FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Assignment of master’s thesis

Title: Digital Forensics Testing Images Generator
Student: Bc. Petr Horak

Supervisor: Ing. Jifi Dostal, Ph.D.

Study program: Informatics

Branch / specialization: Computer Security

Department: Department of Information Security

Validity: until the end of summer semester 2022/2023

Instructions

Digital forensics is a very important area as most of the information is stored
electronically. Used in investigations, it has become a powerful method for solving a lot
of computer crimes. Training of required skills is possible on many available test disks.
But creating these disks and covering all the possible combinations is a complex
process. Not to mention that these do not fully cover all possible scenarios and offer poor
scalability.

Survey the most used digital forensics scenarios (encryption, deleted files, ...) and create
a modular tool to generate source files (disk images) to practice these scenarios. The tool
should provide space for easy scalability for possible further development and
extensions. Provide supporting documentation so the scenarios could be used in actual
digital forensics tutorials.

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Master’s thesis

Digital Forensics Testing Images Generator

Be. Petr Hordk

Department of Information Security

Supervisor: Ing. Jiff Dostal, Ph.D.

May 4, 2023

Acknowledgements

I would like to thank all the friends and family members that supported me
during the creation of this thesis. Namely, I would like to thank our volleyball
group "Nemuzu to Tict” for all the laughts, playing games with them kept
me sane in the dark times. The same goes for the volleyball group "Kyticky
zleva doprava”. I'd like to thank my friend Radek Smid for his advice and
assistance. He has been of great help during the creation of this thesis.

Last but not least, I would like to thank my supervisor, Ing. Jiri Dostal, Ph.D,
for all the guidance and help he provided.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 4, 2023

Czech Technical University in Prague

Faculty of Information Technology

© 2023 Petr Horak. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Horak, Petr. Digital Forensics Testing Images Generator. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2023.

Abstrakt

Digitalni forenzni analyza je kriticky nastroj nejen pri vysetfovani, ale po-
znatky z této oblasti se pouzivaji i napr. pro obnovy poskozenych systému.
Tato prace poskytuje zakladni bazi znalosti potrebnou pro provadéni téchto
akci. Detail je kladen na diskové oddily a jejich mozné chyby v konfiguraci.
Popsény jsou vybrané souborové systémy (konkrétné ext4, FAT32 a NTFS)
s ohledem na bézné scénare, se kterymi se miizeme setkat v ramci digitalni fo-
renzni analyzy. Na pfilozeném CD (zip souboru) jsou nékteré z nich uvedeny
ve formé dkolli véetné popisu Teseni. Praktickd ¢ast je pokryta vytvorenim
nastroje pro generovani diskl pro trénink scénart popsanych v tikolech s moz-
nosti snadné konfigurace a rozsiritelnosti pro dalsi potencionélni vyvoj.

Klicova slova digitdlni forenzni analyta, disk, obraz disku, MBR, GPT,
diskovy oddil, sifrovani, souborovy systém, ext4, FAT32, NTFS, BitLocker

vii

Abstract

Digital forensics is a critical tool not only in criminal investigations, but
the knowledge gained from it is also essential in system recovery schemes. This
thesis provides the essential knowledge base for these tasks. A significant focus
is laid on partitioning schemes, with some real-world examples of possible
misconfigurations. Further, selected file systems (ext4, FAT32, and NTFS)
are described with coverage of basic digital forensics scenarios. Several of
these scenarios are described in the form of tasks to complete on the enclosed
CD (or zip file), with a solution provided. As for the practical part, a disk
image generator for these cases was created, allowing easy configurability for
the disk image output. It is built in a scaleable manner to allow possible
further development.

Keywords Digital Forensics, disk, disk image, MBR, GPT, disk partition,
encryption, file system, ext4, FAT32, NTFS, BitLocker

viii

Contents

|1 Introductio 1
|1.1 Scenariog 2
Il.l.l Testing modelsl 2

|2 Data storagel 3
b.l Data extractiod 3
D11 HW toold . . . o oo 4

1.2 SW t00lS 4

b.2 Storage drivesl 4
2.2.1 Logical structure] 5

2.2.2 Diskimaged 5

2.2.3 Raw image - .IMGI 5

.24 Rawdata- BIN 6

2.2.5 Optical Disk Image - .ISd 6

2.6 EnCase- .EOl 6

E MBEI 7

B.l Structurel 7
3.1.1 Bootstrad 7
3.1.2 Partitiontablg 7
3.1.3 Boot signaturd 10
b.Z Behavioral testiné 10
.21 Analysid 10
B.2.2 CHS valued 12
8.2.3 Partition flagl 13
B.2.4 Partition type. 13
3.2.5 Start LBA and number of sectorsl 14
3.2.6 MBR recovervl 16
B.S Partition boot sector| 17

ix

bk cpd

U1 GPT vs MBRl oo

1.2 Struct

ULE o o oo e e

1.2.1

Primary GPT headeﬂ

1.2.2

Partition Entry Arravl

1.2.3

Secondary GPT heade1|

b Disk encrvptiod

b File svstems{

6.1 FAT3Y . . .

6.1.1

OVerview o o i e

5.1.2

Structurd

6.1.3

Partition boot sectod

6.1.4

FAT] . oo oo

6.1.5

Secondary FATI

6.1.6

Files and directorieé

6.1.7

File creation

6.1.8

File deletionf

b.2 Ext4|

6.2.1

Structurd

5.2.2

Block groups{

6.2.3

Superblocki

6.2.4

Block Group Descriptor Table{

6.2.5

Bitmapsl

6.2.6

Inode tablel

6.2.7

Directory entryl

6.2.8

File creation

6.2.9

File deletion|

5.2.10

J ournai

6.2.11

Orphansi

6.3 NTFY

6.3.1

Structure]

6.3.2

Boot sectOII

6.3.3

MET . oo e

6.3.4

Directory entriesl

6.3.5

File creation

5.3.6

File deletion|

6.3.7

J ournaj

6.3.8

Shadow copvl

b.4 File system independent operationsl

19
19
20
21
22
23

25
25
26
27

6.4.1 File encrvptiod

6.4.2 Data carviné
7 Digital Forensics

.1 Typical processl
7.1.1 Preparatiod

7.1.2 Data acquirement|,

7.1.3 Preservatiod

714 Analysid oo

715 Reportingo

7.2 Digital forensics toolsl

7.3 Anti-forensics techniquefi

b Disk generator tooi

B.l Application Desig‘d
R.1.1 Program structurel
R.1.2 Earlier Versioﬂ

|8.1.2.1 Necessary improvementsl
B.1.3 Current version|o
B.1.3.1 CassSChemaI
B.Q Available scenariod
B.Z.l Scenario]l
2.1.1 Solutiorj
B.2.2 Scenarioﬂ
.2.2.1 Solutiod
B.2.3 Scenarioﬂ
2.3.1 Solutiod
5.24 Scenari04|
2.4.1 Solutiod
5.2.5 Scenario5|
.2.5.1 Solutiod
B.Q.G Scenariod
.2.6.1 Solutiod
B.Q.? Scenarioﬂ
2.7.1 Solutiod

|9 Conclusiod

B 0 phy]

A Acronyms

IB Contents of enclosed CD (zip ﬁle)l

xi

49
49
50
50
50
50
51
51
51

53
93
o4
54
95
95
95
o7
o7
o8
o8
o8
99
99
99
60
60
60
61
61
62
62

63

65

71

73

List of Figures

3.1 MBR structure [161 8
3.2 MBR partition types - output of "fdisk” command 9
3.3 screen shot from GParted - partitions for testing 11
3.4 Screenshot from GParted - overlapping Dartitionsl 15
3.5 Screenshot from Disks - overlapping partitiond 15
3.6 Screenshot from Windows - overlapping partitionsl 15
3.7 Screenshot from Manjaro - setting LBA beyond the size of the drivel 16
3.8 screen shot from Manjaro - setting number of sectors off—limitsl 17
3.9 screen shot from Ubuntu - setting number of sectors off-limitq . . . 17
4.1 GPT table [23] . . o o oo 20
1.2 GPT header 23] 21
1.3 GPT Partition Entry [21] 22
6.1 FAT32 structure [28] o o 30
6.2 FAT32 structure in hexl 31
6.3 bel‘structurd 33
6.4 Directory entry [30]| 34
6.5 extd structure [34] 36
6.6 inode [37] 39
6.7 MFT Structure[46“ 44

xiii

CHAPTER].

Introduction

Digital forensics is a branch of forensic science that focuses on the identifica-
tion, preservation, extraction, and analysis of digital evidence. It is a critical
tool in criminal investigations, as well as in civil and corporate matters, where
electronic devices and networks may contain valuable information related to
an incident or event. The goal of digital forensics is to recover and analyze data
from electronic devices in a manner that is forensically sound and admissible
in a court of law.

There are several tools available for creating disk images from existing
hardware disks and for further analysis. However, according to my survey,
there are not many available options in the sense of generating these images
based on the selected parameters with the pre-built forensic scenarios of the
user’s choice. This hole is helpfully reduced by the work. Additionally, there
is a lot of room for continual improvements, as there is no chance of ever
covering all the scenarios.

The structure of this thesis is as follows: Chapter 2 is about data stor-
age, obtaining evidence from storage media, and common types of disk image
formats. Chapters 3 and 4 focus on the partitioning schemes; extensive at-
tention is paid to MBR analysis, with some of the scenarios explained. GPT
is also covered. Disk and file system encryption are briefly mentioned in the
following chapter.

Chapter 6 describes the selected file systems, in particular ext4, FAT32,
and NTFS. It pays special attention to disk layouts and internal data struc-
tures, and understanding processes of commonly used tasks. Digital forensics
in general are then mentioned in Chapter 7. Lastly, some information about
the implementation of the image generator tool is provided in Chapter 8.

Throughout the thesis, there are no details provided about Apple devices
and APFS (Apple File System). Some details of the file system are still
unknown, and there are also limitations when it comes to system data [L].
Based on the nature of the intended practical use, it was omitted from the
scope of this thesis.

1. INTRODUCTION

1.1 Scenarios

The main objective of digital forensics is to examine internal computer or
server storage drives to look for digital evidence as part of criminal investi-
gations [[1]. This trend tends to change with the use of cloud storage. It can
be challenging to get a hold of the data stored in the cloud. It can be phys-
ically stored in multiple locations around the world, and access to it cannot
be guaranteed, even though most cloud service providers cooperate with law
enforcement on issued warrants [2].

Imagine the following scenario. A crime is committed. Law enforcement
looks through the evidence and identifies a suspect. They get a warrant and
perform a home inspection, during which they find the suspect’s laptop. It
may be essential for the case to extract the data from the computer to find
more evidence, motive, or co-conspirators. The laptop is handed to a digital
forensics team to retrieve as much information as possible. Because the data in
volatile memories, such as RAM, is erased when the power goes out, they are
not guaranteed to be useful. That leaves the laptop’s drive (HDD or SDD) as
the main source of the information, possibly alongside some portable storage
media. That is the scenario I kept in mind during the creation of this thesis.

1.1.1 Testing models

Throughout the thesis, several scenarios had to be tested in practice to assess
system behavior, as they were rather specific. These were conducted on an
external flash disk with a capacity of approximately 15.5 GB (14.44 GiB). As
for the test environments, three different operating systems were used, and
on each of them, different partitioning software. These were Manjaro 5.15.81-
1-MANJARO (64-bit) with GParted version 1.4.0, Ubuntu 22.04 LTS 5.15.0-
52-generic with gnome-disk-utility 42.0, and Windows 11 Disk Management
tool version 10.0.22621.1.

CHAPTER 2

Data storage

There are several types of computer storage. Historically, magnetic tapes or
punched cards were used. Today’s storage options are far more advanced. As
for this thesis, it is not reasonable to cover all the storage types. It is difficult
to perform forensics analysis on some types which makes them unsuitable for
learning, which is the main purpose of this thesis.

The focus will be paid to NVM (non-volatile memory), specifically HDDs,
SSDs, and external storage devices such as flash disks. These are the most
common memory types and thus are of great interest. Performing forensic
analysis on other types of memory (EEPROM, RAM, etc.) is possible and,
in many cases, very desirable, however, it is not suitable for our purpose of
creating learning software. The program output of this thesis is scale-able and
extensible; there is a possibility to add this functionality later if needed.

From now on, the terms ”drive” and "disk” will be used to describe both
HDDs and SSDs alike, as well as external storage drives like USB flash disks
or SD cards.

2.1 Data extraction

Data extraction is a process of obtaining digital evidence. Sources of the
evidence may vary, as can the means of obtaining it; some of them are log
exports, copies of storage media, and others.

It is crucial to avoid any possible evidence tampering if the digital infor-
mation is meant to be admissible in court. Control hashes [3] is one possible
method for ensuring data has not been changed.

The original evidence needs to remain unchanged. Forensic specialists have
to work with data copies to avoid potential disruptions. This is especially true
for SSDs, which use mechanisms like wear leveling and garbage collection [4].
Both hardware and software tools exist to create a copy of digital media, some
of them are discussed in the following subsections.

3

2. DATA STORAGE

2.1.1 HW tools

There are several devices physically blocking access to connected disks, al-
lowing only one-way communication. An example of such a tool is a forensic
disk controller. It can work on either a USB or SATA connection. How
exactly the device prevents write access is usually not publicly available infor-
mation; for example, implementation is protected by patent US 6,813,682 B2
from 2004 [B]. One of such devices is the Tableau Forensic SATA /IDE Bridge
T35u [6].

There are also specialized duplicating devices, like the Tableau Forensic
Duplicator TD2u [[7]. They usually offer more functionality, including hashing
for evidence-tamper detection, disk cloning, formatting, and others.

2.1.2 SW tools

Multiple programs are available to create disk images from the existing drives.
It is really important not to perform any write operations on the original drive,
as this could cause the obtained evidence to be inadmissible in court.

Starting with one of the popular options [8], FTK Imager is accessible as
a free-to-use tool created by AccessData [9]. It is one of the most widely used
free software packages in the field. Functionality includes creating images,
exporting files, previewing, hashing, and more. If we want a full-scale foren-
sics tool, FTK (Forensics Toolkit) from the same company is also an option,
although it has a commercial license.

EnCase [10] is a popular digital forensics tool that is widely used by law
enforcement agencies, forensic investigators, and other organizations [1]. It is
a comprehensive tool that provides a range of features, including data acquisi-
tion and imaging, data analysis and search, and evidence presentation. From
the beginner’s point of view, a disadvantage is its commercial license.

Magnet Forensics’ products are among the most widely used commercial
software. They are well-regarded among professionals and even used by law
enforcement, it is one of the currently best choices for digital forensics analysis
[l]. There are lots of other tools, such as Autopsy, Cellebrite Inspector, and
X-Ways, to name a few; it comes down to the preferences of individual users.

2.2 Storage drives

Traditional magnetic HDDs are mainly used in high-capacity storage servers
and data centers, as their cost-performance ratio is still the best when there
is no need for extra high-speed data transmissions. Speed limitations can be
partially addressed by cache memory. Still, it is fairly rare to find hard disks
in modern computers as their only drive.

Solid-state drives are generally much faster, but that is balanced by a
higher price. The storage method fundamentally differs from magnetic drives,

4

2.2. Storage drives

with NAND flash storage being the number one option. Due to their nature,
SSDs have a limited lifespan. Therefore, techniques such as wear-leveling and
garbage collection are used.

Utilizing all the cells of the drive equally prolongs its service life, but it has
a significant negative impact on digital forensics. A leading example could be
deleted files. When a file is marked as erased, it can still be retrieved from
the magnetic storage (using various techniques) as long as the memory space
is not overwritten. This is not guaranteed for flash-based memory, as it can
utilize a technique called TRIM for erasing data marked as deleted [4].

2.2.1 Logical structure

To work with the storage space of either internal or external drives in a user-
friendly way, it has to be formatted to a certain file system. It is possible to
use unformatted disks and access them as raw on low-level, but this is not a
common practice. Therefore, it is not suitable for this study. There are many
file systems usable when formatting storage devices, and it is not possible to
cover them all. The most commonly used (except for macOS) are described
later in the thesis.

This section is focused on the organization of the disk as a whole. On the
drive, there can be multiple partitions with different file systems. They are
organized in a well-defined manner; the older Master Boot Record (MBR) and
the newer GUID Partition Table (GPT) are the two mainly used partitioning
schemes.

2.2.2 Disk images

A disk image is a digital representation of a disk, a computer file that be-
haves similarly to a hardware drive. It includes its content and has the same
structure. The most common usage is in virtualization, where these images
are used for virtual computers (VMware or Oracle VM VirtualBox being ex-
amples of such usage), software distribution (OSes, as well as other programs
are often provided in the form of ISO images), and digital forensics.

There are multiple types of disk images, only a selected few will be dis-
cussed. The selection is based on relevance in this thesis, the author’s experi-
ence with the images, and overall popularity in the community.

2.2.3 Raw image - .IMG

Raw disk images contain raw, unaltered data in binary format. They are
block-by-block identical copies of the source. There is no additional metadata
or compression. Especially, compression would be useful for high-capacity
disks where a significant amount of the drive is not occupied and, thus, there
is no need to store it byte by byte. This format is easy to create (a simple dd

5

2. DATA STORAGE

command on Linux will suffice). As they do not need any external tools to be
read or created, this is the ideal format for our purpose and will be used in
the practical part of this thesis.

2.2.4 Raw data - .BIN

There is not much difference between .IMG and .BIN disk images in terms of
content. Both contain raw binary data. The only one is that .BIN is often used
to store solely file and directory content, not containing any information about
the disk layout. In combination with .CUE file, they can create a complete
disk image [11].

2.2.5 Optical Disk Image - .ISO

As the name suggests, ISO disk images are complete copies of optical disks
like CDs or DVDs. They do not include any compression and are often used
to distribute software, such as Linux distributions or Windows OS. The ad-
vantage is that ISO images can be mounted the same way regular optical disks
would. Also, ISO is well standardized [12], and there should be no variations
in the implementation of the format in any software used.

2.2.6 EnCase - .E01

There are several disk images that are originally associated with the software
used for their creation. Ome of the most widely recognized is the EnCase
evidence file. Encase Forensic is a very popular digital forensics tool that uses
this format when coping and creating disk images. It divides the disk into
data chunks of size 640 MB [13] and stores important information separately,
including checksums, headers with details like media description, author name,
date, and others. Nowadays, FTK Imager can work with this type of file too
[14].

CHAPTER 3

MBR

Master Boot Record (MBR) is a partitioning scheme introduced and originally
used in MS-DOS. It resides in the first sector of the storage medium and
holds information about booting the device and partition distributions. MBR
cannot be found on non-partitioned disks, e.g., on floppy disks [15], which are
out of the scope of this thesis.

3.1 Structure

MBR can be found in the first sector (logical address 0x00). Its size is 512
bytes, which is a standard logical disk sector size. It has a table structure, as
can be seen in .

3.1.1 Bootstrap

Section bootloader (bootstrap, Master Boot Code) is the first of the three main
parts of MBR with 446 bytes in size. It contains executable code to boot the
device. That is usually done by finding an active partition and loading its
first sector, which contains additional boot code (446 bytes are not enough to
load a whole operating system to memory and transfer control to it).

3.1.2 Partition table

The partition table is the next significant part of the media. It holds all
the necessary information about drive partitions. With 64 bytes in size, it is
divided into four equal parts of 16 bytes, each for a separate partition. That
would mean a maximum of four partitions on the drive. However, the last one
can be programmed as an extended one, which could contain more partitions
within. The internal structure then looks similar to the main partition table.

7

3. MBR

MBR (Master Boot Record)

16
_— bytes
Partition 1
flag byte
Start CHS 3
Address | bvtes
446
bytes Partition 1
Type byte
[End chs 3
“| Address | bytes
& Start 4
1 easylinuxji.blogspot.com j;; LP?;« bytes
Partition Entry 1 g
— ~ |Number of 4
b y?t4es Partition Entry 2 | sectors bytes

(Partition Table) Partition Entry 3
Partition Entry 4

2

Figure 3.1: MBR structure [@]

Structure

As noted in the , each partition entry is divided into 6 parts, their

respective sizes can also be found in the figure.

Partition flag holds information about partition status. Value 0x80
stands for an active (bootable) partition, the one containing additional code
to boot the device. Value 0x00 is standard for partitions, that are valid but
not used for booting. All the other values indicate that the partition is invalid.

The physical location on the disk is stored in sections Start CHS Ad-
dress and End CHS Address. CHS stands for cylinder-head-sector, it is an
older way to specify a location on a hard drive based on its physical structure.
There are two related problems. There are only 3 bytes dedicated to these
addresses, which limits the total possible capacity of the storage drive. Sec-
ondly, flash storage uses a different structure than HDDs and CHS addressing
no longer makes sense from a physical point of view.

A newer addressing system, Logical Block Addressing (LBA), is used.
Start LBA represents the beginning of the partition by sector sequence num-
ber, that is, the number of sectors from the beginning of the disk, starting
with sector 0. Instead of end LBA, Number of Sectors of a partition is

8

3.1. Structure

Figure 3.2: MBR partition types - output of "fdisk” command

stored, which determines its size; the final sector dedicated to the partition
can be computed from that. The remaining field, Partition Type, specifies
the file system used. A list of possible values can be found in figure Eiéure 3.2

Limitations

From the structure, there are some limitations to be noted. The start and
end CHS addresses are only 3 bytes long. There are 10 bits for the cylinder
number (0 - 1023), 8 bits for the head (0 - 254), and 6 bits for the sectors
(1 - 63) [L7]. That means any sector beyond these maximal values is not
possible to be represented by the CHS method and has to be indexed by
LBA only. Traditionally, there are 512 bytes in a sector, leaving the maximal
referenceable size of disk 512 - 63 - 255 - 1024 = 7.84 GiB. As the number of
sectors is 4 bytes long (and so is LBA), there can be a maximum of 232 - 512
bytes in a partition, that is 2 TiB. MBR will still work for drives with higher
storage capacities, but the remaining space cannot be used. This limitation
was one of the leading causes that led to the development of GPT, which is
described in the section .

The apparent limitation of only 4 partitions can be resolved by setting the
last partition as extended (there can be only one on the disk), which then can
be separated into multiple logical partitions. It cannot be used for booting

9

3. MBR

but still provides a reasonable level of data security. Similarly to MBR, at the
beginning of an extended partition, there is Extended Partition Boot Record
(EPBR or EBR). It has the same structure, only Master Boot Code is not
used and is usually filled with zeros. Then again, one of these logical partitions
can be extended, which can be divided again into logical partitions. There is
no limit to the number of logical partitions [18§].

3.1.3 Boot signature

The last two bytes of the MBR are the boot signature. Their purpose is
verification; a valid boot device will have these bytes set to 0x55 and 0xAA.
This is sometimes called the magic number [15].

3.2 Behavioral testing

Only a few reliable sources describe the behavior of the MBR, table and parti-
tioning SW when there are some artificial modifications made (e.g., rewriting
or changing selected bytes of the MBR table). Firstly, the MBR table is
updated immediately after changes regarding partitions are made. Deleted
partitions are not easily recoverable by changing the status in the respective
MBR field. How partitioning SW would behave if we turned it around and
changed some parts of the table is a question that available sources do not
cover sufficiently or convincingly. To describe the behavior correctly, these
scenarios had to be tested.

Tests were performed in the following way. External flash storage of size
14.44 GiB was formatted in the GParted software for multiple partitions uti-
lizing multiple file systems, particularly FAT32, ext4, and NTFS. Exact space
distribution can be seen in Eigure 3§ The corresponding MBR table can
be found in [Figure S.g, where separate partitions are indicated by different
colors.

3.2.1 Analysis

Let’s examine the MBR table generated from . Skipping the boot-
strap code area, the first byte of our focus is 446 (0x1BE) (numbering from

0). That is our first partition. The first byte is 0x00, meaning the partition
is not set for booting and is valid. Following are 3 bytes of the starting CHS
address: 0x040104. It should be noted that little endian is used. It does not
make any difference for this value but should be kept in mind for the next
ones.

The following byte is a partition type. According to , 0x0B is
FAT32, which (unsurprisingly) corresponds with what was set in the GParted
tool. The end CHS address is 0xFFC2FE, the start LBA is 0x00000800, and
finally, the number of sectors is 0x0055F000. Similarly, the second partition

10

Behavioral testing

3.2.

8u13s9) 10} suorjipred - pajIRJL) WOIJ JOYS UAIIS :g'¢ 9INTI]

V4100000
J0Te0000
36100000
0.T00000
(7100000
71100000

93000000
89000000
V8000000
15000000
32000000
00000000

19 5T zE1R) W 9#ippo froN
819 6L°L 2C] B S#1ppo foN
919 52y papuaixa V# IPPO AAON ~
g1 £L°E spu €4 |IPPO fAON
819 7L'e 71X n Z# IpPO ArON
a1969¢ L# [IPPO AnON

Ayeuzid olznodaN 0}1znod pTIETY wi)sAs Arosogqnos IPPO

919 57T g1o6LL 19 LLE g1 vLE 419697
9# |Ippo ArON S# 1ppo fnoN €4 |Ippo AoN Z# Ippo AroN L# lIppo roN

~ (81D vrvlL) eps/nap/ [T ~ & W K| 2 d

eparodeN IPPO JUSZWEZ WZRiqoz WAeidn pabedD

11

3. MBR

type is 0x83 (Linux), the third is 0x07 (NTFS) and the last is 0x05 (extended).
At the end, there is a boot signature, bytes 0x55 and OxA A, meaning the table
is valid.

As one of the objectives of this thesis, a detailed analysis of the individual
fields will be provided. It is not usually necessary to perform any MBR-related
modifications in ordinary life, but it should be included in the learning process
as it is one of the essential parts of the drive and related complications may re-
sult in data loss, operating system failures, and other critical outcomes. Also,
a malicious actor can modify the table manually to confuse the investigators
and to try hide some evidence.

3.2.2 CHS values

There are several things to be mentioned. Firstly, how LBA works. The first
partition starts at sector 0x0800 = 1 MiB, which is caused by alignment. The
second starts at 0x55F800. The number of sectors between them should be
equal to the number of sectors of the first partition, which holds, 0x55F800 =
0x800 + 0x55F000. To verify, 0x55F000 sectors of 512 bytes is 0OxABE00000
bytes, which is 2883584000 bytes in decimal, which corresponds to 2.6855 GiB
setup in the GParted tool.

Secondly, computation of CHS values. In the case of flash memory, CHS
values have no relation to the physical structure of the drive, but these num-
bers are still calculated and filled in the table. The start CHS value of the
first partition is 0x040104. If we look at the level of individual bits, 0b0000
0100 0000 0001 0000 0100. The first 10 bits show the cylinder number, in this
case, 0b0000 0100 00 = 16. The head number is following 8 bits, 0b00 0001
00 = 4. The remainder, 6 bits, is the sector number, 0b00 0100 = 4. LBA is
calculated in a straightforward manner, that is

LBA=(C-HPC +H)-SPH+ S —1,

where H PC' is the number of heads per cylinder and SPH is the number of
sectors per head. The calculation for this specific case,

LBA=(C-HPC+H)-SPH+S —1=(16-255+4)-63+4— 1 = 257295.

This does not make sense, LBA is 0x800. The issue is in the previously
mentioned missing connection of CHS to the physical structure. This informa-
tion is not used anymore. Even altering it to arbitrary values did not change
a thing regarding partition distributions. I was not able to find out why these
specific numbers appear in the start CHS and the end CHS values, but they
are not relevant. Let’s examine what happens when the other parts of the
table are altered, e.g., by the dd command.

12

3.2. Behavioral testing

3.2.3 Partition flag

The first thing to look at is the partition flag. Valid combinations are 0x80
and 0x00 as mentioned earlier. What happens if we mark a non-bootable
partition with an 0x80 flag is a fascinating question. It is a well-known fact
that only one disk partition can be marked active. However, marking multiple
partitions active on the test flash drive storage did not prove to be a problem,
neither for Windows nor for Linux operating systems. It has to be noted that
this flag was only technical, as there was no boot code on any partition at all.
This may be the reason why, even with the flag properly set, this drive was
not even available in the boot device menu.

Our next focus is an invalid flag. Any value other than 0x80 or 0x00
means the partition is in an invalid state. The behavior of different operating
systems and partition software varies significantly. After setting the flag to an
arbitrary number, the GParted tool was not able to recognize any partitions
and displayed the drive as an unallocated space. The Disks utility in Ubuntu
recognized different partitions as they were, but was unable to detect used
file systems or access files on the drive (note that this only covers automatic
mounting and access given by default, there may be some methods to access
the data using advanced techniques, but it is out of scope of this thesis). The
best solution offered MS Windows 11, which not only detected the partitions
correctly but, furthermore, was able to access the files stored on the drive
(although there were typical problems accessing files on the ext4 file system).

3.2.4 Partition type

Overwriting the partition type byte can also prove tricky. Let’s examine the
situation. As main contenders, tested partitions are FAT32, ext4, and NTFS
(their codes in are 0x0B, 0x83, and 0x07). In this test, Linux came
out on top, as both Manjaro and Ubuntu were able to read and write all the
partitions, even with interchanged labels. The situation for Windows 11 was
considerably worse. I was not able to convince it to open the ext4 partition
no matter how it was labeled, but that was to be expected. Furthermore,
marking FAT32 and NTFS partitions as ext4 resulted in the same situation
even for these systems. For both of those, FAT32 and NTFS labels worked just
fine. It shows that modern OSes do not rely simply on the provided labels, as
they would be unable to read or write these partitions. It can be considered
expected behavior, generally, all the input to the computer should be regarded
as invalid or malicious until proven otherwise, creating a presumption of guilt.

There are some interesting partition types to be mentioned further, and
those are hidden partitions. A hidden partition is not visible when viewing
the list of available drives on a computer. This allows the partition to be
used for storing important files, boot files, etc. For this purpose, all hidden
NTFS (option 0x17), hidden FAT32 (0x1B), and hidden ext4 (0x93) were

13

3. MBR

tested. This method does not provide any general protection as the flag can
be very easily changed in most of the available partitioning software (that
stands for Linux, doing this in Windows is not straightforward and requires
a little deeper knowledge), but for inexperienced users or those without admin
privileges, this may pose a bit of a challenge. There are more methods for
detecting hidden partitions; the most obvious in this context is to look at the
MBR table. Also, one can compare the disk capacity to the total capacity of
all detected partitions and see the discrepancy.

3.2.5 Start LBA and number of sectors

If two or more partitions overlap, it means that they are using the same
space on a drive. This can cause several problems, including data loss (if
two partitions are trying to access the same data, one of the partitions may
overwrite the other, resulting in data loss) and file system corruption. It is
generally a good idea not to have overlapping partitions. In this section, we
are going to look at what can happen if this situation occurs.

For the experiment, three equal partitions were created on the USB drive,
all of them beginning just after the MBR and alignment (LBA 0x800) and
covering the full size of the medium. The situation was tested in four differ-
ent scenarios; different file systems for separate partitions (ext4, FAT32, and
NTFS) and all having the same for each of these three file systems. Behavior
differed significantly by the tool used.

GParted prompted the user with a warning on startup about possible
overlapping partitions in all the tests. The situation caused the tool to be
unstable and frozen when further partition adjustments were needed. All
three partitions were mounted without an issue, enabling a user to write to
and read from all of them. The output given in the GUI indicated three
partitions of the same size (the full size of the drive), see . As
expected, data overwriting happened, and it did not take much effort to lose
saved data by writing different files in the same sectors on variable partitions.
That stands for the situation when at least one F'S differs from the other two.
When all the file systems were of the same kind, I was not able to achieve file
overwriting, as all the changes were propagated to all the partitions with no
differences and no problems.

In Ubuntu, mounting all the partitions was not an issue as well, the experi-
ence was very similar to Manjaro. However, utility Disks showed odd manners
in displaying the overview. It suggested only two partitions (although 3 were
already mounted) and even though they were the same size, on the display
one occupied significantly more space, see . Files overwriting proved
to be tricky, as the OS refused to write to more partitions at once, after writ-
ing to one, the other two were marked read-only. On user-level experience,
I did not find a way to overwrite or corrupt files, including using superuser
privileges.

14

3.2. Behavioral testing

1a - GParted

GParted Upravit Zobrazit Zafizeni Oddil Napovéda
o A DB v I /dev/sda (14.44 GiB) v~
/dev/sdal /dev/sda2 /dev/sda3
14.44 GiB 14.44 GiB 14.44 GiB
Oddil Souborovy systém Velikost Pouzito NepouZito Priznaky
/dev/sdal |] extd 14.44 GiB 314.29 MiB 14.13 GiB
/dev/sdaz |] extd 14.44 GiB 314.29 MiB 14.13 GiB
/dev/sda3 |] extd 14.44 GiB 314.29 MiB 14.13 GiB

Figure 3.4: Screenshot from GParted - overlapping partitions

Disky = 16:35:‘?;&[“ I
77 1,0TB Disk . .
[E, WDC PC SNT... ¥-1T00-1101 Model Verbatim STORE N GO (PMAP)
" Sériové ¢islo 070B2A95F881CAS0
16 Ea‘? Drive Velikost 16 GB (15504900096 bytes)
o SR R s Rozdéleni Master Boot Record

Svazky

Sauborovy systém
Oddil 1
16 GB Ext4

LR e

Velikost 16 GB— 15 GB volnych (2,1 % obsazeno)
Obsah Ext4 (version 1.0) — Pfipojeno v /media/horry/82d4c7b2-78cc-411b-beb4-e7feed710892
Zafizeni [devfsda2
UUID 82d4c7b2-78cc-411b-beb4-e7feed710892
Typ oddilu NTFS/exFAT/HPFS

Figure 3.5: Screenshot from Disks - overlapping partitions

= Disk 1
Vymenitelné medium
43,32 GB
Online ofadku (Primarni oddil)

14,44 GB 14,44 GB

Figure 3.6: Screenshot from Windows - overlapping partitions

Windows proved to be a user-safe system; it was the only one that mounted
only the first partition (in case it was not ext4, problems mounting the ext4
file system were already mentioned earlier). Attempts to mount the other two
resulted in an error referring to out-of-date information loaded and suggested
restarting the program or the whole OS, which for obvious reasons did not
help. Talking about the actual partitioning program, it displayed all the
partitions with the correct sizes and assumed the overall storage size to be
their sum. Details can be seen in .

15

3. MBR

/dev/sda - GParted

GParted Upravit Zobrazit Zafizeni Oddil N&povéda

OO A Db B v | /dev/sda (14.44 GiB) ~
neobsazeno /dev/sdal
1.33TiB 14.44 GiB
Oddil Souborovy systém Velikost PouZito NepouZito Pfiznaky
neobsazeno neobsazeno 1.33TiB
/dev/sdal neznamy 14.44 GiB - -

Figure 3.7: Screenshot from Manjaro - setting LBA beyond the size of the
drive

There were 3 more tested scenarios, in particular starting LBA inside the
MBR table, beyond the size of the drive, and setting the size of the partition
higher than the drive. Altering the start LBA value failed in all three testing
models. None of the systems was able to mount the drive. Windows required
formatting the device before using it, Manjaro and Ubuntu both displayed
incorrect readings in the program display output showing unrealistic values,
as can be seen in . Both Linux systems showed an error when trying
to perform any operation with the partition, reporting an inability to read the
partitioning table or an unfamiliar partition description.

The situation became more interesting when I changed the number of
sectors to an off-limits number. All the systems were able to mount the
drive. In Manjaro, any operation in GParted resulted in the error message
the same as the one above. The reported disk size was consistent with the
number of sectors () Write and read operations worked as normal.
Ubuntu showed the wrong drive size (see) However, it automati-
cally reloaded, repairing the number of sectors to match drive capacity. All
the other operations worked as well. Windows offered an easy but not very
intuitive solution. Drive was not accessible immediately, there was no FS rec-
ognized. After the formatting operation was issued, it returned an error (of
the same nature as in the case of Manjaro). However, the data was reloaded
and the correct readings were available right away. Data on the disk could be
accessed, and no data loss occurred.

3.2.6 MBR recovery

If the entire MBR table is deleted, it does not mean all the data is lost. If one
can successfully recover the MBR, the data on the disk remains unchanged.
That is true for HDDs but not necessarily for SSDs. They use garbage collec-
tion and level wearing, which can cause overwriting or permanently deleting
stored data [H] There are multiple ways to recover a lost MBR table. The
most optimal is recovery from a backup, because if only the files changed on

16

3.3. Partition boot sector

/dev/sda - GParted

GParted Upravit Zobrazit Zafizeni Oddil Napovéda

Dalyin el |Udevisda (14.44GiB) |
Oddil Souborovy systém Pfipojny bod Velikost Pouzito Nepouzito Priznaky
/dev/sdal @® | ext4 /run/media... 142.44 GiB 314.35 MiB 14.13 GiB

Figure 3.8: screen shot from Manjaro - setting number of sectors off-limits

= 16 GB Drive | .
Disky = e & (IO : - o x

C.JSCTECDS'EE Y-1T00-1101 Maodel Verbatim STORE N GO (PMAP)
= Sériove cislo OTOB2A95F881CAS0
Velikost 16 GB (15504 200096 bytes)
= = Rozdéleni Master Boot Record

Svazky

g

Velikost 153 GB— 15 GB volnych (90,1 % obsazeno)

Obsah Unknown— Pripojeno v /media/horry/82d4c7b2-78cc-411b-beb4-e7feed 710892

Zarizeni fdev/sda1
Typ oddilu Unknown

Figure 3.9: screen shot from Ubuntu - setting number of sectors off-limits

the drive, there should be no effect on the MBR table, and thus even old
backups can be handy. It would be necessary to back up the MBR table as
well and not just the user files, which is not a common practice. Multiple
commercial tools claim to be able to recover a partition table, such as the
EaseUS Partition Recovery tool [@] The exact method of recovery is kept
secret (that is to be expected), but one can assume it processes raw disk and
looks for file signatures and other artifacts to try to identify partitions and
used file systems.

3.3 Partition boot sector

The partition boot sector is not a part of MBR, but it is strongly intercon-
nected with it. Therefore, at least a brief introduction is provided in this
section. The partition boot record (PBR) (or partition boot sector) is a spe-
cific area of a computer’s drive that contains the instructions for booting the
operating system. It is typically located at the very beginning of the drive
partition(s) in logical sector 1.

3. MBR

The bootstrap code area inside the MBR table contains a short program
that is used to start the boot process, while the partition boot record is a
data structure that is used to store information about the boot process and
is used by the bootstrap code to locate and load the operating system and
the boot loader. Once the boot loader has been loaded, it takes control of the
boot process and is responsible for locating and loading the operating system.
The operating system is then initialized and control is transferred to it, it
is responsible for managing the resources of the computer and providing a
user interface. All the partitions can contain a program to load the operating
system, but only one is given control by the Master Boot Record, which is
the one specified as active in the partition table entry [20]. Unlike the MBR
table, PBR is highly file system dependent.

18

CHAPTER 4

GPT

GPT (GUID Partition Table) is the newer and more modern partitioning
scheme. Created to assess some previously mentioned limitations of MBR,
GPT is a part of the Unified Extensible Firmware Interface (UEFT) specifica-
tion and was designed as a replacement for the MBR scheme [21].

4.1 GPT vs MBR

GPT offers several advantages over MBR, making it a better choice for the
majority of modern drives. For example, GPT supports disks of much higher
sizes, up to exabytes, while MBR is limited to disks up to 2 tebibytes in size.
This is important because hard drives are getting larger and larger, and many
users need a partitioning scheme that can support disks with high capacities
that exceed the maximum limit of MBR. Not only in personal computers, but
also in data centers, where this size of drive is fairly common. Furthermore,
LBAs are 64 bits long instead of the 32 bits in the MBR, increasing the
maximum possible disk capacity. It is almost impossible to buy a new PC
with the MBR partitioning scheme set up by default.

In addition to supporting larger disks, GPT also allows for more than four
partitions on a single disk. MBR is limited to a maximum of four primary
partitions, which can be restricting for users who need to access multiple OSes
from the drive (without using virtualization). It is partially mitigated by the
possibility of using multiple logical partitions, but those cannot be set up as
boot partitions. On the other hand, GPT allows users to be more flexible
in how they organize their data. According to the specification [21], there is
almost no limit on the number of partitions on the drive, but there could be
OS restrictions, e.g., Windows limits this number to 128 partitions [22].

GPT also includes improved error-checking and recovery capabilities. It
uses cyclic redundancy checks (CRCs) to verify the integrity of the partition
table and can detect and repair certain types of corruption. This can help

19

4. GPT

Block: Contents:
LBA DO Protective MBR
LBA 1 Primary GPT Header
LBA 2 Entry 1 Entry 2 Entry 3 Entry 4
LBA 3 Entries 5— 128
LBA 34 to LBA -34 Partition 1
Partition 2
RemainingPartitions
LBA - 33 Entry 1 Entry 2 Entry 3 Entry 4
LBA-2 Entries 5— 128
LBA-1 Secondary GPT Header

Figure 4.1: GPT table [23]

prevent data loss and ensure the reliability of the partition table. Also, a
full backup is stored in a different part of the disk, making it unlikely to
accidentally get into similar scenarios as were described in the MBR chapter.

Another advantage of GPT is its inclusion of the protective MBR (a MBR
table is at the beginning of the disk even if GPT is used). This can help prevent
accidental overwriting of the GPT data, which can occur if the user is unaware
that the disk is using GPT and attempts to create an MBR partition table
on the disk. Also, it provides limited backward compatibility; older programs
that do not recognize GPT will read the protective MBR and interpret the disk
as having a single partition (which type would probably be unrecognized), but
it should prevent the software from addressing the disk as unpartitioned [22].
The used partition flag in the protective MBR is in the case OxEE, indicating
usage of the GPT table.

In addition to the protective MBR, GPT also supports partition labels and
type codes. These allow users to assign names and type codes to partitions,
making it easier to identify and manage them. This can be especially useful
when working with large disks that have many partitions. Finally, GPT is
required for the use of certain features, such as secure boot [21] and faster
boot times, which are not available with MBR. Secure boot helps protect
against malware by requiring that the system only boot using trusted boot
loaders, while faster boot times can improve the overall user experience by
reducing the time it takes for the system to start up.

4.2 Structure

The structure of GPT can be found in . As is immediately notable,
there are no fields with CHS values. Protective MBR was discussed in the
section comparing MBR and GPT; thus, it will be omitted here. Green and
blue-marked fields are copies of the same data for redundancy.

20

4.2. Structure

Offset Length Contents

0 8 bytes Signature (“EFI PART”, 45 46 49 20 50 41 52 54)

8 4 bytes Revision (For GPT version 1.0 (through at least UEFI version 2.3.1), the
value is 00 00 01 00)

12 4 bytes Header size in little endian (in bytes, usually 5C 00 00 00 meaning 92
bytes)

16 4 bytes CRC32 of header (0 to header size), with this field zeroes during
calculation

20 4 bytes Reserved; must be zero

24 8 bytes Current LBA (location of this header copy)

32 8 bytes Backup LBA (location of the other header copy)

40 8 bytes First usable LBA for partitions (primary partition table last LBA + 1)

48 8 bytes Last usable LBA (secondary partition table first LBA— 1)

56 16 bytes Disk GUID (also referred to as UUID on UNIXes)

72 8 bytes Partition entries starting LBA (always 2 in primary copy)

80 4 bytes Number of partition entries

84 4 bytes Size of partition entry (usually 128)

88 4 bytes CRC32 of partition array

92 * Reserved; must be zeroes forthe rest of the block (420 bytes for a
512-byte LBA)

LBA size Total

Figure 4.2: GPT header 23]

4.2.1 Primary GPT header

The primary GPT header is located in LBA 1 (the second logical block). It
is a data structure that contains important information about the GPT itself
as well as the partitions that are defined within it. A brief description of each
field can be found in [Figure 4.9

The first and last usable LBAs identify the range usable by GUID Partition
Entries. All the data stored on the drive must reside in this range, with the
only exception being the data structures defined by UEFI to manage partitions
and drive information.

A cyclic redundancy check is used to identify modifications of the header
as well as the partition table. The checksum is computed by the EFI process
during the startup sequence and compared to the value stored. It poses chal-
lenges for the raw GPT data editing action since the CRC would have to be
recalculated each time. It is impossible to use disk hex editors to edit raw
GPT data without manual re-computation [23].

If any discrepancies are detected, the GPT header is corrected by the
backup header [23]. The two headers have to be the same to successfully work
with the disk, the incorrect one is overwritten by the valid one. If a program
changes any header entry, it is required to also change the secondary header
entry. If both of them are invalid, the disk is usually corrupted, and recovery
attempts have to be made to save the data.

The CRC (to be exact, the CRC32) is calculated based on the generating
polynomial [24]. The hash can be computed using various programming li-

21

4. GPT

Mnemonic Byte Offset | Byte Description
Length
PartitionTypeGUID 0 16 Unique ID that defines the purpose and type of this Parti-

tion. A value of zero defines that this partition entry is not
being used.

UniguePartitionGUID | 16 16 GUID that is unique for every partition entry. Every par-
tition ever created will have a unique GUID. This GUID
must be assigned when the GPT Partition Entry is created.
The GPT Partition Entry is created whenever the Num-
berOfPa rtitionEntries in the GPT Header is increased to
include a larger range of addresses.

StartingLBA 32 8 Starting LBA of the partition defined by this entry.
EndinglL.BA 40 8 Ending LBA of the partition defined by this entry.
Attributes 48 8 Attribute bits, all bits reserved by UEFI (Defined GPT Par-
tition Entry — Partition Type GUIDs.
PartitionName 56 72 Null-terminated string containing a human-readable name
of the partition.
Reserved 128 SizeOf Par- | The rest of the GPT Partition Entry, if any, is reserved by
titionEntry UEFI and must be zero.
- 128

Figure 4.3: GPT Partition Entry [21]

braries (e.g., Boost C++ libraries [25]). Computing the hash manually would
be extremely inefficient.

Having in mind all the checksums and the header redundancy, it is very
unlikely to either intentionally or unintentionally alter GPT header fields to
cause any significant issues with the drive. Therefore, the testing of the alter-
ation of these fields is omitted from the scope of this thesis.

4.2.2 Partition Entry Array

All the information about partitions is stored in the Partition Entry Array. A
detail of the table can be seen in . There are 8 bytes reserved for
each LBA entry. That allows the maximum number of blocks to be 264, with
a logical block size of 512 bytes resulting in a maximum capacity in the order
of exabytes, leaving plenty of room for disks in the years (and probably even
decades) to come.

The starting and ending LBA pints point to the physical storage location,
where the data within the partition is stored. Also, there are no PBRs in the
partitions. For all the computers with UEFI, boot code and other necessary
information for starting up the machine are stored in a special partition called
the EFI System Partition (ESP) [21]. It is stored as a regular partition on
the drive with an adequate entry in the partition table. As the drive forensics
covered in this thesis do not include operating systems, it is beyond the scope
of this thesis to further investigate them.

OEM, also known as the vendor partition, is another common special
partition. There are usually device-specific files stored, such as firmware,
drivers, or diagnostic tools.

22

4.2. Structure

4.2.3 Secondary GPT header

Located in the last logical sector, the secondary GPT header acts as a backup
for the primary one. It contains the same fields, and for the system to work
properly, the two headers must be the same. As the CRC is mainly for error
detection, this header acts as the backup to restore the primary header in the
case of need.

23

CHAPTER 5

Disk encryption

Physical security has been one of the bottlenecks in securing computers for a
very long time. It does not matter how strong users set their passwords in
the account profiles; if an attacker can just open their PC case and steal their
drive, all the data would be accessible to him (of course, there are some lim-
itations, such as separate file or folder encryption). Luckily, security evolves,
and nowadays all the mainstream operating systems support some kind of full
disk encryption mechanism.

5.1 BitLocker

The most widely-used full disk encryption software is BitLocker, as it is em-
bedded in the newer version of Windows OS. This Microsoft-developed tool
is for Windows users only. It uses the Advanced Encryption Standard (AES)
algorithm with a 128-bit or 256-bit key to encrypt data on the disk. When
BitLocker is enabled, it ciphers the entire disk, including system files, system
recovery files, and user files. This means all the data on the disk is encrypted
and cannot be accessed without the correct password or passphrase in a spe-
cial pre-boot environment. This password