
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

TinyC Optimizing Compiler

Bc. Martin Slávik

Ing. Petr Máj

Informatics

System Programming

Department of Theoretical Computer Science

until the end of summer semester 2022/2023

Instructions

Design and implement an intermediate representation and an optimizing compiler for

the tinyC language and tiny86 target VM using the methods from the NI-GEN course. The

compiler must correctly translate the entirety of the tinyC language and generate a

correct and non-trivial t86 assembly. Implement intra-procedural optimizations and

inlining in the optimizer and instruction selection and register allocation using selected

techniques from NI-GEN course in the backend part. The code must be written in

idiomatic C++ consistent with the rest of the tinyverse platform, be clearly structured and

well documented so that it can be used as a reference implementation in the NI-GEN

course.

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 10 December 2021 in Prague.

Master’s thesis

TinyC Optimizing Compiler

Bc. Martin Slávik

Department of Theoretical Computer Science
Supervisor: Ing. Petr Máj

May 3, 2023

Acknowledgements

I would like to thank my supervisor Ing. Petr Máj for his patience and valuable
advice during the creation of this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 3, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Martin Slávik. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Slávik, Martin. TinyC Optimizing Compiler. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2023.

Abstrakt

Práce pojednává o tvorbě kompilátoru, a jeho vnitřních částí pro výukové
účely.

Práce má za úkol vytvořit kompilátor, který přeloží programy zapsané
v jazyce TinyC do instrukční sady definované virtuální architekturou tiny86.
TinyC je podobný jazyku C s menší sadou typů a redukovanou funkcionalitou.
Tiny86 virtuální stroj je inspirovaný x86 architekturou s jednodušší instrukční
sadou, za účelem lepší srozumitelnosti. Instrukční sada tiny86 zachovává za-
jímavé a důležité vlastnosti, které architektura x86 nabízí. Během překladu
kompilátor využívá optimalizační techniky pro dosažení lepšího výkonu kom-
pilovaného kódu. Práce porovnává výsledky naivní kompilace a kompilace se
zapnutými optimalizacemi.

Klíčová slova kompilátor, optimalizační kompilátor, TinyC, překladač, alo-
kace registrů, výběr instrukcí

vii

Abstract

This thesis is about compiler creation and its internal parts for educational
purposes.

It should compile programs described with the TinyC language to the in-
struction set specified by the virtual architecture tiny86. TinyC is a C-like
language with a smaller subset of types and a limited set of features. The
tiny86 Virtual Machine is inspired by x86 architecture but has a simpler in-
struction set, so it is more understandable for students. The tiny86 instruction
set preserves interesting and important features that the x86 architecture of-
fers. Throughout the compilation, optimization techniques are used to achieve
better performance of the compiled code. The thesis compares the naïve com-
pilation and compilation with optimization techniques turned on.

Keywords compiler, optimizing compiler, TinyC, translator, register allo-
cation, instruction selection

viii

Contents

Introduction 1
TinyVerse . 3
Thesis Overview . 4

1 Overview of a Modern Compiler 5
1.1 Front-end . 8

1.1.1 Lexical Analysis . 8
1.1.2 Syntax Analysis . 9
1.1.3 Semantic Analysis . 9

1.2 Intermediate Representation . 9
1.2.1 Types of IR . 9
1.2.2 Single Static Assignment 11

1.3 Optimizer . 13
1.3.1 Analyses . 14
1.3.2 Optimizations . 15

1.4 Back-end . 16
1.4.1 Instruction Selection . 16
1.4.2 Target specific optimizations 18
1.4.3 Register Allocation . 18
1.4.4 Instruction Reordering 20

1.5 Case Studies . 21
1.5.1 GCC . 21
1.5.2 LLVM . 26

2 Design and Implementation 33
2.1 Intermediate Representation . 34
2.2 AST to IR Translation . 36
2.3 Optimizer . 46

2.3.1 Analyses . 46

ix

2.3.2 Optimizations . 47
2.4 Back-end . 49

2.4.1 Instruction Selection . 50
2.4.2 Register Allocation . 54
2.4.3 Calling Conventions . 56
2.4.4 Assembly Finalization 57

3 Evaluation 59
3.1 Goals and Setup . 59
3.2 Verification and Validation . 59

Conclusion 63
Future Work . 63

Bibliography 65

A Acronyms 67

B TinyC Language Specification 69
B.1 TinyC Language Reference . 69

B.1.1 Functions . 69
B.1.2 Statements . 69
B.1.3 Types . 70
B.1.4 Type Declarations . 70
B.1.5 Expressions . 71

C IR Instructions 73
C.1 Control Flow Instructions . 73
C.2 Function Call Instructions . 74
C.3 Memory Access & Allocation Instructions 75
C.4 I/O Instructions . 78
C.5 Arithmetic Instructions . 78
C.6 Conversion Instructions . 79
C.7 Other Instructions . 80

D Contents of enclosed SD card 81

x

Listings

0.1 The difference between high-level (on the left) and low-level(on
the right) languages of the same program. 2

1.1 Example of three-address code where are used constants, vari-
ables, and temporary values . 11

1.2 Example showing how entangled can optimization passes be.
In code number 1) the ‘then’ branch cannot be easily removed
due to the variable b. But after CP showing and replacing b
with its constant, dead code elimination can see the guard is
false and therefore the ‘then’ branch never executes, thus the
code is dead and can be removed. 13

1.3 Example C code . 21
1.4 Example GIMPLE for C code from example 1.3 22
1.5 Low GIMPLE representation for C code from Example 1.3 . . 22
1.6 Exmaple RTL for C code from Example 1.3 24
1.8 Example of LLVM IR . 28
1.7 Example C code . 28
2.1 Example of translation of plus operator from TinyC language

to IR. 37
2.2 Example of translation of an if statement from TinyC language

to IR. 38
2.3 Example of translation of a while statement from TinyC lan-

guage to IR. 38
2.4 Example of translation of a switch statement from TinyC lan-

guage to IR. 40
2.5 Example of translation of ‘&&’ Operator from TinyC language

to IR. 41
2.6 Example of translation of variables from TinyC language to IR. 43
2.7 Example of translation of an array from TinyC language to IR. 44
2.8 Example of translation of a structure from TinyC language to

IR. 45

xi

2.9 Example of translation of an AllocG instruction from IR to
Tinyx86. 51

2.10 Example of translation from IR to Tinyx86, where an AllocL
instruction is in a loop. 53

2.11 Example of translation of IR with Call expressions to Tinyx86. 55
3.1 Code samples used for testing, sample A (on the left) was used

for constant propagation, and sample B (on the right) was used
for function inlining. 61

xii

List of Figures

1.1 High-level overview of a Modern compiler 6
1.2 Design of front-end internals of a modern compiler 7
1.3 Example of conversion to SSA Form with the use of indexes. . . . 11
1.4 Problem occurring in conversion to SSA Form. 12
1.5 Usage of Phi instruction to resolve problems with the conversion. . 12
1.6 Chaitin et al.’s iterative graph coloring based register allocator . . 20

2.1 Compiler . 33
2.2 The propagation worklist algorithm used in the analysis template

to reach a fixed point. 47

3.1 Graph showing the ratio of speed up of the program of the opti-
mized program compared to the naive one. 62

3.2 Graph showing the ratio of reduction of the code size of the opti-
mized program compared to the naive one. 62

xiii

List of Tables

3.1 Benchmark comparison of code sample A, where there are results
of the optimized compilation on the left, and on the right, there
are results from the most Naïve run the compiler can perform. All
units are ticks unless specified otherwise. 60

3.2 Benchmark comparison of code sample B, where there are results
of the optimized compilation on the left, and on the right, there
are results from the most Naïve run the compiler can perform. All
units are ticks unless specified otherwise. 61

xv

Introduction

In the beginning, computers were programmed by directly specifying the op-
erations that the computer was capable of. These operations were encoded
as numbers in a representation called the machine code. The construction of
such programs was straightforward. The programmer had precise control over
the target system’s behavior, and the target machine’s full potential could be
accessed. On the other hand, precise control means that the programmer has
to control everything and specify it in the machine code. Unfortunately, such
a description of an algorithm, while perfect for the machine, is almost useless
for humans because the target operations are far too primitive to describe
the complex idea being developed. The first step towards expressing more
readable programs for humans was to replace the numbers that encode the
operations with short mnemonics, which led to the Assembly language, which
was better because the instructions were easier to decipher and the program-
mer could see what the instruction did. But still, the idea of the program was
hidden behind the Assembly instructions.

The next evolution came with an abstraction of the operations used in
programming, such as loading and storing a variable. This abstraction led to
high-level languages. High-level languages use constructs that help program-
mers avoid repeating code and separate themselves from low-level details that
machine code carries with it. The Example 0.1 on the left shows a program
written in a high-level language, whereas, on the right, there is an Assem-
bly representation of the same program. There are many instructions, and
some parts are repeated. That shows why a high-level representation is more
convenient for programmers because they do not need to repeat themselves.

To grasp the program’s structure, the programmer can use constructs like
functions for specifying reusable code that can vary in inputs, but the core
idea stays the same. For these constructs to work, they need to be translated
into a correct underlying machine code. Conversion back to low-level details
can be done automatically by a program. This program is called a compiler.

1

Introduction

1 ; Assembly code // C code code
2 main: # @main
3 push rbp int main(){
4 mov rbp, rsp
5 sub rsp, 16
6 mov dword ptr [rbp - 4], 2023 int year = 2023;
7 mov dword ptr [rbp - 8], 0 int userYear = 0;
8 lea rdi, [rip + .L.str] printf("What year were
9 mov al, 0 you born?");

10 call printf@PLT
11 lea rdi, [rip + .L.str.1] scanf("%d", &userYear);
12 lea rsi, [rbp - 8]
13 mov al, 0
14 call __isoc99_scanf@PLT
15 mov eax, dword ptr [rbp - 4] int userAge = year - userYear;
16 sub eax, dword ptr [rbp - 8]
17 mov dword ptr [rbp - 12], eax
18 mov esi, dword ptr [rbp - 12] printf("You are %d years old."
19 lea rdi, [rip + .L.str.2] , userAge);
20 mov al, 0
21 call printf@PLT
22 xor eax, eax }
23 add rsp, 16
24 pop rbp
25 ret
26 .L.str:
27 .asciz "What year...born?"
28 .L.str.1:
29 .asciz "%d"
30 .L.str.2:
31 .asciz You are %d years old."

Listing 0.1: The difference between high-level (on the left) and low-level(on
the right) languages of the same program.

2

TinyVerse

Initially, a brand new compiler had to be created for every language.
A simple program that found a statement and converted it to specific tar-
get instructions. However, as these compilers evolved and many features were
added because programmers realized that compilers could do much more than
replace the constructs back. Decisions about the target’s resource usage must
be made during the compilation. For example, the target machine can have
registers. Registers serve as storage where the program values are held, and
the target machine uses them for addressing. Instructions can copy, load from,
and store to the registers.; for example, an ADD instruction loads from two
registers, and the result of the addition is stored in a register. Values can also
be stored in memory, but the operations working with memory are expensive,
therefore, it is better to use them as little as possible.

It is difficult and labor-intensive for programmers to specify which registers
should hold which values (and when during the program) while, in the target,
there is a limited amount of these registers. Therefore, a machine will solve
these problems. Unfortunately, it is very hard or sometimes impossible for all
programs. Designing these algorithms to be fast and effective and resolving
similar problems arising from optimizing parts inside the compiler is the hard
part of creating a compiler. Furthermore, optimization is the next part of
why the program compilation is considered challenging because the compiler
should not only give a working program but a faster equivalent that does not
waste the target resources. The compiler which gives better (faster and more
efficient) programs is called the optimizing compiler.

Although constructing a compiler is hard, it is beneficial for programmers
because the compiler reduces the amount of work that they need to put into
creating a program. Moreover, it prevents programmers from making mistakes
in parts that the compiler manages nowadays since it is the responsibility of
the compiler, and usually the compiler gives better results than deciding this
manually for larger programs. It is also very beneficial because the program-
mer can focus more on the algorithmic part of the programming; therefore,
the development of programs can be faster than before.

TinyVerse

The task of this Master’s thesis is to build an optimizing compiler, which can
be used in a course NI-GEN, where students are required to build a naïve
compiler. This thesis presents a compiler with more features so the students
can see what is the difference between using various optimization techniques
and none — compiling entirely naïvely.

The TinyVerse project helps with compiler teaching. It is a whole package
that can compile and run compiled code. All languages and targets share the
compiler functionality. The languages and targets then provide the language-
and target-specific functionality, such as front-ends, Optimizers – middle-ends,

3

Introduction

and back-ends. The whole system is designed so that its parts can be swapped
at compile time to suit different languages, targets, optimizers, etc.

Two parts of TinyVerse are essential for this thesis.
The first is the TinyC language, which we will compile. TinyC is a C-

like language with a smaller subset of types (int, char, double, arrays and
structs, function pointers, and pointers) and a limited set of features. TinyC’s
semantics and grammar are simpler, which makes TinyC not a strict subset
of C. The language specification can be found in chapter B located in the
appendix of this thesis.

The second is the package t86 which contains tiny86 virtual machine — the
target to which the compiler from this thesis compiles. Tiny86 was inspired
by the x86 Architecture, but with a reduced instruction set so it is easier for
students to understand the compilation process. The simplification kept both
interesting and important parts of the x86 architecture which are valuable for
teaching.

Thesis Overview
This thesis comprises four chapters: Overview, Design and Implementation,
Evaluation, and Conclusion.

• The chapter Overview describes how modern compilers are designed.
Modern compilers define an internal representation (IR) that serves to
represent the source program in a form that is more suitable for the com-
piler; section 1.2 describes the internal representations — their design,
advantages, and disadvantages of various designs. It also describes the
composition of regular modern compiler suites, and the most popular
compiler suites nowadays.

• The second chapter, Design and Implementation, describes and justifies
the ideas behind the algorithms picked for the implementation including
the design of the internal representation, description, and examples of
the translation performed in the front-end and the ideas behind the
algorithms used in the Optimizer and the compiler’s back-end.

• The third chapter, Evaluation, contains the evaluation of the optimiza-
tion changes in terms of effectiveness and the number of instructions
that need to be executed.

4

Chapter 1
Overview of a Modern Compiler

Compilers used to be straightforward programs that only replaced parts of
the input code for sequences depending on which target machine the com-
pilation was performed. Making keywords instead of low-level sequences has
two significant benefits, the independence from the target machine — the pro-
gramming no longer requires specific coding instruction and the readability
for a programmer. With this evolution came slight problems in the form of
question: Values are stored in registers, and who defines which value comes to
which register? First languages used hint keywords by which the programmer
could specify in which register the value should be, and the compiler’s task
was to respect the constraints that the programmer gave for a value where
it should be. However, as compilers evolved, less and less emphasis was put
on that functionality. The task of which value should reside in which register
soon became the task of compilers. Like this, more tasks make the outputted
programs faster or memory efficient. Generally, compilers are valuable tools
for programmers and became more complicated.

Throughout the evolution of compilers, rules were established that define
what every compiler should do:

1. The compiler has to generate an appropriate valid output for every valid
input. So, the outputted program has to keep its behavior described in
the input program.

2. It should warn and terminate the compilation if the input is not valid.

3. Also, the output program should be as effective as possible. Concerning
the size or speed of execution of such a program. (This is why compila-
tion is considered challenging.)

The core of every modern compiler of some programming language is often
very similar. This similarity comes from the fact that it has the same task of
translating and optimizing. It reads the input, performs some optimization,
and translates it into or machine code. As the compiler has several tasks to

5

1. Overview of a Modern Compiler

help the programmer with, it is helpful to divide modern optimizing compilers
into parts. This separation also has advantages considering reusability when
another source language or target machine needs to be supported.

When the compiler parts can be swapped, an interface must be designed.
This interface in the program representation is called intermediate representa-
tion. The modern compiler parts are the front-end, middle-end, and back-end
as shown in Figure 1.1.

Figure 1.1: High-level overview of a Modern compiler

• Front-end: The front-end task is translating the source language to the
intermediate representation specific to the compiler.

• Middle-end: The middle-end is the core of the compiler. It performs all
operations specific to the Optimizations, making the outputted program
more efficient.

• Back-end: The back-end’s task is a translation to the specific target;
when a different target has to be used, the target has to be changed. It
contains all parts of the compiler dedicated to the specific target.

When compilers need to translate source code described in a different
source language or compile to a different target, they differ only at the be-
ginning of the process; thus, a front-end has to be changed to support the
language, or the second difference is at the back-end, where a different target
and its instruction set is available that means a change in code generator and
target optimizations.

The next part describes the most significant parts of a compilation with
more details.[1]

Front-end with the task to understand and transform the source program,
find errors in it, and translate it into IR can be separated into parts:

• Lexical Analysis The task of lexical analysis is to read and separate
its input into tokens defined by the input language. For example,

6

Figure 1.2: Design of front-end internals of a modern compiler

if, {, 5. This part aims to have less work while implementing
syntax analysis.

• Syntax Analysis The task is constructing an abstract syntax tree
(AST) structure from the tokens produced before. This step also
checks the validity of the input code and that the AST nodes can
be created from the input.

• Semantic Analysis checks the correctness of the AST. The main
part is the Typechecker, which checks if the program is type sound –
if the used operations support the types supplied to them. Semantic
analysis can check the validity of working with variables if it is
declared before use. These first three steps also generate errors for
the error handler that informs the programmer where a mistake
happened or warnings about some part of the code will work but
maybe not as intended.

• IR generation After the correct AST is constructed and passed to
the IR generation, the IR is generated. The form of IR is specified
by the compiler and is useful for various analyses. The form is
usually of an SSA or a three-address code type.

Target independent Optimizations perform the majority of optimization gen-
erally in separated passes. This part belongs to middle-end. The advan-
tage is that these optimizations are neither source- nor target-dependent.

The back-end’s task is to translate the IR into the target code. It consists of
two parts:

• Code Generator The next step is to translate the independent IR
into a code mainly designated for the target in the form of a machine
code. For this translation, instructions and registers need to be
selected. Both processes play a crucial role in the efficiency of the
target code.

7

1. Overview of a Modern Compiler

• Target-dependent Optimizations The last part eliminates the sub-
optimality generated in the previous step and the target-dependent
optimization.1

If there is a need for a compilation of a large program, it is possible to
multiply all three parts of the compiler so that they can run in parallel, but
then an additional step called linking is required to build the final program.
For this purpose, objective files are constructed by the back-end instead of a
full-fledged executable. The linker takes object files and patches dependencies
between them.

1.1 Front-end

The front-end translates the input programming language to the Internal Rep-
resentation. Translation can be done naïvely in case each keyword or construct
in language has its specific form in Internal Representation. If the IR instruc-
tion is not present, a transformation into a combination of IR instructions
that achieves the same result is necessary.

1.1.1 Lexical Analysis

Lexical analysis is the first phase of a compiler. The lexical analyzer breaks
the input into a series of tokens by removing any whitespace or comments in
the source code. If the lexical analyzer finds a token invalid, it generates an
error. The lexical analyzer works closely with the syntax analyzer. It reads
character streams from the source code, checks for legal tokens, and passes
the data to the syntax analyzer.

Tokens are of several types:

• Keywords are words reserved by the source language with special mean-
ings such as int, break, or while.

• Identifiers are words that meet requirements defined by the language,
usually used for naming constructs supported by the source language.

• Operators The special non-alphabetical characters define operators.

• Numbers are integral or decimal, created by digits.

• Strings and Characters are sequences of characters usually surrounded
by language-defined characters.

1In some literature, the last two steps are swapped or merged together. But the work
that needs to be done persists.

8

1.2. Intermediate Representation

1.1.2 Syntax Analysis

Syntax analysis, also known as parsing, is the phase where the compiler an-
alyzes the structure of the source code and checks for syntax errors. The
primary goal of syntax analysis is to ensure that the code conforms to the
rules of the source language’s grammar and does not include any (grammar)
errors.

During the syntax analysis phase, the parser analyzes the source code bro-
ken down into tokens obtained from the lexical analysis. The parser checks
that the sequence of tokens is valid according to the source language gram-
mar. The parser generates an abstract syntax tree (AST), which represents
the code structure without the details of the tokens. Syntax analysis can de-
tect syntax errors, such as missing semicolons, mismatched parentheses, or
invalid expressions. When syntax errors are detected, the parser generates
error messages that help the programmer correct the errors.

1.1.3 Semantic Analysis

Semantic analysis is the phase where the compiler analyzes the meaning of
the source code and checks for semantic errors. Errors in this part that can
appear are grammatically correct but do not make sense. For example, the
program is not type coherent. The primary goal of semantic analysis is to
ensure that the code is semantically correct and can be executed without any
issues.

1.2 Intermediate Representation
Intermediate representation, mostly called IR, represents the input program
and other compiler-generated information that the compiler needs to work
with and understand. IR is a representation independent of the source code
and target machine. It resolves tasks such as how to represent the control
flow, machine operations, types, etc.

The advantages of using this representation should be:

- Easy to process, such as create, read, write, traverse, or transfer.

- Easy to optimize, for example, allowing target-independent low-level opti-
mizations.

1.2.1 Types of IR

Types of IR can be conceptually divided by the form of the representation
— main classes are graphical and linearized. Abstract syntax trees or control
flow graph belong to the graphical class. Stack based and Three-address code
belong to the linear-based class. The linear based are closer to a machine

9

1. Overview of a Modern Compiler

code, therefore, are considered a lower-level. The last is Hybrid class, which
combines the properties of both mentioned.

Tree Based

Tree-based IR is used to represent the structure and semantics of a program
in a hierarchical tree data structure. In this representation, each tree node
represents a statement, expression, or other constructs in the source program.
It is often pictured with edges representing the relationship between the nodes.
In tree-based IR, can be found AST or parse trees.

The advantage is that these types of IR are closer to the source language
and can usually express all the source semantics. Source language type systems
and variables can be reused. The tree IR is a trivially constructed prom parser.
And they are easy to translate, for example, by syntax-driven code generation.
Tree IR is great for local optimizations like constant propagation or common
sub-expression elimination.

The disadvantage comes from tree representations being far from the target
language. Memory efficiency is unsatisfactory because of its poor locality in
the naïve form. This representation is unsuitable for global optimizations
when they do not provide information about the program’s control flow.

Linear Based

The second structurally different type of IR is the linearized one. This repre-
sentation’s structure is a sequence closer to the machine code. Therefore this
IR can be considered a lower-level than tree based.

Stack Based

The stack-based IR uses stack structure to address values; therefore, most
instructions do not need explicit specification of arguments. They get them
from the stack. They represent operations such as pushing to or popping from
the stack. When performing an arithmetic operation, binary, for example, the
input operands are taken from the top of the stack. The result of an operation
is pushed back to the stack.

The most significant benefit of stack IR is simplicity and straightforward-
ness. The small instruction set belongs to the advantages of this IR because
stack IR always works with the top of the stack; there is no need for complex
addressing features that require more memory to encode the instruction.

On the other hand, other simple operations, such as code movement, are
difficult to perform. Just moving the instructions is not enough; preparing
and reorganizing the stack for movement is also necessary.

10

1.2. Intermediate Representation

Three-address Code

In three-address code (3AC), each statement is represented as a sequence of
up to three operands and an operator. The operands can be either constants,
variables, or temporary values. The difference between temporary value and
variable is that temporary value originally does not have a place in memory
where it can be stored. So when there is a requirement to store it, extra
work is required to prepare the memory. In Example 1.1, you can see how
expression d = (a + b) * 15 + (a + b) can be translated into the 3AC.

1 _1 = a + b
2 _2 = _1 * 15
3 d = _2 + _1

Listing 1.1: Example of three-address code where are used constants, variables,
and temporary values

The advantage of the three-address code is its similarity to target instruc-
tions because many ISA instructions do not have more than two operands and
one output. The next advantage is how easy it is to reorder instructions in a
program represented in a three-address code. Instructions can be stored in a
list where insertion is easy, and when a few rules are followed when reordering,
there is no problem like in stack-based, where instructions need to be added
to emulate the stack behavior. Rules such as do not swap instructions after
the position of its first use.

1.2.2 Single Static Assignment

In compiler design, static single assignment form (often abbreviated as SSA)
is a property of an IR, which requires that each variable is assigned exactly
once, and every variable is defined before it is used. Existing variables in the
original IR are split into versions, new variables typically indicated by the
original name with a subscript so that every definition gets its own version.

When converting to SSA, the tool to preserve the rule is the following:
Variable names are appended with indexes that are incremented at each new
assignment. Figure 1.3 demonstrates the conversion.

Figure 1.3: Example of conversion to SSA Form with the use of indexes.

11

1. Overview of a Modern Compiler

However, when using this technique, a problem occurs when translating
expressions with arguments dependent on the program’s control flow. It is
shown in Figure 1.4. The solution is to introduce a ‘Phi’ Instruction2. The

Figure 1.4: Problem occurring in conversion to SSA Form.

‘Phi’ instruction helps us to use a result from two or more different source
instructions in case they are in different Basic Blocks. It manages that each
source instruction will eventually share the same register as Figure 1.5 shows.

Figure 1.5: Usage of Phi instruction to resolve problems with the conversion.

The reason to use the SSA form is that it brings benefits for analysis.
Look at the situation in Figure 1.3; humans can see that the first line is

2can be found under Phi Node term.

12

1.3. Optimizer

useless because it is overwritten right after the assignment, but a reaching
definition analysis must be done for a computer if the code is not in SSA. Other
compiler optimization algorithms, such as dead code elimination, common
sub-expression elimination, constant propagation, register allocation, etc. are
faster and easier to perform when SSA is used.

1.3 Optimizer

The Optimizer has two parts, analysis and optimization. Its task is to analyze
the program and find parts that can be rewritten so the program runs faster
or to find dead code, which can be omitted, and therefore the program size
will be smaller.

This part of a compiler is in the middle-end. Some optimizations require
only a pattern to be found, and others require analysis results. These opti-
mizations and analyses run in a loop because the code optimization usually
unlocks another optimization. For example, code with tricky dependencies
prevents dead code elimination (DCE) from optimizing. However, constant
propagation (CP) optimizes a chunk of the tricky part, making it decidable
for DCE afterward. The idea is demonstrated in Example 1.2.

1 //1) original code //2) after CP //3) after DCE
2 a = 5; a = 5; a = 5;
3 b = 0; b = 0; b = 0;
4 if (b > 4){ if(0 > 4){
5 a = 7; a = 7;
6 b++; b++;
7 } }
8 b +=10; b +=10; b +=10;

Listing 1.2: Example showing how entangled can optimization passes be.
In code number 1) the ‘then’ branch cannot be easily removed due to the
variable b. But after CP showing and replacing b with its constant, dead
code elimination can see the guard is false and therefore the ‘then’ branch
never executes, thus the code is dead and can be removed.

Pass Scheduler decides how long and what attempts for optimizations are
made. The Pass Scheduler is a maintainer of all passes and decides when to
start which pass (optimization) will be started, after which one, how many
times, and when to end with the optimization. All these decisions are based
on the outputs from the analysis that is run between passes or, in better
implementations, results of the analysis are updated by the passes because
running whole types of analysis could be potentially costly and sometimes
even not possible when various types of profile information are stored.

13

1. Overview of a Modern Compiler

1.3.1 Analyses

The analyses are often divided into two sections, static and dynamic. Dynamic
analysis techniques can be used to evaluate the performance and behavior of
compiled code, but they are not typically used directly within the compiler
itself. The dynamic analysis emulates the execution and collects results. Static
analysis involves examining the source code or intermediate representation of
a program without the need for emulation or execution.
Every (perfect) analysis goal is to satisfy three properties:

Soudness: Analyses should not miss any errors,

Completeness: Analyses should not raise false alarms,

Termination: Analyses should terminate with a given answer.

Unfortunately, thanks to Rice’s theorem, this cannot happen. That is why
analyses only approximate and cannot give an exact answer (we wish to have)
to every question about the program.[2] The approximation is made so that
the answer might be decidable and the results are safe, meaning they must be
conservative. For example, we are trying to eliminate an expression from the
program. The analysis is asked if the code can be eliminated — its result is
not used. The safe answer is that the result is used; we can only eliminate the
expression if we are sure it is not used. Otherwise, the optimization would
cause errors in the program. Specifying tight criteria can give useless results
since the algorithm cannot be sure; on the other hand, too loose criteria can
give correct but useless for the Optimizer. So the challenging part about static
analysis is to get results that are not useless and do it in a reasonable time
and space.

Analyses can also be divided by the range, where the analysis is performed.
An intra-procedural analysis is a mechanism for performing optimization

for each function, using only the information available for that particular
function. Its results are useful for local optimization.

An inter-procedural analysis performs analysis on the whole program. Its
results are used in global optimizations, which need to consider greater parts
of the program. For example, function inlining needs to have information
about the whole program. Inlining recursive functions is not beneficial.

The next separation of analysis algorithms is in the direction they perform
the analysis, the so-called forward and backward analysis. This considers how
the information is enhanced throughout the analysis.

For example, liveness analysis, which gives information about the live
ranges of the variables, belongs to the backward analyses. On the other hand,
the reaching definition analysis is of the forward type. Reaching definitions
analysis is useful for dead code elimination. It generally thinks that every
variable is not alive at the end. When the first use of the variable is seen (in
the backward run – so the last use in the program), the variable is added to

14

1.3. Optimizer

the alive set. Then when the definition is seen, it is again removed from the
alive set. The result of the liveness analysis is the contents of the alive set at
each time.

1.3.2 Optimizations

The optimizations in a compiler are classified into two types: machine depen-
dent and machine independent optimization. The machine-dependent belongs
to the back-end part of the compiler and is driven by constraints like what
instructions the machine supports or a set of hazards that can occur in the
machine. Independent optimizations are located in the middle-end.

The part that makes machine-independent optimization, called Optimizer,
has to take results from the analysis described before and performs code rewrit-
ing to make the execution of the code faster or to make it more compact in
terms of code size.

Generally, optimizations can be divided into global and local ones. Local
optimization involves finding the optimal solution for a specific search space
region. The global optimization for problems with greater and more complex
search space. Therefore, local optimizations are easier to perform because the
analysis can give a more specific result due to the reduced context on which
the desired change depends. On the other hand, local optimization cannot
solve all optimization problems, such as function inlining, there needs to be
performed a change across the whole program.

1.3.2.1 Local optimizations

Local optimization is a technique of making a code inside a region more effec-
tive for some given criteria. It takes results from the intra-procedural analysis.
Generally, the region is a Basic Block since there are no troubles with control
flow. To local optimization belongs:

Constant folding involves evaluating constant expressions at compile time
instead of at runtime. This optimization can improve the performance
of a program by reducing the number of instructions executed.

Algebraic simplifications simplify algebraic expressions in a way that does
not change the value of a result but is the most efficient or compact to
represent.

Dead code elimination (DCE) is an optimization that identifies and removes
sections of code that are no longer needed nor executed during the pro-
gram’s runtime. It improves performance while ‘Jump’ instructions are
removed, reducing the code size overall.

15

1. Overview of a Modern Compiler

1.3.2.2 Global optimizations

Global optimization can consider the whole functions, where more constraints
affect the result, and thus the optimization is more complicated to accomplish.

For example, it makes sense to make constant propagation in a Basic Block
and extend it to the whole function while considering the local variables in the
whole program. The same applies to function inlining; without the ability to
change multiple functions in the program, achieving the desired result would
not be possible. To representatives belongs:

Function inlining involves replacing a function call with the body of the
called function. This optimization can improve the performance of a
program by reducing the overhead of function calls.

Common-subexpression elimination (CSE) involves identifying repeated com-
putations in a program and replacing them with a single computation.
This optimization can improve the performance of a program by reducing
the number of redundant computations and the number of instructions
executed.

Constant propagation (CP) involves replacing variables or expressions with
their known constant values at compile time. This optimization can
improve the performance of a program by reducing the number of in-
structions executed.

1.4 Back-end

The back-end’s task is to translate the result from the Optimizer into a target-
specific language, generally into the target-specified instruction set architec-
ture (ISA). So the instructions represented in IR should be rewritten into a
sequence of the target instructions.

After producing the target code, there can also be the last part that does
the target-dependent optimization because translation often leaves bits that
can be further optimized. Such Optimizer can be, for example, Peepholer.
Peepholer looks at a few instructions in the ‘peephole’ and tries to find a pat-
tern to be optimized within the peephole. The peephole is shifted throughout
the program.

1.4.1 Instruction Selection

Instruction selection maps IR instruction to target instruction so that the
result is efficient in execution but requires the minimum amount of instructions
and target resources possible to achieve the correct result. Generally, it is
responsible for converting the constructs in IR into machine code. How much

16

1.4. Back-end

this process is demanding depends on the desired quality of the generated
code, the level of IR, and the target instruction set architecture.

The process involves analyzing the intermediate representation of the pro-
gram and selecting the most efficient sequence of machine instructions to im-
plement each operation. The process can be described in several steps:

• Generating a candidate set of instructions: The compiler must generate
a set of possible machine instructions for each high-level construct to
implement the operation.

• Evaluating the candidate set: The compiler must evaluate each can-
didate instruction’s correctness, efficiency, and adherence to the target
architecture’s instruction set. This evaluation involves analyzing the
instruction’s latency, throughput, register usage, and other factors im-
pacting the program’s performance.

• Selecting the optimal instruction: Based on the evaluation, the compiler
selects the most efficient instruction from the candidate set to implement
the operation. This selection process may involve heuristics, such as
choosing the instruction with the shortest latency or the lowest register
usage.

Various techniques can be used for the generation of the candidate set and
selection of the optimal instruction:

• Table-based code generation: This technique uses tables or matrices to
map high-level language constructs or IR code to corresponding or ma-
chine instructions. These tables can be hand-coded or automatically
generated by a tool.

• Pattern matching: This technique involves matching patterns in the
high-level language construct or IR code with pre-defined patterns of
code or machine instructions. These patterns can be hand-coded or
automatically generated by a tool as well.

• Tree-based code generation: This technique involves representing the
high-level language construct or IR code as a tree and using tree traversal
algorithms to generate the corresponding or machine instructions.

• Dynamic programming: The problem is formulated as an optimization
problem, and an optimal solution is found by dynamic programming
algorithms.

• Constraint solving: The problem is formulated as a constraint satisfac-
tion problem, using constraint-solving algorithms to find a solution that
satisfies the given constraints.

17

1. Overview of a Modern Compiler

More straightforward techniques considering only instruction at a time
generate inefficient code; therefore, a peephole optimization often runs after
the IS. The next section 1.4.2 describes the peephole optimization. Chosen
techniques overall depend on various factors such as the complexity, form of
the IR, the performance requirements, and the available resources.

1.4.2 Target specific optimizations

Target-specific optimizations are compiler optimizations that are designed to
take advantage of the specific features and capabilities of a particular hardware
architecture or target platform. Peephole optimization is a type of local target-
specific optimization technique, which improves the performance of generated
code. It involves analyzing a small window of instructions in the code, known
as a ‘peephole,’ and replacing the instructions with a more efficient sequence
of instructions that achieves the same result.

The peephole optimization technique is based on the idea that small code
sequences often contain inefficiencies that can be removed by analyzing the
instructions in a small window. The window typically contains three to five
instructions, and the optimization is applied to all possible windows in the
code.

1.4.3 Register Allocation

Register allocation (RA) is a technique that involves mapping the values of a
program to the limited number of registers available in the target, in order to
minimize the number of memory accesses required during program execution.
By keeping frequently used variables in registers, this technique can improve
program performance.

The problem of register allocation is complex and falls under the category
of NP-hard problems. Therefore, finding the optimal solution to register allo-
cation is not feasible in practice. However, there are several simple solutions
to this problem that can be used in compilers:

• Naive approach: This approach simply allocates a register for each vari-
able used in the program. When no registers are full, pick the oldest for
release. However, this approach may lead to many register spills (i.e.,
storing the register value back to memory), and hence performance may
not improve.

• Graph coloring approach: This approach views the register allocation
problem as a graph coloring problem, where the nodes represent the
variable’s live ranges and the edges represent conflicts between them.
This approach can be applied to both local and global register allocation
problems.

18

1.4. Back-end

• Linear scan approach: This approach uses a linear scan of the program
to allocate registers to variables. This simple and efficient approach may
not always generate an optimal result.

• Heuristic-based approach: This approach involves using heuristics to
guide the register allocation process. Examples of heuristics include
the use of spill costs and register pressure.

• Hybrid approach: This approach combines multiple register allocation
techniques, such as graph coloring and linear scan, to achieve better
performance.

The peephole optimization should be performed again to obtain even bet-
ter results because RA adds the spill code, which can also be optimized.

The register allocator’s tasks are:

• To maintain all registers for values that reside in registers.

• To maintain a spill table – mapping all values in memory and their
addresses.

• To decide which values in registers will be spilled to free up space for
new values.

• To resolve at which point of execution a restoration of spilled value is
required. That means where to load value back to register to keep the
values in registers consistent with the computation that requires these
values.

Coloring Allocation

The Coloring Allocation’s task is to select which target registers will carry
which values and which values to spill to minimize the number of spills over
the execution. It was first introduced by Chaitin et al.[3]

The idea is to represent this problem as a graph in which nodes represent
live ranges (temporary values, variables) that need to have assigned a target
register and edges connect interfering live ranges, i.e., live ranges alive at the
same time, which might be conflicting for a target register. Register allocation
this way is reduced to a graph coloring problem: which colors (registers) will
be assigned to the nodes such that two nodes connected by an edge do not
share the same color. The graph can be built using a liveness analysis.

The allocator consists of the phases shown in Figure 1.6 are following:

• Renumber: Detect live ranges and number them in the IR.

• Build: Compose the interference graph of the live ranges.

19

1. Overview of a Modern Compiler

• Coalesce: Merge the live ranges of variables with the same value – i.e.,
those created with copy instructions and rebuild the graph.

• Spill cost: Determine the cost of spills for each variable.

• Simplify: Color the graph nodes and continue with selection.

• Spill Code: Insert spill code, including load, stores, or move instructions.

• Select: Select a register for each position (instruction) that requires the
register; if not possible, add a spill code.

Figure 1.6: Chaitin et al.’s iterative graph coloring based register allocator

1.4.4 Instruction Reordering

Instruction reordering is useful for superscalar processors when more instruc-
tions without specific dependencies can be executed together. Superscalar pro-
cessors use instruction parallelism to achieve faster execution. Each instruc-
tion is divided into some execution parts, such as instruction fetch, operand
fetch, ALU, and others. However, problems called hazards appear when the
processor wants to start the execution of an instruction that does not have
a result ready while it is still in the process of computation. That way, the
processor needs to insert NOP instruction and therefore stall in computation.
So the task is to prepare the code for the processor in a way that the instruc-
tions do not need to wait on each other and utilize all parts of the processor
as much as possible therefore if it might be helpful to reorder instructions to
reduce the time necessary for a program to finish.

Nowadays this problem is solved by the target itself. The target has buffers
and computes instructions that are eligible for computation in a different
order. The eligible instructions are those that will not produce a different
result when executed now (out of order). This way compiler reordering task
is not as significant as it was before.

20

1.5. Case Studies

1.5 Case Studies
It is reasonable to talk only about two compiler suites at this time. Nowadays,
two main compiler suites exist: The GNU C Compiler (GCC) and the LLVM.
There also exist other compilers like javac, D compiler, etc. However, these
are language or target specific; therefore, the inner structure differs from the
modular, in which this thesis is interested.

1.5.1 GCC

GCC (GNU Compiler Collection) is a compiler suite developed as a GNU
project. Richard Stallman founded the project to create a completely free
operating Unix-like system. However, no free compilers were available for C
language he could use by then. So he decided to develop his own.

The first version of GCC was released in 1987 under the name GNU C
Compiler. This release significantly impacted the development of openly li-
censed software because even nowadays, C language is widely used.

In 1997 a fork called EGCS was founded. This project was better at
optimization and had better support for C++ and Fortran. This project
was an answer to a too-strict policy for upgrades. After two years, the Free
software foundation acknowledged project EGCS as an official compiler of the
GNU project. After that, these projects were united again.[4]

GCC supported many different target architectures, from micro-controllers
to the most performant ones. Also, it can translate many languages, including
C, C++, Fortran, Java, or Go, and is used as the default translator in modern
Unix systems — in many different variants, GNU/Linux or BSD.[4]

Intermediate representations

GCC uses all together three forms of internal representation GENERIC, GIM-
PLE, and RTL. GENERIC serves as an independent representation of the
higher-level input language. This form is used in the front-end. It has a form
of a typed AST. Types are common for all GCC front-ends. It is also possible
to define own types of AST nodes if the source language requires so.

1 int g = 4;
2 int main(){
3 int l = 16;
4 return g < l;
5 }

Listing 1.3: Example C code

After the input is unified, the GENERIC is translated into GIMPLE using
so-called gimplifier. If own types were defined, functions translating own types
to GENERIC or straight to GIMPLE are required. All platform-independent
optimizations are then made on GIMPLE, which is a subset of the generic

21

1. Overview of a Modern Compiler

1 main ()
2 {
3 int l;
4 int D.2318;
5
6 l = 16;
7 g.0_1 = g;
8 _2 = l > g.0_1;
9 D.2318 = (int) _2;

10 goto <D.2319>;
11 D.2318 = 0;
12 goto <D.2319>;
13 <D.2319>:
14 return D.2318;
15 }

Listing 1.4: Example GIMPLE for C code from example 1.3

language. Complicated structures that are possible to represent in GENERIC
are forbidden in GIMPLE and therefore disassembled into less complicated
constructs with only three operands. This way, a three-address code is ob-
tained. Gimple is also transformed into an SSA form. In the documentation,
they call it ‘Tree SSA.’ The last transformation step is to convert ‘HIGH GIM-
PLE’ to ‘LOW GIMPLE.’ The difference is a description of control flow. The
‘HIGH GIMPLE’ contains control-flow structures, but the ‘LOW GIMPLE’
contains only conditional jumps.

1 main ()
2 {
3 int l;
4 int D.2318;
5 int g.0_1;
6 _Bool _2;
7 int _5;
8
9 <bb 2> :

10 l_3 = 16;
11 g.0_1 = g;
12 _2 = l_3 > g.0_1;
13 _5 = (int) _2;
14
15 <bb 3> :
16 <L0>:
17 return _5;
18
19 }

Listing 1.5: Low GIMPLE representation for C code from Example 1.3

The final form is named Register Transfer Language, known as RTL, which
in the back-end serves as an independent interface for performing back-end-

22

1.5. Case Studies

dependent optimizations. RTL is inspired by Lisp lists and is composed of
‘RTL Classes,’ which can be combined into more complex ones called ‘RTL
expressions.’ These expressions are used to precisely describe what a target
instruction does, how it behaves, which types it uses, and other properties.
Example 1.6 shows commented the RTL representation.

Optimizations

Optimization in GCC is performed throughout the compilation in several
parts. Some are target-independent, others target-dependent. The Target
dependent optimizations are performed in the back-end on the RTL form.
The first optimization is performed while conversion into GIMPLE is made;
the part is described as Analysis and Optimization of GIMPLE tuples. This
part converts The Generic into SSA, and alias analysis is also performed.[5]
The second important construct for optimization and analysis is Control Flow
Graph (CFG). It is built on top of the intermediate representation. The
demanding part of CFG is maintaining it throughout the compilation and
optimization, as reconstruction is too expensive, and some information may
not be obtainable again. CFG keeps the information about Basic Blocks and
profile information like frequency and counts, specifying how often the part is
executed. These statistics are necessary to decide which optimization should
be used because it might trade between code size and execution time.

There is also a component in GCC called Link Time Optimization (LTO)
which works by dumping GIMPLE or RTL into a file and then traversing
the file looking for parts that can be optimized. This approach is beneficial
because it has all the module’s information accessible at link time.

The inter-procedural optimizations (IPA) are performed and organized in
IPA passes in the Link Time Optimization (LTO) section. The IPA passes are
organized into three categories — small, regular, and late passes. Each pass
has several stages, and depending on the category, they are run in a different
part of the compilation — operating at different times of the compilation.
Stages are LGEN, WPA, and LTRANS. These stages describe the general
needs for general optimization:

• Analysis which is made in LGEN time generates and writes down a
summary.

• Propagation or execution that transforms a copy of CFG is described
as WPA time. This way, the original functions, and variables stay un-
touched because there would be inconsistency between starting analysis
and operations that each pass wants to make. This process may create
conflicts. At this time a decision on how to resolve these conflicts that
may some passes create is made as well. For this operation are useful
profile options as well.

23

1. Overview of a Modern Compiler

1 (note 1 0 3 NOTE_INSN_DELETED)
2 (note 3 1 2 2 [bb 2] NOTE_INSN_BASIC_BLOCK)
3 (note 2 3 5 2 NOTE_INSN_FUNCTION_BEG)
4 (insn 5 2 6 2 // l_3 = 16;
5 (set
6 (mem/c:SI
7 (plus:DI
8 (reg/f:DI 77 virtual-stack-vars)
9 (const_int -4)))

10 (const_int 16)) -1
11 (nil))
12 (insn 6 5 7 2 // g.0_1 = g;
13 (set
14 (reg:SI 82 [g.0_1])
15 (mem/c:SI (symbol_ref:DI ("g") [flags 0x2]
16 <var_decl 0x7f9876c8ee10 g>) [1 g+0 S4 A32])) -1
17 (nil))
18 (insn 7 6 8 2 // _2 = l_3 > g.0_1;
19 (set
20 (reg:CCGC 17 flags)
21 (compare:CCGC
22 (mem/c:SI
23 (plus:DI
24 (reg/f:DI 77 virtual-stack-vars)
25 (const_int 4 -1)))
26 (reg:SI 82 [g.0_1]))) -1
27 (nil)
28 (insn 8 7 9 2 // (int) _2
29 (set
30 (reg:QI 83 [_2])
31 (gt:QI
32 (reg:CCGC 17 flags)
33 (const_int 0))) -1
34 (nil))
35 (insn 9 8 12 2 // _5 = _2;
36 (set
37 (reg:SI 84 [_5])
38 (zero_extend:SI (reg:QI 83 [_2]))) -1
39 (nil))
40 (insn 12 9 16 2 // return _5;
41 (set
42 (reg:SI 85 [<retval>])
43 (reg:SI 84 [_5])) -1
44 (nil))
45 (insn 16 12 17 2
46 (set
47 (reg/i:SI 0 ax)
48 (reg:SI 85 [<retval>])) -1
49 (nil))
50 (insn 17 16 0 2
51 (use (reg/i:SI 0 ax)) -1
52 (nil))

Listing 1.6: Exmaple RTL for C code from Example 1.3

24

1.5. Case Studies

• Transformation which sees the result of WPA time and changes the
original structures underneath by the result obtained in WPA time. This
stage is referred as to LTRANS time.

The small IPA is compact because it cannot be separated into stages.
Examples of small IPA are ‘IPA remove symbols,’ which performs reachability
analysis and removes unused symbols, or ‘IPA increase alignment,’ which is
helpful for vectorization.

Regular uses all stages like ‘IPA constant propagation,’ ‘IPA inline,’ or
‘IPA identical code folding.’

Lastly, the late IPA is described as performing all at once as small but
later after regular passes are performed. To late IPA’s belong, for example,
‘IPA points-to analysis.’

GCC has a WHOPR option that performs optimizations in parallel, that
is the reason why the passes are designed like this, especially in WPA time
where it operates on the copy.

Back-end

The GCC back-end uses RTL and definition files of the target instruction set.
The task is to transform the RTL to a shape that is similar to symbolic address
language. So the translation to a symbolic address language can be trivially
performed. The work of the back-end can be separated into several steps

RTL generation also called ‘expand’. This first part converts GIMPLE to
RTL with the help of instruction patterns. Some mandatory definitions
exist in the back-end, but also optional can be implemented. If there
are none, the compilation ends with an internal error.

optimization After RTL is generated, some optimization steps are run, includ-
ing condition conversion, tail call elimination, or common sub-expression
elimination (CSE).

instruction combining Similar to peephole optimization tries to combine sev-
eral RTL instructions into one. Together with previous steps, this be-
longs to instruction selection and has the greatest impact on which target
instructions will be in the final product.

register allocation This part contains several passes over the RTL, continu-
ously replacing virtual registers called ‘pseudo registers’ with fixed ones
and replacing instruction patterns. Hence, the arguments are acceptable
by the target definitions. Register spilling and restoring and function
prologs and epilogues — etc. calling conventions — all these steps are
made in this part too.

25

1. Overview of a Modern Compiler

final the last pass that writes in the output file. For every RTL instruction,
an adequate representation in symbolic address language is selected with
the help of the target description.

Target description is done with RTL and C macros. The description of the
general properties and characteristics of the target architecture is a composite
of three files one C-like pair target.h, which defines the target properties, and
target.c, which defines an extra functionality which overrides the defaults, and
one target.md which serves as an input to the compiler in compile time.

1.5.1.1 Conclusion

In summary, GCC is a mature and reliable compiler suite that has been used
for decades to build high-performance software. Its flexibility, performance,
and open-source nature make it a popular choice for developers around the
world.

1.5.2 LLVM

The LLVM Project is a collection of compilers and toolchain technologies —
programs and libraries written in C++.[6]

The project was founded in 2000 by a research group of developers at the
University of Illinois in Urbana Champaign. The original goal of this group
was to examine dynamic translation techniques. Therefore the name was Low-
Level Virtual Machine, but nowadays, the original was extended further. It
is used in many projects, so it changed the name to LLVM as the last name’s
abbreviation since the original idea drifted slightly in a different direction.[7]

Essential parts of LLVM are platform independent optimizer, code genera-
tor of LLVM Core, and compiler of C, C++, and C-Objective language called
Clang. However, this project supports more languages like Fortran, Ada, Rust,
Swift, etc. Some of them belong to the ‘DragonEgg’ project, which combines
the GCC front-end with the LLVM optimizer and back-end. The following
useful thing is that LLVM contains other tools like a debugger, assembler,
or even a standard C++ library. That is why LLVM began to be used with
branches of UNIX systems as an alternative to GCC and GNU Binutils. It is
composed of modules and libraries useful for both programmers and end-users.

The LLVM Core is the core part of LLVM. Most of the time, by referring to
LLVM, it is referred to this part. It consists of libraries and programs working
with intermediate representations called LLVM IR. LLVM developers use these
to interact with the IR; end-users should not need to use them themselves. A
description of such programs follows:

llvm-as Is a program that converts assembler LLVM IR from a text file to the
program’s binary representation. The instructions in bytecode format
are still from the LLVM IR, not the native bytecode ones.

26

1.5. Case Studies

llvm-dis The program is used to convert bytecode byte form into LLVM IR
text form.

llvm-link Servers as Linker for LLVM bytecode. Combines more binary files
containing bytecode into one output file.

lli The program for interpreting the LLVM bytecode. Runnable on x86 archi-
tecture, Sparc, and PowerPC and supports just-in-time (JIT) translation
as well.

llc This program serves as the back-end of LLVM. Its task is to translate
LLVM bytecode (IR) into instructions the target supports. The output
can also be in the language of symbolic addresses or an object file. This
program is a cross-translator as it can translate into different targets
without the need for the recompilation of the whole project.

opt Is the middle-end of LLVM. It contains optimization techniques that
LLVM does. From input reads in LLVM bytecode or text LLVM IR
form. Optimizes it and optimized code saves into output in LLVM IR.

Bitcode

LLVM IR is a universal SSA form represented by a three-address code that
creates the interface between the front-end where it is created, the middle-end
where optimization passes use it, and the back-end where it is transformed
into target code. The best property of LLVM IR is its independency on all
inputs and its ‘storability.’ Hence, it is possible to store it anytime, load
it afterward, and continue without any information loss. At the end of the
translation ending with the same result as no memory dump was performed.
This property is very useful for scaling for parallel runs. Programs written in
the form of LLVM IR are composed of modules where each module refers to
each input file. Each module specifies a symbol table, global variables, and
functions of the input program.

Instructions are divided into several categories

• terminating instrucitons are those that do not produce any computation
result; therefore, its return type is typically void. They are used to alter
the control flow of a program. Instructions like indirectbr, br, or ret
belongs here.

• binary operations represent the arithmetic operations, take two input
arguments of the same type, and produce one value of the same type as
input ones. For example div, mull, add.

• memory instructions represents work with memory. The most used are
load and store, but instructions like alloca, which allocates memory on

27

1. Overview of a Modern Compiler

1 @g = global i32 4, align 4
2
3 define i32 @main() #0 {
4 %1 = alloca i32, align 4
5 %2 = alloca i32, align 4
6 store i32 0, i32* %1, align 4
7 store i32 16, i32* %2, align 4
8 %3 = load i32, i32* @g, align 4
9 %4 = load i32, i32* %2, align 4

10 %5 = icmp slt i32 %3, %4
11 %6 = zext i1 %5 to i32
12 ret i32 %6
13 }

Listing 1.8: Example of LLVM IR

the stack, belong here too, as well as cmpxchg or atomicrmw representing
atomic operations with memory.

• And others like unary, conversion, vector, aggregate, or unclassified op-
erations such as call, ‘trunc .. to’ instructions.

The LLVM type-system contains types for

• plain data types like integer numbers and floating point numbers,

• functions, which define types of arguments and type of the return value

• special complex types for representing structures and arrays.

1 int g = 4;
2 int main(){
3 int l = 16;
4 return g < l;
5 }

Listing 1.7: Example C code

The naming convention for variables takes the original variable’s name
from the source program. If the variable is compiler-defined, it is named by a
number. Moreover, all variables have a prefix defining if it is a local variable
prefixed with the ‘%’ symbol or a global variable prefixed with the ‘@’ symbol.
If the LLVM IR instruction produces a result, it is stored in a variable.

Pass Scheduler

The Pass Scheduler is at the heart of the LLVM Optimizing section. Its task
is to schedule, organize and manage passes over the LLVM IR that performs
optimization. Moreover, the goal is to be as effective as possible while mini-
mizing the compilation time. The Pass Scheduler is divided into components:

28

1.5. Case Studies

• Pass Manager which is responsible for organizing the passes and schedul-
ing their execution. The LLVM supports multiple types of Pass Man-
agers like FunctionPassManager or CGSCCPassManager (abbreviation
for Call Graph strongly connected component).

• Pass Groups is a collection of passes that are meant to be executed
together. This way, it is possible to define the order in which the passes
inside the same group will be executed. Optionally, criteria can be
specified to enable or disable the execution of the passes.

• Pass Ordering defines a process determining the order in which passes
and groups will be performed. Various techniques are used to determine
the optimal pass order. These techniques decide with the help of profiling
data, user hints, and heuristics.

• Pass Dependencies helps to specify the relations and relationship be-
tween passes, mainly to determine the correct ordering.

• Pass Manager APIs specify the interface for managing pass groups and
passes. Management concerns adding, removing, configuring, and get-
ting information about dependencies and ordering.

Back-end

The main part of the LLVM back-end is the target-independent code genera-
tor. The code generator is composed of six components[8]

Target-independent algorithms which are the core of the platform-indepen-
dent code generator. There are implemented in separate phases of code
generation like register allocation, instruction selection, or machine code
optimizations.

Abstract target description These implementations describe the interfaces
necessary for the core to be able to produce code for the target.

Implementations of the abstract target. Machine descriptions that use the
LLVM components and can optionally provide target-specific passes to
complete a code generator for a specific target.

Classes for representation of generated code for the target. In this part, a
representation of the target code is present but abstract enough to be
shared with all targets. At this level, there are still concepts like ‘jump
table’.

Machine code. The representation is very similar to a form of an object
file. This representation is called the MC layer because all high-level
information is ignored, and things like “jump tables” no longer exist.

29

1. Overview of a Modern Compiler

The MC layer represents all the low-level detail like labels, sections, and
assembler instructions.

The target-independent JIT components. Completely target independent,
uses its definitions and structures for the target description.

The process inside the code generator itself can be divided into parts that
follow each other. From a high-level perspective, the code generator parts are
the following:

Instruction selection In this stage, an efficient way of expressing the LLVM
program is conducted. The IS assigns information about virtual reg-
isters and adds physical registers in cases enforced by constraints like
calling conventions or target specifications. At the end of this step,
the representation continues in the form of a DAG that contains target
instructions.

Scheduling and Formation At this stage, instructions in the dag are reordered
and linearized back to meet the demands of efficient execution at the
target.

SSA Optimizations This pass is optional and provides an option to realize
optimizations on the linearized form of the IR instructions.

Register Allocation The pass generates an extra ‘spill’ code and assigns vir-
tual registers of the target machine. After this pass is finished, virtual
registers are replaced with concrete target registers; therefore, after this
step, the SSA rules are violated, and the program is no longer in SSA
form.

Prolog/Epilogue Code Insertion After generating machine code, additional
info is added. Take a function and calling conventions as an example, a
function needs to operate with the stack, and the stack offsets are known
now, so the placeholders are replaced with available sizes. Additionally,
optimizations, like frame-pointer elimination3 and stack packing, are
performed here too.

Late Machine Code Optimizations The last finishing touches that are re-
quired, for example, peephole optimization or scheduling of the spill
code.

Code Emission This last phase produces a representation in an MC layer
where it is prepared to dump all the results into a file in an assembler
form.

3Frame pointer is usually a dedicated register for access of local variables and arguments,
eliminating complex access means overall faster memory access.

30

1.5. Case Studies

1.5.2.1 Conclusion

In summary, LLVM is a powerful and flexible compiler infrastructure that sup-
ports multiple programming languages and provides a range of optimization
options to improve code performance. Its modular design and support for JIT
compilation make it a popular choice for developers who require a modern and
customizable compiler infrastructure.

31

Chapter 2
Design and Implementation

The design of this compiler is modular in all three parts: front-end, Optimizer,
and back-end.

Figure 2.1: Compiler

The Figure 2.1 shows that the compiler uses the same design as modern
compilers from a high-level perspective. The front-end has the same task
to convert an input program, in our case written in TinyC, to an Internal
representation. The Optimizer’s task is to make the program ‘better’ mainly
in terms of performance but preserve the correctness of the program. It should
be possible to omit the part with the Optimizer, and the compiler should
still produce correct, functional code. The last part is back-end. Its role is
to translate intermediate representation to the target program; in our case,
the target program comprises target instruction specified by the t86 target
machine.

33

2. Design and Implementation

In Figure 2.1, there is also noticeable that the program changes represen-
tations. Chronologically listed representations are:

• TinyC,

• then abstract syntax tree (AST), which is hidden inside the front-end
part,

• then intermediate representation (IR),

• and then the set of t86 target instructions (mainly referred to as Assem-
bler).

Each part of the compiler works with one representation or translates one to
another. Each representation is better for different purposes; for example,
AST is useful for Semantic analysis because it is a high-level representation,
but it is not so convenient when deciding which sequence of target instruction
needs to be used to produce an optimal result for this purpose a low-level
representation is more practical.

The interesting part of the front-end is the translation to IR, which is
introduced in the next section.

2.1 Intermediate Representation

The intermediate representation follows the register IR principle. Every IR
instruction itself also represents a value that it returns. The values will even-
tually be stored in registers or memory. Registers are of two types: Integer or
Float registers. In IR, we can assume that we have infinitely many registers.
So every instruction has its own register, even if it is of type void, representing
no value.

Instructions are based on LLVM’s IR[9] with slight differences in instruc-
tions like ArgAddr, which represents a simplified way to get an address of some
argument in a function. Allocations are separated into more instructions than
just one to simplify the approach and implementation between local and global
scope allocation.

The whole IR is not just the specification of the instructions that can be
found in the chapter C in the appendix of this thesis. Instructions are kept
in Basic Blocks. The Basic Block represents a sequence of instructions where
execution goes linearly. After executing the first instruction of the Basic Block,
all other instructions are executed in the order of the sequence as well, right
after the first one. From that following property is derived: Basic Block is
terminated by special instructions called terminators. Terminator instruction
is, for example, Jump instruction. Furthermore, the Jump instructions only
can land at the first instruction of the targeted Basic Block.

34

2.1. Intermediate Representation

The next part that wasn’t mentioned yet is how functions are represented.
Functions consist of a sequence of Basic Blocks. The starting point of a
function is the same as for the first Basic Block of this function.

The whole representation of an input program in IR is following: The
Program contains Functions, string literals used in the program, and one ex-
tra Basic Block which contains global scope expressions – code that will be
executed at the beginning before the start of the main function.

Let us take a closer look at the information that Instructions hold. These
data are necessary for instruction selection (introduced in the back-end) such
as:

• which type of register has to be used for the result of this instruction

• instructions from which to take results as input

• value type of instruction that came from type checker

Type information is required because some instructions, such as Load, can
work with either integer or float representations. The only information on
how the result is represented in memory comes from this type checker.

The other essential parts of IR are types. TinyC has 4 ‘Plain old data’
(POD) types Int, Double, Char, and Void. Boolean is not an explicit type,
but it is necessary for working with conditions, so technically it is substituted
by Int. As mentioned earlier, only two types of registers are available in IR.
Here comes the first simplification: Double translates to Float registers and
the rest (Int, Char) into Integer registers. Integer registers can also carry
addresses known as Pointers in TinyC. Explicitly described like this:

• Int, Char specifies that Integer based register needs to be used to store
the result of this instruction.

• Double specifies that Float based register needs to be used to store the
result of this instruction.

• Void indicates that this instruction does not have an output that can
be used. For example, Jump instruction does not represent a value in
the program.

In TinyC, there are a few more types. The missing are:

• Alias is another representation of existing type. The Alias type specifies
only a base type that it stands for.

• Pointer The Pointer type specifies a base type that points to another
type that specifies the Pointer type. It fits into an integer register.

35

2. Design and Implementation

• Array The Array type specifies, apart from the base type, the size of
how many values the array holds. This type does not fit into a register,
and the simplification that every type fits into a memory cell does not
apply to this type.

• Struct The Structure type specifies a mapping from a Symbol (which
stands for a member name) to a type. Struct, generally, does not fit into
a register either.

• Function The Function type specifies a type returned from the function
after it is executed and a sequence of types representing types of function
arguments.

They differ in some properties. They depend on other types — they use them
for their own correct definition. Pointer and Structure can be recursive. Struc-
tures no longer follow the simplification that all variables fit in one memory
cell or just one register.

There are three types used in IR:

• Integer

• Float

• Void

The ‘Void’ type is just a placeholder indicating no value.
The reason for having only two register types in IR is that the target

only supports these two types. They significantly differ in representation;
therefore, specialized instructions are introduced in the target ISA. Adding
two float instructions requires an extra instruction than adding two integers.
Also, working with more types of specialized registers would translate into the
same instructions; therefore, it is easier to merge them because representing
more types of registers does not raise any interesting problems.

2.2 AST to IR Translation
The first step of translation is to convert the TinyC language to AST. That
is done in Lexer and Parser located in package tinyC. That was done for us
and now it is the time to convert AST to intermediate representation (IR or
sometimes addressed as Intermediate Language IR).

Converting AST to IR is done with the help of the Visitor pattern. In this
work, a visitor pattern is used like this. Each node of AST has an assigned rule
on converting that AST node into an IR Instruction. Some IR Instructions
take arguments; these arguments are generated by AST traversal, by pair
visit and accept functions from the visitor. After completing the top-down
traversal, one or more IR instructions are formed and saved into adequate

36

2.2. AST to IR Translation

1 //TinyC //IR
2 int main(){ function:
3 return 4 + 5; //!9 main:
4 } bb_0:
5 r0: int = LoadImm 4
6 r1: int = LoadImm 5
7 r2: int = ADD r1: int r2: int
8 Return r2: int

Listing 2.1: Example of translation of plus operator from TinyC language to
IR.

Basic Blocks. This visitor is run inside a module IRBuilder, which manages
the context of the Program and sews created Instructions together into Basic
Blocks, the Basic Blocks to Functions creating the whole desired product. Let
us see some examples of how it looks in practice.

When creating the first version of IR representation, working with IR
registers is simple; whenever a new register is required, take an unused one,
continuing to infinity.

In Figure 2.1, there is a simple example of a translation that a calculator
can also do — some Binary operations. Compiling Unary instruction is the
same, but naturally with one less operand. In order to compile the return
statement in the example, the result from the binary operation was required.
However, to get the result of a binary operator, the results of the left and
right sides need to be compiled. There are just a number literals, so there the
AST traversal ends.

Control Flow expressions

Let us move to a part that separates computers and calculators. That is
deciding what to do next. In our terminology, conditional jumps. TinyC
language represents it as if statements, switch statements, and loops like for,
while, and do-while.

Jump instructions can jump only to the beginning of Basic Block — to its
first instruction. The second important fact is that every Basic Block ends
with a ‘terminator’ instruction. When the ‘terminator’ instruction is present
in Basic Block, no other instruction can be added to this Basic Block; it
is classified as closed. Terminator instruction changes the control flow of a
program like previously mentioned Jump or CondJump instructions.

In Example 2.2, you can see how to translate the if statement and Basic
Blocks in action.

Analogous to the examples before is the translation of loops. Similar to
the condition translation with an extra jump back after the body of the loop
to the loop condition.

37

2. Design and Implementation

1 //TinyC //IR
2 bb_0: r0: int = LoadImm 0
3 if(0){ CondJump r0: int bb_2 bb_1
4 bb_1: r2: int = LoadImm 88
5 print('X'); PutChar r2: int
6 Jump bb_3
7 }else{ bb_2: r5: int = LoadImm 48
8 print('0'); PutChar r5: int
9 Jump bb_3

10 } bb_3:
11

Listing 2.2: Example of translation of an if statement from TinyC language
to IR.

1 // TinyC // IR
2 bb_0:
3 int a = 0; r0: int = LoadImm 0
4 r1: int = AllocL 1 (size: 1)
5 Store [r1] r0: int
6 Jump bb_1
7 while(a<5){ bb_1:
8 r4: int = Load [r1]
9 r5: int = LoadImm 5

10 r6: int = Lt r4: int r5: int
11 CondJump r6: int bb_3 bb_2
12 bb_2:
13 a++; r8: int = Load [r1]
14 r9: int = Copy r8: int
15 r10: int = Inc r8: int
16 Store [r1] r10: int
17 Jump bb_1
18 } bb_3:
19

Listing 2.3: Example of translation of a while statement from TinyC language
to IR.

38

2.2. AST to IR Translation

In Figure 2.3, you can see that translation of the while cycle needs to create
a total of three Basic Blocks, the first for the loop condition, the second for
the loop body, and the last for the part that follows after the loop.

The following example concerning the control flow belongs to the switch,
which requires a bit of thinking while solving as an if-else branching as in
this work. Generally, in other compilers, a jump table is created in memory,
offsets are counted, and the address where to jump is obtained from that table.
That is quite a complicated process. The less complicated path was chosen,
sacrificing a small amount of effectiveness.

Compiling a switch with an if-else chaining can still be demanding when
fallthrough functionality is present with the default case that stands somehow
aside from other cases and its order but not really while we need to know the
order of each of the cases. The translation is shown in the Example 2.4.

To summarize, when translating a switch statement, there are a few tricky
parts:

The first part is to connect Basic Block that must be created. There are two
types of Basic Blocks: first for condition and second for the body of the
case.

Second part is handling the default case, which can be in the middle, as a
first case, as a last case, or missing entirely, and correctly patching the
jump instructions between the Basic Blocks.

Last part is to handle the break statement inside the switch. Therefore, a
new context is created, extending the old context, and can answer with
the correct Basic Block to jump at whenever necessary. After leaving
the part where the switch is translated, the context needs to be marked
as left. That is necessary because in case this is not done situation with
nested switches would not work correctly, and in the outer switch case,
the jump created by breaking would jump on the last (inner) switch
compiled, thus creating a loop.

The last part of creating context clarifies the reason why the Basic Blocks
are ordered in a counter-intuitive way.

The after_bb needs to be prepared while the context is created, so some-
times the Basic Block is created in weird positions other than expected.

The last part of control flow examples belongs to the Logic Binary Opera-
tors (‘&&’ and ‘||’). If it is unclear, let us elaborate. Short circuit evaluation
is the term that explains why. Short circuit evaluation, in any programming
language, is an expression x and y is equivalent to the conditional expression
if x then y else x, and the expression x or y is equivalent to
if x then x else y. In either case, x is only evaluated once.

The generalized definition above accommodates loosely typed languages
with more than the two truth values True and False, where short-circuit

39

2. Design and Implementation

1 // TinyC // IR
2 bb_0:
3 int a = 0; r0: int = LoadImm 0
4 r1: int = AllocL 1 (size: 1)
5 Store [r1] r0: int
6 char c = 'A'; r3: int = LoadImm 65
7 r4: int = AllocL 1 (size: 1)
8 Store [r4] r3: int
9 switch(c){ r6: int = Load [r4]

10 Jump bb_case_65
11 bb_after:
12 ...
13 case 65: bb_case_65:
14 r8: int = LoadImm 65
15 r9: int = Copy r6: int
16 r10: int = Neq r9: int r8: int
17 CondJump r10: int bb_succ_65 bb_case_66
18 bb_succ_65:
19 a = 1; r12: int = LoadImm 1
20 Store [r1] r12: int
21 Jump bb_succ_66
22 case 66: bb_case_66:
23 r15: int = LoadImm 66
24 r16: int = Copy r6: int
25 r17: int = Neq r16: int r15: int
26 CondJump r17: int bb_succ_66 bb_case_0
27 bb_succ_66:
28 a = a + 1; r19: int = Load [r1]
29 r20: int = LoadImm 1
30 r21: int = Add r19: int r20: int
31 Store [r1] r21: int
32 break; Jump bb_after
33 bb_case_0:
34 Jump bb_default
35 default: bb_default:
36 a = 4; r26: int = LoadImm 4
37 Store [r1] r26: int
38 break; Jump bb_after
39 } bb_8:
40 ... Jump bb_default

Listing 2.4: Example of translation of a switch statement from TinyC language
to IR.

40

2.2. AST to IR Translation

1 // TinyC // IR
2 int main(){ function:
3 main:
4 bb_0:
5 int a; r0: int = AllocL 1 (size: 1)
6 a = 15; r1: int = LoadImm 15
7 Store [r0] r1: int
8 r3: int = Load [r0]
9 int b = a < 30 r4: int = LoadImm 30

10 r5: int = Lt r3: int r4: int
11 && CondJump r5: int bb_2 bb_1
12
13 bb_1:
14 (a = 30); r7: int = LoadImm 30
15 Store [r0] r7: int
16 CondJump r7: int bb_2 bb_3
17 bb_2:
18 r10: int = LoadImm 0
19 Jump bb_4
20
21 bb_3:
22 r12: int = LoadImm 1
23 Jump bb_4
24
25 bb_4:
26 r14: int = Phi
27 r12: int <--bb_3,
28 r10: int <--bb_2
29 r15: int = AllocL 1 (size: 1)
30 Store [r15] r14: int
31 return b; r17: int = Load [r15]
32 } Return r17: int

Listing 2.5: Example of translation of ‘&&’ Operator from TinyC language to
IR.

operators may return the last evaluated subexpression. This process is called
the ‘last value.’ For a strictly-typed language, the expression is simplified
to if x then y else false and if x then true else y respectively for the
boolean case.[10]

In our case, these operators return binary values 0 or 1. However, when
we take short-circuiting in play, it depends if the second operand is evaluated,
so conditional jumps and Basic Blocks must be created. Therefore it belongs
to this section.

Translation to IR is, therefore, tricky because it creates four Basic Blocks
for branches lhs evaluates to true/false and for the whole operator when ending
true or false, and then after for joining the control flow after this operator the
last Basic Block. Every Basic Block needs to be filled with correct instructions.

41

2. Design and Implementation

In Example 2.5, you can also see the usage of the ‘Phi’ instruction from
the SSA property. Registers in this IR keep SSA property. SSA is a property
of intermediate representation requiring each variable, or register in our case,
to be assigned precisely once and defined before it is used. This is not the
case here, as the register for storing value 0 and the register for storing value
1 cannot be the same.

In the case of the Logic Binary operator, this could be solved using a
memory that is not SSA. Otherwise, it would be necessary to store a temporary
value and then load it, which would be time inefficient.

Memory Management expressions

The next part of translation belongs to memory, variables, and values that
the compiler needs to work with.

When memory is mentioned, most students recall the new operator from
C++ and heap with its allocation. That is not the analogy we want to work
with; we do not work with dynamic allocation, to be clear, because the heap
is a runtime concept. That means only static size variables and values are
considered in this thesis.

In order to save a value to the memory, we need to tell it to give us an
address where we can store the value. This transaction is done with the help
of Alloc Instructions. The Alloc instructions differ in context if it is AllocL
or AllocG. AllocL represents allocation inside a function and AllocG outside.
AllocL instruction allocates a place of specific memory size and represents a
particular variable’s address. A stack is used for local allocation, so AllocL
instruction asks the stack for an address. In our case, a simplification is present
since the t86 target’s approach to memory works only with cells instead of
bytes. Therefore allocation of a basic type takes one cell. So we depend on
counting memory cells instead of bits and bytes.

With the help of Alloc instruction, we can represent an address in memory.
To be able to save and restore values to and from memory, a Store and Load
instructions, respectively, are required.

Store and Load instructions require the address and the value that needs
to be stored in memory at the address (resp. loaded from memory at the
address). The address needs to be found somewhere as well. For this purpose,
IRBuilder has a table, the so-called symbol table, which couples variable names
with instructions of type Alloc representing the address.

Translation of an assignment is simple, resolve the address of the variable
in the symbol table and, to this address, save the value. On the other hand,
loading a variable is a bit tricky. The resolution of the address is the same,
but the problem comes with the decision of which register type should be
used to store the loaded value. For this purpose, a load instruction must also
have a type specified apart from the address. The type is obtained from the
‘Typechecker.’

42

2.2. AST to IR Translation

1 // TinyC // IR
2 function:
3 int main(){ main:
4 bb_0:
5 double a; r0: int = AllocL 1 (size: 1)
6 a = 15.0; r1: double = LoadImm 15
7 Store [r0] r1: double
8 return cast<int>(a);//!15 r3: double = Load [r0]
9 } r4: int = Truncate r3: double

10 Return r4: int

Listing 2.6: Example of translation of variables from TinyC language to IR.

Type-checking is necessary for two reasons. The first is to check that the
input code is type-sound. So we can warn a user that a mistake is in the input
code, and abort which is performed in semantic analysis. The second, more
important here, is to correctly construct the IR.

When mentioning variables and types, the following common thing regard-
ing memory and storage is an array. Arrays are translated by using AllocL
in a local context; otherwise, AllocG with size parameter resolved from con-
stant expression defining the size of that array. This Alloc instruction also
represents an address of the first element in the array. The instruction ‘Ele-
mAddrIndex’ is used when accessing the array’s content. This instruction was
created to handle all management of memory that has the need to offset an
address.

It gets interesting when we get to the array’s size and the length’s res-
olution while compiling constant expressions defining length other than only
numbers. For the resolution of the length of the array, it is necessary to imple-
ment a recursive function that counts the length according to the Instructions
created by AST. The number of elements (length) of an array is multiplied by
the size of the type that the array contains. As we said, for basic types, it is
simple; just one memory cell is required. A list of instructions that preserves
constant expression follows:

• LoadImm

• BinOp

• UnOp

• Extend

• Truncate

Some of them can be of type double because we allow conversion, so it is
necessary to keep types; therefore, an analogous function resolving constant

43

2. Design and Implementation

1 // TinyC //IR
2 int main(){ function:
3 main:
4 bb_0:
5 int size = 10; ...
6 double arr[10]; r3: int = LoadImm 10
7 r4: int = AllocL 1 x r3: int (size: 10)
8 r5: int = AllocL 1 (size: 1)
9 Store [r5] r4: int

10 double b = 178.5; ...
11 r10: double = Load [r8]
12 arr[0] = b; r11: int = LoadImm 0
13 r12: int = LoadImm 1
14 r13: int = ElemAddrIndex r5: int + r11: int←↩

x r12: int
15 Store [r13] r10: double
16 } ...

Listing 2.7: Example of translation of an array from TinyC language to IR.

doubles is also required. Other Instructions are not necessary to implement,
while the code below does not pass lexical analysis done by the parser.

For simplicity, constant expressions are those that are not loaded from
memory.

The next part related to memory management is pointers. The problem
was similar when we wanted to access a value in an array. A compiler must
translate access to an array into pointer arithmetic to achieve the desired
address. However, we use dedicated instruction, the ‘ElemAddrIndex,’ that
counts the address of the element for us. When requesting a pointer, it is the
same as for variables when we want to load them but omit the Load instruc-
tion. As mentioned before, while translating identifiers, only the address is
required.

The last part concerning storage is about structures. Translation of struc-
tures has several parts. Definition, declaration, member assign, and member
access. The definition does not produce any code afterward but is necessary
for structure size, member size, and mapping of members. The sum of the
sizes of all members equals the total size of the structure. Members can be of
basic types, structures, or arrays as well.

The declaration is simple since no initialization nor constructor is sup-
ported; every new structure is uninitialized. The only way to write a value to
a member is by member assignment.

Member assignment needs to specify Alloc instruction that represents the
base address of the structure and offset counted from how many members were
before the current member that is being accessed. The access to the member
— its base pointer is resolved similarly as a variable is, but with the difference
that the structure alone cannot be loaded; that statement is not supported in

44

2.2. AST to IR Translation

that case. Only an address of the structure is returned because it is used for
the subsequent resolution for the member access or assign. An analogy with
lvalue for variables is the same with members – returning of address and value.
In Example 2.8, you can see how the structure copy is translated. There could
be a solution instead of dedicated instruction to do it manually one by one
with load and store for each member. However, in the t86 target, there is
no instruction for manipulation with a memory of greater size than one cell.
However, this is a concern of instruction selection. Therefore it is better to
have it as separate instruction in IR and manage translation later with a tool
that is concerned with available instruction in the target.

1 // TinyC //IR
2 struct Pair{ main:
3 int a; bb_0:
4 int b; r0: int = AllocL 3 (size: 3)
5 }; r1: int = AllocL 2 (size: 2)
6 struct r2: int = LoadImm 72
7 DoublePair{ r3: int = LoadImm 0
8 Pair c; r4: int = ElemAddrOffset r1: int + r3: int
9 int a; Store [r4] r2: int

10 }; r6: int = LoadImm 75
11 r7: int = LoadImm 1
12 int main(){ r8: int = ElemAddrOffset r1: int + r7: int
13 DoublePair dp; Store [r8] r6: int
14 Pair p; r10: int = LoadImm 0
15 p.a = 72; r11: int = ElemAddrOffset r0: int + r10: int
16 p.b = 75; StructAssign r11: int = r1: int (of size: 2)
17 r13: int = LoadImm 0
18 dp.c = p; ...
19 ...
20 }

Listing 2.8: Example of translation of a structure from TinyC language to IR.

Functions

To make functions work, we need a few things. We have covered the function
as a part of IR and its Basic Blocks already, but the function needs to be
called; therefore, we must introduce Call instructions. We need to work with
arguments for that function as well, and lastly, a function should be able
to return a result. For that purpose, there is a Return instruction. Return
instruction has one more purpose: to end execution in that function and
transfer control flow back to the caller function.

Call instructions are separated into two types by the difference between
classic (static) call and function pointer call. In the first case, it is possible
to know the starting point of the called function statically. In the second
case, the information must be obtained from a register. Distinguishing them

45

2. Design and Implementation

is easy; the first is identified with a Symbol registered in defined Functions in
IRBuilder. The separation is good because the known start of the static call
can be hard-coded into the call instruction directly and does not need to be
loaded, which is an optimization step because the load instruction takes us
space in memory, code size, and target machine time and also this static call
instruction is convenient for analysis.

When resolving how to construct the Call instruction, there is a require-
ment to supply arguments for the function. It gets complicated when a struc-
ture is passed. That means from the TinyC view, we are passing a copy of
the structure. Therefore we need to allocate and copy the structure. If we do
not pass the copy, it acts the same as passing a pointer.

2.3 Optimizer

This Optimizer has implemented optimization techniques stored in passes,
such as constant propagation, strength reduction, and function inlining. These
passes can be scheduled after each other to perform the optimizations. The op-
timization topic is also related to the topic of analysis. A framework from the
course NI-APR is implemented and it manages to run forward and backward
analysis. A concrete analysis is implemented, which is the liveness analysis.
The results from the liveness analysis are helpful for coloring register allocation
described in the section discussed in the back-end.

2.3.1 Analyses

An analysis framework was created. The thesis also implements Liveness and
Constant Propagation analysis and ‘declaration’ analysis using the framework.
Framework supports forward and backward analyses and implements a func-
tion for searching a fixed point. The algorithm is described in the figure 2.2

For the analysis, a lattice need to be defined, and templates of Flat Lattice,
Powerset Lattice, and Map Lattice are prepared for use. For the analysis, also
a specialized map was implemented in ‘/tvlm/analysis/lattice/map_lattice’
with the extended functionality of a default element for the map.

All analyses use control flow and data flow information stored as a graph
constructed above the IR representation.

Liveness Analysis

The liveness analysis gives information about registers whose values will be
used; therefore, having them in registers is necessary. The analysis gives
this information at every instruction. When an analysis is implemented, the
essential differences are in the used lattice and the transfer functions.

46

2.3. Optimizer

Figure 2.2: The propagation worklist algorithm used in the analysis template
to reach a fixed point.

The transformation function needs to follow the backward analysis format
of version ‘may.’ Therefore the joining of incoming analysis states is using
least-upper-bound of the two as a result.

Constant propagation

Constant propagation analysis tracks at each instruction all memory locations.
The result is updated whenever a constant is present at each point where a
variable is stored. When storing a user-provided value, a top (⊤) is issued,
and whenever the memory location is uninitialized, the result is bot (⊥).

The results from constant propagation analysis are used in constant prop-
agation optimization.

2.3.2 Optimizations

Optimizations are used to augment the IR representation so it does the exe-
cution ‘better.’ In this thesis, the main optimizations presented are function
inlining, constant propagation, and strength reduction.

Strength Reduction

The task of Strength reduction is to substitute operations with different ones
that are processed faster than the original ones and produce the same result.
For example, when a number is multiplied by the power of two, it is often
faster for the target machine to do it with a bit-shift operation instead of an
arithmetic operation — multiplication.

47

2. Design and Implementation

The strength reduction needs to run an analysis that finds such instruction
possible to replace. After marking the instructions, a substitution must be
performed. Hence, all registers keep relations, and the original data flow is
not harmed in a way that would cause the computation to be incorrect.

List of expressions that are substituted:

• multiplication of power of two with bit-shift

• division by power of two with bit-shift

• modulo by power of two with bit and

Constant Propagation

The constant propagation task is substituting instructions with the result
already known in compile time so the computation is not impeding the final
program. The task of the analysis part is to mark the instructions that need
replacing and determine the results of such parts. When a variable read from
memory is made, but the value is constant throughout, replacing the read
with the actual value is possible, so slow access to the memory does not have
to be invoked. The same applies when there is a binary operator with both
operands constant; the constant result can be computed in compile time and
replaced.

List of expressions that are substituted:

• All binary operators with constant operands

• All unary operators with constant operand

• Truncate instructions with constant operand with the integer type

• Extend instructions with constant operand with the floating-point type

Function Inlining

Function inlining has a task to eliminate the function call agenda and preserve
the program’s functionality. The function call agenda often causes extra work
for the target machine, especially in cases when the function has only a few
instructions; therefore, it is suitable to skip the time-consuming part and only
execute the body. The reason why programmers use function calls instead
of having the function body in code is that copied code cannot be changed
in one place; therefore, the function inlining is a valuable tool to have, while
programmers can have sustainable code and do not pay for it in terms of code
efficiency.

Function inlining is divided into 5 phases: prolog, phase1sthalf, inlining,
phase2ndhalf, and epilogue. Each phase defines what needs to be done with
Basic Block in the function that contains a call to the inlined function.

48

2.4. Back-end

The function, which has the call of the inlined function, is divided into
three parts (batches) by Basic Blocks, the first part contains all Basic Blocks
preceding the one Basic Block containing the call to inlined function, and the
third contains the rest of Basic Blocks. All jumps need to be transformed so
they point to new Basic Blocks.

The prolog phase prepares new Basic Blocks for the function that contains
the call of the inlined function and fills all Basic Blocks from the first batch
with copied contents of old Basic Blocks.

The phase1sthalf phase copies the first half of the Basic Block in the second
batch and inserts a jump to the first Basic Block that the inlining process fills.

The inlining phase copies all Basic Blocks of the inlined function. It re-
places the return instruction with an adequate jump instruction to the next
Basic Block and stores the result.

The phase1sthalf phase copies the second half (after the replaced call) of
the Basic Block in the second batch. It also replaces the instruction that
uses the result of the inlined call instruction with an instruction that uses the
stored result instead.

The epilog copies the contents of all Basic Blocks in the third batch.

2.4 Back-end
The back-end is the last part of this compiler. The back-end input can be
code generated by the front-end or optimized from the middle-end; In any
case, the program is in the IR. The task of the back-end is to transform this
IR into Assembler.

The task here is to create a result represented as an Assembly code. The
compiler must select assembler instructions and choose registers used in the
target accordingly. Moreover, in the last phase, it should clear suboptimal
parts with Peepholer; its place is after the instruction selection or after the
register allocation is finished. While compiling the whole program, it is not suf-
ficient just to translate (and select) instructions, Basic Blocks, and functions.
Keep in mind, in the back-end; there are more problems resolved: concerning
calling conventions, information about registers, working with addresses and
memory of the target machine, as well as addresses of instructions for jumps
because assembler jump instructions jump within the Assembler code, which
does not contain Basic Blocks but labels.

The process of target code generation is divided into parts. Chronologically
listed in this order:

Instruction selection (IS) where adequate assembler instructions are selected.
IS has the most significant influence on the final code structure.

Peepholer is responsible for clearing and repairing some suboptimality re-
sulting from instruction selection.

49

2. Design and Implementation

Register Allocation (RA) must operate after the instruction selection is fin-
ished. It requires the number of how many and which registers the target
machine has. From the selected program, it gets information about used
IR registers and tries to fit them in the registers. In case of a lack of
target registers, it has to change the program so it is possible to fill them
with the IR registers, and the program stays correct.

Assembly finalization. This part takes all results from all preceding sections
and creates a complete assembler program suitable for the target ma-
chine.

2.4.1 Instruction Selection

The first part of the back-end is instruction selection (IS). IS aims to choose
how to translate every IR instruction in the input to the target instruction or a
sequence of them. Which target instructions are available specifies the target
instruction set. The decision of which target instruction to pick often depends
on constraints like the efficiency or code size of the outputted program. These
constraints naturally go against each other, making this quite a challenging
task.

This work implemented naive IS managed by visitor-pattern on IR rep-
resentation — each instruction creates a sequence of assembler instructions
which are then (in Assembly finalization) composed together after each other
following the order in each Basic Block. Each Basic Block then follows how
they are ordered in function. And functions by the same pattern as they are
ordered in the program. The program has to make a selection for global Basic
Block as well.

The IS selects instructions for each Basic Block. Selection is made by order
of the sequence for each instruction. IR instruction is generally translated into
one or more target instructions. Some IR instructions are only virtual because
IS does not select any target instruction, mainly because the role of such IR
instruction is to signal additional information to the code generation process.
Basic Block can be safely independently translated, and the translation will
be correct while compiled in the same order as they are ordered in the Basic
Block. This order is correct since instructions cannot have arguments later in
the sequence. The independent selection is not necessary, nor reasonable for
the virtual instructions.

For example, Load and Store instructions take into account the Alloc in-
struction, which belongs to the Virtual ones, to distinguish how the address
should be obtained. And still, the independent view has a downside in terms
of optimization while translating instructions as dependent; a better sequence
of target instructions might be constructed, but generally, in the trade of de-
manding design, that can be pretty time-consuming when evaluated, causing
greater compile times.

50

2.4. Back-end

1 // IR // Target Code
2 0 : JMP 11
3 main : 1 : PUSH Bp
4 bb_0 : 2 : MOV Bp , Sp
5 3 : SUB Sp , 1
6 r0 : int = LoadImm 5 4 : MOV Reg1 , 5
7 Store [g0] r0 : int 5 : MOV [0] , Reg1
8 r2 : int = Load [g0] 6 : MOV Reg1 , [0]
9 Return r2 : int 7 : MOV Reg0 , Reg1

10 8 : MOV Sp , Bp
11 9 : POP Bp
12 globals : 10 : RET
13 g0 : int = LoadImm 17 11 : MOV Reg1 , 17
14 g1 : int = AllocG 1 (size : 1) 12 : MOV [0] , Reg1
15 Store [g1] g0 : int 13 : MOV Reg0 , 1
16 14 : CALL 1
17 15 : HALT

Listing 2.9: Example of translation of an AllocG instruction from IR to
Tinyx86.

On the other hand, the independent view is simple to implement, and
debugging is also simpler. Moreover, another advantage is that the process is
more understandable for students.

To understand future examples, it is advised to see the Instructions section
in the Tiny x86 ISA chapter of this thesis (named Tiny x86 - Architecture
Simulator for Educational Purposes)[11] with the specification of ISA of the
t86 target.

The first Example 2.9 is how are AllocG instructions translated. Both
of the Alloc instructions are purely symbolic, they do not contribute to the
Assembler code as other IR instructions by creating target instructions. The
Alloc instructions affect only counters inside the compiler that need to know
how much of allocated space there needs to be created and to map, which pairs
the Alloc instructions with an offset at which the allocated place is. Therefore
whenever a Load, Store, or ElemAccess instructions work with address a rou-
tine is called which in case of Alloc instruction counts and gathers the address
accordingly. The address is a relative offset from the Base pointer, in the case
of AllocL, and just an offset from the bottom of the memory in the case of
AllocG.

AllocL is tightly connected to functions. Alloc instructions are virtual;
they provide information for the Assembly finalization, so then the finalization
part can specify local memory needs for the function and insert instructions
responsible for the memory allocation.

The IS has a routine that helps translate instructions that work with the
address. The routine distinguishes the types of allocation, and in case it is
Alloc instruction, it fills it in place without additional registers.

Translation of a function requires a compilation of all Basic Blocks in any

51

2. Design and Implementation

order. However, the compilation order is deterministic since Basic Blocks are
stored in a vector. It works by the sequence in which they are stored. The
function compilation needs to count with memory, particularly stack. Since
the ‘CALL’ and the ‘RETURN ’ target instruction work with the stack and
local allocations. At the start and the end, as well as in every function, there
needs to be a code sequence that defines stack preparation and movement.
This sequence can be seen in the Example 2.10. The sequence is there to set
up the stack place so that it can be reverted after the call body is executed
and resume correctly in the caller function. That is, the standard usage of
Stack Pointer (Sp) and Base Pointer (Bp) registers for managing the stack
workaround. (Instructions such as PUSH, POP, CALL, RETURN, are working with
Sp and Bp)

The stack movement has a few common patterns used in specific use cases:

• at the begging of a function,

• at the end of a function,

• preparation of arguments for a function call,

• accessing function arguments and local variables,

• and local variable address management.

The stack is the structure for storing local memory; therefore, the stack
is the middle piece between the function that prepares the stack and AllocL
instruction which points to places where the variables are or will be stored.

Even more interesting is how AllocL has to be translated. Every start of
a function has a mandatory sequence for working with a stack. The sequence
prepares special registers for managing local allocation placed on the stack.
If it is not resolved this way and only allocating whenever the instruction is
hit, it would cause unnecessary allocations and waste of stack space. The
potential combination with other IR Instructions, which form loops or others
that change the execution flow of the program, is problematic. Imagine when
a variable is allocated inside a loop. That would mean it is allocated that
many times there were cycles in a loop, effectively running out of stack space
relatively quickly. It would not make any sense because the value should still
use the same address, and there would be no way to address the memory from
the loop allocated instances.4 Therefore when compiling, Alloc instructions
change counters of how many allocations there are in the function. This
value is used when assembling the function and adding allocation info (which
happens in Assembly finalization). This way, the issue with loops is solved,
while everything is allocated only once and at the beginning of the function
as desired.

4There is only one way — using pointer arithmetic’s, which is forbidden to use in tinyC
anyways.

52

2.4. Back-end

1 // IR // Target Code
2 0 : JMP 30
3 main : 1 : PUSH Bp
4 2 : MOV Bp , Sp
5 bb_0 : 3 : SUB Sp , 4
6 r0 : int = AllocL 1 (size : 1)
7 r1 : int = LoadImm 0 4 : MOV Reg1 , 0
8 r2 : int = AllocL 1 (size : 1)
9 Store [r2] r1 : int 5 : MOV [Bp + −2] , Reg1

10 Jump bb_1 6 : JMP 7
11 bb_1 :
12 r5 : int = Load [r2] 7 : MOV Reg1 , [Bp + −2]
13 r6 : int = LoadImm 5 8 : MOV Reg2 , 5
14 r7 : int = Lt r5 : int r6 : int 9 : SUB Reg1 , Reg2
15 10 : MOV Reg1 , Flags
16 11 : AND Reg1 , 1
17 CondJump r7 : int bb_3 bb_2 12 : CMP Reg1 , 0
18 13 : JZ 20
19 14 : JMP 15
20 bb_2 :
21 r9 : int = LoadImm 5 15 : MOV Reg1 , 5
22 r10 : int = AllocL 1 (size : 1)
23 Store [r10] r9 : int 16 : MOV [Bp + −3] , Reg1
24 r12 : int = Load [r10] 17 : MOV Reg1 , [Bp + −3]
25 Store [r0] r12 : int 18 : MOV [Bp + −1] , Reg1
26 Jump bb_4 19 : JMP 25
27 bb_3 :
28 r20 : int = Load [r0] 20 : MOV Reg1 , [Bp + −1]
29 Return r20 : int 21 : MOV Reg0 , Reg1
30 22 : MOV Sp , Bp
31 23 : POP Bp
32 24 : RET
33
34 bb_4 :
35 r15 : int = Load [r2] 25 : MOV Reg1 , [Bp + −2]
36 r16 : int = Copy r15 : int 26 : MOV Reg0 , Reg1
37 r17 : int = Inc r15 : int 27 : INC Reg1
38 Store [r2] r17 : int 28 : MOV [Bp + −2] , Reg1
39 Jump bb_1 29 : JMP 7
40
41 30 : MOV Reg0 , 1
42 31 : CALL 1
43 32 : HALT

Listing 2.10: Example of translation from IR to Tinyx86, where an AllocL
instruction is in a loop.

53

2. Design and Implementation

Translating calls concerns mainly work with the call’s arguments. The
register allocation tasks include calling conventions and spilling the suitable
registers. instruction selection only prepares arguments to the proper registers
or pushes them to the memory. So ArgAddr in callee points to the correct
memory place.

When it comes to Jump, CondJump, or Call instructions, there is one
thing they have in common, their argument is the place where the execution
of the program has to continue, the destination. In assembler, that is solved
by supplying a number — the position of the destination instruction in the
program. Unfortunately, this information is not available at the time of in-
struction selection is made — the magical number 42 in assembler instruction
at position 59 in the Example 2.11 shows this, therefore a mapping needs to
be created between the jump (or call) instruction and Basic Block (or Func-
tion). This mapping is then processed in the Assembly finalization when all
instructions are selected, and the positions are known.

2.4.2 Register Allocation

Imagine the register allocator as an interface providing a function to get a
register for a specific instruction; here comes in handy that those instructions
are the same as the values (results) that need to be placed in a register. When
instruction selection is finished, placeholders are mapped the most straight-
forward way whenever a register is required to get the next one with an index
higher. That part is named a ‘Register Assigner.’ The task of the register
allocator is to remap these register placeholder numbers with some from the
set corresponding to a number of registers available in the target machine.

Each instruction behaves differently but uses the same interface. If a
register is required, ask for remapping a particular placeholder by calling the
function ‘setupRegister.’ That function looks into the Register Allocator’s
structures and decides which register number the placeholder will use from
now on. The result of this function depends on which algorithm is used.

When it comes to Register Spilling, a Register Allocator needs to maintain
values and work with them. It involves a few types of demands

• Is the value already in some register? And which one?

• Is there a free register? And which one?

• Modify the program to restore a value into a specified register.

• Decide which register needs to be spilled and spill it.

Register spilling occurs when an instruction needs a free register to store
its result, but every register is already filled. Therefore one result needs to
be swapped out to memory. Therefore it is required that RA can modify the
program.

54

2.4. Back-end

1 // IR // Target Code
2 function : 0 : JMP 57
3 fact : 1 : PUSH Bp
4 2 : MOV Bp , Sp
5 bb_0 : 3 : SUB Sp , 3
6 r0 : int = ArgAddr 0 4 : MOV Reg1 , Bp
7 5 : ADD Reg1 , 2
8 r1 : int = Load [r0] 6 : MOV Reg2 , [Reg1]
9 r2 : int = LoadImm 0 7 : MOV Reg3 , 0

10 r3 : int = Eq r1 : int r2 : int 8 : SUB Reg2 , Reg3
11 9 : MOV Reg2 , Flags
12 10 : AND Reg2 , 2
13 CondJump r3 : int bb_2 bb_1 11 : CMP Reg2 , 0
14 12 : JZ 19
15 13 : JMP 14
16 bb_1 : r5 : int = LoadImm 1 14 : MOV Reg2 , 1
17 Return r5 : int 15 : MOV Reg0 , Reg2
18 16 : MOV Sp , Bp | 17 : POP Bp
19 18 : RET
20 bb_2 : r8 : int = Load [r0] 19 : MOV Reg2 , [Reg1]
21 r9 : int = Load [r0] 20 : MOV Reg3 , [Reg1]
22 r10 : int = LoadImm 1 21 : MOV Reg1 , 1
23 r11 : int = Sub r9 : int r10 : int 22 : SUB Reg3 , Reg1
24 r12 : int = CallStatic 23 : MOV Reg0 , Bp
25 fact (r11 : int) 24 : SUB Reg0 , 1
26 25 : MOV [Reg0] , Reg3
27 26 : MOV Reg0 , Bp
28 27 : SUB Reg0 , 2
29 28 : MOV [Reg0] , Reg2
30 29 : PUSH Reg3
31 30 : CALL 1
32 31 : MOV Reg1 , Reg0
33 32 : ADD Sp , 1
34 33 : MOV Reg2 , Bp
35 34 : SUB Reg2 , 2
36 35 : MOV Reg2 , [Reg2]
37 r13 : int = Mul r8 : int r12 : int 36 : MUL Reg2 , Reg1
38 Return r13 : int 37 : MOV Reg0 , Reg2
39 38 : MOV Sp , Bp | 39 : POP Bp
40 40 : RET
41 bb_3 : Jump bb_2 41 : JMP 19
42 main : 42 : PUSH Bp
43 43 : MOV Bp , Sp
44 44 : SUB Sp , 2
45 bb_0 : r15 : int = LoadImm 3 45 : MOV Reg1 , 3
46 r16 : int = CallStatic 46 : MOV Reg0 , Bp
47 fact (r15 : int) 47 : SUB Reg0 , 1
48 48 : MOV [Reg0] , Reg1
49 49 : PUSH Reg1
50 50 : CALL 1
51 51 : MOV Reg2 , Reg0
52 52 : ADD Sp , 1
53 Return r16 : int 53 : MOV Reg0 , Reg2
54 54 : MOV Sp , Bp | 55 : POP Bp
55 56 : RET
56 57 : MOV Reg0 , 1
57 58 : MOV Reg0 , 42
58 59 : CALL 42
59 60 : HALT

Listing 2.11: Example of translation of IR with Call expressions to Tinyx86.

55

2. Design and Implementation

In this work, there are two designs of register allocator

Naive Allocator – register allocator that uses a queue for deciding which
register to spill. It tries to divide the occupancy between all registers
evenly. It is considered naive because it does not care about the usage
of the registers.

Coloring Allocator – register allocator that builds an internal representation
of dependencies and uses an analysis to determine which register is the
best candidate for spilling, thus optimizing against the number of spilled
registers.

The Naive register allocator spills the last defined values, so it maintains
time locality (kind of) but is easy to implement.

On the other hand, the Coloring allocator uses a more complicated struc-
ture and liveness analysis to determine which values are best to spill according
to colliding requirements for being in registers. The coloring allocator inherits
spilling mechanisms implemented in the Naive register allocator.

The workflow of the Coloring allocator is following:

1. Liveness analysis is performed. It collects information about unique live
ranges.

2. Assign Virtual registers information about the live ranges

3. Compute — Color the live ranges — and determine which live ranges
will be spilled; if any, insert spill code and redo from the start with the
analysis.

4. Assign the virtual registers Physical registers

2.4.3 Calling Conventions

Calling conventions are rules about calling a function and returning from a
function. It defines an interface that the caller and the callee need to obey. If
any would not, the computation can be harmed. The rules are about

They define

• how are the arguments passed into the function,

The arguments are all pushed to a stack, so every argument has a place
in memory and ArgAddr instruction points to the memory place.

• who cares about which registers and who is responsible for saving them
in case of using and rewriting the values.

The caller saves everything, and the callee has a free space to work with.

56

2.4. Back-end

• how the workflow around the stack works.
At the beginning of every function, there is the Base pointer marked
— Pushed Bp, then into Bp saved the Bp. After compiling the Return
instruction complement sequence for resetting the stack and, therefore,
‘deallocating’ all locally allocated values in that function. The sequence
is to replace Sp with Bp, POP to Bp, and then call RET to exit from
the callee and resume in the caller.

2.4.4 Assembly Finalization

The Assembly finalization is the last part of code generation. Its task is to take
all parts of the results from the preceding sections and path them together.

Global instructions (globals) are in separate Basic Block in the program.
IS compiled them before as their contents are necessary for addressing global
variables. However, Assembly finalization needs the globals at the end because
it has to fill in information about functions and where they begin in the
assembler code. Therefore compilation of globals is postponed and takes place
at the end of the assembler code, where the control flow is patched by jumps.

The Assembly finalization begins with composing the program prologue
routine of jumping to globals, setting the context for the main function.

After that, function composition is the next step. Functions already have
the selected code tied to their components. Assembler sequences created in
IS are put after each other following the order in each Basic Block. Each
Basic Block then follows the order of how they are ordered in function. And
functions, by the same pattern, whole chunks are after each other, the way
they are ordered in the program.

Compiling a Basic Block has one catch, the label of the first instruction
has to be remembered, in case the Jump instruction is targeting that Basic
Block or if it is the first Basic Block of a function, then it is required for Call
translation.

After the parts mentioned above are done, the main context and all func-
tions are composed and globals afterward. The last thing remains to be fin-
ished, and that is Jump and Call instructions patching. Throughout the IS,
whenever a jump or call should be selected in destination, there was a filled
empty label waiting until now. Now the information from function composi-
tion remembered where each Basic Block begins in the composed code; this
information can be substituted, creating a finished target machine code.

57

Chapter 3
Evaluation

This chapter shows the differences between the naïve compilation and compi-
lation with the following optimization techniques: function inlining, constant
propagation, strength reduction, dead code elimination, and a register allo-
cator that uses graph coloring for spill decision. The benefits of performance
gained are showcased in section 3.2.

3.1 Goals and Setup
The goal was to create an optimizing compiler that implements techniques
from the NI-GEN course. Furthermore, they can be used for illustration of the
implemented techniques. The whole program is a composition of the compiler
and the target VM. It executes the compiler result right after the compilation
is successfully finished. The composite contains: loading an input file to the
compiler, compilation itself, and target VM execution of the compiler result.

The tests are evaluated on tiny86 Virtual architecture, which provides
performance counters. The performance counters deliver information about
the execution in the target virtual processor ticks.

3.2 Verification and Validation
The compiler was tested with included tests in the tinyC repository. All
tests were successfully translated into the tiny86 instructions (with the default
arguments). Testing scripts are also included in the /tinyc/tests/ directory.

59

3. Evaluation

Sample A
Optimized run Naïve run

Total ticks: 202 684
Total code instructions: 76 174
Throughput: [ins. per tick] 0.376238 0.254386

Table 3.1: Benchmark comparison of code sample A, where there are results
of the optimized compilation on the left, and on the right, there are results
from the most Naïve run the compiler can perform. All units are ticks unless
specified otherwise.

The program has several arguments to change the settings which determine
the enabled optimization. Changeable arguments that have an impact on the
optimizations and the outputted program are:

Arguments for Target

• The number of int and float registers. The register allocator’s re-
sults depend on target register counts. That changes the register
pressure and affects how often registers need to be spilled.

Arguments for compiler

• Swap between register allocations - color and naive

• Turns on and off the optimizations

– Constant propagation (& strength reduction)
– Function inlining
– Dead code elimination

Testing in loops is unnecessary, thanks to the tiny86 Virtual Machine,
which provides consistent results while measured in ticks that are not depen-
dent on time or other constraints defining the targets speed.

For the showcase of the results, two representative code samples were cho-
sen; they are shown in Example 3.1. Results of the performance counter are
shown in tables 3.1 and 3.2. Turning the optimizations on lowers the ticks
necessary to achieve the same result of the execution. Improvement is in total
executed instructions The amount of ticks required to finish the computation
is also lower. In sample A, the necessary ticks are one-third of the amount that
the naïve compilation’s result required. For sample B, the optimized program
required half of the instruction to produce the same result.

Code sizes also improved; the naïve compilation required 132 instructions,
whereas the optimized required 76. For sample B, 116 instructions were out-
putted from naïve compilation, and only 72 with optimizations enabled.

60

3.2. Verification and Validation

1 //Code sample A // Code sample B
2 int add(int a, int b){ int abs(int n) {
3 return a + b; if (n < 0) {
4 } return -n;
5 } else {
6 int sub(int a, int b){ return n;
7 return a - b; }
8 } return 0;
9 }

10 void prnt(int a){
11 char b = cast<char>(a); int main() {
12 print(b); int n = 4+1;
13 print('\n'); int m = -7;
14 return;
15 } int abs_n = abs(n);
16 int abs_m = abs(m);
17 int main(){
18 int a = 85; int k = 10;
19 int b = 10; int n_times_k = n * k;
20 int m_times_k = m * k;
21 prnt(add(a, b));
22 prnt(sub(a, b)); return m_times_k;
23 prnt(a + b); }
24 prnt(a - b);
25 return a+b;
26 }

Listing 3.1: Code samples used for testing, sample A (on the left) was used
for constant propagation, and sample B (on the right) was used for function
inlining.

Sample B
Optimized run Naïve run

Total ticks: 302 521
Total code instructions: 79 138
Throughput: [ins. per tick] 0.261589 0.264875

Table 3.2: Benchmark comparison of code sample B, where there are results
of the optimized compilation on the left, and on the right, there are results
from the most Naïve run the compiler can perform. All units are ticks unless
specified otherwise.

Creating optimal testing microbenchmarks is a difficult task. Tested pro-
grams were also used for testing the coverage of the tinyC translation. In a
larger program, there could be a more significant possibility to optimize more
sections. So the results can differ depending on the tests and what function-
ality is targeted, i.e., programs do not have functions; therefore, a function
inlining will not make any difference.

61

3. Evaluation

Nevertheless, the testing was performed. The average code size among all
tested programs (including these two representative code samples) decreased
by 30%, and the average amount of ticks necessary to execute decreased by
31%. Graphs 3.1, 3.2 show a detailed overview of how the tests performed and
the impact of optimization on performance. The worst case of the measured
cases is that the optimization does not change the code; therefore, the graphs
do not contain ‘negative’ results. The two types of RA make a significant
difference in 13spilling while under big register pressure.

Figure 3.1: Graph showing the ratio of speed up of the program of the opti-
mized program compared to the naive one.

Figure 3.2: Graph showing the ratio of reduction of the code size of the
optimized program compared to the naive one.

62

Conclusion

The optimizing compiler for the tinyC language and tiny86 target was designed
and implemented. The implementation uses techniques from the NI-GEN
course. In the middle-end part, intra-procedural optimizations were imple-
mented, including dead code elimination, constant propagation, and function
inlining. It implements instruction selection and two types of register allo-
cation in the back-end part. The compiler supports configuration to toggle
various optimization techniques described in this thesis, so the comparison
between naïve and optimizing compilation can be measured. The implemen-
tation was tested by unit tests included in the implementation.

Future Work
The middle-end can be upgraded in many ways beginning with extra analysis
and optimization techniques that would optimize the code even more. In that
case, a scheduler could use an upgrade as well. The compiler is prepared for
further implementation of Peepholer in the back-end. Also, another algorithm
for instruction selection can be implemented so a comparison between the
naïve and the new algorithm can be measured. The compiler parts are modular
so that another implementation of any part of the compiler can be upgraded
since the underlying tiny86 VM allows one to compare two implementations
easily. Finally, a compiler, although a small one as presented in this thesis, is
complex software, and while care was taken to test its features properly, those
tests are by no means complete. Thesis coverage should be increased, and any
bugs found fixed.

63

Bibliography

[1] Aho, A. V.; Sethi, R.; et al. Compilers, Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[2] Rice, H. G. Classes of Recursively Enumerable Sets and Their Deci-
sion Problems. Transactions of the American Mathematical Society, vol-
ume 74, no. 2, 1953: pp. 358–366, ISSN 00029947. Available from:
http://www.jstor.org/stable/1990888

[3] Chaitin, G. J.; Auslander, M. A.; et al. Register allocation via
coloring. Computer Languages, volume 6, no. 1, 1981: pp. 47–
57, ISSN 0096-0551, doi:https://doi.org/10.1016/0096-0551(81)90048-
5. Available from: https://www.sciencedirect.com/science/
article/pii/0096055181900485

[4] A brief history of GCC. [Online; accessed 12-October-2022]. Available
from: https://gcc.gnu.org/wiki/History

[5] Tree SSA (GNU Compiler Collection (GCC) internals). [Online; ac-
cessed 10-October-2022]. Available from: https://gcc.gnu.org/
onlinedocs/gccint/Tree-SSA.html

[6] The LLVM Compiler Infrastructure Project. [Online; accessed 17-
October-2022]. Available from: https://llvm.org

[7] Getting started with the LLVM system. [Online; accessed 17-
October-2022]. Available from: https://llvm.org/docs/
GettingStarted.html

[8] Writing an LLVM backend. [Online; accessed 19-October-2022]. Available
from: https://llvm.org/docs/GettingStarted.html

[9] LLVM language reference manual. [Online; accessed 5-January-2023].
Available from: https://llvm.org/docs/LangRef.html

65

http://www.jstor.org/stable/1990888
https://www.sciencedirect.com/science/article/pii/0096055181900485
https://www.sciencedirect.com/science/article/pii/0096055181900485
https://gcc.gnu.org/wiki/History
https://gcc.gnu.org/onlinedocs/gccint/Tree-SSA.html
https://gcc.gnu.org/onlinedocs/gccint/Tree-SSA.html
https://llvm.org
https://llvm.org/docs/GettingStarted.html
https://llvm.org/docs/GettingStarted.html
https://llvm.org/docs/GettingStarted.html
https://llvm.org/docs/LangRef.html

Bibliography

[10] Wikipedia. Short-circuit evaluation — Wikipedia, The Free En-
cyclopedia. http://en.wikipedia.org/w/index.php?title=
Short-circuit%20evaluation&oldid=1130491239, 2023,
[Online; accessed 20-February-2023].

[11] Strejc, I. Tiny x86 - Architecture Simulator for Educational Purposes.
Master’s thesis, Czech Technical University in Prague, 2021.

66

http://en.wikipedia.org/w/index.php?title=Short-circuit%20evaluation&oldid=1130491239
http://en.wikipedia.org/w/index.php?title=Short-circuit%20evaluation&oldid=1130491239

Appendix A
Acronyms

ASCII American Standard Code for Information Interchange

AST Abstract syntax tree

BB Basic Block

DAG Directed acyclic graph

IR Intermediate Representation

IS Instruction Selection

ISA Instruction set architecture

SSA Static single assignment

67

Appendix B
TinyC Language Specification

B.1 TinyC Language Reference
PROGRAM := { FUN_DECL | VAR_DECLS ';' | STRUCT_DECL |

FUNPTR_DECL }

A program is collection of function and variable declarations. Alterna-
tively, tinyC supports a repl-like interface, where the main element is either
a program, or a stetement:

REPL := STATEMENT | PROGRAM

B.1.1 Functions

FUN_DECL := TYPE_FUN_RET identifier '(' [FUN_ARG
{ ',' FUN_ARG }] ')' [BLOCK_STMT]

FUN_ARG := TYPE identifier

Functions are declared the same way as in C. A function definition starts
with the return type, followed by function name and arguments. Arguments
have type and name. Default values or variadic arguments are not supported.
Functions can be declared or defined. Function definitions must have their
body.

B.1.2 Statements

STATEMENT := BLOCK_STMT | IF_STMT | SWITCH_STMT |
WHILE_STMT | DO_WHILE_STMT | FOR_STMT |
BREAK_STMT | CONTINUE_STMT | RETURN_STMT |
EXPR_STMT

BLOCK_STMT := '{' { STATEMENT } '}'

69

B. TinyC Language Specification

IF_STMT := if '(' EXPR ')' STATEMENT [else STATEMENT]

SWITCH_STMT := switch '(' EXPR ')' '{' { CASE_STMT }
[default ':' CASE_BODY }] { CASE_STMT } '}'

CASE_STMT := case integer_literal ':' CASE_BODY
CASE_BODY := { STATEMENT }

WHILE_STMT := while '(' EXPR ')' STATEMENT
DO_WHILE_STMT := do STATEMENT while '(' EXPR ')' ';'
FOR_STMT := for '('[EXPR_OR_VAR_DECL]';'[EXPR]';'[EXPR]

')' STATEMENT

BREAK_STMT := break ';'
CONTINUE_STMT := continue ';'

RETURN_STMT := return [EXPR] ';'

EXPR_STMT := EXPR_OR_VAR_DECL ';'

B.1.3 Types

To keep the type declarations similar to those of C while keeping the grammar
simple to parse, the type declarations grammar is a bit repetitive:

TYPE := (int | double | char | identifier) { * }
|= void * { * }

TYPE_FUN_RET := TYPE | void

Pointers can point to either a plain type, an identifier representing a struct
or function pointer type, or void. Pointers to pointers are allowed.

B.1.4 Type Declarations

STRUCT_DECL := struct identifier ['{'{ TYPE identifier
';'}'}']';'

Structured types must always be declared before they are used. Forward
declarations are supported as well.

FUNPTR_DECL := typedef TYPE_FUN_RET '(' '*' identifier
')' '(' [TYPE { ',' TYPE }] ')' ';'

Function pointers must always be declared before they can be used.

70

B.1. TinyC Language Reference

B.1.5 Expressions

F := integer | double | char | string | identifier |
'(' EXPR ')' | E_CAST

E_CAST := cast '<' TYPE '>' '(' EXPR ')'

E_CALL_INDEX_MEMBER_POST := F { E_CALL | E_INDEX |
E_MEMBER | E_POST }

E_CALL := '(' [EXPR { ',' EXPR }] ')'
E_INDEX := '[' EXPR ']'
E_MEMBER := ('.' | '->') identifier
E_POST := '++' | '--'

E_UNARY_PRE := { '+' | '-' | '!' | '~' | '++' | '--' |
'*' | '&' } E_CALL_INDEX_MEMBER_POST

Unary prefix operators are either simple arithmetics (plus, minus, not
and neg), the increment and decrement operators (these are a bit harder to
compile as they immediately update the value of their argument) and the
special operators for dereferencing (’*’) and getting an address of variables
(’&’).

E1 := E_UNARY_PRE { ('*' | '/' | '%') E_UNARY_PRE }
E2 := E1 { ('+' | '-') E1 }
E3 := E2 { ('<<' | '>>') E2 }
E4 := E3 { ('<' | '<=' | '>' | '>=') E3 }
E5 := E4 { ('==' | '!=') E4 }
E6 := E5 { '&' E5 }
E7 := E6 { '|' E6 }
E8 := E7 { '&&' E7 }
E9 := E8 { '||' E8 }

Basic arithmetic operators are supported in the same way they are in
c/c++ including their priority. All evaluate left to right (left associative).

EXPR := E9 ['=' EXPR]
EXPRS := EXPR { ',' EXPR }

The lowest priority is the assignment operator. Note that assignment
operator is right-to-left (right associative).

Expressions can be separated by a comma, they will be evaluated left to
right.

VAR_DECL := TYPE identifier ['[' E9 ']'] ['=' EXPR]
VAR_DECLS := VAR_DECL { ',' VAR_DECL }

71

B. TinyC Language Specification

EXPR_OR_VAR_DECL := VAR_DECLS | EXPRS

Variable declaration must start with a type specification. Multiple vari-
ables of same type cannot be declared in a single expression, but multiple
comma separated declarations with explicit type are allowed.

Optionally, arrays of statically known size may be defined with [] operator
after the variable name.

72

Appendix C
IR Instructions

This chapter follows with a description of supported instructions in Interme-
diate Language, which is split into sections by their purpose.

C.1 Control Flow Instructions
Control Flow Instructions are those that change the order of instruction’s exe-
cution. Those can be divided into Function calls and terminator Instructions.
Terminator instructions are those which are always last in Basic Block. Then
we can call such a Basic Block closed.

Return
1 Return 'value' : 'type' //Return a value from a non-void ←↩

function
2 Return //Return from a void function

‘Return’ is Terminator instruction and serves as the ending of a func-
tion. When the ‘Return’ instruction is executed, the control flow returns
back to the calling functions context. If the instruction returns a value,
that value, which is specified in the argument, shall set the ‘Call’ or
‘CallStatic’ instruction’s return value.

Jump
1 Jump `targetBB'

Jump is Terminator instruction and changes the flow of execution to
another Basic Block in the current Function. It corresponds to an un-
conditional branch.

CondJump
1 CondJump 'cond': 'type' 'falseBB' 'trueBB'

73

C. IR Instructions

CondJump instruction is similar to Jump instruction as well as a Ter-
minator instruction but the difference is that this instruction takes two
Basic Blocks (a true and false one) and a condition by which is then
decided to which of that two should the execution continue. So if the
condition equals 0 then false Basic Block will be next to execute, and
otherwise, true Basic Block is used for the next execution. It corre-
sponds to a conditional branch. After the execution of a conditional
‘CondJump’ instruction, the ‘cond’ argument is evaluated. If the value
is true, control flows to the ‘trueBB’ Basic Block argument. If ‘cond’
evaluates false, control flows to the ‘falseBB’ Basic Block argument.

Halt
1 Halt

Halt is a simple Terminator instruction that serves just one purpose: To
stop the machine and end its execution, otherwise it would do ‘NOP’
instruction in an endless loop. So this instruction is always the last at
the end of the program. Stops the execution of the program.

C.2 Function Call Instructions

Since tinyC supports function pointers, there need to be two types of instruc-
tions for calling a procedure. The first is named CallStatic because its address
should be known by the compiler at compile time. And second, named sim-
ply Call for calling a procedure that is not known at compile time. A great
analogy to this problem is with storing a value in memory, but the value now
is the address of the first instruction in that procedure.

CallStatic
1 r1:'rType'=CallStatic 'fnc'(['function args')
2 CallStatic 'name'(['function args')

CallStatic instruction represents a function call. It takes a Function and
a collection of values that will be used as an argument. This instruction
is used to cause control flow to transfer to a specified function, with
its incoming arguments bound to the specified values. Upon a ‘Return’
instruction in the called function, control flow continues with the instruc-
tion after the function call, and the value of this instruction becomes the
return value of the function.

Call
1 r1:'rType'=Call 'value'('function args')
2 Call 'value'('function args')

74

C.3. Memory Access & Allocation Instructions

‘Call’ instruction is similar to the CallStatic instruction but differs in
the information that is known about the function that will be called.
Instead of Function, it takes a Instruction Label that should point to a
start of a function, in other words, the first instruction in the function
that the called function pointer points to.

C.3 Memory Access & Allocation Instructions
For purposes of memory allocation, TvlmIR supports basic types. They are
used for the calculation of how much memory needs to be allocated to store
the type. And for Structure representation so accesses to members can be
calculated.

Note that the target machine that we are compiling to, there exist only
two types of registers that hold a full-fledged value of type integer or float, so
These types will be reduced in a way that they correspond with the source,
but not precisely. Also, they take up always one cell of memory, so there isn’t
any hassle with storing different lengths of values. Only Structs and Arrays
can be of different lengths.

Tvlm Types in IR are:

Integer normally occupies 4 bytes of memory.

Double normally occupies 8 bytes of memory. In target, we can only work
with float arithmetic, therefore we substitute double precision with single
precision floats.

Char occupies 1 byte of memory.

Array construction needs a base Type, and ‘index’; an instruction that eval-
uates into an integer that will represent the size of this array. Size is
computed as follows: ‘base type size’ times ‘index’.

Pointer construction needs a base type. The size is equal to 4 bytes.

Struct construction needs a specification of pairs ‘Symbol’ with ‘Type’. Every
pair represents a field inside the defined structure. Size is computed as
a sum of all fields added together. Note: empty ‘Struct’ is correct and
its size is 1 because every object needs to have an address. Structs can’t
have a field of type Array.

Void is placeholder type without size. It is necessary for a pointer, so there
is a possibility to instantiate ‘void *’ expression.

75

C. IR Instructions

Tvlm Instruction follows:

AllocG
1 r2: int= AllocG 'size'('type') x 'numOfElems': int
2 r1: int= AllocG 'size'('type')

The AllocG instruction allocates memory in Data Segment at the global
scope which means it can occur only in the global Basic Block. After
execution memory is allocated (which happens at the beginning, before
the main function call), then a pointer is returned. The allocated mem-
ory is uninitialized, and loading from uninitialized memory produces an
undefined value. The operation itself is undefined if there is insufficient
space. Allocating zero bytes is legal, but the returned pointer may not
be unique.

AllocL
1 r2: int= AllocL 'size'('type') x 'numOfElems': int
2 r1: int= AllocL 'size'('type')

The AllocL instruction allocates memory on the stack frame of the cur-
rently executing function, to be automatically released when this func-
tion returns to its caller. After execution memory is allocated (which
happens at the beginning, before the main function call), then a pointer
is returned. The allocated memory is uninitialized, and loading from
uninitialized memory produces an undefined value. The operation itself
is undefined if there is insufficient stack space for the allocation. Allo-
cated memory is automatically released when the function returns. The
AllocL instruction is used to represent temporary variables that must
have an address available. When the function returns, the memory is
reclaimed. Allocating zero bytes is legal, but the returned pointer may
not be unique.

ArgAddr
1 r1: 'type' = ArgAddr 'index'

ArgAddr represents Address of n-th argument. The address belongs to
the stack part of memory. Takes two arguments: An integer index n
specifies its position between all arguments handed to the function. A
Type, so there is clear that if a structure is being passed, we can detect
that the address of that structure is handed, but the necessary step to
copy a structure needs to be done somewhere. One solution is to perform
a deep copy while loading the address therefore the type is necessary.
Another solution to this problem could be that Call instructions will
copy the structure beforehand, pass the address as an argument, and

76

C.3. Memory Access & Allocation Instructions

then we only use this instruction simply as an address. The second
solution is the one used for implementation.

Copy
1 r2: 'type' = Copy 'operand': 'type'

Copy is a simple instruction that represents a copy of another instruction
respectively its value. This instruction is generated mostly by optimiza-
tions. But also can be useful in cases the value is reused and the target
rewrites the contents of the first supplied register, which is also the case
for tiny86. For example when using an argument address that cannot
be easily counted as in the case of AllocL or AllocG.

ElemAddrOffset & ElemAddrIndex
1 r1:int=ElemAddrOffset 'base':int+'offset':int
2 r2:int=ElemAddrIndex 'base':int+'offset':int x'index':int

ElemAddrOffset and ElemAddrIndex are instructions for computing an
address of a member in structure and the address of an element in an
array. It performs address calculation only and does not access memory.
The address is computed. ’ElemAddrOffset’ is used to get a member
address inside the field. ‘ElemAddrIndex’ is used to get the address of
n-th element at the ‘index’. The reason for implementing these instruc-
tions is purely academic, try to implement something unorthodox. They
can be substituted with arithmetic operators, but they are handy when
translation to IR is not aware of stack direction. Not sure if that could
ever work.

Load
1 r1: 'type' = Load ['address']

Load is used to read from memory. After execution, the location of the
memory addressed is loaded. If ‘address’ is not a well-defined value, the
behavior is undefined.

Store
1 Store ['address'] 'value':'valueType'

Store is used to write to memory. The result of a store is void ResultType
because it doesn’t make sense to return a result from Store instruction.
After execution, the contents of memory are updated to contain ‘value’
at the location specified by the ‘address’ operand. If ‘address’ is not a
well-defined value, the behavior is undefined.

77

C. IR Instructions

LoadImm
1 r1: 'type' = LoadImm 'value'

LoadImm loads ImmValue, which can be a type of double or int. This
instruction represents a constant value in the program and resolves a
type of value supplied.

C.4 I/O Instructions
GetChar

1 r1: int = GetChar

GetChar instruction represents a value of type char. value equals a single
character that will be read from the console. If the value is used as an
integer, then there will be an ASCII representation of that character.
The same applies to PutChar instruction.

Putchar
1 PutChar 'value': int

PutChar takes one Instruction as a value to be printed to the console.
Value needs to be a type of char. After execution, the char is printed to
standard output.

C.5 Arithmetic Instructions
In this IR unlike in others, we specify BinaryOp and UnaryOp as single in-
structions with an argument that selects the operator. In most languages,
every instruction is specified separately ex. ADD, SUB, . . . some also use dif-
ferent instructions for operating with Floats (FADD, FSUB, . . .). To reduce
code in definitions in our IR we can specify only one BinaryOp itself, with
an argument that is used to choose which operator this BinaryOp performs.
Binary operators that are supported are:

Note: if not specified otherwise operation takes two integers or two floats.

• ADD – Addition,

• SUB – Subtraction,

• MOD, – Modulo operation, takes only two integers,

• MUL – Multiplication,

• DIV – Division,

78

C.6. Conversion Instructions

• AND – Binary and, takes only integers,

• OR – Binary or, takes only integers,

• XOR – Binary exclusive or, takes only integers,

• LSH – Left shift, takes only integers,

• RSH – Right shift, takes only integers,

• NEQ – Not equal,

• EQ – Equal,

• LTE – Less than or equal,

• LT – Less than,

• GT – Greater than,

• GTE – Greater than or equal,

BinaryOp instruction takes BinaryOperator and two values with which the
specified operation is performed. Value of a BinaryOp is the result of a speci-
fied arithmetic operation. The same applies to UnaryOp, except it takes only
one value. Unary operators that are supported are:

• NEG – Logical negation,

• NOT – Unary complement (bit inversion), takes only an integer,

• INC – Increment,

• DEC – Decrement,

C.6 Conversion Instructions
Conversion Instructions serve a single purpose to safely convert a value from
the IEEE representation used for the representation of floats to integers and
backward.

Extend
1 r2:double = Extend 'value': int

The Extend instruction performs conversion of the value to the float
type. Necessary for cast translation. Implicit conversion could be done
by operators. But this is not the case for this implementation, all conver-
sions are explicit, otherwise, operators don’t pass assertion. The same
applies to the next instruction.

79

C. IR Instructions

Trunc
1 r1: int = Trunc 'value': double

The Trunc instruction performs conversion of the value to the integer
type.

C.7 Other Instructions
Phi

1 r1: 'type'= Phi
2 ['type', 'incBasicBlock']*

The Phi instruction is used to implement the Φ node in the SSA graph
representing the function. There must be no non-phi instructions be-
tween the start of a Basic Block and the Phi instructions: i.e. Phi
instructions must be first in a Basic Block. For the SSA form, the use
of each incoming value is deemed to occur on the edge from the cor-
responding predecessor block to the current block At runtime, the Phi
instruction logically takes on the value specified by the pair correspond-
ing to the predecessor Basic Block that was executed just before the
current block.

80

Appendix D
Contents of enclosed SD card

exe.......................................the directory with executables
src..the directory of source codes

thesis..............the directory of LATEX source codes of the thesis
tiny-verse.............. the directory of the compiler source codes

text..the thesis text directory
DP_Slavik_Martin.pdf.............the thesis text in PDF format

81

	Introduction
	TinyVerse
	Thesis Overview

	Overview of a Modern Compiler
	Front-end
	Lexical Analysis
	Syntax Analysis
	Semantic Analysis

	Intermediate Representation
	Types of IR
	Single Static Assignment

	Optimizer
	Analyses
	Optimizations

	Back-end
	Instruction Selection
	Target specific optimizations
	Register Allocation
	Instruction Reordering

	Case Studies
	GCC
	LLVM

	Design and Implementation
	Intermediate Representation
	AST to IR Translation
	Optimizer
	Analyses
	Optimizations

	Back-end
	Instruction Selection
	Register Allocation
	Calling Conventions
	Assembly Finalization

	Evaluation
	Goals and Setup
	Verification and Validation

	Conclusion
	Future Work

	Bibliography
	Acronyms
	TinyC Language Specification
	TinyC Language Reference
	Functions
	Statements
	Types
	Type Declarations
	Expressions

	IR Instructions
	Control Flow Instructions
	Function Call Instructions
	Memory Access & Allocation Instructions
	I/O Instructions
	Arithmetic Instructions
	Conversion Instructions
	Other Instructions

	Contents of enclosed SD card

