
Instructions

Some of the public open-source CDNs such as jsDelivr or cdnjs provide APIs with metadata about the

available packages to support building third-party integrations. These APIs share many characteristics

and constraints that are specific to this domain and different from, e.g., typical CRUD services.

The first goal of this work is to describe the typical requirements for such APIs in general and then look

at the specifics of one of the existing implementations - jsDelivr. Describe the process of building the

API into its existing form, from design, through notable implementation choices, to testing and

deployment. Comment on possible problems or future improvements.

The jsDelivr API currently needs to be extended to support new types of statistics. Following the

analysis of the current state, describe the necessary changes, implement them, cover new code with

tests, and document the new features.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 5 December 2021 in Prague.

Assignment of master’s thesis

Title: Building a public API for an open-source CDN

Student: Bc. Martin Kolárik

Supervisor: Ing. Oldřich Malec

Study program: Informatics

Branch / specialization: Web Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Master’s thesis

Building a Public API
for an Open-Source CDN

Bc. Martin Kolárik

Department of Software Engineering

Supervisor: Ing. Oldřich Malec

February 16, 2023

Acknowledgments

I would like to thank my supervisor Ing. Oldřich Malec, for his interest in
this topic and the provided support. Thanks also go to Dmitriy Akulov for
his long-term dedication to supporting open-source, without which jsDelivr
would not have existed, and Pavel Kopecký for his patience in proofreading
this text.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on February 16, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Martin Kolárik. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Repub-
lic. It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kolárik, Martin. Building a Public API for an Open-Source CDN. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2023.

Abstrakt

Práca skúma oblasť verejných CDN služieb a ich API. Začína predstavením
jednotlivých skupín používateľov a ich požiadaviek a pokračuje preskúmaním
existujúcich služieb a diskusiou špecifík tejto oblasti. Ukazuje, že niektoré
verejné CDN služby neponúkajú API vôbec, zatiaľ čo iné spĺňajú väčšinu de-
finovaných požiadaviek. Následne práca preskúmava existujúce jsDelivr API
a ukazuje ako jeho návrh a implementácia boli ovplyvnené veľkosťou tejto
služby a množstvom spracúvaných dát.

Ďalšie kapitoly opisujú návrh a implementáciu nových funkcií, diskutujú pro-
blémy dotýkajúce sa webových API vo všeobecnosti a kladú dôraz na použitie
existujúcich webových štandardov. Posledné dve kapitoly ukazujú ako fázy
testovania a dokumentácie môžu benefitovať z automatizácie, najmä z použi-
tia parametrizovaných a snapshot testov a z využitia rozsiahleho ekosystému
OpenAPI nástrojov.

Kľúčové slová API, CDN, jsDelivr, OpenAPI, cdnjs, unpkg

vii

Abstract

The thesis explores the domain of public CDN services and their APIs. It
starts by presenting the individual user groups and their requirements and
continues by reviewing existing services and discussing the domain specifics.
It shows that some public CDNs do not offer APIs at all, while others meet
most of the defined requirements. Afterward, it examines the existing jsDelivr
API and shows how its design and implementation were influenced by the scale
of the service and the amount of processed data.

The subsequent chapters describe the design and implementation of new API
features, discuss many problems applicable to web APIs in general, and em-
phasize the use of the existing web standards. The last two chapters show how
the testing and documentation phases of the development process may benefit
from automation, particularly from the use of parameterized and snapshot
tests and from utilizing the vast ecosystem of OpenAPI tools.

Keywords API, CDN, jsDelivr, OpenAPI, cdnjs, unpkg

viii

Contents

Introduction 1

1 Domain Introduction 3
1.1 Common Requirements . 3

1.1.1 Functional Requirements 3
1.1.2 Non-functional Requirements 3
1.1.3 Typical Actors . 4
1.1.4 Use Cases and User Stories 4

1.1.4.1 Library Users 4
1.1.4.2 Library Authors 5
1.1.4.3 Service Maintainers and General Public 6

1.2 A Brief History of Public CDNs 7
1.2.1 Google Hosted Libraries 7
1.2.2 jQuery CDN . 8
1.2.3 cdnjs . 9
1.2.4 unpkg . 11
1.2.5 jsDelivr . 12

1.3 Specifics and Constraints . 14
1.3.1 Anonymous User Base 14
1.3.2 Inherently Global . 15
1.3.3 Read-only . 15
1.3.4 Adaptive Infrastructure 15

1.4 Conclusion . 16

ix

2 The jsDelivr API 17
2.1 Requirements . 18

2.1.1 Functional Requirements 18
2.1.2 Non-functional Requirements 18

2.2 Architecture and Concepts . 19
2.2.1 REST and REST-like architectures 19
2.2.2 CDN and Client-Side Caching 21

2.3 Used Technologies . 21
2.3.1 Node.js . 22
2.3.2 Koa . 22
2.3.3 MariaDB . 23
2.3.4 Redis . 23
2.3.5 Knex . 23
2.3.6 Joi . 24
2.3.7 Mocha and Chai . 24
2.3.8 Elastic APM . 25

2.4 Current Features . 25
2.4.1 Package Metadata . 26

2.4.1.1 Get Package Metadata 26
2.4.1.2 Get the Resolved Package Version 27
2.4.1.3 Get Package Version Metadata 28

2.4.2 Usage Statistics . 29
2.4.2.1 Collected Data 30
2.4.2.2 Get Package Statistics 35
2.4.2.3 Get Package Version Statistics 37
2.4.2.4 Get a Package Badge 38
2.4.2.5 List Top Packages 38

2.5 Conclusion . 39

3 Design 41
3.1 API Versioning Strategies . 41

3.1.1 URI Prefix . 42
3.1.2 Hostname . 43
3.1.3 Query String Parameters 44
3.1.4 Custom Headers . 45
3.1.5 The Accept Header . 46

x

3.1.6 Evolution . 47
3.1.7 Conclusion . 48

3.2 Common Properties . 48
3.2.1 Bandwidth Data . 48
3.2.2 Quarterly and Historical Data 50
3.2.3 Period Comparison . 50
3.2.4 Hypermedia . 52
3.2.5 Pagination . 53

3.3 Package Statistics . 55
3.3.1 List Top Packages . 56
3.3.2 Get Package Statistics 56
3.3.3 List Top Package Versions 57
3.3.4 Get Package Version Statistics 58
3.3.5 List Top Package Version Files 59

3.4 Proxy Endpoints Statistics . 59
3.4.1 Get Proxy Statistics . 60
3.4.2 List Top Proxy Files . 60

3.5 Network Statistics . 61
3.5.1 Get Network Statistics 61
3.5.2 Get Network Country Statistics 62
3.5.3 Get Network Content Statistics 63

3.6 Browser and Platform Statistics 64
3.6.1 Regional Data . 65
3.6.2 Period Handling . 65
3.6.3 List Top Browsers (grouped versions) 65
3.6.4 List Top Browsers (separate versions) 66
3.6.5 List Top Browser Countries 66
3.6.6 List Top Browser Platforms 67
3.6.7 List Top Browser Versions 67
3.6.8 List Top Browser Version Countries 68

3.7 Statistics Periods . 68
3.7.1 List Statistics Period . 69

3.8 Package Metadata . 70
3.8.1 Get Package Metadata 71
3.8.2 Get the Resolved Package Version 72
3.8.3 Get Package Version Metadata 72

xi

3.9 Conclusion . 72

4 Implementation 73
4.1 Schemas and Validation Middleware 73
4.2 Period Comparison . 75
4.3 Historical Data . 76
4.4 Link Builder . 77
4.5 Pagination . 79
4.6 Regional Data . 80
4.7 Proxy Statistics . 81
4.8 Network Statistics . 82
4.9 Browser and Platform Statistics 82
4.10 Deprecations Handling . 84
4.11 Conclusion . 85

5 Testing 87
5.1 Snapshot Tests . 87

5.1.1 Time Handling . 89
5.2 Parameterized Tests . 90
5.3 Speeding Up the Database Setup 93
5.4 Conclusion . 93

6 Documentation 95
6.1 OpenAPI . 95

6.1.1 Automated Document Generation 96
6.1.2 Manual Document Improvements 97

6.2 Documentation Portal . 97
6.2.1 RapiDoc Customizations 98

6.3 Conclusion . 99

Conclusion 101

Bibliography 103

A Acronyms 111

B Glossary 113

C Contents of the Enclosed Memory Card 115

xii

List of Figures

2.1 jsDelivr API deployment diagram 19
2.2 jsDelivr log processing . 31
2.3 Package data relational schema . 32
2.4 Package data materialized views 33
2.5 Proxy data relational schema . 33
2.6 Network data relational schema . 34
2.7 Browser and platform data relational schema 35
2.8 GET /v1/package/npm/:name/badge 38

4.1 Proxy data materialized views . 81
4.2 Network data materialized views 82
4.3 Browser data materialized views 83

xiii

List of Listings

1.1 jQuery versions on Google Hosted Libraries 7
1.2 jQuery versions on jQuery CDN 8
1.3 jQuery versions on cdnjs . 10
1.4 Network statistics on cdnjs . 10
1.5 jQuery v3.6.1 files on unpkg . 11
1.6 jQuery versions on jsDelivr . 13
1.7 Package statistics on jsDelivr 14

2.1 GET /v1/package/npm/:name 27
2.2 GET /v1/package/resolve/npm/:name@:range? 27
2.3 GET /v1/package/npm/:name@:version/:structure? 29
2.4 GET /v1/package/npm/:name/stats 36
2.5 GET /v1/package/npm/:name@:version/stats 37
2.6 GET /v1/stats/packages . 38

3.1 Default Accept header in Google Chrome v108 on Windows . . 47
3.2 Hits and bandwidth format . 49
3.3 Hits and bandwidth totals format 50
3.4 Previous period comparison format 51
3.5 Previous period comparison format in lists 52
3.6 Linking resources in the response body 53
3.7 Pagination metadata . 55
3.8 Overview of package statistics endpoints changes 55
3.9 GET /v1/stats/packages . 56
3.10 GET /v1/stats/packages/npm/:name 57

xv

3.11 GET /v1/stats/packages/npm/:name/versions 58
3.12 GET /v1/stats/packages/npm/:name@:version 58
3.13 GET /v1/stats/packages/npm/:name@:version/files 59
3.14 GET /v1/stats/proxies/:name 60
3.15 GET /v1/stats/proxies/:name/files 61
3.16 GET /v1/stats/network . 62
3.17 GET /v1/stats/network/countries 63
3.18 GET /v1/stats/network/content 64
3.19 GET /v1/stats/browsers . 65
3.20 GET /v1/stats/browsers/versions 66
3.21 GET /v1/stats/browsers/:name/countries 67
3.22 GET /v1/stats/browsers/:name/platforms 67
3.23 GET /v1/stats/browsers/:name/versions 68
3.24 GET /v1/stats/browsers/:name/versions/:version/countries . . 68
3.25 GET /v1/stats/periods . 70
3.26 Overview of package metadata endpoints changes 71
3.27 GET /v1/packages/npm/:name 71
3.28 GET /v1/packages/npm/:name/resolved 72

4.1 Parameter schema definitions 74
4.2 Route parameter validation . 74
4.3 Error response . 75
4.4 Period comparison implementation 76
4.5 Historical data implementation 77
4.6 Link builder . 78
4.7 Pagination implementation . 80
4.8 Deprecation headers . 85

5.1 Usage of the Chai snapshotting plugin 89
5.2 Parameterized snapshot testing 91
5.3 Parameterized pagination testing 92
5.4 Parameterized testing with explicit assertions 92

xvi

Introduction

Public content delivery networks (CDNs) have played an important part in the
distribution of open-source web assets for many years. Initially popularized by
Google Hosted Libraries and later by projects such as jQuery and Bootstrap,
they are often the easiest way to start using a JS or a CSS library by simply
copy-pasting a link. There is no need to download the files or keep track of
the versions to update the libraries when new releases are available, and, as a
bonus, everything is available on a fast, global network of servers.

The state of front-end development tools and asset distribution has certainly
evolved a lot in the past years, with projects like npm1 (the first JavaScript
package manager), Browserify2, Webpack3, and many others that followed,
but CDNs remain a popular choice as well. In fact, some CDNs have man-
aged to take advantage of the new package management ecosystem and started
supporting on-demand retrieval of anything published in one of the existing
registries instead of hosting just a small, curated set of projects, which tradi-
tionally had to be maintained manually.

This change caused a shift in how CDN resources are discovered. While in
the early days, it was people manually copy-pasting links from documentation
because only some projects were available, nowadays, there are code editors
that can find and “install” the correct files automatically. This integration is

1https://www.npmjs.com
2https://browserify.org
3https://webpack.js.org

1

https://www.npmjs.com
https://browserify.org
https://webpack.js.org

Introduction

possible thanks to application programming interfaces (APIs) provided on top
of the CDN services. The APIs may also provide other useful features, such
as usage statistics for package authors.

This thesis explores the historical context as well as typical uses of public
CDN APIs and their requirements, discusses the specifics of this domain, and
then examines the most extensive of the existing APIs—the jsDelivr API.

The API is then extended with several new features that allow building better
development tools, provide package authors with more insight into how their
packages are used, and make all integrations easier by more closely following
existing web standards.

2

Chapter 1
Domain Introduction

This chapter serves as a foundation for understanding the target domain, its
specifics, and requirements, as identified based on the existing services and
their typical use.

1.1 Common Requirements

Utilizing elements of the Unified Process [1] and Extreme Programming [2],
this section introduces the most common requirements for public CDN APIs,
the key actors, and their use cases and user stories.

1.1.1 Functional Requirements

On a high level, the typical functional requirements are:

FR01: The API shall provide information about the available libraries.

FR02: The API may provide usage statistics for the available libraries.

FR03: The API may provide usage statistics for the CDN itself.

These requirements are further explained later in this chapter.

1.1.2 Non-functional Requirements

The non-functional requirements may vary across services (e.g., performance
requirements will depend on the size of the user base), and it may not always

3

1. Domain Introduction

be possible to externally evaluate whether they are met, so only the following
is considered:

NR01: The API shall be easy to use in web browser environments.

1.1.3 Typical Actors

The users that interact with the services can be categorized into four main
groups:

1. Library users use the CDN to load libraries in their projects.

2. Library authors use the CDN as one of the distribution channels of
their project.

3. Service maintainers are involved with operating the CDN.

4. General public does not directly fall into any of the previous groups
but still interacts with the project in some way. For instance, a person
that discovers the CDN and tries to find out what it is and how it is
used, or a library author that does not yet use the CDN but researches
the available services to choose one.

1.1.4 Use Cases and User Stories

This section describes how each group interacts with the service through a set
of use cases and user stories.

1.1.4.1 Library Users

The main concern of library users is being able to quickly find relevant projects
and all the information necessary to use them. This is typically possible by
browsing the CDN website, but it also creates space for integrations with
development tools so that users can find and use the relevant libraries directly
in an integrated development environment (IDE) or load them automatically
as they write their code.

1.1.4.1.1 UC01 Finding Libraries

This use case can be described by the following steps:

1. A user types the name of the package they want to use.

4

1.1. Common Requirements

2. Optionally, they select a version from the presented list, or the one
specified in the package.json4 is used, or the latest version is selected
automatically.

3. Optionally, they select a file from the presented list, or the correct file
is selected automatically.

4. Optionally, they select how exactly to import the file, or the correct code
is generated automatically.

These steps give us a better understanding of Functional Requirement 01,
which must include at least the following:

• There must be a way to search the available packages.

• There must be a way to obtain a list of available versions for a package.

• There must be a way to obtain a list of files for a specific package version.

• If the file to import is to be selected automatically, there must be a way
to determine which file is supposed to be imported.

Some of the existing implementations of this use case are:

1. Codepen5 (integrates with cdnjs),

2. CodeSandbox6 (integrates with jsDelivr),

3. jsDelivr’s JetBrains IntelliJ plugin7.

1.1.4.2 Library Authors

The library authors are often interested in the usage statistics of their pack-
ages. Because, in this case, there is not a single solution with a clear flow, a
set of user stories is presented instead of a detailed use case description.

As a package author, I want to:

US01: know how many times had my project been downloaded in the spec-
ified period to understand how popular it is,

4A manifest file initially used by Node.js and npm, now supported by most of the
JavaScript tools.

5https://codepen.io
6https://codesandbox.io
7https://github.com/jsdelivr/plugin-intellij

5

https://codepen.io
https://codesandbox.io
https://github.com/jsdelivr/plugin-intellij

1. Domain Introduction

US02: know how the current number of downloads compares to the previous
period to understand the popularity trend,

US03: know what the distribution of versions among all downloads is to see
if most of the users quickly update to the latest version or if any of
the older versions, in particular, is more popular,

US04: know what the distribution of individual files among all downloads is
to assess the popularity of the individual builds (with different fea-
tures, language mutations, browser support, . . .) my project provides,

US05: know how my project downloads compare to other projects.

These user stories give us a better understanding of Functional Requirement 02
and, again, we can formulate a couple more specific requirements:

• Usage statistics must be kept track of for every project on a daily, weekly,
or monthly basis.

• Usage statistics must include separate values for each version of a library.

• Usage statistics must include separate values for each file.

1.1.4.3 Service Maintainers and General Public

These two groups are not as easily defined as the previous two and are very
different, but they share a common interest in knowing overview information
about the network as a whole, as demonstrated again by several user stories.

As a service maintainer, I want to:

US06: know what the most popular projects on the network are in the spec-
ified period to understand who uses it,

US07: know how many requests the network serves overall to understand
how it compares to competitors,

US08: know how many requests the network serves in individual countries to
better understand the user demographic and the infrastructure usage,

US09: know how the current usage statistics compare to those in the previ-
ous period to understand the usage trend.

6

1.2. A Brief History of Public CDNs

These user stories give us a better understanding of Functional Require-
ment 03.

1.2 A Brief History of Public CDNs

Having established the main requirements and use cases, we can now take a
look at some of the most popular public CDNs [3] and see how they have
evolved over time in order to understand the historical context and determine
which of the described features they support.

1.2.1 Google Hosted Libraries

Google Hosted Libraries8 (formerly called Google Libraries API) is a Google-
provided CDN for some of the most popular open-source JavaScript libraries.
The service hosts only a tiny selection of projects (20 at the time of writing) [4],
but it was among the first services of this type and ranks as the second most
popular public CDN with a 42.2 % market share9, according to W3Tech [3].

Google claims to work directly with the key stakeholders for each library to
offer the latest versions as they are released but does not provide any additional
information on whether this process is manual or automated and how quickly
updates are available [4].

The service does not provide a dedicated API, and the list of libraries, as well
as their versions, is only available in text form on a single HTML page, which
was clearly not intended for machine processing. A snippet of the versions list
is shown in Listing 1.1.

<dt>versions:</dt>
<dd class="versions">

3.6.1, 3.6.0, 3.5.1, 3.5.0, 3.4.1, 3.4.0, 3.3.1, 3.2.1, 3.2.0, 3.1.1,
3.1.0, 3.0.0

2.2.4, 2.2.3, 2.2.2, 2.2.1, 2.2.0, 2.1.4, 2.1.3, 2.1.1, 2.1.0, 2.0.3,
2.0.2, 2.0.1, 2.0.0

1.12.4, 1.12.3, 1.12.2, 1.12.1, 1.12.0, 1.11.3, 1.11.2, 1.11.1, ...

</dd>

Listing 1.1: jQuery versions on Google Hosted Libraries10

8https://developers.google.com/speed/libraries
9The percentage of websites using the CDN (note that a website may use more than one

CDN).

7

https://developers.google.com/speed/libraries

1. Domain Introduction

1.2.2 jQuery CDN

The jQuery CDN11, as the name suggests, serves only files related to the
jQuery projects12 (the core jQuery library, jQuery UI, jQuery Mobile, . . .).
As Kris Borchers, the former jQuery Executive Director, explains, it was es-
tablished in 2007 after people had already started hotlinking13 files directly
from their website [5]:

Prior to 2007, people basically linked directly to files hosted at https:

//jquery.com/src, or used the Google API servers. John Resig saw
this trend and established https://code.jquery.com sometime in early
April of 2007.

At this time, the service ranks as the fourth most popular public CDN with
a 17.0 % market share, according to W3Tech [3].

Similarly to Google Hosted Libraries, jQuery CDN does not provide a dedi-
cated API, and the list of libraries, as well as their versions, is only available
in text form, although in this case, the HTML is slightly better structured, as
shown in Listing 1.2.

<h2 id="jquery-all-3.x">jQuery Core - All 3.x Versions</h2>

jQuery Core 3.6.1 -
<a class="open-sri-modal"

href="https://code.jquery.com/jquery-3.6.1.js"
data-hash="sha256-3zlB5s2uwoUzrXK3BT7AX3FyvojsraNFxCc2vC/7pNI=">
uncompressed

,
<a class="open-sri-modal"

href="https://code.jquery.com/jquery-3.6.1.min.js"
data-hash="sha256-o88AwQnZB+VDvE9tvIXrMQaPlFFSUTR+nldQm1LuPXQ=">
minified

,
...

...

Listing 1.2: jQuery versions on jQuery CDN14

10https://developers.google.com/speed/libraries
11https://releases.jquery.com
12https://jquery.com
13The use of a resource hosted on one site by other sites.

8

https://jquery.com/src
https://jquery.com/src
https://code.jquery.com
https://developers.google.com/speed/libraries
https://releases.jquery.com
https://jquery.com

1.2. A Brief History of Public CDNs

1.2.3 cdnjs

cdnjs15 launched in 2011 with the tagline “cdnjs.com, the missing cdn.” As
the initial version of its homepage explained, the project was inspired by the
existing services but aimed to provide a wider selection of libraries [6]:

Everyone loves the Google CDN right? Even Microsoft runs their own
CDN. The problem is, they only host the most popular libraries. We
host the other stuff [. . .]

Our goal is to operate this CDN in a peer reviewed fashion. This means
only the highest quality libraries vetted by the community get added to
cdnjs.com

To date, cdnjs is the most popular service of this type, with a 48.1 % market
share, according to W3Tech [3]. It can also be seen as the first in the generation
of “general purpose, community managed” CDNs, hosting more than 4000
libraries.

Even though cdnjs’s selection of libraries is much wider than that of its prede-
cessors, it still requires that a library have a certain level of popularity before
it can be added [7]:

Libraries must have notable popularity: 100 stars or watchers on
GitHub16 is a good example, but as long as reasonable popularity can
be demonstrated the library will be added.

cdnjs maintains all hosted files in a GitHub repository, and initially, all up-
dates were handled manually by people making pull requests. In 2014, the
project started working on an auto-update mechanism that would be able
to automatically download new versions after a manual one-time, per-project
configuration [8].

The auto-update system was based on pulling files from npm or git reposi-

14https://releases.jquery.com/jquery
15https://cdnjs.com
16https://github.com

9

https://releases.jquery.com/jquery
https://cdnjs.com
https://github.com

1. Domain Introduction

tories, and even though the updates were submitted automatically, they still
required a manual review from the maintainers, making the expected update
delay about 30 hours [7].

This service is the first on the list to have an API that provides the following
functionality [9]:

1. Searching the hosted libraries.

2. Getting details for a specific library.

3. Getting details for a specific library version.

4. Getting the allowed extensions.

5. Getting basic network statistics.

The first three points together fulfill our Functional Requirement 01. An
example of getting details for a specific library is shown in Listing 1.3.

{
"name": "jquery",
"versions": [

"1.10.0",
"1.10.1",
"1.10.2",
...

]
}

Listing 1.3: jQuery versions on cdnjs17

It appears that point 5 might also fulfill Functional Requirement 03, but upon
closer inspection, it is clear the implementation does not resolve any of the
problems described in Section 1.1.4.3 because the only statistic available is the
number of hosted libraries, as shown in Listing 1.4. Functional Requirement 03
is therefore deemed not fulfilled.

{
"libraries": 4343

}

Listing 1.4: Network statistics on cdnjs18

17https://api.cdnjs.com/libraries/jquery
18https://api.cdnjs.com/stats

10

https://api.cdnjs.com/libraries/jquery
https://api.cdnjs.com/stats

1.2. A Brief History of Public CDNs

As far as the previously defined non-functional requirement goes, we can con-
sider it met, since the API uses a JSON format, which is natively supported
by all modern browsers [10].

1.2.4 unpkg

Started in 2016 as npmcdn and later renamed to unpkg due to legal rea-
sons [11], unpkg19 was the first CDN to use a fully automated system by
pulling packages from npm on demand.

Not only did this approach not require any extra work from package main-
tainers, it also meant that every package was available, instead of—even if
big—selection. Moreover, with no manual reviews, there was essentially no
delay between publishing a new version and it being globally available.

unpkg does not have a dedicated API but allows adding a ?meta query string
parameter to any URL to obtain metadata for a file or directory in JSON, as
shown in Listing 1.5. There is no direct way to list the available packages and
their versions, but since unpkg pulls all content from npm, the public npm
registry API20 can be used to obtain this information.

{
"path": "/",
"type": "directory",
"files": [

{
"type": "file",
"path": "/README.md",
"contentType": "text/markdown",
"lastModified": "Sat, 26 Oct 1985 08:15:00 GMT",
"integrity": "sha384-SIZry4D4Ljl/NQD+bA5/QCqMON9RY91R24/QIgqz...",
"size": 2004

},
...

]
}

Listing 1.5: jQuery v3.6.1 files on unpkg21

19https://unpkg.com
20https://github.com/npm/registry/blob/master/docs/REGISTRY-API.md
21https://unpkg.com/jquery@3.6.1/?meta

11

https://unpkg.com
https://github.com/npm/registry/blob/master/docs/REGISTRY-API.md
https://unpkg.com/jquery@3.6.1/?meta

1. Domain Introduction

With those two sources combined, Functional Requirement 01 is met. There
are no usage statistics of any kind, so the other two requirements are not
met. The non-functional requirement, on the other hand, is met because the
metadata are returned in JSON.

At this time, unpkg has a 7 % market share, which makes it the fifth most
popular service of this type [3].

1.2.5 jsDelivr

jsDelivr22 launched in 2012, shortly after cdnjs. One of its main selling points
was its unique, multi-cdn infrastructure combined with RUM-based load bal-
ancing23—something no other service has offered, even to this date. More
interesting for this work, however, is that jsDelivr was the first to provide a
CDN to any open-source project, regardless of popularity [12].

Similarly to cdnjs, jsDelivr started by manually adding the hosted files to a
GitHub repository. In 2014, the same year as cdnjs, an option for automated
updates after an initial one-time configuration was introduced24, supporting
npm, GitHub, and bower25 as sources [13].

In 2013, jsDelivr also launched a public API, which was functionally similar
to that of cdnjs—it provided a list of all hosted packages, their versions, and
other metadata. The interesting part is that it covered not only the jsDelivr
projects but also several of the already introduced competitors: Google Hosted
Libraries, jQuery CDN, cdnjs, and BootstrapCDN26.

The metadata for all of these services were available via a unified interface [14].
Because cdnjs was the only one to have its own API, jsDelivr API internally
relied on web scraping27 to get the necessary data from other services.

22https://www.jsdelivr.com
23Load balancing based on real-time real user monitoring data.
24Based on the official release posts, jsDelivr was the first to launch this feature, but it

is not clear who was the first to start working on it.
25https://bower.io
26https://www.bootstrapcdn.com
27Extracting data for machine processing from a source in a human-readable form.

12

https://www.jsdelivr.com
https://bower.io
https://www.bootstrapcdn.com

1.2. A Brief History of Public CDNs

This API met Functional Requirement 01 but not the other two requirements.
The non-functional requirement was met by using a JSON format for all re-
sponses.

In 2017, following a discussion on how to keep scaling the project [15], jsDelivr
switched to an entirely new on-demand system, serving all resources from npm
and GitHub, similar to unpkg. Because the packages could not be directly
mapped between the two systems, this also resulted in a new version of the
API. An example of a response providing package versions is shown in List-
ing 1.6.

{
"tags": {

"beta": "3.6.1",
"latest": "3.6.1"

},
"versions": [

"3.6.1",
"3.6.0",
...

]
}

Listing 1.6: jQuery versions on jsDelivr28

In addition to its previous features, the new API added usage statistics for
every project [16], meeting Functional Requirement 02, as shown in Listing 1.7.

Similarly to unpkg, the jsDelivr API assumes the user already knows the
package name, and there is no direct way to search for packages. In case
the search functionality is needed, jsDelivr recommends using the public npm
registry API or Algolia’s npm search29 [17].

Even though the new automated system is jsDelivr’s primary focus, there is
also an option of manual setups, so-called proxy endpoints, for projects with
special needs [18]. The proxy endpoints, however, are not covered by the API
in its current form.

28https://data.jsdelivr.com/v1/package/npm/jquery
29https://github.com/algolia/npm-search

13

https://data.jsdelivr.com/v1/package/npm/jquery
https://github.com/algolia/npm-search

1. Domain Introduction

{
"rank": 9,
"typeRank": 7,
"total": 1531672161,
"versions": {

"3.6.1": {
"total": 95401718,
"dates": {

"2022-10-31": 3122163,
"2022-11-01": 3281549,
...

},
...

}
}

}

Listing 1.7: Package statistics on jsDelivr30

1.3 Specifics and Constraints

At last, this section briefly touches on a few domain specifics, which can have
a major impact on the choice of technologies and architecture decisions.

1.3.1 Anonymous User Base

A common property shared by all of the mentioned services is that all features
are available to unauthenticated users. This is not a domain constraint per
se, more of a result of the idea that all data should be publicly available
without restrictions anyway, and building authentication and related account
management features would require a non-trivial amount of extra work. Still,
it has a few implications:

• It is harder to identify the sources of incoming requests, which compli-
cates the diagnosis and resolution of operational issues.

• The lack of user quotas means that users have little motivation to use
the API efficiently (e.g., implement their own caching).

• Making any kind of possibly breaking change is virtually impossible,
even with a generous migration period, because users cannot be easily
contacted and asked to migrate.

30https://data.jsdelivr.com/v1/package/npm/jquery/stats

14

https://data.jsdelivr.com/v1/package/npm/jquery/stats

1.3. Specifics and Constraints

These problems can be partially mitigated with proper design, the use of
application performance monitoring (APM) tools, or voluntary mailing lists,
but they are still a specific worth pointing out.

1.3.2 Inherently Global

The very definition of a CDN is that it is a geographically distributed net-
work, but what about its API? With users all around the globe, the API is
expected to be fast everywhere, just like the CDN. That means it should
either be designed to run directly in multiple locations, which puts additional
requirements on back-end storage and routing technologies, or to have highly
cacheable responses, which puts additional requirements on the public inter-
face.

Again, this property is not entirely unique to public CDN services, but it
is worth pointing out the difference from other types of services with only
regional user bases.

1.3.3 Read-only

As one could have already gathered from the common requirements and the
analysis of the existing services, the APIs tend to be focused on providing
information, which makes them essentially read-only.

Combined with the fact that all data are public, with proper architecture and
design, this property can make caching considerably easier and help to resolve
the aforementioned performance problems.

1.3.4 Adaptive Infrastructure

With the exception of Google Hosted Libraries, all of the examined services
run on sponsored third-party infrastructure. jsDelivr, for instance, lists eight
major infrastructure sponsors, ranging from DNS and CDN providers to cloud
computing platforms [19]. As a result, the services may be reluctant to use
advanced vendor-specific features to avoid vendor lock-in31 and retain the
ability to switch providers should the sponsorship agreement come to an end.

31Being so dependent on specific vendor features that it is hard to change the vendor
without significant costs.

15

1. Domain Introduction

Additionally, staying vendor-agnostic may be necessary to provide load bal-
ancing or failover capabilities. In fact, jsDelivr specifically praises itself for
not being dependent on any single vendor, which allows it to react quickly to
performance and uptime issues [20].

The downside of the required flexibility is that architecture decisions have
to target the lowest common denominator of the features provided by the
considered vendors.

1.4 Conclusion

This chapter described the typical functionality of public CDN services and
their APIs, the user groups along with their needs, and the domain specifics
that need to be understood when designing these services.

It also summarized the history of the most notable services in this space and
showed that some do not offer APIs at all, while others meet most of the
defined requirements.

16

Chapter 2
The jsDelivr API

This chapter describes the current state of the jsDelivr API and the additional
requirements on top of those already introduced in Chapter 1.

As already mentioned, the current version of the jsDelivr API has been avail-
able since 2017 and focuses on meeting two key requirements: providing meta-
data about packages hosted on the CDN and providing usage statistics for
those packages.

The API is free to use, does not require authentication, and imposes no rate
limits. It is developed under the OSL-3.0 license32 on GitHub [17]. As of
November 2022, it handles 10.5 million requests per day on average, with a
95 % CDN cache hit rate33 [21]. Some notable users include:

• Online IDEs CodeSandbox and StackBlitz34, which use jsDelivr to install
packages from npm in the background.

• Algolia’s npm search index, which uses jsDelivr’s usage statistics as a
part of the ranking criteria.

• Microsoft Library Manager35, which uses jsDelivr as one of its library
providers.

32A copyleft license that does not require reciprocal licensing on linked works.
33The percentage of requests handled directly from the cache without reaching the origin

servers.
34https://stackblitz.com
35https://github.com/aspnet/LibraryManager

17

https://stackblitz.com
https://github.com/aspnet/LibraryManager

2. The jsDelivr API

Documentation for the API is available in a Markdown format on GitHub.

2.1 Requirements

This section summarizes what jsDelivr would like to add to its API on top of
the functionality already described in Section 1.2.5.

2.1.1 Functional Requirements

The additional functional requirements are:

FR04: The API shall provide bandwidth usage statistics for packages. Cur-
rently, only hits statistics are available.

FR05: The API shall provide at least basic usage statistics for proxy end-
points: daily hits and bandwidth.

FR06: The API shall provide network-wide statistics: daily hits and band-
width with breakdowns by different content types (packages, proxies),
providers, and countries.

FR07: The API shall provide browser and platform usage statistics: market
share with breakdown by versions and countries.

FR08: The API shall provide a way to easily compare data from the current
period with those in the previous period.

FR09: The API shall support 90-day data ranges in addition to the current
day, week, month, and year ranges.

FR10: The API shall support querying historical data.

2.1.2 Non-functional Requirements

There are also a few new non-functional requirements that aim to make it
easier to work with the API:

NR02: An OpenAPI36 document shall be available to API users.

NR03: The hypermedia as the engine of application state (HATEOAS) prin-
ciple should be used to link to related resources.

36https://www.openapis.org

18

https://www.openapis.org

2.2. Architecture and Concepts

2.2 Architecture and Concepts

The API currently runs on a cloud platform Render37, where each commit is
automatically deployed after passing tests via a CI/CD pipeline38. In front
of the API is a Bunny CDN39, with caching configured individually for each
resource using standard HyperText Transfer Protocol (HTTP) headers.

Internally, the API uses MariaDB40 and Redis41 and retrieves certain data
from GitHub, npm registry API, and the jsDelivr CDN itself, as shown in
Figure 2.1.

<<device>>
Redis Server

<<service>>
Render Cloud Platform

«component»
Node.js API Service

<<device>>
MariaDB Server

«component»
Statistics Database

<<HTTP>>
<<service>>
Bunny CDN

<<external service>>
GitHub API

<<external service>>
npm API

<<HTTP>>

<<external service>>
jsDelivr CDN

API User

<<HTTP>>

<<HTTP>>

<<TCP/IP>>

<<TCP/IP>>

«component»
Metadata Cache

Figure 2.1: jsDelivr API deployment diagram

2.2.1 REST and REST-like architectures

Representational State Transfer (REST) is an architectural style introduced
by Fielding that introduces concepts and constraints that aim to improve the

37https://render.com
38A set of automated steps executed on each commit that builds the application, runs

tests, and deploys the application to the production environment.
39https://bunny.net
40https://mariadb.org
41https://redis.io

19

https://render.com
https://bunny.net
https://mariadb.org
https://redis.io

2. The jsDelivr API

performance, scalability, simplicity, modifiability, visibility, portability, and
reliability of web services [22, pages 28–36].

The REST concepts relevant in terms of API design are:

1. identification of resources,

2. manipulation of resources through representations,

3. self-descriptive messages,

4. hypermedia as the engine of application state (HATEOAS).

Because REST is just an architectural style and not a protocol itself, it is up
to each implementation to decide how strictly it wants to abide by the set
rules, even though an implementation following only some of the rules is no
longer, strictly speaking, “RESTful”.

In this work, the term “REST-like” is used for architectures that—whether
for carefully considered pragmatic reasons or simple negligence—respect some,
but not all, REST concepts.

To better discuss different levels of REST compliance, Richardson proposed a
maturity model, which divides services into four levels [23]:

0. Level zero services use a single URI and HTTP method for all oper-
ations, effectively not following any of the REST principles.

1. Level one services use many URIs but only a single HTTP method.

2. Level two services use many URIs and multiple HTTP methods.

3. Level three services use hypermedia to describe resource capabilities
and interconnections.

The jsDelivr API does not itself claim to be RESTful, but it does follow some
of the principles:

• it is resource-oriented, with a proper URI for each resource,

• it uses HTTP methods to identify operations on resources.

20

2.3. Used Technologies

The API does not use hypermedia, so it achieves level two of the maturity
model and can be described as REST-like. The used principles are particularly
relevant for efficient caching as described in the next section.

2.2.2 CDN and Client-Side Caching

The API runs in a single location and heavily relies on caching to improve its
performance. To allow for optimal caching, where possible, the resources are
designed to either only contain data that do not change frequently (and can,
therefore, be cached for a long time) or only data that change often.

The caching instructions for both the CDN and end users are provided via
the following HTTP header directives:

• Cache-Control: public is used for all resources to indicate the data are
public and can be stored in shared caches,

• Cache-Control: max-age is used for metadata resources with a fixed time
to live (TTL) to indicate the expiration time,

• Expires is used for statistics resources with a fixed expiration date (be-
cause the data always refresh at midnight),

• Cache-Control: stale-while-revalidate is used for all resources to reduce
the perceived latency when revalidation is needed,

• Cache-Control: stale-if-error is used for all resources to reduce the im-
pact of network errors or service unavailability,

• ETag is used for all resources to reduce the amount of transmitted data
during revalidation.

2.3 Used Technologies

This section briefly describes the main technologies and how they are used by
the API.

21

2. The jsDelivr API

2.3.1 Node.js

Node.js42 is an open-source, cross-platform runtime environment for devel-
oping server-side and networking applications built on the JavaScript V8 en-
gine. Its key characteristic is the event-driven, non-blocking I/O model, which
makes it efficient in handling a large number of concurrent connections [24],
but thanks to a rich ecosystem of libraries and frameworks, and the ability to
run a language that most web developers are already familiar with, it has also
become a popular choice for building web development tools and command
line applications. That is the case with jsDelivr, too, since it both builds upon
projects from the JavaScript ecosystem and targets mainly developers from
this ecosystem, building the services in JavaScript using Node.js was a natural
choice.

2.3.2 Koa

Koa43 is a minimalist web framework for Node.js that focuses on providing a
simple and composable API for building web applications and APIs. It was
created by the team behind the popular Express44 framework and is designed
to be a more modern and lightweight alternative to Express. It is built on top
of the latest JavaScript language features and uses async/await keywords to
provide a cleaner and more intuitive way to handle asynchronous operations
compared to callbacks used in Express. A Koa application is composed of
an array of functions called middleware, which are executed in a stack-like
manner upon each request [25].

Thanks to its middleware handling, Koa is also more flexible. First, the mid-
dleware is called in the order it was defined, and then the stack unwinds, and
each middleware can perform additional operations in reverse order. This is
in contrast to the Express middleware handling, which is one-way and makes
implementing certain features difficult.

Because Koa does not provide its own router, it is usually combined with Koa-
router45, which matches the incoming requests with the correct routes based

42https://nodejs.org
43https://koajs.com
44https://expressjs.com
45https://github.com/koajs/router

22

https://nodejs.org
https://koajs.com
https://expressjs.com
https://github.com/koajs/router

2.3. Used Technologies

on their HTTP method and URI. Each route has its own set of middleware
handlers responsible for generating the response.

2.3.3 MariaDB

MariaDB is an open-source relational database created as an alternative to
MySQL46 after MySQL was acquired by Oracle. It is developed by some of the
original developers of MySQL and aims to be fast, scalable, and robust [26].

jsDelivr uses MariaDB to store all statistics data, which, as of December 2022,
consist of approximately three billion records.

2.3.4 Redis

Redis is a key-value data store that can be used as a database, cache, or
message broker. To achieve top performance, it works primarily with an in-
memory dataset, which can optionally be persisted to disk. Redis provides
a wide range of data structures, such as strings, lists, sets, and hashes, and
offers atomic operations for modifying these data structures. Additionally, it
supports replication, allowing for high availability and scalability [27].

The jsDelivr API uses Redis as an in-memory cache for package metadata
retrieved from npm and GitHub, as well as for caching results of some of the
more expensive database queries.

2.3.5 Knex

Knex47 is an SQL query builder for JavaScript that can be used in both Node.js
and the browser, providing a simple and consistent interface for interacting
with different databases, such as MariaDB, PostgreSQL, or SQLite. It also
provides a migration system for managing changes to the database schema
over time and a seed system for setting up the initial database state [28]. The
jsDelivr API uses all three of those features.

Database migrations are stored in the migrations directory, and each set of
changes, such as creating new tables or columns, is described in a separate

46https://www.mysql.com
47https://knexjs.org

23

https://www.mysql.com
https://knexjs.org

2. The jsDelivr API

migration file. Knex keeps track of which migrations were already applied and
provides a command line interface tool to apply or revert them.

The seeds are stored in the seeds directory and are used to populate the
database with data for development and tests.

The query builder API is used in most of the application code, as well as the
migrations and seeds, with the exception of complex stored procedures, which
need to be written directly in SQL.

2.3.6 Joi

Joi48 is a JavaScript library for data validation. It provides a simple and
powerful language for defining the structure and constraints of data and can
be used in both Node.js and browser applications [29]. The jsDelivr API uses
Joi in database models.

2.3.7 Mocha and Chai

Mocha49 is a JavaScript testing framework designed to make it easy to write
and run automated tests for Node.js and browser-based applications. It pro-
vides a flexible interface to write and structure test cases and is widely used
for unit testing, integration testing, and end-to-end testing [30]. Mocha does
not provide its own assertion methods, which is why it is often combined
with Chai50—an assertion library that provides several interfaces for writing
expressive, easily readable assertions [31].

jsDelivr uses Mocha and Chai for automated unit tests, which are used to test
some of the more complex functions, and for integration tests, which cover
the full request handling cycle, including communication with MariaDB and
Redis.

48https://joi.dev
49https://mochajs.org
50https://www.chaijs.com

24

https://joi.dev
https://mochajs.org
https://www.chaijs.com

2.4. Current Features

2.3.8 Elastic APM

Elastic APM51 is a tool for monitoring the performance and availability of
applications. It is a part of the Elastic Stack, a set of open-source tools for
searching, analyzing, and visualizing data [32].

Elastic APM allows developers to track the performance of their applications
in real time and provides overview data such as throughput, average response
times, and error rates, as well as detailed information about the performance of
individual transactions, including durations of performed SQL queries, remote
HTTP calls, and other operations.

In addition to its performance monitoring capabilities, it keeps track of all
unhandled errors, which means developers can discover and fix them even
before someone reports them. High error rates, performance degradations, or
other problems can also be automatically reported to the responsible people
via configured alerts.

jsDelivr uses the APM as the primary tool for monitoring the service perfor-
mance and diagnosing any reported issues.

2.4 Current Features

The API features can be split into two main parts: metadata-related and
statistics-related. This section describes how each of these works and discusses
possible improvements and problems related to the new requirements.

Not all suggestions may be worthwhile in the end, especially because of the
need to preserve backward compatibility, but being aware of existing issues is
important when designing the new features.

51https://www.elastic.co/observability/application-performance-monitoring

25

https://www.elastic.co/observability/application-performance-monitoring

2. The jsDelivr API

2.4.1 Package Metadata

The metadata endpoints are related to Functional Requirement 01 and allow
users to:

1. get package metadata,

2. get the resolved package version from a range or a tag,

3. get package version metadata and the list of its files.

Note that because jsDelivr operates with two package sources—npm and
GitHub—which have separate namespaces, there are effectively two separate
endpoints for each listed functionality. Their public interface is the same, so
we can neglect this detail for the most part, but in some cases, the internal im-
plementation is different for each source. For the sake of brevity, the following
text only lists the npm versions.

2.4.1.1 Get Package Metadata

GET /v1/package/npm/:name

This endpoint provides a list of package tags and versions, with versions being
sorted in descending order. Since jsDelivr is not the authoritative source of the
packages, this feature relies on getting the list of available package versions
from npm (or GitHub, in the case of GitHub repositories). The data are
temporarily cached in Redis to improve performance and to avoid making too
many remote HTTP calls.

Because the list can change at any time, it has a short TTL of five minutes,
after which clients should perform revalidation. The response format is shown
in Listing 2.1.

Possible improvements:

• Use hypermedia for versions entries instead of simple strings and provide
links to package version details.

26

2.4. Current Features

{
"tags": {

"beta": "3.6.1",
"latest": "3.6.1"

},
"versions": [

"3.6.1",
"3.6.0",
...

]
}

Listing 2.1: GET /v1/package/npm/:name52

2.4.1.2 Get the Resolved Package Version

GET /v1/package/resolve/npm/:name@:range?

This endpoint operates with the same data as the previous one but returns
only the latest package version matching the semver53 range or null if there
is no matching version. If no range is provided, the latest package version is
returned.

The behavior mirrors the npm install54 command and allows clients to cor-
rectly resolve version ranges without implementing the complex semver rules
and fetching a possibly large list of all tags and versions. The response format
is shown in Listing 2.2

{
"version": "3.6.1"

}

Listing 2.2: GET /v1/package/resolve/npm/:name@:range?55

Considering Non-functional Requirement 02, the optionality of the range pa-
rameter is a problem because OpenAPI does not allow optional path param-
eters [33, §4.8.12.2]. This is a limitation resulting from its data model, where
each operation is uniquely identified by path, and a path segment that might
be empty can only be modeled as two separate endpoints.

52https://data.jsdelivr.com/v1/package/npm/jquery
53https://semver.org
54https://docs.npmjs.com/cli/v9/commands/npm-install
55https://data.jsdelivr.com/v1/package/resolve/npm/jquery

27

https://data.jsdelivr.com/v1/package/npm/jquery
https://semver.org
https://docs.npmjs.com/cli/v9/commands/npm-install
https://data.jsdelivr.com/v1/package/resolve/npm/jquery

2. The jsDelivr API

Possible improvements:

• Use hypermedia and provide links to the resolved package version details.

• Move the range parameter to the query string.

2.4.1.3 Get Package Version Metadata

GET /v1/package/npm/:name@:version/:structure?

This endpoint returns a path to the default file56 and a list of all files in this
version. The version parameter is required to be an exact version number
in this case, which means the generated response does not change over time
(because releases are considered immutable), allowing for efficient caching.
The structure parameter allows switching between a recursive tree format and
a flat format.

This feature is implemented by making an HTTP call to the CDN service
itself. Because generating a list of all files at the CDN is a relatively expensive
and slow operation, the API takes advantage of the fact that packages are
immutable and stores the data in the MariaDB database after the first call.

This may seem strange at first because it means the database is used as a
cache, while the API also uses Redis for this purpose, but there are good
reasons for it:

• unlike Redis, MariaDB stores data persistently, so the data can stay
cached forever,

• the listing size ranges from a few to a few hundred kilobytes as it contains
metadata for each file, and there are millions of unique package versions.
Storing the data primarily on disk is a more efficient use of resources
than storing all of it in memory, especially considering it is not accessed
frequently, thanks to additional caching at the CDN level.

A sample response in the tree format is shown in Listing 2.3. Note that the
time field has already been deprecated because npm now replaces all file mod-
ification times with a placeholder value to support reproducible builds [34].

56An attribute set by the package author to indicate which file is the correct one to
import.

28

2.4. Current Features

{
"default": "/dist/jquery.min.js",
"files": [

{
"type": "directory",
"name": "dist",
"files": [

{
"type": "file",
"name": "jquery.js",
"hash": "3zlB5s2uwoUzrXK3BT7AX3FyvojsraNFxCc2vC/7pNI=",
"time": "1985-10-26T08:15:00.000Z",
"size": 289812

},
...

]
},
...

]
}

Listing 2.3: GET /v1/package/npm/:name@:version/:structure?57

Possible improvements:

• Move the structure parameter to the query string or use content negoti-
ation.

• Remove the time field from entries.

2.4.2 Usage Statistics

The statistics features are related to Functional Requirement 02. The provided
statistics do not cover all of the described user stories, however. Data can only
be requested for the past day, week, month, or year, which means there is a
way to get the current data but not to compare them with the previous ones,
as required by User Story 02 and User Story 09. There are also no network
statistics as required by User Story 07 and User Story 08.

The current features allow users to:

1. get package usage statistics,

2. get package version usage statistics,

3. get a package hits badge,
57https://data.jsdelivr.com/v1/package/npm/jquery@3.6.1

29

https://data.jsdelivr.com/v1/package/npm/jquery@3.6.1

2. The jsDelivr API

4. list the most popular packages.

2.4.2.1 Collected Data

To provide the usage statistics, jsDelivr collects logs from all servers in its
network and stores the data in the MariaDB database. This process is handled
by a separate service and, as such, is not in the scope of the API. However,
it is crucial to understand the amount of data the API works with.

As of December 2022, the CDN handles approximately three billion requests
per day, which translate to three billion log records. In their raw form, the
daily log records would consume approximately 2.6 TB of storage space, and
a year’s worth of data would require about 970 TB. For this reason, the data
are not stored in the original form but undergo a two-phase processing and
aggregation based on the specific API requirements.

The first processing phase takes place before the data are inserted into the
database. Each record is split into multiple smaller pieces, transformed, and
then aggregated with other records.

For example, consider a simplified record that includes only the request time,
user country, server provider name, and the request URI, as shown in Fig-
ure 2.2. The API does not need the exact request time because it only works
with daily data, so only the date is kept. It also does not need the original
request URI but needs to know the package type, name, version, and file,
which can be extracted from the URI. Moreover, it does not need to know the
package details when considering network statistics or the server and country
details when considering package statistics.

By breaking the record into two smaller ones, the link between network and
package data is lost, but the data can be aggregated more efficiently, reducing
the storage requirements. The records produced in this phase are referred to
as “source data” in the rest of this text.

30

2.4. Current Features

Network
record

Package
record

Transformed
record

Original
record

Request time
2022-12-20T12:34:56

User country
CZ

Server provider
Cloudflare

Request URI
/npm/jquery@3.6.3/jquery.js

Request date
2022-12-20

User country
CZ

Server provider
Cloudflare

Package name
jquery

Package type
npm

Package version
3.6.3

Package file
jquery.js

Request date
2022-12-20

User country
CZ

Server provider
Cloudflare

Request date
2022-12-20

Package name
jquery

Package type
npm

Package version
3.6.3

Package file
jquery.js

Figure 2.2: jsDelivr log processing

The second processing phase deals with the fact that the usage statistics fea-
tures have the complexity of traditional online analytical processing (OLAP)58

systems, but due to being exposed over a public API to many users, also the
performance requirements of online transaction processing (OLTP)59 systems.

These conflicting requirements are satisfied by using materialized views60,
which aggregate the source data into the formats needed by the individual
API endpoints in advance, essentially transforming the user-facing operations
into simple OLTP-style queries that can be supported by indexes.

The materialized views are generated once a day and then simply read from
the disk instead of being computed on-the-fly on each request, which provides
a significant performance improvement at the cost of somewhat higher disk
usage—a fact that must be considered when designing new features.

This approach does not cause an additional delay in data availability because
the API is designed to work with daily data summaries, so new data would

58Describes systems that handle a low volume of complex, not necessarily real-time
queries.

59Describes systems that handle a high volume of simple queries and expect real-time
results.

60MariaDB does not support materialized views natively, but the concept can be emulated
with a combination of regular tables, stored procedures, and scheduled events.

31

2. The jsDelivr API

only be available once a day anyway. However, there is one limitation—the
data can only be queried for a set of pre-selected periods, not for custom date
ranges.

The next sections provide an overview of all source data tables, as well as the
currently used materialized views.

2.4.2.1.1 Package Data

The package data are primarily stored in tables package, package_version, file,
and file_hits. However, because most features only work with data on pack-
age or package version levels, and aggregating file-level data is very slow
due to the number of records, there are additional tables package_hits and
package_version_hits, as shown in Figure 2.3.

fileId:id

packageId:id

packageId:id

packageVersionId:id

packageVersionId:id

Figure 2.3: Package data relational schema

The two additional tables are not treated as materialized views and are man-
aged by the same process as file_hits. While technically duplicating data,
this design provides a significant performance improvement for common oper-

32

2.4. Current Features

ations, and data consistency across the tables is achieved by always updating
all three tables in a single transaction.

To support the current features, there is also one materialized view, which
keeps track of hits, bandwidth, and ranks for each package, as shown in Fig-
ure 2.4. This view is generated from package_hits data once a day.

Figure 2.4: Package data materialized views

2.4.2.1.2 Proxy Endpoint Data

The proxy data are primarily stored in tables proxy, proxy_file, proxy_file_hits,
but there is again an additional table proxy_hits to improve performance, as
shown in Figure 2.5.

proxyId:id

proxyFileId:id

proxyId:id

Figure 2.5: Proxy data relational schema

33

2. The jsDelivr API

2.4.2.1.3 Network Data

The network data are stored in the country_cdn_hits table shown in Figure 2.6.
The countryIso field refers to an ISO 3166-1 alpha-2 code [35], but the list of
countries is not stored in the database. Similarly, the cdn field refers to a CDN
provider code, but the list of providers is not currently stored in the database.

Figure 2.6: Network data relational schema

2.4.2.1.4 Browser and Platform Data

With browser and platform data, there were several design options in regard
to data resolution. Unlike the rest of the data, browser and platform data are
expected to be tracked only on a monthly basis, and the design options were
considered with the following expected monthly value cardinalities:

• 100 browsers,

• 1000 browser versions (10 for each browser),

• 10 platforms,

• 100 platform versions (10 for each platform),

• 200 countries (data must be stored separately for each country).

First, separate records could be stored for each browser version and each
platform version. This would result in 1000×200 = 200 000 records for browser
versions and 100×200 = 20 000 records for platform versions, but there would
be no link between the browsers and the platform they run on.

As a second option, one record could be stored for each combination of browser
version and platform version, which would, in the worst case, result in 1000 ×
100 × 200 = 20 000 000 records.

34

2.4. Current Features

As a third option, browser version data could be linked to platforms (but not
their versions) and platform version data could be stored separately. This
would require 1000 × 10 × 200 = 2 000 000 and 100 × 200 = 20 000 records.

The third option was chosen as a reasonable compromise, and the resulting
schema is shown in Figure 2.7.

browserVersionId:id

platformId:id

platformVersionId:id

platformId:id browserId:id

Figure 2.7: Browser and platform data relational schema

2.4.2.2 Get Package Statistics

GET /v1/package/npm/:name/stats/:groupBy?/:period?

This is the first of the current statistics endpoints, providing daily usage statis-
tics for the package. The groupBy parameter can have a value of version or date

and configures the grouping of the data.

With the value of version, the versions object has a separate key for each
version for which some data are available in the selected time period, and the
dates object provides a further daily breakdown for each version, as shown in
Listing 2.4.

35

2. The jsDelivr API

With the value of date, the grouping is reversed—data are first grouped by
date at the top level, and a version breakdown is available for each date.

The period parameter identifies the time period for which data are returned
and can have a value of day, week, month, or year.

{
"rank": 9,
"typeRank": 7,
"total": 1462378980,
"versions": {

"1.10.0": {
"total": 997335,
"dates": {

"2022-11-07": 46483,
"2022-11-08": 52859,
...

}
},
...

},
}

Listing 2.4: GET /v1/package/npm/:name/stats61

While the endpoint provides the required functionality, the granularity of re-
turned data may often be unnecessarily high, which results in very big re-
sponses. For example, asking for monthly statistics of a package with 50
different versions would produce a response with approximately 1550 values,
and a response for yearly data would include over 18 000 values.

Considering the described user stories, it might be beneficial to provide an
endpoint that lists daily package data without a version breakdown, which
would be sufficient for User Story 01, and another one that lists the most
popular versions (possibly with pagination support) to support User Story 03.
Such change would also remove the need for the groupBy parameter, which
would otherwise be better moved to the query string or replaced with content
negotiation.

61https://data.jsdelivr.com/v1/package/npm/jquery/stats

36

https://data.jsdelivr.com/v1/package/npm/jquery/stats

2.4. Current Features

Possible improvements:

• Split into multiple endpoints to support different use cases more effi-
ciently.

• The period parameter suffers from the same problem as range in Sec-
tion 2.4.1.2 and would be better moved to the query string.

2.4.2.3 Get Package Version Statistics

GET /v1/package/npm/:name@:version/stats/:groupBy?/:period?

This endpoint provides daily usage statistics for the package version. The
groupBy parameter can have a value of file or date and configures the grouping
of the data.

With the value of file, the files object has a separate key for each version for
which some data are available in the selected time period, and the dates object
provides a further daily breakdown for each version, as shown in Listing 2.5.

With the value of date, the grouping is reversed—data are first grouped by
date at the top level, and a file breakdown is available for each date.

{
"total": 92950761,
"files": {

"/dist/jquery.min.js": {
"total": 91870294,
"dates": {

"2022-11-07": 3348192,
"2022-11-08": 3539236,
...

}
},
...

}
}

Listing 2.5: GET /v1/package/npm/:name@:version/stats62

Possible improvements:

• This endpoint suffers from the same problems as the previous one and
62https://data.jsdelivr.com/v1/package/npm/jquery@3.6.1/stats

37

https://data.jsdelivr.com/v1/package/npm/jquery@3.6.1/stats

2. The jsDelivr API

would benefit from being split into two and from moving the period

parameter into the query string.

2.4.2.4 Get a Package Badge

GET /v1/package/npm/:name/badge/:period?

This endpoint returns a “badge” with the package request total, which can be
directly embedded in websites, as shown in Figure 2.8.

jsDelivr 2B hits/month

Figure 2.8: GET /v1/package/npm/:name/badge63

As the response is a simple SVG image, there is not much to discuss in terms
of the response format in this case.

2.4.2.5 List Top Packages

GET /v1/stats/packages/:period?

This endpoint lists the most popular packages and their request totals for the
selected period. Pagination is available via the limit and page query string
parameters. The response format is shown in Listing 2.6. Other than the
period parameter, the current form of the endpoint has no issues.

[
{

"type": "npm",
"name": "prebid-universal-creative",
"hits": 8933727436

},
{

"type": "npm",
"name": "bootstrap",
"hits": 8176932289

},
...

]

Listing 2.6: GET /v1/stats/packages64

63https://data.jsdelivr.com/v1/package/npm/jquery/badge
64https://data.jsdelivr.com/v1/stats/packages

38

https://data.jsdelivr.com/v1/package/npm/jquery/badge
https://data.jsdelivr.com/v1/stats/packages

2.5. Conclusion

2.5 Conclusion

This analysis was an important prerequisite for understanding the additional
requirements and designing the new features. The architecture, design, and
technology choices were made based on the specific project requirements, par-
ticularly the need to efficiently work with large amounts of data and handle a
high number of requests, and there is no need for any major changes.

In terms of endpoints design, minor improvements are possible: moving certain
path parameters to the query string, using a more efficient response format in
some cases, and utilizing hypermedia.

39

Chapter 3
Design

Based on the analysis of the current state and the new requirements, this chap-
ter describes the necessary changes in detail. It starts with general concepts
that apply to the whole service and continues with the individual features.

3.1 API Versioning Strategies

When designing the new features, it is important to remember that the API
is already widely used and that all existing clients must continue to work.
This section, therefore, starts by examining the commonly used versioning
strategies and comparing their advantages and disadvantages.

When discussing possible strategies, it is good to keep in mind that versioning
as a whole covers several types of problems. When jsDelivr switched to its
on-demand system in 2017 and introduced its current API, it was essentially
a brand-new service. It shared the same goals and had similar features as its
predecessor, but the underlying data model changed in its entirety. The new
API launched on a separate subdomain where it runs entirely independent of
the previous version.

Such change could be thought of as simply launching a new service, but that
would just be an attempt to hide the versioning-related problems, as the
features remain similar and target users remain the same. There may be other
scenarios where the API as a whole must undergo significant changes—whether

41

3. Design

as a result of its technical limitations or as a result of business decisions—and
the following text will use the term “service-wide versioning” for these cases.

A lot more common are changes that do not change the key concepts of the
API but simply change the representation of data. Maybe the format of some
resources did not turn out to work well in practice, maybe some fields that
were originally present are no longer relevant. These cases will be referred to
as “per-resource versioning” in this section.

Note that the jsDelivr API includes a “v1” prefix in its URI, so it may seem
the versioning strategy has already been decided, but the reality is that the
prefix has been added at launch without much thought, and a clear versioning
strategy has not yet been established.

3.1.1 URI Prefix

The first versioning approach is including a version number in the URI:

GET https://api.example.com/v1/resource HTTP/1.1

The idea is that any non-breaking changes, such as adding new endpoints,
fields, or optional parameters to the existing ones, can be applied without
changing the version number. For breaking changes, such as removing a field,
the version in the URI is incremented.

Because the prefix is inevitably present in all URIs, releasing a new version
creates a new copy of all resources, which makes this approach work fairly well
for service-wide versioning, but it is a rather lousy mechanism for handling
changes of a single resource. Any time a new version is released, the users
must carefully read the list of changes (assuming one is available), figure out
if they are impacted, and then update their applications.

This approach somewhat contradicts the “evolvability” principle of REST, and
as Sturgeon points out [36], Fielding goes as far as to say that “a v1 is a middle
finger to your API customers, indicating RPC/HTTP (not REST)” [37].

Nevertheless, not every service has to be RESTful, and there are reasons why

42

3.1. API Versioning Strategies

many services choose this approach: it is straightforward to implement, results
in URLs with stable response format (which may contradict the HTTP/REST
ideas of content negotiation, but it means applications will not accidentally
break because developers misunderstood the versioning scheme handling), it
does not require any extra configuration for proper caching, since there are
no headers or other parameters involved, and it makes API resources easy to
share because the links are copy-pastable (a property particularly convenient
for GET-only APIs).

Advantages:

• Simple to implement.

• Copy-pastable links to each version/representation.

• Cache friendly.

Disadvantages:

• Resource duplication.

• High impact of updates on API clients.

3.1.2 Hostname

This approach is similar to the previous one, except the version number or a
code name is put in the hostname:

GET https://api-v1.example.com/resource HTTP/1.1

As one would expect, this has both the same advantages and disadvantages
as the previous solution, with one exception—if each version runs as an en-
tirely independent application, it may be easier to manage and correctly route
requests.

Advantages:

• Simple to implement.

• Copy-pastable links to each version/representation.

• Cache friendly.

43

3. Design

Disadvantages:

• Resource duplication.

• High impact of updates on API clients.

3.1.3 Query String Parameters

This option once again looks very similar to the previous two:

GET https://api.example.com/resource?version=1 HTTP/1.1

However, in this case, there are two possible interpretations as to what the
version means:

1. A version of the service, which provides similar properties as the previous
two approaches.

2. A version of the resource, with different resources possibly having dif-
ferent sets of versions.

Focusing on the second interpretation of versioning each resource type in-
dependently, this approach mitigates the “high impact of updates” problem
because parts that do not change do not receive a new version. The solution
is still cache-friendly, and links are copy-pastable, but the client needs to keep
track of the correct version for each resource.

One new question that arises with this approach is what version should be used
if the parameter is not present in the request. Returning the latest available
version may be more friendly to new developers exploring the API, but it
means that if someone forgets to specify a version in their application, it will
eventually break. It also requires that the versioning scheme be clear from the
beginning and that all developers be aware of it. Returning the oldest version
favors stability, and clients need to opt into updates themselves.

Advantages:

• Simple to implement.

• Allows a fine-grained per-resource versioning.

44

3.1. API Versioning Strategies

• Copy-pastable links to each version/representation.

• Cache friendly.

Disadvantages:

• Need to keep track of available versions for each resource.

3.1.4 Custom Headers

With this approach, we leave the URL space and move to a place designed to
transmit metadata—the HTTP headers:

GET https://api.example.com/resource HTTP/1.1
Accept-Version: 1

While the header name resembles other content-negotiation headers that are
part of the HTTP specification, there is no standardized header specifically
for versioning, so different names are used by different implementations.

This approach is similar to the previous one in that it allows both service-wide
versioning and per-resource versioning. While non-standard, it is de-facto
a form of content negotiation, with different versions being simply different
“representations” of the same resource, which makes this approach the first
on the list to respect the REST concepts.

To ensure proper caching, server responses must include a
Vary: Accept-Version header when using this approach to inform clients that
the response content depends on the requested version, but other than that,
it does not create any caching issues.

A commonly overlooked disadvantage lies in how web browsers handle Cross-
Origin Resource Sharing (CORS). Because the custom header is not on the
CORS-safelisted request-header list [38, §2.2.2], any request that includes such
a header is subject to a CORS preflight [38, §4.1], which adds extra delay in
handling the request. Another minor downside is that API links are no longer
easily sharable, and requests need to be crafted using more specialized tools.

45

3. Design

Advantages:

• Allows a fine-grained per-resource versioning.

• Cache friendly.

Disadvantages:

• Not as simple to implement.

• No copy-pastable links to each version/representation.

• Subject to CORS preflight.

3.1.5 The Accept Header

Finally, we get to an approach that fully utilizes the existing HTTP features:

GET https://api.example.com/resource HTTP/1.1
Accept: application/vnd.service-name.v1

This approach builds on the idea that a media type does not necessarily mean
simple JSON or XML, but each service or even resource can have its own
type. Choosing a version then means simply choosing one of the supported
media types using standard content negotiation, which makes this approach
the most RESTful. It can also be modified to support per-resource versioning
by including the resource name in the media type:

GET https://api.example.com/resource HTTP/1.1
Accept: application/vnd.service-name.resource-name.v1

Because the Accept header is included on the CORS-safelisted request-header
list [38, §2.2.2], the requests are not subject to CORS preflight in this case.
However, there are major and often overlooked complications with CDN-level
caching. Similarly to the previous approach, the responses must include a
Vary: Accept header. Because Accept is a standard content-negotiation header,
it is usually automatically set by web browsers, so requests that do not ex-
plicitly override it are sent with the default value. Due to the value structure
(shown in Listing 3.1), different browsers are likely to use a different default,
which creates many response variants that need to be cached independently.

46

3.1. API Versioning Strategies

Accept: text/html, application/xhtml+xml, application/xml;q=0.9,
image/avif, image/webp, image/apng, */*;q=0.8,
application/signed-exchange;v=b3;q=0.9

Listing 3.1: Default Accept header in Google Chrome v108 on Windows

In a blog post on best practices for using the Vary header, Mulhuijzen discussed
a similar issue with the Accept-Encoding header, and his analysis found 42
unique header values in a sample of 100 000 requests, even though there is
only a handful of encoding algorithms used on the web [39]. The problem is
likely to be even more prevalent with Accept as the pool of possible values is
much bigger. As a result, using Vary: Accept can have a significant negative
effect on CDN caching efficiency.

Some CDN providers provide advanced features that can be used to normalize
the header value [40], but it is a non-trivial task that may greatly complicate
the setup and possibilities of a later provider change.

Advantages:

• Allows a fine-grained per-resource versioning.

Disadvantages:

• Not as simple to implement.

• No copy-pastable links to each version/representation.

• Tricky caching.

3.1.6 Evolution

API evolution builds on the idea of avoiding breaking changes unless they
are absolutely necessary—and if all changes are backward compatible, there is
essentially no need for explicit versioning. Adding new features can typically
be done in a backward-compatible fashion, and instead of removing them, old
features can be deprecated but left available [41].

The concept requires that everything be designed with future extensibility in
mind, but if a change of an existing concept is unavoidable, a new resource can
be created under a new name while the old one continues to be available for

47

3. Design

older clients. As such, instead of being communicated through numbers, where
one version can hide one or more changes, change is communicated through
names. The extra work that comes with creating new names may discourage
changing things too often, which just supports the main idea behind this
approach.

Although the idea of dismissing versioning entirely may be tempting, even the
proponents of the evolution principle admit that sometimes there is no way
but to break things [42]. Maybe a more practical approach would be to take
the main idea—that breaking changes should be avoided if at all possible, but
combine it with one of the previously described versioning approaches.

3.1.7 Conclusion

Each of the examined versioning strategies has its use cases. In this case,
the jsDelivr Core Team agreed that the main focus is minimizing the burden
of upgrading for the existing API users. As such, changes should follow the
Evolution principle—be backward compatible if possible, or be introduced as
new endpoints that the existing users can switch to at any time while the
existing ones continue to work.

3.2 Common Properties

There are a few properties shared by several endpoints that should be consis-
tent across the whole API. Hence, before the design of specific endpoints, this
section discusses those shared properties.

3.2.1 Bandwidth Data

Following the analysis in Section 2.4.2, we know that the API has only worked
with one type of value so far (hits), and the response formats of Get Pack-
age Statistics and Get Package Version Statistics endpoints cannot be easily
extended.

This problem could be solved by introducing a new query string option, e.g.,
type, which would define the type of the returned statistics. Such an option
might even be preferred if clients only requested one specific type most of the

48

3.2. Common Properties

time. On the other hand, requesting multiple types would require multiple
HTTP requests.

However, the analysis also showed that the endpoints in question would benefit
from being split into two versions with different data granularity, which would
provide an opportunity to make the format more extensible as well.

The summary format of List Top Packages can already be extended without
issues. As such, we are not strictly bound by the existing implementation in
either case.

Keeping the idea of always providing a value total and then a more detailed
breakdown, the suggested format for detailed hits and bandwidth statistics is
shown in Listing 3.2. The format has the advantage of being able to incor-
porate multiple totals and ranks and can be easily further extended should a
third statistics type be introduced in the future.

{
"hits": {

"rank": 9,
"typeRank": 7,
"total": 1462378980,
...

},
"bandwidth": {

"rank": 17,
"typeRank": 9,
"total": 61982153019627,
...

}
}

Listing 3.2: Hits and bandwidth format

For the cases where only totals are listed without breakdowns, such as in
the List Top Packages endpoint, the format can be extended, as shown in
Listing 3.3.

49

3. Design

[
{

"type": "npm",
"name": "prebid-universal-creative",
"hits": 8933727436,
"bandwidth": 83103736429868

},
{

"type": "npm",
"name": "bootstrap",
"hits": 8176932289,
"bandwidth": 204497235587383

},
...

]

Listing 3.3: Hits and bandwidth totals format

3.2.2 Quarterly and Historical Data

The support for 90-day data ranges can be added by including quarter in the
list of valid period values. Furthermore, the period parameter can also be
extended to support querying historical data by accepting a date in one of the
following ISO 8601 formats [43]:

• YYYY for a specific year (e.g., 2022),

• YYYY-Qq for a specific quarter65 (e.g., 2022-Q1),

• YYYY-MM for a specific month (e.g., 2022-01),

• YYYY-Www for a specific week (e.g., 2022-W01),

• YYYY-MM-DD for a specific day (e.g., 2022-01-01).

3.2.3 Period Comparison

The period comparison feature can be approached in a few different ways. If a
client can request any specific period—which it can after the changes proposed
in the previous section—it can certainly make two requests for two different
periods and compare the data without any additional API features.

This approach would work for endpoints that return data for a single package,
such as Get Package Statistics and Get Package Version Statistics. Unfortu-

65ISO 8601 does not define any format for quarters, so this was inspired by the format
specified for weeks.

50

3.2. Common Properties

nately, it would not work for endpoints returning a list of packages, such as
List Top Packages, because the contents of the list can differ between periods,
so a package present in one response may not be in the other (e.g., a pack-
age can be the most popular in December but not even be in the top 100 in
November).

Additionally, some period types may differ in length—there are leap years,
which affect both yearly and quarterly data, and months themselves have
varying numbers of days too. As a result, comparing data from two different
months may prove challenging to be accomplished correctly.

For these reasons, the API should provide a comparison directly in its re-
sponses. A possible way to do so for a single resource and a list of resources
is shown in Listing 3.4 and Listing 3.5, respectively.

{
"hits": {

"rank": 9,
"typeRank": 7,
"total": 1777734912,
"prev": {

"rank": 8,
"typeRank": 7,
"total": 1821065662

},
...

},
"bandwidth": {

"rank": 17,
"typeRank": 9,
"total": 61982153019627,
"prev": {

"rank": 16,
"typeRank": 9,
"total": 63393192275045

},
...

}
}

Listing 3.4: Previous period comparison format

The advantage of this approach is that a client can get the basic idea of
the trend with minimal effort, which is requested by User Story 02 and User
Story 09, while more detailed historical data can still be obtained, as described

51

3. Design

in the previous section. Additionally, the API can automatically adjust the
prev values to account for period length differences.

[
{

"type": "npm",
"name": "prebid-universal-creative",
"hits": 8933727436,
"bandwidth": 83103736429868,
"prev": {

"hits": 9652830146,
"bandwidth": 94071018724816

}
},
{

"type": "npm",
"name": "bootstrap",
"hits": 8176932289,
"bandwidth": 204497235587383,
"prev": {

"hits": 8376204240,
"bandwidth": 212666680289634

}
},
...

]

Listing 3.5: Previous period comparison format in lists

3.2.4 Hypermedia

While the definition of the HATEOAS principle is usually attributed to Field-
ing’s dissertation, the thesis provides little guidance on how such a principle
would look in practice. In fact, there is no universally accepted format for
representing links between resources in REST APIs. On a high-level, there
are two options:

1. Including links directly in the response body. The exact format is not
standardized and varies across implementations [44].

2. Including links in the Link response header. The format is specified by
RFC 8288 in this case [45].

The first option is generally more flexible as the links can be arbitrarily nested
when there are multiple resources in one response, as shown in Listing 3.6.
This makes it more suitable in most cases.

52

3.2. Common Properties

[
{

"type": "npm",
"name": "bootstrap",
"hits": 8176932289,
"bandwidth": 204497235587383,
"prev": {

"hits": 8376204240,
"bandwidth": 212666680289634

},
"links": {

"self": "/v1/stats/packages/npm/bootstrap",
"versions": "/v1/stats/packages/npm/bootstrap/versions"

}
},
...

]

Listing 3.6: Linking resources in the response body66

One issue with representing links in the response body is that unless an en-
velope67 is used, there is no place to put the links that relate to the whole
collection in responses that contain multiple resources—particularly pagina-
tion links. However, this is an excellent use case for the Link header.

Regardless of where the links are located, it is important to pay attention to
the relation types, which specify how the links are to be interpreted. For ex-
ample, in Listing 3.6, there is a link with a registered self relation, which refers
to the original resource included in the list, and a link with a custom versions

relation, the meaning of which is specific to this service. The link of registered
relations is maintained by the Internet Assigned Numbers Authority [46].

3.2.5 Pagination

Endpoints that return a list of resources should support pagination, and,
again, there are multiple ways to approach this:

1. Offset pagination typically uses limit and page (or offset) parameters
that specify how many resources to return and how many to skip at the
beginning.

66The actual links should be absolute URLs and include the host, but only the path
portion is shown here for brevity.

67An object that wraps the returned data so that additional metadata can be returned
in the same response body.

53

3. Design

2. Cursor pagination replaces the page parameter with a cursor parame-
ter, which identifies the last resource in the current set. This concept is
sometimes also referred to as key-set pagination or seek pagination with
minor differences in what exactly the cursor parameter represents, but
the core idea is always the same.

Offset pagination typically translates to a SELECT ... OFFSET query on the back-
end if a relational database is used. This approach is sometimes criticized [47]
because the usual implementation can lead to performance problems with large
offset values and inconsistencies, such as duplicate results if the underlying
data changes while requesting different pages. On the other hand, it has the
advantage of being very simple to implement and providing random access
(users can specify an exact page) to all resources.

The advantage of cursor pagination is that it can be implemented using a
SELECT ... WHERE query in SQL databases, which can be supported by indexes,
and that the results are consistent even if the underlying data change between
requests. A disadvantage, though, is that only sequential access is possible.

jsDelivr already uses the offset approach in the List Top Packages endpoint,
and because the dataset does not change frequently and random access is a
desired feature, the same approach should be used for the new endpoints. This
decision can be revisited in the implementation phase should the performance
impact turn out to be significant.

Additionally, all paginated endpoints should provide pagination metadata,
which are currently missing: the total number of records and the number
of available pages. Because the existing endpoints do not wrap the data in
an envelope, the metadata must go into headers. The header names are not
standardized in this case, so X-Total-Count will be used for the number of
resources and X-Total-Pages for the number of available pages.

Links to the surrounding pages should also be provided using the Link header
as described in the previous section. The HTML specification defines the prev

and next relation types, which can be used for the previous and the next page,
respectively [48], and RFC 5988 defines first and last relation types, which

54

3.3. Package Statistics

can be used for the first and the last page [49]. The final list of pagination-
related headers is shown in Listing 3.7.

Link: <https://data.jsdelivr.com/v1/stats/packages>; rel="first",
<https://data.jsdelivr.com/v1/stats/packages?page=2>; rel="prev",
<https://data.jsdelivr.com/v1/stats/packages?page=3>; rel="self",
<https://data.jsdelivr.com/v1/stats/packages?page=4>; rel="next",
<https://data.jsdelivr.com/v1/stats/packages?page=100>; rel="last"

X-Total-Count: 402302
X-Total-Pages: 4024

Listing 3.7: Pagination metadata

3.3 Package Statistics

As should be clear from the previous parts of the text, the package statistics
endpoints need to be entirely redesigned to better match the project require-
ments. That means new endpoint paths need to be selected too. Luckily,
there are two inconsistencies in the current path scheme that have not yet
been discussed, and that can be taken advantage of:

1. The statistics endpoints for individual packages build upon the metadata
path scheme and add a /stats suffix, while the most popular packages
list uses a /stats prefix instead.

2. The package endpoints are grouped under a singular /package prefix,
while the most popular packages list uses the plural /packages form.

Because the new requirements include several new statistics-related features
that share many common properties, it makes sense to have all of them
grouped under a /stats prefix. At the same time, the singular /package prefix
can be changed to plural for better consistency. By introducing the changes
under a new path scheme, the existing endpoints are allowed to keep working
without any changes. The overview of changes is shown in Listing 3.8.

/v1/stats/packages // format-only changes
- /v1/package/npm/:name/stats/:groupBy? // kept but deprecated
+ /v1/stats/packages/npm/:name
+ /v1/stats/packages/npm/:name/versions
- /v1/package/npm/:name@:version/stats/:groupBy? // kept but deprecated
+ /v1/stats/packages/npm/:name@:version
+ /v1/stats/packages/npm/:name@:version/files

Listing 3.8: Overview of package statistics endpoints changes

55

3. Design

As suggested in Chapter 2, the period parameter should be moved to the query
string for all endpoints.

3.3.1 List Top Packages

GET /v1/stats/packages

The first endpoint combines all properties described in the previous section:
bandwidth data added as a bandwidth property, period comparison via the prev

object, hypermedia provided in the links object, and pagination support via
the limit and page parameters. All of these changes are backward compatible,
as shown in Listing 3.9.

Because the response now contains multiple types of values, a new parameter
by with the possible value of hits or bandwidth is introduced to define the list
order, and a parameter type with the possible value of gh or npm is introduced
to filter specific package types. Links to more detailed statistics are included
in the response.

[
{

"type": "npm",
"name": "bootstrap",
"hits": 8176932289,
"bandwidth": 204497235587383,
"prev": {

"hits": 8376204240,
"bandwidth": 212666680289634

},
"links": {

"self": "/v1/stats/packages/npm/bootstrap",
"versions": "/v1/stats/packages/npm/bootstrap/versions"

}
},
...

]

Listing 3.9: GET /v1/stats/packages

3.3.2 Get Package Statistics

GET /v1/stats/packages/npm/:name

This new endpoint provides daily usage statistics but without an additional

56

3.3. Package Statistics

version breakdown to reduce the response size in cases where only daily totals
are needed, as suggested in Section 2.4.2.2. The format, which also incorpo-
rates all new features, is shown in Listing 3.10.

{
"hits": {

"rank": 12,
"typeRank": 8,
"total": 1791475308,
"dates": {

"2022-12-20": 59852966,
"2022-12-21": 58074028,
...

},
"prev": {

"rank": 11,
"typeRank": 8,
"total": 1807320472

}
},
"bandwidth": { ... },
"links": {

"self": "/v1/stats/packages/npm/jquery",
"versions": "/v1/stats/packages/npm/jquery/versions"

}
}

Listing 3.10: GET /v1/stats/packages/npm/:name

3.3.3 List Top Package Versions

GET /v1/stats/packages/npm/:name/versions

This new endpoint focuses on User Story 03, and instead of returning an object
with values for all versions like its predecessor, it returns a sorted list of the
top n versions, with the order defined via the by parameter.

Thanks to the added pagination support, the client no longer has to load the
whole list if it only cares about the top few entries, or it can load the entries
incrementally. It also does not need to do any additional sorting. The format
is shown in Listing 3.11.

57

3. Design

[
{

"type": "version",
"version": "3.6.0",
"hits": {

"total": 514886000,
"dates": {

"2022-12-20": 16462020,
"2022-12-21": 15609835,
...

}
},
"bandwidth": { ... },
"links": {

"self": "/v1/stats/packages/npm/jquery@3.6.0",
"files": "/v1/stats/packages/npm/jquery@3.6.0/files"

}
},
...

]

Listing 3.11: GET /v1/stats/packages/npm/:name/versions

3.3.4 Get Package Version Statistics

GET /v1/stats/packages/npm/:name@:version

This new endpoint provides daily usage statistics for the package version with-
out an additional file breakdown. The format mirrors that of the Get Package
Statistics endpoint, as shown in Listing 3.12, but excludes the fields rank,
typeRank, and prev, as those are not expected to be tracked for individual
versions.

{
"hits": {

"total": 514886000,
"dates": {

"2022-12-20": 16462020,
"2022-12-21": 15609835,
...

}
},
"bandwidth": { ... },
"links": {

"self": "/v1/stats/packages/npm/jquery@3.6.0",
"files": "/v1/stats/packages/npm/jquery@3.6.0/files"

}
}

Listing 3.12: GET /v1/stats/packages/npm/:name@:version

58

3.4. Proxy Endpoints Statistics

3.3.5 List Top Package Version Files

GET /v1/stats/packages/npm/:name@:version/files

This new endpoint follows the same idea as the List Top Package Versions
endpoint. It focuses on User Story 04 and returns a sorted list of the top n
files, with the order defined via the by parameter. The format is shown in
Listing 3.13.

[
{

"name": "/dist/jquery.min.js",
"hits": {

"total": 482683431,
"dates": {

"2022-12-20": 15003649,
"2022-12-21": 14336204,
...

}
},
"bandwidth": { ... }

},
...

]

Listing 3.13: GET /v1/stats/packages/npm/:name@:version/files

3.4 Proxy Endpoints Statistics

Proxy endpoint statistics are a new feature aimed at providing basic insight
into the usage of custom endpoints used by a few projects, as requested by
Functional Requirement 05.

The proxy endpoints provide increased flexibility for projects that cannot fol-
low the standard npm publishing flow, but that also means analyzing their
usage is more challenging—there is no concept of releases, and the URL struc-
ture is entirely up to the project. For this reason, the API only provides two
features: getting daily request and bandwidth totals and listing the most pop-
ular files. In both cases, a period parameter is available similarly to package
statistics.

Because the list of all proxy endpoints has never been public, the API does not

59

3. Design

add a way to list the most popular endpoints, as is possible with packages—
the endpoints are designed so that this can be added later, however, if deemed
useful.

3.4.1 Get Proxy Statistics

GET /v1/stats/proxies/:name

This new endpoint provides daily usage statistics for the proxy endpoint. Its
format is greatly inspired by the Get Package Statistics endpoint, as shown in
Listing 3.14.

{
"hits": {

"total": 11706855,
"dates": {

"2022-12-21": 437705,
"2022-12-22": 375894,
...

},
"prev": { "total": 17533643 }

},
"bandwidth": { ... },
"links": {

"files": "/v1/stats/proxies/pyodide/files"
}

}

Listing 3.14: GET /v1/stats/proxies/:name

3.4.2 List Top Proxy Files

GET /v1/stats/proxies/:name/files

This new endpoint is similar to List Top Package Version Files and returns a
sorted list of the top n files, with the order defined via the by parameter, except
there is no daily breakdown. The format allows adding it later if needed, as
shown in Listing 3.15.

The daily breakdown is omitted for performance reasons because analysis of
the existing proxy endpoints has shown that some have more than 500 000
files, and if a breakdown were to be provided for every file, the query would
have to run over all records instead of a small pre-aggregated set.

60

3.5. Network Statistics

[
{

"name": "/v0.21.3/full/pyodide.js",
"hits": { "total": 379513 },
"bandwidth": { "total": 1869361770 }

},
{

"name": "/v0.21.3/full/pyodide_py.tar",
"hits": { "total": 347740 },
"bandwidth": { "total": 25752775839 }

},
...

]

Listing 3.15: GET /v1/stats/proxies/:name/files

3.5 Network Statistics

The network statistics are a new feature aimed at providing insight into the
usage of the service as a whole, as requested by Functional Requirement 06.
The feature works with two datasets:

1. network data consisting of date, country, provider, hits, and bandwidth
records,

2. package and proxy data, consisting of records for the individual packages
and proxies.

3.5.1 Get Network Statistics

GET /v1/stats/network

This new endpoint works with the first dataset and focuses on giving a net-
work-wide view of that data, as requested by User Story 07 and User Story 09.
It provides the totals of hits and bandwidth and lists all providers that served
some traffic in the specified period. The providers list is sorted by the individ-
ual provider’s total value, and a further daily breakdown is available for each
provider.

Because there is a possibility of introducing a further breakdown for each daily
value in the future, each day is represented as an object with its own total,
unlike in Package Statistics and Proxy Endpoints Statistics, where the daily
values are simple numbers. The format is shown in Listing 3.16.

61

3. Design

{
"hits": {

"total": 182792647052,
"providers": [

{
"code": "CF",
"name": "Cloudflare",
"total": 110342830542,
"dates": {

"2022-12-21": { "total": 4288943180 },
"2022-12-22": { "total": 4210110448 },
...

},
"prev": { "total": 125552779443 }

},
...

],
"prev": { "total": 179958950602 }

},
"bandwidth": { ... }

}

Listing 3.16: GET /v1/stats/network

The endpoint supports mutually exclusive query string parameters continent

and country, which accept a continent code or a country code and limit the
query to the specified location. Note that the response format and size do not
change in this case because values are already grouped across all locations.

3.5.2 Get Network Country Statistics

GET /v1/stats/network/countries

This new endpoint also works with the first dataset, but unlike the previous
one, it focuses on User Story 08 and provides the totals of hits and bandwidth

for each country that received some traffic in the specified period.

The countries list is sorted by the individual country’s total value, and a
further provider breakdown is available for each country. The format is shown
in Listing 3.17.

62

3.5. Network Statistics

{
"hits": {

"total": 182792647052,
"countries": [

{
"code": "US",
"name": "United States",
"total": 34996110122,
"providers": [

{
"code": "CF",
"name": "Cloudflare",
"total": 21125347485

},
...

],
"prev": {

"total": 35056057363
}

},
...

]
},
"bandwidth": { ... }

}

Listing 3.17: GET /v1/stats/network/countries

3.5.3 Get Network Content Statistics

GET /v1/stats/network/content

The last network endpoint works with the second dataset and provides the
totals of hits and bandwidth for different content categories—packages, proxies,
and other requests. For each category, a daily breakdown is available. The
format is shown in Listing 3.18.

63

3. Design

{
"hits": {

"total": 185300101597,
"packages": {

"total": 177783822166,
"dates": {

"2022-12-21": { "total": 5835999047 },
"2022-12-22": { "total": 5742170812 },
...

},
"prev": { "total": 172200688390 }

},
"proxies": { ... },
"other": { ... },
"prev": { "total": 180266736800 }

},
"bandwidth": { ... }

}

Listing 3.18: GET /v1/stats/network/content

3.6 Browser and Platform Statistics

The browser and platform statistics feature utilizes the fact that, thanks to its
scale, jsDelivr can observe and measure global technology usage trends. The
currently available data consist of the user’s country, their operating system
and its version (further referred to as the “platform”), and the browser name
and its version. This can tell us:

1. which browsers have the highest market share,

2. which browser versions have the highest market share,

3. in which countries is a specific browser the most popular,

4. on which platforms is a specific browser most often used,

5. which versions of a specific browser are the most popular,

6. in which countries is a specific browser version the most popular.

This list guides the design philosophy of the specific endpoints in the following
sections. A similar list could also be constructed for platform usage, but it
is, along with the respective endpoints, omitted for the sake of brevity. The
implementation should follow the same principles for both the browser and
the platform endpoints.

64

3.6. Browser and Platform Statistics

3.6.1 Regional Data

In addition to observing global trends, the data can be used to observe and
compare smaller geographic regions too. The API should, therefore, provide
a way to query not only global data but also data for specific continents or
countries. This should be done using the continent and country query string
parameters already introduced in Section 3.5.1.

3.6.2 Period Handling

Due to the high number of possible combinations of countries, operating sys-
tem versions, and browser versions, jsDelivr tracks the browser and platform
data on a monthly basis, as opposed to the daily basis used for all other
statistics. This means it is not possible to query periods such as “the past 30
days”. Instead, the period parameter can have the value of s-month representing
the last calendar month, s-year representing the last calendar year, or a date
representing a specific year, quarter, or month, as described in Section 3.2.2.

3.6.3 List Top Browsers (grouped versions)

GET /v1/stats/browsers

This endpoint returns a list of browsers ordered by market share and provides
links to additional data for each specific browser, as shown in Listing 3.19.

[
{

"name": "Chrome",
"share": 57.85,
"prev": { "share": 58.15 },
"links": {

"countries": "/v1/stats/browsers/Chrome/countries",
"platforms": "/v1/stats/browsers/Chrome/platforms",
"versions": "/v1/stats/browsers/Chrome/versions"

}
},
...

}

Listing 3.19: GET /v1/stats/browsers

Note that this is the API’s first more advanced use of the HATEOAS concept.
The additional data that can be requested, and hence the set of returned links,

65

3. Design

depend on the request parameters. For instance, if the client requests the list
of browsers for a specific country using the country parameter, the option of
providing a list of the most popular countries no longer makes sense, and the
link should be omitted.

3.6.4 List Top Browsers (separate versions)

GET /v1/stats/browsers/versions

This endpoint is similar to the previous one but lists each browser version
independently, as shown in Listing 3.20. The reason for designing these as two
distinct endpoints is that the list with separate versions is likely to contain at
least a few hundred records, and the client should not be expected to fetch
and aggregate all of them to work with grouped data.

[
{

"name": "Chrome",
"version": "108",
"share": 32.47,
"prev": { "share": 0.08 },
"links": {

"countries": "/v1/stats/browsers/Chrome/versions/108/countries"
}

},
...

}

Listing 3.20: GET /v1/stats/browsers/versions

3.6.5 List Top Browser Countries

GET /v1/stats/browsers/:name/countries

This endpoint returns a list of countries where the specified browser is the most
popular, represented by their ISO 3166-1 alpha-2 codes [35], i.e., the countries
are ordered by market share of the specified browser in that country.

For example, in Listing 3.21, the specified browser has the highest share of
82.91 % in India. The provided links point to the list of top browsers and
platforms in the country.

66

3.6. Browser and Platform Statistics

[
{

"country": "IN",
"share": 82.91,
"prev": { "share": 82.61 },
"links": {

"browsers": "/v1/stats/browsers?country=IN",
"platforms": "/v1/stats/platforms?country=IN"

}
},
...

]

Listing 3.21: GET /v1/stats/browsers/:name/countries

3.6.6 List Top Browser Platforms

GET /v1/stats/browsers/:name/platforms

This endpoint returns a list of platforms the specified browser runs on, ordered
by the platform’s share of all requests made by the browser. For example,
Listing 3.22 shows that 87.43 % of the browser’s requests came from Android.

[
{

"name": "Android",
"share": 87.43,
"prev": { "share": 29.59 },
"links": {

"browsers": "/v1/stats/platforms/Android/browsers",
"countries": "/v1/stats/platforms/Android/countries",
"versions": "/v1/stats/platforms/Android/versions"

}
},
...

]

Listing 3.22: GET /v1/stats/browsers/:name/platforms

3.6.7 List Top Browser Versions

GET /v1/stats/browsers/:name/versions

This endpoint returns a list of the most popular browser versions ordered by
their market share, as shown in Listing 3.23.

67

3. Design

[
{

"version": "108",
"share": 32.47,
"prev": { "share": 0.08 },
"links": {

"countries": "/v1/stats/browsers/Chrome/versions/108/countries"
}

},
...

]

Listing 3.23: GET /v1/stats/browsers/:name/versions

3.6.8 List Top Browser Version Countries

GET /v1/stats/browsers/:name/versions/:version/countries

This endpoint is similar to List Top Browser Countries but returns data for
a specific browser version. For example, in Listing 3.24, the specified browser
version has the highest share of 54.89 % in Ecuador.

[
{

"country": "EC",
"share": 54.89,
"prev": { "share": 0.1 },
"links": {

"browsers": "/v1/stats/browsers?country=EC",
"platforms": "/v1/stats/platforms?country=EC"

}
},
...

]

Listing 3.24: GET /v1/stats/browsers/:name/versions/:version/countries

3.7 Statistics Periods

Finally, there is a statistics-related feature not included in the original require-
ments but one that greatly compliments the new ability to query historical
data described in Section 3.2.2.

While the client can request data for, e.g., a specific month, it has no way of
knowing in advance if or which data are available for that month. This can
get particularly confusing as different features are added over time.

68

3.7. Statistics Periods

For instance, package statistics have been available since mid-2017, while
proxy statistics were added in 2020, and browser and platform statistics only
in 2022. A basic use case, where the client presents a list of available datasets
to the user, and the user picks one of the options, would therefore require that
the client itself keep track of data availability.

This problem can be elegantly solved using the HATEOAS concept: the API
can return a list of all periods it has some data for, with links to data that
are available in each respective period. The exact form of this endpoint is
described in the next section.

3.7.1 List Statistics Period

GET /v1/stats/periods

This endpoint returns an ordered list of all available periods, their types, and
links to the available data. For example, Listing 3.25 shows a case where
the 2022 period can be used to request network, package, and proxy data,
but there are no proxy data available for 2022-Q3, and only package data are
available for 2022-03.

Note that because proxy data can only be requested given a specific proxy
name, the response format makes use of URI templates, as defined by RFC
6570 [50], to indicate that the {name} part of the link must be replaced with a
specific value before the request is made.

69

3. Design

[
{

"period": "2022",
"periodType": "s-year",
"links": {

"network": "v1/stats/network?period=2022",
"packages": "v1/stats/packages?period=2022",
"proxies": "v1/stats/proxies/{name}?period=2022"

}
},
...
{

"period": "2022-Q3",
"periodType": "s-quarter",
"links": {

"network": "v1/stats/network?period=2022-Q3",
"packages": "v1/stats/packages?period=2022-Q3",

}
},
...
{

"period": "2022-03",
"periodType": "s-month",
"links": {

"packages": "v1/stats/packages?period=2022-03",
}

},
...

]

Listing 3.25: GET /v1/stats/periods

3.8 Package Metadata

The metadata features, unlike the statistics features, do not require major
changes but would benefit from moving a few parameters from the URL path
to the query string and the use of hypermedia. Although minor, these changes
would still require creating new versions of the endpoints, which raises the
question if they are important enough to warrant doing so. Hence, this comes
as the last part of this chapter.

Hypermedia are certainly a useful feature, and the current form of path param-
eters would complicate creating the OpenAPI document. Nevertheless, these
changes, on their own, could easily be postponed. However, in the context of
the planned statistics changes, it might make sense to redesign the metadata
endpoints, too, for the sake of consistency. This way, new API users will get

70

3.8. Package Metadata

a better overall experience, while the existing ones will not be affected. The
overview of changes is shown in Listing 3.26, with details described in the next
sections.

- /v1/package/npm/:name // kept but deprecated
+ /v1/packages/npm/:name
- /v1/package/resolve/npm/:name@:range? // kept but deprecated
+ /v1/packages/npm/:name/resolved
- /v1/package/npm/:name@:version/:structure? // kept but deprecated
+ /v1/packages/npm/:name@:version

Listing 3.26: Overview of package metadata endpoints changes

3.8.1 Get Package Metadata

GET /v1/packages/npm/:name

Compared to its previous form, the new version of this endpoint uses a more
extensible format for the versions entries, adds links to the related resources
to each version object, and also adds links related to the package as a whole,
as shown in Listing 3.27.

{
"type": "npm",
"name": "jquery",
"tags": {

"beta": "3.6.1",
"latest": "3.6.1"

},
"versions": [

{
"version": "3.6.1",
"links": {

"self": "/v1/packages/npm/jquery@3.6.1",
"stats": "/v1/stats/packages/npm/jquery@3.6.1"

}
},
...

],
"links": {

"stats": "/v1/stats/packages/npm/jquery"
}

}

Listing 3.27: GET /v1/packages/npm/:name

71

3. Design

3.8.2 Get the Resolved Package Version

GET /v1/packages/npm/:name/resolved

Compared to its previous form, the new version of this endpoint uses a query
string parameter specifier instead of the range path parameter. The new name
better represents the fact that the value may be not only a version range but
also a release tag. The fields type, name, and links are added in the response,
as shown in Listing 3.28.

{
"type": "npm",
"name": "jquery",
"version": "3.6.1",
"links": {

"self": "/v1/packages/npm/jquery@2.2.4",
"stats": "/v1/stats/packages/npm/jquery@2.2.4"

}
}

Listing 3.28: GET /v1/packages/npm/:name/resolved

3.8.3 Get Package Version Metadata

GET /v1/package/npm/:name@:version

Compared to its previous form, the new version of this endpoint moves the
structure parameter from the path to the query string, as previously suggested.
This approach is chosen over content negotiation due to the caching-related
issues described in Section 3.1.5. The response format does not change, except
the already-deprecated time field is removed from file entries.

3.9 Conclusion

Changes to public API features are very difficult to make once clients start us-
ing them, which is why design is arguably the most important part of the API
development process. As such, this chapter provided an exhaustive description
of all necessary changes, as well as the reasoning behind them.

The final design builds upon many existing web standards and conventions to
make the use of the API as simple and intuitive as possible.

72

Chapter 4
Implementation

While the scope of the changes is rather big and includes 24 entirely new end-
points as well as improvements to the existing ones, many of them use similar
concepts. For that reason, this chapter only highlights the most interesting
parts of the implementation process.

In addition to the application changes, a significant part of the work had to
be done at the database level to prepare the data in a form suitable for simple
and efficient consumption.

4.1 Schemas and Validation Middleware

Because the API had only used query string parameters sparingly so far, there
was no established mechanism for their validation. One of the first changes,
therefore, was adding parameter schema definitions and creating a validation
middleware based on Joi.

The schema definitions make use of composition, where each parameter schema
is defined on its own, and the individual parameter definitions are then com-
bined into larger logical groups, as shown in Listing 4.1.

The definitions were created with an emphasis on clear error messages for
invalid values so that the messages can be directly embedded in API error
responses.

73

4. Implementation

1 const primitives = {
2 continent: Joi.valid(...Object.keys(continents)).messages({
3 '*': '{{#label}} must be a valid continent code in uppercase',
4 }),
5 country: Joi.valid(...Object.keys(countries)).messages({
6 '*': '{{#label}} must be a valid ISO 3166-1 alpha-2 country code ...',
7 }),
8 limit: Joi.number().integer().positive().max(100).default(100),
9 page: Joi.number().integer().positive().max(100).default(1),

10 ...
11 };
12
13 const composedTypes = {
14 paginatedStats: { limit: primitives.limit, page: primitives.page },
15 };
16
17 const composedSchemas = {
18 location: Joi.object({
19 continent: primitives.continent,
20 country: primitives.country
21 }).oxor('continent', 'country')
22 };

Listing 4.1: Parameter schema definitions

The final schema for each route is composed of the individual types and passed
to the newly created validation middleware, as shown in Listing 4.2. The
validation middleware checks that every field present in the request matches
its definition, and if not, it aborts the processing and generates a user-friendly
error message.

1 const routes = {
2 '/stats/browsers': {
3 handlers: [
4 validate({
5 query: Joi.object({
6 period: schema.periodStatic,
7 ...schema.paginatedStats,
8 }).concat(schema.location),
9 }),

10 ...
11],
12 },
13 ...
14 };

Listing 4.2: Route parameter validation

In addition to clear error messages, error responses generated by the middle-

74

4.2. Period Comparison

ware contain links pointing directly to the documentation page for the used
endpoint, as shown in Listing 4.3. This was achieved by implementing two
helpers, getDocsPath() and getDocsLink(), which automatically generate the cor-
rect documentation link based on the existing route definitions.

{
"message": "Invalid parameter value: `period` must be one of [day, we...",
"links": {

"documentation": "/docs/data.jsdelivr.com#get-/v1/stats/packages"
}

}

Listing 4.3: Error response

Lastly, the middleware uses introspection68 to collect and expose metadata
about the current route schema. It extends the route object with a list of
defined schema keys, the information which of them are required, and what,
if any, are their default values. This information is then utilized by the route
handlers, as described in the next sections.

4.2 Period Comparison

As described in Section 3.2.3, the API now needs data from two different
periods in some cases, and there were two ways to implement this. The first
option was retrieving the data for the first period and then, for each record,
retrieving its data from the previous period. This option would not require
any database schema modifications but would result in what is known as the
“N + 1 query problem” since it requires one query to retrieve the initial dataset
and then one additional query for each of its records.

The second option was modifying the materialized views so that all data can
be retrieved in one query. Listing 4.4 shows a simplified snippet from the pro-
cedure responsible for generating view_top_packages and highlights all required
modifications. This approach was used in all existing and newly created views.

First, @prevScaleFactor is calculated to address the issue with possibly different
period lengths. On lines 19–27, data for the previous period are selected and
adjusted by @prevScaleFactor. On lines 11–14, ranks for the previous period

68The ability of a program to examine an object type and its properties at runtime.

75

4. Implementation

are computed, and the coalesce() function is used to handle cases when there
are no previous data for a particular package.

1 set @prevScaleFactor = (datediff(aDateTo, aDateFrom) + 1)
2 / (datediff(aPrevDateTo, aPrevDateFrom) + 1);
3 ...
4 insert into view_top_packages
5 select aPeriod, aDate, type, name,
6 if(hits > 0, rank() over (order by hits desc), null),
7 hits,
8 if(bandwidth > 0, rank() over (order by bandwidth desc), null),
9 bandwidth,

10 if(prevHits > 0, rank() over (order by prevHits desc), null),
11 coalesce(prevHits, 0),
12 if(prevBandwidth > 0, rank() over (order by prevBandwidth desc), null),
13 coalesce(prevBandwidth, 0)
14 from (
15 select type, name,
16 sum(hits) as hits,
17 sum(bandwidth) as bandwidth,
18 (select round(sum(hits) * @prevScaleFactor)
19 from package_hits
20 where packageId = package.id
21 and date between aPrevDateFrom and aPrevDateTo
22 group by packageId) as prevHits,
23 (select round(sum(bandwidth) * @prevScaleFactor)
24 from package_hits
25 where packageId = package.id
26 and date between aPrevDateFrom and aPrevDateTo
27 group by packageId) as prevBandwidth
28 from package
29 join package_hits on package.id = package_hits.packageId
30 where date between aDateFrom and aDateTo
31 group by packageId
32 order by hits desc
33) t;

Listing 4.4: Period comparison implementation

4.3 Historical Data

To provide the option of querying historical data, the handling of all materi-
alized views had to be modified. Before, their contents would be deleted once
a day, and the new data for the past day, week, month, and year would be
added. Of course, there would be no point in recomputing data for a fixed
period, e.g., the year of 2021, after it has ended, so this process was modified.
The records necessary to provide historical data are computed only once and
then stored forever.

76

4.4. Link Builder

This is handled by new procedures updateMonthlyViews(), updateQuarerlyViews(),
and updateYearlyViews(). Taking updateMonthlyViews() as an example, the pro-
cedure iterates over all months from January 2020 to the current date. For
each month, it checks whether data for that month have already been com-
puted, and if not, calls the procedures that compute that data and passes
them the appropriate date ranges, as shown in Listing 4.5.

This approach ensures consistency and fault resistance. Should the process
fail for any reason, data for the missing periods will be computed the next
time the procedure is called.

Note that despite Section 3.2.2 mentioning the possibility of providing his-
torical data for all period types, the current implementation only adds years,
quarters, and months. Historical data for weeks and days were intentionally
omitted for the relatively low usefulness and high storage requirements.

1 set @firstStart = date('2020-01-01');
2 set @dateFrom = date_sub(aDate, interval dayofmonth(aDate) - 1 day);
3
4 while date_sub(@dateFrom, interval 1 month) >= @firstStart
5 do
6 set @dateFrom = date_sub(@dateFrom, interval 1 month);
7 set @dateTo = date_sub(
8 date_add(@dateFrom, interval 1 month),
9 interval 1 day

10);
11 set @prevDateFrom = date_sub(@dateFrom, interval 1 month);
12 set @prevDateTo = date_sub(@dateFrom, interval 1 day);
13
14 if not exists(select * from view_top_packages where `date` = ...) then
15 call updateViewTopPackagesForPeriod('s-month', @dateFrom, ...);
16 end if;
17 end while;

Listing 4.5: Historical data implementation

4.4 Link Builder

To facilitate the inclusion of links in API responses, the LinkBuilder class was
created. It exposes an interface following the builder pattern [51] and, once
configured, can be passed an array of resources to which the links need to be
added.

77

4. Implementation

The class utilizes the existing routing information for generating the URLs, the
schema metadata provided by the validation middleware, and the properties of
the passed resources to generate the links with as little boilerplate as possible,
but the default behavior can always be customized by the exposed methods.

Listing 4.6 shows a case where links to browsers and platforms are being added,
and the builder is explicitly configured to include a value for the country pa-
rameter and to drop the current value of the continent parameter if present.

1 let resourcesWithLinks = this.linkBuilder()
2 .refs({
3 browsers: routes['/stats/browsers'].getName(),
4 platforms: routes['/stats/platforms'].getName(),
5 })
6 .includeQuery(['country'])
7 .omitQuery(['continent'])
8 .build(resources)

Listing 4.6: Link builder

While generating the links may seem like an easy task at first, the builder
takes care of several issues that may not be immediately obvious.

First, some query string parameters are expected to be preserved when moving
between resources, and some are not. For instance, if a client requests a list
of the most popular packages in the past year and the response includes links
to detailed statistics for each package, the period=year parameter must be
preserved in all links. On the other hand, if the client requests a second page
of a paginated endpoint, the page=2 parameter is not relevant to the generated
links and must be omitted. The builder handles this by comparing the current
request parameters with those of the target route and keeping those that are
not globally excluded (like the pagination parameters).

The second problem is that sometimes a parameter that is not present in the
current request may be required in the target route. The builder handles such
cases by looking at the list of required parameters in the target route and
filling in the required values based on the resource properties.

Third, the parameters in internal route definitions do not always directly

78

4.5. Pagination

match the properties of public resources. This issue is addressed by the sup-
port for transform rules, which do not change the form of the final output but
customize how values are read from the provided resources.

Last, there is an issue with ensuring the generated links are always in their
canonical form. For example, if the optional parameter period has a default
value of month, then the links /resource and /resource?period=month have the
same meaning, but only one of them should be used in the generated links,
regardless of whether the value was explicitly included in the request or not.
The builder addresses this by checking the default value for each parameter
and omitting the parameter if its value matches the default.

4.5 Pagination

Since the pagination interface is consistent across all endpoints, the implemen-
tation aimed at adding it with as little code duplication as possible. Ideally,
there would be a single function that can transform any given query into a
version that returns only a limited set of rows and all required pagination
metadata.

The main obstacle in this was the requirement of returning the number of
available resources as described in Section 3.2.5 because that means that in
addition to the query that retrieves the data, a second query must be executed
to determine the total count.

SQL provides a function COUNT() for this purpose, but the returned number is
affected by GROUP BY aggregations, which may be used in some queries. Ad-
ditionally, the original query may contain WHERE conditions and other clauses
that impact the resulting number of rows. Overall, it may seem that while
writing a separate COUNT() query for each original query is simple, creating an
abstraction that does this automatically is not.

In the end, the goal was achieved by adding a paginate() method, which accepts
an SQL query and the pagination options to the BaseModel class. To build the
counting query, the original SQL query is cloned, and its SELECT part is replaced
by COUNT() used as a window function.

79

4. Implementation

The difference between more known aggregate functions and window functions
is the set of rows on which they operate. By default, window functions operate
on the entire dataset, even if a GROUP BY clause is used [52]. All other parts
of the original query are preserved. Both queries are then executed, and
the returned object includes both the records themselves and the pagination
metadata, as shown in Listing 4.7.

1 static async paginate (query, limit, page) {
2 ...
3 if (limit) {
4 // Construct the count query.
5 countQuery = query.clone().select('count(*) over () as count');
6 // Apply limits to the original query.
7 query.limit(limit).offset((page - 1) * limit);
8 }
9 ...

10 return { page, limit, count, pages, records };
11 }

Listing 4.7: Pagination implementation

This approach turned out to work well with most queries, but in some cases,
the count query would be surprisingly slow. Analyzing these cases revealed a
link to ORDER BY clauses in the original queries. Even though an ORDER BY clause
has no effect on the result of the first query, its presence likely confused the
database and resulted in a much slower execution plan. For this reason, the
method was later updated to remove the ORDER BY clause from the count query.

In addition to making it very simple to adapt all queries to support pagination,
this approach also made it simple to consume the metadata in the request
handlers where headers need to be set. For this purpose, another method
was created in the BaseRequest class. It accepts the metadata object exactly
as returned from the paginate() method and sets the Link, X-Total-Count, and
X-Total-Pages headers.

4.6 Regional Data

The Get Network Statistics, Get Network Country Statistics, and all Browser
and Platform endpoints allow users to query global, continent, or country
data. To avoid additional aggregations in user-facing queries, each of these
options must be computed in advance.

80

4.7. Proxy Statistics

This is done by including two new fields in all affected views: a locationType

field with the possible values of global, continent, and country, and a locationId

field, which contains the respective continent code or country code.

In addition to the performance benefits, this approach also has the advantage
of providing a unified interface for the application—the API does not need
to maintain separate versions of queries with a different aggregation logic for
each location type. Instead, it only needs a simple SELECT query in all cases.
The logic stays hidden in the code responsible for generating the materialized
views.

Note that while adding a country breakdown to any endpoint has a major
impact on the number of stored records because there are currently 250 reg-
istered countries, the data duplication caused by storing separate records for
global and continent data only has a negligible impact. In addition to the 250
records that need to be stored either way, only one additional record is needed
to precompute the global data, and six records are needed for continent data.

4.7 Proxy Statistics

The proxy statistics required the addition of two new materialized views, as
shown in Figure 4.1. The first view stores data for Get Proxy Statistics, and the
second for List Top Proxy Files. At the application level, the endpoints utilize
most of the newly implemented features, but otherwise, their implementation
is not particularly interesting and hence not discussed further.

Figure 4.1: Proxy data materialized views

81

4. Implementation

4.8 Network Statistics

The network statistics required the addition of two new materialized views,
as shown in Figure 4.2. The first view stores data for Get Network Statistics.
Based on the desired API interface, the view needs to store one record for each
combination of the period type, period value, and provider. Additionally,
because the endpoint allows filtering for continents and countries, the view
must include location fields as described in Section 4.6.

The second view stores data for Get Network Country Statistics, which only
requires request and bandwidth totals for each country.

Figure 4.2: Network data materialized views

4.9 Browser and Platform Statistics

The 12 new browser and platform endpoints required the addition of 10 mate-
rialized views, and because most of the views may contain data with different
aggregation types (continent, country, and global), there are overall 26 sepa-
rate SQL queries used to generate them.

While the queries themselves are very complex, the structure of the views is
rather simple, as only share and prevShare values are stored for each combina-
tion of parameters. The browser-related views are shown in Figure 4.3, with
the platform-related ones being similar.

82

4.9. Browser and Platform Statistics

Figure 4.3: Browser data materialized views

When retrieving data from the views, the initial implementation sorted the
records in descending order by share and then in ascending order by name in case
two records had exactly the same share. However, this resulted in suboptimal
performance noticed during testing as MariaDB had not supported the use of
indexes for ORDER BY with mixed ASC and DESC modifiers until the version 10.8.1
release [53].

jsDelivr currently uses version 10.5.15, so the affected queries were changed
to use descending order for all fields, which made a functionally negligible
difference but resulted in a significant performance improvement.

83

4. Implementation

4.10 Deprecations Handling

Since there are now several endpoints that were deprecated, there is also a
question of how to inform the current users about this. Even though the
endpoints are not going to be removed, and users do not need to switch to the
new ones if they do not want to, they may be interested in the new features.
Given the project specifics described in Section 1.3.1, this is particularly hard
to do via standard channels such as e-mail.

However, there are several interesting attempts at standardizing the commu-
nication of deprecations and removals directly on the HTTP level. First, there
is RFC 8594, which defines a Sunset header as a way to indicate that a URI is
likely to become unresponsive in the future [54].

There is also a work-in-progress Internet-Draft that aims to establish a new
Deprecation response header and a deprecation relation type as a way to signal
that a resource has been deprecated and to provide additional context [55].
Although not a final standard, some HTTP clients already recognize this
header and use it to display warnings directly in the application logs [56].

The beauty of this approach lies in its genericity. A client that understands
this header can automatically monitor all responses it receives, regardless of
what service they come from, and log warnings the same way it logs its own
code deprecations warnings as soon as the remote service starts sending them.

The last piece of the puzzle is RFC 5829, defining several relation types in-
cluding successor-version, which is meant to provide a link to the successor
version of the requested resource [57].

To make use of the listed standards, a new deprecate() method was added to
the BaseRequest class. Any endpoint can be marked as deprecated by simply
calling the method, which:

• sets the Deprecation header,

• sets the deprecation link pointing to the API documentation,

• sets the successor-version link pointing directly to the new endpoint.

84

4.11. Conclusion

The documentation link does not simply point to the homepage but directly
to the correct new endpoint, thanks to the helpers implemented in Section 4.1

Similarly, the successor-version link does not simply link to the base URL
for the resource—it uses the existing link builder capabilities to preserve all
relevant query string parameters and even remaps them in case their names
change between versions.

Listing 4.8 shows the response headers for /v1/package/resolve/npm/jquery@3

with the version parameter being remapped from the path to the query string
as specifier.

Deprecation: Sun, 01 Jan 2023 00:00:00 GMT
Link: <https://www.jsdelivr.com/docs/data.jsdelivr.com

#get-/v1/packages/npm/-package-/resolved>;
rel="deprecation",

<https://data.jsdelivr.com/v1/packages/npm/jquery/resolved?specifier=3>;
rel="successor-version"

Listing 4.8: Deprecation headers

4.11 Conclusion

This chapter described the selected parts of the implementation process. At
the application level, the implementation focused on using abstractions and
creating reusable units where possible, such as the validation middleware and
the Link Builder.

A considerable amount of work was done at the database level, where the
browser and platform statistics endpoints alone required almost 1000 lines of
SQL code to prepare the data, and that was just one part of the new features.
Additionally, all implementation decisions considered the related performance
aspects.

85

Chapter 5
Testing

To ensure all features work as expected and avoid regressions, jsDelivr relies on
automated tests that run after each commit. The majority of the tests interact
with the application like a real client would by sending HTTP requests and
checking the responses.

These tests use real MariaDB and Redis instances with a dataset prepared
during the test setup. To guarantee reproducible results, all requests to ex-
ternal services such as GitHub and npm are intercepted and mocked69 by
Nock70.

The testing dataset consists of dynamically generated records designed so that
it covers all expected edge cases while staying as compact as possible.

5.1 Snapshot Tests

Unlike other test types, which are typically based on assertions about the
expected behavior, snapshot tests work by storing the real output the first
time they run and comparing it to the output of the subsequent runs. That
means they do not necessarily check that the output is correct but rather that
it does not change after the first run.

69A testing technique of replacing real dependencies with objects that mimic the depen-
dency behavior in a controlled way.

70https://github.com/nock/nock

87

https://github.com/nock/nock

5. Testing

The advantage of this approach is that checking the generated snapshot is
correct when adding a new test is often easier than manually writing the
assertions. For instance, if the expected output is a list with ten items and
each item has several properties, writing assertions for each property of each
item would be tedious.

Instead, a typical test would only check the key characteristics, e.g., that the
number of items is correct, that each item has the required properties, and
maybe that the property values of the first item are correct. A snapshot test,
on the other hand, would automatically store the full list of items with all
properties, allowing it to catch even the smallest differences in the future.
The list would only have to be checked—but not written—manually.

The approach can also be combined with traditional assertions so that the
essential characteristics of the output are checked explicitly, and the exact
match with the snapshot is checked as the last step. This combination reduces
the chance of accidentally accepting an initial snapshot with incorrect output
while still providing the strength of checking all properties.

Some of the existing API tests had already used a similar technique—the
expected response bodies were loaded from a manually-prepared file, and an
exact match of the response was checked. Although this had provided the same
results in terms of test coverage, this approach was missing out on automating
the management of expected outputs.

For example, Jest71, Meta’s open-source testing framework, has built-in sup-
port for snapshot testing. It can automatically store the expected output on
the first run, load and compare it to the outputs of the next runs, and update
it when needed [58].

Mocha and Chai do not offer this functionality but offer a plugin system that
allows for its implementation [30, 31]. In order to stay consistent with the
existing tests and other jsDelivr projects, they were therefore not replaced by
Jest but rather extended with similar features.

71https://jestjs.io

88

https://jestjs.io

5.1. Snapshot Tests

A newly created Chai plugin extends it with a matchSnapshot() method, which
can be called on any HTTP response object, and Mocha hooks are used to
integrate actions that need to run at the start and at the end of the test suite.
The difference between writing tests using the old approach and using the new
plugin is demonstrated in Listing 5.1.

1 - const expected = require('../../data/v1/expected/packages');
2 -
3 it('GET /v1/packages/npm/jquery', async () => {
4 let response = await chai.request(host).get('/v1/packages/npm/jquery');
5
6 expect(response).to.have.status(200);
7 - expect(response.body).to.deep.equal(expected['/v1/package/npm/jquery']);
8 + expect(response).to.matchSnapshot();
9 });

Listing 5.1: Usage of the Chai snapshotting plugin

The plugin takes care of storing, loading, and comparing the data and exposes
several switches to configure its behavior:

• snapshotResponses specifies whether a snapshot should be automatically
recorded in case a test does not have one. Turning this option off means
tests without a stored snapshot will fail.

• updateExistingSnapshots specifies the behavior on an output mismatch.
Either the existing snapshot can be updated (in case changes are ex-
pected), or an error can be thrown.

• pruneOldSnapshots can be used to delete existing snapshots that are no
longer used in any tests.

5.1.1 Time Handling

A downside of snapshot tests is that they do not work well if part of the
output is expected to change over time, which is the case with some of the
statistics endpoints. Their responses include dates relative to the current date
and, accordingly, change every day.

In the existing tests, this problem was solved by calculating the offset between
the date when the response was stored and the current date and shifting all
dates in the response by this offset.

89

5. Testing

Support for this offset-based shifting was included in the new snapshotting
plugin as well, but eventually, this problem was remedied entirely by using
fake timers from Sinon.JS72, which override the process time with a static
value set in the tests.

5.2 Parameterized Tests

While snapshot tests remove the need to manually write assertions, parame-
terized tests further simplify the creation of new tests by reusing a single test
for multiple inputs. Traditionally, the inputs for parameterized tests still need
to be provided manually. The approach described in this section goes one step
further and partially automates this part too.

For example, the List Top Packages endpoint has the following parameters:

• by with two possible values,

• type with two possible values,

• period with eight possible values (not counting historical periods),

• limit with 100 possible values,

• page with 100 possible values.

Additionally, all the parameters are optional, which adds another possible
undefined value for each of them. Even if we disregard the limit and page

parameters, as it is pointless to test all pagination values, there are 72 com-
binations of by, type, and period, each of which should be covered by at least
one test to ensure it works correctly.

One could argue that not all parameters necessarily depend on each other
and that testing all combinations is overly extensive, but the understanding
of which parameters are independent and which interact with each other is
heavily implementation dependent and could change in the future. The goal
of the described approach was to create a robust test suite that could detect
the widest scope of issues with a reasonable effort.

72https://sinonjs.org

90

https://sinonjs.org

5.2. Parameterized Tests

Similarly, it could be assumed that if a certain feature is included in several
endpoints, it does not need to be tested on each endpoint separately. For in-
stance, the pagination implementation is shared by all endpoints, so it could
only be tested once. This, again, has the problem of assuming the implemen-
tation details—some specific endpoint might need to internally use a different
pagination method, or it might simply forget to call the correct method or
declare the pagination parameters in its route definition.

For these reasons, the new tests utilize multiple newly created helpers that,
based on the endpoint definition, are able to generate a list of all possible
parameter combinations and create a snapshot test for each of them. Then,
the developer can review all generated outputs and be sure that all options
work correctly.

Listing 5.2 shows how the tests would be created in the mentioned List Top
Packages endpoint example using the first helper. The first parameter of the
function is the endpoint URI template in the format defined by RFC 6570 [50].
The third parameter lists the values to test for each parameter. The function
generates a cartesian product of all provided parameter values and runs a test
for each combination.

The second parameter provides extra support for optional parameters. It
specifies the expected default values, which allows the testing code to compare
the cases when the parameter is omitted and when the default value is set
explicitly. It also allows for reducing the number of generated snapshots since
the output for both cases is the same.

1 makeEndpointSnapshotTests('/v1/stats/packages{?by,type,period}', {
2 by: 'hits',
3 period: 'month',
4 }, [
5 {
6 by: ['hits', 'bandwidth', undefined],
7 type: ['gh', 'npm', undefined],
8 },
9]);

Listing 5.2: Parameterized snapshot testing

The second helper is used to test the pagination functionality on each end-

91

5. Testing

point. By calling it as shown in Listing 5.3, the function internally generates
a number of requests with different limit and page parameters, and by merely
comparing their outputs, it checks whether the parameters are correctly in-
terpreted in all cases. This approach does not require storing any snapshots
or writing endpoint-specific code.

Moreover, it checks not only the response bodies but also all pagination meta-
data returned in the headers. Thanks to this generic implementation, each
endpoint can be tested with no extra work. In fact, this did help to catch
several bugs already, e.g., wrong pagination metadata for one endpoint due to
the underlying SQL query breaking the row-counting mechanism.

1 makeEndpointPaginationTests('/v1/stats/packages');

Listing 5.3: Parameterized pagination testing

For cases where manual assertions need to be written, the third helper is used
to reduce the amount of boilerplate by only providing the inputs and the
relevant assertions instead of writing the logic for making the HTTP requests
and providing the URLs in each test, as shown in Listing 5.4.

1 makeEndpointAssertions('/v1/stats/browsers{?continent,country,period}', {}, [
2 {
3 params: { period: '2020-04' },
4 assert: (response) => {
5 expect(_.sumBy(response.body, 'share')).to.be.closeTo(100);
6 expect(_.sumBy(response.body, 'prev.share')).to.be.closeTo(88.52);
7 expect(response.body).to.have.lengthOf(13);
8 expect(response).to.matchSnapshot();
9 },

10 },
11 {
12 params: { period: '2021', continent: 'EU' },
13 assert: (response) => {
14 expect(_.sumBy(response.body, 'share')).to.be.closeTo(100);
15 expect(_.sumBy(response.body, 'prev.share')).to.be.closeTo(2.63);
16 expect(response.body).to.have.lengthOf(7);
17 expect(response).to.matchSnapshot();
18 },
19 },
20]);

Listing 5.4: Parameterized testing with explicit assertions

92

5.3. Speeding Up the Database Setup

5.3 Speeding Up the Database Setup

Due to the number of new features and the respective tests, the time required
to set up the database on a development machine, which happens every time
the tests run, went from approximately three seconds to approximately 33
seconds.

To limit the impact on the development process, the setup was modified so
that it only runs if any changes to the relevant files have been made. This is
achieved by storing a hash of all seed files in the database. If the hash does
not change, the database is not rebuilt.

Additionally, it was observed that the setup time has become greatly inconsis-
tent between runs. In some cases, it would take two or three times longer for
no obvious reason. This behavior turned out to be caused by poor database
index statistics.

The index statistics hold information about the distribution of values in the
tables and are used by the query optimizer to find the best way of executing
each query. The statistics may be automatically recalculated by the data-
base engine when a significant part of the data changes, but this happens
in the background, with some delay [59]. To mitigate this issue, the setup
now executes analyze table on each table after inserting the data to force the
calculation of new statistics.

5.4 Conclusion

This chapter described the selected testing approach focused on automating
not only the execution of the tests but also their creation, allowing new tests
to be added with minimal effort. Support for snapshot testing has been im-
plemented as a Chai plugin, allowing it to be later reused in other projects or
published as a standalone module.

Before any of the changes, there were, in total, 215 test cases, providing an
84.55 % line code coverage. After implementing the new features and adding
all tests, there are now 1375 test cases, 311 of which are standalone tests,

93

5. Testing

and 1064 are generated from 126 unique templates. The line code coverage
remained almost the same at 84.56 %.

The extensive test suite should provide a high level of confidence that existing
features will continue working when making changes in the future, and it has
already helped to catch several issues during development.

94

Chapter 6
Documentation

An API is only useful if well documented, which is why the last chapter
of this work describes the documentation process. Due to Non-functional
Requirement 02, which requires that all features be described in an OpenAPI
document, this process included not only the new but all features.

To provide a better developer experience and avoid duplication, the exist-
ing Markdown documentation has been replaced with an interactive HTML
version generated from the OpenAPI document.

6.1 OpenAPI

The structure of OpenAPI documents is defined in the OpenAPI Specifica-
tion. The main part of the document is the description of API paths, with
each path corresponding to a single endpoint. Each path may support mul-
tiple operations, which correspond to different HTTP methods, and for each
operation, there can be a description, schema definitions, and examples. Ad-
ditionally, the document may also contain general information about the API,
such as contacts, server URLs, a link to the terms of service, or license infor-
mation [33].

Once created, the OpenAPI document can be used by various tools to generate
human-friendly documentation and client code in supported languages or drive
automated testing. A handy overview of the existing tools is available at

95

6. Documentation

OpenAPI.Tools73.

6.1.1 Automated Document Generation

A specific category of OpenAPI tools are generators capable of creating an
OpenAPI document based on the existing code, which is particularly useful
for already existing APIs. The OpenAPI.Tools website lists two such tools,
but neither of them supports the latest v3.1 specification [60]. Nevertheless,
an attempt was made to at least partially automate the creation process using
the har2openapi74 tool.

The tool works in multiple steps, the first of which is creating HTTP Archive
(HAR) files, which serve as the source of document data [61]. The HAR files
contain records of previously made HTTP requests and responses, from which
the tool extracts information about the available endpoints, their parameters,
and response formats.

The easiest way to obtain the HAR files was to capture the requests made
in the existing automated tests. For this, yet another package, Express HAR
capture75, was used. As the name suggests, the package was originally created
for the Express framework, not Koa, and its documentation warns that it is
“very alpha” [62]. Hence, a few patches were needed before the HAR files could
be successfully generated. The patched version76 is available on GitHub.

In the second step, har2openapi needs to be configured so that it can correctly
parse the request paths into endpoint URI templates. This is done using user-
provided regular expressions. If done manually, this step would require a fair
amount of work, but in fact, it can be somewhat automated too.

Matching request URIs with the correct endpoints is exactly what Koa-router
does when handling the requests. As such, it already has all the necessary
information. Unfortunately, the information is not directly available via the
router’s public interface [63], but it can still be extracted from its internal data.

73https://openapi.tools
74https://github.com/dcarr178/har2openapi
75https://github.com/idoco/node-express-har-capture
76https://github.com/MartinKolarik/node-express-har-capture/tree/npm-patch

96

https://openapi.tools
https://github.com/dcarr178/har2openapi
https://github.com/idoco/node-express-har-capture
https://github.com/MartinKolarik/node-express-har-capture/tree/npm-patch

6.2. Documentation Portal

For this purpose, a code snippet77 that reads the router data and produces a
JSON file that can be passed to har2openapi has been created.

After the second step, the generated document includes the list of detected
paths, their parameters, and example values gathered from the requests and
needs to be further edited manually.

6.1.2 Manual Document Improvements

In order to fully replace regular documentation, the following needs to be
added to the generated document:

• A description of each operation.

• A description, schema definition, and example values of each parameter
(the example values may be partially prefilled by har2openapi, but their
quality depends on the testing data, and some editing is needed).

• A description, schema definition, and example values of each possible
response type for each operation (again, the examples may be partially
prefilled but require editing to provide useful information while staying
concise).

• General API information, as described at the beginning of Section 6.1.

• Tags to categorize the paths into logical groups.

The schema definitions, in particular, can be rather time-consuming to create,
but once done, they can be used to generate strongly-typed API clients. As
such, great care was taken to precisely describe all response schemas.

6.2 Documentation Portal

With the final OpenAPI document prepared, the next step was creating a
documentation portal, which would list all endpoints and their details in a
clear way and allow users to directly edit the examples and send real requests
to the API.

77https://gist.github.com/MartinKolarik/aaeb0149f114a8e7417c961b81bc0c32

97

https://gist.github.com/MartinKolarik/aaeb0149f114a8e7417c961b81bc0c32

6. Documentation

The OpenAPI.Tools website lists a wide selection of 30 tools for this use case.
However, only 13 of them support the latest OpenAPI v3.1 standard [60].
These 13 tools were evaluated with priority on:

• the clarity of the user interface, particularly of the schema definitions
and response examples,

• customization support (not only theme changes but also the ability to
disable individual features or modify the page layout),

• the ability to self-host the generated documentation, as some of the tools
were software-as-a-service solutions,

• being free, at least for open-source use.

On the other hand, the following features were not considered particularly
relevant:

• versioning management,

• cloud-based collaboration features,

• automatically generated code samples,

• GUI-based editing of the OpenAPI document.

Based on these priorities, RapiDoc78 was selected as the best option. Unlike
most of the other tools, it provides three different layout options, two differ-
ent rendering styles for schemas, and is overall highly customizable. Moreover,
because it is developed as open-source software, any customizations that can-
not be done via the standard configuration options can be implemented by
modifying it [64].

6.2.1 RapiDoc Customizations

In order to be integrated into the jsDelivr website79, RapiDoc was first styled
to match the website design, using a combination of the available styling
options and custom CSS.

78https://rapidocweb.com
79https://www.jsdelivr.com

98

https://rapidocweb.com
https://www.jsdelivr.com

6.3. Conclusion

The selected layout did not turn out to work well on smaller devices [65], so
extra logic was added to switch between a read layout, which is more suitable
for large screens, and a view layout, which works better on small screens.

Despite claiming support for the latest OpenAPI v3.1 standard, at the time
of creating the portal, RapiDoc did not support const fields within schema
definitions [66]. The support for these fields was implemented during the cus-
tomization process with the intention of sending a pull request to the project.
However, before the pull request was made, this feature had been added to
RapiDoc by one of the project maintainers.

As a last step, a new x-labels vendor extension has been added. Vendor
extensions are additional OpenAPI document fields that the tools may use
to provide extra features [33, §4.9]. In this case, the field is used by the
customized RapiDoc version to show endpoint labels in the sidebar, which
can be used to highlight new API features.

6.3 Conclusion

This chapter showed that when creating an OpenAPI document for an existing
API, several parts of the process can be automated. Nevertheless, a fair
amount of manual editing is still needed for the best results.

The created document can be used to generate interactive documentation
and significantly simplifies integration with other systems. The created doc-
umentation portal, which has been made available as a part of the jsDelivr
website80, provides a listing of all 46 API endpoints with the ability to filter
them based on the name and description.

For each endpoint, there is a list of supported parameters with descriptions
and example values, a response schema definition, and at least one example.
Developers can further experiment with the API by editing the examples,
sending real requests, and examining the responses.

80https://www.jsdelivr.com/docs/data.jsdelivr.com

99

https://www.jsdelivr.com/docs/data.jsdelivr.com

Conclusion

The thesis started by exploring the target domain and offered a thorough
analysis of the individual user groups and their requirements. The require-
ments were further set out through a set of use cases and user stories and
served as a foundation for the following review of the existing services and
design of new jsDelivr API features. Although not directly required by the
original assignment, the first chapter also outlined how the major public CDN
services have evolved over time.

The second chapter continued by examining the current jsDelivr API architec-
ture and used technologies, as well as the design and implementation choices.
It showed that all of these areas were considerably influenced by the scale of
the service and the amount of data it works with.

The third chapter focused on designing new jsDelivr API features in a way
that would best match the defined requirements. It discussed not only the
final design but all the considered approaches and the reasoning behind the
made decisions. The design focused on providing an efficient yet extensible
interface that builds upon a number of existing standards.

Due to the comprehensive design phase, the implementation process described
in the fourth chapter was mostly straightforward, albeit extensive. The API
has been extended with a total of 24 new endpoints, and another 19 have been
modified. The new statistics features are supported by a total of 23 complex

101

Conclusion

SQL procedures that prepare the required data. Additionally, several reusable
components have been created to simplify the addition of individual features.

Given the vast scope of changes, care needed to be taken to avoid regres-
sions in the existing features and to ensure the new features work as designed.
The testing setup has been enhanced to support rapid creation of new tests
through automation, as discussed in the fifth chapter, and the existing fea-
tures had been covered with additional tests before the implementation of the
new features began. Each new feature has then been covered with a robust
test suite as well. Overall, more than 1000 tests have been added. The Chai
snapshotting plugin and the additional helpers developed to support this ap-
proach have been designed to be reusable and can be used in future projects
as well.

The last chapter talked about creating an OpenAPI document to ease the
API integration in other projects and an interactive documentation portal
integrated into the jsDelivr website. Focus has, again, been given to automat-
ing several parts of the process. The resulting documentation portal provides
an exhaustive description of the available endpoints, their parameters, and
possible responses.

At last, it can be concluded that the goals of the thesis were fully met. The
text itself provides a unique insight into the problem domain and discusses
many practical problems relevant to the design and development of web APIs
in general. The newly implemented features, as well as the documentation
portal, have been deployed to production and are already used by real users
with millions of requests every day.

102

Bibliography

[1] ARLOW, Jim; NEUSTADT, Ila. UML2 and the Unified Process.
2nd edition. Addison-Wesley Professional, 2005-01. isbn 0-321-32127-8.

[2] JEFFRIES, Ron; ANDERSON, Ann; HENDRICKSON, Chet. Extreme
Programming Installed. Addison-Wesley Professional, 2001-06. isbn 0-
201-70842-6.

[3] Usage statistics of JavaScript content delivery networks for websites. In:
W3Techs – World Wide Web Technology Surveys [online]. Q-Success,
2022 [visited on 2022-11-15]. Available from: https://w3techs.com/

technologies/overview/content_delivery.

[4] Hosted Libraries. In: Google Developers [online]. Google LLC, 2022 [vis-
ited on 2022-11-15]. Available from: https://developers.google.com/

speed/libraries.

[5] DORFMAN, Justin. Handling 15,000 CDN Requests/Sec: The
Growth Behind jQuery. In: MaxCDN Blog [online]. MaxCDN, 2015-
06-20. [visited on 2022-11-15]. Originally available from: https:

//www.maxcdn.com/blog/maxscale-jquery. Archived at: https:

//web.archive.org/web/20150906182244/https://www.maxcdn.

com/blog/maxscale-jquery.

[6] cdnjs.com – the missing cdn [online]. cdnjs, 2011. [visited on 2022-11-15].
Originally available from: http://www.cdnjs.com. Archived at: https:

//web.archive.org/web/20110125232824/http://www.cdnjs.com.

103

https://w3techs.com/technologies/overview/content_delivery
https://w3techs.com/technologies/overview/content_delivery
https://developers.google.com/speed/libraries
https://developers.google.com/speed/libraries
https://www.maxcdn.com/blog/maxscale-jquery
https://www.maxcdn.com/blog/maxscale-jquery
https://web.archive.org/web/20150906182244/https://www.maxcdn.com/blog/maxscale-jquery
https://web.archive.org/web/20150906182244/https://www.maxcdn.com/blog/maxscale-jquery
https://web.archive.org/web/20150906182244/https://www.maxcdn.com/blog/maxscale-jquery
http://www.cdnjs.com
https://web.archive.org/web/20110125232824/http://www.cdnjs.com
https://web.archive.org/web/20110125232824/http://www.cdnjs.com

Bibliography

[7] HELLO, Peter Dave et al. cdnjs README. In: GitHub [online]. 2015
[visited on 2022-11-15]. Available from: https://github.com/cdnjs/

cdnjs/tree/2016.

[8] No more manual pull request for lib updating [online]. cdnjs GitHub
issues, 2014 [visited on 2022-11-15]. Available from: https://github.

com/cdnjs/cdnjs/issues/3638.

[9] API Documentation. In: cdnjs [online]. cdnjs, 2022 [visited on 2022-11-
15]. Available from: https://cdnjs.com/api.

[10] JSON parsing. In: Can I use... Support tables [online]. caniuse, 2022
[visited on 2022-11-30]. Available from: https://caniuse.com/json.

[11] JACKSON, Michael. First, http://npmcdn.com IS MOVING to
http://unpkg.com... [tweet]. Twitter, 2016-08-30. [visited on 2022-
11-15]. Available from: https://twitter.com/mjackson/status/

770424625754939394.

[12] AKULOV, Dmitriy; NYMAN, Robert. jsDelivr – The advanced
open source public CDN. In: Mozilla Hacks [online]. Mozilla Cor-
poration, 2014-03-19 [visited on 2022-11-16]. Available from: https:

//hacks.mozilla.org/2014/03/jsdelivr-the-advanced-open-

source-public-cdn.

[13] AKULOV, Dmitriy. Public CDN auto-updated. In: jsDelivr Blog [on-
line]. Prospect One, 2014-06-28 [visited on 2022-11-16]. Available from:
https://www.jsdelivr.com/blog/public-cdn-auto-updated.

[14] AKULOV, Dmitriy et al. Public CDNs API README. In: GitHub [on-
line]. 2017 [visited on 2022-11-16]. Available from: https://github.

com/jsdelivr/api.

[15] Future of jsDelivr [online]. jsDelivr GitHub issues, 2016 [visited on 2022-
11-16]. Available from: https://github.com/jsdelivr/jsdelivr/

issues/13136.

[16] AKULOV, Dmitriy. jsDelivr reloaded 2017. In: jsDelivr Blog [on-
line]. Prospect One, 2017-09-12 [visited on 2022-11-16]. Available from:
https://www.jsdelivr.com/blog/jsdelivr-reloaded-2017.

104

https://github.com/cdnjs/cdnjs/tree/2016
https://github.com/cdnjs/cdnjs/tree/2016
https://github.com/cdnjs/cdnjs/issues/3638
https://github.com/cdnjs/cdnjs/issues/3638
https://cdnjs.com/api
https://caniuse.com/json
https://twitter.com/mjackson/status/770424625754939394
https://twitter.com/mjackson/status/770424625754939394
https://hacks.mozilla.org/2014/03/jsdelivr-the-advanced-open-source-public-cdn
https://hacks.mozilla.org/2014/03/jsdelivr-the-advanced-open-source-public-cdn
https://hacks.mozilla.org/2014/03/jsdelivr-the-advanced-open-source-public-cdn
https://www.jsdelivr.com/blog/public-cdn-auto-updated
https://github.com/jsdelivr/api
https://github.com/jsdelivr/api
https://github.com/jsdelivr/jsdelivr/issues/13136
https://github.com/jsdelivr/jsdelivr/issues/13136
https://www.jsdelivr.com/blog/jsdelivr-reloaded-2017

Bibliography

[17] KOLÁRIK, Martin et al. jsDelivr API README. In: GitHub [on-
line]. 2022 [visited on 2022-12-01]. Available from: https://github.

com/jsdelivr/data.jsdelivr.com.

[18] KOLÁRIK, Martin et al. jsDelivr CDN README. In: GitHub [on-
line]. 2022 [visited on 2022-12-09]. Available from: https://github.

com/jsdelivr/jsdelivr.

[19] Our sponsors. In: jsDelivr – A free, fast, and reliable CDN for Open
Source [online]. Prospect One, 2022 [visited on 2022-12-09]. Available
from: https://www.jsdelivr.com/sponsors.

[20] Our network. In: jsDelivr – A free, fast, and reliable CDN for Open
Source [online]. Prospect One, 2022 [visited on 2022-12-09]. Available
from: https://www.jsdelivr.com/network.

[21] AKULOV, Dmitriy. jsDelivr API statistics [personal communication].
2022-12-10.

[22] FIELDING, Roy Thomas. Architectural Styles and the Design of
Network-based Software Architectures. Irvine, 2000. PhD thesis. Uni-
versity of California. Available also from: https://www.ics.uci.edu/

~fielding/pubs/dissertation/fielding_dissertation.pdf.

[23] RICHARDSON, Leonard. Justice Will Take Us Millions Of Intricate
Moves. In: Crummy [online]. 2008-11-20 [visited on 2022-12-06]. Avail-
able from: https://www.crummy.com/writing/speaking/2008-QCon.

[24] About. In: Node.js [online]. OpenJS Foundation, 2022 [visited on 2022-
12-10]. Available from: https://nodejs.org/en/about.

[25] Koa – next generation web framework for node.js [online]. Koa, 2022.
[visited on 2022-12-10]. Available from: https://koajs.com.

[26] About MariaDB Server. In: MariaDB Server: The open source relational
database [online]. MariaDB Foundation, 2022 [visited on 2022-12-10].
Available from: https://mariadb.org/about.

[27] Introduction to Redis. In: Redis: A vibrant, open source database [on-
line]. Redis Ltd., 2022 [visited on 2022-12-10]. Available from: https:

//redis.io/docs/about.

105

https://github.com/jsdelivr/data.jsdelivr.com
https://github.com/jsdelivr/data.jsdelivr.com
https://github.com/jsdelivr/jsdelivr
https://github.com/jsdelivr/jsdelivr
https://www.jsdelivr.com/sponsors
https://www.jsdelivr.com/network
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.crummy.com/writing/speaking/2008-QCon
https://nodejs.org/en/about
https://koajs.com
https://mariadb.org/about
https://redis.io/docs/about
https://redis.io/docs/about

Bibliography

[28] Guide. In: Knex.js – SQL Query Builder for JavaScript [online]. Knex,
2022 [visited on 2022-12-10]. Available from: https://knexjs.org/

guide.

[29] API Reference. In: joi.dev [online]. Sideway Inc., 2022 [visited on 2022-
12-10]. Available from: https://joi.dev/api.

[30] Mocha – the fun, simple, flexible JavaScript test framework [online].
OpenJS Foundation, 2022. [visited on 2022-12-20]. Available from:
https://mochajs.org.

[31] Chai Assertion Library [online]. Chai, 2022. [visited on 2022-12-20].
Available from: https://www.chaijs.com.

[32] Application Performance Monitoring (APM) with Elastic Observabil-
ity. In: Elastic [online]. Elasticsearch B.V., 2022 [visited on 2022-
12-20]. Available from: https://www.elastic.co/observability/

application-performance-monitoring.

[33] MILLER, Darrel et al. (editors). OpenAPI Specification [online]. 2021-
02-15. Version 3.1.0 [visited on 2023-01-10]. The Linux Foundation.
Available from: https://spec.openapis.org/oas/v3.1.0.

[34] MARCHÁN, Kat. The reason for this is that, by setting mtimes like
this... In: Use a specific mtime when packing, rather than none at all
[online]. 2018-03-13 [visited on 2022-12-20]. Available from: https://

github.com/npm/npm/pull/20027#discussion_r173985677.

[35] ISO 3166-1:2020. Codes for the representation of names of countries and
their subdivisions – Part 1: Country code. 4th edition. Geneva, Switzer-
land. International Organization for Standardization, 2020-08.

[36] STURGEON, Philip. Build APIs You Won’t Hate. Leanpub, 2015-08-12.

[37] FIELDING, Roy Thomas. The reason to make a real REST API
is to get evolvability... [tweet]. Twitter, 2013-09-09. [visited on
2022-12-20]. Available from: https://twitter.com/fielding/status/

376835835670167552.

[38] Fetch: Living Standard [online]. 2022-12-21. [visited on 2022-12-22].
WHATWG. Available from: https://fetch.spec.whatwg.org.

106

https://knexjs.org/guide
https://knexjs.org/guide
https://joi.dev/api
https://mochajs.org
https://www.chaijs.com
https://www.elastic.co/observability/application-performance-monitoring
https://www.elastic.co/observability/application-performance-monitoring
https://spec.openapis.org/oas/v3.1.0
https://github.com/npm/npm/pull/20027#discussion_r173985677
https://github.com/npm/npm/pull/20027#discussion_r173985677
https://twitter.com/fielding/status/376835835670167552
https://twitter.com/fielding/status/376835835670167552
https://fetch.spec.whatwg.org

Bibliography

[39] MULHUIJZEN, Rogier. Best practices for using the Vary header.
In: Fastly Blog [online]. Fastly, Inc., 2014-08-18 [visited on 2022-12-
20]. Available from: https://www.fastly.com/blog/best-practices-

using-vary-header.

[40] Accept. In: Fastly Developer Hub [online]. Fastly, Inc., 2022 [vis-
ited on 2022-12-20]. Available from: https://developer.fastly.com/

reference/http/http-headers/Accept.

[41] STURGEON, Philip. API Evolution for REST/HTTP APIs. In: APIs
you won’t hate [online]. 2018-05-02 [visited on 2022-12-22]. Available
from: https://apisyouwonthate.com/blog/api-evolution-for-

rest-http-apis.

[42] NOTTINGHAM, Mark. Evolving HTTP APIs. In: Mark Nottingham’s
Blog [online]. 2012-12-04 [visited on 2022-12-22]. Available from: https:

//www.mnot.net/blog/2012/12/04/api-evolution.html.

[43] ISO 8601:2004. Data elements and interchange formats – Information
interchange – Representation of dates and times. 3rd edition. Geneva,
Switzerland. International Organization for Standardization, 2004-12.

[44] GUPTA, Lokesh. HATEOAS Driven REST APIs. In: REST API Tuto-
rial [online]. 2022-12-30 [visited on 2023-01-15]. Available from: https:

//restfulapi.net/hateoas.

[45] NOTTINGHAM, Mark. RFC 8288. Web Linking. 2017-10. RFC Editor.
issn 2070-1721. Available from doi: 10.17487/RFC8288.

[46] Link Relations. In: Protocol Registries [online]. 2022-11-23 [visited
on 2023-01-17]. Available from: https://www.iana.org/assignments/

link-relations/link-relations.xhtml.

[47] SHARMA, Tushar. It’s 2020 and We’re Still Doing Pagination The
Wrong Way. In: tusharf5.com [online]. 2020 [visited on 2023-01-15].
Available from: https://tusharf5.com/posts/api-pagination-the-

right-way.

[48] HTML: Living Standard [online]. 2023-01-16. [visited on 2023-01-17].
WHATWG. Available from: https://html.spec.whatwg.org.

107

https://www.fastly.com/blog/best-practices-using-vary-header
https://www.fastly.com/blog/best-practices-using-vary-header
https://developer.fastly.com/reference/http/http-headers/Accept
https://developer.fastly.com/reference/http/http-headers/Accept
https://apisyouwonthate.com/blog/api-evolution-for-rest-http-apis
https://apisyouwonthate.com/blog/api-evolution-for-rest-http-apis
https://www.mnot.net/blog/2012/12/04/api-evolution.html
https://www.mnot.net/blog/2012/12/04/api-evolution.html
https://restfulapi.net/hateoas
https://restfulapi.net/hateoas
https://doi.org/10.17487/RFC8288
https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://tusharf5.com/posts/api-pagination-the-right-way
https://tusharf5.com/posts/api-pagination-the-right-way
https://html.spec.whatwg.org

Bibliography

[49] NOTTINGHAM, Mark. RFC 5988. Web Linking. 2010-10. RFC Editor.
issn 2070-1721. Available from doi: 10.17487/RFC5988.

[50] GREGORIO, Joe et al. RFC 6570. URI Template. 2012-03. RFC Editor.
issn 2070-1721. Available from doi: 10.17487/RFC6570.

[51] GAMMA, Erich et al. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional, 1994-11. isbn 0-201-
63361-2.

[52] Window Functions Overview. In: MariaDB Knowledge Base [online].
MariaDB Foundation, 2023 [visited on 2023-01-25]. Available from:
https://mariadb.com/kb/en/window-functions-overview.

[53] Implement descending index: KEY (a DESC, b ASC) [online]. Mari-
aDB Jira, 2022 [visited on 2023-01-28]. Available from: https://jira.

mariadb.org/browse/MDEV-13756.

[54] WILDE, Erik. RFC 8594. The Sunset HTTP Header Field. 2019-05.
RFC Editor. issn 2070-1721. Available from doi: 10.17487/RFC8594.

[55] DALAL, Sanjay; WILDE, Erik. The Deprecation HTTP Header
Field. 2021-07-10. Version 2. Internet-Draft. Internet Engineering
Task Force. Available also from: https://datatracker.ietf.org/doc/

draft-ietf-httpapi-deprecation-header.

[56] POT, Evert. Ketting Wiki: Deprecation Warnings. In: GitHub [online].
2021-01-31 [visited on 2023-01-25]. Available from: https://github.

com/badgateway/ketting/wiki/Deprecation-Warnings.

[57] BROWN, Al; CLEMM, Geoffrey. RFC 5829. Link Relation Types for
Simple Version Navigation between Web Resources. 2010-04. RFC Edi-
tor. issn 2070-1721. Available from doi: 10.17487/RFC5829.

[58] BEKKHUS, Simen et al. Snapshot Testing. In: Jest – Delightful
JavaScript Testing [online]. 2021-01-24 [visited on 2023-02-01]. Avail-
able from: https://jestjs.io/docs/snapshot-testing.

[59] Index Statistics. In: MariaDB Knowledge Base [online]. MariaDB Foun-
dation, 2023 [visited on 2023-02-08]. Available from: https://mariadb.

com/kb/en/index-statistics.

108

https://doi.org/10.17487/RFC5988
https://doi.org/10.17487/RFC6570
https://mariadb.com/kb/en/window-functions-overview
https://jira.mariadb.org/browse/MDEV-13756
https://jira.mariadb.org/browse/MDEV-13756
https://doi.org/10.17487/RFC8594
https://datatracker.ietf.org/doc/draft-ietf-httpapi-deprecation-header
https://datatracker.ietf.org/doc/draft-ietf-httpapi-deprecation-header
https://github.com/badgateway/ketting/wiki/Deprecation-Warnings
https://github.com/badgateway/ketting/wiki/Deprecation-Warnings
https://doi.org/10.17487/RFC5829
https://jestjs.io/docs/snapshot-testing
https://mariadb.com/kb/en/index-statistics
https://mariadb.com/kb/en/index-statistics

Bibliography

[60] OpenAPI.Tools – an Open Source list of great tools for Open API [on-
line]. APIs You Won’t Hate, 2023. [visited on 2023-02-10]. Available
from: https://openapi.tools.

[61] CARR, David. har2openapi README. In: GitHub [online]. 2023 [vis-
ited on 2023-02-10]. Available from: https://github.com/dcarr178/

har2openapi.

[62] SIEBUHR, Morten. Express HAR capture README. In: GitHub [on-
line]. 2023 [visited on 2023-02-10]. Available from: https://github.

com/idoco/node-express-har-capture.

[63] WHITBECK, Tim et al. Koa-router API Reference. In: GitHub [on-
line]. 2023 [visited on 2023-02-10]. Available from: https://github.

com/koajs/router/blob/master/API.md.

[64] RapiDoc – Web Component based Swagger & OpenAPI Spec Viewer
[online]. 2023. [visited on 2023-02-10]. Available from: https://

rapidocweb.com.

[65] Menu Missing on Responsive Narrow Layout [online]. RapiDoc GitHub
issues, 2021 [visited on 2023-02-10]. Available from: https://github.

com/rapi-doc/RapiDoc/issues/595.

[66] Feature request: const keyword support [online]. RapiDoc GitHub is-
sues, 2022 [visited on 2023-02-10]. Available from: https://github.

com/rapi-doc/RapiDoc/issues/806.

109

https://openapi.tools
https://github.com/dcarr178/har2openapi
https://github.com/dcarr178/har2openapi
https://github.com/idoco/node-express-har-capture
https://github.com/idoco/node-express-har-capture
https://github.com/koajs/router/blob/master/API.md
https://github.com/koajs/router/blob/master/API.md
https://rapidocweb.com
https://rapidocweb.com
https://github.com/rapi-doc/RapiDoc/issues/595
https://github.com/rapi-doc/RapiDoc/issues/595
https://github.com/rapi-doc/RapiDoc/issues/806
https://github.com/rapi-doc/RapiDoc/issues/806

Appendix A
Acronyms

API Application Programming Interface

APM Application Performance Monitoring

CD Continous Deplopyment

CDN Content Delivery Network

CI Continous Integration

CORS Cross-Origin Resource Sharing

CSS Cascading Style Sheets

GUI Graphical User Interface

HAR HTTP Archive

HATEOAS Hypermedia As The Engine Of Application State

HTML HyperText Markup Language

111

Acronyms

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

JS JavaScript

JSON JavaScript Object Notation

OLAP Online Analytical Processing

OLTP Online Transaction Processing

REST Representational State Transfer

RPC Remote Procedure Call

RUM Real User Monitoring

SQL Structured Query Language

SVG Scalable Vector Graphics

TTL Time To Live

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML Extensible Markup Language

112

Appendix B
Glossary

cache hit rate

The percentage of requests handled directly from the cache without
reaching the origin servers.

hotlinking

The use of a resource hosted on one site by other sites.

introspection

The ability of a program to examine an object type and its properties
at runtime.

mocking

A testing technique of replacing real dependencies with objects that
mimic the dependency behavior in a controlled way.

online analytical processing

Describes systems that handle a low volume of complex, not necessarily
real-time queries.

online transaction processing

Describes systems that handle a high volume of simple queries and ex-
pect real-time results.

route

A mapping from the HTTP method and URI to the set of middleware
handlers.

113

Glossary

router

A middleware responsible for matching the incoming requests to the
correct routes based on their HTTP method and URI.

vendor lock-in

Being so dependent on specific vendor features that it is hard to change
the vendor without significant costs.

web scraping

Extracting data for machine processing from a source in a human-read-
able form.

114

Appendix C
Contents of the Enclosed

Memory Card

README.md...contents description
Thesis.................................LATEX source code of the thesis

DP_Kolárik_Martin_2023.pdf.............PDF version of the thesis
data.jsdelivr.com source code of the jsDelivr API
www.jsdelivr.com source code of the jsDelivr website

115

	Abstract
	Contents
	List of Figures
	List of Listings
	List of Tables
	Introduction
	Domain Introduction
	Common Requirements
	Functional Requirements
	Non-functional Requirements
	Typical Actors
	Use Cases and User Stories
	Library Users
	Library Authors
	Service Maintainers and General Public

	A Brief History of Public CDNs
	Google Hosted Libraries
	jQuery CDN
	cdnjs
	unpkg
	jsDelivr

	Specifics and Constraints
	Anonymous User Base
	Inherently Global
	Read-only
	Adaptive Infrastructure

	Conclusion

	The jsDelivr API
	Requirements
	Functional Requirements
	Non-functional Requirements

	Architecture and Concepts
	REST and REST-like architectures
	CDN and Client-Side Caching

	Used Technologies
	Node.js
	Koa
	MariaDB
	Redis
	Knex
	Joi
	Mocha and Chai
	Elastic APM

	Current Features
	Package Metadata
	Get Package Metadata
	Get the Resolved Package Version
	Get Package Version Metadata

	Usage Statistics
	Collected Data
	Get Package Statistics
	Get Package Version Statistics
	Get a Package Badge
	List Top Packages

	Conclusion

	Design
	API Versioning Strategies
	URI Prefix
	Hostname
	Query String Parameters
	Custom Headers
	The Accept Header
	Evolution
	Conclusion

	Common Properties
	Bandwidth Data
	Quarterly and Historical Data
	Period Comparison
	Hypermedia
	Pagination

	Package Statistics
	List Top Packages
	Get Package Statistics
	List Top Package Versions
	Get Package Version Statistics
	List Top Package Version Files

	Proxy Endpoints Statistics
	Get Proxy Statistics
	List Top Proxy Files

	Network Statistics
	Get Network Statistics
	Get Network Country Statistics
	Get Network Content Statistics

	Browser and Platform Statistics
	Regional Data
	Period Handling
	List Top Browsers (grouped versions)
	List Top Browsers (separate versions)
	List Top Browser Countries
	List Top Browser Platforms
	List Top Browser Versions
	List Top Browser Version Countries

	Statistics Periods
	List Statistics Period

	Package Metadata
	Get Package Metadata
	Get the Resolved Package Version
	Get Package Version Metadata

	Conclusion

	Implementation
	Schemas and Validation Middleware
	Period Comparison
	Historical Data
	Link Builder
	Pagination
	Regional Data
	Proxy Statistics
	Network Statistics
	Browser and Platform Statistics
	Deprecations Handling
	Conclusion

	Testing
	Snapshot Tests
	Time Handling

	Parameterized Tests
	Speeding Up the Database Setup
	Conclusion

	Documentation
	OpenAPI
	Automated Document Generation
	Manual Document Improvements

	Documentation Portal
	RapiDoc Customizations

	Conclusion

	Conclusion
	Bibliography
	Acronyms
	Glossary
	Contents of the Enclosed Memory Card

