
Title:
Student:
Supervisor:
Study program:
Branch / specialization:
Department:
Validity:

Assignment of master’s thesis

Digital Forensics Testing Images Generator
Bc. Petr Horák
Ing. Jiří Dostál, Ph.D.
Informatics
Computer Security
Department of Information Security
until the end of summer semester 2022/2023

Instructions

Digital forensics is a very important area as most of the information is stored
electronically. Used in investigations, it has become a powerful method for solving a lot
of computer crimes. Training of required skills is possible on many available test disks.
But creating these disks and covering all the possible combinations is a complex
process. Not to mention that these do not fully cover all possible scenarios and offer poor
scalability.

Survey the most used digital forensics scenarios (encryption, deleted files, ...) and create
a modular tool to generate source files (disk images) to practice these scenarios. The tool
should provide space for easy scalability for possible further development and
extensions. Provide supporting documentation so the scenarios could be used in actual
digital forensics tutorials.

Master’s thesis

Digital Forensics Testing Images Generator

Bc. Petr Horák

Department of Information Security
Supervisor: Ing. Jiří Dostál, Ph.D.

May 4, 2023

Acknowledgements

I would like to thank all the friends and family members that supported me
during the creation of this thesis. Namely, I would like to thank our volleyball
group ”Nemůžu to říct” for all the laughts, playing games with them kept
me sane in the dark times. The same goes for the volleyball group ”Kytičky
zleva doprava”. I’d like to thank my friend Radek Šmíd for his advice and
assistance. He has been of great help during the creation of this thesis.

Last but not least, I would like to thank my supervisor, Ing. Jiří Dostál, Ph.D,
for all the guidance and help he provided.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 4, 2023 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Petr Horák. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Horák, Petr. Digital Forensics Testing Images Generator. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2023.

Abstrakt

Digitální forenzní analýza je kritický nástroj nejen při vyšetřování, ale po-
znatky z této oblasti se používají i např. pro obnovy poškozených systémů.
Tato práce poskytuje základní bázi znalostí potřebnou pro provádění těchto
akcí. Detail je kladen na diskové oddíly a jejich možné chyby v konfiguraci.
Popsány jsou vybrané souborové systémy (konkrétně ext4, FAT32 a NTFS)
s ohledem na běžné scénaře, se kterými se můžeme setkat v rámci digitální fo-
renzní analýzy. Na přiloženém CD (zip souboru) jsou některé z nich uvedeny
ve formě úkolů včetně popisu řešení. Praktická část je pokryta vytvořením
nástroje pro generování disků pro trénink scénářů popsaných v úkolech s mož-
ností snadné konfigurace a rozšiřitelnosti pro další potencionální vývoj.

Klíčová slova digitální forenzní analýta, disk, obraz disku, MBR, GPT,
diskový oddíl, šifrování, souborový systém, ext4, FAT32, NTFS, BitLocker

vii

Abstract

Digital forensics is a critical tool not only in criminal investigations, but
the knowledge gained from it is also essential in system recovery schemes. This
thesis provides the essential knowledge base for these tasks. A significant focus
is laid on partitioning schemes, with some real-world examples of possible
misconfigurations. Further, selected file systems (ext4, FAT32, and NTFS)
are described with coverage of basic digital forensics scenarios. Several of
these scenarios are described in the form of tasks to complete on the enclosed
CD (or zip file), with a solution provided. As for the practical part, a disk
image generator for these cases was created, allowing easy configurability for
the disk image output. It is built in a scaleable manner to allow possible
further development.

Keywords Digital Forensics, disk, disk image, MBR, GPT, disk partition,
encryption, file system, ext4, FAT32, NTFS, BitLocker

viii

Contents

1 Introduction 1
1.1 Scenarios . 2

1.1.1 Testing models . 2

2 Data storage 3
2.1 Data extraction . 3

2.1.1 HW tools . 4
2.1.2 SW tools . 4

2.2 Storage drives . 4
2.2.1 Logical structure . 5
2.2.2 Disk images . 5
2.2.3 Raw image - .IMG . 5
2.2.4 Raw data - .BIN . 6
2.2.5 Optical Disk Image - .ISO 6
2.2.6 EnCase - .E01 . 6

3 MBR 7
3.1 Structure . 7

3.1.1 Bootstrap . 7
3.1.2 Partition table . 7
3.1.3 Boot signature . 10

3.2 Behavioral testing . 10
3.2.1 Analysis . 10
3.2.2 CHS values . 12
3.2.3 Partition flag . 13
3.2.4 Partition type . 13
3.2.5 Start LBA and number of sectors 14
3.2.6 MBR recovery . 16

3.3 Partition boot sector . 17

ix

4 GPT 19
4.1 GPT vs MBR . 19
4.2 Structure . 20

4.2.1 Primary GPT header 21
4.2.2 Partition Entry Array 22
4.2.3 Secondary GPT header 23

5 Disk encryption 25
5.1 BitLocker . 25
5.2 Linux . 26
5.3 Partition encryption . 27

6 File systems 29
6.1 FAT32 . 29

6.1.1 Overview . 29
6.1.2 Structure . 30
6.1.3 Partition boot sector . 31
6.1.4 FAT . 31
6.1.5 Secondary FAT . 32
6.1.6 Files and directories . 32
6.1.7 File creation . 34
6.1.8 File deletion . 35

6.2 Ext4 . 35
6.2.1 Structure . 35
6.2.2 Block groups . 36
6.2.3 Superblock . 36
6.2.4 Block Group Descriptor Table 37
6.2.5 Bitmaps . 38
6.2.6 Inode table . 38
6.2.7 Directory entry . 40
6.2.8 File creation . 40
6.2.9 File deletion . 41
6.2.10 Journal . 41
6.2.11 Orphans . 42

6.3 NTFS . 42
6.3.1 Structure . 42
6.3.2 Boot sector . 43
6.3.3 MFT . 43
6.3.4 Directory entries . 43
6.3.5 File creation . 44
6.3.6 File deletion . 45
6.3.7 Journal . 45
6.3.8 Shadow copy . 45

6.4 File system independent operations 46

x

6.4.1 File encryption . 46
6.4.2 Data carving . 46

7 Digital Forensics 49
7.1 Typical process . 49

7.1.1 Preparation . 50
7.1.2 Data acquirement . 50
7.1.3 Preservation . 50
7.1.4 Analysis . 50
7.1.5 Reporting . 51

7.2 Digital forensics tools . 51
7.3 Anti-forensics techniques . 51

8 Disk generator tool 53
8.1 Application Design . 53

8.1.1 Program structure . 54
8.1.2 Earlier version . 54

8.1.2.1 Necessary improvements 55
8.1.3 Current version . 55

8.1.3.1 Class Schema 55
8.2 Available scenarios . 57

8.2.1 Scenario 1 . 57
8.2.1.1 Solution . 58

8.2.2 Scenario 2 . 58
8.2.2.1 Solution . 58

8.2.3 Scenario 3 . 59
8.2.3.1 Solution . 59

8.2.4 Scenario 4 . 59
8.2.4.1 Solution . 60

8.2.5 Scenario 5 . 60
8.2.5.1 Solution . 60

8.2.6 Scenario 6 . 61
8.2.6.1 Solution . 61

8.2.7 Scenario 7 . 62
8.2.7.1 Solution . 62

9 Conclusion 63

Bibliography 65

A Acronyms 71

B Contents of enclosed CD (zip file) 73

xi

List of Figures

3.1 MBR structure [16] . 8
3.2 MBR partition types - output of ”fdisk” command 9
3.3 screen shot from GParted - partitions for testing 11
3.4 Screenshot from GParted - overlapping partitions 15
3.5 Screenshot from Disks - overlapping partitions 15
3.6 Screenshot from Windows - overlapping partitions 15
3.7 Screenshot from Manjaro - setting LBA beyond the size of the drive 16
3.8 screen shot from Manjaro - setting number of sectors off-limits . . 17
3.9 screen shot from Ubuntu - setting number of sectors off-limits . . . 17

4.1 GPT table [23] . 20
4.2 GPT header [23] . 21
4.3 GPT Partition Entry [21] . 22

6.1 FAT32 structure [28] . 30
6.2 FAT32 structure in hex . 31
6.3 FAT structure . 33
6.4 Directory entry [30] . 34
6.5 ext4 structure [34] . 36
6.6 inode [37] . 39
6.7 MFT Structure [46] . 44

xiii

Chapter 1
Introduction

Digital forensics is a branch of forensic science that focuses on the identifica-
tion, preservation, extraction, and analysis of digital evidence. It is a critical
tool in criminal investigations, as well as in civil and corporate matters, where
electronic devices and networks may contain valuable information related to
an incident or event. The goal of digital forensics is to recover and analyze data
from electronic devices in a manner that is forensically sound and admissible
in a court of law.

There are several tools available for creating disk images from existing
hardware disks and for further analysis. However, according to my survey,
there are not many available options in the sense of generating these images
based on the selected parameters with the pre-built forensic scenarios of the
user’s choice. This hole is helpfully reduced by the work. Additionally, there
is a lot of room for continual improvements, as there is no chance of ever
covering all the scenarios.

The structure of this thesis is as follows: Chapter 2 is about data stor-
age, obtaining evidence from storage media, and common types of disk image
formats. Chapters 3 and 4 focus on the partitioning schemes; extensive at-
tention is paid to MBR analysis, with some of the scenarios explained. GPT
is also covered. Disk and file system encryption are briefly mentioned in the
following chapter.

Chapter 6 describes the selected file systems, in particular ext4, FAT32,
and NTFS. It pays special attention to disk layouts and internal data struc-
tures, and understanding processes of commonly used tasks. Digital forensics
in general are then mentioned in Chapter 7. Lastly, some information about
the implementation of the image generator tool is provided in Chapter 8.

Throughout the thesis, there are no details provided about Apple devices
and APFS (Apple File System). Some details of the file system are still
unknown, and there are also limitations when it comes to system data [1].
Based on the nature of the intended practical use, it was omitted from the
scope of this thesis.

1

1. Introduction

1.1 Scenarios
The main objective of digital forensics is to examine internal computer or
server storage drives to look for digital evidence as part of criminal investi-
gations [1]. This trend tends to change with the use of cloud storage. It can
be challenging to get a hold of the data stored in the cloud. It can be phys-
ically stored in multiple locations around the world, and access to it cannot
be guaranteed, even though most cloud service providers cooperate with law
enforcement on issued warrants [2].

Imagine the following scenario. A crime is committed. Law enforcement
looks through the evidence and identifies a suspect. They get a warrant and
perform a home inspection, during which they find the suspect’s laptop. It
may be essential for the case to extract the data from the computer to find
more evidence, motive, or co-conspirators. The laptop is handed to a digital
forensics team to retrieve as much information as possible. Because the data in
volatile memories, such as RAM, is erased when the power goes out, they are
not guaranteed to be useful. That leaves the laptop’s drive (HDD or SDD) as
the main source of the information, possibly alongside some portable storage
media. That is the scenario I kept in mind during the creation of this thesis.

1.1.1 Testing models
Throughout the thesis, several scenarios had to be tested in practice to assess
system behavior, as they were rather specific. These were conducted on an
external flash disk with a capacity of approximately 15.5 GB (14.44 GiB). As
for the test environments, three different operating systems were used, and
on each of them, different partitioning software. These were Manjaro 5.15.81-
1-MANJARO (64-bit) with GParted version 1.4.0, Ubuntu 22.04 LTS 5.15.0-
52-generic with gnome-disk-utility 42.0, and Windows 11 Disk Management
tool version 10.0.22621.1.

2

Chapter 2
Data storage

There are several types of computer storage. Historically, magnetic tapes or
punched cards were used. Today’s storage options are far more advanced. As
for this thesis, it is not reasonable to cover all the storage types. It is difficult
to perform forensics analysis on some types which makes them unsuitable for
learning, which is the main purpose of this thesis.

The focus will be paid to NVM (non-volatile memory), specifically HDDs,
SSDs, and external storage devices such as flash disks. These are the most
common memory types and thus are of great interest. Performing forensic
analysis on other types of memory (EEPROM, RAM, etc.) is possible and,
in many cases, very desirable, however, it is not suitable for our purpose of
creating learning software. The program output of this thesis is scale-able and
extensible; there is a possibility to add this functionality later if needed.

From now on, the terms ”drive” and ”disk” will be used to describe both
HDDs and SSDs alike, as well as external storage drives like USB flash disks
or SD cards.

2.1 Data extraction
Data extraction is a process of obtaining digital evidence. Sources of the
evidence may vary, as can the means of obtaining it; some of them are log
exports, copies of storage media, and others.

It is crucial to avoid any possible evidence tampering if the digital infor-
mation is meant to be admissible in court. Control hashes [3] is one possible
method for ensuring data has not been changed.

The original evidence needs to remain unchanged. Forensic specialists have
to work with data copies to avoid potential disruptions. This is especially true
for SSDs, which use mechanisms like wear leveling and garbage collection [4].
Both hardware and software tools exist to create a copy of digital media, some
of them are discussed in the following subsections.

3

2. Data storage

2.1.1 HW tools
There are several devices physically blocking access to connected disks, al-
lowing only one-way communication. An example of such a tool is a forensic
disk controller. It can work on either a USB or SATA connection. How
exactly the device prevents write access is usually not publicly available infor-
mation; for example, implementation is protected by patent US 6,813,682 B2
from 2004 [5]. One of such devices is the Tableau Forensic SATA/IDE Bridge
T35u [6].

There are also specialized duplicating devices, like the Tableau Forensic
Duplicator TD2u [7]. They usually offer more functionality, including hashing
for evidence-tamper detection, disk cloning, formatting, and others.

2.1.2 SW tools
Multiple programs are available to create disk images from the existing drives.
It is really important not to perform any write operations on the original drive,
as this could cause the obtained evidence to be inadmissible in court.

Starting with one of the popular options [8], FTK Imager is accessible as
a free-to-use tool created by AccessData [9]. It is one of the most widely used
free software packages in the field. Functionality includes creating images,
exporting files, previewing, hashing, and more. If we want a full-scale foren-
sics tool, FTK (Forensics Toolkit) from the same company is also an option,
although it has a commercial license.

EnCase [10] is a popular digital forensics tool that is widely used by law
enforcement agencies, forensic investigators, and other organizations [1]. It is
a comprehensive tool that provides a range of features, including data acquisi-
tion and imaging, data analysis and search, and evidence presentation. From
the beginner’s point of view, a disadvantage is its commercial license.

Magnet Forensics’ products are among the most widely used commercial
software. They are well-regarded among professionals and even used by law
enforcement, it is one of the currently best choices for digital forensics analysis
[1]. There are lots of other tools, such as Autopsy, Cellebrite Inspector, and
X-Ways, to name a few; it comes down to the preferences of individual users.

2.2 Storage drives
Traditional magnetic HDDs are mainly used in high-capacity storage servers
and data centers, as their cost-performance ratio is still the best when there
is no need for extra high-speed data transmissions. Speed limitations can be
partially addressed by cache memory. Still, it is fairly rare to find hard disks
in modern computers as their only drive.

Solid-state drives are generally much faster, but that is balanced by a
higher price. The storage method fundamentally differs from magnetic drives,

4

2.2. Storage drives

with NAND flash storage being the number one option. Due to their nature,
SSDs have a limited lifespan. Therefore, techniques such as wear-leveling and
garbage collection are used.

Utilizing all the cells of the drive equally prolongs its service life, but it has
a significant negative impact on digital forensics. A leading example could be
deleted files. When a file is marked as erased, it can still be retrieved from
the magnetic storage (using various techniques) as long as the memory space
is not overwritten. This is not guaranteed for flash-based memory, as it can
utilize a technique called TRIM for erasing data marked as deleted [4].

2.2.1 Logical structure
To work with the storage space of either internal or external drives in a user-
friendly way, it has to be formatted to a certain file system. It is possible to
use unformatted disks and access them as raw on low-level, but this is not a
common practice. Therefore, it is not suitable for this study. There are many
file systems usable when formatting storage devices, and it is not possible to
cover them all. The most commonly used (except for macOS) are described
later in the thesis.

This section is focused on the organization of the disk as a whole. On the
drive, there can be multiple partitions with different file systems. They are
organized in a well-defined manner; the older Master Boot Record (MBR) and
the newer GUID Partition Table (GPT) are the two mainly used partitioning
schemes.

2.2.2 Disk images
A disk image is a digital representation of a disk, a computer file that be-
haves similarly to a hardware drive. It includes its content and has the same
structure. The most common usage is in virtualization, where these images
are used for virtual computers (VMware or Oracle VM VirtualBox being ex-
amples of such usage), software distribution (OSes, as well as other programs
are often provided in the form of ISO images), and digital forensics.

There are multiple types of disk images, only a selected few will be dis-
cussed. The selection is based on relevance in this thesis, the author’s experi-
ence with the images, and overall popularity in the community.

2.2.3 Raw image - .IMG
Raw disk images contain raw, unaltered data in binary format. They are
block-by-block identical copies of the source. There is no additional metadata
or compression. Especially, compression would be useful for high-capacity
disks where a significant amount of the drive is not occupied and, thus, there
is no need to store it byte by byte. This format is easy to create (a simple dd

5

2. Data storage

command on Linux will suffice). As they do not need any external tools to be
read or created, this is the ideal format for our purpose and will be used in
the practical part of this thesis.

2.2.4 Raw data - .BIN
There is not much difference between .IMG and .BIN disk images in terms of
content. Both contain raw binary data. The only one is that .BIN is often used
to store solely file and directory content, not containing any information about
the disk layout. In combination with .CUE file, they can create a complete
disk image [11].

2.2.5 Optical Disk Image - .ISO
As the name suggests, ISO disk images are complete copies of optical disks
like CDs or DVDs. They do not include any compression and are often used
to distribute software, such as Linux distributions or Windows OS. The ad-
vantage is that ISO images can be mounted the same way regular optical disks
would. Also, ISO is well standardized [12], and there should be no variations
in the implementation of the format in any software used.

2.2.6 EnCase - .E01
There are several disk images that are originally associated with the software
used for their creation. One of the most widely recognized is the EnCase
evidence file. Encase Forensic is a very popular digital forensics tool that uses
this format when coping and creating disk images. It divides the disk into
data chunks of size 640 MB [13] and stores important information separately,
including checksums, headers with details like media description, author name,
date, and others. Nowadays, FTK Imager can work with this type of file too
[14].

6

Chapter 3
MBR

Master Boot Record (MBR) is a partitioning scheme introduced and originally
used in MS-DOS. It resides in the first sector of the storage medium and
holds information about booting the device and partition distributions. MBR
cannot be found on non-partitioned disks, e.g., on floppy disks [15], which are
out of the scope of this thesis.

3.1 Structure

MBR can be found in the first sector (logical address 0x00). Its size is 512
bytes, which is a standard logical disk sector size. It has a table structure, as
can be seen in Figure 3.1.

3.1.1 Bootstrap

Section bootloader (bootstrap, Master Boot Code) is the first of the three main
parts of MBR with 446 bytes in size. It contains executable code to boot the
device. That is usually done by finding an active partition and loading its
first sector, which contains additional boot code (446 bytes are not enough to
load a whole operating system to memory and transfer control to it).

3.1.2 Partition table

The partition table is the next significant part of the media. It holds all
the necessary information about drive partitions. With 64 bytes in size, it is
divided into four equal parts of 16 bytes, each for a separate partition. That
would mean a maximum of four partitions on the drive. However, the last one
can be programmed as an extended one, which could contain more partitions
within. The internal structure then looks similar to the main partition table.

7

3. MBR

Figure 3.1: MBR structure [16]

Structure

As noted in the Figure 3.1, each partition entry is divided into 6 parts, their
respective sizes can also be found in the figure.

Partition flag holds information about partition status. Value 0x80
stands for an active (bootable) partition, the one containing additional code
to boot the device. Value 0x00 is standard for partitions, that are valid but
not used for booting. All the other values indicate that the partition is invalid.

The physical location on the disk is stored in sections Start CHS Ad-
dress and End CHS Address. CHS stands for cylinder-head-sector, it is an
older way to specify a location on a hard drive based on its physical structure.
There are two related problems. There are only 3 bytes dedicated to these
addresses, which limits the total possible capacity of the storage drive. Sec-
ondly, flash storage uses a different structure than HDDs and CHS addressing
no longer makes sense from a physical point of view.

A newer addressing system, Logical Block Addressing (LBA), is used.
Start LBA represents the beginning of the partition by sector sequence num-
ber, that is, the number of sectors from the beginning of the disk, starting
with sector 0. Instead of end LBA, Number of Sectors of a partition is

8

3.1. Structure

Figure 3.2: MBR partition types - output of ”fdisk” command

stored, which determines its size; the final sector dedicated to the partition
can be computed from that. The remaining field, Partition Type, specifies
the file system used. A list of possible values can be found in figure Figure 3.2.

Limitations

From the structure, there are some limitations to be noted. The start and
end CHS addresses are only 3 bytes long. There are 10 bits for the cylinder
number (0 - 1023), 8 bits for the head (0 - 254), and 6 bits for the sectors
(1 - 63) [17]. That means any sector beyond these maximal values is not
possible to be represented by the CHS method and has to be indexed by
LBA only. Traditionally, there are 512 bytes in a sector, leaving the maximal
referenceable size of disk 512 · 63 · 255 · 1024 = 7.84 GiB. As the number of
sectors is 4 bytes long (and so is LBA), there can be a maximum of 232 · 512
bytes in a partition, that is 2 TiB. MBR will still work for drives with higher
storage capacities, but the remaining space cannot be used. This limitation
was one of the leading causes that led to the development of GPT, which is
described in the section 4.

The apparent limitation of only 4 partitions can be resolved by setting the
last partition as extended (there can be only one on the disk), which then can
be separated into multiple logical partitions. It cannot be used for booting

9

3. MBR

but still provides a reasonable level of data security. Similarly to MBR, at the
beginning of an extended partition, there is Extended Partition Boot Record
(EPBR or EBR). It has the same structure, only Master Boot Code is not
used and is usually filled with zeros. Then again, one of these logical partitions
can be extended, which can be divided again into logical partitions. There is
no limit to the number of logical partitions [18].

3.1.3 Boot signature
The last two bytes of the MBR are the boot signature. Their purpose is
verification; a valid boot device will have these bytes set to 0x55 and 0xAA.
This is sometimes called the magic number [15].

3.2 Behavioral testing
Only a few reliable sources describe the behavior of the MBR table and parti-
tioning SW when there are some artificial modifications made (e.g., rewriting
or changing selected bytes of the MBR table). Firstly, the MBR table is
updated immediately after changes regarding partitions are made. Deleted
partitions are not easily recoverable by changing the status in the respective
MBR field. How partitioning SW would behave if we turned it around and
changed some parts of the table is a question that available sources do not
cover sufficiently or convincingly. To describe the behavior correctly, these
scenarios had to be tested.

Tests were performed in the following way. External flash storage of size
14.44 GiB was formatted in the GParted software for multiple partitions uti-
lizing multiple file systems, particularly FAT32, ext4, and NTFS. Exact space
distribution can be seen in Figure 3.3. The corresponding MBR table can
be found in Figure 3.3, where separate partitions are indicated by different
colors.

3.2.1 Analysis
Let’s examine the MBR table generated from Figure 3.3. Skipping the boot-
strap code area, the first byte of our focus is 446 (0x1BE) (numbering from
0). That is our first partition. The first byte is 0x00, meaning the partition
is not set for booting and is valid. Following are 3 bytes of the starting CHS
address: 0x040104. It should be noted that little endian is used. It does not
make any difference for this value but should be kept in mind for the next
ones.

The following byte is a partition type. According to Figure 3.2, 0x0B is
FAT32, which (unsurprisingly) corresponds with what was set in the GParted
tool. The end CHS address is 0xFFC2FE, the start LBA is 0x00000800, and
finally, the number of sectors is 0x0055F000. Similarly, the second partition

10

3.2. Behavioral testing

Fi
gu

re
3.

3:
sc

re
en

sh
ot

fro
m

G
Pa

rt
ed

-p
ar

tit
io

ns
fo

r
te

st
in

g

11

3. MBR

type is 0x83 (Linux), the third is 0x07 (NTFS) and the last is 0x05 (extended).
At the end, there is a boot signature, bytes 0x55 and 0xAA, meaning the table
is valid.

As one of the objectives of this thesis, a detailed analysis of the individual
fields will be provided. It is not usually necessary to perform any MBR-related
modifications in ordinary life, but it should be included in the learning process
as it is one of the essential parts of the drive and related complications may re-
sult in data loss, operating system failures, and other critical outcomes. Also,
a malicious actor can modify the table manually to confuse the investigators
and to try hide some evidence.

3.2.2 CHS values
There are several things to be mentioned. Firstly, how LBA works. The first
partition starts at sector 0x0800 = 1 MiB, which is caused by alignment. The
second starts at 0x55F800. The number of sectors between them should be
equal to the number of sectors of the first partition, which holds, 0x55F800 =
0x800 + 0x55F000. To verify, 0x55F000 sectors of 512 bytes is 0xABE00000
bytes, which is 2883584000 bytes in decimal, which corresponds to 2.6855 GiB
setup in the GParted tool.

Secondly, computation of CHS values. In the case of flash memory, CHS
values have no relation to the physical structure of the drive, but these num-
bers are still calculated and filled in the table. The start CHS value of the
first partition is 0x040104. If we look at the level of individual bits, 0b0000
0100 0000 0001 0000 0100. The first 10 bits show the cylinder number, in this
case, 0b0000 0100 00 = 16. The head number is following 8 bits, 0b00 0001
00 = 4. The remainder, 6 bits, is the sector number, 0b00 0100 = 4. LBA is
calculated in a straightforward manner, that is

LBA = (C · HPC + H) · SPH + S − 1,

where HPC is the number of heads per cylinder and SPH is the number of
sectors per head. The calculation for this specific case,

LBA = (C · HPC + H) · SPH + S − 1 = (16 · 255 + 4) · 63 + 4 − 1 = 257295.

This does not make sense, LBA is 0x800. The issue is in the previously
mentioned missing connection of CHS to the physical structure. This informa-
tion is not used anymore. Even altering it to arbitrary values did not change
a thing regarding partition distributions. I was not able to find out why these
specific numbers appear in the start CHS and the end CHS values, but they
are not relevant. Let’s examine what happens when the other parts of the
table are altered, e.g., by the dd command.

12

3.2. Behavioral testing

3.2.3 Partition flag

The first thing to look at is the partition flag. Valid combinations are 0x80
and 0x00 as mentioned earlier. What happens if we mark a non-bootable
partition with an 0x80 flag is a fascinating question. It is a well-known fact
that only one disk partition can be marked active. However, marking multiple
partitions active on the test flash drive storage did not prove to be a problem,
neither for Windows nor for Linux operating systems. It has to be noted that
this flag was only technical, as there was no boot code on any partition at all.
This may be the reason why, even with the flag properly set, this drive was
not even available in the boot device menu.

Our next focus is an invalid flag. Any value other than 0x80 or 0x00
means the partition is in an invalid state. The behavior of different operating
systems and partition software varies significantly. After setting the flag to an
arbitrary number, the GParted tool was not able to recognize any partitions
and displayed the drive as an unallocated space. The Disks utility in Ubuntu
recognized different partitions as they were, but was unable to detect used
file systems or access files on the drive (note that this only covers automatic
mounting and access given by default, there may be some methods to access
the data using advanced techniques, but it is out of scope of this thesis). The
best solution offered MS Windows 11, which not only detected the partitions
correctly but, furthermore, was able to access the files stored on the drive
(although there were typical problems accessing files on the ext4 file system).

3.2.4 Partition type

Overwriting the partition type byte can also prove tricky. Let’s examine the
situation. As main contenders, tested partitions are FAT32, ext4, and NTFS
(their codes in Figure 3.2 are 0x0B, 0x83, and 0x07). In this test, Linux came
out on top, as both Manjaro and Ubuntu were able to read and write all the
partitions, even with interchanged labels. The situation for Windows 11 was
considerably worse. I was not able to convince it to open the ext4 partition
no matter how it was labeled, but that was to be expected. Furthermore,
marking FAT32 and NTFS partitions as ext4 resulted in the same situation
even for these systems. For both of those, FAT32 and NTFS labels worked just
fine. It shows that modern OSes do not rely simply on the provided labels, as
they would be unable to read or write these partitions. It can be considered
expected behavior, generally, all the input to the computer should be regarded
as invalid or malicious until proven otherwise, creating a presumption of guilt.

There are some interesting partition types to be mentioned further, and
those are hidden partitions. A hidden partition is not visible when viewing
the list of available drives on a computer. This allows the partition to be
used for storing important files, boot files, etc. For this purpose, all hidden
NTFS (option 0x17), hidden FAT32 (0x1B), and hidden ext4 (0x93) were

13

3. MBR

tested. This method does not provide any general protection as the flag can
be very easily changed in most of the available partitioning software (that
stands for Linux, doing this in Windows is not straightforward and requires
a little deeper knowledge), but for inexperienced users or those without admin
privileges, this may pose a bit of a challenge. There are more methods for
detecting hidden partitions; the most obvious in this context is to look at the
MBR table. Also, one can compare the disk capacity to the total capacity of
all detected partitions and see the discrepancy.

3.2.5 Start LBA and number of sectors
If two or more partitions overlap, it means that they are using the same
space on a drive. This can cause several problems, including data loss (if
two partitions are trying to access the same data, one of the partitions may
overwrite the other, resulting in data loss) and file system corruption. It is
generally a good idea not to have overlapping partitions. In this section, we
are going to look at what can happen if this situation occurs.

For the experiment, three equal partitions were created on the USB drive,
all of them beginning just after the MBR and alignment (LBA 0x800) and
covering the full size of the medium. The situation was tested in four differ-
ent scenarios; different file systems for separate partitions (ext4, FAT32, and
NTFS) and all having the same for each of these three file systems. Behavior
differed significantly by the tool used.

GParted prompted the user with a warning on startup about possible
overlapping partitions in all the tests. The situation caused the tool to be
unstable and frozen when further partition adjustments were needed. All
three partitions were mounted without an issue, enabling a user to write to
and read from all of them. The output given in the GUI indicated three
partitions of the same size (the full size of the drive), see Figure 3.4. As
expected, data overwriting happened, and it did not take much effort to lose
saved data by writing different files in the same sectors on variable partitions.
That stands for the situation when at least one FS differs from the other two.
When all the file systems were of the same kind, I was not able to achieve file
overwriting, as all the changes were propagated to all the partitions with no
differences and no problems.

In Ubuntu, mounting all the partitions was not an issue as well, the experi-
ence was very similar to Manjaro. However, utility Disks showed odd manners
in displaying the overview. It suggested only two partitions (although 3 were
already mounted) and even though they were the same size, on the display
one occupied significantly more space, see Figure 3.5. Files overwriting proved
to be tricky, as the OS refused to write to more partitions at once, after writ-
ing to one, the other two were marked read-only. On user-level experience,
I did not find a way to overwrite or corrupt files, including using superuser
privileges.

14

3.2. Behavioral testing

Figure 3.4: Screenshot from GParted - overlapping partitions

Figure 3.5: Screenshot from Disks - overlapping partitions

Figure 3.6: Screenshot from Windows - overlapping partitions

Windows proved to be a user-safe system; it was the only one that mounted
only the first partition (in case it was not ext4, problems mounting the ext4
file system were already mentioned earlier). Attempts to mount the other two
resulted in an error referring to out-of-date information loaded and suggested
restarting the program or the whole OS, which for obvious reasons did not
help. Talking about the actual partitioning program, it displayed all the
partitions with the correct sizes and assumed the overall storage size to be
their sum. Details can be seen in Figure 3.6.

15

3. MBR

Figure 3.7: Screenshot from Manjaro - setting LBA beyond the size of the
drive

There were 3 more tested scenarios, in particular starting LBA inside the
MBR table, beyond the size of the drive, and setting the size of the partition
higher than the drive. Altering the start LBA value failed in all three testing
models. None of the systems was able to mount the drive. Windows required
formatting the device before using it, Manjaro and Ubuntu both displayed
incorrect readings in the program display output showing unrealistic values,
as can be seen in Figure 3.7. Both Linux systems showed an error when trying
to perform any operation with the partition, reporting an inability to read the
partitioning table or an unfamiliar partition description.

The situation became more interesting when I changed the number of
sectors to an off-limits number. All the systems were able to mount the
drive. In Manjaro, any operation in GParted resulted in the error message
the same as the one above. The reported disk size was consistent with the
number of sectors (Figure 3.8). Write and read operations worked as normal.
Ubuntu showed the wrong drive size (see Figure 3.9). However, it automati-
cally reloaded, repairing the number of sectors to match drive capacity. All
the other operations worked as well. Windows offered an easy but not very
intuitive solution. Drive was not accessible immediately, there was no FS rec-
ognized. After the formatting operation was issued, it returned an error (of
the same nature as in the case of Manjaro). However, the data was reloaded
and the correct readings were available right away. Data on the disk could be
accessed, and no data loss occurred.

3.2.6 MBR recovery

If the entire MBR table is deleted, it does not mean all the data is lost. If one
can successfully recover the MBR, the data on the disk remains unchanged.
That is true for HDDs but not necessarily for SSDs. They use garbage collec-
tion and level wearing, which can cause overwriting or permanently deleting
stored data [4]. There are multiple ways to recover a lost MBR table. The
most optimal is recovery from a backup, because if only the files changed on

16

3.3. Partition boot sector

Figure 3.8: screen shot from Manjaro - setting number of sectors off-limits

Figure 3.9: screen shot from Ubuntu - setting number of sectors off-limits

the drive, there should be no effect on the MBR table, and thus even old
backups can be handy. It would be necessary to back up the MBR table as
well and not just the user files, which is not a common practice. Multiple
commercial tools claim to be able to recover a partition table, such as the
EaseUS Partition Recovery tool [19]. The exact method of recovery is kept
secret (that is to be expected), but one can assume it processes raw disk and
looks for file signatures and other artifacts to try to identify partitions and
used file systems.

3.3 Partition boot sector
The partition boot sector is not a part of MBR, but it is strongly intercon-
nected with it. Therefore, at least a brief introduction is provided in this
section. The partition boot record (PBR) (or partition boot sector) is a spe-
cific area of a computer’s drive that contains the instructions for booting the
operating system. It is typically located at the very beginning of the drive
partition(s) in logical sector 1.

17

3. MBR

The bootstrap code area inside the MBR table contains a short program
that is used to start the boot process, while the partition boot record is a
data structure that is used to store information about the boot process and
is used by the bootstrap code to locate and load the operating system and
the boot loader. Once the boot loader has been loaded, it takes control of the
boot process and is responsible for locating and loading the operating system.
The operating system is then initialized and control is transferred to it, it
is responsible for managing the resources of the computer and providing a
user interface. All the partitions can contain a program to load the operating
system, but only one is given control by the Master Boot Record, which is
the one specified as active in the partition table entry [20]. Unlike the MBR
table, PBR is highly file system dependent.

18

Chapter 4
GPT

GPT (GUID Partition Table) is the newer and more modern partitioning
scheme. Created to assess some previously mentioned limitations of MBR,
GPT is a part of the Unified Extensible Firmware Interface (UEFI) specifica-
tion and was designed as a replacement for the MBR scheme [21].

4.1 GPT vs MBR
GPT offers several advantages over MBR, making it a better choice for the
majority of modern drives. For example, GPT supports disks of much higher
sizes, up to exabytes, while MBR is limited to disks up to 2 tebibytes in size.
This is important because hard drives are getting larger and larger, and many
users need a partitioning scheme that can support disks with high capacities
that exceed the maximum limit of MBR. Not only in personal computers, but
also in data centers, where this size of drive is fairly common. Furthermore,
LBAs are 64 bits long instead of the 32 bits in the MBR, increasing the
maximum possible disk capacity. It is almost impossible to buy a new PC
with the MBR partitioning scheme set up by default.

In addition to supporting larger disks, GPT also allows for more than four
partitions on a single disk. MBR is limited to a maximum of four primary
partitions, which can be restricting for users who need to access multiple OSes
from the drive (without using virtualization). It is partially mitigated by the
possibility of using multiple logical partitions, but those cannot be set up as
boot partitions. On the other hand, GPT allows users to be more flexible
in how they organize their data. According to the specification [21], there is
almost no limit on the number of partitions on the drive, but there could be
OS restrictions, e.g., Windows limits this number to 128 partitions [22].

GPT also includes improved error-checking and recovery capabilities. It
uses cyclic redundancy checks (CRCs) to verify the integrity of the partition
table and can detect and repair certain types of corruption. This can help

19

4. GPT

Figure 4.1: GPT table [23]

prevent data loss and ensure the reliability of the partition table. Also, a
full backup is stored in a different part of the disk, making it unlikely to
accidentally get into similar scenarios as were described in the MBR chapter.

Another advantage of GPT is its inclusion of the protective MBR (a MBR
table is at the beginning of the disk even if GPT is used). This can help prevent
accidental overwriting of the GPT data, which can occur if the user is unaware
that the disk is using GPT and attempts to create an MBR partition table
on the disk. Also, it provides limited backward compatibility; older programs
that do not recognize GPT will read the protective MBR and interpret the disk
as having a single partition (which type would probably be unrecognized), but
it should prevent the software from addressing the disk as unpartitioned [22].
The used partition flag in the protective MBR is in the case 0xEE, indicating
usage of the GPT table.

In addition to the protective MBR, GPT also supports partition labels and
type codes. These allow users to assign names and type codes to partitions,
making it easier to identify and manage them. This can be especially useful
when working with large disks that have many partitions. Finally, GPT is
required for the use of certain features, such as secure boot [21] and faster
boot times, which are not available with MBR. Secure boot helps protect
against malware by requiring that the system only boot using trusted boot
loaders, while faster boot times can improve the overall user experience by
reducing the time it takes for the system to start up.

4.2 Structure

The structure of GPT can be found in Figure 4.1. As is immediately notable,
there are no fields with CHS values. Protective MBR was discussed in the
section comparing MBR and GPT; thus, it will be omitted here. Green and
blue-marked fields are copies of the same data for redundancy.

20

4.2. Structure

Figure 4.2: GPT header [23]

4.2.1 Primary GPT header
The primary GPT header is located in LBA 1 (the second logical block). It
is a data structure that contains important information about the GPT itself
as well as the partitions that are defined within it. A brief description of each
field can be found in Figure 4.2.

The first and last usable LBAs identify the range usable by GUID Partition
Entries. All the data stored on the drive must reside in this range, with the
only exception being the data structures defined by UEFI to manage partitions
and drive information.

A cyclic redundancy check is used to identify modifications of the header
as well as the partition table. The checksum is computed by the EFI process
during the startup sequence and compared to the value stored. It poses chal-
lenges for the raw GPT data editing action since the CRC would have to be
recalculated each time. It is impossible to use disk hex editors to edit raw
GPT data without manual re-computation [23].

If any discrepancies are detected, the GPT header is corrected by the
backup header [23]. The two headers have to be the same to successfully work
with the disk, the incorrect one is overwritten by the valid one. If a program
changes any header entry, it is required to also change the secondary header
entry. If both of them are invalid, the disk is usually corrupted, and recovery
attempts have to be made to save the data.

The CRC (to be exact, the CRC32) is calculated based on the generating
polynomial [24]. The hash can be computed using various programming li-

21

4. GPT

Figure 4.3: GPT Partition Entry [21]

braries (e.g., Boost C++ libraries [25]). Computing the hash manually would
be extremely inefficient.

Having in mind all the checksums and the header redundancy, it is very
unlikely to either intentionally or unintentionally alter GPT header fields to
cause any significant issues with the drive. Therefore, the testing of the alter-
ation of these fields is omitted from the scope of this thesis.

4.2.2 Partition Entry Array
All the information about partitions is stored in the Partition Entry Array. A
detail of the table can be seen in Figure 4.3. There are 8 bytes reserved for
each LBA entry. That allows the maximum number of blocks to be 264, with
a logical block size of 512 bytes resulting in a maximum capacity in the order
of exabytes, leaving plenty of room for disks in the years (and probably even
decades) to come.

The starting and ending LBA pints point to the physical storage location,
where the data within the partition is stored. Also, there are no PBRs in the
partitions. For all the computers with UEFI, boot code and other necessary
information for starting up the machine are stored in a special partition called
the EFI System Partition (ESP) [21]. It is stored as a regular partition on
the drive with an adequate entry in the partition table. As the drive forensics
covered in this thesis do not include operating systems, it is beyond the scope
of this thesis to further investigate them.

OEM, also known as the vendor partition, is another common special
partition. There are usually device-specific files stored, such as firmware,
drivers, or diagnostic tools.

22

4.2. Structure

4.2.3 Secondary GPT header
Located in the last logical sector, the secondary GPT header acts as a backup
for the primary one. It contains the same fields, and for the system to work
properly, the two headers must be the same. As the CRC is mainly for error
detection, this header acts as the backup to restore the primary header in the
case of need.

23

Chapter 5
Disk encryption

Physical security has been one of the bottlenecks in securing computers for a
very long time. It does not matter how strong users set their passwords in
the account profiles; if an attacker can just open their PC case and steal their
drive, all the data would be accessible to him (of course, there are some lim-
itations, such as separate file or folder encryption). Luckily, security evolves,
and nowadays all the mainstream operating systems support some kind of full
disk encryption mechanism.

5.1 BitLocker
The most widely-used full disk encryption software is BitLocker, as it is em-
bedded in the newer version of Windows OS. This Microsoft-developed tool
is for Windows users only. It uses the Advanced Encryption Standard (AES)
algorithm with a 128-bit or 256-bit key to encrypt data on the disk. When
BitLocker is enabled, it ciphers the entire disk, including system files, system
recovery files, and user files. This means all the data on the disk is encrypted
and cannot be accessed without the correct password or passphrase in a spe-
cial pre-boot environment. This password is used to unlock the encryption
key, which allows data on the disk to be read and accessed. If the password is
entered incorrectly, the data on the disk remains encrypted and inaccessible.

Encryption works on the fly. When data from a drive is required, it is de-
crypted and then fed to the operating system (or any other program). There
are two main points to be made. Firstly, separate storage blocks (units) of
the drive have to be encrypted separately, but more importantly, decrypted
separately, which limits the number of possible block cipher modes. Secondly,
as the data must be decrypted (or encrypted, in the case of writing) before us-
age, there is a little overhead that may result in a performance drop. The fact
remains that modern CPUs have a dedicated instruction set for AES encryp-
tion (at Intel, there is AES-NI) and overall hardware support for encryption

25

5. Disk encryption

and decryption. Also, CPU speeds are much higher than storage read and
write operations. As reported by many users, the overall performance impact
is negligible.

The drive must have at least two partitions, one formatted with NTFS and
the other with NTFS or by FAT32. The second has to be different from the
OS partitions, it is not locked by BitLocker and contains files needed to load
Windows. Partitions encrypted by BitLocker cannot be marked as ”active”
[26].

There is a recovery key attached to the Microsoft account of the user;
it could be stored in his profile. AD Users and Computers has a recovery
password view option; additionally, a domain controller can include all re-
covery passwords across a domain forest [26]. The recovery key is required
when a computer detects a possibly unauthorized attempt to access data. The
user is prompted by display of the BitLocker recovery screen in the pre-boot
environment.

To get the most out of this tool, usage along with TPM (Trusted Platform
Module) is advised. That is the special chip on the motherboard for generating
and storing the encryption key and performing authentication checks on the
firmware. Its advantage is that it is nearly impossible to be accessed by
any malicious software [26]. It can provide an additional level of security by
ensuring that the drive is still plugged into the same computer and there has
been no tampering with critical system components.

The biggest problem with IT security is users. If someone encrypts their
data using a weak password that can easily be guessed, it does not matter how
much encryption is built on top of it. The same stands for this case, knowing
the secret password, there is no problem in accessing user data. However, as
BitLocker is Microsoft proprietary software, there is no easy way to encrypt
or decrypt it without Windows utilities, thus it is not a candidate suited for
scenarios in this thesis.

5.2 Linux

Majority of Linux systems, including Ubuntu, support LUKS (Linux Unified
Key Setup) for disk encryption. The basic behavior is similar to BitLocker,
except LUKS can support several passwords for decryption [27]. Other very
popular open-source (or freeware) utilities are dm-crypt, VeraCrypt and True-
Crypt.

The most basic way to detect encryption is to use the file command on
Linux, which should output any used encryption (the encryption must be
recognized by the command, which is not a problem for all the common en-
cryption types).

26

5.3. Partition encryption

5.3 Partition encryption
There are several scenarios in which we want to encrypt disk partitions sep-
arately. In some cases, it is necessary due to technical reasons, e.g., in the
case of dual booting. The process is the same (analogical) as for the full disk
encryption.

27

Chapter 6
File systems

Until now, there were presented means to format a partition for a specific file
system and other disk-wise utilities. This chapter is focusing on the imple-
mentation of selected file systems, their behavior, and internal data structures
to keep files, directories, and free space organized. There will be some criti-
cal knowledge foundations required to successfully pass some of the forensic
scenarios.

6.1 FAT32
The FAT (File Allocation Table) file system was developed in the 1970s for
use on floppy disks and has since been adapted for use on hard disks and other
types of storage media. Nowadays, it is mainly used for external flash disks
and SD cards. There are several different versions of the FAT file system,
including FAT12, FAT16, and FAT32. The main difference between these
versions is the size of the files and disks they support.

6.1.1 Overview
At the heart of the FAT file system is the File Allocation Table (FAT), a
structure that gave name to the whole FS its name. It is a table of blocks,
stored at the beginning of a partition, that is used to track the location of
each file on the disk. When a file is saved, FAT is updated accordingly to
reflect the location of the file’s data on the disk. When a file is deleted, FAT
is updated to reflect that the blocks of disk space that the file was using are
now available for use by other files.

In addition to FAT, the FAT file system also includes a root directory,
which is a special directory that contains the names and locations of all the
files and sub-directories on the disk. The root directory is usually located
near the beginning of the partition and is used to quickly locate files and
directories. An overview of the file system structure can be seen in Figure 6.1.

29

6. File systems

Figure 6.1: FAT32 structure [28]

The FAT file system uses a simple structure to store and organize files on
the disk. It divides the disk into multiple groups of blocks (sectors) called
clusters, which are the smallest unit of disk space that can be allocated and
used to store a file. Each cluster is typically a few kilobytes in size and can
hold a portion of a file. When a file is saved, FAT is used to track the location
of each block of the file on the disk.

The simplicity of the system and ease of understanding make it widely
supported on a variety of operating systems, including Windows, macOS, and
Linux. However, it has limitations in terms of the size of files and disks that
it can support, and it does not have many of the advanced features found in
more modern file systems, such as support for file permissions or disk quotas.

6.1.2 Structure

There are three areas created in a partition formatted as FAT32. The first
is reserved for the file system information, including the boot code. There
is also a file system signature. The second part is dedicated to the FAT; it
contains the primary allocation table and possibly even a backup table. Its
size is determined by the size of individual FAT entries and the total number
of clusters on the partition. The allocation table is typically duplicated for
redundancy and error correction.

The final part is meant for data, here are the clusters for files and direc-
tories. Also, the root directory is located here. In the older systems, FAT8
and FAT16, the root directory was immediately after the allocation table.
In FAT32, the root directory can be located anywhere in the data area [17],
although it is commonly at the beginning as well.

30

6.1. FAT32

Figure 6.2: FAT32 structure in hex

6.1.3 Partition boot sector
The first part of the reserved area (first 512 bytes) is meant for a boot sector.
There are several critical pieces of information about the FAT32 file system
that should be known. Analyzing the whole structure is not suitable for this
thesis; focus will be paid only to the fields directly connected to our forensic
scenarios later on.

The complete structure of the partition boot sector can be found in several
sources, e.g., in [17] or even on Wikipedia. The usage of these fields should
be evident from the brief description provided. Important values in scope are
highlighted in Figure 6.2 and they are also listed below (the first part is data
position - byte range in hex, followed by a short description, and value from
Figure 6.2, keep in mind that little endian is used):

• 0B-0C - bytes per sector - 0x0200, 512 bytes

• 0D-0D - sectors per cluster - 0x10 - 16 sectors

• 0E-0F - size of the reserved area in sectors - 0x0020, 32 sectors

• 10-10 - number of FATs used (usually 2) - 0x02 - 2 FAT tables

• 24-27 - size of each FAT structure in sectors - 0x000039C0 - 14784 sectors

• 2C-2F - root directory cluster (typically 2 - third cluster in the data
area) - 0x00000002 - sector 2

6.1.4 FAT
The File Allocation Table is the structure from which the entire file system
got its name. It is located after the reserved area, which size is mentioned
above. The key part of this file system is understanding how the allocation
table works in combination with the root directory and directory entries. The
position of both can be calculated from the information in the boot sector;
details are provided above.

31

6. File systems

Available storage capacity is divided into identically sized clusters, whose
sizes are defined in the boot sector. A cluster is a basic allocation space for a
file. For large files, more clusters may be used in a chain (linked list). Each
entry in the FAT corresponds to one cluster. The number in the file system
name represents the number of bits dedicated to identifying storage clusters.
In the case of FAT32, only 28 bits are used; the rest are reserved. As a result,
FAT32 can only support partitions up to 228 clusters [29]. Cluster size depends
on the size of a drive as well as the operating system used.

If a cluster is unallocated, the corresponding value in FAT is 0x0, meaning
any file can allocate its content into the corresponding cluster. If the cluster
is damaged, the entry value is 0x0FFF FFF7 (there are a maximum of 228

clusters, which corresponds to 0x0FFF FFF6 clusters after subtracting the
11 blocks not used for data storage. Any higher value means the end of file
(EOF), ending the cluster chain; more on that later.

Any other value is a link to the next cluster. If a file is too big to be stored
in just one cluster and others are needed, the entry in the FAT corresponding
to the first cluster of the file contains a link to the entry of the next cluster
where the content of the file can be found, which can link to another cluster,
and so forth, creating a chain of clusters ended by the EOF flag.

An example of FAT can be seen in Figure 6.3. The first 8 bytes are reserved
(2 entries). The first data area cluster is third (cluster 2) and it is typically
used by the root directory. To show its functionality, a picture was copied to
the drive to show how allocation behaves in hex values. And according to our
expectations, the picture needed more than one data sector, so unallocated
sectors had to be linked. In this example, the allocation was linear, the fourth
entry (number 3) points to number 4, and so forth. The end of the file is
marked by the EOF value 0x0FFFFFFF in block number 64.

6.1.5 Secondary FAT

For redundancy, there is often a backup FAT, and values in it are updated
alongside the main one. The total number of FATs can be found in the boot
sector. They are located directly next to each other, right after the boot
sector. In the situation remarked by Figure 6.2, there are two FATs present,
each of size 14784 sectors. The first table can be found after the boot sector,
which means in sector 32 from the beginning of the partition, and the second
one can be found in sector 32 + 14784 = 14816 from the beginning.

6.1.6 Files and directories

The root directory is located in the cluster defined in the boot sector (bytes
0x2C-2F), typically cluster 2. It contains directory entries for the root folder,
and all the searches through the file tree start here.

32

6.1. FAT32

Figure 6.3: FAT structure

For each file or directory, there exists a 32-byte directory entry containing
essential data like a name, dates, and size; a full list can be seen in Figure 6.4.
It also contains the position of the first data cluster, where the actual file con-
tent is stored. There is no significant difference between files and directories,
as they are looked at as a special kind of file.

If a file is bigger than one cluster, additional space is needed. An unal-
located cluster (FAT entry 0x0) is chosen and linked to from the FAT entry
corresponding to the first data cluster of the file. That is, the FAT entry for
the first cluster will contain the number of the next cluster. This way, a chain
of arbitrary length can be formed. One of the possible allocation algorithms
is ”next available” [17]. It allocates the first empty cluster, starting from the
previously allocated one. Unallocated clusters are recognized by the allocation
table entry.

The content of a directory is 32-byte long directory entries, which are
stored in linked clusters. Each directory entry contains a link to the FAT
value, where additional attributes can be found. Each of these entries can
link to another directory, making a directory tree. The root directory is in the

33

6. File systems

Figure 6.4: Directory entry [30]

known location, and all the files and directories are accessible by walk-through
using the file or directory name as the key.

6.1.7 File creation

Let’s say we want to create a file in a specified directory. Firstly, the root
directory is located using sector boot data. Following a link to the correspond-
ing cluster, individual directory entries are looked at to find the name of the
desired directory. This process continues until we get to the directory we want
to create our file in. If any directory along the way does not exist, we can
create it first by adding a new directory entry to the parent directory. It is
added to the end of allocated space or in the place of a previously unallocated
file. If there is no free space left, another cluster is added to the chain, and
the process remains the same.

With the new directory entry (which entries/clusters are filled in depends
on the operating system implementation), an unallocated cluster is chosen
from the FAT, and its status is changed to EOF. The content of the file is
written to the cluster. If more of them are needed, the next unallocated cluster
is marked with EOF, a link to it is added to the first FAT entry, and the file
is divided into several parts (logical, it can still be continuous data area).

34

6.2. Ext4

6.1.8 File deletion

Analogically to file creation, the file deletion process starts with locating the
directory and FAT entries of the file to be deleted. A walk through the cluster
chain is conducted till the EOF is found. All the processed clusters are marked
as unallocated in FAT (the value is set to 0x0). Finally, the directory entry
is unallocated. That is done by setting the special flag to the first byte of the
entry (the short file name), which is usually 0xE5 [17].

Deleted files can be recovered as long as the directory entry or cluster
is not overwritten, which depends on the allocation algorithm. Also, other
procedures can force deleted files to be unrecoverable, such as defragmentation
or wipe deletion (deleting the data by overwriting it with random values of
zeros).

6.2 Ext4

Ext4 (Extended File System) is the most widely-used file system on many
Unix-like and Linux operating systems, including popular distributions such
as Ubuntu, Manjaro, and others. Windows support is limited; for example,
default disk management utilities have difficulties recognizing it and refuse to
format drives with ext4 at all. The file system itself is generally the same as
the two previous versions, ext2 and ext3, only some features have been added;
no major redesign was made.

6.2.1 Structure

At the beginning of a partition formatted as ext4, there is a space available
for the boot code, in particular 1024 bytes. This does not have to be used by
boot code and can contain hidden data [31] [32]. The remainder of the drive
is divided into groups of blocks. At the beginning, there is a superblock with
some important information about the file system. For redundancy, a copy of
the superblock can be replicated to multiple block groups [3], which can help
in the event that the beginning of the disk is corrupted.

Next in order is the group descriptor table, a list of group descriptors
with 32 or 64-byte entries for each group block in the file system. It may
be replicated in multiple group blocks alongside the superblock to provide
redundancy. In terms of blocks, they are the default space allocation unit (if
fragmentation is ignored), and their typical size is 4 KiB [33].

35

6. File systems

Figure 6.5: ext4 structure [34]

After some reserved blocks for possible future group descriptors, there
are two bitmaps. A bitmap is a bit array, with each bit corresponding to a
different item. It can hold two values for each area, either zero or one. In this
case, the Data Block Bitmap holds information about the allocation status of
individual data blocks within the block group. The second one is the Inode
Bitmap, which keeps of inode allocation status. Then, inode tables and data
blocks follow. A structure overview is displayed in Figure 6.5.

6.2.2 Block groups
In ext4, storage space is divided into blocks (and fragments, but for simplicity,
they are not covered in the scope of this thesis, meaning fragment size is
considered the same as block size), which are just consecutive drive sectors.
The typical block size for ext4 is 4 KiB [35]. Blocks are then joined into same-
sized block groups; their amount depends on the specific implementation. This
number can be artificially adjusted by the file system creator, e.g., with option
-g in the mkfs.ext4 command on Linux.

Typical block group structure can be seen in Figure 6.5 too. The only
positions that are strictly defined are superblock and block group descriptor.
The position of all the other areas is defined inside the group descriptor, as
are free blocks (and inodes), checksums, and others.

6.2.3 Superblock
After the first 1024 bytes of the partition, the first block group begins. At
the beginning of it, there is a superblock of the same size. A superblock is a
data structure that contains important information about the file system as a
whole, such as the size of the file system, the number of inodes (data structures

36

6.2. Ext4

that store information about files and directories), block size, the number of
blocks (units of storage) in the file system, as well as features supported.

A superblock is stored in a fixed location on the file system, and there is
a copy of it at the beginning of multiple block groups. This allows the file
system to recover from certain types of errors or corruption by using one of
the copies of the superblock as a reference.

As the superblock is pretty huge, there is no need to describe it in its
entirety, only the main fields relevant to our scenarios are listed; a full list can
be found e.g., in [17]. The relevant ones for our scenarios are:

• 12-15 - number of unallocated blocks

• 10-13 - number of unallocated inodes

• 14-17 - starting block of block group 0

• 18-1B - block size

• 20-23 - number of blocks in a block group

• 28-2B - number of inodes in a block group

• 54-57 - first non-reserved inode in the file system

• 58-59 - size of the inode structure

• E0-E3 - journal inode

• E8-EB - head of the orphan inode

6.2.4 Block Group Descriptor Table

Right after the superblock, there is a group descriptor for each block group in
the whole file system. It is either a 32 or 64-byte data structure that contains
information about the block groups, such as the location of the group’s blocks
and inodes on the file system and the number of free blocks and inodes in the
group. This structure is replicated into the various block groups alongside the
superblock.

Its size can be computed by dividing total number of blocks by the group
block size to get number of group blocks. For each group, there has to be an
entry, so space occupated can be computed by multiplication of the entry size
and their number. It is always aligned to full blocks.

37

6. File systems

6.2.5 Bitmaps

The allocation status of all the blocks in a group is kept in the block bitmap.
The corresponding bit for each block can be found by finding the relative
position of the block to the start of the group. Similarly, the inode bitmap
keeps track of the status of the allocation of individual inodes. In both cases,
1 means block/inode is in use, 0 that block/inode is available for allocation.
For each bitmap, there is a full block reserved.

Regarding HDDs, block and inode allocations were created with the high-
est locality property possible, meaning the disk would not have to spin much
[17]. Even for data transfers in modern SSDs, the close locality has an advan-
tage concerning cache hits. In practice, that means related blocks are stored
as close as possible. There are several tricks to achieve that. One of them is
not to store data on the disk immediately but to wait till all the write opera-
tions and dirty flags are resolved to more accurately assess the drive capacity
requirements for the file. Also, inodes are ideally placed in the same group as
the data and the directory, assuming they are related and could be processed
at the same time. The exact algorithmic details are OS-dependent and are
out of the scope of this thesis.

6.2.6 Inode table

Inodes have existed since the early days of Unix [36]. It is a data structure
of a typical size of 256 bytes for describing files (a directory is a special type
of file). There are multiple metadata fields, such as timestamps, link counter,
permissions, and data type; the complete structure can be seen in Figure 6.6.
There are traditionally some reserved inodes, e.g., the root directory (inode
2), journal (inode 8), and others. Typically, the first non-reserved inode is
number 11.

38

6.2. Ext4

Figure 6.6: inode [37]

Most importantly, there are links to data storage, where the actual file
content is stored. The file system of Unix as well as its successor, ext4, were
both designed to work effectively with small files [36]. Data space can be
addressed either directly or indirectly. A direct link means it contains the
address of a block where the file content is stored. Indirect, on the other hand,
points to a block where direct pointers are stored. There are also double and
triple indirect pointers, which link to data blocks where indirect (respectively
double indirect) pointers are stored. There are 12 direct pointers, so it allows
storing files up to 48 KiB directly. Additionally, one indirect, one double
indirect, and one triple indirect pointer are available.

Pointers are 32 or 64 bits in size, depending on the architecture. Assuming
32-bit size, 4 KiB block can hold 4 · 210/4 = 210 addresses, each pointing to 4
KiB blocks. It is very efficient for small files, as most of them can be saved by
direct pointers only. However, storing large files in this manner is inefficient
because a large amount of metadata must be retained. This traditional design
used in ext2 and ext3 was replaced by extent addressing [38]. Instead of
individual blocks, a continuous range of physical blocks is used, and only the
border values are kept. Extents are organized into a tree; leaves represent
individual ranges of blocks covered.

39

6. File systems

6.2.7 Directory entry

As can be seen in Figure 6.6, inode does not contain a filename. The directory
entry is a structure that maps a filename to its inode. It has a dynamic size
as the length of a filename can be in the range of 1 to 255 characters, and
size is rounded up to the 4 byte boundary. A directory is a file in which
data blocks consist of directory entries. The first two entries are ”.” (current
directory) and ”..” (parent directory). Because of the possibly variable filename
size, each entry contains a link to the next directory entry. When deleting an
entry, simply remapping the link to the next entry would do [17]. In the
opposite case, link offsets are compared to actual name lengths to determine
if there is a free space that can be used, which also depends on the previous
filename length because the new entry would have to fit in the old frame.

Multiple directory entries can point to the same inode; they are called
links. Two types of links exist: hard ones and soft ones. A hard link is a
directory entry that has a pointer to the inode of an existing file; the counter
of links in that inode is incremented. The inode is unallocated after all the
links pointing to it are deleted. The second type, soft links, work differently.
Instead of linking directly to the same inode, they have their own, which points
to the original directory entry. Therefore, when the original file is deleted, the
soft link remains but refers to unallocated space.

A walk-through is used to locate a specific file or directory. An inode of
the root directory is well known; it is the second inode (number 2, counted
starting with 1). From there, we can follow a path of directory entries, looking
for the desired name. That is not a very efficient way to handle unsorted lists;
thus, the second option exists. Starting with ext3, hash trees are used to help
directory processing. If the directory content occupies more than one block,
a tree is created to sort all the saved entries. Each filename is hashed, and a
search is performed in the tree, where all the hashes are stored and sorted for
quick searching.

6.2.8 File creation

In a file system, creating a file is a common task. In ext4, the process is
as follows. Firstly, the directory to put a file in has to be found. From the
superblock, information about block sizes, reserved space, and other important
data can be obtained. We proceed to the group descriptor to get the layout of
each block group. The location of the file has to be found. Following inode 2,
a search from the root directory down the file system is performed. That is,
processing each directory entry, comparing its name, and, in case of success,
following the link to its inode.

When the desired destination is found, we process the directory to find a
free spot for a new directory entry. If there is none, a new block is allocated
and added to the inode chain of the directory. After the directory entry is

40

6.2. Ext4

created, a corresponding new inode is also created. According to the file size,
the corresponding allocation scenario is used; data blocks are linked from
within the inode, and the file content is written to these blocks.

6.2.9 File deletion

In the same fashion as in file creation, we locate the desired directory entry. It
is unallocated by setting the pointer of the previous entry, from the file to be
deleted, to the next file/directory. Then, the linked inode is updated, and the
number of links is decreased. If it reaches 0, a deallocation procedure occurs,
which includes setting the corresponding bitmap entry to 0 and updating the
free inodes number in the superblock. Deleting data blocks is performed by
clearing bits in the bitmap as well.

In some cases, deleted files can be recovered. Iterating over directory
entries, we can compare file names with the length of the jump to the next
entry to determine if there are any hidden (deleted) entries. If there is any, it
should still contain a link to the old inode. As for the inode, it should stay in
the same place as it was until it is overwritten by a new one. If we are lucky,
the inode was has not been overwritten yet. In the inode, data block links
can be found, and we can try to recover the file content. We can also skip the
directory entry phase and look for unallocated inodes or data blocks directly
through the bitmap values.

There is a problem locating unallocated data blocks. As was pointed out
in [39] and [3], starting from ext3, inode data links are set to 0 after the inode
is unallocated. That can aggravate the whole process. In this case, there
are several options for how to proceed. The main one is to go through all
the unallocated data blocks and look for their structure and try to find a file
signature.

6.2.10 Journal

Apart from ext2, ext3, and ext4 support journaling. Any data operation is
not written to the disk until it is finished in its entirety [40] [3]. This helps the
recovery process after a system crash (file system is changed in transactions,
they are accepted as a unit or not at all), and also it is effective for data
storage, as data are written only after all the operations are finished allowing
a better space management. All the changes can be viewed as transactions,
and the journal stores them along with their order until the commit command
is issued, meaning all the temporary changes are performed and it is cleared
from the journal. Thus, it can be used to recover recently deleted files and
revert other recent changes.

41

6. File systems

6.2.11 Orphans

An orphan inode is an unallocated inode that is opened in a process. If the
pointer counter inside it drops to zero, the inode should be deleted. If a process
is still using the inode (e.g., a cleaning procedure), it cannot be deleted right
away. Therefore, it is marked and stored as an orphan, and it is cleared just
after the process stops using it.

When a inode is marked as ”orphaned”, it is added to a list of orphan
inodes [35]. The blocks used by the file are freed, so that they can be used
by other files. Periodically, the system will scan the list of orphan inodes and
try to delete them. If the inode cannot be deleted, it remains on the list until
a later time when the system can try to delete it again. Orphan inodes can
also be deleted manually by an administrator using the e2fsck utility, which
is a tool for checking and repairing ext4 file systems.

6.3 NTFS

NTFS, or New Technology File System, is a proprietary file system developed
by Microsoft for use on personal computers running the Windows operating
system. It is the successor to the FAT (File Allocation Table) and HPFS
(High-Performance File System) file systems, which were used on earlier ver-
sions of Windows. As the system is proprietary, not all the implementation
details are known [1].

NTFS was introduced in 1993 with the release of Windows NT 3.1. It
was designed to address the limitations of the FAT and HPFS file systems,
providing support for larger volumes of data, longer filenames, and advanced
features such as file compression and encryption. Over time, NTFS has been
updated and improved, and it is now the default file system for all versions of
Windows, including Windows 10 and 11.

6.3.1 Structure

At the beginning of the partition formatted as NTFS, like in the cases of
the previous two file systems, there is a boot sector containing some crucial
information about the file system. One of them is the location of the MFT
(Master File Table), an array containing entries for every file and directory in
the file system. It does not have a predefined size and can be scaled to almost
arbitrary sizes [17]. Similarly to FAT, disk sectors are joined into clusters of a
typical size of 4 KiB. File details are stored in the form of attributes, some of
them are listed later. Each directory contains a list of its sub-directories and
files. These are stored in B-trees to allow quick searches for file names [41].
In NTFS, everything is looked at as a file, sometimes a special type of file.

42

6.3. NTFS

6.3.2 Boot sector
The first 512 bytes of the partition are reserved for the partition boot record
(PBR). Some essential information is stored there, including bytes per sector,
sectors per cluster, the position of the $MFT file (0x30), and the position of
the mirror $MFT (0x38), for backup of the most essential data.

6.3.3 MFT
From the boot sector, we know the position of the $MFT file. In its $DATA
attribute (type 0x80), sectors used by MFT are stored. That way, we can
retrieve the full MFT table. Another useful attribute is a bitmap keeping
track of the allocated and unallocated MFT entries. MFT is an array of file
records. Each file has at least one MFT entry assigned. The first 16 file
record segments are reserved for special files, such as $MFT file (0), the root
directory (5), and the bitmap for clusters (6), see Figure 6.7.

Each file entry is 1024 bytes in size, its structure can be found in [42].
Big part of the entry is designated to the file attributes. Each attribute has
predefined header [43]. It includes, among others, attribute type (some of the
most important are $STANDARD_INFORMATION - 0x10, $FILE_NAME
- 0x30, $DATA - 0x80, and $INDEX_ALLOCATION - 0xA0), its size and
non-resident flag. After the header, structure is different for each attribute,
refer to [44] for details. The size is defined in the header so it is easy to iterate
over all the attributed to find the desired one.

There are two types of attributes: resident and non-resident. Their dif-
ference can be described as in-place and out-of-place attributes; resident ones
are stored directly in the MFT entry, while non-resident attributes are stored
separately in a different cluster and are linked to from within the entry. This
link is implemented in the form of data runs [45]. Each data runs contains one
byte header - first 4 bits are used to determine offset length in bytes, the other
4 are for size information length in bytes. Following the header, there is the
attribute length in clusters. After that, offset in clusters, where the attribute
is stored on the partition. There can be multiple consecutive data runs, each
with the same structure.

Mirror MFT is stored on another part of the disk to avoid potential first-
sector corruption; its position is saved as the second MFT entry. Usually, it
is located at the end of the partition.

6.3.4 Directory entries
Searching for the file name in the whole MFT to find a specific one would be
ineffective. Therefore, there is a directory structure containing INDX ($IN-
DEX_ALLOCATION attribute) [43], linked to by MFT entry 5, which repre-
sents the root directory. Inside, all the sub-directories and files are stored by
their names. A structure used for the organization is a B-tree, a self-balanced

43

6. File systems

Figure 6.7: MFT Structure [46]

data structure; simply put, it is an ordered tree with as many possible children
as values stored in a node plus 1. In this manner, the order can be maintained
and searching can be completed quickly. In the leaves, links to MFT records
are stored, so an association with the file content is very straightforward.
Recursively, sub-directories have their trees in their attributes.

When a hard link is created, no entry is added to MFT. Instead, a new
record is inserted in the directory tree, which refers to an existing MFT. This
procedure is very similar to that of the ext4 file system.

6.3.5 File creation

If we want to create a new file, firstly, the boot sector has to be processed to
determine cluster size, location of the MFT, and size of MFT entries. From
$DATA attribute of the $MFT file (the first entry), we get additional infor-
mation about the layout of the MFT. The next step is an allocation of a new
MFT entry, free space is determined from the bitmap stored in the $Bitmap
file; an entry is created, and metadata are filled in. Based on the file size,
the necessary clusters are allocated (again, free clusters are known from the
$Bitmap). The allocation method is usually the best fit; clusters are selected
for the highest possible storage efficiency [17]. Links to the data clusters are
saved inside the $DATA attribute.

The next step is a filename entry. In the root directory (MFT 5), there is
a B-tree organizing all the existing names. The file’s destination directory is

44

6.3. NTFS

found in the tree, and its record is added to the tree there. It may be necessary
to perform tree balancing to keep things organized and to keep search times
quick.

NTFS supports Alternate Data Streams (ADS) [29]. A data stream is an
attribute of the MFT entry. The unnamed data stream, which can be viewed
in file explorer, is used by default. Named data streams are hidden from
common users; they are not even reflected on the file sizes in the explorer.
There are several legitimate purposes to have data associated with files, but
unfortunately, it has become one of the favorite places of hackers who use
them for malicious purposes.

6.3.6 File deletion

Let’s examine a file deletion scenario. As in the file creation process, we locate
all the needed structures. The file is located by a walk-through in the root
directory and finding its associated MFT record. It is unallocated by clearing
the corresponding bit in the bitmap and clearing its non-residential attributes
in the same way. No shrinkage of MFT occurs, meaning it can only grow in
size [17].

Recovering deleted files is possible as the data are not overwritten; they
are only marked as unallocated and can be recovered. The only thing removed
is the filename and MFT link in the parent directory index, and the tree could
be re-sorted, which can lead to information loss. However, all the unallocated
entries are in the MFT table, and they have their name as an attribute, so
even the full path can be recovered. Corresponding MFT entry would have to
be found manually by an educated guess.

6.3.7 Journal

In a very similar fashion as in the ext4 file system, the journal is used to
keep the file system in a consistent state. Recent actions are recorded in the
journal and are finished when all the associated activities are resolved in a
transaction-like manner.

6.3.8 Shadow copy

Volume Shadow Copy Service (VSS) can be used for data backup. Copy-on-
write is one of the mechanisms [47]; when data is to be written to storage, a
copy of the original data is stored to allow roll-back. As it stores only changes
in data, it is effective for low-fluctuation systems. When changes are more
frequent, this method becomes quite expensive. Shadow copies are kept in a
special storage area at the end of the partition, after the data area.

45

6. File systems

6.4 File system independent operations

There are multiple operations that do not depend on the file system used.
That means the situation is the same or analogical for all the common file
systems, assuming the same tools are available. Almost all the file level op-
erations belong here; the actual content of files is not affected by the storage
mechanism. Such operations include data hiding (e.g., steganography), file
encryption, compression, and others. Also, data carving belongs to this cate-
gory, as it can be performed on any disk, regardless of the file system used.

6.4.1 File encryption

File encryption is a technique for protecting data by encoding it in such a
way, that it can only be accessed by someone with the correct decryption key.
File encryption is typically implemented at the file level, so it is independent
of the file system that is used to organize the data on a storage device.

This means that the same file can be encrypted and decrypted on any file
system, as long as the necessary encryption and decryption tools are available.
For example, a file that has been encrypted on a Windows system using the
NTFS file system can be transferred to a Linux system using the ext4 file
system and decrypted using the correct decryption key.

It is worth noting that some file systems, such as NTFS and ext4, support
native encryption capabilities, which can be used to encrypt individual files
or entire directories. In these cases, the encryption is still independent of the
file system, but the encryption and decryption processes are handled by the
file system itself rather than a separate tool.

Let’s look at how file encryption works using the GnuPG (gpg) program,
which comes standard with most Linux distributions [48] and can also be used
on Windows. There are multiple modes of operation; the basic functionality
is symmetric encryption, which proceeds as follows: The program takes a file
as a parameter and prompts the user for a passphrase. After it is entered, a
new encrypted file is created. It can be identified, e.g., by the file command
as encrypted by gpg. The physical structure of the file is well defined in RFC
4880 [49] and contains all the information necessary to successfully decrypt
the file when a user knows the password.

6.4.2 Data carving

Data carving is a digital forensics technique that involves searching through a
storage device or file for specific patterns or data structures and extracting the
data from those patterns or structures. Data carving is often used when tra-
ditional forensic techniques, such as analyzing the file system, are not possible
or have been unsuccessful in recovering the data.

46

6.4. File system independent operations

There are several approaches that can be used for data carving, depending
on the type of data being sought and the conditions of the storage device
or file. One common approach is to use a hex editor to search for specific
patterns of bytes that are known to be associated with certain types of data,
such as image or video files. These patterns are called the magic numbers [29].
The data can then be extracted by copying the bytes from the hex editor and
saving them to a new file.

Another approach is to use specialized data carving software, which is
designed to search for and extract specific types of data based on their known
patterns or structures. These tools can be configured to search for specific
file types, such as JPEG images or MP3 audio files, or to search for data
structures that are common to a particular file format, such as the header and
footer of a PDF document.

Data carving can be a useful technique for recovering data that has been
deleted or lost due to file system corruption or other issues. However, it
can also be a time-consuming and resource-intensive process, as it requires a
thorough understanding of the data structures and patterns being searched
for.

47

Chapter 7
Digital Forensics

Digital forensics is a process of analyzing digital traces to identify or recon-
struct the events that led to them [1]. Most common folks have it connected
to criminal investigations, as it was popularized by many TV shows. Indeed,
digital forensics can play a big role in finding evidence and presenting it to
court in legal matters. But that is not the only usage. In incident response
scenarios, which rely on identifying attack vectors to avoid future problems,
forensics are key elements to detect when and how the incident occurred. Not
all applications of digital forensics have to be connected with wrongdoing.
There could be, for example, an unexpected behavior of a valid program caus-
ing problems in the system or an accidental intervention by the user causing
system instability, among other things.

The analysis’ main goals are to preserve digital evidence integrity (original
data must remain unchanged, especially if evidence is to be presented in court),
correctly document and identify all data used in the process, and ensure that
the analysis results are undisputed [1].

There are many sources of data used in the analysis. Not just computer
disks or similar media, but also network data or physical access to the device
can prove to be crucial parts of an investigation. To be able to properly
perform the analysis, deep knowledge of the systems in question is needed.
That is not useful just for the analysis, but this information can be used in,
for example, the software development of recovery tools, incident response
automation, and others.

7.1 Typical process
Every investigation is different; each case has its specifics, and it is hard to
generalize the process of digital forensics in much detail on the technical level.
On the other hand, from a methodology perspective, six steps have to be
conducted in almost every case (of course, deviations exist, but in this case,

49

7. Digital Forensics

they are rather rare). These steps are not strictly separated; in fact, they
mingle and coexist.

7.1.1 Preparation
Reconnaissance is an essential part of the process. When an investigator gets
to the crime or incident scene, he/she should be as aware of the situation as
possible. What happened, when, how, who did it, who detected it, what is
affected, and why it happened are some of the most important questions. Not
all of them can be answered instantly, but the information is key to success,
and getting some of the answers immediately can significantly speed up the
whole process.

Also, time at the incident scene is not unlimited. It may be a good idea
to prepare in advance. Bringing along hardware equipment to acquire data
is one of the tasks, work organization and scheduling are also important to
allocate manpower and work efficiently [1].

7.1.2 Data acquirement
It may sound easy to obtain relevant data - just get everything from every
workstation and from every server near the incident and analyze it. That
would be way too much data. Only relevant data should be gathered; it is a
really slow process to go through terabytes and terabytes of unrelevant storage.
On the other hand, no information should be omitted. It is important to keep
in mind that some of them are time-limited (e.g., network logs, which can be
overwritten fairly quickly, volatile memory,…). Specialists are entrusted with
identifying which specific data is case-relevant and should be gathered.

7.1.3 Preservation
In court, a defendant would gladly use all the possibilities to deny evidence be-
ing presented against him. Either by pointing out possible evidence tampering
or investigator bias. Original data must be preserved, ideally by computing
hashes and control sums to demonstrate integrity. All the work is typically
done on a copy of the original data, which is sealed and available in case there
are any objections or doubts about the analysis process or whether the data
were processed according to criteria.

7.1.4 Analysis
When the data is obtained and its integrity is secured, an analysis can be
performed. There are multiple automatic tools (briefly mentioned at the be-
ginning of the thesis) that can help, but in some cases, it needs to be analyzed
by hand. Each step has to be properly documented if we want results to be
reliable. Anyone should be able to replicate the investigators’ conclusions by

50

7.2. Digital forensics tools

taking the steps described from the original data. Also, keep in mind the
unwritten rule of computer security; work that is not documented is not done.

7.1.5 Reporting
The final results are presented. It can be evidence in court; it can be a
PowerPoint presentation to the company’s management about the incident;
it can even be a bug report to software authors. The only way for humanity
to move forward is by learning from its own mistakes; this phase is a great
opportunity for realizing that and passing the knowledge obtained along.

7.2 Digital forensics tools
Many different tools that are used in digital forensics, and which one to use
depends on the specific needs and requirements of the investigation. Some
common digital forensics tools include Magnet Axiom, EnCase, FTK, X-Ways
Forensics, and Autopsy. These tools are widely used by forensic investigators
to analyze data from digital devices and to extract and present evidence in
legal proceedings. They often provide multiple functions, which is why they
have already been covered in the disk image cloning section earlier.

7.3 Anti-forensics techniques
There are multiple way to defend against digital forensics techniques. The first
and most important one is disk encryption. When a disk is completely encoded
by a strong passphrase, options for investigators are extremely limited.

Another example of an operation that can be handled in a forensically
secure manner is file deletion. Normally, deleting files from a file system
leaves behind traces such as metadata, pointers to unallocated space, and
others. There are a number of wiping tools, which not only unallocate the
space used by a file but also overwrite its data blocks with zeros or random
values, leaving no information for investigators to look for.

Data hiding is another technique used. There are numerous places to
hide data so that it cannot be easily found [50] [31]. Many of these places
are well-known, and automatic tools can find the data inside them. Apart
from traditional spaces, like in the partition boot sector, there are also new
techniques, such as uninitialized block groups [32].

There also exist many anti-forensic tools for special-purpose manipulation.
File system timestamps can be altered to confuse the investigators. To prevent
data carving techniques, one can manipulate file signatures to mislead the
investigators [51].

51

Chapter 8
Disk generator tool

The main goal of the practical part of this thesis was to create a tool to
generate disk images for selected digital forensics scenarios that could be used
in training. To my knowledge, there is no such tool available. There are many
testing images available online, but they are not feasible for scalability and
creating new scenarios, each image would have to be created manually. It is
impossible to create a generator of all possible scenarios, so only a few selected
ones were implemented. Application design allows others to implement their
scenarios and add them to the tool.

8.1 Application Design
At its core, the application needs to create a disk and then manipulate it to
create a desired scenario. Therefore, it is reasonable to use existing tools for
the disk creation part as well as for the alteration process.

The application functions as a wrapper for basic Linux commands, such as
dd, fdisk, sfdisk, mount, mkfs, and others. Details can be found in the source
code. These commands are open-source and distributed under the GNU GPL
license. One of its key points is copyleft; thus, this program also follows the
GNU GPL license. Details can be viewed on the enclosed CD or zip file.

As the Linux OS is written in C, and so are the tools used under the
hood of this program, the C/C++ programming language was selected for
implementation. Application design as well as implementation details can be
viewed in the enclosed source code. There are comments explaining the core
functionality. Also, it is believed that the code is easy enough to read that
anyone wanting to develop an extension or scale the application would not have
a problem understanding the program and doing so. Also, program usage from
the user perspective is rather intuitive, and instructions are displayed on the
screen during the process. Note that the program is not fault-proof in terms of
a user trying to break its functionality, as it should be used in good faith only.

53

8. Disk generator tool

8.1.1 Program structure

There were several design choices to be made in the process of creating this
thesis. As a result, there were two program versions in total, both of which
are described below. As the first one did not fulfill the requirements and
objectives for its functionality and scalability, the program was redesigned to
address these discrepancies. The description of the first version is intended
to enlighten some changes and design decisions, specifics and more detailed
documentation are provided only for the current version.

8.1.2 Earlier version

The first version of the program was written as a proof of concept, creating
scenarios and investigating possibilities of implementation. As such, it was
written as one file only, containing the function main() and several supporting
functions to delegate tasks to smaller units.

There were no classes implemented; a specific scenario was generated
based on the user input into the console, which was processed in the switch()
branches. From them, support functions were called to at least limit code
redundancy. Several of them were supporting, with no direct impact on the
generation process itself.

As for the abilities of the first version, it supported five scenarios (the first
five of the current version, details are written in the section below). Creating a
scenario means creating a disk image with wrappers (mostly the command dd),
formatting it with partitions (commands fdisk and sfdisk), and then altering
it in some way.

To be able to see if the goal of a scenario was achieved and the problem
was fixed, there had to be some indication of success. For this reason, pictures
were inserted into these disk images, and the goal of each basic scenario would
be to recover the image(s). In order to do that, file systems had to be added
to the disk images. This proved to be a significant problem. When designing
a program, it is always a good practice to follow the least-privilege principle.
A program should be running with the least amount of privileges, only with
those necessary for its functionality.

There are tools for editing file system on a disk image for FAT32, specif-
ically mtools library [52]. However, there are limitations to managing file
systems ext4 and NTFS without mounting them. It is possible to create an
arbitrary directory in the newly created ext4 file system (an option when us-
ing the command mkfs.ext4), but copying files and other tasks are not easily
achievable. NTFS is even more complicated, options are very limited without
mounting the disk image.

The mounting process requires superuser privileges. Following the least-
privileges principle, the first version of the program avoided using mounting

54

8.1. Application Design

so it could run with only basic privileges. That meant not using NTFS and
only limited usage of ext4 file systems in the scenarios.

Further problems arise when deleting FAT32 files using mtools, it proved to
be problematic and caused failures. To address this issue and allow recovering
a deleted file as a possible scenario, I implemented the file deletion process as
it was described in the theoretical section earlier, manually overwriting data
at the byte level.

8.1.2.1 Necessary improvements

The application, by design, was not easily scalable. Adding further switch
branches and adding more and more functions would soon make source code
unreadable. Therefore, a complete redesign was necessary. Also, with classless
design, there were no rules or standards that would have to be followed when
adding new functionalities.

It was also necessary to add some options to the application. Limitations
for only one file system seemed not enough; there was also no information
available about the implemented scenarios from within the program; their
description was only provided as an attachment.

Having these in mind, a new program version was created to address these
issues and bring more clearance and tidiness. Details of the current imple-
mentation are described in the following section.

8.1.3 Current version
The first program version was rewritten in the object-oriented paradigm,
which gave birth to the current one. There are several significant improve-
ments and additions to the original program to make the new one more us-
able.c Also, several new scenarios were added.

8.1.3.1 Class Schema

As for each C++ program, the entry point is the function main(). This
file includes only code for printing the starting screen (clearing the terminal
window and printing the introduction and main choice menu). After grabbing
input from the console, if the user’s option is to exit the program, then the
execution ends here. For any other choice (including invalid input, which is
not validated at this point), an instance of DiskImage object is created, and
control is handed to its method loop with the user option as its argument.

DiskImage class is the core of the application. Based on the option selected
by the user, method loop validates the user input. It is either an interactive
creation of a new disk image or a creation of one of the predefined scenarios.
Disk creation is included in the process of creating scenarios.

User choice determines which scenario is created. Class Scenario provides
API for them, as it is the abstract parent class. Each scenario is required

55

8. Disk generator tool

to override method generateScenario(DiskImage*) to create a training disk.
Other class member functions are getDescription() to provide a quick sum-
mary of the task, getHint(int hintNum), to provide the selected hint, and
getHintsTotal() to get the number of hints available. As these three are ”get-
ter” functions, their implementation is provided by the parent class, and the
actual data returned by them is initialized by the constructors of the child
classes. There was a hesitation about including function getSolution() to re-
veal solutions of scenarios but based on the complexity of later scenarios and
consistency across all of them, it was decided against it.

The specifics of each scenario, as well as their implementation details, are
covered in the later section and in the file scenarios.md enclosed. What is
common for all of them is the creation of disk images and working with a
file system. So let’s get to this first. A disk image is created by the func-
tion createDiskImage(std::istream &), which is a member function of the class
DiskImage, by calling the system command dd to create a file of the desired
size, either filled with zeros or with random data based on the option selected.
The next available selection is the partitioning table, which is created by the
system command sfdisk with the option either dos for MBR or GPT, support
of GPT is limited and has not been tested properly, it is not used in the
scenarios.

The next in order is creating disk partitions, which is done by the wrapper
of commands fdisk and mkfs. The user can specify the size and file system.
There is currently only support for primary partitions; working with extended
ones can be added in the future. There is a check implemented to ensure
partitions fit on the disk; if the selected partition size exceeds the disk capacity,
the volume is shrunk to fit it. The parameter std::istream & is to allow
the creation of scenarios. For interactive situations, when input is handed
interactively by a user through the terminal, that would mean std::cin as
the parameter. However, for pre-defined images, it is more convenient to use
std::istringstream with firmly defined input.

Speaking of file systems, the abstract class Filesystem defines their API.
Specifically, all the file system implementations are required to override func-
tions createFS(...), which creates a file system on a given partition, copy-
File(...) to insert files into the file system structure; and lastly, deleteFile()
to delete a given file. There were several significant choices to be made as
mentioned before. Working with NTFS and copying and deleting files on ext4
requires running the application with elevated privileges, but as the program
is not that extensive, everybody should be able to trust that it does not try
to do any malicious things.

The implementation of FAT32 is a little different story, it stayed mostly the
same as in the previous version; there was no reason to change it. That means
the application uses the mtools library alongside manual file deletion. These
operations can be done with basic-level privileges. In addition, if the program
is run with elevated privileges, it uses mounting to avoid any inconveniences.

56

8.2. Available scenarios

Mounting is done via the system command mount -o loop to be mounted as
a loop device. Then, working with the disk image file system is the same
as working with the file system on a regular disk. The application currently
supports FAT32, ext4, and NTFS.

There are many general tasks needed throughout the application. For
this purpose, there is a file utility (to be exact, two files: source and header
files), which provides an implementation of some support functions, most no-
tably function systemCommand(str::string), which serves as a bridge between
the application and the system beneath for executing system commands by
function std::system(...), and its alternatives to return system command er-
ror code (systemCommandReturnErrorCode(std::string) and return command
output to standard output (systemCommandReturnOutput(std::string)). The
other significant function is loadUserInput(...). This function loads input from
the provided input stream and checks its validity against the input type and
possible values provided as parameters. Also, file encryption function en-
cryptFile(...) is in this file, allowing to encrypt provided file using gpg tool.
Password encryption can be either selected manually or randomly from rock-
you.txt file enclosed (only from the first 55555 entries to avoid extensive search
times when trying to crack the password).

8.2 Available scenarios
There are 7 implemented scenarios provided in the application. Details can
be found in the descriptions below and in the markdown file scenarios.md
enclosed along with the source code. The markdown file should be maintained
along with the program to provide documentation and details necessary for
all potential future scenarios. There are many of them in digital forensics.
As the purpose of this thesis is to create training material, there is no rea-
son to cover highly advanced situations. As a result, only the fundamentals
are covered. The list is put together based on the author’s experience and
consultations. It should be noted that all the tasks can be solved with the
assistance of advanced forensics tools; however, every specialist should know
the basics and be able to go through these scenarios manually on his/her own.
Also, provided solutions are based on the disk images generated by the pro-
gram on the author’s computer - Manjaro, these images can be seen in folder
images_example. Details and specific values can differ on other platforms,
general steps to fulfill the scenarios should remain the same.

8.2.1 Scenario 1
The first case study is about manipulating MBR table records for partition size
and position. In real life, it can be caused intentionally or even unintentionally
by the misbehavior of a program or by a system error. As for implementation
details, a disk image of size 11 MiB with an MBR partitioning table is created,

57

8. Disk generator tool

in this case, consists of only one partition, FAT32, and is filled with zeros.
Then, a picture is copied into the file system.

The forensics work is required for the next part, where the start LBA value
is overwritten by a random value out of bounds, in this case, 70707070. It is
achieved by the command dd. This confuses partitioning software; an inserted
value would mean that the partition begins after the disk. Furthermore, even
the partition size is overwritten to be bigger than the disk size. The quest is
to recover the picture originally inserted into the file system.

8.2.1.1 Solution

The image cannot be mounted right away. Let’s start with the simple fdisk
command. Reported sector sizes and first-sector positions do not correspond
with reality. The size of the image is 11 MiB; the reported size and first sector
are hundreds of gigabytes away. From that, we can assume there are some
problems with the partitioning scheme; open the disk image in a hex editor
and examine the MBR table.

The first 446 bytes are dedicated to bootstrap code. Refer to the theory
section for MBR layout. The MBR entry for the first and, presumably, only
partition begins at address 0x1BE. As CHS values are deprecated and not of
much interest, we can skip the following 8 bytes. Start LBA is where things
get bad, its value is 0x70707070. The next value is not right too, the reported
number of sectors 0x10101010. Starting with the total size in sectors, the file
is 11 MiB long. If we take the reserved 1 MiB at the beginning into account,
10 MiB has to be divided into 512 sectors, meaning multiplied by 2048 (binary
shift left 11 bits); 10 · 2048 = 20480 = 0x5000, little endian is used, so value
0x10101010 is replaced with 0x00500000, which is the correct partition size.

Start LBA is 1 MiB (2048 sectors = 0x800 sectors), 0x70707070 is replaced
with 0x00080000, which is the correct start point. Now the disk image should
be able to mount.

8.2.2 Scenario 2
The second scenario is also about manipulating MBR fields. In this case, there
are two file systems on the disk image. Its size is 21 MiB, and the available
space (20 MiB) is divided equally between FAT32 and ext4 file systems. In
this case, MBR fields are manipulated so that both partitions appear to start
at the beginning of the disk and cover full space.

8.2.2.1 Solution

If we try to mount the image, two disks appear, but there are no files visible
on either of them. GParted as well as the fdisk tool both report the same:
21 MiB disk image has two partitions of 20 MiB each. The MBR table shows
two partitions: FAT32 and ext4, both from the very beginning (after the first

58

8.2. Available scenarios

reserved MiB) all the way to the end. This does not seem right. We must
divide the partitions so that they do not overlap.

There are several options here: guess it (e.g., use the binary division
method) or do something similar like look for FS artifacts, in this case, arti-
facts of the ext4 file system. Some hex editors can search for the given string
or just process until you get any non-zero values, as there should be no more
data on the FAT32 partition. If someone wants to make their life difficult,
they can try to find the exact division by hand. For the others, as stated in
the hint provided, it is divided in the middle.

For the first partition - Start LBA remains the same, number of sectors
should be reduced to half - from 0x00A00000 to 0x00500000. The second
partition - Start LBA has to be corrected - reserved space + size of the first
partition: 1 MiB + 10 MiB = 0x800 + 0x5000 = 0x5800 -> write 0x00580000
(little endian is used) as Start LBA; the size change is the same as for the first
one. The disk image can be mounted now and the picture can be seen on the
second partition.

8.2.3 Scenario 3

The third case study is fairly easy; there are two partitions on the image,
both FAT32 and one of them is marked as hidden. It is really easy to spot
and correct using any partitioning software, but the task is aimed at finding
documentation and understanding fields in the partitioning table.

8.2.3.1 Solution

The image is mountable right away, and there is a file that should be found.
However, there is one more small hidden partition at the end of the disk.
Either replace the type in the MBR table (recommended to ensure under-
standing of the principles) or change it, e.g., inside GParted. There is another
file hidden inside it.

If the MBR approach is chosen, the offset to the flag is (in bytes) 446 +
16 (first partition) + 1 (flag) + 3 CHS value. The current value is 1B (hidden
FAT32), replace it with 0B (FAT32).

8.2.4 Scenario 4

This task deviates from the previous; it is aimed at checking the ability to
decrypt files. A picture is copied to the FAT32 file system; the picture is
encrypted, and the goal is to get it back. As an encryption program, gpg was
selected. The password is randomly selected from the standard ”rockyou” file.
There is also an option to select the password manually.

59

8. Disk generator tool

8.2.4.1 Solution

For cracking passwords, one of the standard tools is John The Ripper, in this
case, along with the utility gpg2john. The following 3 commands should be
issued to decrypt the file.

- gpg2john cat_enc.gpg > enc
- john --wordlist=rockyou.txt enc
- gpg --pinentry-mode=loopback --passphrase "PASSWORD"

--output res.jpg --decrypt cat_enc.gpg

8.2.5 Scenario 5
The last three prepared scenarios are about recovering a deleted file, in this
case from the FAT32 file system. A disk image with a single partition is gen-
erated, and a file is created and then deleted by corresponding class functions
for the respective file system. The task is to recover the file.

8.2.5.1 Solution

The solutions for all three file deletion scenarios are fairly complex and require
multiple steps, only brief description is provided here. Please refer to enclosed
file scenarios.md for more details.

Firstly, let’s try to mount the file as a classical disk. It mounts without
a hitch, but a file explorer displays no files. We can see whole file in a hex
editor and discover that it is using the MBR table. The fdisk command shows
the start block of the partition, which is 2048 (block size is 512, thus, 1048576
bytes). From the first sector of the partition - Partition Boot Sector, we can
get all the necessary information about the disk layout. Let’s jump into the
hex editor to start with the first sector of the partition - Partition Boot Sector.
Based on this, we can now compute the beginning of the data area:

offset = start_sector + reserved_sectors + FATs_num · FAT_size =
= 1 MiB + 16 KiB + 2 · 12 KiB = 1089536 bytes

That is the offset of root directory. If we jump to that location, we can
see directory entry for the deleted file, from which we can get the file name.
The first byte is invalid (0xE5), so we correct it from the rest of the file name,
which is clear: cat5.jpg. Offset 28 of the entry is designated for the file size,
in this case 0x012FB8 (little endian) = 77752 bytes. There are 8 · 512 = 4096
bytes per cluster, 19 data clusters are needed for the storage.

The first cluster position can be gained from the directory entry as well.
The next step is to reallocate data structures. The FAT table is placed right
behind the reserved sectors. The first two entries are reserved, and the third
belongs to the root directory; the deleted file was on cluster 3. We know from

60

8.2. Available scenarios

the theory that linear allocation was used, which means consecutive blocks.
The next step is the creation of the cluster chain. Each FAT entry should link
to the next one until enough clusters (19) are connected, the last one with
EOF flag.

The disk image can be mounted now, and the file can be viewed in a file
viewer. There are two possible scenarios to be created. If the program was run
with elevated privileges, deleting the file was achieved through mounting and
the command rm. It runs with basic rights, there is manual implementation
of deletion on FAT32. The solution is practically identical for both cases.

8.2.6 Scenario 6
In this case, a file was deleted from the ext4 file system. A disk image with a
single partition is generated, and a file is created and then deleted by corre-
sponding class functions for the respective file system. The task is to recover
the file.

8.2.6.1 Solution

Mounting the disk shows no files. Ext4 is a bit tricky, so there are multiple
ways to recover deleted data. The first one is data carving - searching for file
signatures on the whole disk. This can be done easily for this task.

For ext4, we can use a little trick to get all the necessary structural infor-
mation without searching through the binary data (of course, that is also a
possibility). It is the following sequence of commands:

- sudo losetup -Pf sc6.img - mount disk as a loop device
- sudo losetup -j sc6.img - show mounting directory
- sudo dumpe2fs /dev/loopXp1 - get information

The same information can be gotten manually from the superblock on
offset 1 MiB (reserved - MBR) + 1024 bytes (boot code) = 1049600 bytes.
Further information about the layout can be obtained from Block Group De-
scriptor located in the block right after the superblock. Each has 64 bytes.
In this case, the disk image size is relatively small so there are only two block
groups. Details about the structure of Group Descriptor can be found in the
theoretical section of the thesis or in the documentation. We get from it block
numbers of data block bitmap, inode bitmap and inode table.

Even from the root directory, there are no links to the correct inode of
the deleted file, if interested, it can be examined by following the data extent
in the root inode (inode num. 2, counted from 1). Focus should be paid to
the data block bitmap. A deleted file would have set bitmap entries to 0.
We can guess the file location by aiming for the first unused blocks. In this
case, the first not-FF value is at the offset 0xE0 = 224 bytes = 1792 bits,
which corresponds to block 1792. Using the formula above, we get an offset

61

8. Disk generator tool

of 2883584 bytes. It should be near our deleted file. And indeed, the actual
offset to the deleted file is 2887680 bytes.

The only thing remaining is the size of the original file. One method of
doing so is to search for consecutive 00, which are to be expected after the
end of the file. This way, we can find the end of the file at an offset of 2972160
bytes giving us a file size of approximately 84480 bytes. The deleted file can
be retrieved by the dd command.

8.2.7 Scenario 7
In this case, a file was deleted from the NTFS file system. A disk image
with a single partition is generated, and a file is created and then deleted by
corresponding class functions for the respective file system. The task is to
recover the file.

8.2.7.1 Solution

Mounting the disk shows no files. Let’s open it in a hex editor and as for the
previous two scenarios, partition begins at offset 1 MiB where partition boot
sector begins. We are interested in the BPB (BIOS parameter block) table
beginning at offset 0x0B (refer to documentation for details about the layout),
from which we can get the position of MFT table, which is at the offset (from
the beginning of the disk image) of 1024 · 1024 + 16 · 1024 = 1064960 bytes.
Each MFT entry has a standard size of 1024 bytes. Most notable are the root
directory (entry 5) and user files, which begin at entry 16.

To get to the actual MFT entry of the deleted file, it is sufficient to pro-
ceed through all the entries and looking for their names until the correct one
is found, which is located at the offset of 1130496 bytes (the last MFT entry
allocated). There are several notable attributes of this entry, the most impor-
tant for our purpose is $DATA (type 0x80) beginning at the offset 0x114158
(1130840) from the image beginning.

This attribute is out of place (refer to the theoretical section for more
information), meaning it contains data runs. In this case, there is only one,
0x21371D04 - 1 byte length and 2 bytes offset - length 0x37 clusters and offset
0x041D = 1053 clusters, which gives position 1024 · 1024 + 1024 + 1052 ·
1024 = 2126848 bytes, which is indeed the beginning of the deleted file’s data.
Its size is 0x37 = 55 clusters = 556320 bytes. That is enough to issue dd
command to retrieve the file.

62

Chapter 9
Conclusion

The goal of this thesis was to create a disk generator for digital forensics
training and to provide several training scenarios and the theory needed for
their completion. As computer forensics is a quite broad area, it was not
possible to describe all the situations or scenarios in this thesis. I believe that
the theory and training provided here are fundamental to getting started in the
area of digital forensics. There are lots of materials available for subsequent
studies; some of them can be found in the bibliography section.

Many of the case studies provided were concluded based on the tests per-
formed by the author and his observations. As the test sample size was not
representative of all the possible systems and situations, there may be some
variations encountered on different systems. Some of the behavior I came
across was quite surprising, e.g., the behavior of the partitioning software
when manipulating the MBR record.

There are numerous avenues for future research to further this thesis.
Adding further scenarios is the main one. Even though the program was
written with scalability and extensibility in mind, there are several flaws to
be aware of. Even if an application redesign is required or desired in the future,
I believe the principles used can serve as an inspiration (or even a framework)
for future works.

63

Bibliography

1. NOVÁK, Dominik. Úvod do digitální forenzní analýzy [Introduction to
digital forensics]. 2021.

2. BHUIYAN, Johana. Apple says it prioritizes privacy. Experts say gaps
remain [online]. The Guardian, 2022 [visited on 2022-12-18]. Available
from: https : / / www . theguardian . com / technology / 2022 / sep / 23
/apple-user-data-law-enforcement-falling-short.

3. ÅRNES, André. Digital forensics. John Wiley & Sons, Ltd, 2017. isbn
9781119262442.

4. JOSHI, Binaya Raj; HUBBARD, Rick. Forensics analysis of solid state
drive (SSD). In: 2016 Universal Technology Management Conference
(UTMC). The Society of Digital Information and Wireless Communi-
cations (SDIWC), 2016, vol. 2016, pp. 1–12. isbn 978-1-941968-29-1.

5. Steven BRESS; Mark Joseph MENZ. Write protection for computer long-
term memory devices. Inventor: Steven BRESS; Mark Joseph MENZ.
Publ.: 2004-11-02. Patent US006813682B2.

6. Tableau Forensic SATA/IDE Bridge T35u [online]. OpenText Security
[visited on 2022-12-18]. Available from: https://security.opentext.
com/tableau/hardware/details/t35u.

7. Tableau Forensic Duplicator TD2u [online]. OpenText Security [visited
on 2022-12-18]. Available from: https://security.opentext.com/
tableau/hardware/details/td2u.

8. AKBAL, Erhan; DOGAN, Sengul. Forensics Image Acquisition Process
of Digital Evidence. International Journal of Computer Network & In-
formation Security. 2018, vol. 10, no. 5.

9. Product downloads [online]. AccessData [visited on 2022-12-18]. Available
from: https://accessdata.com/product- download/ftk- imager-
version-4-5.

65

https://www.theguardian.com/technology/2022/sep/23/apple-user-data-law-enforcement-falling-short
https://www.theguardian.com/technology/2022/sep/23/apple-user-data-law-enforcement-falling-short
https://security.opentext.com/tableau/hardware/details/t35u
https://security.opentext.com/tableau/hardware/details/t35u
https://security.opentext.com/tableau/hardware/details/td2u
https://security.opentext.com/tableau/hardware/details/td2u
https://accessdata.com/product-download/ftk-imager-version-4-5
https://accessdata.com/product-download/ftk-imager-version-4-5

Bibliography

10. OpenText EnCase Forensic [online]. Open Text Corporation [visited on
2022-12-18]. Available from: https://www.opentext.com/products/
encase-forensic.

11. DURYEE, Alexander. An Introduction to Optical Media Preservation.
The Code4Lib Journal [online]. 2014, no. 24 [visited on 2022-12-18]. Avail-
able from: https://journal.code4lib.org/articles/9581.

12. Volume and File Structure of CDROM for Information Interchange:
Standard ECMA-119. ECMA International, 2019. Standard. Available
also from: https://www.ecma- international.org/publications-
and-standards/standards/ecma-119/.

13. E01 (Encase Image File Format) [online]. FORENSICSWARE. [visited
on 2022-12-18]. Available from: https://www.forensicsware.com/
blog/e01-file-format.html.

14. Imager User Guide. AccessData Group, Inc., 2020.
15. AL SADI, Ghania. Analyzing Master Boot Record for Forensic Inves-

tigations. International Journal of Applied Information Systems. 2016,
vol. 10, pp. 22–26. Available from doi: 10.5120/ijais2016451541.

16. RAXESH. Disk partitioning: MBR VS GPT [online]. Blogger, 2018-
12 [visited on 2022-12-18]. Available from: https : / / easylinuxji .
blogspot.com/2018/12/what-is-disk-partitioning-disk.html.

17. CARRIER, Brian. File system forensic analysis. Addison-Wesley Profes-
sional, 2005.

18. CROSS, Michael; SHINDER, Debra Littlejohn. Scene of the Cybercrime.
2008. isbn 9781597492768.

19. EaseUS Partition Recovery 9.0 [online]. EaseUS [visited on 2022-12-18].
Available from: https : / / www . easeus . com / partition - recovery /
index.htm.

20. DOS Boot Record (DBR) / DOS Boot Sector [online]. Pro Data Doc-
tor. [visited on 2022-12-18]. Available from: http://www.p- dd.com/
chapter3-page17.html.

21. Unified Extensible Firmware Interface (UEFI) Specification [online]. UEFI
Forum, Inc., 2022. Version 2.10 [visited on 2022-12-18]. Available from:
https://uefi.org/sites/default/files/resources/UEFI_Spec_2
_10_Aug29.pdf.

22. Windows and GPT FAQ [online]. [visited on 2022-12-18]. Available from:
https://learn.microsoft.com/en-us/windows-hardware/manufacture/
desktop/windows-and-gpt-faq?view=windows-11.

23. GUID Partition Table (GPT) [online]. LSoft Technologies Inc. [visited
on 2022-12-18]. Available from: https://www.ntfs.com/guid-part-
table.htm.

66

https://www.opentext.com/products/encase-forensic
https://www.opentext.com/products/encase-forensic
https://journal.code4lib.org/articles/9581
https://www.ecma-international.org/publications-and-standards/standards/ecma-119/
https://www.ecma-international.org/publications-and-standards/standards/ecma-119/
https://www.forensicsware.com/blog/e01-file-format.html
https://www.forensicsware.com/blog/e01-file-format.html
https://doi.org/10.5120/ijais2016451541
https://easylinuxji.blogspot.com/2018/12/what-is-disk-partitioning-disk.html
https://easylinuxji.blogspot.com/2018/12/what-is-disk-partitioning-disk.html
https://www.easeus.com/partition-recovery/index.htm
https://www.easeus.com/partition-recovery/index.htm
http://www.p-dd.com/chapter3-page17.html
http://www.p-dd.com/chapter3-page17.html
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_10_Aug29.pdf
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_10_Aug29.pdf
https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-and-gpt-faq?view=windows-11
https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-and-gpt-faq?view=windows-11
https://www.ntfs.com/guid-part-table.htm
https://www.ntfs.com/guid-part-table.htm

Bibliography

24. WILLIAMS, Ross N. A Painless Guide to CRC Error Detection Algo-
rithms. 1993.

25. WALKER, Daryle. CRC Library [online]. 2001. [visited on 2022-12-18].
Available from: https://www.boost.org/doc/libs/1_66_0/libs/
crc/.

26. BitLocker [online]. 2022-09-12. [visited on 2022-12-18]. Available from:
https://learn.microsoft.com/en-us/windows/security/information-
protection/bitlocker/bitlocker-overview.

27. BOSSI, Simone; VISCONTI, Andrea. What Users Should Know About
Full Disk Encryption Based on LUKS. In: REITER, Michael; NAC-
CACHE, David (eds.). Cryptology and Network Security. Cham: Springer
International Publishing, 2015, pp. 225–237. isbn 978-3-319-26823-1.

28. Overview of FAT32 [online]. [visited on 2022-12-18]. Available from: https:
//eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32.

29. LIN, Xiaodong. Introductory Computer Forensics. Springer, 2018. isbn
9783030005801.

30. The FAT File System [online]. [visited on 2022-12-18]. Available from:
http://www.c-jump.com/CIS24/Slides/FAT/lecture.html.

31. PIPER, Scott; DAVIS, Mark; MANES, Gavin; SHENOI, Sujeet. Detect-
ing hidden data in ext2/ext3 file systems. In: IFIP International Con-
ference on Digital Forensics. Springer, 2005, pp. 245–256.

32. GÖBEL, Thomas; BAIER, Harald. Anti-forensic Capacity and Detec-
tion Rating of Hidden Data in the Ext4 Filesystem. In: IFIP Interna-
tional Conference on Digital Forensics. Springer, 2018, pp. 87–110. isbn
9783319992761.

33. MATHUR, Avantika; CAO, Mingming; BHATTACHARYA, Suparna;
DILGER, Andreas; TOMAS, Alex; VIVIER, Laurent. The new ext4
filesystem: current status and future plans. In: Proceedings of the Linux
symposium. Citeseer, 2007, vol. 2, pp. 21–33.

34. KING, Tracy. What is Ext2/Ext3/Ext4 File System Format and What’s
The Difference [Full Guide] [online]. 2022-09-22. [visited on 2022-12-18].
Available from: https://www.easeus.com/partition-master/ext2-
ext3-ext4-file-system-format-and-difference.html.

35. Ext4 Disk Layout [online]. 2019-08-26. [visited on 2022-12-18]. Available
from: https : / / ext4 . wiki . kernel . org / index . php / Ext4 _ Disk _
Layout.

36. RITCHIE, Dennis M. The evolution of the Unix time-sharing system. In:
Symposium on Language Design and Programming Methodology. 1979,
pp. 25–35.

67

https://www.boost.org/doc/libs/1_66_0/libs/crc/
https://www.boost.org/doc/libs/1_66_0/libs/crc/
https://learn.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://learn.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32
https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32
http://www.c-jump.com/CIS24/Slides/FAT/lecture.html
https://www.easeus.com/partition-master/ext2-ext3-ext4-file-system-format-and-difference.html
https://www.easeus.com/partition-master/ext2-ext3-ext4-file-system-format-and-difference.html
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

Bibliography

37. BOTH, David. An introduction to Linux’s EXT4 filesystem [online]. 2017-
05-25. [visited on 2022-12-18]. Available from: https://opensource.
com/article/17/5/introduction-ext4-filesystem.

38. CAO, Mingming; SANTOS, Jose Renato; DILGER, Andreas; KUMAR,
Aneesh. Ext4 block and inode allocator improvements. In: Proceedings
of the Linux Symposium. 2008, vol. 1, pp. 263–274.

39. LEE, Seokjun; SHON, Taeshik. Improved deleted file recovery technique
for Ext2/3 filesystem. The Journal of Supercomputing. 2014, vol. 70, no.
1, pp. 20–30.

40. PATE, Steve D. UNIX Filesystems: Evolution, Design, and Implemen-
tation. Wiley Publishing, Inc., 2003. isbn 0471164836.

41. KAI, Zhang; EN, Cheng; QINQUAN, Gao. Analysis and Implementation
of NTFS File System Based on Computer Forensics. In: 2010 Second
International Workshop on Education Technology and Computer Science.
IEEE, 2010, vol. 1, pp. 325–328. Available from doi: 10.1109/ETCS.20
10.434.

42. MFT Entry Format [online]. [visited on 2023-05-04]. Available from:
http://www.c- jump.com/bcc/t256t/Week04NtfsReview/W01_022
0_mft_entry_format.htm.

43. MEDEIROS, Jason. NTFS Forensics: A Programmers View of Raw Filesys-
tem Data Extraction. 2008.

44. RUSSON, Richard. NTFS - Attributes [online]. [visited on 2023-05-04].
Available from: https : / / flatcap . github . io / linux - ntfs / ntfs /
attributes/index.html.

45. Concept - Data Runs [online]. [visited on 2023-05-04]. Available from:
https://flatcap.github.io/linux- ntfs/ntfs/concepts/data_
runs.html.

46. FORTUNA, Andrea. How to extract data and timeline from Master File
Table on NTFS filesystem [online]. 2017-07-18. [visited on 2022-12-18].
Available from: https://andreafortuna.org/2017/07/18/how-to-
extract-data-and-timeline-from-master-file-table-on-ntfs-
filesystem/.

47. Volume Shadow Copy Service [online]. 2022-07-12. [visited on 2022-12-
18]. Available from: https://learn.microsoft.com/en-us/windows-
server/storage/file-server/volume-shadow-copy-service.

48. LAUBER, Susan. Getting started with GPG (GnuPG) [online]. 2020.
[visited on 2022-12-18]. Available from: https : / / www . redhat . com /
sysadmin/getting-started-gpg.

68

https://opensource.com/article/17/5/introduction-ext4-filesystem
https://opensource.com/article/17/5/introduction-ext4-filesystem
https://doi.org/10.1109/ETCS.2010.434
https://doi.org/10.1109/ETCS.2010.434
http://www.c-jump.com/bcc/t256t/Week04NtfsReview/W01_0220_mft_entry_format.htm
http://www.c-jump.com/bcc/t256t/Week04NtfsReview/W01_0220_mft_entry_format.htm
https://flatcap.github.io/linux-ntfs/ntfs/attributes/index.html
https://flatcap.github.io/linux-ntfs/ntfs/attributes/index.html
https://flatcap.github.io/linux-ntfs/ntfs/concepts/data_runs.html
https://flatcap.github.io/linux-ntfs/ntfs/concepts/data_runs.html
https://andreafortuna.org/2017/07/18/how-to-extract-data-and-timeline-from-master-file-table-on-ntfs-filesystem/
https://andreafortuna.org/2017/07/18/how-to-extract-data-and-timeline-from-master-file-table-on-ntfs-filesystem/
https://andreafortuna.org/2017/07/18/how-to-extract-data-and-timeline-from-master-file-table-on-ntfs-filesystem/
https://learn.microsoft.com/en-us/windows-server/storage/file-server/volume-shadow-copy-service
https://learn.microsoft.com/en-us/windows-server/storage/file-server/volume-shadow-copy-service
https://www.redhat.com/sysadmin/getting-started-gpg
https://www.redhat.com/sysadmin/getting-started-gpg

Bibliography

49. CALLAS, J.; DONNERHACKE, L.; FINNEY, H.; SHAW, D.; THAYER,
R. OpenPGP Message Format. www.rfc-editor.org [online]. 2007 [visited
on 2022-12-18]. Available from doi: 10.17487/RFC4880.

50. WEE, Cheong Kai. Analysis of hidden data in NTFS file system. Edith
Cowan University. 2006.

51. YAACOUB, Jean-Paul A.; NOURA, Hassan N.; SALMAN, Ola; CHEHAB,
Ali. Digital Forensics vs. Anti-Digital Forensics: Techniques, Limita-
tions and Recommendations. arXiv, 2021. Available from doi: 10.485
50/ARXIV.2103.17028.

52. Mtools [online]. Free Software Foundation, Inc., 2023 [visited on 2023-03-
22]. Available from: https://www.gnu.org/software/mtools/.

69

https://doi.org/10.17487/RFC4880
https://doi.org/10.48550/ARXIV.2103.17028
https://doi.org/10.48550/ARXIV.2103.17028
https://www.gnu.org/software/mtools/

Appendix A
Acronyms

FS file system
HW hardware
SW software
OS operating system
HDD hard disk drive
SSD solid state drive
KiB kibibyte
MiB mebibyte
GiB gibibyte
TiB tebibyte
ISO Optical Disk Image
MBR Master Boot Record
CHS cylinder-head-sector
LBA logical block addressing (address)
GPT GUID Partition Table
GUID globally unique identifier
UEFI Unified Extensible Firmware Interface
CRC cyclic redundancy check
FAT File Allocation Table
NTFS New Technology File System
MFT Master File Table
GNU GNU’s Not Unix
GPL General Public License

71

Appendix B
Contents of enclosed

CD (zip file)

README.txt..................file with brief CD (zip) contents description
thesis/..text of the thesis

DP_Horak_Petr_2023.pdf...................... thesis in PDF format
latex/...LATEX source files

DiskImageGenerator/................program and source code directory
build/................................folder for object files generated
images_example/...... sample disk images generated by the program
src/...source code folder
DiskImageGenerator.................................program binary
LICENSE.txt
Makefile
README.txt ... program notes
scenarios.md.....................file with all the scenarios provided

73

	Stránka 1
	Introduction
	Scenarios
	Testing models

	Data storage
	Data extraction
	HW tools
	SW tools

	Storage drives
	Logical structure
	Disk images
	Raw image - .IMG
	Raw data - .BIN
	Optical Disk Image - .ISO
	EnCase - .E01

	MBR
	Structure
	Bootstrap
	Partition table
	Boot signature

	Behavioral testing
	Analysis
	CHS values
	Partition flag
	Partition type
	Start LBA and number of sectors
	MBR recovery

	Partition boot sector

	GPT
	GPT vs MBR
	Structure
	Primary GPT header
	Partition Entry Array
	Secondary GPT header

	Disk encryption
	BitLocker
	Linux
	Partition encryption

	File systems
	FAT32
	Overview
	Structure
	Partition boot sector
	FAT
	Secondary FAT
	Files and directories
	File creation
	File deletion

	Ext4
	Structure
	Block groups
	Superblock
	Block Group Descriptor Table
	Bitmaps
	Inode table
	Directory entry
	File creation
	File deletion
	Journal
	Orphans

	NTFS
	Structure
	Boot sector
	MFT
	Directory entries
	File creation
	File deletion
	Journal
	Shadow copy

	File system independent operations
	File encryption
	Data carving

	Digital Forensics
	Typical process
	Preparation
	Data acquirement
	Preservation
	Analysis
	Reporting

	Digital forensics tools
	Anti-forensics techniques

	Disk generator tool
	Application Design
	Program structure
	Earlier version
	Necessary improvements

	Current version
	Class Schema

	Available scenarios
	Scenario 1
	Solution

	Scenario 2
	Solution

	Scenario 3
	Solution

	Scenario 4
	Solution

	Scenario 5
	Solution

	Scenario 6
	Solution

	Scenario 7
	Solution

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD (zip file)

