments,
research groups, or offices, therefore, PeopleSpider tries to identify and extract these smaller or-
ganizations and their employees from the websites of ORG:,1. It scrapes Organization instances
using the same SCRAPE_ORGANIZATIONS activity as OrganizationSpider. To extract Person in-
stances, it uses activity SCRAPE_PEOPLE, shown in Figure 5.5. In the SCRAPE_PEOPLE activity,
pages of processed Organization instance are scraped, as in the SCRAPE_ORGANIZATIONS ac-
tivity. Therefore, after the currently processed web page is assigned one of the people related
PAGE_TYPE tags, it calls People strategy to extract Person instances. Moreover, when the page
is assigned PAGE_PEOPLE_NO_DATA tag, the spider calls Person strategy to obtain Affiliation
instances and additional attributes for each Person instance.

The full workflow of PeopleSpider is shown in Figure 5.6. In case when no organizations are

API Server 31

Figure 5.5 Diagram of SCRAPE_PEOPLE activity

found, it will try to scrape all Person instances from the website that are directly associated
with the processed Organization instance.

5.7 API Server

The API Server is a crucial module in the application architecture, as it serves as the interface
between the GUI and the Scraping System. It receives HTTP requests, processes them, and
then calls the appropriate spider from the Academic Spider component to perform the requested
action. It sends back a JSON response after the scraping process is completed. The API Server
has only two endpoints, as there are two main spider classes in Scraping System module. Each
endpoint expects to receive an Organization instance converted into JSON format before being
passed as input.

Klein micro web framework was used to implement the only web server component of the
module. Klein is built on top of Twisted [39], which is an event-driven networking engine that
allows for high scalability and performance. Since Scrapy is also based on Twisted, using Klein
as an API server provides good integration with Scrapy and can benefit from built-in networking
features provided by Twisted. Moreover, Klein provides a simple and intuitive routing system
for defining API endpoints, which makes it easy to create APIs with different routes for handling
different types of requests.

32 Design

Figure 5.6 Activity diagram of PeopleSpider

5.8 GUI
The GUI module of the developed application is implemented as a web application using the
Flask web framework. It provides an intuitive and user-friendly interface that allows users to
view, edit and export the extracted profiles produced by the Scraping System module. The user
interface is designed to be simple and easy to use, with a clear layout that makes it easy for users
to navigate and access different features.

Home Page
Name

Czech Technical University

Domain

cvut.cz

Start URL

https://www.cvut.cz/en

Abbreviation

CTU

Start scraping

Select previous university

Academic crawler Home Organizations Details New University

Figure 5.7 Home page of the web interface

The home page of the application, as shown in Figure 5.7, displays a form to which the user fills
in information about the input university. After this form is submitted, Organization instance
of the input university in the JSON format is sent to API Server that calls OrganizationSpider to
extract first level Organization instances. The extracted instances are displayed on a separate
page, as shown in Figure 5.8, that allows users to edit, add, and remove extracted instances.

GUI 33

Additionally, the user can choose instances that will be scraped in the next phase by PeopleSpider.
Figure 5.9 shows the page displaying extracted Person instances associated to the first level
Organization instance. Users can edit and remove these instances on this page with their
associated Affiliation instances.

The web application also allows users to export extracted Person instances in JSON format
for each first-level Organization instance or the whole input university.

Academic crawler Home Organizations Details New University

Name Domain Start URL Abbreviation Scrape?

Institute of Physical Education and Sport cvut.cz https://www.cvut.cz/en/institute-of-physic…

Faculty of Information Technology fit.cvut.cz https://fit.cvut.cz/en FIT

CTU Rector’s Office cvut.cz https://www.cvut.cz/en/ctu-rectors-office

Institute of Experimental and Applied Physics cvut.cz https://www.cvut.cz/en/institute-of-experi…

Faculty of Biomedical Engineering fbmi.cvut.cz https://www.fbmi.cvut.cz/en

Faculty of Transportation Sciences fd.cvut.cz https://www.fd.cvut.cz/english/

Faculty of Electrical Engineering fel.cvut.cz https://fel.cvut.cz/en FEL

Faculty of Mechanical Engineering fs.cvut.cz https://www.fs.cvut.cz/en/home

Faculty of Architecture fa.cvut.cz https://www.fa.cvut.cz/en

Masaryk Institute of Advanced Studies muvs.cvut.cz https://www.muvs.cvut.cz/en/

Klokner Institute klok.cvut.cz http://www.klok.cvut.cz/en

Add row Start scraping Save updates!

Figure 5.8 Page displaying first-level Organization instances

Faculty of Information Technology

Academic crawler Home Organizations Details New University

Page Size 10 First Prev 4 5 6 7 8 Next Last

Name Url Affiliations

Evan Tomáš, PhDr. Ing., Ph.D. https://fit.cvut.cz/en/faculty/people/5083-toma…

Division Position

FIT

Economic Committee Member

Czech Technical University Member

Department of Software Engineering Employee

Faculty of Information Technology Member_implicit

Ferentsi Mark, Bc. https://fit.cvut.cz/en/faculty/people/17168-mark…

Fesl Jan, Ing., Ph.D. https://fit.cvut.cz/en/faculty/people/5086-jan-f…

Save updates!

Figure 5.9 Page displaying Person instances

34 Design

Chapter 6

Evaluation

In this chapter, we will evaluate the performance of the proposed application from Chapter 5. The
application is designed to build a hierarchical output tree H over two different phases that utilize
components from the Scraping system module. During the first phase, the OrganizationSpider
from the Academic Spider component fills the first level of the H with organization nodes. In
the second stage, the PeopleSpider component is utilized to build subtrees for ORG:,1 nodes with
Person instances assigned to the relevant nodes in these subtrees.

The evaluation process will consist of assessing the performance of these two phases sep-
arately. From these evaluation results, we can then derive the overall quality of the output
hierarchical tree and the extracted personal profiles. This comprehensive evaluation process will
allow us to identify weaknesses within the application and provide suggestions for potential en-
hancements. It is important to note that application was not designed to handle websites with
some predetermined structure. Therefore, its overall performance is heavily influenced by the
structure of the processed website, as well as by the accessibility and the quality of the desired
data provided on the website.

In order to measure the correctness of a hierarchical tree H and its nodes, we need to con-
struct a hierarchical reference tree R from the university website. This will allow us to compare
corresponding levels of the trees using metrics such as precision, recall, and F1 score. Addi-
tionally, it will allow us to compare personal profiles assigned to the tree nodes in a similar
manner.

6.1 Reference data

A comprehensive collection of hierarchical reference trees constructed from websites with diverse
structures is crucial to evaluate our application accurately. However, due to the time-consuming
and technically challenging nature of this task, it is not feasible to manually construct an extensive
set of these reference trees. Nonetheless, our application can utilize the Page Pipeline component
to identify web pages containing relevant data and consistently extract it in the required format.
Thus, even if we can only evaluate our application on a small set of universities for which we can
manually build their hierarchical trees, we can assume that its performance will generalize to
other universities. Besides, only a relevant subtree of the hierarchical tree is required to evaluate
the spiders. For the first phase, only the hierarchical tree up to the first level is necessary. To
evaluate the second phase only subtrees of ORG:,1 are sufficient.

Following this approach, we have collected a set of reference hierarchical trees for each evalua-
tion stage. In total, we have collected four reference trees for both the first and second evaluation
stages.

35

36 Evaluation

University Size of ORG:,1 Build ORG:,1 reference trees
A 14 2
B 17 1
C 9 1
D 80 0

Table 6.1 Reference universities set

In the Table 6.1 are shown, selected reference universities with their parameters. The first
parameter is the number of organization nodes at the first level of their hierarchical trees, shown in
the second column. The second parameter refers to the number of complete hierarchical subtrees
for ORG:,1 nodes that were built manually. Regrettably, for university D we were unable to
construct a complete reference hierarchical tree for any of its ORG:,1 nodes. As for the other
universities, we were able to build a total of only three reference trees. This is because most of
the scraped websites did not provide the required data publicly or had structurally inconsistent
websites.

6.2 Metrics
In order to quantify the performance of our application, the correctness of the output hierarchical
tree H needs to be evaluated. This evaluation is based on a comparison by levels of H with the
reference tree R. To perform this comparison, we have to establish some evaluation metrics. Each
level of a hierarchical tree is a set of Organization instances. We can distinguish Organization
instances in the set using their name and url attributes. Therefore, we can use implicit set
operations between the levels. Let LH , LR be levels of H and R respectively. We define confusion
matrix between LH and LR as follows:

LR Positive LR Negative
LH Positive |LH ∩ LR| |LH \ LR|
LH Negative |LR \ LH | 0

The top-left cell of this matrix represents the number of constructed instances included in the
reference set. In contrast, the top-right cell represents the number of constructed instances absent
from the reference set. The bottom-left cell represents the number of instances from reference not
constructed by the application. The last bottom-right cell is 0 because it represents the number
of instances that are neither constructed nor present in the reference set, which is impossible.

Various metrics can be derived from the confusion matrix, such as precision and recall. They
are defined in the following manner:

precision(LH , LR) = |LH ∩ LR|
|LH ∩ LR|+ |LH \ LR|

recall(LH , LR) = |LH ∩ LR|
|LH ∩ LR|+ |LR \ LH |

Another metric that can be derived from the confusion is called F1. This metric incorporates
aspects of both precision and recall metrics, as it is calculated as the harmonic mean of their
values. For levels LH and LR it is defined as:

F1(LH , LR) = 2 ∗ precision(LH , LR) ∗ recall(LH , LR)
precision(LH , LR) + recall(LH , LR)

If we calculate the values of these metrics for all levels of H and R, and aggregate them, we
will get the overall quality of the H compared to R. It should be noted that if H has fewer levels
than R, they can be considered empty sets. This will, however, negatively distort the overall
results of each metric. For this reason, we will only compare up to the highest level of H.

Phase 1 37

Besides the root node of a hierarchical tree, each node can be associated with a set of Person
instances. With the sole difference being the type of instances included in the set, the correct-
ness of this set can be evaluated using the same metric functions. Based on the data model
from Section 1.1, every Person instance has at least one implicit Affiliation instance, cre-
ated from Organization instance with which is associated. More implicit Affiliation are
added recursively if associated Organization has a parent Organization instance. This im-
plicit Affiliation instances are the most reliable because they are created from relationships
between the web pages rather than from the content of a web page. The Affiliation instances
created from the content highly depend on the amount of data provided on the single web page.
Using this implicit Affiliation instance, we can construct a set Pi,j of all Person instances
associated with ORGi,j . Therefore, this set includes each Person instance associated with the
node directly or through its descendants.

6.3 Phase 1
In the first phase, we test the ability of the application to find and construct instances for level 1.
This is provided by OrganizationSpider from the Academic Spider component. The evaluation
results of this phase are shown in Table 6.2.

Name |LH | |LR| precision recall f1
A 11 14 0.909 0.714 0.8
B 17 17 0.824 0.824 0.824
C 9 9 0.889 0.889 0.889
D 20 80 1 0.25 0.4

Table 6.2 Evaluation results of phase 1

Based on the results, we can see that OrganizationSpider achieved high precision in all eval-
uated levels. Moreover, its recall is impressive for the first three levels, being above 0.8.

However, although the precision is perfect for the first level of the D tree, its recall value
is low. This is because the web page from which instances are extracted contains all the child
organizations from the organizational hierarchy of D, including those from deeper levels. This
outcome indicates that the reference tree does not reflect the actual organizational structure of
the university D.

In conclusion, the OrganizationSpider has demonstrated its effectiveness in finding and con-
structing first-level instances for this set of reference universities.

6.4 Phase 2
The main goal of the second phase is to build a hierarchical tree for ORG:,1 nodes. Therefore,
in this section, we are not evaluating the hierarchical tree of the whole university but only the
subtrees of its first-level nodes. Unlike in the first phase, in this phase, we are more interested
in evaluating the extracted personal profiles rather than the organizational structure itself. As
mentioned in Section 6.2, we can evaluate the set of Person instances that are directly associated
with ORGi,j or its complete set Pi,j that includes instances from descendant nodes. As we want
to assess the ability of PeopleSpider to extract personal profiles from the website of the first-level
Organization instance, the complete set for this instance provides the most relevant result for
the evaluation.

In the Table 6.3 are presented results for the first level Organization instances of the previ-
ously presented universities. It is first noticed that precision values for A0,1 and B0,1 instances
are low, indicating that most of the constructed instances were irrelevant. However, at least

38 Evaluation

Name Size of constructed set Size of reference set precision recall f1
A0,1 535 362 0.649 0.959 0.774
A1,1 273 292 0.945 0.884 0.913
B0,1 1988 2767 0.309 0.222 0.258
C0,1 28 29 0.964 0.931 0.947
Table 6.3 Evaluation results of phase 2

the recall value is high for A0,1, suggesting that most reference instances were found. For the
instances A1,1 and C0,1 the F1 value is high, which indicates good performance. Notably, we
observe that results for instances A0,1 and A1,1 are significantly different, even though they be-
long to the same university. The reason for this inconsistency is the difference in the structure
of their websites.

6.5 Summary and Possible Improvements
Based on the results of the previous sections, we can conclude that both spiders possess the ability
to solve their tasks. Although, the limited number of reference trees prevents us from reaching
a convincing conclusion about the general performance of the application. Nevertheless, these
results certainly showed some shortcomings in the design and implementation of the spiders.

One of the shortcomings is the low precision in phase 2 due to the imperfections of the NER
recognition model. This indicates that the model is likely to recognize not only the names of the
employees but also other irrelevant noun phrases, causing the creation of irrelevant profiles. A
possible solution is to fine-tune the model on the set of personal names that include their academic
titles. Furthermore, low recall values for both phases are often attributed to inaccurately assigned
PAGE_TYPE tags. This can be improved by replacing the rule-based tagging algorithm with a
classifier trained on a set of correctly annotated web pages.

Chapter 7

Deployment

This chapter provides instructions on how to deploy our application. As mentioned in Chapter 5,
the application was designed as a client-server application. The web application from GUI
module acts as a client which is communicating with the server in API Server module that
directly invokes requested spiders from Scraping System module.

All source code for the application can be found in the src folder on the enclosed medium.
In its subfolder exec, we can find installation script install.sh, that will set up a new Python
environment with all required libraries and models. After the environment is ready, we can
execute script run.sh that will start both the Flask web application and Klein API server.

39

40 Deployment

Conclusion

The primary objective of this thesis was to develop a software solution that automatically extracts
the organizational structure and personal profiles of employees associated with each organiza-
tional unit from any given university website by utilizing web scraping and NLP techniques. The
second objective was to develop a user-friendly interface that facilitates verifying and modifying
the extracted personal profiles. The motivation for this thesis was the potential benefit busi-
nesses could gain from having access to the real-time organizational structure of a university of
interest.

The application consists of several components that can be easily replaced, allowing for new
approaches for web page transformation or profile and organization extraction in the future. This
design allows the application to process a wide range of universities while also allowing it to be
fine-tuned to process a specific set of universities.

Both objectives were successfully achieved as the application can build the organizational
hierarchy and extract relevant personal profiles from the input university website. Using the
developed user interface, the extracted personal profiles can then be exported in JSON format.

In cases where the data representing the organizational units and personal profiles is not
clearly presented on the input website, the quality of the output is compromised.

Although the evaluation results suggest that the application is able to extract relevant profiles
for the universities in the reference set, the small size of the reference set affects the representa-
tiveness of the results. In the future, it would be desirable to test the application performance
on a broader sample of universities.

41

42 Conclusion

Bibliography

1. MANNING, Christopher; RAGHAVAN, Prabhakar; SCHUETZE, Hinrich. Introduction to
Information Retrieval. 2009. isbn 0-521-86571-9.

2. GRISHMAN, Ralph. Information Extraction. IEEE Intelligent Systems. 2015, vol. 30, no.
5, pp. 8–15. issn 1941-1294. Available from doi: 10.1109/MIS.2015.68.

3. VERSPOOR, Karin; COHEN, Kevin. Natural Language Processing. In: 2013, pp. 1495–
1498. isbn 978-1-4419-9862-0. Available from doi: 10.1007/978-1-4419-9863-7_158.

4. MADNANI, Nitin. Getting Started on Natural Language Processing with Python. XRDS:
Crossroads, The ACM Magazine for Students [online]. 2007, vol. 13, no. 4, pp. 5–5 [visited
on 2023-03-13]. issn 1528-4972, issn 1528-4980. Available from doi: 10.1145/1315325.
1315330.

5. JURAFSKY, Daniel; JAMES H. MARTIN. Speech and Language Processing [online]. 3rd
ed. draft. 2023 [visited on 2023-03-10]. Available from: https://web.stanford.edu/
˜jurafsky/slp3/ed3book_jan72023.pdf.

6. NASEER, Salman; GHAFOOR, Muhammad; SOHAIB; KHALID ALVI, Sohaib; KIRAN,
Anam; REHMAN, Shafique Ur; MURTAZA, Ghulam; CAMPUS, Jehlum; JEHLUM, Pak-
istan. Named Entity Recognition (NER) in NLP Techniques, Tools Accuracy and Perfor-
mance. Pakistan Journal of Multidisciplinary Research. 2022, vol. 2, pp. 293–308.

7. SINGH, Sonit. Natural Language Processing for Information Extraction [online]. arXiv, 2018
[visited on 2023-04-22]. No. arXiv:1807.02383. Available from arXiv: 1807.02383 [cs].

8. EKMAN, MAGNUS. Learning Deep Learning: Theory and Practice of Neural Networks,
Computer Vision, NLP, and Transformers Using TensorFlow. 2021. isbn 978-0-13-747035-
8.

9. BENGIO, Yoshua; DUCHARME, Réjean; VINCENT, Pascal. A Neural Probabilistic Lan-
guage Model. Advances in neural information processing systems. 2000, vol. 13.

10. MIKOLOV, Tomas; CHEN, Kai; CORRADO, Greg; DEAN, Jeffrey. Efficient Estimation
of Word Representations in Vector Space [online]. arXiv, 2013 [visited on 2023-04-06]. No.
arXiv:1301.3781. Available from arXiv: 1301.3781 [cs].

11. PENNINGTON, Jeffrey; SOCHER, Richard; MANNING, Christopher. Glove: Global Vec-
tors for Word Representation. In: Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP) [online]. Doha, Qatar: Association for Com-
putational Linguistics, 2014, pp. 1532–1543 [visited on 2023-04-06]. Available from doi:
10.3115/v1/D14-1162.

43

https://doi.org/10.1109/MIS.2015.68
https://doi.org/10.1007/978-1-4419-9863-7_158
https://doi.org/10.1145/1315325.1315330
https://doi.org/10.1145/1315325.1315330
https://web.stanford.edu/~jurafsky/slp3/ed3book_jan72023.pdf
https://web.stanford.edu/~jurafsky/slp3/ed3book_jan72023.pdf
https://arxiv.org/abs/1807.02383
https://arxiv.org/abs/1301.3781
https://doi.org/10.3115/v1/D14-1162

44 Bibliography

12. MIKOLOV, Tomas; GRAVE, Edouard; BOJANOWSKI, Piotr; PUHRSCH, Christian; JOULIN,
Armand. Advances in Pre-Training Distributed Word Representations. arXiv preprint:1712.09405.
2017. Available from arXiv: 1712.09405.

13. GERS, Felix A.; SCHMIDHUBER, Jürgen; CUMMINS, Fred. Learning to Forget: Continual
Prediction with LSTM. Neural computation. 2000, vol. 12, no. 10, pp. 2451–2471.

14. HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long Short-Term Memory. Neural com-
putation. 1997, vol. 9, no. 8, pp. 1735–1780.

15. VASWANI, Ashish; SHAZEER, Noam; PARMAR, Niki; USZKOREIT, Jakob; JONES,
Llion; GOMEZ, Aidan N.; KAISER, Lukasz; POLOSUKHIN, Illia. Attention Is All You
Need [online]. arXiv, 2017 [visited on 2023-04-07]. No. arXiv:1706.03762. Available from
doi: 10.48550/arXiv.1706.03762.

16. DEVLIN, Jacob; CHANG, Ming-Wei; LEE, Kenton; TOUTANOVA, Kristina. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding [online]. arXiv,
2019 [visited on 2023-04-23]. No. arXiv:1810.04805. Available from arXiv: 1810.04805 [cs].

17. LIU, Yinhan; OTT, Myle; GOYAL, Naman; DU, Jingfei; JOSHI, Mandar; CHEN, Danqi;
LEVY, Omer; LEWIS, Mike; ZETTLEMOYER, Luke; STOYANOV, Veselin. RoBERTa:
A Robustly Optimized BERT Pretraining Approach [online]. 2019 [visited on 2023-03-30].
Available from doi: 10.48550/ARXIV.1907.11692.

18. SINGRODIA, Vidhi; MITRA, Anirban; PAUL, Subrata. A Review on Web Scrapping and
Its Applications. In: 2019 International Conference on Computer Communication and In-
formatics (ICCCI). 2019, pp. 1–6. issn 2329-7190. Available from doi: 10.1109/ICCCI.
2019.8821809.

19. PERSSON, Emil. Evaluating Tools and Techniques for Web Scraping [online]. 2019 [visited
on 2023-03-08]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-
271206.

20. XML Path Language (XPath) 3.1 [online] [visited on 2023-03-08]. Available from: https:
//www.w3.org/TR/xpath-3/.

21. Beautiful Soup Documentation — Beautiful Soup 4.4.0 Documentation [online] [visited on
2023-04-22]. Available from: https://beautiful-soup-4.readthedocs.io/en/latest/.

22. Lxml - Processing XML and HTML with Python [online] [visited on 2023-04-22]. Available
from: https://lxml.de/index.html.

23. Scrapy 2.8 Documentation — Scrapy 2.8.0 Documentation [online] [visited on 2023-03-08].
Available from: https://docs.scrapy.org/en/latest/.

24. FLANAGAN, David. JavaScript: The Definitive Guide. Sixth. O’Reilly Media, Inc., 2011.
isbn 978-0-596-80552-4.

25. What Is the Document Object Model? [Online] [visited on 2023-03-27]. Available from:
https://www.w3.org/TR/WD-DOM/introduction.html.

26. MUKHERJEE, S.; GUIZHEN YANG; WENFANG TAN; RAMAKRISHNAN, I.V. Au-
tomatic Discovery of Semantic Structures in HTML Documents. In: Seventh International
Conference on Document Analysis and Recognition, 2003. Proceedings. [Online]. Edinburgh,
UK: IEEE Comput. Soc, 2003, vol. 1, pp. 245–249 [visited on 2023-02-17]. isbn 978-0-7695-
1960-9. Available from doi: 10.1109/ICDAR.2003.1227667.

27. ARTILES, Javier; BORTHWICK, Andrew; GONZALO, Julio; SEKINE, Satoshi; AMIGÓ,
Enrique. WePS-3 Evaluation Campaign: Overview of the Web People Search Clustering and
Attribute Extraction Tasks. In: CLEF (Notebook Papers/LABs/Workshops). 2010.

28. NAGY, István. Person Attribute Extraction from the Textual Parts of Web Pages. Acta
Cybernetica. 2012, vol. 20, no. 3, pp. 419–440.

https://arxiv.org/abs/1712.09405
https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/1810.04805
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.1109/ICCCI.2019.8821809
https://doi.org/10.1109/ICCCI.2019.8821809
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-271206
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-271206
https://www.w3.org/TR/xpath-3/
https://www.w3.org/TR/xpath-3/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://lxml.de/index.html
https://docs.scrapy.org/en/latest/
https://www.w3.org/TR/WD-DOM/introduction.html
https://doi.org/10.1109/ICDAR.2003.1227667

Bibliography 45

29. HAN, Xianpei; ZHAO, Jun. CASIANED: People Attribute Extraction Based on Information
Extraction. City. 2009, pp. 20–24.

30. LAN, Man; ZHANG, Yu Zhe; LU, Yue; SU, Jian; TAN, Chew Lim. Which Who Are They?
People Attribute Extraction and Disambiguation in Web Search Results. In: 2nd Web People
Search Evaluation Workshop (WePS 2009), 18th WWW Conference. 2009.

31. TANG, Jie; ZHANG, Jing; YAO, Limin; LI, Juanzi; ZHANG, Li; SU, Zhong. ArnetMiner:
Extraction and Mining of Academic Social Networks. In: Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining [online]. Las
Vegas Nevada USA: ACM, 2008, pp. 990–998 [visited on 2023-03-14]. isbn 978-1-60558-193-
4. Available from doi: 10.1145/1401890.1402008.

32. NAGY, István; FARKAS, Richárd; JELASITY, Márk. Researcher Affiliation Extraction
from Homepages. In: Proceedings of the 2009 Workshop on Text and Citation Analysis for
Scholarly Digital Libraries (NLPIR4DL) [online]. Suntec City, Singapore: Association for
Computational Linguistics, 2009, pp. 1–9 [visited on 2023-05-02]. Available from: https:
//aclanthology.org/W09-3601.

33. HONNIBAL, Matthew; MONTANI, Ines; VAN LANDEGHEM, Sofie; BOYD, Adriane.
spaCy: Industrial-strength Natural Language Processing in Python. 2020. Available from
doi: 10.5281/zenodo.1212303.

34. Proceedings of the Python in Science Conference (SciPy): Exploring Network Structure,
Dynamics, and Function Using NetworkX [online] [visited on 2023-03-25]. Available from:
https://conference.scipy.org/proceedings/SciPy2008/paper_2/.

35. Welcome to Flask — Flask Documentation (2.2.x) [online] [visited on 2023-04-10]. Available
from: https://flask.palletsprojects.com/en/2.2.x/.

36. Klein, a Web Micro-Framework — Klein 16.12.0 Documentation [online] [visited on 2023-
04-10]. Available from: https://klein.readthedocs.io/en/stable/.

37. HTML5 [online] [visited on 2023-04-22]. Available from: https://www.w3.org/TR/2011/
WD-html5-20110405/.

38. LÓPEZ, Sergio; SILVA, Josep; INSA, David. Using the DOM Tree for Content Extraction.
Electronic Proceedings in Theoretical Computer Science [online]. 2012, vol. 98, pp. 46–59
[visited on 2023-02-21]. issn 2075-2180. Available from doi: 10.4204/EPTCS.98.6.

39. Twisted [online] [visited on 2023-04-10]. Available from: https://twisted.org/.

https://doi.org/10.1145/1401890.1402008
https://aclanthology.org/W09-3601
https://aclanthology.org/W09-3601
https://doi.org/10.5281/zenodo.1212303
https://conference.scipy.org/proceedings/SciPy2008/paper_2/
https://flask.palletsprojects.com/en/2.2.x/
https://klein.readthedocs.io/en/stable/
https://www.w3.org/TR/2011/WD-html5-20110405/
https://www.w3.org/TR/2011/WD-html5-20110405/
https://doi.org/10.4204/EPTCS.98.6
https://twisted.org/

46 Bibliography

Contents of Enclosed Medium

Readme.md...installation instructions
src

application source code of API and Scraping system modules
interface..source code of GUI module
thesis.......................................source code of thesis document in LATEX
exec...scripts to install and run the application

text.. text of thesis
thesis.pdf ... text of thesis in PDF format

47

	Acknowledgments
	Declaration
	Abstract
	Introduction
	I Theoretical
	Problem definition
	Data model
	Hierachical tree

	Information extraction
	Natural language processing
	Part of Speech Tagging
	Named Entity Recognition
	Relationship Extraction
	Statistical Language Models
	n-gram Models
	Neural Language Models
	Word Embeddings
	Recurrent Neural Language Models
	Transformers

	Web Scraping
	Web Scraping Tools
	Web Page Representation
	DOM Tree
	Semantic Tree

	Related works

	II Practical
	Design
	Technologies
	Application Architecture
	Page Pipeline
	DOM Tree Construction
	Main Content Filtering
	Semantic Tree Construction
	Page Features Extraction
	Page Type Tagging

	Page Scraper
	Entity Extractor
	Attribute Operations
	Affiliation Operations

	Academic Spider
	API Server
	GUI

	Evaluation
	Reference data
	Metrics
	Phase 1
	Phase 2
	Summary and Possible Improvements

	Deployment
	Conclusion
	Contents of Enclosed Medium

