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Abstract (English): This thesis focuses on the optimization of pseudo-
boolean functions using the recently introduced Dark Gray genetic al-
gorithm, which decomposes the problem being solved during the opti-
mization process. This learned, initially covert, underlying structure of
the optimized problem then allows the use of Gray-box optimization
techniques. To take advantage of these techniques, we describe well-
known perturbation-based techniques for detecting interactions among
the variables. Subsequently, we describe and analyze the Dark Gray
genetic algorithm. The result of this analysis led us to propose a mod-
ification in the interaction learning procedure, which we then imple-
mented to the genetic algorithm. Finally, in this thesis we present how
the modifications made influenced the optimization performance on var-
ious pseudo-boolean functions.

Abstract (Czech): Tato práce se zabývá optimalizací pseudo-
boolovských funkcí pomocí, nedávno představeného, genetického algo-
ritmu Dark Gray, který v průběhu optimalizace dekomponuje řešený
problém. Tato naučená, původně neznámá, struktura řešeného prob-
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Chapter 1

Introduction

Generally in optimization of black-box functions, no underlying structure of the
problem is known in advance. This makes the optimization of such a function more
difficult, but on the other hand, this general formulation can be used to solve a
broader class of problems. In this thesis, we restrict ourselves to the optimization of
pseudo-boolean functions. Gray-box optimization [1] covers methods allowing us to
optimize pseudo-boolean functions more efficiently, however, in this case, knowledge
of the internal structure of the problem is already assumed, so the optimized function
can no longer be called a black-box function.

To employ gray-box optimization techniques into black-box optimization, knowledge
of the underlying structure of the problem is required. By this underlying structure
we mean the direct dependencies among the variables, so that the optimized func-
tion is then additively separable. Dark Gray Genetic Algorithm (dgGA) [2] applies
gray-box optimization techniques to black-box problems by learning the problem
structure during the optimization run. This algorithm is able to detect that a de-
pendency is missing and then correctly identify it. It turns out that this algorithm
can compete in many cases with other GA-based optimizers using statistical linkage
learning to decompose the problem, such as cGOMEA [3].

In designing a black-box optimizer, we want to reach the optimum after the fewest
number of evaluations of the optimized function, since these evaluations are gener-
ally computationally expensive. In dgGA, we also monitor the number of function
evaluations needed purely to identify interactions between variables. The results
presented for dgGA showed that for certain problem classes the number of func-
tion evaluations spent on interaction identification was much higher than for other
problem classes, which affected the overall efficiency of the optimizer. This observa-
tion forms a motivation for our work. Our goal is to propose modifications to
the interaction learning process such that this cost is reduced while not
degrading the quality of the problem decomposition.

1



2 Chapter 1. Introduction

The organization of the text is as follows, in Chapter 2 we define the problem of
optimization of pseudo-boolean functions and describe the gray-box optimization
techniques used in dgGA. In Chapter 3, we describe some well-known perturbation-
based techniques for learning interactions among variables. Chapter 4 describes the
aforementioned dgGA with its key components. In Chapter 5, we present the results
of our analysis on dgGA, which further leads to the introduction of Greedy Linkage
Learning into dgGA. This chapter describes our modification in detail. In Chapter
6, we present results comparing the original dgGA and the modified dgGA.



Chapter 2

Pseudo-Boolean Optimization

3



4 Chapter 2. Pseudo-Boolean Optimization

2.1 Pseudo-Boolean Optimization

2.1.1 Pseudo-Boolean Functions

A pseudo-boolean function is a mapping from a binary string to real values. We
consider a binary string to be a tuple of a finite number (𝑛 ∈ N) of binary values
{0, 1}. When we refer directly to binary values in this context, we will usually name
them as bits or individual variables of the solution.

𝑓 : {0, 1}𝑛 → R (2.1)

There are many research areas where psedo-Boolean functions are used, e.g., the
maximum satisfiability problem, the maximum cut problem in graph theory, linear
0-1 programming, and many others.

2.1.2 The 𝑘-bounded Pseudo-Boolean Function

One special case of the pseudo-Boolean function defined above is 𝑘-bounded func-
tion. It will become apparent that some of the naturally inspired problems do indeed
satisfy this constraint.

Let us consider a pseudo-boolean function

𝑓 : {0, 1}𝑛 → R (2.2)

If the function 𝑓 is 𝑘-bounded than 𝑓 can be decomposed into 𝑚 subfunctions.
Where each decomposed subfunction 𝑓𝑖 depends at most on 𝑘 variables.

𝑓(𝑥) =
𝑚∑︁

𝑖=1
𝑓𝑖(𝑥) (2.3)

Knowledge of the correct and complete decomposition of the function 𝑓 seems to
be essential in the whole optimization process and can lead to significant savings
during the optimization process.

Examples of 𝑘-bounded functions

MAX3SAT

The MAX-3SAT problem is one of the typical representatives of 𝑘-bounded pseudo-
boolean functions [4]. In this case, the function 𝑓 can be decomposed into 𝑚 subfunc-
tions, where 𝑚 corresponds to the number of clauses. Each of these subfunctions
corresponds to a single logical clause, and thus depends on only three variables,
which implies that 𝑘 is 3.
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For example, consider the following MAX-3SAT problem. The problem consists of
5 logical clauses and 4 logical variables.

𝑐1 = 𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3

𝑐2 = 𝑥2 ∨ 𝑥3 ∨ ¬𝑥4

𝑐3 = ¬𝑥1 ∨ 𝑥2 ∨ 𝑥3

𝑐4 = ¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4

𝑐5 = 𝑥2 ∨ ¬𝑥3 ∨ ¬𝑥4

(2.4)

Then the function 𝑓 can be decomposed as follows:

𝑓(𝑥) =
5∑︁

𝑖=1
𝑓𝑖(𝑥) = 𝑓1(𝑥1, 𝑥2, 𝑥3) + 𝑓2(𝑥2, 𝑥3, 𝑥4) + 𝑓3(𝑥1, 𝑥2, 𝑥3)+

+ 𝑓4(𝑥1, 𝑥3, 𝑥4) + 𝑓5(𝑥2, 𝑥3, 𝑥4)
∀𝑖 : 𝑓𝑖 : {0, 1}3 → {0, 1}

(2.5)

𝑓1(𝑥1, 𝑥2, 𝑥3) = 𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3
...

𝑓5(𝑥2, 𝑥3, 𝑥4) = 𝑥2 ∨ ¬𝑥3 ∨ ¬𝑥4

(2.6)

The goal is to find a variable assignment that satisfies as many clauses as possible.

𝑥* = argmax
𝑥∈{0,1}4

𝑓(𝑥) (2.7)

It should be noted here that MAX3SAT problems are part of models called Maxi-
mum satisfiability, which generalize the NP-complete satisfiability problem.

Mk Landscapes

A new term has been proposed in [1] that generalizes any optimization of the 𝑘-
bounded pseudo-boolean problem to Mk Landscapes.

𝑓(𝑥) =
𝑀∑︁

𝑖=1
𝑓𝑖(𝑥) (2.8)

Where 𝑀 is the number of subfunctions the function 𝑓 decomposes into, and 𝑘 is the
upper bound on the occurrence of variables in each subfunction 𝑓𝑖. Mk Landscapes
generalizes the MAXkSAT problems and also, for example, Ising spin glass problem.

2.1.3 Pseudo-Boolean Optimization

The pseudo-boolean function was originally introduced by Hammer, Rosenberg and
Rudeanu in 1963. At the turn of the millennium, Hammer and Boros presented their
survey of pseudo-boolean optimization [4], in which they detailed the current state
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of the art in solving problems related to pseudo-boolean optimization, as well as
special cases of this optimization, such as quadratic pseudo-boolean optimization.

The most general formulation of the pseudo-boolean function optimization problem
is given as follows:

𝑥* = argmin
𝑥∈{0,1}𝑛

𝑓(𝑥) (or 𝑥* = argmax
𝑥∈{0,1}𝑛

𝑓(𝑥)) (2.9)

In the above formulation, we only consider the unconstrained optimization case,
since we will only be interested in problems with unconstrained search space.

2.2 Black-box Optimization of Pseudo-Boolean
Functions

In general, the most common approach to optimization is to optimize the "black box"
function. We do not place any constraints on the objective function. We can only
pass some value arguments to the objective function and get back some number.
Since we do not know the internal structure of the function, we call the objective
function the "blackbox".

A critical problem in optimizing the black box function can be the very high cost of
evaluating the function. By evaluation cost, we mean the computational cost that
measures all the resources required to evaluate the function. The most significant
advantage of the blackbox optimizer is its generality, but in most cases, more so-
phisticated optimizers that somehow exploit the internal structure of the problem
domain outperform the blackbox optimizer.

Note here that overall black-box optimization is a large area of research with appli-
cations almost everywhere. Some of these applications have been described in more
detail in [5]. For example, in [6], the authors try to find the best recipe for the
tastiest cookie. This problem can also be viewed as a black-box optimization prob-
lem. The taste of the resulting cookie can be considered as an objective function
that is "evaluated" by the participants who taste the cookie. Which also shows that
evaluating the black-box function can be quite costly.

2.3 Gray-box Optimization with Genetic
Algorithm

Unlike black box optimizers, we want to take advantage of the structure of the
problem and use it in the optimization process. On the other hand, we want to
maintain as much generality as possible. This is why we will be interested in the
𝑘-bounded pseudo-boolean function, where the design of a graybox optimizer could
lead to dramatic savings during the optimization process.
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2.3.1 Variables interactions

Under the previous assumption that the optimized function 𝑓 can be decomposed.
We can now define what we consider to be the interaction of variables and how to
store these interactions in the data structure, as these interactions will be important
in the genetic algorithm darkgray reported here.

For an optimized 𝑘-bounded pseudo boolean function, we call two variables interact
if they occur in the same subfunction. Furthermore, we will use multiple terms in this
thesis depending on the context for almost the same thing. Thus, if two variables
interact, we can also say that the first variable is linked to the second, and vice
versa, or similarly we can say that one variable is dependent on another. We will
also sometimes refer to a building block (BB) as a set of dependent (linked) variables.

Direct and indirect linkage

In addition, when examining these linkages in more depth, we will consider three
types of these linkages. The direct linkage is the case where both variables occur in
the same subfunction. The indirect linkage is the case where there is a finite sequence
of variable links through which the variables are linked.

So, for example, if it is the case that the variables 𝑥1 and 𝑥2 are directly linked,
and likewise 𝑥2 and 𝑥3, then we can say that the variables 𝑥1 and 𝑥3 are indirectly
linked.

Add to that, in linkage identification, we will use the term false linkage for the
situation where two truly independent variables are identified as dependent. The
missing linkage term for the situation where some linkage remains undetected.

From the example above, when we considered the MAX3SAT problem. The objective
function 𝑓 was decomposed into 5 subfunctions 𝑓1 to 𝑓5. The decomposition of the
function 𝑓 was defined as follows:

𝑓(𝑥) = 𝑓1(𝑥1, 𝑥2, 𝑥3) + 𝑓2(𝑥2, 𝑥3, 𝑥4) + 𝑓3(𝑥1, 𝑥2, 𝑥3)+
+𝑓4(𝑥1, 𝑥3, 𝑥4) + 𝑓5(𝑥2, 𝑥3, 𝑥4)

(2.10)

Variables that occur in the same subfunction interact with each other. For example,
in subfunction 𝑓4, only variables 𝑥1, 𝑥2, 𝑥3 occur, so they are directly linked with
each other.

We will store these types of variable interactions in a variable interaction graph. The
variable interaction graph (VIG) is a graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of all
variables occurring in the function 𝑓 and 𝐸 is the set of just those pairs of variables
that are directly linked.

Figure 2.1 shows the Variable Interaction Graph (VIG) for the above MAX3SAT
problem (2.10).
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𝑥1 𝑥2

𝑥3

𝑥4

Figure 2.1: Example of a Variable Interaction Graph (VIG) showing the interaction of
variables in the above MAX3SAT problem.

This graph can also be represented by an adjacency matrix.

𝑎𝑑𝑗(𝐺) =

⎡⎢⎢⎢⎣
0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

⎤⎥⎥⎥⎦ (2.11)

The adjacency matrix in 2.11 showing the same graph as in Figure 2.1. The matrix
has 1 in the i-th row and j-th column if and only if there is an edge between the
i-th and j-th vertices of the graph, or we can say that the i-th and j-th variables are
directly linked.

In the next chapter, where we discuss well-known approaches to learning variable
interactions, we will see that some of these methods use a similar matrix, but name
it the dependency matrix. Other methods have added a measure of the strength
of the interaction of the variables, so that the graph then becomes weighted. The
edges in it have a weight that represents the strength of the interaction between the
connecting variables.

2.3.2 Partition Crossover

The key idea of any genetic algorithm is the process of recombination of the parents’
solutions to produce offspring. We use the crossover operator to recombine the par-
ents. Since we consider a gray optimization problem, we assume that the problem
is decomposable and there is a linkage between the variables. Then we can use the
Partition Crossover (PX) [7] operator to recombine the parents. In this operator, as
in many others, bits of parents sharing the same value are inherited by offspring.
The Partition Crossover operator determines from which parents the remaining bits
will be inherited using the known decomposition of the optimized function.

Here we take advantage of the knowledge of the interaction of the variables, since
the optimized function is a 𝑘-bounded psedo-boolean. In the next section, it will
be shown how to obtain the variable interactions directly during the optimization.
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For now, let us assume that we know the correct decomposition of the optimized
function and that we have a Variable Interaction Graph (VIG). Furthermore, let us
assume that the parents we want to recombine are locally optimal with respect to
the neighborhood of Hamming distance 1.

Recombination Graph

Suppose we want to recombine two solutions 𝑥, 𝑦 ∈ B𝑛 with the given Variable
Interaction Graph 𝐺. Then we define a graph called the recombination graph, which
is a subgraph of the graph 𝐺 obtained by removing all vertices representing variables
in which the solutions 𝑥 and 𝑦 share the same value. All corresponding edges are
also removed.

We will show the whole process of generating a recombination graph with an exam-
ple. Assume two parent solutions 𝑥 and 𝑦.

𝑥 = 01001110010101
𝑦 = 01111100101111

(2.12)

And the following Variable Interaction Graph (VIG)

1

2

3 45 6 7

8

9

10 11

12

13

14

Now we see that the solutions 𝑥 and 𝑦 differ in some bits. Let us illustrate this
situation with the solution 𝑧. The solution 𝑧 inherits all the bits that have the
same values in 𝑥 and 𝑦. In the bits where 𝑥 and 𝑦 differ, 𝑧 has * for purposes of
illustration.

𝑧 = 01 * *11 * 0 * * * 1 * 1 (2.13)
The variables are numbered from 1 to 14 from left to right. By removing the variables
1, 2, 5, 6, 8, 12 and 14 from the VIG, we obtain the recombination graph. These are
the positions where 𝑥 and 𝑦 have the same values.
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3 4 7

9

10 11

13

This is the resultant recombination graph. Finally, we should note that the recom-
bination graph has two connected components, namely {3, 9, 10, 11, 13}, {4, 7}.

Recombination

Now we can move on to a general description of the recombination process. Suppose
we want to recombine two parent solutions 𝑥 and 𝑦 and obtain a child 𝑧. First,
the bits with a common assignment in both parents are inherited directly by 𝑧. For
the other bits, we create a recombination graph from the predefined VIG. Since we
know that the optimized function 𝑓 is decomposable, each connected component of
the recombination graph representing the variables of the function 𝑓 is independent
from the other variables. Then, for each component, we can decide whether it is
better to inherit bits from solution 𝑥 or 𝑦, simply by evaluating the function 𝑓 with
both assignments.

To illustrate, we can continue with the above example. The recombination graph
gives three connected components. Thus, we know that variables 3, 9, 10, 11 and 12
interact with each other, as well as variables 4 and 7. Taking the first component
of the recombination graph. We want to choose whether it is better to inherit these
bits from 𝑥 or 𝑦, which are shown below as red "*".

𝑧 = 01* * 11 * 0***1*1 (2.14)

Since we know the decomposition of the optimized function 𝑓 , it is sufficient to
compare the value of the function when the bits are inherited from the solution 𝑥
or 𝑦. Here we assume maximization of the function 𝑓 .

𝑧 = 010 * 11 * 0010101⇔ 𝑓1(𝑥3, 𝑥9, 𝑥10, 𝑥11, 𝑥13) > 𝑓1(𝑦3, 𝑦9, 𝑦10, 𝑦11, 𝑦13) (2.15)

If the above inequality (2.15) does not hold, the bits are inherited from 𝑦. Next, we
repeat the same procedure for the second component.

𝑧 = 01 * 01110 * * * 1 * 1⇔ 𝑓2(𝑥4, 𝑥7) > 𝑓2(𝑦4, 𝑦7) (2.16)

Now the recombination process is complete and the offspring 𝑧 solution is formed.

Locally Optimal Offspring

In the previously mentioned paper where Partition Crossover [7] was proposed, it
was proven that if we recombine parents that are both locally optimal, the offspring
generated will also be locally optimal. When we refer here to a local optimum, we
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consider it as an individual (solution) that is a local optimum with respect to the
Hamming distance 1 neighborhood. Thus, for this individual, flipping any of its bits
would not lead to a better value of the objective function. In practice, when the
complete VIG is known, we apply Partition Crossover only to parents that are both
locally optimal. Thus, we optimize the parents using greedy local search before the
recombination process.
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This chapter surveys the linkage learning techniques mainly based on the pertur-
bation. However it will be shown that there are several techniques that supplies
perturbation as the main component of linkage identification with other techniques.
The accurancy of the reported methods is mostly based on the population size. By
population we mean finite set of the individuals (solutions). We should also percieve
and consider two types of the fitness functions, that with overlaps and without over-
laps. In this case by overlap we mean that the function decomposition has at least
two BBs with nonempty intersection, meaning that there are exists at least two
subfunction having same argument variable. For example in the previous chapter
we mentined MAX3SAT problem which could be seen as the one of many problems
with overlapping blocks.

3.1 Identifying Linkage by Nonlinearity Check

In 1998, Munetomo and Goldberg proposed a simple procedure [8] that identifies
linkages among the variables. The presented procedure is called Linkage Identifica-
tion by Nonlinearity Check (LINC).

3.1.1 Linearity and Nonlinearity

The LINC procedure works under the assumption that a nonlinear interaction exists
between at most 𝑘 bits. (Since we are primarily interested in optimizing the boolean
function, we will sometimes refer to the bits of the solution instead of specific decision
variables.) These grouped, interacting bits form a so-called building block (BB).

Consider the following solution 𝑥 of length 𝑛 and a fitness function 𝑓 satisfying the
above assumptions.

𝑥 = 𝑥1𝑥2𝑥3 · · · 𝑥𝑛 (3.1)
Now we create a perturbed solution 𝑥𝑖 with the i-th bit flipped, 𝑥𝑗 with the j-th bit
flipped and 𝑥𝑖,𝑗 with the i-th and j-th bits of the original solution 𝑥 flipped.

𝑥𝑖 = 𝑥1 · · · 𝑥𝑖 · · · 𝑥𝑛

𝑥𝑗 = 𝑥1 · · · 𝑥𝑗 · · · 𝑥𝑛

𝑥𝑖,𝑗 = 𝑥1 · · · 𝑥𝑖 · · · 𝑥𝑗 · · · 𝑥𝑛

(3.2)

Finally, we compute the fitness of these generated perturbed solutions and the orig-
inal solution, focusing on the fitness growth obtained by perturbation.

Δ𝑓𝑖 = 𝑓(𝑥𝑖)− 𝑓(𝑥)
Δ𝑓𝑗 = 𝑓(𝑥𝑗)− 𝑓(𝑥)

Δ𝑓𝑖,𝑗 = 𝑓(𝑥𝑖,𝑗)− 𝑓(𝑥)
(3.3)

If perturbing the i-th and j-th bits causes additive fitness growth, then we speak
about linearity. Otherwise, a nonlinear effect is observed.

Δ𝑓𝑖,𝑗 = Δ𝑓𝑖 + Δ𝑓𝑗 (linearity)
Δ𝑓𝑖,𝑗 ̸= Δ𝑓𝑖 + Δ𝑓𝑗 (nonlinearity)

(3.4)



3.1. Identifying Linkage by Nonlinearity Check 15

We consider the i-th and j-th bits as dependent if their perturbation shows a non-
linear effect. If the perturbation causes a linear effect, we cannot say that the i-th
and j-th bits are necessarily independent, but the linearity is caused in the current
context.

To better understand this problem, let us consider a order-𝑘 deceptive trap function
with 𝑘 = 4, which is defined as follows.

𝑓𝑑𝑒𝑐𝑒𝑝𝑡𝑖𝑣𝑒𝑇 𝑟𝑎𝑝(𝑥) =
⎧⎨⎩𝑘 , 𝑢(𝑥) = 𝑘

𝑘 − 1− 𝑢(𝑥) , 𝑢(𝑥) < 𝑘
(3.5)

Where 𝑢 is a unitation function and is defined as the number of ones in 𝑥.

Assume the following solution 𝑥 = 0010. We want to find out if there are linkages
between the variables. In this case, we check the second and fourth bits of the solu-
tion. We will see that in some cases the perturbation of the bits that are dependent
from the problem definition causes only a linear effect.

Δ𝑓1 = 𝑓(0, 1, 1, 0)− 𝑓(0, 0, 1, 0) = (4− 1− 2)− (4− 1− 1) = 1− 2 = −1
Δ𝑓3 = 𝑓(0, 0, 1, 1)− 𝑓(0, 0, 1, 0) = (4− 1− 2)− (4− 1− 1) = 1− 2 = −1

Δ𝑓1,3 = 𝑓(0, 1, 1, 1)− 𝑓(0, 0, 1, 0) = (4− 1− 3)− (4− 1− 1) = 0− 2 = −2
Δ𝑓1,3 = −2 = −1− 1 = Δ𝑓1 + Δ𝑓3

(3.6)

As we see from above equation the perturbation in the pair of bits caused only linear
effect in the overall fitness function but we know that bits are dependent. Thus, in
this case, multiple solutions need to be checked to detect the non-linearity effect of
the bits perturbation. Specifically in this case, it would be solution 𝑥 = 1010.

Therefore, in order to obtain the linkages between the variables, it is necessary
to check the proper sized population. The proper population size is more clearly
described in [8]. As well as the size of the allowable detection error for a fitness
function with overlapping BBs.

3.1.2 Linkage Identification

In the implementation introduced in [8], three sets are prepared at the beginning,
namely linkage set, unlikage set and unlinkage set refused. These sets are initialized
for each bit. First, it is checked whether the bit perturbation causes a nonlinear
effect for the whole population. These pairs of bits are then added to the linkage
set. Immediately after detecting the nonlinearity, it is also checked whether the pair
has an allowable nonlinearity. This is the case when the following holds.

(Δ𝑓𝑖 > 0 ∧Δ𝑓𝑗 > 0) ∧ (Δ𝑓𝑖,𝑗 > Δ𝑓𝑖 ∧Δ𝑓𝑖,𝑗 > Δ𝑓𝑗) (3.7)

If an allowable nonlinearity is detected, this bit pair is added to the unlinkage set,
otherwise it is added to the unlinkage set refused. Finally, after checking the entire
population. All the same entries that are already stored in unlikage set refused
are removed from the unlikage set. Then those entries that already exist in the
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unlinkage set are excluded from the linkage set. The reason for checking the allowable
nonlinearity is that the fitness growth when the bits are perturbed may not be
exactly additive in general.

3.2 Identifying Composability using Group Per-
turbation

In [9], Coffin and Clack presented an extension of the LINC algorithm [8]. They first
introduced an optimized version of LINC (oLINC) and then a hierarchical version
of oLINC (gLINC, "greedy LINC") with significantly better performance than the
original LINC.

3.2.1 Optimized Linkage Identification By Nonlinearity
Check

In the original version of LINC, the computation goes roughly as follows. For each
individual in the population, the individual’s pair of bits is checked for nonlinearity
without checking whether these bits has been checked before. For this reason, the
authors introduced the so-called "non-repetition rule" in the optimized version of
LINC (oLINC).

This approach can be easily explained by just checking to ensure that the linkage
set already contains the pair of bits before it is checked for nonlinearity. If the pair is
already present in the linkage set, the nonlinearity test is skipped. So the optimized
version of LINC avoids unnecessary repetition of the nonlinearity check. This saves
the computational cost of the overall learning procedure.

3.2.2 Greedy Linkage Identification By Nonlinearity Check

The aim of the original LINC procedure is to identify linkages among variables.
These linked variables form the BBs. When these BBs are obtained, it is at least
easier for the GA to find the optimal solution because the problem is reduced to just
mixing these BBs in an optimal way. These BBs can be optimized independently of
the other BBs. After running the LINC procedure, we only have the linkage sets for
each variable. So when it comes to finding the whole BB, we have to go through the
linkages to get the complete BB.

Therefore, the authors introduced a new learning method as a combination of the
aforementioned oLINC and a new group perturbation linkage learning operator
(gLINC). The idea behind this group perturbation is that instead of checking the
nonlinearity in each bit, a group of bits will be perturbed simultaneously and then
multiple nonlinearities can be observed at once.
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Consider the following order-6 trap function, similar to that in 3.5. We already have
information about the sets of variables {𝑥1, 𝑥5} and {𝑥3, 𝑥6} forming BBs. From
the problem definition here, we know that the problem cannot be decomposed more
than into {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6}.

𝑓𝑑𝑒𝑐𝑒𝑝𝑡𝑖𝑣𝑒𝑇 𝑟𝑎𝑝(𝑥) =
⎧⎨⎩6 , 𝑢(𝑥) = 6

5− 𝑢(𝑥) , 𝑢(𝑥) < 6
(3.8)

Assume also the solution 𝑥 = 010100. We now proceed similarly to the LINC pro-
cedure, but instead of perturbing one bit, we perturb the whole set forming BB.

Δ𝑓{1,5} = 𝑓(1, 1, 0, 1, 1, 0)− 𝑓(0, 1, 0, 1, 0, 0) = 1− 3 = −2
Δ𝑓{3,6} = 𝑓(0, 1, 1, 1, 0, 1)− 𝑓(0, 1, 0, 1, 0, 0) = 1− 3 = −2

Δ𝑓{1,5,3,6} = 𝑓(1, 1, 1, 1, 1, 1)− 𝑓(0, 1, 0, 1, 0, 0) = 6− 3 = 3
Δ𝑓{1,5,3,6} = 3 ̸= −2− 2 = Δ𝑓{1,5} + Δ𝑓{3,6}

(3.9)

As we can see from the last inequality, the group perturbation caused a nonlinear
effect, so now we can say that the variables {𝑥1, 𝑥3, 𝑥5, 𝑥6} form a single BB.

More formally, at the beginning we are given two disjunctive sets of variables 𝐼 and
𝐽 . We want to know whether these sets form a single BB.

𝐼 = {𝐼1, 𝐼2, · · ·, 𝐼𝑛}
𝐽 = {𝐽1, 𝐽2, · · ·, 𝐽𝑚}

(3.10)

To find out, we compute the following fitness function values. Where a block of bits
from 𝐼, 𝐽 and both are perturbed. Then we measure the fitness difference between
perturbed and non-perturbed individuals.

Δ𝑓𝐼 = 𝑓(𝑥𝐼)− 𝑓(𝑥)
Δ𝑓𝐽 = 𝑓(𝑥𝐽)− 𝑓(𝑥)

Δ𝑓𝐼∪𝐽 = 𝑓(𝑥𝐼∪𝐽)− 𝑓(𝑥)
(3.11)

The variables from 𝐼 and 𝐽 form a single BB if a nonlinear effect is observed.

Δ𝑓𝐼∪𝐽 ̸= Δ𝑓𝐼 + Δ𝑓𝐽 (nonlinearity) (3.12)

Similar to the LIEM approach (3.4), this condition (3.12) can be generalized with
the 𝛿 parameter.

|Δ𝑓𝐼∪𝐽 − (Δ𝑓𝐼 + Δ𝑓𝐽)|> 𝛿 (3.13)

3.3 Identifying Linkage Groups by
Non-monotonicity Detection

In [10], Munetomo and Goldberg proposed linkage identification using nonmono-
tonicity detection (LIMD). Similar to LINC, this procedure uses perturbation be-
tween a pair of bits to detect group linkage. Furthermore, in this paper, the authors
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also proposed a tightness detection procedure that measures the tightness of the
found linkages in a certain way. This method removes loosely connected group of
linkages.

3.3.1 Non-monotonicity Detection

When we described the LINC procedure, we checked whether the perturbation of
the bits causes a nonlinear effect in the overall fitness function. Here we will check
whether perturbation causes non-monotonicity, or more precisely, whether pertur-
bation does not cause a monotonic increase or decrease of the fitness value. These
conditions are formulated below. The notation here is the same as we used to for-
mulate the LINC procedure.

(Δ𝑓𝑖 > 0 ∧Δ𝑓𝑗 > 0) ∧ (Δ𝑓𝑖,𝑗 ≤ Δ𝑓𝑖 ∧Δ𝑓𝑖,𝑗 ≤ Δ𝑓𝑗) (3.14)

(Δ𝑓𝑖 < 0 ∧Δ𝑓𝑗 < 0) ∧ (Δ𝑓𝑖,𝑗 ≥ Δ𝑓𝑖 ∧Δ𝑓𝑖,𝑗 ≥ Δ𝑓𝑗) (3.15)

Linkage between the variables 𝑥𝑖 and 𝑥𝑗 is detected if any of the above conditions
(3.14 or 3.15) holds for any 𝑥. In other words, if either of the above conditions
holds, a series of perturbations in 𝑥𝑖 and 𝑥𝑗 violates either the monotone increase
(𝑓(𝑥) < 𝑓𝑖(𝑥) < 𝑓𝑖,𝑗(𝑥), 𝑓(𝑥) < 𝑓𝑗(𝑥) < 𝑓𝑖,𝑗(𝑥)) or decrease (𝑓(𝑥) > 𝑓𝑖(𝑥) >
𝑓𝑖,𝑗(𝑥), 𝑓(𝑥) > 𝑓𝑗(𝑥) > 𝑓𝑖,𝑗(𝑥)) of the fitness value.

Let’s take a closer look at the following example. Consider a order-4 deceptive trap
function with unitation function 𝑢(𝑥) that returns the number of ones in a given
binary string 𝑥.

𝑓𝑑𝑒𝑐𝑒𝑝𝑡𝑖𝑣𝑒𝑇 𝑟𝑎𝑝(𝑥) =
⎧⎨⎩4 , 𝑢(𝑥) = 4

3− 𝑢(𝑥) , 𝑢(𝑥) < 4
(3.16)

Next we consider an individual 𝑥 = 0101, we want to inspect the linkage between
𝑥1 and 𝑥3.

Δ𝑓1 = 𝑓(1, 1, 0, 1)− 𝑓(0, 1, 0, 1) = 0− 1 = −1
Δ𝑓3 = 𝑓(0, 1, 1, 1)− 𝑓(0, 1, 0, 1) = 0− 1 = −1

Δ𝑓0,2 = 𝑓(1, 1, 1, 1)− 𝑓(0, 1, 0, 1) = 4− 1 = 3
(3.17)

Since the fitness differences caused by the perturbation satisfy condition 3.15, mono-
tonicity is violated and therefore we consider 𝑥1 and 𝑥3 to be linked. Analogous to
LINC, these variables are added to the linkage set.

3.3.2 Tightness Detection

In [10], the authors focused on learning the linkages of fitness functions composed
by overlapped BBs. For this purpose, they proposed a tightness detection procedure
to get rid of those linkages that loosely link variables.
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The tightness function is given as follows.

𝑡𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠(𝑖, 𝑗) = 𝑛1(𝑖, 𝑗)
𝑛1(𝑖, 𝑗) + 𝑛2(𝑖, 𝑗) (3.18)

Where the function 𝑛1(𝑖, 𝑗) is defined as the number of linkage sets that contain both
variables i and j. Note here that the linkage set exists for each variable separately.
The function 𝑛2(𝑖, 𝑗) is the number of linkage sets that contain either variable i or j.
The above definition of the tightness function implies that the value of the function
will be 0 ≤ 𝑡𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠(𝑖, 𝑗) ≤ 1.

To be able to modify the linkage information, we need to set the parameter 𝛿, where
𝛿 is 0 ≤ 𝛿 ≤ 1. In order to get rid of the linkage overspecification, we remove those
linkages that violate the following condition.

𝑡𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠(𝑖, 𝑗) < 𝛿 (3.19)

The proper population size for the LIMD procedure as well as the 𝛿 parameter
setting is described in detail in [10], similar to LINC.

3.4 Linkage Identification Based on Epistasis Mea-
sure

In [11], Munetomo proposed linkage identification with epistasis measures (LIEM).
This method is based on the previously mentioned LINC and on several studies
on epistasis measures [12]. These studies usually focus on the relation between the
epistasis measure and fitness function while trying to estimate the difficulty of the
problem. In short, epistasis is the amount of influence a decision variable, an indi-
vidual bit, has on other variables.

To achieve this linkage learning procedure, the authors used a simple pairwise epis-
tasis measure using the previously published LINC procedure. For each pair of vari-
ables i and j, the pairwise measure of epistasis is defined as follows.

𝑒𝑖,𝑗 = max
𝑥∈𝑃

|Δ𝑓𝑖,𝑗(𝑥)− (Δ𝑓𝑖(𝑥) + Δ𝑓𝑗(𝑥))| (3.20)

The notation here is the same as we used for LINC, except that here the deltas, i.e.,
the differences in the value of the fitness function, are functions for each individual
𝑥 in population 𝑃 . We maximize the above expression over the entire population
of individuals, which implies that, as for LINC and LIMD, the discovery of linkages
between variables depends on the size of the population.

⎧⎨⎩i and j are tightly linked , if 𝑒𝑖,𝑗 ̸= 0
i and j are not linked otherwise

(3.21)

If the epistasis value for variables i and j is non-zero, i.e. i and j have a non-linear
interaction, then i and j are members of a single BB. Otherwise, they should be
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treated separately because the perturbation of the i-th and j-th bits shows linearity
(Δ𝑓𝑖,𝑗(𝑥) = Δ𝑓𝑖(𝑥) + Δ𝑓𝑗(𝑥)).

The advantage of the presented procedure is that we can observe the epistasis mea-
sure of variables i and j. If the value is small then the amount of nonlinearity caused
by the perturbation is small and we can say that the linkage between i and is small.
Thus, we can determine the measure of epistasis from when we no longer consider
the variables as dependent, part of a single BB or we can also select a number of
linkages having the largest measure of epistasis.

3.5 Linkage Identification by Fitness Difference
Clustering

In the [13] paper, authors Tsuji, Munetomo and Akama introduced a new approach
to identifying linkages between variables, namely Dependency Detection for Distri-
bution Derived from fitness Differences (D5). Unlike the methods discussed so far in
this work, the authors combined the perturbation learning method and Estimation
of distribution algorithms (EDAs).

3.5.1 Estimation of Distribution Algorithms

So far, all the methods mentioned for learning linkages have been based on pertur-
bation followed by some comparison of the fitness function values caused by this
perturbation. Methods based on distribution estimation (EDAs) build a probabilis-
tic model based on individuals in the population. This estimation then helps to
locate the next space to be searched in the solution space defined by the given prob-
lem domain. The probabilistic model is built at runtime during optimization and
becomes more accurate with each successive generation. In [13], the authors made
two important points when examining EDAs, namely that these methods are able
to learn the structure of a given problem and also that they are very efficient if the
fitness contributions are distributed uniformly among the variables.

3.5.2 Dependency Detection for Distribution Derived from
fitness Differences

As already mentioned D5 combines methods based on EDAs and those based on
perturbation. EDAs methods detect dependencies very well if the fitness contribu-
tions are uniformly distributed. The perturbation-based methods can detect even
those BBs of variables whose fitness contribution is small.

The D5 authors divided the linkage learning process into three phases. The first phase
consists of calculating the difference in fitness value caused by the perturbation for
each individual in the population, in a similar way to the LINC method. The second
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phase is to classify the individuals into clusters, sub-populations, according to the
fitness differences computed in the first phase. The third phase is to estimate the
distribution of each sub-population.

Fitness differences are calculated in the same way as in LINC. Now assume that
we want to find out which variables depend on the i-th variable. Then we compute
the difference in fitness caused by perturbing the i-th bit of each individual in the
population as follows:

Δ𝑓𝑖 = 𝑓(𝑥)− 𝑓(𝑥𝑖)
= 𝑓(𝑥1 · · · 𝑥𝑛)− 𝑓(𝑥1 · · · 𝑥𝑖 · · · 𝑥𝑛)

(3.22)

Using these calculated differences, the individuals of the population are then divided
into clusters C1, C2, · · · The clustering algorithm is initialized so that each individ-
ual of the population is assigned to its own cluster. The algorithm then repeats the
following steps until the clustering is sufficient. First, it calculates the "distance" be-
tween all pairs of clusters. The distance here is the absolute value of the difference
between the fitness differences caused by the perturbation. For a cluster, this differ-
ence is calculated as the average of the difference of all its assigned individuals. After
these distances between clusters are computed, just those pairs of clusters that are
"closest" to each other are joined. After joining, the aforementioned cluster averages
need to be recalculated. These steps are repeated as long as there are clusters that
are close to each other and there are enough clusters. These clusters are disjunctive
subsets of the population, so we can also call them sub-populations.

The last stage of dependency discovery is to build a set of linkages (BB of vari-
ables). For all sub-populations (clusters) created in the previous step, we repeat the
following procedure. At the beginning, we initialize the sets of variables 𝑊1 and 𝑊2
as follows:

𝑊1 = {1, · · ·, 𝑖− 1, 𝑖 + 1, · · ·, 𝑙} and 𝑊2 = {𝑖} (3.23)
After this initialization, we gradually move elements (variables) from the set 𝑊1 to
the set 𝑊2 until there are 𝑘 elements in it. At each step, we add to 𝑊2 the variable
𝑗 that gives the smallest entropy 𝐸(𝑊2 ∪ {𝑗}), defined as follows:

𝐸(𝑊2) = −
2|𝑊2|∑︁
𝑥=1

𝑝𝑥 log2 𝑝𝑥 (3.24)

Where 𝑝𝑥 is the appearance ratio of each substring 𝑥 and 2|𝑊2| is the number of all
possible substrings defined by 𝑊2. After performing the above procedure for each
sub-population 𝑝 (cluster 𝐶𝑝). We define 𝑉𝑖 as the set of variables dependent on
variable 𝑖 as follows:

𝑝
′ = argmin

𝑝
𝐸𝑝

𝑉𝑖 := 𝑊𝑝′

(3.25)

After the construction of these linkage sets for each variable, the linkages are trans-
ferred to the so-called dependency matrix, which is then further used in BBs mixing.
This matrix, of dimension 𝑛× 𝑛, has 1 in the ith row and jth column if 𝑗 ∈ 𝑉𝑖 and
𝑖 ∈ 𝑉𝑗, 0 otherwise. If the found linkages over-specify the problem structure, the
tightness detection procedure, the same as in LIEM, is used to remove unnecessary
linkages.
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3.6 Linkage Learning using the Maximum Span-
ning Tree of the Dependency Graph

In [14], authors Helmi, Pelikan, and Rahmani introduced a new approach to learning
linkages between variables using a maximum spanning tree of the dependency graph.
The procedure is divided into three parts, the first is the actual construction of the
dependency graph, the second is finding the maximum spanning tree of this graph
and finally removing false linkages.

The dependency graph is an undirected, weighted graph of 𝐺 = (𝑉, 𝐸). The set of
vertices 𝑉 corresponds to the particular decision variables. The weight of an edge 𝑒𝑖𝑗

between 𝑖 and 𝑗 is a real number corresponding to the strength of the dependence
between variable 𝑖 and 𝑗. This value is obtained by observing the fitness difference
caused by the pairwise perturbation, similar to the LIEM.

After the dependency graph is constructed, the maximum spanning tree algorithm is
run on it. Since we assume that the optimization problem is somehow decomposable,
the dependency graph is decomposed into multiple subgraphs, each corresponding
to the dependent variables.

The variable dependency graph encompasses two types of linkage, the correct ones
and the false ones. False linkages are those linkages having a small value of 𝑒𝑖𝑗 (the
strength of the linkage between variables 𝑖 and 𝑗 is small). In order to get rid of these
linkages, we need to find a certain level of linkage strength so that we can remove
some of the linkages. To find this parameter, the k-means clustering technique with
𝑘 = 2 is used. After finding this level, the individual linkages are separated into
two clusters, the correct ones and the false ones. The false ones are removed from
the subgraphs obtained in the previous step and finally the BBs of the variables
corresponding to the single subgraphs are identified.

3.7 Inductive Linkage Identification

In [15], authors Chuang and Chen came up with an interesting procedure for detect-
ing linkages among the variables, in contrast to the previously known procedures,
they used decision trees mainly used in machine learning. This algorithm is called
inductive linkage learning (ILI), the authors divided it into the following three parts.
In the first step, the fitness value differences caused by the perturbation are com-
puted. In the second, a decision tree is constructed using these differences. Finally,
this tree is used to determine which variables constitute the BBs (blocks of depen-
dent variables).

The fitness differences are computed in the same way as in the D5 algorithm. That
is, after the initial initialization of the population, a random variable 𝑖 is selected,
we will try to find the other variables that together with 𝑖 form BB. Then for the
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whole population and variable 𝑖, the following fitness differences are computed.

Δ𝑓𝑖 = 𝑓(𝑥)− 𝑓(𝑥𝑖)
= 𝑓(𝑥1 · · · 𝑥𝑛)− 𝑓(𝑥1 · · · 𝑥𝑖 · · · 𝑥𝑛)

(3.26)

Using these computed differences, a decision tree is learned using the ID3 [16] algo-
rithm. In the following section, we give more detail on how this learning works as a
very fundamental component of the algorithm.

Once this decision tree is constructed, the dependent variables (BBs) are then ob-
tained by simply traversing the tree from the root and storing all attributes (nodes)
that are not leaves. Each attribute represents exactly one variable.

3.7.1 Decision Tree Learning

Before we at least briefly explain the process of creating a decision tree, let us
illustrate how such a tree can look like and what the nodes and edges represent.
Consider the following individual 𝑥, representing a solution to some problem of
length 10.

𝑥 = 𝑥1𝑥2 · · · 𝑥10 (3.27)
For example, after learning the decision tree itself, the tree might look like this:

𝑥5

𝑥6 𝑥2

𝑥1 𝑥8 𝑥3

-5 -1 1

0 1

0 1 1

Figure 3.1: Example of a Decision Tree

Each node of the tree represents a decision variable, one bit of the solution. The
edges correspond to setting the bit to either one or zero. The leaves of the tree
are the predicted fitness values when the solution bits were set adequately. For
example, consider individual 𝑥

′ = 0101010111, noting that 𝑥5 = 0 and 𝑥6 = 1. For
this individual, the above decision tree predicts that the difference in fitness caused
by due to a perturbation of the i-th bit will be −5 and this is based on only two
bits of the total number of bits of the solution. The corresponding identified set of
linkages will be {𝑥1, 𝑥2, 𝑥3, 𝑥5, 𝑥6, 𝑥8}, so this variables forming BB.

As mentioned earlier, ID3 [16] was used for learning the decision tree. This needs
a training dataset as it is a supervised learning method. This dataset contains a



24 Chapter 3. Perturbation-based Linkage Detection Techniques

list of individuals with computed fitness differences caused by perturbations of i-th
bit. The tree is then constructed by a top-down approach without backtracking.
The basic element of the ID3 algorithm is the selection of attributes, in this context
referred to as attribute We understand a single variable (bit) of an individual. Thus,
at each node, we look for the best attribute to be selected. We consider the best
attribute to be the one that maximizes the information gain, which in some way
measures the expected reduction in the number of instances. The information gain
is defined as follows:

𝐺𝑎𝑖𝑛(𝐷, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷)−
∑︁

𝑣∈𝑉 𝑎𝑙(𝐴)

|𝐷𝑣|
|𝐷|

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑣) (3.28)

Where 𝐷 is the collection of instances (in our case, the list of individuals with
computed fitness differences),𝐴 is the attribute to be tested. 𝑉 𝑎𝑙(𝐴) is the set of
possible values of values of 𝐴 (in our case only 0 or 1). The entropy of 𝐷 is given as
follows:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) =
𝑐∑︁

𝑖=1
−𝑝𝑖 log2 𝑝𝑖 (3.29)

Where 𝑐 is the number of different fitness difference values in the training data set
and 𝑝𝑖 is the fraction of instances from 𝐷 that belong to 𝑖. Thus, in this case, 𝑝𝑖

is the fraction of individuals from 𝐷 that have a fitness difference caused by the
perturbation equal to ith.
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4.1 Dark Gray-Box Optimization

In this section, we take a closer look at the Dark Gray Genetic Algorithm (dgGA),
which was originally proposed in [2]. The authors of dgGA motivated the design
of the dark gray optimizer by using empirical linkage learning techniques proposed
in [18, 17]. Since other linkage learning techniques were mostly designed to only
approximate the actual linkages between variables, this precluded the use of any
gray box mechanism. The above empirical linkage learning technique replaces the
approximation with certainty. Thus, it allows the use of Variable Interaction Graph
(VIG) and Partition Crossover (PX) for recombination. The VIG is in fact only
empirical or estimated, since the true VIG remains hidden, but even an incomplete
decomposition of the function seems to be beneficial.

The key concept in solving the optimization of the black-box function is the decom-
position problem. Because we know that in black-box function optimization we do
not know anything more about the structure of the problem. The proposed mech-
anism is to transform the black box optimization problem into a gray box problem
and then use standard gray box optimization methods such as PX operator. The
main idea of the proposed mechanism is to learn the interactions among variables
during optimization. More generally, we are trying to decompose an optimization
problem that was originally defined as a black-box function. The two key phases
of the mechanism are the discovery of linkages and the detection of missing link-
ages. The detection of missing linkages is part of the recombination process and
indicates which pair of variables should be investigated more closely. The Direct
Linkage Empirical Discovery (DLED)[17] procedure is executed on the indicated
pair of variables. If the discovery procedure confirms the existence of a linkage be-
tween the variables, this linkage is added to the VIG.

4.1.1 Overview

At the beginning, when the dgGA optimization algorithm is run, the VIG is initial-
ized without any edges and is therefore just a discrete graph, and this is because
we have no knowledge about the structure of the problem. The population is ini-
tialized randomly, then optimized by the greedy Local Search (gLS) algorithm. For
the sake of better differentiation, we will call this population MajorPopulation. The
gLS inspects the individual (bit string) and tries to find the optimal setting of each
individual bit so that the overall fitness of the individual is maximized or minimized
depending on the problem definition. When no improvement step is available, gLS
terminates. This procedure is done for each individual in the MajorPopulation. Con-
sequently, each individual of the newly initialized MajorPopulation is locally optimal
with respect to the Hamming distance 1 1 neighborhood.

When we initialize the dgGA, we also prepare another population, called BestPop-
ulation, in which we store the best individuals we have found so far during the

1„Hamming distance between two strings of equal length is the number of positions at which
the corresponding symbols are different.”[19]
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optimization process. In the BestPopulation, all individuals have the same fitness
value, but they differ from each other.

The optimization process itself can be terminated in several ways. One may be
a limit on computational resources, such as computation time or the number of
evaluations of the fitness function. Another may be the desired optimal value of the
fitness function.

Until the optimization process is completed, the dgGA will repeat the following
steps:

• Population mixing of the MajorPopulation

• Updates the BestPopulation with individuals from the MajorPopulation

• Population mixing of the BestPopulation creating the BestPopulationCrossed

• Updates the BestPopulation with individuals from the BestPopulationCrossed

• Checks if the MajorPopulation is stuck

The population mixing procedure is described in more detail in the following section.
Updating the population consists only of keeping the best individuals from the
merger of the two populations. We will see in the population mixing procedure that
it allows us to indicate that the population is stuck. If this is the case, keeping
this population cannot provide a new promising solution. Therefore, we discard this
population and reinitialize it, including gLS, doubling the population size.

Population Mixing

The process of population mixing attempts to improve the overall population of
individuals. In this process, each individual tries to be improved by other individuals
in the population by crossing them using the PX operator to get their offspring. If
the improvement succeeds in at least one case, it means that the population is
not stuck. Note that we also consider an improvement when the offspring has the
same fitness level as the original individual, the parental solution, but differs in its
bits. Whenever an individual improves, that offspring replaces the parent in the
population.

The improvement of an individual is done with the PX operator. First, all crossover
masks are obtained using the PX operator. These masks are then sorted and shuffled.
The Mix and Detect Missing Linkage process is then performed on all of these masks
and the individual, resulting in the actual crossover and the detection of missing
linkages in the VIG. Immediately after crossing and obtaining two offspring, the VIG
is checked for missing linkage, this detection is described in detail in the following
section.
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4.2 Missing Linkage Detection

The Missing Linkage Detection [2] mechanism is a key component of the proposed
dark-gray genetic algorithm, as we try to turn the black-box problem into a gray-box
problem. Our goal is to achieve a correct decomposition of the black-box function.
At the beginning of the optimization, we know nothing about the structure under-
lying the optimized problem. However, we should at least know that the problem is
decomposable in some way, so that it is reasonable to use the proposed mechanism.

In the above mentioned paper, this mechanism is part of the population mixing
procedure and is used together with the standard PX [7]. Before we start explaining
the whole mechanism, we need to introduce a new name for one concept, namely
PX mask. This mask is a string of bits and tells us from which parent solution each
bit should be inherited by the child. The length of the mask is defined by the length
of the parent solution.

Consider the following parent solutions 𝑥 and 𝑦.

𝑥 = 0100011111010110
𝑦 = 0010100100011011

(4.1)

Imagine we want to recombine 𝑥 and 𝑦 with the following mask 𝑃𝑋𝑚𝑎𝑠𝑘.

𝑃𝑋𝑚𝑎𝑠𝑘 = 0011110111110000 (4.2)

To obtain the offspring 𝑜, we inherit the i-th bit from 𝑦 if the i-th bit of the 𝑃𝑋𝑚𝑎𝑠𝑘

is 1, otherwise we inherit the bit from 𝑥.

𝑥 = 0100011111010110
𝑦 = 0010100100011011
𝑜 = 0110101100010110

(4.3)

At the beginning of the missing linkage discovery procedure, we have two parent
solutions 𝑥 and 𝑦 that we want to recombine using the previously obtained mask
𝑃𝑋𝑚𝑎𝑠𝑘 via PX. Using this mask, we can obtain two offspring of solutions 𝑜1 and 𝑜2
by swapping 𝑥 and 𝑦 before recombining. If one of the following conditions holds,
we know that we are missing an interaction between variables. So we know that the
VIG used by PX is incomplete.

𝑓(𝑥) < 𝑓(𝑜1) ∧ 𝑓(𝑦) < 𝑓(𝑜2) 𝑜𝑟 𝑓(𝑥) > 𝑓(𝑜1) ∧ 𝑓(𝑦) > 𝑓(𝑜2) (4.4)

If none of the above conditions hold, it means that we either miss no linkage, or
we may miss some linkage but the VIG is so good that it may provide a new and
better solution. When a missing linkage is detected, the linkage discovery procedure
is executed (4.3). The direct linkage discovery procedure is performed only between
bits that differ in value in the PX mask. In [2], it is stated that this should not affect
learning performance, but can lead to significant savings of computational resources.

Given this, the idea of a missing linkage detection procedure may seem somewhat
confusing. Let’s at least briefly explain why it works, and clarify the meaning of
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these conditions (4.4). Assume here 𝑥 and 𝑦 of length 𝑛.

𝑥 = 𝑥1𝑥2 . . . 𝑥𝑛

𝑦 = 𝑦1𝑦2 . . . 𝑦𝑛

(4.5)

First, let us take a closer look at the first of the above conditions (4.4).

(𝑓(𝑥) < 𝑓(𝑜1)) ∧ (𝑓(𝑦) < 𝑓(𝑜2)) (4.6)

This condition (4.6) can be rewritten as follows:

(𝑓(𝑥) < 𝑓((𝑥1 ∧ 𝑦1) ∨ (𝑃𝑋𝑚𝑎𝑠𝑘1 ∧ 𝑦1), . . . , (𝑥𝑛 ∧ 𝑦𝑛) ∨ (𝑃𝑋𝑚𝑎𝑠𝑘𝑛 ∧ 𝑦𝑛)))
∧ (𝑓(𝑦) < 𝑓((𝑦1 ∧ 𝑥1) ∨ (𝑃𝑋𝑚𝑎𝑠𝑘1 ∧ 𝑥1), . . . , (𝑦𝑛 ∧ 𝑥𝑛) ∨ (𝑃𝑋𝑚𝑎𝑠𝑘𝑛 ∧ 𝑥𝑛)))

(4.7)

Where the i-th variable in the generated offspring 𝑜1 is either (𝑥𝑖 ∧ 𝑦𝑖) when 𝑥𝑖 and
𝑦𝑖 have the same value, or 𝑦𝑖 if the i-th variable is part of the exchanging BB, i.e.
𝑃𝑋𝑚𝑎𝑠𝑘𝑖

is 1. Similarly for 𝑜2.

The PX mask represents a partial decomposition of the fitness function 𝑓 . It decom-
poses 𝑓 into a set of dependent variables - the exchange BB - and other variables.
Thus, the evaluation of 𝑓 can be done as follows:

𝑓(𝑥) = 𝑓𝐼r𝐼𝑃 𝑋𝑚𝑎𝑠𝑘
(𝑥𝑘, . . . , 𝑥𝑙) + 𝑓𝐼𝑃 𝑋𝑚𝑎𝑠𝑘

(𝑥𝑖, . . . , 𝑥𝑗) (4.8)

Where 𝐼 denotes the set of all variables and 𝐼𝑃 𝑋𝑚𝑎𝑠𝑘
those variables that are part of

𝑃𝑋𝑚𝑎𝑠𝑘. In the above equation, each of the functions in the subscript has a set of
variables on which it depends.

After this formulation, we can return to the condition from 4.7 and rewrite it as
follows:

(𝑓(𝑥) < 𝑓𝐼r𝐼𝑃 𝑋𝑚𝑎𝑠𝑘
(𝑥𝑘, . . . , 𝑥𝑙) + 𝑓𝐼𝑃 𝑋𝑚𝑎𝑠𝑘

(𝑦𝑖, . . . , 𝑦𝑗)⏟  ⏞  
𝑓(𝑜1)

)

∧ (𝑓(𝑦) < 𝑓𝐼r𝐼𝑃 𝑋𝑚𝑎𝑠𝑘
(𝑦𝑘, . . . , 𝑦𝑙) + 𝑓𝐼𝑃 𝑋𝑚𝑎𝑠𝑘

(𝑥𝑖, . . . , 𝑥𝑗)⏟  ⏞  
𝑓(𝑜2)

)
(4.9)

So by rewriting the left sides of the inequalities we get the following:

(𝑓𝐼r𝐼𝑃 𝑋𝑚𝑎𝑠𝑘
(𝑥𝑘, . . . , 𝑥𝑙)+𝑓𝐼𝑃 𝑋𝑚𝑎𝑠𝑘

(𝑥𝑖, . . . , 𝑥𝑗)
< 𝑓𝐼r𝐼𝑃 𝑋𝑚𝑎𝑠𝑘

(𝑥𝑘, . . . , 𝑥𝑙) + 𝑓𝐼𝑃 𝑋𝑚𝑎𝑠𝑘
(𝑦𝑖, . . . , 𝑦𝑗))

∧(𝑓𝐼r𝐼𝑃 𝑋𝑚𝑎𝑠𝑘
(𝑦𝑘, . . . , 𝑦𝑙)+𝑓𝐼𝑃 𝑋𝑚𝑎𝑠𝑘

(𝑦𝑖, . . . , 𝑦𝑗)
< 𝑓𝐼r𝐼𝑃 𝑋𝑚𝑎𝑠𝑘

(𝑦𝑘, . . . , 𝑦𝑙) + 𝑓𝐼𝑃 𝑋𝑚𝑎𝑠𝑘
(𝑥𝑖, . . . , 𝑥𝑗))

(4.10)

(𝑓𝐼𝑃 𝑋𝑚𝑎𝑠𝑘
(𝑥𝑖, . . . , 𝑥𝑗) < 𝑓𝐼𝑃 𝑋𝑚𝑎𝑠𝑘

(𝑦𝑖, . . . , 𝑦𝑗))
∧ (𝑓𝐼𝑃 𝑋𝑚𝑎𝑠𝑘

(𝑦𝑖, . . . , 𝑦𝑗) < 𝑓𝐼𝑃 𝑋𝑚𝑎𝑠𝑘
(𝑥𝑖, . . . , 𝑥𝑗))

(4.11)

As we can see, this condition cannot hold simultaneously, so they only hold if there
is a missing variable from 𝐼𝑃 𝑋𝑚𝑎𝑠𝑘

.
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In words, we can say that the exchange of BB in both individuals 𝑥 and 𝑦 leads
to a better fitness value of the whole individual. However, this is incorrect because
there can only be one improvement in either 𝑥 or 𝑦, so it shows that the fitness
of an individual cannot be separated into the fitness of BB and the fitness of the
other bits. In other words, it shows that the fitness of the variables outside the BB
depends on the settings of the variables that form the BB. So now we can conclude
that we are missing some linkage between the variables outside the BB and the
variables forming the BB.

The second condition of missing linkage detection (4.4) says essentially the same
thing. The exchange of BB between individuals 𝑥 and 𝑦 led to a deterioration of
fitness in both cases. For the same reasons as in the first condition, this cannot
happen together. Thus, some linkage is missing.

4.2.1 Example: Overlapping Deceptive Trap Function

Problem Definition

Let us consider a deceptive trap function of order k, where k = 4, which is defined
in the following way:

𝑓𝑑𝑒𝑐𝑒𝑝𝑡𝑖𝑣𝑒𝑇 𝑟𝑎𝑝(𝑥) =
⎧⎨⎩4 , 𝑢(𝑥) = 4

3− 𝑢(𝑥) , 𝑢(𝑥) < 4
(4.12)

Where 𝑢 is a unitation function and is defined as the number of ones in 𝑥.

Further, we will consider the concatenation of these three functions. For simplicity,
these functions overlap by only one bit, and this overlapping bit is the boundary
bit. Thus, our fitness function 𝑓 is defined as follows:

𝑓(𝑥) = 𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4) + 𝑓2(𝑥4, 𝑥5, 𝑥6, 𝑥7) + 𝑓3(𝑥7, 𝑥8, 𝑥9, 𝑥10) (4.13)

Where 𝑓1, 𝑓2, 𝑓3 are the deceptive trap functions (4.12). The overlapping variables
are those colored in red and blue.

The optimization problem is to find the optimal argument 𝑥′such that function 𝑓
is maximized.

𝑥* = argmax
𝑥∈{0,1}10

𝑓(𝑥) (4.14)

Complete VIG

Now let’s see what a complete VIG for this problem would look like.

Now assume that the following individuals 𝑥 and 𝑦 recombine immediately after
initialization, so that the VIG is empty. Let 𝑧 be the hyperplane of possible offspring.
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𝑥1 𝑥2

𝑥3

𝑥4 𝑥5

𝑥6

𝑥7 𝑥8

𝑥9

𝑥10

Figure 4.1: The complete VIG showing the interactions among the variables in the
problem defined above (4.13).

𝑥 = 1111001010
𝑦 = 1000101111
𝑧 = 1****01*1*

(4.15)

In this case, since the VIG cannot support the decomposition with any knowledge,
the components of the recombination graph will be these single-element sets: {𝑥2},
{𝑥3}, {𝑥4}, {𝑥5}, {𝑥8} and {𝑥10}. The PX masks should look like this:

𝑃𝑋𝑚𝑎𝑠𝑘1 = 0000000001
𝑃𝑋𝑚𝑎𝑠𝑘2 = 0000000100
𝑃𝑋𝑚𝑎𝑠𝑘3 = 0000100000
𝑃𝑋𝑚𝑎𝑠𝑘4 = 0001000000
𝑃𝑋𝑚𝑎𝑠𝑘5 = 0010000000
𝑃𝑋𝑚𝑎𝑠𝑘6 = 0100000000

(4.16)

Now, for example, we use 𝑃𝑋𝑚𝑎𝑠𝑘4 to recombine, so we get two offspring 𝑜1 and 𝑜2.

𝑜1 = 1110001010
𝑜2 = 1001101111

(4.17)

Finally, we compute the following fitness values to verify the missing linkage condi-
tion.

𝑓(𝑥) = 𝑓1(1, 1, 1, 1) + 𝑓2(1, 0, 0, 1) + 𝑓3(1, 0, 1, 0) = 4 + 1 + 1 = 6
𝑓(𝑦) = 𝑓1(1, 0, 0, 0) + 𝑓2(0, 1, 0, 1) + 𝑓3(1, 1, 1, 1) = 2 + 1 + 4 = 7

𝑓(𝑜1) = 𝑓1(1, 1, 1, 0) + 𝑓2(0, 0, 0, 1) + 𝑓3(1, 0, 1, 0) = 0 + 2 + 1 = 3
𝑓(𝑜2) = 𝑓1(1, 0, 0, 1) + 𝑓2(1, 1, 0, 1) + 𝑓3(1, 1, 1, 1) = 1 + 0 + 4 = 5

(4.18)

Because it stands that 𝑓(𝑥) > 𝑓(𝑜1) ∧ 𝑓(𝑦) > 𝑓(𝑜2) then we may conclude that
some linkage missing from the VIG. So with this result, using DLED will be checked
if there are any direct linkage between 𝑥4 and {𝑥2, 𝑥3, 𝑥5, 𝑥8, 𝑥10}.

Now consider the following incomplete but non-empty VIG, which is nothing more
than a subgraph of the complete VIG.
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𝑥1 𝑥2

𝑥3

𝑥4 𝑥5

𝑥6

𝑥7 𝑥8

𝑥9

𝑥10

Figure 4.2: Incomplete VIG showing the interactions between variables in the problem
defined above.

Assume recombination of the following individuals 𝑥 and 𝑦.

𝑥 = 1010110101
𝑦 = 1111010100
𝑧 = 1*1**1010*

(4.19)

The recombination graph has two components, {𝑥2, 𝑥4, 𝑥5} and {𝑥10}. PX produces
the following masks:

𝑃𝑋𝑚𝑎𝑠𝑘1 = 0101100000
𝑃𝑋𝑚𝑎𝑠𝑘2 = 0000000001

(4.20)

For recombination, we choose 𝑃𝑋𝑚𝑎𝑠𝑘1 , then we get the following descendants.

𝑜1 = 1111010101
𝑜2 = 1010110100

(4.21)

The values of the fitness function are as follows:

𝑓(𝑥) = 3 𝑓(𝑦) = 7 𝑓(𝑜1) = 6 𝑓(𝑜2) = 4 (4.22)

In this case, neither of the two conditions holds. Therefore, the procedure does not
detect the missing linkage.

4.3 Direct Linkage Empirical Discovery

Let us take a closer look at the mechanism for detecting linkages proposed in [17],
which was then used in dgGA. For clarity, in this section we will sometimes refer
to individual bits of the solution instead of variables. In the above paper, these
variables are called solution genes.

Similar to the linkage learning methods described in the previous section, DLED uses
bit perturbations. In contrast to those methods already described, DLED tries to
discover only direct linkage and also often these methods have been introduced only
for additive separable problems. However, DLED can also handle the overlapping
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ones. Since indirect linkage would not help us at all, since we try to construct the
empirical VIG as accurately as possible during optimization.

The DLED method tests bit against bit to determine the linkage. Thus, to check
the linkage between the i-th bit and the j-th bit, we prepare the following perturbed
individuals:

𝑥𝑖 = 𝑥1 · · · 𝑥𝑖 · · · 𝑥𝑛

𝑥𝑗 = 𝑥1 · · · 𝑥𝑗 · · · 𝑥𝑛

𝑥𝑖,𝑗 = 𝑥1 · · · 𝑥𝑖 · · · 𝑥𝑗 · · · 𝑥𝑛

(4.23)

DLED detects direct linkage between variables i and j if the following condition
(4.24) hold:

(𝑓(𝑥) < 𝑓(𝑥𝑗) ∧ 𝑓(𝑥𝑖) ≥ 𝑓(𝑥𝑖,𝑗)) ∨ (𝑓(𝑥) ≥ 𝑓(𝑥𝑗) ∧ 𝑓(𝑥𝑖) < 𝑓(𝑥𝑖,𝑗)) (4.24)

The newly found interaction between the i-th and j-th variable can then be stored
in the VIG.

Finally, we should mention some properties of the proposed linkage learning mech-
anism. The DLED procedure detects only direct linkage and never reports false
linkage. This means that the variables identified as dependent actually belong to
the same subfunction of the decomposed optimized function. This was proved in the
paper that proposed this method. The DLED may miss some linkages, the detection
of linkages is dependent on the particular individual solution. Previously used direct
linkage learning methods [18] use a local optimizer as a building block. However, the
latter has one drawback, it is not guaranteed how many times the optimized func-
tion will be evaluated. In contrast, the above approach uses only the exact number
of function evaluations. As for 3LO [18], it has been shown that DLED [17] never
reports false linkage.

In the following section, we will show how the DLED procedure works with an
example.

4.3.1 Example: Ising Spin Glass Problem

Problem Definition

Let us now define an optimization problem that is often used as a benchmark for
many GA algorithms, for example in [20]. For the purpose of these Ising Spin Glass
(ISG) problems, we will need the following mapping:

𝑇𝐼𝑆𝐺 : {0, 1} −→ {−1, +1}
0 ↦−→ −1
1 ↦−→ 1

(4.25)

Since in an ISG problem, the solution subspace is not a binary string, but {−1, +1}
string. The solution subspace is therefore {−1, +1}𝑛. From now on, for the sake of
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clarity, in this example we consider the above mapping in each function evaluation.
Because the string {−1, +1}𝑛 instead of {0, 1}𝑛 would look really cluttered.

A graph 𝐺 is given, which we restrict to a 2D grid. The edges of this graph represent
interactions between connected vertices, these vertices are called spins here.

For an instance of the ISG problem with 36 variables, the graph of 𝐺 might look
like this:

𝑥1 𝑥2 𝑥6

𝑥7 𝑥8 𝑥12

𝑥30 𝑥31 𝑥36

𝐽1,2

𝐽1,7 𝐽2,8

𝐽7,8

𝐽6,12

𝐽30,31

Figure 4.3: Graph showing the interactions between variables in the instance of ISG
problem with length 36. 𝐽𝑖,𝑗 is the coupling constant between 𝑥𝑖 and 𝑥𝑗 .

The optimization problem related to the ISG problem is defined as follows:

𝑥* = argmin
𝑥∈{−1,+1}𝑛

𝑓(𝑥) (4.26)

With the fitness function 𝑓 defined as follows:

𝑓(𝑥) = −
𝑛∑︁

𝑖,𝑗=1
𝑥𝑖𝑥𝑗𝐽𝑖,𝑗 (4.27)

𝐽𝑖,𝑗 is the coupling constant between the i-th spin (𝑥𝑖) and the j-th spin (𝑥𝑗), 𝑛 ∈ N
is the size of the problem respectively the number of decision variables (or the length
of individual 𝑥).

Linkage Detection

Let us now consider the exact instance of ISG, for the sake of simplicity with 9
variables and the coupling constants 𝐽𝑖,𝑗.
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𝑥1 𝑥2 𝑥3

𝑥4 𝑥5 𝑥6

𝑥7 𝑥8 𝑥9

+1

+1 +1

+1

−1

−1

−1

+1 +1 −1

+1

−1

Figure 4.4: For the defined example ISG problem, the graph shows the coupling constants
of the respective spins.

From the above definition of the ISG fitness function, it is not hard to deduce that 𝑓
is decomposable. In this example, 𝑓 can be decomposed into 12 subfunctions, each
of which depends on two variables.

𝑓(𝑥) = −
𝑛∑︁

𝑖,𝑗=1
𝑥𝑖𝑥𝑗𝐽𝑖,𝑗 =

= −𝑓1(𝑥1, 𝑥2)− 𝑓2(𝑥1, 𝑥3)− 𝑓3(𝑥2, 𝑥3)−
− 𝑓4(𝑥2, 𝑥5)− 𝑓5(𝑥3, 𝑥6)− 𝑓6(𝑥4, 𝑥7)−
− 𝑓7(𝑥4, 𝑥5)− 𝑓8(𝑥5, 𝑥8)− 𝑓9(𝑥5, 𝑥6)−
− 𝑓10(𝑥7, 𝑥8)− 𝑓11(𝑥8, 𝑥9)− 𝑓12(𝑥6, 𝑥9)

(4.28)

Now consider the following individual 𝑥, we want to check the linkage between 𝑥8
and 𝑥9.

𝑥 = 𝑥1, 𝑥2, . . . , 𝑥9

𝑥 = 001001010
(4.29)

For this individual 𝑥, we construct the following individuals with the bits 𝑥8, 𝑥9 and
both perturbed.

𝑥8 = 001001000
𝑥9 = 001001011

𝑥8,9 = 001001001
(4.30)

Next, we compute their fitness values of these perturbed solutions.
𝑓(𝑥) = −10

𝑓(𝑥8) = −8
𝑓(𝑥9) = −6

𝑓(𝑥8,9) = −8

(4.31)

Let us recall the first disjunct of the condition for identifying a linkage using DLED
(4.24) and consider that 𝑗 = 8 and 𝑖 = 9.

(𝑓(𝑥) < 𝑓(𝑥𝑗) ∧ 𝑓(𝑥𝑖) ≥ 𝑓(𝑥𝑖,𝑗)) (4.32)
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Which is true in this case, so we can conclude that DLED claims that 𝑥8 and 𝑥9 are
truly dependent, and this is also consistent with the decomposition we did above
(4.28).

Finally, it should be noted that the dependency detection depends on the individual
𝑥 used.

𝑥 = 000000000 (4.33)
For example, if we run DLED for each variable 𝑥𝑖 and 𝑥𝑗, we only get the following
dependencies shown in the following VIG.

𝑥1 𝑥2 𝑥3

𝑥4 𝑥5 𝑥6

𝑥7 𝑥8 𝑥9

Figure 4.5: The VIG with all detected linkages by the DLED procedure and individual
𝑥 = 000000000.

As we can see, the linkage between 𝑥4 and 𝑥7 is missing, as well as the linkage
between 𝑥3 and 𝑥6.
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In this section, we present the proposed modification to the dgGA. The organiza-
tion is as follows. We first present some results of the analysis we performed on
the baseline dgGA algorithm, based on which we propose improvements that we
believe could lead to better performance of the optimizer for some representatives of
pseudo-boolean functions. Furthermore, we introduced the greedy linkage learning
technique into the dgGA. Finally, we summarize some key features of the proposed
modifications to the dgGA.

5.1 Analysis

Our first steps in the analysis led to a revision of the linkage learning procedure.
As can be inferred from the results presented in [2], where dgGA was proposed,
the number of fitness function evaluations (FFEs) spent on linkage learning itself
tends to be quite low for most of the considered problem instances, but for ISG and
some cases of concatenation of either deceptive or bimodal functions it still seems to
be quite high, around 30% of the total number of FFEs spent during optimization.
Thus, we believe that reducing this ratio could lead to an overall better performance
of the optimizer.

Since dgGA uses PX as a recombination operator that uses the interactions among
the variables stored in the VIG, we only need to use such a linkage learning technique
that correctly identifies only the direct linkages among the variables. The linkage
learning methods presented in the second chapter mainly identify that the dependent
variables are only members of the same BB, which corresponds to a single connected
component of the VIG. However, the actual structure of these linkages remains
hidden. We also want to avoid detecting false linkage. Thus, replacing DLED with
any other method of the linkage learning would not help much.

In dgGA, as mentioned in the previous section, in the population mixing procedure,
we try to improve each individual of the population with the other individuals of
the population. For each individual, we collect all the PX masks, then shuffle the
masks and sort them in ascending order of their length, so we prefer shorter masks,
i.e., those that exchange fewer bits. Recall that each of these masks contains, in ad-
dition to the recombination mask itself, information identifying the other individual
from the population based on which it was generated. We attempt to improve the
individual by crossing through these masks and corresponding another individual.
Once the crossing over reaches an improvement, the procedure stops. Therefore, the
optimal order of these masks is important because we want to achieve improvement
as quickly as possible. Based on these considerations, we tried to perform an ex-
periment and estimate the quality of each mask based on the amount of epistasis
contained in the linkages and then sort these masks according to their respective
qualities. We computed this quality of mask as the sum of the epistasis measures
of each pair of variables it contains and then normalized it with its length. To be
able to do this we additionally to the already employed VIG, we added another
graph storing the epistasis measure between individual variables, computed in same
way as LIEM (3.4) does. Higher epistasis measure between variables shows high
dependency level between variables. So we thought that inheritance of pair of vari-
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ables with higher epistasis measure together should be more promising in yielding
improved offspring. While this experiment resulted in a better time to reach im-
provement, fewer masks were tried before finding an improvement, consequently the
diversity of the population was reduced and the optimizer tend to get stuck in a
local optimum.

We also attempted to speed up linkage learning by implementing DLED directly
into the local optimizer used for population initialization. (Recall that the original
dgGA only triggers linkage learning when a missing linkage is detected.) In this
local optimizer, we cache the fitness values caused by the perturbation until we find
a perturbation that improves the fitness of an individual, so that the actual linkage
learning consumes only one additional FFE to test a single linkage. Although this
learning is less computationally expensive than learning with missing linkage detec-
tion, we were unable to accurately estimate when this exploration of new linkages
should stop. Nor did it work quite well for the problems with "sparse" VIGs such
as ISG. However, we should at least mention that for some problems this leads to
better overall optimizer performance, even if the number of FFE spent on linkage
learning increases. Moreover, for these problems, it showed that faster discovery of
the complete VIG is essential.

Based on these analyses and experiments, we assessed that the most promising
next approach to improve dgGA would be to focus on the procedure of learning
interactions among variables, improving the efficiency of this learning, i.e., the ratio
between the FFEs consumed directly for learning interactions and the total number
of FFEs before finding the optimum, without degrading the level of decomposition.
Which could then also result in a reduction of the total number of FFEs, hence the
overall efficiency of the optimizer.

5.2 Greedy Linkage Learning

Before we go into a detailed description of our modification in dgGA, let us give a
few more details about how the linkage learning procedure worked in the original
version of dgGA. Below we see the pseudocode of the original implementation of the
Mixing and Missing Linkage Discovery procedure.

First, we cross 𝑥1, the individual to be improved, and 𝑥2, another individual from
the population, using pxMask to obtain the two offspring 𝑥

′

1 and 𝑥
′

2 in the same
way as mentioned in 4.1. (lines 2 and 3) Note that we are only exchanging the bits
that are present in the pxMask. If this crossover succeeds in improving the fitness
value of either parent 𝑥1 or 𝑥2 then the procedure ends and the improved offspring
is returned together with the number that indicates the result of the crossover (line
13 or 17). If the crossover results in a fitness deterioration in both cases, then the
conditions for a missing linkage between variables are met (4.4), there is at least one
bit missing from pxMask. (lines 6 to 11) So if a linkage is missing then we test with
DLED if there is a direct linkage between the bit outside the pxMask and the bit
present in the pxMask.(lines 8 to 11) Recall here that we only consider bits outside
the pxMask to be bits that are part of a crossover, i.e. where 𝑥1 and 𝑥2 differ in
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Pseudocode 1 Mixing and Missing Linkage Discovery Procedure
1: function MixAndDetectMissingLinks(𝑥1, 𝑥2, pxMask)
2: 𝑥

′

1 ← CrossByMask(𝑥1, 𝑥2, pxMask);
3: 𝑥

′

2 ← CrossByMask(𝑥2, 𝑥1, pxMask);
4: if 𝑓(𝑥1) > 𝑓(𝑥′

1) then
5: if 𝑓(𝑥2) > 𝑓(𝑥′

2) then
6: for 𝑔𝑒𝑛𝑒𝑀 ∈ pxMask do
7: for 𝑔𝑒𝑛𝑒𝑂 /∈ pxMask do
8: if ¬Dep(empVIG, 𝑔𝑒𝑛𝑒𝑀 , 𝑔𝑒𝑛𝑒𝑂) then
9: DLED(𝑥1, 𝑔𝑒𝑛𝑒𝑀 , 𝑔𝑒𝑛𝑒𝑂);

10: if ¬Dep(empVIG, 𝑔𝑒𝑛𝑒𝑀 , 𝑔𝑒𝑛𝑒𝑂) then
11: DLED(𝑥2, 𝑔𝑒𝑛𝑒𝑀 , 𝑔𝑒𝑛𝑒𝑂);
12: else
13: return 2, 𝑥

′

2;
14: else
15: if 𝑓(𝑥′

1) = 𝑓(𝑥1) then
16: return 0, 𝑥

′

1;
17: return 1, 𝑥

′

1;
18: return −1, 𝑥1;

value. If the result of the crossover is the same fitness value, the modified offspring
𝑥

′

1 is returned (line 16). In any other case, the original individual 𝑥1 is returned.
(line 18)

5.2.1 Our Approach

As we saw above, in the original implementation, if a missing linkage is detected,
then it is tested to verify if there is a linkage between the bits in the pxMask and
the bits outside the pxMask. These bits outside the pxMask are then tested pairwise
with the bits in the pxMask so that a direct linkage is detected. However, we find
this testing inefficient because, for example, for ISG problems where each bit is
dependent on at most four other bits, it is unnecessary to test all bits. Thus, some
bits outside of pxMask need not be tested at all. More generally, if we assume that
the problem to be optimized is somehow decomposable into smaller problems, then
we also assume that 𝑘 (2.1.2) should be at least smaller than the size of the problem
to be solved.

For this reason, we have introduced a modified gLINC [9] technique, already de-
scribed in 3.2.2, into the procedure for discovery of linkages among variables. The
idea of the modified gLINC is the same as in the original gLINC, we want to iden-
tify whether a given set of bits (variables) form a single BB - i.e., a connected VIG
component. However, for our purposes, the condition for identification of the linkage
was too strict, so we modified this condition to identify the linkage based on the
epistasis measure, similar to the LIEM [11]. That is, if the epistasis measure caused
by the perturbation is high then we consider a given set of bits to be a single BB.
Using this method, we sequentially divided the bits outside the pxMask into those
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bits that are worth testing, the bits directly dependent on a bit in the pxMask, and
the remaining bits that do not need to be tested. So we actually use gLINC to filter
the bits outside of pxMask to only those that really depend on one of the bits in
pxMask. These bits, which together with the bits in the pxMask form the BB, are
then further tested using DLED to determine the direct linkage to a particular bit
of the pxMask.

At the beginning, whenever we detect a missing linkage, we have two disjoint subsets
of bits (variables). Let’s denote the first as 𝐼𝑖𝑛𝑀𝑎𝑠𝑘 representing the bits present in
pxMask and the second subset as 𝐼𝑜𝑢𝑡𝑀𝑎𝑠𝑘 denoting the bits to be tested to see if
they are directly linked to any bit from 𝑃𝑖𝑛𝑀𝑎𝑠𝑘. In computer science, the following
approach is usually known as the Divide-and-conquer algorithm [21]. Once we have
both of these sets, we split the set 𝐼𝑜𝑢𝑡𝑀𝑎𝑠𝑘 into two smaller subsets 𝐼𝑜𝑢𝑡𝑀𝑎𝑠𝑘1 and
𝐼𝑜𝑢𝑡𝑀𝑎𝑠𝑘2 of the same size. After that, using gLINC, we test whether 𝐼𝑜𝑢𝑡𝑀𝑎𝑠𝑘1 and
𝐼𝑖𝑛𝑀𝑎𝑠𝑘 form a single BB. If they form a BB, we continue with this subset 𝐼𝑜𝑢𝑡𝑀𝑎𝑠𝑘1 ,
which we again recursively split into two smaller subsets. If they do not form a BB
together, this subset 𝐼𝑜𝑢𝑡𝑀𝑎𝑠𝑘1 is discarded. The same steps are applied to the subset
𝐼𝑜𝑢𝑡𝑀𝑎𝑠𝑘2 . These steps are repeated recursively until the subsets form only a single-
element set. Finally, we collect these one-element sets. Let us denote 𝐼𝑑𝑒𝑝 as the set
of union of these one-element sets. Due to the gLINC technique used, we already
know that each bit of the set 𝐼𝑑𝑒𝑝 is directly dependent on at least one of the bits
from 𝐼𝑖𝑛𝑀𝑎𝑠𝑘, but we do not know which one in specific. Therefore, we need to use
DLED to test among which bits from 𝐼𝑑𝑒𝑝 and 𝐼𝑖𝑛𝑀𝑎𝑠𝑘 there is a direct linkage and
update the VIG accordingly.

For the sake of clarity, we have divided the detailed description of the implementation
into three parts. The first is the one in which we obtain the promising bits that will
be tested for direct linkage with the bit from pxMask. The second is the actual
implementation of pre-filtering of potentially dependent bits, which excludes less
tightly dependent bits from further examination. The third one is responsible for
the identification of the BB.
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5.2.2 Mixing and Missing Linkage Discovery Procedure with
gLINC

Pseudocode 2 Mixing and Missing Linkage Discovery Procedure with gLINC
1: function MixAndDetectMissingLinks(𝑥1, 𝑥2, pxMask)
2: 𝑥

′

1 ← CrossByMask(𝑥1, 𝑥2, pxMask);
3: 𝑥

′

2 ← CrossByMask(𝑥2, 𝑥1, pxMask);
4: if 𝑓(𝑥1) > 𝑓(𝑥′

1) then
5: if 𝑓(𝑥2) > 𝑓(𝑥′

2) then
6: bitsToBeTested ← getBitsToBeTested(𝑥1, 𝑥2, pxMask);
7: bitsFormingBB ← GetBitsFormBB(𝑥1, 𝑥2, bitsToBeTested, pxMask);
8: for 𝑔𝑒𝑛𝑒𝑀 ∈ pxMask do
9: for 𝑔𝑒𝑛𝑒𝑂 ∈ bitsFormingBB do

10: if ¬Dep(empVIG, 𝑔𝑒𝑛𝑒𝑀 , 𝑔𝑒𝑛𝑒𝑂) then
11: DLED(𝑥1, 𝑔𝑒𝑛𝑒𝑀 , 𝑔𝑒𝑛𝑒𝑂);
12: if ¬Dep(empVIG, 𝑔𝑒𝑛𝑒𝑀 , 𝑔𝑒𝑛𝑒𝑂) then
13: DLED(𝑥2, 𝑔𝑒𝑛𝑒𝑀 , 𝑔𝑒𝑛𝑒𝑂);
14: else
15: return 2, 𝑥

′

2;
16: else
17: return 1, 𝑥

′

1;
18: if 𝑓(𝑥′

1) = 𝑓(𝑥1) then
19: return 0, 𝑥

′

1;
20: return −1, 𝑥1;

In the pseudocode 2, we present the proposed approach in comparison with the
original implementation (pseudocode 1). Whenever we detect that we are missing
a linkage from the VIG, then we collect all bits that should be tested for a direct
linkage with at least one bit from pxMask. These are the bits where 𝑥1 and 𝑥2 differ
in value and are not in pxMask (line 6). Using the GetBitsFormBB function, we get
the bits that, together with the bits from pxMask, form BB (line 7). Finally, we test
these retrieved bits to see if they have a direct linkage with the individual bits of
pxMask using DLED, similar to the original implementation (lines 8 to 13). In the
following section, we describe how these bits forming the BB are obtained.

5.2.3 Identification of Building Block with greedy Linkage
Identification by Nonlinearity Check

The following procedure seeks to obtain the subset of bits that, together with the
bits from pxMask, form the BB. Note also that this subset should be as tightly linked
as possible to the bits from pxMask, as these bits will be tested for direct linkage. By
tightness we mean a high epistasis measure caused by perturbation between subsets
of bits, similar to what we described for the LIEM (3.4). This property is discussed
in more detail in the section explaining the gLINC procedure (5.2.4).
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At the beginning of the procedure, we are given a subset of bits to be tested for
linkage with bits from pxMask. The order of these bits (variables) is randomly shuf-
fled because we cannot assume that the dependent bits should be ordered in any
way. (line 2) Next, a set of bits is prepared that accumulates bits tightly linked to
bits from pxMask and a queue that will be used to search for the linked blocks. (line
3 and 4) Starting with the entire block of bits specified as bitsToBeTested at the
beginning, we push the entire block to the queue. After this initialization, we repeat
the following steps until the queue is empty. At each iteration, we check if the subset
of bits is only a single-element set, if so, we join this subset with the tightly linked
bits found so far. (line 7 and 8) If the subset is larger, then this subset is split into
two parts of equal size. (line 10) These split parts are then separately checked using
the gLINC procedure to see if they form a BB with the bits from pxMask. If they
form a BB, then the search continues with this subset, which is then pushed to the
queue. (lines 11 to 16) Otherwise, we discard this subset from the search. When
this search procedure is complete, we return the collected set of bits that are tightly
linked to the pxMask bits. (line 17)

Pseudocode 3 Detection of BB with gLINC
1: function GetBitsFormBB(𝑥1, 𝑥2, bitsToBeTested, pxMask)
2: shuffleBits(bitsToBeTested);
3: bitsFormingBB ← ∅
4: queue ← < 𝑒𝑚𝑝𝑡𝑦 >; queue.push(bitsToBeTested);
5: while ¬𝑞𝑢𝑒𝑢𝑒.𝑒𝑚𝑝𝑡𝑦() do
6: bitsSubset ← queue.front(); queue.pop();
7: if bitsSubset.size() = 1 then
8: 𝑏𝑖𝑡𝑠𝐹𝑜𝑟𝑚𝑖𝑛𝑔𝐵𝐵 ← (𝑏𝑖𝑡𝑠𝐹𝑜𝑟𝑚𝑖𝑛𝑔𝐵𝐵 ∪ 𝑏𝑖𝑡𝑠𝑆𝑢𝑏𝑠𝑒𝑡);
9: else

10: bitsFirstHalf, bitsSecHalf ← splitSet(bitsSubset);
11: if gLINC(𝑥1, bitsFirstHalf, pxMask) ∨
12: gLINC(𝑥2, bitsFirstHalf, pxMask) then
13: queue.push(bitsFirstHalf);
14: if gLINC(𝑥1, bitsSecHalf, pxMask) ∨
15: gLINC(𝑥2, bitsSecHalf, pxMask) then
16: queue.push(bitsSecHalf);
17: return 𝑏𝑖𝑡𝑠𝐹𝑜𝑟𝑚𝑖𝑛𝑔𝐵𝐵;

5.2.4 Linkage Epistasis Measure

In this section, we describe how gLINC was used in the detection of BB. This
procedure was originally introduced in [9] by Coffin and Clack. We have already
described that procedure in Chapter 2 (3.2.2), where we showed its functionality with
an example of BB detection on a single deceptive trap function. In contrast to the
original case, we must also consider the case where the fitness function is composed
of several overlapping subfunctions. So the fitness growth caused by the perturbation
need not be strictly non-linear as in the original formulation (Δ𝑓𝐼𝐽(𝑥) ̸= (Δ𝑓𝐼(𝑥) +
Δ𝑓𝐽(𝑥))). In the following pseudocode, we show how the BB identification is done.



44 Chapter 5. dgGA with gLINC

Pseudocode 4 Greedy Linkage Identification By Nonlinearity Check (gLINC)
1: function gLINC(𝑥, bitsI, bitsJ )
2: 𝑥𝐼 ← 𝑥; 𝑥𝐽 ← 𝑥; 𝑥𝐼𝐽 ← 𝑥;
3: for 𝑏𝑖𝑡𝐼 ∈ 𝑏𝑖𝑡𝑠𝐼 do
4: 𝑥𝐼 [𝑏𝑖𝑡𝐼]← ¬𝑥[𝑏𝑖𝑡𝐼];
5: 𝑥𝐼𝐽 [𝑏𝑖𝑡𝐼]← ¬𝑥[𝑏𝑖𝑡𝐼];
6: for 𝑏𝑖𝑡𝐽 ∈ 𝑏𝑖𝑡𝑠𝐽 do
7: 𝑥𝐽 [𝑏𝑖𝑡𝐽 ]← ¬𝑥[𝑏𝑖𝑡𝐽 ];
8: 𝑥𝐼𝐽 [𝑏𝑖𝑡𝐽 ]← ¬𝑥[𝑏𝑖𝑡𝐽 ];
9: Δ𝐼 ← 𝑓(𝑥𝐼)− 𝑓(𝑥);

10: Δ𝐽 ← 𝑓(𝑥𝐽)− 𝑓(𝑥);
11: Δ𝐼𝐽 ← 𝑓(𝑥𝐼𝐽)− 𝑓(𝑥);
12: if |Δ𝐼𝐽 − (Δ𝐼 + Δ𝐽)| > 𝛿 then
13: return true;
14: else
15: return false;

At the beginning, we prepare three copies of the given individual (solution) 𝑥. (line 2)
In 𝑥𝐼 we perturb all the bits from the set bitsI and in 𝑥𝐽 we perturb the bits from the
set bitsJ. In 𝑥𝐼𝐽 we perturb both. (lines 3 to 8) Next, we compute the fitness growth
caused by these perturbations. (lines 9 to 11) If the inequality |Δ𝐼𝐽−(Δ𝐼 +Δ𝐽)| > 𝛿
holds, then we consider the sets bitsI and bitsJ as a single BB. (line 13) Otherwise,
we did not find an evidence of dependence between these blocks. The inequality on
line 12 replaces the original inequality (Δ𝐼𝐽 ̸= (Δ𝐼 + Δ𝐽)) from [9]. The correct
setting of the 𝛿 parameter is discussed below.

The 𝛿 parameter determines the measure of nonlinearity, which is then considered
as a dependency between blocks of bits. To set this parameter properly, we used
a similar approach to that seen in the LIEM [11]. Moreover, in addition to the
aforementioned VIG, which stores only the direct interactions between variables,
we maintain one additional graph that maintains further information about the
interactions, the epistasis measure. The vertices of this graph again represent the
individual variables (bits) of the solution, and the edges of the graph represent the
epistasis measure between the variables, which is calculated as follows:

𝑥�̄� = 𝑥1 · · · 𝑥𝑖 · · · 𝑥𝑛

𝑥�̄� = 𝑥1 · · · 𝑥𝑗 · · · 𝑥𝑛

𝑥�̄�,�̄� = 𝑥1 · · · 𝑥𝑖 · · · 𝑥𝑗 · · · 𝑥𝑛

(5.1)

Now with these perturbed solutions 𝑥�̄�, 𝑥�̄� and 𝑥�̄�,�̄� we compute the fitness differences
caused by the perturbations.

Δ𝑖 = 𝑓(𝑥�̄�)− 𝑓(𝑥)
Δ𝑗 = 𝑓(𝑥�̄�)− 𝑓(𝑥)

Δ𝑖,𝑗 = 𝑓(𝑥�̄�,�̄�)− 𝑓(𝑥)
(5.2)

Finally, the epistasis measure between the i-th and j-th variable is given as follows:

𝑒𝑖,𝑗 = |Δ𝑖,𝑗 − (Δ𝑖 + Δ𝑗)| (5.3)
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For each pair of variables, we update this epistasis measure during the optimization,
keeping the maximum until we detect a direct linkage between these two variables.
The graph storing these epistasis measures is updated from DLED, so it does not
cost us any additional FFE. The 𝛿 parameter used in gLINC is updated whenever a
direct linkage is detected, 𝛿 is updated as follows. We compute the average epistasis
measure of those pairs of variables that are directly linked. Let us denote this average
as 𝑒𝑑𝑒𝑝. The 𝛿 parameter is then updated as follows.

𝛿 = 𝑒𝑑𝑒𝑝

2 (5.4)

Thus, if the epistasis measure in gLINC is lower than this delta, we find no evidence
that the blocks of variables form a single BB. Otherwise, we consider them as po-
tentially forming a single BB. To clarify the 𝛿 parameter setting, note that if the
epistasis measure between two variables (|Δ𝑖,𝑗− (Δ𝑖 + Δ𝑗)|) is close to zero, then we
consider the variables (or blocks of variables) as independent (not forming a single
BB). Thus, we used the values of the epistasis measures of those pairs of variables
that are guaranteed to be dependent, and estimated the level of epistasis measure
that we should consider to exhibit dependence. This delta parameter is then used in
gLINC to determine whether or not two blocks of variables form a single BB. If the
perturbations of the blocks of variables had a linear or nearly linear effect on fitness,
i.e, no nonlinearity occurred, and thus the value of |Δ𝐼𝐽 − (Δ𝐼 + Δ𝐽)| is "closer" to
zero, then we found no evidence that the two blocks form a single BB. Otherwise,
some nonlinearity has occurred, the value of |Δ𝐼𝐽−(Δ𝐼 +Δ𝐽)| is "closer" to 𝑒𝑑𝑒𝑝, and
therefore we consider that these blocks form a single BB. Finally, we should note
that the 𝛿 parameter is initialized as 0 because we want to trigger as much linkage
exploration as possible at the beginning to get at least some empirical estimate on
the value of 𝛿. This whole idea is also similar to the procedure used in [14], where
the k-means algorithm is used to distinguish between correct and incorrect linkages.

In the following pseudocode 5, we present a modified DLED procedure with the
update of the epistasis measure (EM).

The procedure is similar to that in pseudocode 4, but here we only perturb individual
bits, not whole blocks. As with gLINC, we prepare three copies of individual 𝑥. In
each of them, we flip the i-th, j-th, and both bits, respectively. (lines 3 to 8) We
then calculate the fitness differences caused by the perturbations (lines 10 to 12).
We update the epistasis measure for the i-th and j-th bits similarly to the LIEM[11]
procedure described in 3.4. (lines 13 and 14) Finally, if the condition on line 16
holds, we find that the i-th bit is directly dependent on the j-th bit, so we update
the VIG accordingly (line 17) and recompute the 𝛿 (line 18).
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Pseudocode 5 Direct Linkage Empirical Discovery (DLED) with EM Update
1: function DLED(𝑥, 𝑏𝑖𝑡𝑖, 𝑏𝑖𝑡𝑗)
2: 𝑥𝑖 ← 𝑥; 𝑥𝑗 ← 𝑥; 𝑥𝑖𝑗 ← 𝑥;
3: // flip ith bit
4: 𝑥𝑖[𝑏𝑖𝑡𝑖]← ¬𝑥[𝑏𝑖𝑡𝑖];
5: 𝑥𝑖𝑗[𝑏𝑖𝑡𝑖]← ¬𝑥[𝑏𝑖𝑡𝑖];
6: // flip jth bit
7: 𝑥𝑗[𝑏𝑖𝑡𝑗]← ¬𝑥[𝑏𝑖𝑡𝑗];
8: 𝑥𝑖𝑗[𝑏𝑖𝑡𝑗]← ¬𝑥[𝑏𝑖𝑡𝑗];
9: // update EM

10: Δ𝑖 ← 𝑓(𝑥𝑖)− 𝑓(𝑥);
11: Δ𝑗 ← 𝑓(𝑥𝑗)− 𝑓(𝑥);
12: Δ𝑖𝑗 ← 𝑓(𝑥𝑖𝑗)− 𝑓(𝑥);
13: 𝑒𝑚𝑀𝑎𝑡[𝑏𝑖𝑡𝑖][𝑏𝑖𝑡𝑗]← max (𝑒𝑚𝑀𝑎𝑡[𝑏𝑖𝑡𝑖][𝑏𝑖𝑡𝑗], |Δ𝑖𝑗 − (Δ𝑖 + Δ𝑗)|);
14: 𝑒𝑚𝑀𝑎𝑡[𝑏𝑖𝑡𝑗][𝑏𝑖𝑡𝑖]← max (𝑒𝑚𝑀𝑎𝑡[𝑏𝑖𝑡𝑗][𝑏𝑖𝑡𝑖], |Δ𝑖𝑗 − (Δ𝑖 + Δ𝑗)|);
15: // update VIG
16: if (𝑓(𝑥) < 𝑓(𝑥𝑗)) ̸= (𝑓(𝑥𝑖) < 𝑓(𝑥𝑖𝑗)) then
17: addDepToVIG(𝑏𝑖𝑡𝑖, 𝑏𝑖𝑡𝑗);
18: recomputeDelta();

5.3 Greedy Linkage Learning Features

In this section we would like to summarize the features of the presented approach.

In the above procedure of discarding some linkages from further testing, we still kept
the original property of dgGA, that we trigger interaction learning only when a link-
age is missing. This discarding of some linkages (pair of bits, potentially dependent)
should have a positive effect on linkage learning efficiency. That is, we consume less
FFE purely on the linkage learning. These savings arise from the fact that at the
beginning of learning new linkages, before we test the direct linkage between bits,
we directly discard the entire block of bits that are independent of the bits for which
we are looking for new linkages. We believe that these savings should be especially
beneficial on large problems, those with a large number of variables (bits), and also
on problems where each variable is directly dependent on only a small number of
others.

In order to properly estimate the parameter that determines when two blocks of
variables are no longer dependent, we need to maintain another graph (matrix) in
addition to VIG, in which we store the epistasis measure between the individual
variables. This graph is updated whenever we run the DLED procedure and thus
does not cost any additional FFE.

Overall, the modified optimizer remains, like the original dgGA, parameterless.
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Experiments

6.1 Experiment setup

We considered a set of five different problems of various lengths, namely MAX-3SAT
and Ising Spin Glass, as representatives of natural pseudo-boolean optimization
problems, as well as a concatenation of bimodal and deceptive trap functions (with
different overlaps) as a representative of the Mk Landscapes problem, which are
often used as benchmark problems for GAs. For testing purposes, we consider the
same test instances as in [2].

For MAX-3SAT problems, we search for a variable assignment that satisfies as many
clauses as possible, similarly as in [2], we only consider cases where all clauses are sat-
isfiable. The MAX-3SAT problem was already described in the first chapter (2.1.2).
For MAX-3SAT, the strength of the overlap, the occurrence of the same variable in
multiple clauses, is given by the clause ratio (𝐶𝑅) parameter. The 𝐶𝑅 parameter
is defined as the ratio between the number of clauses and the number of variables.

We have described the ISG problem in the example of the DLED (4.3.1) procedure.
We considered three different lengths of this problem that were solvable by the
original dgGA, since we do not assume that our modification of dgGA could solve
those cases that remained unsolvable by the original dgGA.

The problem denoted below as Mk-deceptive is a concatenation of the deceptive trap
function, which has already been described in the example of the missing linkage
procedure (4.2.1). Thus, here we consider a concatenation of 𝑀 deceptive trap func-
tions, each dependent on 𝑘 variables, and these subfunctions overlap by 𝑜 variables.
The 𝑀 denotes the number of blocks. The problem denoted as Mk-bimodal is a
concatenation of order-k bimodal trap functions, which is defined as follows:

𝑓𝑏𝑖𝑚𝑜𝑑𝑎𝑙𝑇 𝑟𝑎𝑝(𝑥) =
⎧⎨⎩

𝑘
2 − |𝑢(𝑥)− 𝑘

2 | − 1 , 𝑢(𝑥) ̸= 𝑘 ∧ 𝑢(𝑥) ̸= 0
𝑘
2 , 𝑢(𝑥) = 𝑘 ∨ 𝑢(𝑥) = 0

(6.1)

Where 𝑢 is the unitation function and is defined as the number of ones in 𝑥, recall
also that 𝑘 denotes the length of the function. The main difference between the
bimodal and the deceptive function is that the bimodal has two global optima and

47
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(︁
𝑘

𝑘/2

)︁
local optima, and therefore it is more difficult to detect linkages, which was

discussed in [22].

In order to obtain accurate results and, more importantly, to verify the effectiveness
of the proposed changes to dgGA, we used the implementation from the authors of
dgGA. This implementation is publicly available on GitHub repository1. We reim-
plemented modified parts of dgGA to use gLINC in the linkage learning procedure,
all coded in C++. The experiments were performed on two different computers, one
with the Intel Core i7-4702MQ CPU 2.20GHz 16GB RAM and second with the Intel
Core i5-6500 CPU 3.20GHz 16GB RAM, both with Windows 10 installed. Since we
were primarily interested in the number of FFEs, this choice should not affect the
correctness of the results. In the overall comparison, we also show the time required
to obtain the optimal solution. These times are only approximate. Therefore, these
values should be taken with a grain of salt. We labeled these times in the table with
♣ if this experiment was done on the first computer, otherwise with ♢ if it was
done on the second computer. Furthermore, we performed an experiment to obtain
at least an approximate constant for converting the times between these computers.
Thus the recalculation of these times is given approximately as follows:

𝑡𝑃 𝐶1 = 1.72𝑡𝑃 𝐶2 (6.2)

For each of the above mentioned problems, we consider a set of ten different problem
instances. We repeated each experiment fifteen times, also using a time limit for the
computation. The experiment was terminated after finding the optimal solution or
after 8 hours of computation.

The repository mentioned above also contains the problem definition files that were
used for the experiments. We did not change any settings of dgGA (initial pop-
ulation optimizer, crossover for sliding individuals, etc.) when we performed the
experiments.

In addition to the number of FFEs, we also use the Fill measure to compare the
quality of the linkage learning, which was also used in [2] and introduced in [22].
The Fill value is defined as the median of the percentage of true direct linkages
found for each bit. Thus, 0 ≤ 𝐹𝑖𝑙𝑙 ≤ 1, and if Fill is 1, it means that all linkages
have been found for each bit.

In the results below, the original version of dgGA is labeled as dgGA-DLED, and
the version with our modification is labeled as dgGA-gLINC-DLED.

6.2 Results and discussion

In the following table 6.1, we present the results of the quality of linkage learning
and cost. The number of FFEs here refers only to the FFEs that were spent on
the linkage learning itself; in addition, we report the percentage of total FFEs. The
value of Fill should be understood as we stated above.

1https://github.com/przewooz/darkGrayGA

https://github.com/przewooz/darkGrayGA
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From the results, it can be concluded that the changes we made to the dgGA do
not affect the quality of linkage learning. There is only a deterioration in the linkage
learning quality for MAX-3SAT and Mk-deceptive(k=5, o=3, size=40 blocks), but
this deterioration is so small that we believe it is almost indistinguishable.

Regarding the spending of FFEs on the linkage learning itself, it seems that our
modification of dgGA seems to have achieved success mainly on those problems with
many variables. For these large ones, in cases where the original dgGA algorithm
spent a large percentage of FFEs on learning interactions, we were able to reduce
this percentage. For the ISG problem, due to the modification made in dgGA, this
percentage was reduced rapidly. For the Mk-bimodal problems by roughly half. For
the Mk-deceptive problems, in case of Mk-deceptive(k=5, o=3), the percentage was
able to be reduced only for large instances, while in case of Mk-deceptive(k=8, o=5),
in fact, there was not much to improve since the expenditure on linkage learning
was already low in the original dgGA.

Table 6.1: Empirical linkage quality and generation cost comparison. Number of fitness
function evaluations (FFEs) spent only on linkage detection in the median run (median
number of total FFEs) together with the percentage of total FFEs needed to obtain the
optimal solution. And the corresponding quality of the fitness function decomposition is
shown via the Fill measure.

Problem Size dgGA-DLED dgGA-gLINC-DLED
[FFE] [%] [Fill] [FFE] [%] [Fill]

MAX-3SAT
(CR=4.27)

50 bits 2.25E+04 21.17 0.85 2.16E+04 19.79 0.84

ISG
484 bits 1.25E+06 24.87 1.00 1.12E+05 2.93 1.00
625 bits 2.32E+06 26.05 1.00 1.47E+05 2.16 1.00
784 bits 3.78E+06 26.27 1.00 1.98E+05 1.83 1.00

Mk-deceptive
(k=8, o=5)

10 blocks 1.38E+03 1.84 0.97 3.05E+03 3.97 0.97
20 blocks 7.25E+03 3.79 0.96 4.39E+04 13.38 0.97
40 blocks 2.7E+04 1.14 0.94 1.89E+04 0.8 0.97
80 blocks 5.86E+04 0.22 0.96 4.46E+04 0.17 0.97

Mk-deceptive
(k=5, o=3)

10 blocks 2.1E+03 39.24 0.94 4.58E+03 57.51 0.95
20 blocks 9.09E+03 47.31 0.93 1.23E+04 54.65 0.96
40 blocks 1.59E+04 20.49 0.96 2.92E+04 39.6 0.95
80 blocks 1.31E+05 46.11 0.95 7.54E+04 31.82 0.95
120 blocks 2.27E+05 25.28 0.96 6.4E+04 9.59 0.96

Mk-bimodal
(k=10, o=5)

10 blocks 2.01E+06 34.78 1.00 5.58E+05 15.16 1.00
20 blocks 2.15E+07 32.22 1.00 4.25E+06 17 1.00
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Figure 6.1: FFE-based scalability on the Mk-deceptive (k=8, o=5) problem
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In Figure 6.1 we present the FFE-based scalability on the Mk-deceptive (k=8, o=5)
problem. Overall, we can say that in this case the performance of the optimizer
has not changed much due to our modification, reaching the optimum after almost
the same number of FFEs. We assume that this is due to the fact that already in
the original dgGA the cost of learning the interactions was low, so in this case our
modification does not have much to save. However, if we examine the results in more
detail, we can notice that our modification of dgGA is a tiny bit worse for small
instances and, on the contrary, a tiny bit better for large ones. This is due to the
fact that, in general, our modification should work better for large instances, since
here we are more likely to save the number of FFEs for learning interactions and
thus the total number of FFEs to reach the optimum.

In Figure 6.2 we present the FFE-based scalability on the Mk-deceptive (k=5, o=3)
problem. As can be inferred from this figure, our modification in dgGA performs
better for larger instances of the problem being solved, and worse for smaller ones.
We assume that for those instances where it performed worse, this is because here
our modification in dgGA spent more FFEs on learning the interactions and thus
the total number of FFEs is higher. Conversely, for the larger instances, we were
able to reduce the number of potential linkages and thus save the expense on linkage
learning, which then resulted in a lower total number of FFEs.

In the last Figure 6.3, we present the FFE-based scalability on the Ising Spin Glass
problem. For all considered lengths of this problem, our modification of dgGA re-
sulted in an improvement in the total number of FFEs. We believe this is due to
the fact that, in general, for this problem the number of variables is high while
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Figure 6.2: FFE-based scalability on the Mk-deceptive (k=5, o=3) problem
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Figure 6.3: FFE-based scalability on the Ising Spin Glass problem

484 625 784

106.6

106.7

106.8

106.9

107

107.1

107.2

Number of bits

FF
E

un
til

op
tim

al

dgGA-DLED
dgGA-gLINC-DLED



52 Chapter 6. Experiments

the number of direct dependencies of each variable remains low. (Recall that in the
ISG problem, each variable is directly dependent on at most four others.) Thus,
the reduction of the tested interactions, here, successfully reduced the initially large
number of potentially dependent variables to only a small fraction of these variables,
thus saving the testing of direct linkages that would have been tested unnecessarily.
This subsequently had a further impact on the total number of FFEs.

Table 6.2 presents the overall results for all problems considered. In this table, in
addition to the median value, we also report the Interquartile Range (IQR) and the
time required to obtain the optimal solution. The ISG and Mk-deceptive problems
have already been discussed above. For the MAX-3SAT problem, we obtained a
similar result after modification in dgGA; but again, there was not much FFE to
be saved. Longer MAX-3SAT instances than those listed in the table failed to be
solved as in the original dgGA. For the Mk-bimodal problem, in both cases of the
length considered, the modifications done in the dgGA resulted in reducing the total
number of FFEs needed to find the optimal solution. This reduction can be reasoned
by the saving of the FFEs needed to learn the interactions.
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Chapter 7

Conclusion

In this thesis, we have introduced the modification of the procedure that learns the
interactions among the variables in dgGA. We proposed this modification based
on a previous analysis of this algorithm and also by studying known techniques
for identifying linkages among variables using perturbation. To employ gray box
optimization techniques, knowledge of the direct dependencies among variables is
required. In dgGA, the original learning method satisfies all the required properties,
detects only direct linkages and never detects false linkages. Therefore, we did not
replace the original linkage learning method completely, but we came up with an
idea to handle the overall linkage learning among variables more efficiently. We
replaced the original learning method, that tested dependencies one by one, with
a modified procedure that discards entire independent blocks. We implemented the
modification in dgGA and then verified it on the MAX-3SAT problem, Ising Spin
Glass, and concatenation of deceptive and bimodal trap functions compared to the
original version. Based on the results, we conclude that the modification

• does not degrade the quality of the problem decomposition,

• reduces the number of function evaluations spent on interaction learning for
large instances of tested problems, and thus

• improves the efficiency of the optimizer for larger instances.

However, we must also admit that for small instances, our modification resulted in
higher learning costs.
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Appendix

A Implementation of the Dark Gray Genetic Al-
gorithm with Greedy Linkage Learning

List of attachments

• darkGrayGa.cpp

• darkGrayGa.h

Sources code of the implementation of the modified dgGA with Greedy Linkage
Learning.

To run the modified dgGA with Greedy Linkage Learning, download the source files
of the original dgGA from the publicly available Github repository1 and replace
the original darkGrayGa.cpp and darkGrayGa.h files with our modified ones
before build. To set up the project correctly, follow the instructions in the readme of
the original implementation. Note here that Visual Studio 2017 is required to build
the project.

The main modification of dgGA was made in the following list of methods in the
darkGrayGa.cpp file, which also includes the line where the implementation of
the corresponding method starts.

• void nDarkGrayGA::CDarkGA_DSM::vRecompLIEMCentrs(); (line 1884)

• void nDarkGrayGA::CDarkGA_DSM::vShuffleVars(vector<int> & vec_vars); (line 1900)

• bool nDarkGrayGA::CDarkGA_DSM::b_glinc(vector<int> & vecGenesI,
vector<int> & vecGenesJ,
CDarkGrayGAIndividual *pcExtractionIndividual); (line 2214)

• void CDarkGA_DSM::vUpdateDSM(CDarkGrayGAPxMask *pcMask); (line 1761)

• void CDarkGA_DSM::b_extract_dled_for_gene_pair(
int iGeneBlock,
int iGeneContext,

1https://github.com/przewooz/darkGrayGA
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62 Attachment content

int *piDledExtractionMask,
CDarkGrayGAIndividual *pcExtractionIndividual,
int *piNewPairsDetected); (line 1926)

B Tables with complete results

List of attachments

• max3sat_cr4_27_vars_50.xlsx

• isg_484.xlsx

• isg_625.xlsx

• isg_784.xlsx

• mk_deceptive5_m10_o3.xlsx

• mk_deceptive5_m20_o3.xlsx

• mk_deceptive5_m40_o3.xlsx

• mk_deceptive5_m80_o3.xlsx

• mk_deceptive5_m120_o3.xlsx

• mk_deceptive8_m10_o5.xlsx

• mk_deceptive8_m20_o5.xlsx

• mk_deceptive8_m40_o5.xlsx

• mk_deceptive8_m80_o5.xlsx

• mk_bimodal10_m10_o5.xlsx

• mk_bimodal10_m20_o5.xlsx

Tables with results of complete experiments. Each row of the table corresponds to
one run of the experiment, and each fifteen consecutive rows correspond to one
instance of the considered problem.
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