
ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

491830 Osobní číslo:Jakub Jméno:Profota Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatika Studijní program:

Počítačové hry a grafika Specializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Implementace zobrazovacího řetězce pomocí GPGPU technik

Název bakalářské práce anglicky:

Rendering pipeline implementation using GPGPU techniques

Pokyny pro vypracování:
Zmapujte a popište architekturu zobrazovacího řetězce v moderních GPU. Navrhněte implementaci základní podoby
zobrazovacího řetězce bez využití grafického API. Pro implementaci využijte jazyk CUDA nebo OpenCL. Soustřeďte se
na efektivní paralelní rasterizaci trojuhelníků a základní osvětlovací model. Vyhodnoťte rychlost implementace na neujméně
pěti scénách různé geometrické složitosti a navrhněte optimalizace úzkých hrdel výpočtu.

Seznam doporučené literatury:
[1] Samuli Laine, Tero Karras. 'High-performance software rasterization on GPUs.' Proceedings of the ACM SIGGRAPH
Symposium on High Performance Graphics. 2011.
[2] Michael Kenzel, Bernhard Kerbl, Dieter Schmalstieg, and Markus Steinberger. 2018. A high-performance software
graphics pipeline architecture for the GPU. ACM Trans. Graph. 37, 4, Article 140 (2018).

Jméno a pracoviště vedoucí(ho) bakalářské práce:

doc. Ing. Jiří Bittner, Ph.D. Katedra počítačové grafiky a interakce

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 26.05.2023 Datum zadání bakalářské práce: 17.02.2023

Platnost zadání bakalářské práce: 22.09.2024

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. Jiří Bittner, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Bachelor’s Thesis

Implementation of
Rendering Pipeline Using
General-Purpose Computing on
Graphics Processing Units

Jakub Profota
Open Informatics

May 2023
Supervisor: doc. Ing. Jiří Bittner, Ph.D.

Acknowledgement / Declaration

I would like to express my gratitude
and appreciation to my supervisor,
doc. Ing. Jiří Bittner, Ph.D, for his
guidance and patience during the work
on the project and this thesis.

Many thanks go to my parents and
my sister for their support and encour-
agement throughout my studies.

I thank my partner and my friends
for their emotional support.

I declare that I have prepared the sub-
mitted thesis independently and that
I have listed all information sources used
following the Methodological guidelines
on the observance of ethical principles
in the preparation of the university
thesis.

Prague, May 26 2023

Prohlašuji, že jsem předloženou prá-
ci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 26. května 2023

. .

iii

Abstrakt / Abstract

Tato bakalářská práce implementuje
jednoduchý zobrazovací řetězec pomocí
technik obecných výpočtů na moder-
ních grafických procesorech. Implemen-
tace v technologii CUDA se soustředí
na efektivní paralelní rasterizaci troj-
úhelníků a základní osvětlovací model.
Práce mapuje a popisuje architekturu
zobrazovacího řetězce a grafických čipů.

Klíčová slova: zobrazovací řetězec,
rasterizace, obecné výpočty na grafic-
kých procesorech, NVIDIA CUDA

Překlad titulu: Implementace zobra-
zovacího řetězce pomocí technik obec-
ných výpočtů na grafických procesorech

This bachelor thesis implements
a basic graphics pipeline using general-
purpose computing techniques on mod-
ern graphics processing units. The im-
plementation in CUDA focuses on ef-
ficient parallel rasterization of trian-
gles and a basic illumination model.
The thesis maps and describes the ar-
chitecture of the rendering pipeline and
graphics chips.

Keywords: Rendering Pipeline, Ras-
terization, General-Purpose Computing
on Graphics Processing Units, NVIDIA
CUDA

iv

Contents /

1 Introduction 1
1.1 Related Work 1

1.1.1 FreePipe 1
1.1.2 CUDAraster 2
1.1.3 cuRE 2

1.2 Thesis Structure 2
2 Graphics Processing Unit 3

2.1 Chip Design 3
2.1.1 Manufacturing Process . . . 3
2.1.2 Concurrency Revolution . . . 4

2.2 NVIDIA 6
2.2.1 GeForce 256 and 3 7
2.2.2 Tesla and Fermi 7
2.2.3 Volta and Turing 10

3 General-Purpose Computing 12
3.1 CUDA 12

3.1.1 Programming Model 12
3.1.2 Memory Model 14
3.1.3 Execution Model 15
3.1.4 Compilation 16

4 Graphics Pipeline 17
4.1 Logical Pipeline 17

4.1.1 Life of a Triangle 18
4.2 Hardware Pipeline 19
4.3 Future of Real-Time Rendering 21

4.3.1 Global Illumination 21
4.3.2 Artificial Intelligence 22

5 Implementation 23
5.1 Pipeline Design 23
5.2 Application Systems 24

5.2.1 Initialization 24
5.2.2 Cleanup 27

5.3 Scene Fetch 27
5.3.1 Model Matrix 27
5.3.2 View Matrix 28
5.3.3 Perspective Matrix 29

5.4 Vertex Shader 30
5.5 Primitive Assembly 32

5.5.1 Back-Face Culling 33
5.5.2 View-Frustum Clipping . . 34
5.5.3 Degenerate Culling 35

5.6 Rasterization 36
5.6.1 Binning and Tiling 37
5.6.2 Fragments 39

5.7 Pixel Shader 41

5.8 Raster Operation 42
6 Evaluation 43

6.1 Target Platform 43
6.2 Correctness 44
6.3 Benchmarks 44

6.3.1 Camera Rotation 45
6.3.2 Camera Zoom 47
6.3.3 Resolution 49
6.3.4 Reference 50

6.4 Bottlenecks 52
7 Conclusion 54

References 55

A User Manual 59
A.1 Compilation 59
A.2 Controls 59

v

Tables /

3.1 Specification of CUDA mem-
ory types. 15

6.1 Mesh data statistics of
benchmarked objects 45

6.2 Measurements of 360 degrees
camera rotation benchmark
on RTX 3070 46

6.3 Measurements of 360 degrees
camera rotation benchmark
on MX250 . 47

6.4 Measurements of camera
zoom benchmark on RTX
3070 . 48

6.5 Measurements of camera
zoom benchmark on MX250 . . . 48

6.6 Measurements of different
1,280×1,024 pixel configu-
rations . 49

6.7 Measurements of different
640×512 pixel configurations . . 51

6.8 Performance comparison of
reference implementations 51

vi

Chapter 1
Introduction

Graphics processing units (GPUs) have revolutionized the world of computing, trans-
forming how we experience graphics, accelerate computations, and tackle complex prob-
lems. Initially designed to handle the intense computational demands of rendering
real-time life-like graphics, GPUs have since evolved into the most pervasive paral-
lel processors with unmatched floating-point performance and programmability. With
massive parallelism, high memory bandwidth, and unparalleled power efficiency, GPUs
have become instrumental in gaming, scientific research, artificial intelligence, data
analytics, and more.

Fueled by the insatiable desire for realistic real-time graphics and the ever-increasing
spectrum of data-intensive workloads, the single-purpose fixed-function GPU design has
evolved into a flexible, accessible, and programmable architecture. The large and mas-
sively parallel processor on the graphics chip is heavily optimized for efficient execution
of data-parallel workloads such as graphics pipeline, hence the chip’s name. Since
the invention of the GPU, most of the stages of the graphics pipeline have become pro-
grammable through graphics application programming interfaces (APIs) such as Vulkan
[15] or OpenGL [16]. Moreover, these graphics APIs and specialized interfaces like
CUDA [17] or OpenCL [18] expose programmable cores for general-purpose comput-
ing on graphics chips (GPGPU). These APIs provide access to the GPU from shader
programs or extensions to standard programming languages. GPGPU techniques allow
for the implementation and effective execution of various data-parallel workloads, such
as the purely software-based rendering pipeline.

1.1 Related Work
Before the invention of the GPU, rendering was carried out by a software implementa-
tion on a central processing unit (CPU), which is now a thing of the past. Omnipresent
dedicated graphics hardware delivering significantly better performance has since ful-
filled this role. GPUs have become increasingly programmable throughout the years
of development, but the gain in programmability has hit a limit. The GPU architecture
is primarily optimized for the highly efficient graphics pipeline, and additional freedom
would require altering the pipeline structure, which is firmly rooted in the graphics
hardware on the GPU. Moreover, the complexity of the traditional pipeline does not
allow changes toward more flexible pipelines, leaving some of the classical rendering
problems solved inefficiently [2].

1.1.1 FreePipe
One such problem is multi-fragment effects, such as order-independent transparency
of rendered geometry, which would require programmability of the hardware-
implemented blending stage. In the traditional graphics pipeline, transparency
cannot be solved in a single render pass. FreePipe [1], published in 2010, pio-
neered real-time software-based rendering using Compute Unified Device Architecture

1

1. Introduction .
(CUDA), the world’s first specialized GPGPU platform introduced by NVIDIA.
FreePipe demonstrates a fully programmable rendering pipeline addressing the is-
sue of order-independent transparency. The implementation introduces two solutions
to per-pixel fragment depth sorting in a single geometry pass, modifying the traditional
pipeline and thus breaking the constraints imposed by current graphics APIs.

1.1.2 CUDAraster
Developed and published by NVIDIA in 2012 as an experiment to compare the ac-
tual performance difference between software and hardware implementations, CUD-
Araster [2] is currently the most performant completely software-based graphics pipeline
on a GPU, obeying the constraints of graphics APIs. Implemented in CUDA and relying
on low-level hardware-aware optimizations, CUDAraster focuses primarily on effective
rasterization, the usual bottleneck of graphics pipelines. Unlike FreePipe’s triangle-
parallel approach, with each thread processing one input triangle into many fragments,
which are then depth sorted in the programmable blending stage, CUDAraster uses
a pixel-parallel approach. The pipeline tiles the screen, then sorts input triangles
into tiles by their screen coverage. Each thread processes one pixel in each tile with
an assigned queue of triangles. Such an approach does not require a screen-wide depth
buffer, which is otherwise exceptionally efficiently implemented in hardware and is thus
unparalleled by software implementation.

1.1.3 cuRE
The CUDAraster graphics pipeline is implemented as a sequence of stages, or in terms
of CUDA GPGPU programming, as a series of kernel launches. Such an approach
can lead to excessive memory consumption since all the data have to be buffered be-
tween pipeline stages. It may also suboptimally utilize the GPU hardware with some
programmable cores without a workload. cuRE [3], published in 2018, addresses this
issue by introducing a fully parallel, multi-stage streaming pipeline design. Instead
of launching a kernel per each stage, cuRE launches a single mega-kernel that dynami-
cally load-balances the data flow between the logical pipeline stages. Such an approach
is capable of operating efficiently even within bounded memory.

1.2 Thesis Structure
This thesis aims to implement its own entirely software-based rendering pipeline, fo-
cusing primarily on effective rasterization. The text also introduces the hardware
of the graphics processing units, trying to put the design of the modern chips into a his-
torical perspective. In the second chapter, the thesis introduces graphics processing
units and a brief history of NVIDIA GPU chips. The third chapter describes general-
purpose computing on the GPU, focusing on CUDA technology. The purpose and
the hardware implementation of the graphics pipeline are presented in the fourth chap-
ter, with the fifth chapter diving into an extensive description of the thesis software-
based rendering pipeline implementation. The evaluation is provided and discussed
in the sixth chapter. A user manual and a brief source code documentation can be
found in the appendices.

2

Chapter 2
Graphics Processing Unit

GPU is a specialized co-processor that offloads computationally intensive data-parallel
tasks from a CPU. The original purpose of the graphics chip was to accelerate real-time
graphics rendering. However, the substantial increase in programmability and flexibility
allowed researchers and developers to advance in various computation-intensive work-
loads, such as data analytics, physics simulation, or artificial intelligence. The scalable
architecture of modern chips allows for massive arrays of GPUs to empower today’s
most performant cloud and data centers. Moreover, the advancements in GPGPU
techniques fueled the exploration of new real-time graphics algorithms, changing the
traditional rendering pipeline. Modern graphics cards enable new lighting and shadow-
ing techniques, for example, by facilitating real-time ray tracing.

2.1 Chip Design
The current multi-core architecture of modern processors stems from the physical lim-
itations of the chip manufacturing process. Hardware designers deployed various tech-
niques and technological innovations to bypass the limitations of single-core chips and
continue the exponential growth of computing speed with parallelism. However, ef-
fective utilization of the performance of the current multi-core architectures requires
an explicit redesign of traditional deterministic sequential algorithms.

2.1.1 Manufacturing Process
The processor, the main building block of computers, is the result of a manufacturing
process that starts with a crystalline silicon ingot, a heavily refined and purified rod
made out of a substance found in sand. Tending the rods requires massive amounts
of crystal-clear water and a perfectly sterilized retained environment. Any tiny micro-
scopic impurity may cause the whole manufacturing process to fail. The rod is sliced
into thin wafers, which go through a series of processing steps, during which patterns
of chemicals are placed on each wafer, creating transistors, conductors, and insulators1.
The transistor is a switch that conducts or insulates electricity under particular condi-
tions. The combination of billions forms a computation logic [5].

During the processing steps, microscopic impurities of the water itself or imperfec-
tions in one of the chemical patterning steps can result in that area of the wafer failing.
Defective dies are discarded when the round wafer is diced into square dies or chips
and tested for correct behavior. Chips are then connected to the input-output pins
of a package through a process of bonding, tested for the second time, and finally
shipped to customers. The cost of the manufacturing process and the final product
rises quickly as the die size increases due to the lower yield of dies without defects and
the smaller number of dies that fit on the wafer [5].

1 Illustrative video of the processor manufacturing process can be found in NVIDIA’s GTC 2023 Keynote
at 22:32 [19].

3

2. Graphics Processing Unit .

Figure 2.1. Chip manufacturing process [5].

A solution to the issue would be to increase the size of the wafer. However, both
the wafer size and the die size have physical limitations. Increasing the diameter
of the wafer requires more precise and expensive purifying of the rod and more del-
icate cutting techniques, as the slicing of the ingot may fail due to the fragile silicon.
Increasing the die size restricts the maximum frequency due to the limited speed of elec-
trical impulse transmissions. Supposing a frequency of 3 GHz and the speed of light
in a vacuum of 3 ⋅108𝑚𝑠−1, the light traverses a distance of 10 centimeters per one tick.
Considering the slower speed of electrical impulses compared to the speed of light and
additional delays caused by logic circuits, the die size is significantly limited [6].

To reduce the cost and increase the number of transistors, new manufacturing pro-
cesses, such as TSMC’s 3-nanometer technology [20], are used to reduce the size of tran-
sistors, increasing the logic density and the speed of the chip at the same power and
transistor count. Such a process allows fitting more equally capable chips on a sin-
gle wafer, offering higher yields. However, by increasing the number of transistors and
the frequency, the power consumed rises proportionally, thus generating heat on a much
smaller die surface area. Excessive heat must be cooled with increasingly more challeng-
ing cooling solutions [6]. Chip designers responded by lowering the operating voltages
of circuits, currently running with as low as 1.29 volts, but further decrease causes
system instabilities. High temperatures led to a stall of clock frequencies of processor
cores [7].

The performance of a single-core processor began to reach its physical limits. To keep
up with Moore’s law and the demand for more computational power, chip designers
started to squeeze more cores into a chip and thus began the era of multi-core computing
[7]. Initially observed by Gordon Moore, co-founder of Intel, in 1965, Moore’s law states
that the number of transistors in a chip doubles every two years. Surprisingly, Moore’s
law describes the industry trends even today [6].

2.1.2 Concurrency Revolution

Historically, the advancement in hardware increased the speed of sequential applica-
tions with each new generation of microprocessors. Since the evolution of the single
core stalled due to physical limits, such an expectation is no longer valid. Instead,

4

. 2.1 Chip Design

Figure 2.2. Moore’s law [7].

the software that will continue to benefit from the significant performance improve-
ment of new processors will be parallel programs with multiple threads of execution,
the incentive referred to as the concurrency revolution [8].

A central processing unit is a general-purpose, low-latency-oriented microprocessor.
The latest CPU architectures maintain the execution speed of sequential programs while
increasing the number of cores, each being a full-featured, highly optimized, sophisti-
cated single-core processor with out-of-order, multiple-instruction issue design support-
ing hyper-threading [8]. CPUs employ a large on-chip memory cache hierarchy, a few
complex arithmetic and logic processing units (ALUs), and complex instruction decod-
ing and branch prediction hardware to avoid stalling, effectively decreasing the latency
[7].

In contrast, high execution throughput-oriented many-core GPU architectures con-
tain thousands of simpler cores. GPUs omit sophisticated control logic and memory
cache hierarchy and use the saved surface area and power to provide more execution
units and memory access channels. The chip is filled with massive amounts of ALUs,
floating-point units (FPUs), special function units (SFUs), and memory lanes to dra-
matically increase the execution throughput and memory bandwidth, hiding the high
latency behind the sheer amount of processed data [8].

The maximum peak performance of a processor is given by multiplying the number
of cores, the clock frequency, and the number of floating-point operations per clock
cycle (FLOPs/cycle). The throughput measurement unit is floating-point operations
per second (FLOPS) [6]. The high-end powerful consumer class desktop CPU, Ryzen 9
5950X [21], from the previous generation Zen 3 architecture introduced by AMD in 2022
has 16 cores with a 4.9 GHz clock frequency, capable of executing 32 single-precision

5

2. Graphics Processing Unit .

Figure 2.3. Difference between CPU and GPU architecture design. A huge portion
of the die area of the CPU on the left is filled with cache hierarchy and control unit
to achieve low latencies. The GPU on the right is filled mostly with the computation cores

[8].

FLOPs/cycle. The maximum peak throughput is 2,509 single-precision GigaFLOPS.
The high-end consumer class GPU, RTX 3090 Ti [27] from the previous generation
Ampere architecture introduced by NVIDIA also in 2020, has 10,752 cores operating
at 1,860 MHz clock frequency with the execution of 2 single-precision2 FLOPs/cycle.
The maximum peak throughput is whopping 39,997 single-precision GigaFLOPS. Note
that even though the 450 watts thermal design power (TDP) of RTX 3090 Ti is way
higher than the 105 watts TDP of Ryzen 9 5950X, the GPU offers much better power
efficiency of FLOPS per watt.

It is clear now that GPUs are designed as parallel, throughput-oriented computing
engines and will not perform well on sequential tasks. Programs with few threads
achieve higher performance on low-latency CPUs since many of the cores of GPUs are
not utilized [8]. The overhead communication of the GPU with the CPU over a slow
PCIe bus creates a data size threshold, below which GPUs are not an effective tool
to use. The GPU has to move the data in and out of its main dynamic random access
memory (DRAM), introducing high latency in the computation. Having CPU and GPU
cores share and access the same memory space promises potentially greater performance
[7]. Still, GPUs offer uncontested performance for computing relatively simple, data-
parallel tasks on massive amounts of data. The typical scenario and the initial reason
for the invention of the co-processor is real-time graphics rendering.

2.2 NVIDIA
Founded in 1993, NVIDIA is a globally renowned technology company specializing
in designing and manufacturing advanced graphics processing units. Long established
as a global leader in computer graphics, AI, and high-performance computing, its
products and solutions have profoundly impacted various industries. NVIDIA GPUs
have revolutionized real-time graphics, enabling realistic and immersive gaming experi-
ences and high-quality visual effects in movies and animations. With the introduction
of the CUDA parallel computing platform and libraries, their GPUs have become in-
strumental in accelerating AI and deep learning. The training of the recent GPT-3
language model by OpenAI was conducted on an NVIDIA-powered data center with
the performance of 323 ZettaFLOPS, or 1012 GigaFLOPS [19].

2 NVIDIA does not state the single-precision FLOPs/cycle data. Peak single-precision TeraFLOPS is
listed instead. FLOPs/cycle is obtained by dividing TeraFLOPS with the number of CUDA cores per GPU
and then dividing with GPU clock. The GPU data is in Table 2 of Appendix A in the Ada Lovelace
architecture whitepaper [27].

6

. 2.2 NVIDIA

2.2.1 GeForce 256 and 3
Introduced in 1999 and marketed by NVIDIA as the world’s first GPU, GeForce 256
graphics card was a specialized acceleration hardware to accelerate real-time graphics.
Based on an NV10 graphics chip fabricated with 220-nanometer technology, the GPU
offered a performance of 50 GigaFLOPS. After 20 years of technological advancements,
RTX 3090 Ti delivers 800 times higher performance with 39,997 GigaFLOPS of perfor-
mance, keeping up with Moore’s law.

The vertex stage of the graphics pipeline became programmable by using shader func-
tions in the first programmable graphics card, NVIDIA GeForce 3, launched in 2001.
The GPU included a vertex processing unit for transforming vertices and light shading.
Fragment and geometry programmable processing units followed in subsequent GPUs,
the first being Radeon 9700 from ATI, later acquired by AMD, introduced in 2002, with
fragment shaders defining the behavior of rasterization and geometry shaders generat-
ing new vertices. In modern GPUs, light shading is performed per fragment instead
of vertex, as in the back days. Graphics programmers express vertex, geometry, and
fragment shaders in high-level shading languages like Khronos Group’s GLSL or Mi-
crosoft’s HLSL. The source is compiled into bytecode offline and loaded as a binary
by the graphics driver at runtime [4]. Such loading is accomplished through graphics
APIs such as OpenGL or Vulkan, which abstracts and exposes the graphics capabil-
ities of the GPU. However, the graphics pipeline with multiple programmable types
of processing units with distinct functions has limitations.

The pipeline suffers from extreme variations in workload resulting in an overload
of pipeline stages. The number of vertex, geometry, and fragment processing units
is fixed, but the computational and bandwidth requirements depend on the behavior
of shader functions and properties of the virtual scene. Triangles covering large portions
of the screen generate a much higher load on fragment processing units than the vertex
units. Conversely, many small triangles result in higher vertex processing demands.
To overcome this issue, GPUs employ sophisticated dynamic load-balancing techniques
to utilize computation resources as efficiently as possible. However, when a computation
of a single stage dominates the execution, the processing units of other pipeline stages
will not be guaranteed to be utilized, thus effectively wasting GPU resources [4].

Various data-parallel algorithms have been ported to the GPU using shading lan-
guages to exploit its computation power. Using GPU for general-purpose computing
such as protein folding, stock options pricing, and SQL queries achieved remarkable
performance speed-ups. Nevertheless, the early GPGPU model faced several draw-
backs. The programmer was required to know the graphics API and GPU architecture.
Problems had to be expressed in vertex coordinates, textures, and shader functions,
significantly increasing program complexity. Additionally, random reads and writes
to memory were not supported.

2.2.2 Tesla and Fermi
In 2006, NVIDIA launched a GeForce 8800 graphics card running on a G80 chip based
on a new Tesla GPU microarchitecture, which introduced unified shader processing
units capable of executing any vertex, geometry, and fragment shaders. These units are
assigned to process a shader based on the current workload, minimizing the chances
of overloading one of the stages of the graphics pipeline [6].

The introduction of unified shaders required a new internal arrangement of the GPU
components, a new technology called compute unified device architecture (CUDA).
Tesla introduced support for the C programming language, shared memory for concur-

7

2. Graphics Processing Unit .
rent threads, and barrier synchronization for communication between threads, drasti-
cally increasing programmability and flexibility. Tesla moved from a single-instruction
multiple-data (SIMD) execution model, where a single instruction of a single thread op-
erates on multiple data, to a single-instruction multiple-threads (SIMT). This execution
model decodes and executes a single instruction on multiple independent threads, each
processing its data on its set of registers, with threads free to branch. GPU became
the first many-core massively parallel scalar processor [24].

The successor Fermi architecture presented in 2010 marked another significant leap
forward in GPU design. Conceptually unchanged to the present day, Fermi introduced
an updated CUDA graphics chip architecture that offered concurrent kernel execution,
protection from memory errors when deploying large numbers of GPUs, proper cache
hierarchy to enable a vast spectrum of parallel algorithms, faster thread context switch-
ing, atomic operations and improved double precision performance. Thanks to these
innovations, enormous arrays of GPUs have been massively deployed in data centers,
marking 2010 as the leap year for high-performance computing leading to massive break-
throughs and computational achievements of recent years in artificial intelligence and
deep learning, medical imaging, physical simulations, and many other workloads.

The new CUDA architecture is based on a streaming multiprocessor (SM) concept
containing functional units and programmable CUDA cores processing floating point or
integer instructions on individual threads. SMs use a SIMT execution model to execute
the warp, a collection of 32 threads. All SMs are mutually independent, thus allowing
for splendid scalability. The number of streaming multiprocessors and their functional
units depends on the graphics card series and the generation of GPU architecture.
The general specifications and features of CUDA-enabled graphics chips are summarized
by their CUDA compute capability number (CC) [6].

Figure 2.4. Fermi based GPU [24].

Fermi-based graphics chip comprises 16 streaming multiprocessors around a shared
level-2 cache. Each SM is a vertical strip whose major part of the surface area is

8

. 2.2 NVIDIA

occupied with execution units, with the rest left for thread schedulers and on-chip
memory. SMs are connected through high-capacity memory lanes to off-chip DRAM.
Thread blocks are scheduled to various SMs by global work distribution, and each warp
scheduler in SM distributes warps of 32 threads to its execution units. Since the Fermi
architecture, different kernels can execute concurrently, allowing maximum utilization
of GPU resources [24].

Figure 2.5. Streaming multiprocessor of the Fermi based GPU [24].

Each SM contains 32 CUDA processors. Each CUDA core has a fully pipelined ALU
and FPU unit. 16 load and store units calculate the source and destination addresses
for 16 threads per clock, loading and storing the data in the on-chip cache or off-chip
DRAM. Four SFUs execute transcendental instructions such as sine, cosine, and square
root. Each SFU executes one instruction per thread per clock. Each SM features two
warp schedulers and two instruction dispatch units, allowing two warps to be issued
and executed concurrently. On-chip shared memory enables threads within the same
thread block to cooperate, facilitating extensive reuse of on-chip data, and the level-1
cache reduces slow off-chip DRAM traffic [24].

The new NVIDIA GPU instruction set (PTX) provides a stable architecture spanning
multiple GPU generations, including the most modern ones. The programming model
of the PTX set scales across GPU sizes, providing code redistribution. Unified address
space between thread private local, block shared, and global memory enables the proper
use of pointers and thus fully supports C++ [24].

Since introducing scalable Tesla and Fermi CUDA-based microarchitectures, NVIDIA
launched new product lines next to its GeForce GTX gaming series. The Quadro series

9

2. Graphics Processing Unit .
with more connectors targeted professional workstations, accelerating CAD software,
graphics production, machine learning, and other calculations before being discontinued
and fused with GeForce GTX into the GeForce RTX series. The Tesla series targets
GPGPU by increasing the number of CUDA cores and memory capacity at the expense
of fixed-function graphics units such as raster operation units (ROPs) [6]. The Tesla
series was rebranded as NVIDIA Data Center GPUs. Later, the Tegra series targeted
embedded systems and mobile devices, and the Jetson series provided AI computation
power to robots and drones. The variety of products underlines the flexibility and
scalability of CUDA.

2.2.3 Volta and Turing
Since the introduction of Fermi architecture, the traditional graphics pipeline could be
computed parallelly in a streaming fashion. Pixels could be fed to ROPs and written
to the frame buffer, the depth buffer could reject fragments, and new vertices could be
fetched, all done simultaneously. Even though each triangle has to go through the same
logical steps, multiple triangles in different stages can be processed in parallel. The fixed
pipeline present since the first GPUs became decoupled from the underlying hardware
and became purely logical [12].

Figure 2.6. Ray-tracing pipeline [26].

The rendering pipeline can now be implemented in software with GPGPU techniques
or even changed entirely. Such is the case with the ray-tracing pipeline, a rendering
process different from traditional rasterization. Ray-tracing was used to render images
in non-real-time applications, such as offline rendering of movie frames, and was en-
abled to run on GPUs through the software OptiX CUDA library [28]. However, both
rasterization and ray-tracing pipelines perform concrete computations that could be
accelerated through the hardware, and the software freedom of programmability would
not provide any additional value. Rasterization has been accelerated with hardware
ROPs and texturing with texture units since the introduction of unified CUDA cores
in Tesla architecture.

Ray-tracing has been hardware accelerated by introducing special-purpose fixed-
function ray-tracing cores in Turing architecture. The TU102 gaming chip was the first
GPU with 72 ray-tracing cores, each including two specialized units, one for bounding
box tests and the second for ray-triangle intersection tests. When tracing a ray, the al-
gorithm performs bounding volume hierarchy (BVH) traversal until hitting a triangle
and its color at the ray intersection point. Software emulations required thousands
of instructions per ray, making the process impossible on GPUs in real-time without
hardware acceleration. In the TU102 chip, streaming multiprocessors offload BVH
traversal to RT cores returning hit or no hit results, while SMs are freed up to do other
work. Turing architecture manages to process more than 10 billion rays per second.
In practice, a hybrid pipeline is used, with ray-tracing rendering physically accurate
shadows, reflections, and refractions, while rasterization renders everything else [26].

Typical GPGPU use cases, such as machine learning, have also been hardware ac-
celerated. Before the Turing architecture, the data center Tesla V100 chip based on

10

. 2.2 NVIDIA

Volta architecture was the first GPU equipped with tensor cores, special-purpose accel-
eration units performing matrix multiplications. The chip included 640 half-precision
floating-point (FP16) matrix multiplication hardware units and 5,120 CUDA cores.
While the peak single-precision performance of all CUDA cores combined reached 15.7
TeraFLOPS, tensor cores reached 125 half-precision TeraFLOPS, a 12 times speed-
up compared to the CUDA-based software implementation of matrix multiplication
in the previous Pascal architecture. With the V100 chip, NVIDIA introduced NVLink
system interface technology to interconnect up to eight V100 accelerators at up to 300
GB/s on a single server, outpacing the traditional 32 GB/s PCI Express interface used
in consumer personal computers. The improved memory system combined with tensor
cores led to a massive performance increase in data centers [25].

11

Chapter 3
General-Purpose Computing

Programming GPUs requires a different paradigm compared to CPUs. In order to put
all the computational power to use, all the cores must be put under the workload,
with even more threads needed to hide the long latencies of DRAM memory accesses.
Enough data has to be processed since the GPU and CPU memories are disjoint, and
the data transfer overhead between the two will inevitably slow down the system for not
big enough workloads. Additionally, due to the inner architecture of graphics chips,
the computational tasks suitable for GPUs must run independently in parallel. With
many inherently sequential tasks, CPUs and GPUs must coexist to build an effective
working system. The workloads that benefit from running on GPUs the most are
the data-parallel workloads such as scientific computing, fluids dynamics simulations,
weather forecasting, business analytics, machine learning, and real-time rendering.

Many GPGPU development platforms can solve the task upon selecting a suitable
data-parallel workload. On one side of the spectrum are tools that require explicit prob-
lem decomposition and offer low-level access to the GPU, like CUDA [17] and OpenCL
[18], and on the other side, tools like OpenACC [33] let the compiler do all the work
through the use of compiler directives, such as data migration and thread spawning.
Some standards, like OpenMP [34], developed initially for shared-memory parallel CPU
programming, now also support targeting GPUs. Finally, many higher-level libraries
written in low-level tools exist, such as the CUDA-based Thrust [32] library utilizing
a set of container classes and algorithms to automatically map computations to GPU
threads.

3.1 CUDA
The Compute Unified Device Architecture is the hardware and software platform en-
abling NVIDIA GPUs to execute programs written in an interface extension to lan-
guages like C, C++, or other parallel development tools like Thrust. The CUDA
compiler uses programming abstractions to leverage parallelism built into the CUDA
hardware, lowering the burden of programming. NVIDIA offers the whole development
ecosystem besides third-party toolchains utilizing CUDA like OpenCL or OpenACC.
There are plenty of libraries collectively called CUDA-X [32] with support for acceler-
ated linear algebra, Fourier transforms, random number generation, parallel algorithms,
computational lithography, image and video encoding, signal processing, communica-
tion, deep learning, and others. Tools like profiling and debugging tools, GPU cluster
management, monitoring, containerization, scheduling, and orchestration are available
[11]. The following text describes programming in CUDA runtime API, a syntactic
extension of C/C++.

3.1.1 Programming Model
A typical execution of a CUDA program consists of copying the input data and the com-
piled program from the CPU to the GPU. The program is loaded and executed, and

12

. 3.1 CUDA

the results are copied back. When typing code, the programmer may mark a function
to run on the GPU, called the device, with a __global__ keyword. Such a function
is called a kernel, which is instantiated across multiple threads that use this function
to process data on the device during the computation. The kernel, which must be de-
clared with the void return type, is executed on the CPU side, referred to as the host,
and the programmer chooses how many threads should run the kernel and their orga-
nization into blocks and the blocks into a grid. Such execution configuration is denoted
with <<< >>> syntax. Kernels are executed asynchronously. The host does not wait un-
til the computation on the device completes unless the explicit cudaDeviceSynchronize
barrier statement is used [7].

// Kernel function executing on the device (GPU)
__global__ void kernel() {

...
}

// Function executing on the host (CPU)
int main() {

// A grid of 40x20 thread blocks
dim3 blocks(40, 20);

// The kernel is launched with 32 threads per each block
kernel <<< blocks, 32 >>> ();

// Wait for the kernel to finish
cudaDeviceSynchronize();

}

Thread blocks and the grid can be multi-dimensional. Each thread is aware of its
position in the grid and block hierarchy with built-in three-dimensional structures
blockDim, gridDim, threadIdx, and blockIdx. Threads can synchronize within a block
through __syncthreads barriers. Blocks are mutually independent and can thus be
executed in arbitrary order, allowing for splendid application scaling on any number
of streaming multiprocessors. Kernels can only operate on the data located on the de-
vice memory, which must be copied to the device prior to the execution of the kernel
[7].

__global__ void kernel() {
// Id of a thread executing an instance of the kernel
unsigned int id = blockIdx.x * blockDim.x + threadIdx.x;

// The execution of all threads stops here
// until all threads reach this barrier
__syncthreads();

}

int main() {
int host[] = { 1, 2, 3, 4, 5 };
int *device;

13

3. General-Purpose Computing .
// Allocate memory on the device
cudaMalloc(&device, 5 * sizeof(int));

// Copy memory to the device
cudaMemcpy(device, host, 5 * sizeof(int), cudaMemcpyHostToDevice);

// Free the allocated memory
cudaFree(device);

}

The kernel can branch and call other functions, which must be specified in the code
with the __device__ keyword, or even call other kernels through dynamic parallelism.
CUDA API functions return error flags structure cudaError_t that indicates whether
an error has occurred. It is possible to check for a potential error of a kernel call with
a cudaPeekAtLastError. The API supports many atomic operations above the data
in the global or shared memory [8].
// This function can only be called from a kernel
__device__ void device_func() {

...
}

__global__ void kernel() {
...

}

int main() {
// Error handling of CUDA functions
int *pointer = 0;
if (cudaFree(pointer) != cudaSuccess) {

...
}

// Error handling of kernels
kernel <<< 10, 32 >>> ();
cudaError_t error = cudaPeekAtLastError();
if (error != cudaSuccess) {

...
}

}

3.1.2 Memory Model
Threads can access various types of memory on the graphics card, which varies in speed,
capacity, and visibility to the programmer. Each thread can access a vast but slow
off-chip global DRAM memory. Accessing it lasts hundreds of clock cycles, and the de-
vice usually hides global memory read and writes by switching the execution context
to another thread. Part of the global memory, called constant and texture memory,
is read-only. Accesses to the off-chip memory are handled through the cache hierar-
chy on the chip. The global memory, including the constant and the texture part, is
the only type of memory that the host can access. The programmer can use cudaMalloc,
cudaMemset, or cudaFree functions [6].

14

. 3.1 CUDA

Local scalar variables declared in a thread are usually stored in registers located
in each streaming multiprocessor, and accessing them lasts a single clock. Additional
local variables are stored in local memory when the register space runs out. How-
ever, the local memory is part of the off-chip DRAM, and the reads and writes are
slow. Shared memory, denoted with the __shared__ keyword inside a kernel, is used
to exchange data between threads inside a block. Since it is located on the chip,
shared memory is used by the programmer to store frequently accessed data to avoid
global memory accesses. The shared memory shares the same physical memory block
with the level-1 cache of each SM. Using less shared memory translates to a larger cache
[8].

Type Location Cache Access Visibility

Register on-chip — read/write 1 thread
Local off-chip yes read/write 1 thread
Shared on-chip — read/write all threads in a block
Global off-chip yes read/write all threads and the host
Constant off-chip yes read all threads and the host
Texture off-chip yes read all threads and the host

Table 3.1. Specification of CUDA memory types [6].

3.1.3 Execution Model

Figure 3.1. Correlation of the CUDA programming and execution model [11].

The execution of the kernel is mandated by the global scheduling unit, which can
handle more kernels concurrently. The kernel is usually split into thread blocks, which
are dynamically load balanced and assigned to streaming multiprocessors. Each thread
block is executed on a single SM. Multiple blocks can be mapped to the same SM, with
those currently not executed marked as resident [6].

Each block of threads constitutes multiple warps, groups of 32 threads running in par-
allel at once at any given time. Each thread in the warp executes the same instruction
but on different data in the SIMT architecture fashion. The warp scheduler of each
SM plans the execution of threads of assigned blocks by splitting them into warps,
marking the ones currently not executed as resident. Each thread from an active warp

15

3. General-Purpose Computing .
is assigned a CUDA core from the SM and executes an instruction. The whole warp is
then context-switched for another resident warp. The process repeats until all the res-
ident warps of all the resident blocks are processed. The warp scheduling is hardware
accelerated and thus has no overhead [6].

Figure 3.2. Warp divergence on conditional jumps [13].

SIMT hardware parallelism has the drawback of warp divergence in conditional state-
ments, where some threads of the warp may execute other instructions from the others.
When a conditional statement is handled, those threads of the warp that pass the con-
dition are marked as active, while the others are masked out. All the threads execute
the same instruction, but only those marked as active write results to the memory.
Upon finishing the branch, the program execution returns to the conditional statement
and repeats the masking of the threads for the other branch. In the worst case, each
warp thread may execute its branch sequentially, repeating the same code segment
32 times [6]. To overcome the issue of warp divergence, conditional jumps should be
avoided as much as possible.

3.1.4 Compilation
The nvcc compiler driver tool must be used to compile the CUDA program present
in .cu-suffixed files. The host code is compiled into object files, serving as the in-
put to the linking phase. The device code is compiled into a .ptx file, a portable
assembly format, or a .fatbin binary file encapsulating multiple PTX and .cubin
binary files that target a specific GPU. NVIDIA does not preserve binary compati-
bility across GPU architectures, allowing them to innovate and produce radical new
designs. The PTX intermediate code is compiled to the .cubin format with a just-
in-time compiler (JIT) before the execution, adding a little startup overhead during
the first invocation of a kernel. CUDA can embed both .cubin and PTX versions
of the device code in the produced executable. The programmer can control the virtual
PTX architecture and actual device architecture through nvcc compiler flags [7].

16

Chapter 4
Graphics Pipeline

A graphics system generates images representing a virtual camera view of a virtual
scene defined by the geometry, orientation, and material of objects and characteristics
of light sources. Such rendering computation is performed on a graphics pipeline,
a series of stages. Data flows between these stages in streams of fundamental graphics
entities called primitives, on which each stage performs a specified operation. It is
a process of displaying 3D vector graphics on a 2D raster screen.

4.1 Logical Pipeline

Back in the day, before the release of G80’s unified architecture, the actual graph-
ics pipeline logic was sealed into the GPU’s hardware. The pipeline was represented
directly on the chip as the series of computational stages. G80 GPU introduced a uni-
fied computing unit that could execute vertex and fragment shaders and dynamically
balance the load between them. However, the process of primitive assembly, rasteri-
zation, and other stages was still serial. With the introduction of Fermi architecture,
the pipeline became fully parallel. Once rooted in the chip, the graphics pipeline is now
a purely logical, fully concurrent series of steps executed by many unified computing
engines and some fixed-function hardware acceleration units in parallel [13].

Figure 4.1. Graphics pipeline [3].

The logical pipeline comprises a geometry processing section with input 3D geome-
try projected to the 2D plane and a rasterization section that colors the pixels covered
by the geometry by calculating its screen coverage and lighting. To initiate rendering,
the vertex processing stage constructs a stream of vertices from the input data, trans-
forms them, and projects them from 3D coordinates into a 2D screen space. The prim-
itive processing stage uses vertex topology to group vertices into a set of primitives,
most commonly triangles, and performs culling and clipping operations. The fragment
processing stage samples each primitive densely in screen space into fragments contain-
ing various data, such as a distance from the virtual camera or a surface color. The last
pixel stage calculates the final color and the fragment’s contribution to the correspond-
ing pixel in the frame buffer [4]. All the processing happens in a single draw call, many
times a second.

17

4. Graphics Pipeline .
4.1.1 Life of a Triangle

Before a draw call, the application must set an ordered list of vertex data to send
to the pipeline. Such data usually includes vertex position, normals, and texture coor-
dinates. The data is grouped through indexing into primitives, basic drawing shapes
like triangles, lines, and points that will be processed. The vertex processing stage is
almost fully programmable [12].

Figure 4.2. Assembling a triangle by indexing vertex data buffers.

The vertex shader processes each input vertex, outputting it to the following stages
based on an arbitrary programmer-defined program called shader. Generally, vertex
shaders are expected to transform vertices from the initial position to clip-space co-
ordinates. Such operations are computed as matrix multiplications of transformation
matrices. While the vertex shader pipeline stage is not optional, the tesselation stage
is. Input primitives can be tessellated, or tiled, into many smaller connected primitives
by a tessellation shader, which is aided by a fixed-function tessellation accelerator.
Another optional vertex stage is a geometry shader, which processes each incoming
primitive, returning zero or more output primitives [12].

Figure 4.3. Primitive assembly [4].

After the shader-based programmable vertex processing stage, vertices undergo sev-
eral fixed-function steps. The primitive assembly groups output vertices into a sequence
of primitives, and if tessellation or geometry shaders are active, a limited form of the as-
sembly is executed before these stages. The formed primitives outside the viewing vol-
ume are discarded, or culled. In contrast, the ones on the boundary are split into several
primitives inside the volume through the process called clipping. The vertex positions
are then transformed from clip space to screen space. Back-face culling usually happens
in this stage, with triangles facing from the camera being discarded [12].

The rasterization stage processes each triangle, determining its screen coverage and
outputting a sequence of fragments representing a pixel candidate in the output frame

18

. 4.2 Hardware Pipeline

Figure 4.4. Rasterization [4].

buffer. Fragment holds its position, the depth from the camera, and arbitrary data in-
terpolated from the values of primitive vertices. Rasterization is entirely and efficiently
hardware-accelerated on the chip.

Fragments are processed in a fragment or pixel shader. The shader’s output is a color
and depth, and stencil value. These are used in the final visibility tests of the raster
operations stage. The scissor test discards fragment data outside of a specified rectangle
of the screen, the stencil test fails if the provided stencil value does not compare against
the programmer-provided value, and the depth test discards fragments occluded by an-
other fragment closer to the camera. Finally, the color blending of various fragments
happens, usually in the case of transparent objects [12]. The result of such a process is
a rendered image of the virtual scene on the screen.

4.2 Hardware Pipeline
The hardware design of the pipeline on the GPU chip is a wonderfully complex and
meticulously crafted engineering achievement, guaranteeing that all kinds of inputs are
processed efficiently [2]. GPUs cope well with variable workloads, typical for real-time
graphics rendering. Since the introduction of Fermi, NVIDIA GPUs have followed a sim-
ilar principle architecture. The global scheduler manages the entire graphics workload
between multiple graphics processing clusters (GPCs) with multiple SMs and a raster
hardware acceleration unit. Many interconnecting memory lanes on the GPU allow
work migration across GPCs and additional fixed-function accelerators like render out-
put units (ROPs) [13].

Figure 4.5. Geometry processing [13].

19

4. Graphics Pipeline .
Rendering may begin once a vertex buffer is passed to the DRAM of the GPU.

The program makes a draw call in a graphics API. The GPU driver validates the input
configuration and inserts the command in a GPU-readable encoding inside a push buffer.
When enough commands are accumulated in the buffer, its contents are sent through
the PCIe host interface and processed by GPU’s front end. On some game consoles,
the CPU and GPU share memory space with a unified memory architecture and thus
avoid the delay of feeding the data to the GPU, but that is not the case on personal
computers [14]. The work commences in the primitive distributor by processing indices
and generating triangles fed to GPCs [13].

The scheduling engine of one of the SMs within a GPC fetches the vertex data, which
are then executed in batches of warps of 32 threads according to the CUDA execution
model. The threads are regularly context-switched to hide the long latencies of memory
access. Once the warp completes all instructions of vertex shaders, results are processed
by the viewport transform, which performs clipping and feds the data to rasterizers.
All the communication between stages is utilized through level-1 and level-2 caches [13].

Figure 4.6. Rasterization [13].

The screen is split into multiple tiles, with each raster engine covering a portion.
The triangle’s bounding box determines which engines should process the triangle,
which may leave the GPC in which it was processed until now and be assigned to one
or more GPCs through a work distribution crossbar. The attribute setup converts
the triangle data to pixel shader format, and the hardware-accelerated raster engine
can begin its rasterization and back-face culling. Again, the pixel shader is executed
in batches of warps according to the CUDA execution model. Thirty-two threads
process eight 2×2 pixel regions, calculating colors and depth values at each pixel. At this
point, the original API ordering of triangles must be preserved before passing the data
to one of the ROPs, which performs depth-testing and blending with the frame buffer
through stream outputs [13].

Some stages of the hardware graphics pipeline were omitted in this description to keep
it reasonably straightforward and tightly coupled with the thesis pipeline implementa-
tion presented in the following chapter. Another integral part of the GPU pipeline is
texture sampling with its hardware acceleration through texture memory, texture cache
hierarchy, and texturing units. It performs texturing of triangles, a complicated pro-
cess of texture fetching, filtering, and interpolation. Another vital fixed-function piece
of hardware is a tessellation unit used to accelerate tessellation shaders. Finally, graph-
ics APIs now allow running compute shaders that execute the same way as GPGPU
programs described in the CUDA programming model [14].

The actual hardware implementation of the pipeline uses a similar screen tiling
as the software CUDAraster [2]. However, the tiling is performed per triangle thanks

20

. 4.3 Future of Real-Time Rendering

to the GPU’s atomicity of the hardware depth buffer instead of globally per screen.
Load balancing and stage parallelization, which is natural to any CUDA computation
workload, offers the same benefits as the similar one in the cuRE software pipeline [3].
As such, it is virtually impossible to reach the performance of the hardware-accelerated
pipeline with GPGPU techniques, and the only benefit of software implementations lies
in the extended programmability and flexibility.

Figure 4.7. Tiling of the screen of the hardware rasterization [13].

4.3 Future of Real-Time Rendering
Although an incremental change toward a more flexible hardware pipeline is difficult
due to the complexity of the data flow and reliance on fixed-function hardware units,
the evolution of the GPGPU techniques and the subsequent introduction of new hard-
ware acceleration units enabled slow but steady advancement of the graphics pipeline.

4.3.1 Global Illumination
The traditional real-time rendering employes local illumination, with each object
in the virtual scene shaded individually. Such lighting computation is fast, easily im-
plemented on the hardware, and produces sufficiently life-like results. In the real world,
however, the reflected light from an object interacts with other objects in the scene,
producing additional light sources, shadows, reflections on glossy surfaces, and caustics
caused by transparent objects. The light reflection can significantly alter the appear-
ance of environments not directly lighted by a light source. The results of global
illumination methods are almost indistinguishable from real photographs [9].

Direct or local illumination is a lighting simulation of a light ray visible after a single
bounce from an object, with the Phong illumination model [9] being the typical exam-
ple. One of the classical methods of computing global illumination is the method of ray
tracing or a similar method of path tracing. A ray from each pixel of the camera view is
emitted into the scene, each time with a slight direction variation, bouncing off the ob-
jects, with each bounce contributing to the pixel color. Naturally, more ray bounces
and traced rays produce a better visual result. However, tracing rays and calculating

21

4. Graphics Pipeline .

Figure 4.8. Global illumination computed through NVIDIA’s hardware-accelerated ray-
tracing RTX technology [29].

intersections with triangles is a computationally demanding task. A commonly used
data structure for ray tracing is a bounding volume hierarchy (BVH) tree. The scene
is split into a hierarchy of bounding boxes, from the scene objects to the individual tri-
angles. The ray tracing algorithm traverses the BVH structure, comparing the traced
ray with bounding boxes until reaching a triangle it intersects [9]. BVH traversal was
recently accelerated by introducing hardware ray-tracing cores in NVIDIA GPUs, en-
abling ray tracing in real-time, a domain used until now primarily for offline renderings,
such as in the movie industry [28].

4.3.2 Artificial Intelligence
The path tracing algorithm introduces noise in the output image, requesting a higher
number of rays sent from each pixel, thus increasing the computational demands to over-
come this issue. The introduction of tensor cores, the hardware units for matrix multi-
plications, accelerated many artificial intelligence workloads. NVIDIA’s AI-accelerated
denoiser was trained on thousands of images to smooth the noised output, with the neu-
ral network available to developers to increase the quality of results even further [30].

NVIDIA deep learning super sampling (DLSS) technology utilizes GPU AI perfor-
mance to generate new frames and displays higher than rendered resolution through im-
age reconstruction. A neural network is trained on NVIDIA supercomputers on targeted
video games to run the game at a lower resolution for increased performance or higher
graphical settings, with DLSS upscaling the image. In addition to running on tensor
cores, the deep learning model can also run on the CUDA shader cores. The second
version of DLSS introduced a frame-generation algorithm to double the framerate, with
the third version introducing deep learning dynamic super resolution (DLDSR), an AI-
assisted technology of down-scaling an image rendered at a higher resolution to increase
the visual quality [31].

22

Chapter 5
Implementation

The thesis implements a rendering pipeline written using GPGPU techniques in C and
its CUDA extension without using any graphics API. It only runs on CUDA-enabled
GPUs and Windows systems. Apart from the CUDA runtime API and Win32 Win-
dows API [37] for creating and managing a window, the implementation does not rely
on third-party libraries, and everything is written from scratch. The design of the raster-
ization stage and screen splitting into bins and tiles conceptually follows CUDAraster’s
[2]. The reader is advised to read the user manual with input controls, the compilation
process, and the source code structure in the thesis appendices.

5.1 Pipeline Design

The renderer focuses on effective rasterization and a basic lighting illumination model.
The implementation renders a scene with a single mesh, a single point light, and a cam-
era orbiting around the origin. The user can control the behavior with keyboard inputs.
There are a few constraints regarding the design. Namely, the pipeline only renders tri-
angle primitives shaded by the illumination model. It does not perform any texturing,
blending of the pixels with the framebuffer, and thus rendering of transparent objects.
It does not retain primitive order imposed by current modern graphics APIs and does
not perform proper near and far plane clipping. Lastly, the window of the application
cannot be resized.

The pipeline consists of scene fetch, vertex shader, primitive assembly, rasteriza-
tion, pixel shader, and raster operation stages. The scene fetch stage fetches scene
configuration data such as light position and builds transformation matrices passed
to the GPU. The vertex shader stage executes two kernels, one transforming vertex posi-
tions to clip space and generating additional vectors for computing per-fragment shading
later in the pipeline, with the second kernel transforming vertex normals. The primitive
assembly stage launches a single kernel that groups a stream of vertices and normals
to triangle primitives using an index buffer. It performs a back-face, view frustum, and
degenerate culling, transforming clip space coordinates to the screen space. The ras-
terization stage launches three kernels, one sorting triangles from the screen to bins,
the second sorting triangles from each bin to tiles, and the third performing the actual
rasterization per each tile pixel. The rasterizer computes the barycentric coordinates
[42] of each pixel in the processed triangle from a tile queue, interpolates the data from
its three vertices, and performs a per-pixel depth test that does not require a global
screen-wide depth buffer. The resulting fragments, with a single fragment per pixel, are
processed in the pixel shader stage. Its single kernel performs pixel coloring by utilizing
the Blinn-Phong model [9], a computationally more efficient version of the Phong illu-
mination model [10]. Finally, the raster operation stage copies the GPU frame buffer
to the screen buffer.

23

5. Implementation .

5.2 Application Systems
The draw call happens periodically multiple times a second, targeting 60 frames per sec-
ond. The rendering logic is performed by a render thread decoupled from other appli-
cation logic handled by the main thread. The renderer accepts input and updates
the scene even when the draw call takes hundreds of milliseconds to process under
heavy rendering workloads. Mutexes guard the exchange of the scene data between
the threads. The evaluation of the renderer is possible thanks to a verbose output
to a terminal and a timer system with a microsecond resolution. The math imple-
mentation used in the pipeline is based on the cglm library [39], a C rewrite of C++
OpenGL mathematics [40]. The custom implementation is provided since the thesis
pipeline uses the z-axis as the vertical axis, while the y-axis is generally used instead.
The renderer is memory hungry since it copies all the necessary data to the GPU’s
DRAM at the initialization and leaves it there for the rest of the application execution.

5.2.1 Initialization

Figure 5.1. Verbose output of the print system after launching the debug build
of the pipeline.

The application starts by initializing the print system, which creates a console window
for various informative text outputs. Many macros are provided in the code for various
levels of information, including a trace output. Every section of the code is adequately
checked for errors, correctly aborting the application execution and informing the user
if anything fails. The command line arguments are processed, returning the default

24

. 5.2 Application Systems

values if none are provided. Next, the timer system is initialized, enabling microsecond
resolution for timing and millisecond resolution for thread sleep. The timers evaluate
the render performance and the correct frame rate. Then, the window system is ini-
tialized. The application disables DPI scaling, so a pixel from the frame buffer stays
a pixel on the screen. A created window with fixed resolution sets up a frame buffer
by creating a Win32 API bitmap that fills the window frame. Finally, the render thread
is created, and the main thread enters a loop, where it awaits and processes window
events.

The render thread begins its execution by creating timers used to evaluate the ex-
ecution of each stage and to keep the targeted 60 seconds frame rate. Each stage is
implemented in a separate source file and needs to be initialized with pointers to the data
from other stages that flows through the pipeline. Each stage module then holds mul-
tiple local static pointers, pointing to data structures in other stages. Additionally,
since much of the data of the pipeline stages resides in the GPU memory, the buffers
that hold this data are allocated on the device in advance before the first draw call.
The buffers are not zeroed out since all the data is overwritten with each pipeline ren-
der pass. The initialization of stages does not follow the actual stage execution order
of the pipeline since some buffers have to be allocated prior to others.

/* render_procedure */

// Timer
timer_t timer = { 0 };

scene_init(
pixel_light_shininess, // Pointer to pixel shader shininess
vertex_light_position, // Pointer to vertex shader light position
vertex_view, // Pointer to vertex view matrix
vertex_view_model, // Pointer to vertex view model matrix
vertex_inverse_tranpose, // Pointer to inverse transpose vm matrix
vertex_pvm); // Pointer to pvm matrix

vertex_init(
size_vertices, // Number of vertices
vertices, // Vertex buffer
size_normals, // Number of normals
normals); // Normal buffer

primitive_init(
vertex_vertices, // Pointer to vertex shader vertices
vertex_normals, // Pointer to vertex shader normals
size_indices, // Number of triangles
indices); // Index buffer

rop_init();

pixel_init(
rop_framebuffer, // Pointer to raster operation framebuffer
light_constant, // Light constants used as weights of components
light_ambient, // Pointer to ambient light component

25

5. Implementation .
light_diffuse, // Pointer to diffuse light component
light_specular); // Pointer to specular light component

rasterize_init(
primitive_size_triangles, // Number of triangles
primitive_triangles, // Primitive assembly triangle buffer
pixel_fragments); // Pointer to pixel shader fragment buffer

After setting up timers, the scene is initialized. First, it stores pointers to various
pixel and vertex shader variables, such as the light position and the transformation
matrices. Then a single mesh is loaded with a Wavefront object [41] format loader
written from scratch, which only supports loading vertex positions, normals, and tri-
angles. The included convert utility program or modeling software, such as Blender
[35], can convert any model to the suitable .obj format supported by the application.
The user is advised to consult the user manual in the appendix to achieve this. After
loading the object, the camera and the light are set to default values. The entire scene
configuration is mutex guarded.

/* scene_init */

// Mutex to guard against data races of the main and render threads
mutex_create();

// Load mesh
load_mesh();

// Set up the rest of the scene by assigning default values
...

The vertex shader is initialized with the loaded mesh data. The stage allocates
memory on the GPU for constant position and normal buffers, which hold the reference
vertex positions and normals. The data of these buffers does not change throughout
the entire application execution. Additional two buffers for transformed vertex positions
and normals are allocated. Since the data structure used for vectors and matrices is
essentially a type-defined array residing in the CPU’s RAM, it cannot be passed directly
to the kernel and must be copied to the GPU’s DRAM. Thus, buffers for light position
and transformation matrices are allocated. Finally, the mesh data is copied to two
constant buffers.

The primitive assembly initialization allocates a constant index buffer and copies
the corresponding data. A buffer for triangles is allocated to be filled on each draw call.

The raster operation stage obtains a pointer to the actual window frame buffer
the window system initialization created. The raster operation initialization then allo-
cates a frame buffer on the GPU of the same size as the window frame buffer.

The pixel shader initialization is called with pointers to the frame buffer and various
light-related data. A fragment buffer is allocated with the exact resolution as the frame
buffer. Since the data of the light used in the pixel shader does not change throughout
the execution of the application, corresponding buffers are allocated, and the data is
copied right away.

The rasterization is initialized with pointers to the triangle buffer and a fragment
buffer of the pixel shader. Additionally, two queue buffers are initialized for triangle
binning and tiling.

26

. 5.3 Scene Fetch

Finally, the render thread enters the render loop, periodically checking if the window
is about to close and performing the draw call otherwise. The execution of the pipeline
is timed, and if it takes less than approximately 16 and a half milliseconds, the render
thread sleeps for the remainder of the time.

/* render_procedure */

while (window_get_status() == WINDOW_ACTIVE) {
timer_update(&timer);

// Draw call
...

// Sleep
timer_update(&timer);
thread_sleep(target - timer.elapsed);

}

5.2.2 Cleanup
While the main thread processes window events and updates the scene accordingly, it
will eventually register a request to terminate the application. When this happens,
the window is marked with a flag that it is about to close. The main thread leaves
the event processing loop and waits for the render thread to terminate.

The render thread finishes the current draw call, renders the final frame buffer
to the screen, and then leaves the render loop. All the pipeline stages are cleaned
up in the opposite order they were initialized, freeing the buffers they allocated
on the GPU. Lastly, the mutex guarding the scene data access is destroyed, and
the mesh is unloaded from the host memory.

After the render thread finishes its execution, the main thread frees the window,
timer, and print systems, finally terminating the application. All the initialization,
memory management, and cleanup are checked for errors. Additionally, each pipeline
stage and each kernel launch are checked for errors.

5.3 Scene Fetch
The primary purpose of the scene fetch stage is to construct the model, view, and per-
spective transformation matrices and combine them into a single one used in the vertex
shader to transform vertices.

5.3.1 Model Matrix
The object in the scene is configured with a position, rotation, and scale. The purpose
of the model matrix is to combine three linear transformation matrices of translation,
rotation, and scale into a single one, which is then applied to each vertex through matrix
multiplication. While the mesh can be rotated and scaled with a linear transformation
by multiplying the corresponding 3×3 matrix with the three-dimensional mesh vertex
vector, the movement of vertices cannot be represented in such a way.

Computer graphics applications extend the three-dimensional cartesian coordinates
of vectors to four-dimensional homogenous coordinates by appending a value called
weight. When this value equals 0, the four-dimensional vector of homogenous coordi-
nates represents a direction in the three-dimensional space, while the value of 1 is used

27

5. Implementation .
for positions. The extension to homogenous coordinates allows representing the transla-
tion transformation as a linear transformation with a 4×4 matrix. All three translation,
rotation, and scale matrices can then be combined into one. Therefore, all the trans-
formations of the object vertices use the homogenous coordinate system [9]. The model
matrix has the following format:

𝑀𝑇 ∗ 𝑀𝑅 ∗ 𝑀𝑆

𝑀𝑆 is the scale matrix:

⎛⎜⎜⎜
⎝

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0
0 0 𝑠𝑧 0
0 0 0 1

⎞⎟⎟⎟
⎠

𝑀𝑅 is the rotation matrix, first applying the rotation around the x-axis, then y-axis,
and finally the z-axis:

𝑅𝑍 ∗ 𝑅𝑌 ∗ 𝑅𝑋

𝑀𝑇 is the translation matrix, translating by 𝑡𝑥, 𝑡𝑦, and 𝑡𝑧:

⎛⎜⎜⎜
⎝

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

⎞⎟⎟⎟
⎠

/* scene_fetch */

// Construct model matrix
mat3_t mat = { 0 };
mat3_identity(mat);
mat3_scale_xyz(scene.model_scale, mat);
mat3_rotate_xyz(scene.model_rotation, mat);
mat3_to_mat4(mat, model); // Pointer to the matrix in vertex shader
mat4_translate_xyz(scene.model_position, model);

5.3.2 View Matrix

The vital task of vertex processing is to convert the world screen coordinate system
to the viewing coordinate system with a camera at its origin. The camera’s view-
ing direction vector is obtained by subtracting the camera position from the position
the camera is looking at. This vector must be projected to [0, 0, −1, 0]. The camera’s
orientation and, thus, its rotation around the view vector is specified by an up vector,
which always points up in the world coordinate system of the thesis implementation.
The last vector pointing to the right is obtained by multiplying the viewing and up
vectors. All three vectors are then normalized and serve as a basis of the viewing
coordinate system. Finally, the change of coordinate system base has to be followed
by a translation so that the camera lies at the origin [9]. The matrix has the following
format:

28

. 5.3 Scene Fetch

⎛⎜⎜⎜
⎝

𝑝𝑥 𝑝𝑦 𝑝𝑧 −𝑝 ⋅ 𝑒𝑦𝑒
ℎ𝑥 ℎ𝑦 ℎ𝑧 −ℎ ⋅ 𝑒𝑦𝑒
−𝑙𝑥 −𝑙𝑦 −𝑙𝑧 −𝑙 ⋅ 𝑒𝑦𝑒
0 0 0 1

⎞⎟⎟⎟
⎠

Figure 5.2. The conversion from the world coordinates to viewing coordinates. The camera
becomes a new world origin, with its vectors becoming the new basis. The camera image

is taken from [9].

/* scene_fetch */

// Construct view matrix
vec3_t eye, center, up;
mat4_t mat;

vec3_t l = { 0 }; // The camera viewing direction vector
vec3_subtract(center, eye, l); // l = center - eye
vec3_normalize(l);

vec3_t p = { 0 }; // The right vector
vec3_cross(l, up, p); // The up vector aims up in the world space
vec3_normalize(p);

vec3_t h = { 0 }; // The actual camera space up vector
vec3_cross(p, l, h);

// Fill the matrix with values
...

5.3.3 Perspective Matrix

The perspective projection models the proportional shrinking of the object when
the distance from the camera increases and provides a spatial perception of the 2D
screen. The purpose of the perspective matrix is to convert the vertex view coordinates
to clip coordinates by transforming vertices inside a view frustum into a unit cube.
Such coordinates will be used to perform view frustum clipping and calculate normalized
device coordinates. The view frustum is an area before the camera bounding the vertices
that should be projected on the screen. Two elemental planes of the view frustum are
near and far clipping planes discarding vertices closer or farther from the camera than

29

5. Implementation .

Figure 5.3. Verbose output of all the transformation matrices.

Figure 5.4. The conversion of the vertex view coordinates inside the view frustum to clip
coordinates.

the near or far clipping plane, respectively [9]. The implementation of the perspective
matrix is taken from the cglm library [39]. Finally, all the matrices are multiplied
to obtain the view model and perspective view model. Inverse transpose view model is
needed to correctly transform normals.

5.4 Vertex Shader
Two kernels are executed. The vertex kernel uses view, view model, and perspective
view model matrices together with the light position. The normal vector kernel uses
inverse transpose of the view model matrix.

30

. 5.4 Vertex Shader

Figure 5.5. The difference of the perspective when changing the vertical field of view.
The left view has a FOV set to 1 degree, while the right is set to 110 degrees.

The kernel that processes vertices and generates vectors for the Blinn-Phong illu-
mination model used in the later pipeline stage is launched with several blocks, each
with a single warp of 32 threads, with each thread processing one input vertex. First,
the light and vertex position in viewing coordinates is calculated by multiplying them
with the view and view model matrices. The light direction vector is obtained by sub-
tracting the vertex position from the light position, and the half vector is obtained
by the exact subtraction repeated. Vectors are normalized and saved to the output
vertex structure inside a pre-allocated buffer. The position of each vertex is obtained
by multiplying the input vertex position with the perspective view model transforma-
tion matrix. Finally, the perspective division is performed by dividing the x, y, and z
components with the weight value, which will generally not be the original 1, transform-
ing the four-dimensional clip space to three-dimensional normalized device coordinates.

The kernel that processes the vertex normals is launched with the same configura-
tion of 32 threads per block and enough blocks to process all the data. The number
of normals may differ from the number of vertices, thus the separate kernel. Since
the scale matrix component of the model matrix is not guaranteed to be uniform across
all the axis, normals are transformed with an inverse transpose of the view model ma-
trix to work correctly. As with the light and half vectors, the normal vector is also not
transformed with the perspective matrix. A synchronization barrier is used at the end
of the vertex shader.

/* vertex_shader */

unsigned int warps = size_vertices / 32;
vertices_kernel <<< warps, 32 >>> (

view,
view_model,
perspective_view_model,
size_vertices,
const_vertices, // Buffer of reference mesh vertices
vertices, // Buffer to save transformed vertices
light_position);

unsigned int warps = size_normals / 32;
normals_kernel <<< warps, 32 >>> (

view_model_inverse_transpose,
size_normals,

31

5. Implementation .
const_normals, // Buffer of reference mesh normals
normals); // Buffer to save transformed normals

/* vertices_kernel */

vec4_multiply_mat(view, light_vector, light_vector);
vec4_multiply_mat(view_model, const_pos, transformed_pos);
vec4_subtract(light_vector, transformed_pos, light_vector);
vec4_subtract(light_Vector, transformed_pos, half_vector);

// vec4 to vec3

vec3_normalize(light_vector);
vec3_normalize(half_vector);

vec4_multiply(perspective_view_model, const_pos, transformed_pos);

// transformed_pos.xyz / transformed_pos.w

/* normals_kernel */

vec4_multiply_mat(inverse_transpose, const_norm, transformed_norm);

// vec4 to vec3

vec3_normalize(transformed_norm);

Figure 5.6. Head object with normal vectors color-coded to the rendered pixels illus-
trates the incorrect multiplication of the normal vector by the view model matrix visible
on the right head. The middle head multiplies the normal vectors with the correct in-
verse transpose view model matrix, with the vectors keeping the correct headings when
compared to the original unscaled mesh on the left. The head was scaled by a factor of 3

on a single axis.

5.5 Primitive Assembly
A kernel is launched with several blocks, each with a single warp of 32 threads and each
thread processing a single input triangle. First, the kernel copies and groups the data
from the input vertices into a buffer of triangle structures. The vertex index is taken

32

. 5.5 Primitive Assembly

Figure 5.7. Verbose output of the vertex shader.

from an index buffer loaded from the .obj file. After the triangles are formed, they
undergo a series of culling steps.

/* primitive_assembly */

unsigned int warps = size_triangles / 32;
kernel <<< warps, 32 >> (

const_vertices, // Transformed vertices
const_normals, // Transformed normals
const_indices, // Triangle indices
size_triangles,
triangles); // Buffer to save assembled triangles

/* kernel */

assemble_triangle(vertices, normals, indices); // Only copies data
backface_culling(triangle);
view_frustum_clipping(triangle);
clipspace_to_screenspace(triangle);
degenerate_culling(triangle);

/* clipspace_to_screenspace */

// For all three triangle vertices
pos.x = (pos.x + 1) * 0.5 * window_width;
pos.y = (pos.y + 1) * 0.5 * window_height;
pos.z = (pos.z + 1) * 0.5;

5.5.1 Back-Face Culling

Each triangle has a facing orientation based on the order of vertices, which can be
clockwise or counterclockwise. The rendering pipeline chooses one of the orientations
as the front-facing one, discarding the triangles with the other. For meshes with a vol-
ume and no holes, back-facing triangles are guaranteed to be occluded by the front-
facing triangles closer to the camera. The triangle’s orientation can be determined
by taking two vectors coming out from one of the vertices, each representing one edge

33

5. Implementation .

Figure 5.8. The change of the orientation of triangle vertices results in the change of ori-
entation of the resulting vector obtained from the cross product.

Figure 5.9. When disabling back-face culling with a shortcut, keeping the culled triangles
culled until enabled again, the rotation of the camera on the right reveals which part

of the cow object was back-face culled when viewing from the angle on the left.

of the triangle, setting their third coordinate to 0, and then computing a cross product.
The sign of the third component of the resulting vector determines the orientation.

/* backface_culling */

// Edge vectors
edge1.x = v2.x - v1.x;
edge1.y = v2.y - v1.y;
edge2.x = v3.x - v1.x;
edge2.y = v3.y - v1.y;

if (edge1.x * edge2.y - edge1.y * edge2.x < 0) {
// Cull

}

5.5.2 View-Frustum Clipping
Although the function is called a clipping in the implementation, no actual clipping hap-
pens. A three-dimensional bounding box is computed, defined by two points with min-
imum and maximum x, y, and z components of the processed triangle. It is then
checked whether the bounding box intersects the volume of normalized device coordi-
nates. If the triangle lies entirely off the volume, it is discarded. However, if at least
one of the vertices resides inside the volume, the triangle is passed to the rasterization.

34

. 5.5 Primitive Assembly

Additionally, if a triangle has at least one vertex closer to the camera than the near
clipping plane or farther from the camera than the far clipping plane, it is culled.
A visually more pleasing solution would be a proper clipping, where the triangle is
split at the point of the intersection with one of the clipping planes. However, such
a technique may generate more triangles than were inputted, needing to dynamically
reallocate the triangle buffer or leave space for such triangles on the buffer.

/* view_frustum_clipping */

// Get 3D bounding box
triangle_aabb_3d(triangle, min, max);

if (min.x > 1 || min.y > 1 || max.x < -1 || max.y < -1 ||
min.z < 0 || min.z > 1 || max.z < 0 || max.z > 1) {
// Cull

}

Figure 5.10. Triangles completely outside the view frustum are culled, and the ones inter-
secting a wall of the unit cube are clipped.

Figure 5.11. Sponza scene is a perfect showcase of the view-frustum clipping. When dis-
abling the clipping from the angle on the left and zooming out, the middle view shows
the portion of the mesh that was culled by the near clipping plane. Zooming even farther

causes the rest of the mesh to be clipped by the far clipping plane.

5.5.3 Degenerate Culling
Degenerate culling happens after transforming the clip space to the screen space, con-
verting the unit range scale of the x and y components to the screen position and
the z component to a depth value. An area of the triangle is calculated, and if it is
too small, the triangle is culled. Such a technique helps discard triangles smaller than
a pixel or rotated so that their area is too small, which would not otherwise contribute
to the rendered screen, wasting the queue buffer space in the rasterization stage.

35

5. Implementation .
/* degenerate_culling */

float area = (v1.x * v2.y + v2.x * v3.y + v1.y * v3.x -
v3.x * v2.y - v1.y * v2.x - v1.x * v3.y) * 0.5;

if (-degenerate_factor < area && area < degenerate_factor) {
// Cull

}

Figure 5.12. The degenerate factor of 0.5 is clearly too large for the buddha model.

Figure 5.13. Verbose output of the primitive assembly.

5.6 Rasterization
The rasterization stage has two GPU buffers that must be zeroed out on each pipeline
render pass. They contain triangle queues and counters. The stage works by sorting
the input triangles into bins, then sorting the triangles from the bins into tiles, and then
rasterizing the triangles from the tiles. Each tile covers a 16×16 pixel area on the screen,

36

. 5.6 Rasterization

with each bin consisting of 8×8 tiles. The default screen resolution is set to 1,280×1,024
pixels. Such configuration ensures everything is a multiple of 32, enabling the GPU
to run most efficiently with the warps execution model. The rasterization stage is
the bottleneck, which was expected before the implementation. There are multiple
barrier synchronizations.

/* rasterization */

dim3 bin_blocks(bin_resolution.x, bin_resolution.y);
bin_kernel <<< bin_blocks, 1024 >>> (

size_triangles,
triangles,
bins); // Bin queues

dim3 tile_blocks(tile_resolution.x, tile_resolution.y);
bin_kernel <<< tile_blocks, 1024 >>> (

triangles,
bins,
tiles); // Tile queues

dim3 tile_blocks(tile_resolution.x, tile_resolution.y);
rasterize_kernel <<< tile_blocks, tile_size * tile_size >>> (

triangles,
tiles,
fragments); // Fragment buffer

5.6.1 Binning and Tiling

The bin kernel is launched with block configuration corresponding to the number of bins
splitting the screen, with each block running the maximum permitted number of 1,024
threads [38]. The kernel sets up a variable in a shared memory that threads can
only access within a block. This variable synchronizes the actual number of triangles
in the queue buffer between threads and provides an exclusive index to the buffer.
Incrementing of the counter variable is atomic, and no data races happen between
threads.

Figure 5.14. By default, the screen is split into 10×8 bins, each split into 8×8 tiles, each
occupying an area of 16×16 pixels.

37

5. Implementation .
The thread evaluates how many triangles it should process and then loops through

them, calculating their 2D bounding box. If the triangle overlaps the bin at hand and is
not culled, the bin counter variable is incremented, with the atomic operation returning
the variable’s value. This value is used to index into the bin buffer. The total count
of triangles in the current bin queue is saved as the first element of the queue, followed
by triangle indexes in the triangle buffer. The count may increment above the maximum
capacity of the queue, and the user is notified that a bin or a tile overflow happened.
Both queues have fixed sizes and do not adapt dynamically to the rendered scene.

/* bin_kernel */

__shared__ unsigned int count;
__syncthreads();

// Compute x_min, y_min, x_max, y_max of the bin

unsigned int batch = (size_triangles / 1024) + 1;
unsigned int current = 0;
while (current < batch) {

if (triangle not culled) {
// Get 2D bounding box
triangle_aabb_2d(triangle, min, max);
if (min.x > x_max || min.y > y_max ||

max.x < x_min || max.y < y_min) {
} else {

int i = atomicAdd(&count, 1);
if (i < buffer limit) {

bin[corresponding index] = triangle_id;
}

}
}

}

__syncthreads();
bin[first element of the queue] = count;

The tile kernel is launched with the same configuration of the GPU’s maximum
of 1,024 threads per block, with the number of blocks corresponding to the number
of tiles on the screen. First, the index of the bin buffer the tile should process must be
obtained since the kernel is launched with a grid of blocks, indexing the tiles by rows and
columns, which does not correspond to the actual conceptual screen splitting. When
the index is evaluated, the thread calculates the number of triangles it should process
and then iterates through the queue of triangles, splitting them further into tile queues.
Again, the first element of each tile buffer contains the total triangle count assigned
to that tile.

/* tile_kernel */

// Equivalent to bin_kernel

38

. 5.6 Rasterization

Figure 5.15. The binning rasterization kernel with a queue buffer size of 30,000 does not
fit the overlapping subset of 2,880,000 triangles of the hairball mesh. The user is notified
of the bin and tile overflow when printing the verbose output to the terminal, since the over-
flow happening is not always evident. In this case, however, the overflow is clearly visible,
revealing the borders of some of the screen bins. When the queues overflow, the cor-
responding part of the screen flickers on each draw call due to all the threads battling

for the limited space of the queue.

Figure 5.16. Verbose output of the rasterization.

5.6.2 Fragments

When the triangles are sorted, the rasterization stage enters its last kernel, which ras-
terizes them into fragments. The kernel is launched with the exact number of blocks
as the tile kernel, with the number of threads in each block corresponding to the num-
ber of pixels in each tile. The x and y coordinates of the middle of the fragment are
evaluated and used to compute the barycentric coordinates inside the triangle. The al-
gorithm works by constructing three vectors with an origin at one of the vertices,
two representing the triangle edges, with the third being the vector from the vertex
to the reference point. Dot products between vectors are calculated and used to obtain
the intersection point. The condition guards against computing barycentric coordinates

39

5. Implementation .
for triangles almost parallel with the ray casted from the middle of the fragment, which
produces visual artifacts if not handled. The algorithm is inspired by Möller–Trumbore
intersection algorithm [43].

Figure 5.17. Barycentric coordinates.

When the barycentric coordinates are obtained, the thread checks if the point lies
inside the triangle. If the test passes, a depth test is performed, comparing the depth
of the intersecting point on the triangle with the minimum depth registered for the cur-
rent fragment. The barycentric coordinates are then used as weights to interpolate
the data of the three vertices for the resulting fragment. Normal, light, and half vectors
are interpolated, normalized, and saved to the fragment buffer.

Figure 5.18. Each pixel of erato mesh is assigned a grayscale color based on the distance
from the camera, with darker pixels being closer.

/* rasterize_kernel */

40

. 5.7 Pixel Shader

// Compute x and y of the fragment

float min_depth = 1.0;

if (cartesian_to_barycentric(triangle, point, barycentric) {
if (barycentric.x >= 0 && barycentric.x <= 1 &&

barycentric.y >= 0 && barycentric.y <= 1 &&
barycentric.z >= 0 && barycentric.z <= 1 &&
depth < min_depth) {
// Inside triangle and closer to the camera
min_depth = depth;

normal = normal1 * barycentric.x + normal2 * barycentric.y ...
light = ...
half = ...

vec3_normalize(normal);
vec3_normalize(light);
vec3_normalize(half);

// Assign normal, light, and half vectors to the fragment
}

}

5.7 Pixel Shader
The single kernel of the pixel shader is launched with 16×16 threads in each block and
the corresponding number of blocks to process the entire fragment buffer. The purpose
of this stage is to compute the Blinn-Phong illumination model for each fragment and
save the corresponding pixel to the device frame buffer. The kernel computes ambient,
diffuse, and specular components of the illumination model [9] and their contribution
to the resulting pixel.

/* pixel_shader */

dim3 blocks(window_width / 16, window_height / 16);
dim3 threads(16, 16);
kernel <<< blocks, threads >>> (

fragments,
framebuffer,
light_constant, // Weights to multiply light components
light_ambient,
light_diffuse,
light_specular,
light_shininess);

The kernel begins its operation by checking whether a normal vector is assigned
to the fragment. If not, no geometry overlaps the fragment, and the pixel is not shaded.
Since the ambient light is visible the same way from any view direction, the kernel only
needs to copy the ambient color and multiply it with the corresponding component

41

5. Implementation .
weight. The diffuse component is multiplied by the weight and dot product of the nor-
mal and light vectors, which is clamped not to be negative. The specular component is
multiplied by the weight and dot product of the half and light vectors clamped the same.
The resulting color, a sum of these three light components, is saved to the corresponding
pixel in the device frame buffer.

/* kernel */

if (normal != 0) {
// Compute dot products
float normal_light, normal_half;
normal_light = vec3_dot(normal, light);
normal_light = maximum(normal_light, 0);
normal_half = vec3_dot(normal, half);
normal_half = maximum(normal_half, 0);

// Set color
color += ambient * constant[0];
color += diffuse * constant[1] * normal_light;
color += specular * constant[2] * pow(normal_half, shininess);

}

Figure 5.19. Sum of the weighted light components produces the lighting effect. The de-
fault weight values are 0.2, 0.4, 0.4 for ambient, diffuse, and specular, respectively.

5.8 Raster Operation
The final pipeline stage does not need to launch any kernel. It copies the device
frame buffer back to the host, setting the bitmap’s pixels spanning the window frame.
The stage then invalidates the screen, raising a redraw event picked up by the main
thread event processing loop. The draw call is finished. The render thread sleeps
for the remainder of the frame time and then performs the next render pass, repeating
the computations in all the pipeline stages.

/* raster_operation */

InvalidateRect(window.handle);

/* window_draw_callback */

BitBlt(bitmap, framebuffer);

42

Chapter 6
Evaluation

The thesis supports two build configurations. The debug build is used to evaluate the vi-
sual correctness of the implementation. It provides verbose debug output and different
rendering modes, while the release build is used to evaluate the actual performance of
the pipeline. Optimizations used are described in the source code appendix. The im-
plementation provides three benchmarks the user can run to test the performance of
the pipeline on his system. The results are saved to a text file, and a Python script is
provided to plot the data. The source code includes all the measured data presented
in this chapter. The pipeline was evaluated on objects frequently used by researchers,
which are freely available to the user to download [36]. Only some smaller objects are
included in the source.

6.1 Target Platform

The performance of the pipeline is tested on two different systems. The performant
high-end system runs with a GeForce RTX 3070 graphics card with a GA104 chip
based on NVIDIA’s Ampere microarchitecture. First released in the second half of 2020,
the GPU with 17,400 million transistors is manufactured using an 8-nanometer produc-
tion process on a die of 392 square millimeters. It features 5,888 programmable CUDA
cores grouped in 48 SMs, 184 texture mapping hardware-accelerated units (TMUs), 96
ROPs, 184 tensor cores, and 46 ray tracing cores. Each SM has a level-1 cache of 128
kilobytes and can access a level-2 cache of 4,096 kilobytes. The maximum thermal
design power (TDP) is 220 watts. RTX 3070 has 8 gigabytes of DRAM and a 256-bit
wide memory lane. The theoretical floating point performance is 20,310 GigaFLOPS.
The GPU has CUDA compute capability of 8.6 [22].

On the opposite spectrum of graphical performance, the second test system runs
with a GeForce MX250 mobile graphics card based on Pascal architecture GP108 chip.
The GPU released at the beginning of 2019 is manufactured with a 14-nanometer
technology on a die of 74 square millimeters with 1,800 million transistors. It features
384 CUDA cores in 3 streaming multiprocessors, 24 TMUs, and 16 ROPs. Each SM
has 48 kilobytes of level-1 cache and access to 512 kilobytes of level-2 cache. The 2
gigabytes of DRAM are connected to the GPU through a 64-bit memory bus. With
a TDP of 25 watts, the theoretical floating point performance of the MX250 is 1,215
GigaFLOPS. Theoretically, the pipeline should perform 20 times better on the RTX
3070 GPU. MX250 supports CUDA CC of 6.1 [23].

A benchmark on yet another graphics card, the NVIDIA GeForce GTX 1080, was
evaluated to compare the performance of the thesis pipeline to the cuRE [3] implemen-
tation. The research article includes a table with the average draw call time tested
on the GTX 1080 GPU.

43

6. Evaluation .

6.2 Correctness
The pipeline implementation rarely experiences issues with pixels not being part
of the mesh being shaded. This behavior is probably caused by dividing with a small
enough number in the computation of the barycentric coordinates. The value is
already checked to not divide by zero or a tiny number, but more is needed. Further
experimentation is required.

Figure 6.1. Small artifact when rendering dragon object.

6.3 Benchmarks
Three benchmarks are implemented in the code, with each of the six stages timed.
The idle test records the execution of 300 idle frames. The results of this benchmark
are not presented in the text but can be found in the source. This simple benchmark
was used throughout the development to measure the fluctuations in the execution
of the graphics pipeline between frames. The second benchmark evaluates the perfor-
mance of a 360 degrees camera rotation around the z-axis across 720 frames. The third
benchmark measures the execution of camera zoom, starting with the camera close
to the origin and most of the mesh being culled by the near clipping plane and progres-
sively zooming out until the mesh occupies approximately a single bin.

The benchmarks were evaluated on six increasingly more complex scenes. Objects
that could be converted to the suitable application-supported .obj format were se-
lected from the archive [36], namely the cube, white oak, bunny, erato, and hairball.
The source code additionally includes the cow model.

Lastly, several 360 degrees camera rotation benchmarks were conducted with varying
resolutions of bins, tiles, and the window itself. The measured data presents a varying
performance of the rasterization stage. All the results are discussed, and the pipeline
bottlenecks are identified.

44

. 6.3 Benchmarks

Object Vertices Triangles

Cube 8 12
Cow 2,903 5,804
White Oak 38,199 36,760
Bunny 72,027 144,046
Erato 1,237,495 412,498
Hairball 1,470,000 2,880,000

Table 6.1. Mesh data statistics of benchmarked objects.

6.3.1 Camera Rotation

The performance of the pipeline is expected to be consistent throughout the evaluation
of this benchmark. The object stays in the middle of the window, and the variation
in bin and tile triangle occupation is minimal. The sizes of the bin and tile queues
are hardcoded in the release build, with 219 = 524,288 capacity of the bin queue and
217 = 131,072 tile capacity. Although such an enormous size of buffers is wasting space
for the small models, it is required for the hairball model to be displayed correctly
without bins and tiles overflowing. Each tile occupies 16×16 pixels, and each bin
constitutes 8×8 tiles. The screen resolution is 1,280×1,024 pixels, 10×8 bins, and
80×64 tiles.

Figure 6.2. Initial scene configurations for 360 degrees camera rotation benchmark.

As expected, the rasterization stage is the main bottleneck of the pipeline, domi-
nating the execution time. The time needed to compute the other stages is negligible.
The graph of the erato 360 degrees camera rotation benchmark clearly illustrates this.
The average execution time of the pipeline is 14.9 milliseconds, just keeping within
the target of 60 frames per second, with an average of 13 milliseconds spent in the ras-
terization stage. Other stages can be distinguished by using a logarithmic scale on the y-
axis of the graph and are color-coded base on their function. The red-colored vertex
shader and primitive assembly stages perform geometry processing, while the green-
colored pixel shader and raster operation stages perform handling of the rasterized

45

6. Evaluation .
fragments and pixels. A dotted line was used to plot the data of the scene fetch and
raster operation stages that do not launch any kernel and thus do not run on the GPU.

The scene fetch is executed the fastest out of all pipeline stages, with an average
of 1 microsecond. The following stage in the pipeline, the vertex shader, executes
in 0.3 milliseconds on average. The GPU computes the primitive assembly stage al-
most for a whole millisecond, possibly due to memory accesses into multiple buffers
in the DRAM and copying the data when forming triangles. The rasterization stage
is followed by the pixel shader stage with 0.2 milliseconds execution time on average.
Finally, the raster operation stage finishes the pipeline with 0.4 milliseconds, with its
execution time consistent across all the workloads and benchmarks.

RTX 3070 Cube Cow White Oak

Average (𝜇𝑠) 8,259 8,110 9,119
Std (𝜇𝑠) 301 152 225
Relative (%) 3.65 1.88 2.47

Bunny Erato Hairball

Average (𝜇𝑠) 9,726 14,875 135,657
Std (𝜇𝑠) 276 780 2,927
Relative (%) 2.84 5.25 2.16

Table 6.2. Measurements of total pipeline execution times of 360 degrees camera rotation
benchmark on RTX 3070 GPU. Averages and standard deviations are in microseconds, and

the relative percentage is obtained by dividing the standard deviation by the average.

Figure 6.3. Erato 360 degrees camera rotation benchmark results on the RTX 3070 GPU.
Logarithmic scale for the y-axis is used for the plot on the right.

The pipeline execution time on the RTX 3070 GPU has been fluctuating in the range
of 8 to 10 milliseconds before loading a scene that would utilize all the computational
resources of the chip. There is barely any difference in the performance for the cube,
cow, white oak, and bunny objects, despite significant differences in the vertex and
triangle counts. Erato object utilizes the whole GPU, raising the computational time
to an average of almost 15 milliseconds. The complex hairball object with almost 3
million triangles does not fit into the render target of 60 frames per second by a con-
siderable margin. The execution of the pipeline is reasonably consistent and does not
fluctuate.

46

. 6.3 Benchmarks

MX250 Cube Cow White Oak

Average (𝜇𝑠) 98,358 99,507 176,276
Std (𝜇𝑠) 69,443 39,483 35,160
Relative (%) 70.60 39.68 19.95

Bunny Erato Hairball

Average (𝜇𝑠) 409,886 343,405 —
Std (𝜇𝑠) 77,765 57,817 —
Relative (%) 18.97 16.84 —

Table 6.3. Measurements of total pipeline execution times of 360 degrees camera rota-
tion benchmark on MX250 GPU. Measurements for the hairball object are not provided,

the pipeline raised errors when allocating a buffer for vertices.

With the MX250 mobile chip inside a notebook, it is a different story. The GPU failed
to achieve consistent execution of the pipeline, fluctuating considerably due to the al-
most instant power throttling of the GPU, even with the notebook plugged in and set
for the best performance. The standard deviation reaches at least 15 percent of the av-
erage execution time in every scenario. All the scenes failed to meet the 60 frames
per second target. Moreover, the hairball model was not loaded and benchmarked since
the GPU failed to allocate a large enough vertex buffer to accommodate all the positions
of 1.47 million vertices. The power throttling is observed in the graph of the results
of any of the benchmark scenes. Substantial spikes are visible in each of the stages
utilizing the GPU.

Figure 6.4. Cow 360 degrees camera rotation benchmark results on the MX250 GPU.
The massive spikes are visible on the left graph in the rasterization stage. The logarith-
mic scale of the y-axis on the right graph reveals spikes on every pipeline stage running

on the GPU.

6.3.2 Camera Zoom
The performance of the pipeline executing the camera zoom follows the same scheme
as the previous benchmark. The rasterization’s domination of the execution times is
even more underlined when the camera zooms out enough. Hence, the whole object falls
into very few bins, with few threads processing all the input triangles. Such behavior
highlights the most significant bottleneck of the implementation.

Although the average total execution times did not increase, standard deviations did
by a lot. Most of the geometry was view frustum culled at the beginning of the cam-

47

6. Evaluation .
era zoom benchmark due to the camera being very close to the origin, thus reduc-
ing the execution time of the rasterization stage, which stays constant until reaching
a distance when the triangles appear again. The appearance is visible on the graphs
of the benchmark results at around 150 frame count when the otherwise constant to-
tal and rasterization execution times start to grow slowly. The execution time rises
quickly once the object shrinks enough to few bins, thus averaging the execution time
to the measured values of the 360 degrees camera rotation benchmark. The results
show the rasterization executing faster when most triangles are culled, highlighting
the benefits of the back-face culling performed in the primitive assembly stage.

RTX 3070 Cube Cow White Oak

Average (𝜇𝑠) 8,334 8,378 9,708
Std (𝜇𝑠) 325 389 1,323
Relative (%) 3.90 4.64 13.63

Bunny Erato Hairball

Average (𝜇𝑠) 12,092 22,292 130,113
Std (𝜇𝑠) 4,289 14,618 42,322
Relative (%) 35.47 65.57 32.53

Table 6.4. Measurements of total pipeline execution times of camera zoom benchmark
on RTX 3070 GPU.

MX250 Cube Cow White Oak

Average (𝜇𝑠) 67,408 115,974 200,901
Std (𝜇𝑠) 36,808 51,697 79,286
Relative (%) 54.61 44.58 39,47

Bunny Erato Hairball

Average (𝜇𝑠) 419,894 316,350 —
Std (𝜇𝑠) 93,613 133,330 —
Relative (%) 22.29 42.15 —

Table 6.5. Measurements of total pipeline execution times of camera zoom benchmark
on MX250 GPU.

The hypothesis of the MX250 GPU being theoretically 20 times slower than the pow-
erful RTX 3070 almost holds for both benchmarks. In some computationally lighter
scenarios, the performance of the MX250 stays within a multiple of 10 of the RTX
3070. However, it falls toward the performance multiplier 20 for the more complex
scenes. The implemented pipeline is practically unusable on the MX250 chip, failing
to reach the 60 frames per second target even on the geometrically least complex cube
scene with just eight vertices and twelve triangles. Although the performance is suf-
ficient when the pipeline is executed on a cooled idling system, the GPU gets power
throttled significantly after a few minutes of the runtime. Such behavior is illustrated
in the following figure, depicting two consecutive runs of a buddha scene with 1.08 mil-

48

. 6.3 Benchmarks

Figure 6.5. Bunny camera zoom benchmark results on the RTX 3070 on the left and MX250
on the right. The rasterization execution time stays constant until around the 200th frame
where the bunny geometry stops being view-frustum culled. The time to compute then

raises proportionally with the shrinking of the object on the screen.

lion triangles on MX250. The RTX 3070 GPU meets the target of 60 frames per second
up to the scene complexity of around half a million triangles.

6.3.3 Resolution
The previous benchmarks confirmed that the rasterization stage of the graphics pipeline
would be the bottleneck. They used a resolution of 1280×1024 pixels, 10×8 bins, and
80×64 tiles per window screen, which is the most performant. The following experi-
mentation with the resolution values presents the performance of various configurations,
focusing solely on the rasterization stage. All three kernel executions are timed indi-
vidually. The constraint of the 32 multiple is imposed so that each kernel can execute
efficiently in warps of 32 threads according to the CUDA execution model, with each
thread being assigned a workload. Resolutions can be changed easily by modifying
the corresponding definitions in the code. Each resolution was evaluated on the 360
degrees camera rotation benchmark on a scene with a dragon mesh.

1,280×1,024 80×64 tiles 80×64 tiles 80×64 tiles
pixels 20×16 bins 10×8 bins 5×4 bins

Binning (𝜇𝑠) 69,969 16,678 9,729
Tiling (𝜇𝑠) 1,018 4,828 25,126
Rasterization (𝜇𝑠) 2,583 2,165 2,106

160×128 tiles 160×128 tiles 160×128 tiles
20×16 bins 10×8 bins 5×4 bins

Binning (𝜇𝑠) 77,212 20,774 13,310
Tiling (𝜇𝑠) 4,016 19,224 107,026
Rasterization (𝜇𝑠) 1,095 985 959

Table 6.6. Measurements of different 1,280×1,024 pixel configurations. The presented val-
ues are the average execution times of the three kernels launched in the rasterization stage

measured from the 360 degrees camera rotation benchmark.

Generally, increasing the number of containers to sort in any kernel, be it sorting
into bins, tiles, or rasterizing the fragments, results in a longer execution time. How-

49

6. Evaluation .

Figure 6.6. Dragon scene with 425,545 vertices and 871,306 triangles.

ever, since the increase of containers sorts the triangles into smaller parts of the screen,
the subsequent kernels are processed faster. For example, splitting the screen into 20×16
bins, with each bin holding 4×4 tiles, the execution of the binning kernel takes 70 mil-
liseconds on average, with the tiling kernel computing for a single millisecond. In con-
trast, reducing the number of bins to 5×4 shortens the execution time of the binning
kernel to 10 milliseconds but extends the time of the tiling kernel, which then must
sort into more tiles of each bin. The compromise between the two naturally balances
the kernel execution times.

Increasing the number of tiles by reducing the tile size of 16×16 fragments per tile
to 8x8 fragments halves the execution time of the third rasterization kernel. However,
the increase in the computation times of the other two kernels makes this choice hardly
justifiable. On the other hand, increasing the size of tiles to 32×32 fragments per tile
and reducing the number of tiles from 80×64 to 40×32 offers promising performance,
surpassing the one used in the benchmarks for small models. Unfortunately, it errors
on the more complex models such as the hairball model since it needs to allocate more
enormous queues for triangle sorting to prevent bin and tile buffer overflows, and such
allocation request fails. The same principles apply when lowering the screen resolution,
with the pipeline running faster.

6.3.4 Reference

The last benchmark was conducted on a buddha to compare the thesis implementa-
tion against the references of FreePipe [1], CUDAraster [2], and cuRE [3]. The refer-
ence results are published together with the source code of the cuRE implementation.
The thesis implementation was evaluated on the GTX 1080 GPU on a scene with a res-
olution 1,280×1,024 pixels and compared to the measured values of the same graphics
card of a 1,024×768 pixels buddha scene.

50

. 6.3 Benchmarks

640×512 40×32 tiles 40×32 tiles
pixels 10×8 bins 5×4 bins

Binning (𝜇𝑠) 11,218 4,075
Tiling (𝜇𝑠) 1,291 7,500
Rasterization (𝜇𝑠) 3,840 5,485

80×64 tiles 80×64 tiles
10×8 bins 5×4 bins

Binning (𝜇𝑠) 13,190 5,953
Tiling (𝜇𝑠) 5,567 30,571
Rasterization (𝜇𝑠) 1,939 1,930

Table 6.7. Measurements of different 640×512 pixel configurations. The presented values
are the average execution times of the three kernels launched in the rasterization stage

measured from the 360 degrees camera rotation benchmark.

Figure 6.7. Buddha scene with 543,524 vertices and 1,087,474 triangles.

thesis FreePipe cuRE CUDAraster

Average (𝑚𝑠) 197.3 0.8 7.8 4.2

Table 6.8. Performance comparison of reference implementations.

The buddha scene was evaluated by averaging the execution speed of 300 pipeline
passes of the thesis implementation on the GTX 1080 GPU. FreePipe and cuRE were
also benchmarked on the same graphics card, while the cuRE was only evaluated
on the less powerful GTX 780 Ti but still running faster. The FreePipe implementation
benefits from many small triangles of the buddha scene being the fastest implementa-
tion, performing way worse in other scenarios. For example, the sponza scene took

51

6. Evaluation .
78 milliseconds to render on GTX 1080 with FreePipe [3], while the thesis implemen-
tation averages 110 milliseconds on a throttled and way less powerful mobile MX250
GPU. However, FreePipe is the only implementation the thesis can even remotely out-
pace. Compared to the whopping speeds of cuRE and mainly CUDAraster, the thesis
implementation runs significantly slower. But it runs.

6.4 Bottlenecks

As the benchmark results clearly showed, the primary critical bottleneck of the graphics
pipeline is the rasterization stage and, specifically, the sorting of triangles into bins and
tiles. All the other stages run independently in a data-parallel fashion, but the rasteri-
zation stage must deal with the depth of fragments, comparing multiple of them. Two
solutions to solving the problem of rasterization and depth testing are either taking
a triangle and iterating through its pixels, utilizing a screen-wide depth buffer as im-
plemented in the GPU hardware, or taking a pixel and iterating through its queue
of triangles omitting the global depth buffer, but introducing the need to sort the tri-
angles, as implemented in the thesis.

The thesis implementation started with experiments with the first approach. How-
ever, it soon stumbled upon the problem of efficiently implementing a software screen-
wide depth buffer. Taking a triangle and splitting it into multiple fixed-sized bins
of pixels processed by a group of CUDA threads is arguably a more elegant and effec-
tive solution for rasterization. However, the rasterized fragments must be compared
and discarded by their depth and swapped atomically in the depth buffer. The frag-
ment is a structure holding various data, it is not a single integer value, and thus there
are no atomic CUDA operations that could swap a fragment for another. Naturally,
the swap could be serialized to avoid data races, but then there is no point in running
the rasterization on the massively parallel GPU. Another solution is not to care about
the data races. However, the rendered output would not be deterministic, and there is
a risk of flickering, as seen in the implementation when bin or tile overflow happens,
especially when rendering 60 times a second. The fixed-function rasterization units
on the graphics chip provide the pipeline with hardware accelerated depth buffer that
can handle the depth testing efficiently in parallel. However, the depth buffer is not
accessible through the GPGPU techniques.

Thus, the first approach was discarded, and the second was implemented, unfortu-
nately, with its own set of bottlenecks. The pivotal issue of splitting the screen into bins
and tiles and sorting the triangles is the non-existent uniformity of the input. The idea
was to implement a binning algorithm that would dynamically adapt to the data being
rendered, leaving larger bins for the screen regions with fewer triangles and smaller
bins for dense areas. However, such an orchestration would most probably demand
too much computation time and too complex logic to be worth it. Additionally, in-
creasing the number of bins to sort to does not automatically translate to increased
speed, as the resolution experimentation showed. The other solution to a dynamic
adaptation to the scene requirements would be to shrink or enlarge the bin and tiles
queues the triangles are sorted in. However, this would require reallocating the queue
buffers at the runtime, with memory management functions being expensive. A mono-
lithic buffer could be allocated and then split on the fly through indexing and dangling
pointers instead. However, this would require computing the queues’ sizes before sort-
ing. Otherwise, the enlarging of queues could overwrite other queues.

52

. 6.4 Bottlenecks

In the end, the number of bins and tiles is fixed, and all bins and tiles sizes are
uniform. Surprisingly, such a naive and straightforward solution is implemented
in the fastest software-based renderer CUDAraster. There may be no better solution.
The real issue arises when a complex object ends up in a single bin, with all the other
bins and its threads being left out without a workload, wasting computational re-
sources and reducing performance. Such behavior is illustrated with the camera zoom
benchmark of the thesis implementation. Degenerate culling and the far clipping plane
may help, but more is needed. The design of the constant screen splitting is also
inappropriate for the production-class rendering pipeline used, for example, in a game
engine. The main character with detailed geometry stands in the middle of the screen,
with the rest being less dense. The same scenario applies to the thesis implementation
since it only supports loading a single mesh that resides at the origin around which
a camera orbits.

Apart from being memory hungry and spatially inefficient, the triangle sorting tech-
nique of the implementation is also slow. The queue of each bin and tile is filled
by atomically incrementing a queue counter, which returns an index to the buffer that
is guaranteed to be held only by a single thread. Because the atomic variable is fre-
quently accessed, it is saved in the shared memory to improve writes and reads dras-
tically. However, the memory is only shared between threads inside the same block,
and the maximum number of threads in a block is currently 1,024. This means that
a bin with a mesh of a few million triangles is only processed with 1,024 threads, each
sorting a few hundred, if not thousands, of triangles, making the execution of the sort-
ing extremely slow. CUDAraster processes the input triangles in streams of batches,
creating and merging multiple queue buffers of a single bin and employing other low-
level knowledgable optimizations. The NVIDIA researchers surely know their hardware
the best.

Apart from the colossal rasterization stage bottleneck, there are only missing pipeline
features, such as an actual view-frustum clipping, texturing, or support for multiple
meshes, which could be implemented in the future. However, the priority should be
the rasterization stage.

53

Chapter 7
Conclusion

The thesis successfully implemented the CUDA-based software renderer. By harnessing
the computational capabilities of NVIDIA GPUs, the entirely software-based graphics
pipeline achieved suitable performance for most scenarios on a desktop-class GPU.
The implemented software renderer efficiently utilized CUDA cores, effectively paral-
lelizing the rendering pipeline and distributing the workload across multiple threads.
Multiple thorough benchmarks were conducted, focusing mainly on the rasterization
stage, which is the implementation bottleneck. The various solutions with their re-
spective trade-offs were discussed. Apart from the implementation, the thesis presents
the reader with a description of the architecture of modern graphics processing units,
introducing their history and putting many design considerations into context.

54

References

[1] Liu, Fang, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu. FreePipe:
A Programmable Parallel Rendering Architecture for Efficient Multi-Fragment
Effects. I3D ’10: Proceedings of the ACM SIGGRAPH symposium on Interactive
3D Graphics and Games. New York, NY: Association for Computing Machinery,
February, 2010, pp. 75–82. Available from DOI 10.1145/1730804.1730817.

[2] Laine, Samuli, and Tero Karras. High-Performance Software Rasterization
on GPUs. HPG ’11: Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics. New York, NY: Association for Computing Machinery,
August, 2011, pp. 79–88. Available from DOI 10.1145/2018323.2018337.

[3] Kenzel, Michael, Bernhard Kerbl, Dieter Schmalstieg, and Markus
Steinberger. A High-Performance Software Graphics Pipeline Architecture
for the GPU. ACM Transactions on Graphics. New York, NY: Association
for Computing Machinery, August, 2018, Vol. 37, No. 4, pp. 1-15.
ISSN 0730-0301. Available from DOI 10.1145/3197517.3201374.

[4] Fatahalian, Kayvon, and Mike Houston. A Closer Look at GPUs. Commu-
nications of the ACM . New York, NY: Association for Computing Machinery,
October, 2008, Vol. 51, No. 10, pp. 50-57. ISSN 0001-0782. Available from DOI
10.1145/1400181.1400197.

[5] Patterson, David A., and John L. Hennessy. Computer Organization and De-
sign: the Hardware/Software Interface. 3rd ed. San Francisco, CA: Morgan Kauf-
mann Publishers, 2005. ISBN 1-55860-604-1.

[6] Šimeček, Ivan, and Jaroslav Sloup. Obecné výpočty na grafických procesorech. 2nd
ed. Prague: Czech Technical University in Prague, 2017. ISBN 978-80-01-06094-0.

[7] Barlas, Gerassimos. Multicore and GPU Programming: an Integrated Approach.
2nd ed. Cambridge, MA: Elsevier, 2023. ISBN 978-0-12-814120-5.

[8] Kirk, David B., and Wen-mei W. Hwu. Programming Massively Parallel Proces-
sors: a Hands-On Approach. 3rd ed. Cambridge, MA: Elsevier, 2017. ISBN 978-
0-12-811986-0.

[9] Žára, Jiří, Bedřich Beneš, Jiří Sochor, and Petr Felkel. Moderní počítačová
grafika. 2nd ed. Brno: Computer Press, 2005. ISBN 80-251-0454-0. Available from
https://dcgi.fel.cvut.cz/ModerniPocitacovaGrafika/.

[10] Sloup, Jaroslav. Algoritmy počítačové grafiky. Available from https://cent.
felk.cvut.cz/courses/APG/skripta/index.html.

[11] NVIDIA Corporation. NVIDIA Technical Blog: CUDA Refresher . Available
from https://developer.nvidia.com/blog/tag/cuda-refresher/.

[12] Khronos Group. Rendering Pipeline Overview. Available from https://www.
khronos.org/opengl/wiki/Rendering_Pipeline_Overview.

55

http://dx.doi.org/10.1145/1730804.1730817
http://dx.doi.org/10.1145/2018323.2018337
http://dx.doi.org/10.1145/3197517.3201374
http://dx.doi.org/10.1145/1400181.1400197
https://dcgi.fel.cvut.cz/ModerniPocitacovaGrafika/
https://cent.felk.cvut.cz/courses/APG/skripta/index.html
https://cent.felk.cvut.cz/courses/APG/skripta/index.html
https://developer.nvidia.com/blog/tag/cuda-refresher/
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview

References .
[13] NVIDIA Corporation. Life of a Triangle - NVIDIA’s Logical Pipeline. [online].

NVIDIA Corporation, March 16, 2015. [cit. 2023/5/21]. Available from https://
developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline.

[14] Giesen, Fabian. A trip through the Graphics Pipeline. Available from https://
fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeli
ne-2011-index/.

[15] Khronos Group. Vulkan. Available from https://www.vulkan.org/.
[16] Khronos Group. OpenGL. Available from https://www.opengl.org/.
[17] NVIDIA Corporation. NVIDIA CUDA. Available from https://docs.nvidi

a.com/cuda/doc/index.html.
[18] Khronos Group. OpenCL. Available from https://www.khronos.org/opencl/.
[19] NVIDIA Corporation. GTC 2023 Keynote with NVIDIA CEO Jensen Huang.

Available from https://youtu.be/DiGB5uAYKAg.
[20] Taiwan Semiconductor Manufacturing Company. 3nm Technology. Avail-

able from https://www.tsmc.com/english/dedicatedFoundry/technology/
logic/l_3nm.

[21] Advanced Micro Devices. AMD Ryzen 9 5950X Desktop Processors. Available
from https://www.amd.com/en/products/cpu/amd-ryzen-9-5950x.

[22] TechPowerUp. NVIDIA GeForce RTX 3070. Available from https://www.
techpowerup.com/gpu-specs/geforce-rtx-3070.c3674.

[23] TechPowerUp. NVIDIA GeForce MX250. Available from https://www.techp
owerup.com/gpu-specs/geforce-mx250.c3353.

[24] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Architec-
ture: Fermi. Available from https://www.nvidia.com/content/PDF/fermi_whi
te_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf.

[25] NVIDIA Corporation. NVIDIA Volta Architecture. Available from https://
www.nvidia.com/en-gb/data-center/volta-gpu-architecture/.

[26] Kilgariff, Emmett, Henry Moreton, Nick Stam, and Brandon Bell. NVIDIA
Turing Architecture In-Depth. [online]. NVIDIA Corporation, September 14, 2018.
[cit. 2023/8/20]. Available from https://developer.nvidia.com/blog/nvidia-
turing-architecture-in-depth/.

[27] NVIDIA Corporation. NVIDIA Ada Lovelace Architecture. Available from htt
ps://www.nvidia.com/en-us/geforce/ada-lovelace-architecture/.

[28] NVIDIA Corporation. NVIDIA RTX Platform. Available from https://deve
loper.nvidia.com/rtx.

[29] NVIDIA Corporation. RTX Global Illumination. Available from https://
developer.nvidia.com/rtx/ray-tracing/rtxgi.

[30] NVIDIA Corporation. NVIDIA OptiX AI-Accelerated Denoiser . Available from
https://developer.nvidia.com/optix-denoiser.

[31] NVIDIA Corporation. NVIDIA DLSS . Available from https://developer.
nvidia.com/rtx/dlss.

[32] NVIDIA Corporation. NVIDIA CUDA-X: GPU-Accelerated Libraries. Avail-
able from https://developer.nvidia.com/gpu-accelerated-libraries.

[33] OpenACC Organization. OpenACC . Available from https://www.openacc.
org/.

56

https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
https://www.vulkan.org/
https://www.opengl.org/
https://docs.nvidia.com/cuda/doc/index.html
https://docs.nvidia.com/cuda/doc/index.html
https://www.khronos.org/opencl/
https://youtu.be/DiGB5uAYKAg
https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_3nm
https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_3nm
https://www.amd.com/en/products/cpu/amd-ryzen-9-5950x
https://www.techpowerup.com/gpu-specs/geforce-rtx-3070.c3674
https://www.techpowerup.com/gpu-specs/geforce-rtx-3070.c3674
https://www.techpowerup.com/gpu-specs/geforce-mx250.c3353
https://www.techpowerup.com/gpu-specs/geforce-mx250.c3353
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/en-gb/data-center/volta-gpu-architecture/
https://www.nvidia.com/en-gb/data-center/volta-gpu-architecture/
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://www.nvidia.com/en-us/geforce/ada-lovelace-architecture/
https://www.nvidia.com/en-us/geforce/ada-lovelace-architecture/
https://developer.nvidia.com/rtx
https://developer.nvidia.com/rtx
https://developer.nvidia.com/rtx/ray-tracing/rtxgi
https://developer.nvidia.com/rtx/ray-tracing/rtxgi
https://developer.nvidia.com/optix-denoiser
https://developer.nvidia.com/rtx/dlss
https://developer.nvidia.com/rtx/dlss
https://developer.nvidia.com/gpu-accelerated-libraries
https://www.openacc.org/
https://www.openacc.org/

. .
[34] OpenMP Architecture Review Boards. OpenMP. Available from https://

www.openmp.org/.
[35] Blender Foundation. Blender . Available from https://www.blender.org/.
[36] McGuire, Morgan. Computer Graphics Archive. Available from https://casual-

effects.com/data/.
[37] Windows Corportaion. Programming reference for the Win32 API . Available

from https://learn.microsoft.com/en-us/windows/win32/api/.
[38] NVIDIA Corporation. CUDA C++ Programming Guide. Available from http

s://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
[39] Aslantas, Recep. Highly Optimized Graphics Math for C . Available from http

s://github.com/recp/cglm.
[40] G-Truc Creation. OpenGL Mathematics. Available from https://github.

com/g-truc/glm.
[41] FileFormat.info. Wavefront OBJ File Format Summary. Available from http

s://www.fileformat.info/format/wavefrontobj/egff.htm.
[42] Wolfram Research. Wolfram MathWorld: Barycentric Coordinates. Available

from https://mathworld.wolfram.com/BarycentricCoordinates.html.
[43] Möller, Tomas, and Ben Trumbore. Fast, minimum storage ray-triangle inter-

section. Available from http://www.graphics.cornell.edu/pubs/1997/MT97.
html.

57

https://www.openmp.org/
https://www.openmp.org/
https://www.blender.org/
https://casual-effects.com/data/
https://casual-effects.com/data/
https://learn.microsoft.com/en-us/windows/win32/api/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://github.com/recp/cglm
https://github.com/recp/cglm
https://github.com/g-truc/glm
https://github.com/g-truc/glm
https://www.fileformat.info/format/wavefrontobj/egff.htm
https://www.fileformat.info/format/wavefrontobj/egff.htm
https://mathworld.wolfram.com/BarycentricCoordinates.html
http://www.graphics.cornell.edu/pubs/1997/MT97.html
http://www.graphics.cornell.edu/pubs/1997/MT97.html

Appendix A
User Manual

A.1 Compilation
A custom build script was created for the compilation of the thesis. Make sure to have
Nvidia’s nvcc compiler with Microsoft’s MSVC compiler installed on the system. There
are two build configurations, the reader is advised to run the debug, with the release
left for benchmarking. Compile with the following command:

.\build.ps1 <target>

Not specifying the target prints help message. Verbose output is available by running
the following:

.\build.ps1 <target> -verbose $true

Clean with:

.\build.ps1 clean

Build the convert.cu file and use it as an utility to convert .obj files to a suitable
application format:

nvcc src\convert.cu

Running the utility without arguments prints help:

.\convert.exe

The pipeline executable is located in bin\<target>\. To run it:

.\bin\<target>\CUDA-pipeline.exe

There are multiple arguments the user can set:

-align // Aligns terminal and window next to each other
-layout // Flips Y and Z for CZ keyboard layouts
-verbose // Enables verbose output
-model= // Sets model to load, the model must be in obj folder
-bin= // Sets size of bin queue buffers
-tile= // Sets size of tile queue buffers
-degenerate= // Sets degenerate factor

A.2 Controls
Following are the controls of the application:

59

A User Manual .
Backspace // Verbose output in the terminal
Escape // Quit

1 // Draw triangles
Shift + 1 // Draw lines
Ctrl + Shift + 1 // Draw points
2 // Smooth shading
Shift + 2 // Flat shading
3 // Ambient component
Shift + 3 // Diffuse component
Ctrl + Shift + 3 // Specular component
4 // Blinn-Phong
Shift + 4 // Camera reflector
5 // Normal vectors
Shift + 5 // Depth buffer
M // Toggle back-face culling
Shift + M // Toggle view-frustum culling

// Following camera controls can be altered with Shift and Ctrl + Shift
Q // Tilt down
E // Tilt up
W // Zoom in
S // Zoom out
A // Rotate left
D // Rotate right

// For the following, Ctrl + Shift modifier resets to default
// and Shift does the opposite change
Z // Decrease FOV
X // Move near clip plane
C // Move far clip plane
R, T, Y // Move model
F, G, H // Scale model
V, B, N // Rotate model
U, I, O // Move light

60

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/
	Introduction
	Related Work
	FreePipe
	CUDAraster
	cuRE

	Thesis Structure

	Graphics Processing Unit
	Chip Design
	Manufacturing Process
	Concurrency Revolution

	NVIDIA
	GeForce 256 and 3
	Tesla and Fermi
	Volta and Turing

	General-Purpose Computing
	CUDA
	Programming Model
	Memory Model
	Execution Model
	Compilation

	Graphics Pipeline
	Logical Pipeline
	Life of a Triangle

	Hardware Pipeline
	Future of Real-Time Rendering
	Global Illumination
	Artificial Intelligence

	Implementation
	Pipeline Design
	Application Systems
	Initialization
	Cleanup

	Scene Fetch
	Model Matrix
	View Matrix
	Perspective Matrix

	Vertex Shader
	Primitive Assembly
	Back-Face Culling
	View-Frustum Clipping
	Degenerate Culling

	Rasterization
	Binning and Tiling
	Fragments

	Pixel Shader
	Raster Operation

	Evaluation
	Target Platform
	Correctness
	Benchmarks
	Camera Rotation
	Camera Zoom
	Resolution
	Reference

	Bottlenecks

	Conclusion
	References
	User Manual
	Compilation
	Controls

