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Abstrakt: Práce se zabývá principem urychlování elektronů pomocí ultrakrátkých,
vysoce intenzivních, laserových impulsů. Je v ní popsáno nově navržené schéma
využívající plynový terč obsahující nanočástice a jsou zmíněny jeho hlavní výhody
v porovnání s ostatními injekčními schématy. Dále je rozebrána metoda particle-
in-cell, hojně využívaná pro studium interakce laserového záření s plazmatem, a v
krátkosti jsou představeny dva různé particle-in-cell kódy (Smilei a WarpX). Cílem
práce je pomocí numerických simulací navrhnout nanočásticový plynový terč, který
by byl vhodný pro použití při experimentech na ELI Beamlines. Kvůli vysokým
nárokům na rozlišení, které plynou z přítomnosti nanočástic, jsou simulace prove-
deny v kvazi-cylindrické geometrii. Výsledky simulací jsou následně důkladně ana-
lyzovány a na jejich základě je proveden konečný návrh nanočásticového plynového
terče.
Klíčová slova: LWFA, nanočástice, elektronová injekce, PIC simulace
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Autor: Bc. Alžběta Špádová

Abstract: This master’s thesis deals with principles of electron acceleration driven
by high-intensity, ultrashort laser pulses. Newly designed electron injection scheme
utilising gas target containing nanoparticles and its major benefits are described.
Furthermore, a description of particle-in-cell method, widely used for the study
of laser-plasma interaction, is provided together with a short introduction of two
different particle-in-cell codes (Smilei and WarpX). This thesis aims at designing
designing a nanoparticle gas target suitable for experiments realized at ELI Beam-
lines via PIC simulations. Due to high computational requirements emerging from
the presence of nanoparticles, simulations are ran in quasi-cylindrical geometry. The
results are then thoroughly analysed and based on them the nanoparticle gas target
is designed.
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Introduction

A number of fundamental questions on the nature of matter and energy have
been resolved thanks to the use of particle accelerators. Mechanism of conventional
accelerators is based on radio-frequency technology, limiting the maximum achiev-
able accelerating gradient. Accelerators, based on plasma wakefield generated by
high-intensity laser, are capable of sustaining much higher accelerating gradients
[1]. Therefore, this approach is more convenient in terms of cost and compactness.

Accelerated electrons have a wide range of practical applications with high social
and economic impact. They can be used as sources of coherent high-brightness
radiation with wavelengths ranging from x-rays to gamma-rays. These sources have
great potential for applications in fields such as biology and medicine (e.g., single-
particle imaging, cancer treatment via radiotherapy, tumor imaging, or sterilization
of medical devices). Another possible utilization is non-destructive testing using
radiography for safety and defense purposes or pulse radiolysis [2].

Although laser wakefield acceleration has already demonstrated multi-GeV ener-
gies [3], small energy spreads [4], and high-charge electron beams [5], the process
of controllable electron injection, enabling utilization in the above-mentioned fields,
is still a great challenge [6]. The easiest way to inject the electrons into the ac-
celerating phase of a plasma wave is the self-injection; in this case, the amplitude
of the wakefield exceeds the critical value and the plasma wave breaks. Since it is
impossible to precisely predict when this phenomenon occurs, we are not able to
control the process of electron injection.

A recently proposed injection scheme, using gas targets with diffused nanoparti-
cles, could be the solution to this issue. In [7] and [8] authors carried out Particle -
in - Cell (PIC) simulations suggesting a significant advancement towards the electron
beam energy, energy spread and divergence compared with the case of self-injection.
Moreover, these simulations demonstrated the possibility of controlling the total
charge of the injected electron beam by the position, number, size, and density of
the nanoparticles [7]. Furthermore, this injection scheme enables decoupling of the
electron injection from laser evolution, which is very desirable for generating a sta-
ble multi-GeV electron bunches [9], since reaching energies this high is not possible
without laser guiding. Most of these exceptional benefits of the injection scheme
using nanoparticles were also confirmed by experiments [8] and [9].

This work focuses on designing a gas target taking advantage of this new injection
scheme and suitable for future experiments at ELI Beamlines. More precisely, two
experiments have been taken into consideration, one with kHz laser L1 Allegra,
called ALFA, and a second one with petawatt laser L3 HAPLS, which is called
ELBA. In the first experiment, the gas target is quite short - less than 1 mm, hence
the nanoparticles can be used as a way to achieve controllable injection. However,
setting up the experiment could be very challenging, since nanoparticles need to be
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2 Introduction

delivered into the gas target at a relatively precise location. Nevertheless, for the
ELBA experiment, which currently uses gas target about 20 mm long, this injection
scheme seems to be very suitable. Laser parameters and the gas target length used
in ELBA experiment allows to fully exploit all the advantages of the nanoparticle
injection scheme, whereas the required precision in the experiment setup is not as
critical as in the ALFA experiment.

The first chapter of this thesis provides a brief overview of the LWFA technique
including the basic principles of laser plasma interaction, limitations of the LWFA
method, as well as a description of several injection schemes, with emphasis on the
one using nanoparticles. In the second chapter, a widely used numerical method for
plasma physics, Particle-in-Cell, is discussed in detail. Chapter three contains a de-
scription of advanced numerical methods used in PIC simulations. Their purpose
is to reduce the simulation run time and make them less computationally expen-
sive, while making more or less strict assumptions. Fourth chapter is dedicated to
a comparison of the computational cost and results from full 3D and quasi-3D PIC
simulations. Finally, the fifth chapter is focused on evaluation of results obtained
from numerous PIC simulations studying the influence of the nanoparticle param-
eters, such as material or size, on the electron injection process and parameters of
the accelerated electron beam.



Chapter 1

Laser wakefield acceleration

Laser plasma accelerators have drawn the wide attention of the scientific commu-
nity as a promising way of constructing compact high-energy electron accelerators.
This mechanism uses plasma waves generated via the interaction of intense ultra-
short laser pulses with gas targets to capture and accelerate electrons to relativistic
velocities. Although these accelerators have a high potential to replace conventional
accelerators in the future, the quality of generated beams has to be further improved.

Since electron injection is one of the key features determining the beam character-
istics, several injection mechanisms yielding better electron beam parameters were
proposed over the last twenty years. The most recent and very promising scheme
utilizes a gas target containing nanoparticles. These targets could allow us to pre-
cisely control the location where the electrons are being injected into the wakefield,
as well as to improve some other important beam parameters.

1.1 Laser propagation in a vacuum
In optics, and particularly in laser physics, laser beams often occur in the form

of Gaussian beams and LWFA experiments are not an exception. Although, strictly
speaking, the beams are not exactly Gaussian, it is still a very good approximation.
This is why, at the beginning of this chapter, the properties and propagation of
Gaussian beams will be described.

The electric field of a laser beam, propagating along the z-axis, can be described
using the following expression [10]:

𝐸(𝑟, 𝑧) = 𝐸0
𝑤0

𝑤(𝑧)𝑓(𝑟, 𝑧)𝑔(𝑡, 𝑧) cos(𝜔𝐿𝑡 − 𝑘𝐿

(︁
𝑧 + 𝑟2

2𝑅(𝑧)
)︁

+ 𝜙𝐿)�⃗�𝑝𝑜𝑙 + cc., (1.1)

where
𝑓(𝑟, 𝑧) = exp

(︁
− 𝑟2

𝑤(𝑧)2

)︁
and 𝑔(𝑡, 𝑧) = exp

(︁
−

(𝑡 − 𝑧
𝑐
)2

𝜏 2
0

)︁
. (1.2)

The function 𝑓(𝑟, 𝑧) describes the radial envelope with the transverse radius of the
beam 𝑤(𝑧) and 𝑔(𝑡, 𝑧) represents temporal envelope with 𝜏0 as the pulse duration
defined at 1/𝑒 of the electric field. The meaning of remaining terms is as follows:
𝜔𝐿 is the laser carrier angular frequency, 𝑘𝐿 is the wavenumber, 𝑤0 is the beam waist,
that is the radius at 1/e of the electric field in the focal plane (z=0). Finally, 𝑒𝑝𝑜𝑙 is
the vector describing the polarization of the laser pulse and 𝐸0 is the amplitude of
the electric field.
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4 Chapter 1. Laser wakefield acceleration

1.1.1 Gaussian beam parameters
The propagation of the Gaussian laser pulse is fully characterized by the beam

waist 𝑤(𝑧), the radius of curvature of the wavefront 𝑅(𝑧), and the Gouy phase
shift 𝜙(𝑧). These parameters vary as the laser beam propagates, which can be
described mathematically as [11]:

𝑤(𝑧) = 𝑤0

√︃
1 +

(︁ 𝑧

𝑧𝑅

)︁
, (1.3a)

𝑅(𝑧) = 𝑧

(︃
1 +

(︁𝑧𝑅

𝑧

)︁2
)︃

, (1.3b)

𝜙𝐿(𝑧) = arctan
(︁ 𝑧

𝑧𝑅

)︁
. (1.3c)

Here 𝑧𝑅 stands for Rayleigh length of a laser beam, representing the position at
which the laser beam transverse area is doubled, compared with the one in the focal
plane:

𝑧𝑅 = 𝜋𝑤2
0

𝜆𝐿

, (1.4)

where 𝜆𝐿 is the laser wavelength. Another important parameter of the Gaussian
beam is the beam divergence, which is defined far away from the focal plane as:

tan 𝜃 ≈ 𝜃 ≈ Δ𝑤(𝑧)
Δ𝑧

= 2 𝜆𝐿

𝜋𝑤0
. (1.5)

Figure 1.1: Representation of the envelope of a Gaussian laser beam with depicted
parameters [12].

1.1.2 Gaussian beam intensity
The intensity of laser beam can be defined as a cycle-averaged Poynting vector:

𝐼𝐿 = ⟨�⃗�⟩𝑇 = 𝑐2𝜀0⟨�⃗� × �⃗�⟩𝑇 = 𝑐𝜀0

2 |�⃗�|2, (1.6)

where 𝜀0 is the vacuum permittivity and 𝑇 is one optical cycle. Since the intensity
of a Gaussian beam in the plane transverse to the propagation has a gaussian-shape
profile as well, we can write:

𝐼(𝑟, 𝑧) = 𝐼0 exp
(︁

− 2 𝑟2

𝑤2(𝑧)
)︁
, 𝐼0 = 2𝑃

𝜋𝑤2(𝑧) (1.7)
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where 𝑃 is the power of the beam.
It is convenient to know the relations between the characteristics used for Gaus-

sian beam description (beam waist 𝑤0 and the pulse duration 𝜏0) and measurable
quantities at FWHM (Full Width Half Maximum) of the temporal and spatial in-
tensity profile (the spot size 𝑑𝐹 𝑊 𝐻𝑀 and pulse duration 𝑡𝐹 𝑊 𝐻𝑀). These relations
stand as follows:

𝑡𝐹 𝑊 𝐻𝑀 =
√︁

2𝑙𝑛(2)𝜏0, 𝑑𝐹 𝑊 𝐻𝑀 =
√︁

2𝑙𝑛(2)𝑤0. (1.8)

1.2 Basics of plasma physics
Plasma is often referred to as the fourth state of matter and it is the most common

form of matter in the universe. However, it does not occur naturally on the Earth’s
surface, apart from a few exceptions like flashes of lighting bolts. For studying
plasma, it can be created artificially in laboratories, usually by ionization of gas (for
example using a laser).

Plasma consists of lighter electrons and much heavier positive ions, hence, it is
electrically conductive. This is what primarily distinguishes plasma from solids,
liquids, and gases. Despite the presence of electrically charged particles, plasma ap-
pears neutral from the macroscopic view, this phenomenon is called quasi-neutrality [13].
This fact can be mathematically expressed as:∑︁

𝑠

𝑞𝑠𝑛𝑠 ≈ 0, (1.9)

where 𝑞𝑠 is the charge and 𝑛𝑠 is density of particles of species 𝑠. Nevertheless, at
smaller scales, a charge imbalance can occur, which may cause the presence of lo-
cal electric fields. Another characteristic of plasma is so-called collective behavior.
Meaning, that even though the particles are not bound, they respond to electromag-
netic fields as a whole - rather like a fluid than a group of free particles.

A slightly different approach to describing quasi-neutrality leads to a very impor-
tant quantity characterizing plasma called the Debye Length 𝜆𝐷. The Debye length
is the distance over which a charge 𝑞 is shielded by particles with opposite charge. In
other words, an ion (or electron) gathers a shielding cloud of electrons (or ions) that
tend to cancel its own charge [14] and the Debye length is an approximate radius of
this cloud. For electrons 𝜆𝐷𝑒 can be expressed as [14], [15]:

𝜆𝐷𝑒 =
√︃

𝑇𝑒

4𝜋𝑛𝑒𝑒2 =
√︃

𝜀0𝑘𝐵𝑇𝑒

𝑒2𝑛𝑒

, (1.10)

where 𝑇𝑒 is the electron temperature. An expression for ions is analogous.
An ideal plasma has many particles in a Debye sphere, which is a premise for

Debye shielding (and collective behaviour) discussed earlier. Therefore, we establish
another important plasma parameter, which is dimensionless and indicates a number
of particles per Debye sphere:

𝑁𝐷 = 4𝜋

3 𝑛𝑠𝜆
3
𝐷𝑒. (1.11)

Hence, in an ideal plasma 𝑁𝐷 ≫ 1 must hold.
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1.2.1 Laser propagation in a plasma
In contrast to vacuum, not every laser beam is able to propagate in a plasma

medium. Because of the dispersion relation of a laser pulse interacting with a plasma:

𝜔2
𝐿 = 𝜔2

𝑝 + 𝑐2𝑘2. (1.12)

Here 𝜔𝑝 is the plasma frequency defined as:

𝜔𝑝 =
√︁

𝜔2
𝑝𝑒 + 𝜔2

𝑝𝑖, (1.13)

where 𝜔𝑝𝑒 and 𝜔𝑝𝑖 are electron plasma frequency and ion plasma frequency, respec-
tively. Since the ions are much heavier than electrons, their plasma frequency is
much lower. Moreover, they do not respond to the high-frequency oscillations of the
laser electric field. Thus, in many of the phenomena, including LWFA, the ions can
be treated as immobile [16].

Because the electron plasma frequency is one of the most fundamental character-
istics in plasma physics, it is necessary to include its definition:

𝜔𝑝𝑒 =
√︃

𝑛𝑒𝑒2

𝜀0𝑚𝑒

, (1.14)

where 𝑛𝑒 is the electron density. In LWFA experiments, the electron density 𝑛𝑒 is of
the order of 1017 −1020 cm−3 [17]. Note that ion plasma frequency would be defined
analogously.

From equation (1.12) follows that if the laser frequency 𝜔𝐿 is lower than the
plasma frequency 𝜔𝑝, the laser beam cannot propagate through it [12]. This allows
us to introduce the concept of a critical density for the laser pulse, corresponding
to the maximum density at which the laser can propagate. Similarly, it is possible
to distinguish underdense plasma (𝜔𝐿 > 𝜔𝑝), which allows laser pulse propagation,
and overdense plasma (𝜔𝐿 < 𝜔𝑝), which does not.

Depending on the laser wavelength it is possible to define critical density 𝑛𝑐 as:

𝑛𝑐 = 𝑚𝑒𝜀0𝜔
2
𝐿

𝑒2 ≃ 1.1 × 1021

𝜆2
𝐿[𝜇m] . (1.15)

1.2.2 Normalized vector potential
An important parameter in the discussion of intense laser-plasma interactions

is the laser’s normalized peak vector potential 𝑎0 (also called the laser strength
parameter) [17]:

𝑎0 = 𝑒𝐸0

𝑚𝑒𝜔𝐿𝑐
= 𝑒𝐴0

𝑚𝑒𝑐
, (1.16)

where 𝑒 is the elementary charge, 𝑚𝑒 is the electron mass and 𝐴0 is the maximum
value of laser’s vector potential �⃗�. This quantity distinguishes the nonrelativistic
(𝑎0 ≪ 1) and the relativistic regime (𝑎 ≥ 1).

Using equation (1.6) as a relation between 𝐼0 and 𝐸0 and expression 𝜔𝐿 = 2𝜋𝑐
𝜆𝐿

we
obtain useful relation:

𝑎0 =

⎯⎸⎸⎷ 𝑒2

2𝜋𝜀0𝑚2
𝑒𝑐

5 𝜆2
𝐿𝐼0 ≃ 0.85

√︁
𝐼0[1018W/cm2] · 𝜆𝐿[𝜇m]. (1.17)

For example, for a laser system operating at wavelength 𝜆𝐿 = 850 nm 𝑎0 = 1
corresponds to laser intensity 𝐼0 ≈ 2.16 × 1018 W/cm2.
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1.3 Excitation of plasma waves
The mechanism of laser wakefield accelerators is based on ultra-intense ultra-short

laser pulses passing through a neutral gas, which is thereby ionized, creating plasma.
For the generation of plasma, the rising edge of the laser pulse is usually sufficient.
Therefore, the main part of the pulse interacts directly with underdense plasma,
displacing electrons from their equilibrium positions. Thus, exciting a longitudinal
plasma wave moving behind the laser pulse.

This plasma wave creates an electric field called wakefield with an intensity of
about 100 GV/m, which is about three orders more than in conventional accelera-
tors. The phase velocity of the plasma wave 𝑣𝜙𝑝 is the same as the group velocity
of driving laser pulse 𝑣𝑔𝐿 and its wavelength depends on the electron density as:

𝜆𝑝 = 2𝜋𝑐

√︃
𝑚𝑒𝜀0

𝑛𝑒𝑒2 = 2𝜋𝑐

𝜔𝑝

, (1.18)

whereas this relation is valid in the nonrelativistic regime (𝑎0 ≪ 1). For example,
for electron density 𝑛𝑒 = 1018 cm−3, the resulting plasma wave wavelength is
𝜆𝑝 = 33 𝜇m. Here, as well, is possible to use an approximate expression [10]:

𝜆𝑝[𝜇m] ≃ 33.4√︁
𝑛𝑒[1018cm−3]

. (1.19)

Figure 1.2: LWFA mechanism scheme [18].

1.3.1 The ponderomotive force
The force responsible for the rise of the plasma wave is called ponderomotive force.

It is a nonlinear force representing the gradient of the laser intensity that pushes
charged particles into the region of a weaker field. Note that electrons and ions are
pushed in the same direction. In the non-relativistic case, the ponderomotive force
can be expressed by the following relation [10]:

𝐹𝑝 = − 𝑒2

4𝑚𝜔2
𝐿

∇(𝐸2
0) = −𝑚𝑒𝑐

2

2 ∇(𝑎2
0), (1.20)

where 𝐸0 is the electric field amplitude. From this relation follows that the electrons
are strongly influenced by this force, because of their low mass. On the other hand
the force acting on much heavier ions is in most cases negligible.
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For particles moving with velocities close to the speed of light 𝑐, it is necessary
to account for the relativistic effects. This occurs in nonlinear regime (𝑎0 ≥ 1) and
the expression in this case is [19]:

𝐹𝑝 = − 𝑚𝑒𝑐
2

2
√︁

1 + 𝑎2
0

∇(𝑎2
0). (1.21)

1.3.2 Linear plasma waves
To describe the plasma waves emerging as a consequence of ponderomotive force

displacing electrons from their equilibrium positions and causing a density pertur-
bation, one can use following two equations [20]:

𝑛𝑠𝑚𝑠
𝑑�⃗�𝑠

𝑑𝑡
= 𝑛𝑠𝑞𝑠(�⃗� + �⃗�𝑠 × �⃗�) − ∇𝑃𝑠, (1.22)

𝜕𝑛𝑠

𝜕𝑡
+ ∇(𝑛𝑠�⃗�𝑠) = 0. (1.23)

These expressions are called Lorentz and continuity equation, respectively. Since
they are used to describe plasma under assumptions that each charged particle
component of density 𝑛𝑠 and velocity �⃗�𝑠 behaves in a fluid-like manner, interacting
with other species (𝑠) via the electric and magnetic fields [20], these expressions are
commonly called fluid equations.

Equations (1.22) and (1.23) can be further simplified assuming stationary ions
(�⃗�𝑖 = 0⃗), the cold fluid limit (∇𝑃𝑠 = 0) and small perturbations compared to
equilibrium state (𝛿𝑛 ≪ 𝑛0). In the linear regime (low intensity laser (𝑎0 ≪ 1)) we
obtain following equations for the density perturbation 𝛿𝑛𝑒 [17]:(︃

𝜕2

𝜕𝑡2 + 𝜔2
)︃

𝛿𝑛𝑒

𝑛0
= 𝑐2∇2

(︃
𝑎2

2

)︃
, (1.24)

and the electric field of the wave �⃗� [17]:(︃
𝜕2

𝜕𝑡2 + 𝜔2
)︃

𝜑 = 𝜔2
(︃

𝑎2

2

)︃
, (1.25)

where 𝛿𝑛/𝑛0 is the normalized density perturbation associated with the electrostatic
wake 𝜑 [17], which can be described via the Poisson’s equation [10]:

∇2𝜑 = 𝑒
𝛿𝑛𝑒

𝜀0
. (1.26)

The solution to (1.24) and (1.25) can be found in the following form:

𝛿𝑛𝑒

𝑛0
= 𝑐2

𝜔𝑝

∫︁ 𝑡

0
sin[𝜔𝑝(𝑡 − 𝑡′)]∇2 |⃗𝑎(�⃗�, 𝑡′)|2

2 𝑑𝑡′ (1.27)

and:
�⃗�

𝐸0
= −𝑐

∫︁ 𝑡

0
sin[𝜔𝑝(𝑡 − 𝑡′)]∇2 |⃗𝑎(�⃗�, 𝑡′)|2

2 𝑑𝑡′. (1.28)

Here, 𝜔𝑝 is the frequency of created plasma wave. Hence, in case of the linear regime,
the plasma wave has a sinusoidal shape. Note that these equations are valid only
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for small density perturbations (𝛿𝑛𝑒 ≪ 𝑛0) and electric field much smaller than the
cold non-relativistic wave breaking limit (𝐸 ≪ 𝐸0) [17]:

𝐸0 = 𝑚𝑒𝑐𝜔𝑝

𝑒
≃ 96

√︁
𝑛𝑒[1018cm−3]GVm−1. (1.29)

Here 𝐸0 is also called the cold non-relativistic wave breaking field [21].

1.3.3 Nonlinear plasma waves and wave breaking
The approximation of small density perturbations is inadequate for describing

plasma waves driven by strong laser pulses (𝑎0 ≫ 1) used for LWFA. In this case
the electric field of plasma wave is strong and nonlinear, plasma wavefronts become
farther apart and the plasma waves more peaked. (see fig. 5 1.3).

Figure 1.3: Comparison between linear and nonlinear plasma waves. Note the sinusoidal
profile in the linear case (left) and a sawtooth profile in the nonlinear regime (right) [20].

In the nonlinear regime, the wave propagation velocity depends on the wave am-
plitude, which can exceed the value 𝐸0. To reach relativistic wave breaking in a cold
plasma, it is necessary to obtain electric fields with an amplitude of approximately
[22]:

𝐸𝑊 𝐵 =
√︁

2(𝛾𝑝 − 1)𝐸0, 𝛾𝑝 =
(︁
1 −

𝑣2
𝜙

𝑐2

)︁− 1
2 (1.30)

where 𝛾𝑝 is the relativistic Lorentz factor associated with the phase velocity of the
plasma wave. Let us remind that the plasma wave phase velocity is approximately
the group velocity of the laser.

As the amplitude of the plasma wave approaches the value of wave breaking limit
𝐸𝑊 𝐵, the velocity of the background electrons can exceed the phase velocity of the
plasma wave. This leads to a breakdown of the wakefield structure. During this
process, some electrons, initially a part of the plasma wave, leave the wave and
can be trapped by an accelerating field. Note that this loss of electrons causes the
decrease of the plasma wave amplitude [23].

This mechanism is called self-injection, and from an experimentalist’s point of
view, it is the most straightforward way to inject electrons into the accelerating
phase of the plasma wave. In comparison with other proposed schemes, which
will be discussed later, it does not require synchronization while performing the
experiment. Also, it is not necessary tend that electrons are injected in the proper
phase of the wave, i.e. in the phase space region where the wave is both focusing
and accelerating [24].
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Naturally, there are several disadvantages to using this mechanism, such as the
inability to control the number of injected electrons or the place and time when the
injection occurs. Consequently, obtained electron bunches have quite a wide energy
spread and the achievable beam energy is limited.

1.4 Electron injection schemes
Because parameters of accelerated electron beams are crucial for potential appli-

cations, it is desirable to find means that would improve their quality (i.e. high
energy and charge, small energy spread, and low divergence). Since electron injec-
tion is one of the key features determining the beam characteristics, several injection
mechanisms yielding better electron beam parameters were proposed over the last
twenty years.

For standard LWFA experiments internal electron injection is usually used. The
reason is that using electron bunches created in another accelerator (external injec-
tion), presents huge experimental issues due to synchronization, the satisfaction of
the condition of electron bunch length being small compared to practical plasma
wavelength, and the fact that electrons must be injected in the proper phase of
the wave [25]. However, lately, a recent article in Nature [26] have suggested the
use of a dual-stage acceleration (i.e. using two separated plasma mediums, hence,
using two different wakefields for accelerating electron) for obtaining beams with
multi-GeV energies, successfully confronting these challenges.

Nevertheless, this thesis deals with the injection scheme using nanoparticles, which
belong to internal injection mechanisms. Hence, in the following section, some of
these injection schemes will be briefly discussed, whereas the main attention will be
focused on the nanoparticle scheme.

1.4.1 Density transition injection
This electron injection scheme, which uses an inhomogeneous plasma with a sharp

density drop (“down-ramp”), has been demonstrated to be an elegant and efficient
approach for generating high-quality electron beams. In the down-ramp region,
the plasma wave wavelength rises which leads to wave-breaking and the creation
of stable electron bunches with low energy spread [27]. Moreover, this approach is
easily implemented by inserting a sharp blade on top of the gas nozzle.

1.4.2 Ionization injection
This approach relies on the use of a gas target constituting of high-Z gas and is also

quite easy to realize. The first levels of ionization occur usually after the interaction
with the rising edge of the laser pulse (intensities below 1016 W/cm2 are usually
sufficient). Hence, these electrons are created in a region with relatively low laser
intensity and thereafter form the plasma wave. On the other hand, ionization from
inner shells occurs at higher intensities (typically for intensities over 1018 W/cm2),
so these electrons are freed close to the peak of the laser pulse; thus, they are ‘born’
in a trapped orbit and accelerated [28]. This method represents a straightforward
way to increase the injected charge without reaching wave-breaking amplitudes,
controlling the beam quality can be rather difficult.
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1.4.3 Colliding pulse injection
Colliding pulse injection, also called optical injection, uses two different counter-

propagating laser pulses; a main pulse (pump pulse) creates a high amplitude plasma
wave and collides with a second pulse of lower intensity, which is used to trigger
a localized injection, resulting in low energy spread [6]. Furthermore, this scheme
offers more flexibility and enables one to separate the injection from the acceleration
process. By changing the collision position, it is also possible to tune the beam
energy. A downside to this injection scheme is the requirement of very precise setup
and synchronization.

1.4.4 Injection scheme using nanoparticles
The most recent and very promising scheme, called Nanoparticle Assisted Laser

WakeField Acceleration (NA LWFA), utilizes a gas target containing nanoparticles.
These targets could allow us to precisely control the location where the electrons are
being injected into the wakefield [7], [8], hence, to some extend, control the beam
parameters.

The selection of suitable material, diameter, and position of the nanoparticles in
the gas target enables us to design an electron accelerator producing electron beams
with required parameters and high shot-to-shot stability so desirable for potential
applications.

Figure 1.4: The time sequence of the electron injection process under the influence of a
nanoparticle. (a) Nanoparticle field starts to grow and attracts nearby electrons. (b) The
attracted electrons obtain additional momentum as a result of the interaction with the
nanoparticle field and the plasma wakefield. (c) The electrons are injected into the plasma
wave [7].

The principle of this method lies in setting the parameters of laser and plasma in
a way that the self-injection occurs only if a nanoparticle is present in the wakefield.
As the laser pulse propagates through the gas target it ionizes the gas as well as the
nanoparticles. In the proximity of ionized nanoparticles, a positively charged electric
field arises, being much stronger than the generated wakefield. Nearby electrons
(released by the ionization of nanoparticles and also from the plasma background)
are attracted to the region with a positive charge and afterward efficiently injected
into the wakefield.
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1.4.5 Factors influencing the beam parameters
Using the gas target with nanoparticles allows us to control the moment of elec-

tron injection, hence, the energy of the accelerated beam. The sooner the injec-
tion occurs, the longer the acceleration length and the higher the obtained energy.
An experiment from [8] also proved that if the injection scheme with nanoparticles
is applied, maximum achievable energies are higher than if the electrons are self-
injected. There are two possible explanations, the first is already mentioned longer
acceleration length. The second is that electrons are injected into the accelerating
phase of the plasma wave with a lower charge, hence, the wakefield is less disrupted
and the accelerating field is stronger.

Figure 1.5: False-color images of the electron energy spectra. (a) Electron spectra
generated without the presence of nanoparticles and (b) energy spectra generated with
nanoparticles. Note the energy spread is significantly reduced, as compared with the case
without nanoparticles. [8].

From the PIC simulations performed by Cho in 2018 [7] follows that the choice of
nanoparticle material density affects the charge of the electron beam. Higher density
creates a stronger nanoparticle electric field, thus, more electrons are injected, and
the beam charge increases. However, it starts to saturate when the nanoparticle
density reaches the saturation density, whereas the value varies according to the
used laser parameters.

This phenomenon can be understood as the saturation of the nanoparticle field.
It arises as a consequence of two opposing forces acting on the electrons - the re-
pelling ponderomotive force caused by the laser pulse and the attracting force of
the positively charged nanoparticles. At the moment the nanoparticle potential is
balanced by the ponderomotive potential, the nanoparticle field cannot grow any
further and the injected charge reaches saturation.

Another thing influencing the characteristics of the obtained electron beam is
the number of ionized nanoparticles because every individual nanoparticle induces
separate electron injection. A positive thing is the energy spread does not grow with
the number of nanoparticles [7] since it would be nearly impossible to use only one
nanoparticle in a real-life experiment.

The number of nanoparticles also affects the total beam charge. However, it is not
directly proportional to the number of nanoparticles because the amount of injected
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electrons, hence, the charge, depends on the transverse nanoparticle position. The
reason is the wakefield weakens with the distance from its axis, and so does the
injected beam charge. Nonetheless, the multiple injections can negatively influence
the beam emittance (a property of a particle beam that characterizes its size). To
obtain the lowest beam emittance, it is desirable to control the transverse positions
of the nanoparticles within a few microns.

1.5 Limitations on energy gain
Several phenomena can limit the energy gain in the LWFA process. The main

limitations are the beam loading and so-called “detrimental Ds”: Diffraction, De-
phasing, and Depletion. Whereas, electron dephasing and pump depletion are the
hardest to overcome, which makes them the most critical limitations for reaching
electron energies over 10 GeV. All these mechanisms will be briefly discussed in the
following section.

1.5.1 Beam loading
Beam loading is the phenomenon which limits the charge and the beam quality

in plasma based accelerators [29]. Furthermore, it causes the decrease of the elec-
tron beam energy and also the increase of the energy spread. This phenomenon
occurs because the bunch of accelerated electrons drives its own plasma oscillation
modifying (“beam-loading”) the electric field of the plasma wave, and therefore,
the acceleration process. In some cases, this phenomenon can even cancel out the
laser wakefield, hence, it ultimately limits the maximum charge that can be accel-
erated [29].

Even before reaching this limit, beam loading can severely impact the beam qual-
ity, specifically the energy spread. This is because of the trailing electrons of the
bunch are accelerated by a weaker electric field as they experience the superposition
of the laser wakefield and the plasma wave driven by the leading electrons of the
bunch.

This effect is, therefore, of major importance for improving the capabilities of
laser-plasma accelerators. Fortunately, there are means by which beam loading
can be overcome, for example, careful shaping of the electron bunch resulting in a
constant total electric field over the bunch length.

1.5.2 Laser diffraction
In any focused beam, diffraction will reduce the laser intensity after a certain

distance, in a vacuum, this distance is of the order of the Rayleigh length 𝑧𝑅 (see
eq. 1.3b). As the laser pulse diverges, its normalized vector potential decreases, and
so does the plasma wave amplitude. Hence, without some form of optical guiding,
the length of the strong accelerating field will be limited to a few 𝑧𝑅.

Therefore, various methods of optical guiding, such as preformed plasma density
channel were proposed. However, even without this preformed channel, a high-
intensity laser beam propagating in plasma can easily prevail over natural diffractive
defocusing and can stay focused for a significantly longer distance than in a vacuum.
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This non-linear effect, called self-focusing, is a consequence of the dependence
of the refractive index on the laser beam intensity (𝑛(𝐼) = 𝑛0 + 𝑛2𝐼). Thus, the
refractive index is higher along the axis and the plasma medium acts as a focusing
lens for the laser. The power threshold 𝑃𝑐 for this behavior to occur as approximately
[30]:

𝑃𝑐 ≈ 17 ×
(︃

𝜔𝐿

𝜔𝑝

)︃2

GW. (1.31)

Hence, if a beam comes with power exactly at the self-focusing limit then it will
exhibit self-trapping, where the laser profile remain constant over a larger distance,
because diffraction divergence is completely compensated by the non-linear converg-
ing effect [30]. However, this state is very unstable and even a small deviation can
disrupt the whole process.

1.5.3 Electron Dephasing
Electron dephasing is a result of highly relativistic electrons outrunning acceler-

ating phase of the wakefield by reaching velocity higher than the plasma wave phase
velocity (respectively the laser group velocity, since 𝑣𝜙𝑝 = 𝑣𝑔𝐿). In this manner, the
electrons leave the accelerating phase of the plasma wave and “dephase” (i.e. move
into decelerating phase of the wake).

The distance which an electron can travel before it crosses the zero field in the lab
frame is called dephasing length 𝐿𝑑 [10]. Which is proportional to electron density
as 𝐿𝑑 ≈ 𝑛−3/2

𝑒 , therefore, it can be diminished using lower plasma densities, albeit
at longer acceleration length. For example, for 𝑛𝑒 ≈ 5 × 1018 cm−3 and 𝑎0 = 2, the
dephasing length is usually 3-4 mm.

The dephasing limitation could in principle be overcome by staging the laser-
plasma accelerator such that, after outrunning the plasma wave, the electron is
injected into a new plasma wave at the appropriate phase [31]. However, this ap-
proach would require very precise control over electron injection and laser pulses,
thus, it comes with its own set of challenges.

1.5.4 Pump depletion
As the laser pulse propagates and excites the plasma wave it also loses its energy.

The distance over which the pump pulse loses a significant fraction of its energy
is frequently called the pump depletion length 𝐿𝑝𝑑. In relativistic nonlinear case
(𝑎0 ≫ 1), this value can be estimated by equating the laser pulse energy to the
energy left behind in the wake 𝐸2

𝐿𝐿𝑝𝑑 = 𝐸2
𝑧 𝐿 (𝐸𝐿 is the laser field and 𝐸𝑧 is the

plasma wave field [32]) as:

𝐿𝑝𝑑 ≈
𝜆3

𝑝

𝜆2
𝐿

√
2𝑎0

𝜋
. (1.32)

In this case pump depletion is comparable with electron dephasing length implying
efficient use of the pump laser pulse energy.
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Particle-in-cell method

Laser-plasma interaction is in general complex and strongly non-linear problem
to solve. Therefore, investigation of these systems using only analytical calculations
and experiments is usually insufficient, and carrying out numerical simulations seems
to be the only option to acquire deeper insight and investigate this phenomenon
thoroughly. Particle-in-cell (PIC) methods are widely used computational tools for
this purpose.

The PIC method was introduced to the scientific community in the late 1950s [33]
and it quickly became an integral part of plasma physics. The conceptual simplicity
and efficient implementation on parallel supercomputers are only a few of the many
reasons why the PIC algorithm is so popular.

2.1 PIC fundamentals

The PIC method belongs to particle simulations based on the kinetic approach.
Meaning the system evolution is described via motion of charged particles, which
have several conserved attributes (e.g., mass, charge) and variable attributes (e.g.,
position, velocity). The variable attributes evolve according to the equations of
motion whose driving terms are given by the field equations [34]. However, real
systems usually contain a huge amount of particles and it is simply impossible to
describe every particle separately. Therefore it is necessary to reduce the description
to just a statistical sample of particles [35].

The basic idea of the PIC method is to describe plasma using computational par-
ticles (so-called quasi- or macro-particles), which represent a group of real physical
particles that are near each other in phase space. Although this approach signif-
icantly reduces the number of computational particles in simulation, the binary
interactions for every pair in the system still cannot be taken into account [36].
Hence, instead of computing forces of interaction between every two particles, the
PIC algorithm uses a computational grid to represent the mean values of the electric
and magnetic fields, which are further used to calculate the force acting on compu-
tational particles. This approach is called the particle-mesh (P-M) method, whereas
the second-mentioned is called the particle-particle (P-P) method. Using the P-M
approach, we can significantly reduce the computing time, but at a cost of less ac-
curate results. Although, this is usually not a complication for the interpretation of
obtained results.

15
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2.1.1 The Vlasov-Maxwell model
The Vlasov–Maxwell system of equations is used for the kinetic description of

a collisionless plasma. In this approach, different species of particles constituting
the plasma are described by their respective distribution functions 𝑓𝑠(𝑡, �⃗�, 𝑝), where
𝑠 denotes a given species consisting of particles with charge 𝑞𝑠 and mass 𝑚𝑠, and
�⃗� and 𝑝 denote the position and momentum of a phase-space element [37]. The
distribution function 𝑓𝑠(𝑡, �⃗�, 𝑝) satisfies Vlasov’s equation:

𝜕𝑓𝑠

𝜕𝑡
+ 𝑝

𝑚𝑠𝛾
· ∇𝑓𝑠 + 𝐹𝐿 · ∇𝑠𝑓𝑠 = 0, (2.1)

where 𝛾 is the relativistic Lorentz factor and

𝐹𝐿 = 𝑞𝑠(�⃗� + �⃗� × �⃗�) (2.2)

is the Lorentz force acting on a particle with velocity

�⃗� = 𝑝

(𝑚𝑠𝛾) . (2.3)

This force arises as a consequence of existence of collective electric �⃗�(𝑡, �⃗�) and
magnetic �⃗�(𝑡, �⃗�) fields satisfying Maxwell’s equations:

∇ × �⃗� = −𝜕�⃗�

𝜕𝑡
, (2.4a)

∇ × �⃗� = 𝜇0𝜀0
𝜕�⃗�

𝜕𝑡
+ 𝜇0𝐽, (2.4b)

∇ · �⃗� = 𝜌

𝜀0
, (2.4c)

∇ · �⃗� = 0, (2.4d)

where 𝜀0 and 𝜇0 are the vacuum permitivity and permeability, respectively. Equa-
tions (2.1) - (2.4), describing the dynamics of plasma, are called the Vlasov-Maxwell
system of equations.

The electric and magnetic fields evolve according to the time-dependent equations
(2.4a) and (2.4b), where the source term is in the form of the current density �⃗�, which
is produced by the motion of charged particles [38]. Combining the divergence of
the equation (2.4b) and the time derivative of the equation(2.4c), one obtains the
continuity equation:

𝜕𝜌

𝜕𝑡
+ ∇ · 𝐽 = 0. (2.5)

If the continuity equation is satisfied, then the equation (2.4c) is satisfied auto-
matically during the system evolution, if it was valid at the beginning. As there
is no magnetic charge the equation (2.4d) also remains valid if it was satisfied ini-
tially [38]. As a consequence, we may consider the divergence equation (2.4c) and
(2.4d) as initial conditions only and our problem is reduced to solving the evolution
equations (2.4a) and (2.4b).

2.1.2 Macro-particles
The mathematical formulation of the PIC method is obtained by assuming that

the distribution function of each species is given by the sum of distribution functions
for macro-particles 𝑓𝑝(𝑡, �⃗�, 𝑝) [39]:

𝑓𝑠(𝑡, �⃗�, 𝑝) =
∑︁

𝑝

𝑓𝑝(𝑡, �⃗�, 𝑝). (2.6)
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The distribution function for each macro-particle can further be written as:

𝑓𝑝(𝑡, �⃗�, 𝑝) = 𝑤𝑝𝑆𝑥(�⃗� − �⃗�𝑝(𝑡))𝑆𝑝(𝑝 − 𝑝𝑝(𝑡)), (2.7)

where 𝑆𝑥(�⃗� − �⃗�𝑝(𝑡)) and 𝑆𝑝(𝑝 − 𝑝𝑝(𝑡)) are shape functions for the spatial and
momentum coordinate respectively, and 𝑤𝑝 is so-called particle weight (a term de-
pending on the number of physical particles represented by each macro-particle).

There are several particular requirements for shape functions that need to be
fulfilled [39]:

1. The support of the shape function is compact: ∃𝑅 > 0, supp 𝑆𝜉 ⊂ (−𝑅, 𝑅).

2. Integral of the shape function is unitary:
∞∫︀

−∞
𝑆𝜉(𝜉 − 𝜉𝑝) d𝜉 = 1.

3. The shape function is symmetrical: 𝑆𝜉(𝜉 − 𝜉𝑝) = 𝑆𝜉(𝜉𝑝 − 𝜉).

Although these conditions are not very restrictive and therefore leave a wide range
of options for selecting the shape functions, those used in practice are very few.
As 𝑆𝑣 is usually selected the Dirac delta function, the main advantage of this option
is, that if all particles described by one computational particle have the same speed,
they remain closer in the phase space during the subsequent evolution.

The conventional choice for shape function in space coordinate 𝑆𝑥 are so-called
b-splines. B-spline functions are a series of consecutively higher-order functions
obtained from each other by integration [39]. The b-spline of zero degree 𝑏0(𝜉) is
a simple flat-top function defined as:

𝑏0(𝜉) =
{︃

1 if |𝜉| < 1
2

0 otherwise. (2.8)

B-splines of higher orders 𝑏𝑙(𝜉) can be obtained by integration using following
formula:

𝑏𝑙(𝜉) =
∞∫︁

−∞

𝑏0(𝜉 − 𝜉′)𝑏𝑙−1(𝜉′)d𝜉′. (2.9)

The form of spatial shape function based on the b-splines in 1D is as follows:

𝑆𝑥(𝑥 − 𝑥𝑝) = 1
Δ𝑝

𝑏𝑙

(︃
𝑥 − 𝑥𝑝

Δ𝑝

)︃
. (2.10)

where Δ𝑝 is the scale-length of the support of the computational particles (i.e. its
size). The majority of PIC codes uses b-splines of the first or second degree. Usage
of b-splines of higher order lowers the noise in the simulation, but at a cost of higher
computational time.

2.1.3 Space discretization
In the PIC algorithm, Maxwell’s equations in the time domain are solved using the

Finite Difference Time Domain (FDTD) method. This approach is very popular for
solving electromagnetic problems because it is quite simple to implement and more
importantly, very effective and versatile. The FDTD method will be described in
detail later in this chapter. For now, only the space discretization will be depicted,
as it will be useful for describing the PIC algorithm.
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Figure 2.1: First three b-spline functions.

The electromagnetic fields are discretized onto a staggered spatial mesh, called
the Yee-grid (fig. 2.2), as follows [40]:

�⃗�
(𝑛)
𝑖𝑗𝑘 →

[︁
(𝐸𝑥)𝑛

𝑖+ 1
2 ,𝑗,𝑘, (𝐸𝑦)𝑛

𝑖,𝑗+ 1
2 ,𝑘, (𝐸𝑧)𝑛

𝑖,𝑗,𝑘+ 1
2

]︁
(2.11)

�⃗�
(𝑛)
𝑖𝑗𝑘 →

[︁
(𝐵𝑥)(𝑛)

𝑖,𝑗+ 1
2 ,𝑘+ 1

2
, (𝐵𝑦)(𝑛)

𝑖+ 1
2 ,𝑗,𝑘+ 1

2
, (𝐵𝑧)(𝑛)

𝑖+ 1
2 ,𝑗+ 1

2 ,𝑘

]︁
(2.12)

Components of the current density 𝐽𝑛
𝑖,𝑗,𝑘 are defined in the same way as the com-

ponents of �⃗�𝑛
𝑖𝑗𝑘, the charge 𝜌𝑛

𝑖𝑗𝑘 is defined in the corner of the cell:

𝐽
(𝑛)
𝑖𝑗𝑘 →

[︁
(𝐽𝑥)𝑛

𝑖+ 1
2 ,𝑗,𝑘, (𝐽𝑦)𝑛

𝑖,𝑗+ 1
2 ,𝑘, (𝐽𝑧)𝑛

𝑖,𝑗,𝑘+ 1
2

]︁
(2.13)

𝜌
(𝑛)
𝑖𝑗𝑘 → 𝜌𝑛

𝑖,𝑗,𝑘 (2.14)

(i+1,j,k+1)(i,j,k+1)

(i,j,k)𝜌 (i+1,j,k)

(i+1,j+1,k+1)(i,j+1,k+1)

(i,j+1,k) (i+1,j+1,k)

𝐸𝑥, 𝐽𝑥

𝐸𝑧, 𝐽𝑧

𝐸𝑦, 𝐽𝑦

𝐵𝑥

𝐵𝑧

𝐵𝑦

Figure 2.2: Standard Cartesian Yee cell used for FDTD method
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2.2 Particle-in-cell algorithm
The computational cycle of the PIC method can be divided into four main steps,

which are shown in the fig. 2.3. First, the computational domain is discretized into
a simulation mesh. At each time step, we use the position of the macro-particle
(properties belonging to the macro-particles are labeled with subscript p) to de-
termine the charge density. In the next step, we use this to compute the electro-
magnetic fields at the spatial grid (at discrete points marked with subscript (i,j,k)).
Finally, the electromagnetic field is used to update particle velocities according to
the Lorentz force. The new velocity is used to push particles to new positions and
the whole process repeats [36].

Particle push
𝐹𝑝 → �⃗�𝑝 → �⃗�𝑝

Current deposition
(�⃗�, �⃗�)𝑝 → (𝜌, 𝐽)𝑖,𝑗,𝑘

Field solver
(𝜌, 𝐽)𝑖,𝑗,𝑘 → (�⃗�, �⃗�)𝑖,𝑗,𝑘

Field interpolation
(�⃗�, �⃗�)𝑖,𝑗,𝑘 → 𝐹𝑝

Figure 2.3: Computational cycle of the particle-in-cell method.

2.2.1 Initialization
The initialization of a PIC simulation is basically a three-step process consisting

in: (i) creating particles, (ii) computing the initial total charge and current densities
onto the grid, and (iii) solving the Poisson’s equation to obtain the electrostatic field.
It is also possible to add a fourth step - adding user defined external field (provided
that its divergence is zero).

Usually the initial values (e.g. spatial profiles for the number density, the num-
ber of particle per cell, the mean velocity and the temperature of each species)
are loaded from an input file defined by the user, but a lot of codes offers also
a possibility to perform this step as a restart of a previous simulation. In this case
the aforementioned values are directly copied from a file generated at the end of
a previous simulation) [37].

2.2.2 Particle push
During PIC simulation the trajectory of all particles is followed in continuous

phase space, this requires the solution of the equations of motion for each of them.
This part of the code is frequently called “particle pusher” [41]. Since the particles
can reach velocities near the speed of light, the relativistic case needs to be taken
into account. If we denote:

�⃗�𝑝 = 𝛾�⃗�𝑝, (2.15)
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then the relativistic equations of motion to be solved are as follows:

𝑑�⃗�𝑝

𝑑𝑡
= 𝑑�⃗�𝑝

𝛾
(2.16)

𝑑�⃗�𝑝

𝑑𝑡
= 𝑞𝑠

𝑚𝑠

(︁
�⃗�𝑝 + �⃗�𝑝

𝛾𝑝

× �⃗�𝑝

)︁
= 𝐹𝑝

𝑚𝑠

, (2.17)

where �⃗�𝑝 and �⃗�𝑝 is macro-particle position and velocity and 𝐹𝑝 represents a spatial
average of the force acting on the macro-particle.

Differential equations (2.16) and (2.17) are integrated using the leap frog method,
which is a second-order method and will be described in the next paragraph. The
leap-frog algorithm is based on staggering the time levels of the velocity and position
by half time step [39], so the macro-particle position is computed at the time level
𝑡𝑛 and the velocity at 𝑡𝑛+ 1

2 . To get position at time level 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 need to use
the velocity at mid-point 𝑡𝑛+ 1

2 and vice versa (see fig. 2.4).

𝐸(𝑛−1) 𝐵(𝑛− 1
2 ) 𝐸(𝑛) 𝐵(𝑛+ 1

2 ) 𝐸(𝑛+1) 𝐵(𝑛+ 3
2 )

Figure 2.4: Visual representation of the leap-frog algorithm.

By applying this method to equations (2.16) and (2.17) and assuming, we know
the electromagnetic fields at the position of each macro-particle, we obtain [37]:

�⃗�(𝑛+1)
𝑝 = �⃗�(𝑛)

𝑝 + Δ𝑡
�⃗�(𝑛+ 1

2 )

𝛾
(𝑛+ 1

2 )
𝑝

(2.18)

�⃗�
(𝑛+ 1

2 )
𝑝 = �⃗�

(𝑛− 1
2 )

𝑝 + Δ𝑡
𝑞𝑠

𝑚𝑠

(︃
�⃗�(𝑛)

𝑝 + �⃗�
(𝑛+ 1

2 )
𝑝 + �⃗�

(𝑛− 1
2 )

𝑝

2𝛾
(𝑛)
𝑝

× �⃗�(𝑛)
𝑝

)︃
. (2.19)

The majority of PIC codes use the Boris method to solve equations (2.18) and
(2.19), because it is capable of solving particle’s dynamics accurately even for a large
number of time-steps [42]. The Boris algorithm separates the effect of electric and
magnetic fields by conveniently expressing terms for �⃗�

(𝑛+ 1
2 )

𝑝 and �⃗�
(𝑛− 1

2 )
𝑝 as:

�⃗�
(𝑛+ 1

2 )
𝑝 = �⃗�+

𝑝 +
𝑞𝑠�⃗�

(𝑛)
𝑝

𝑚𝑠

Δ𝑡

2 , �⃗�
(𝑛− 1

2 )
𝑝 = �⃗�−

𝑝 −
𝑞𝑠�⃗�

(𝑛)
𝑝

𝑚𝑠

Δ𝑡

2 . (2.20)

Substituting 2.20 into 2.19 the electric field cancels:

�⃗�+
𝑝 − �⃗�−

𝑝

Δ𝑡
= 𝑞𝑠

2𝑚𝑠

(�⃗�+
𝑝 + �⃗�−

𝑝 ) × �⃗�(𝑛)
𝑝 . (2.21)

2.2.3 Charge and current density deposition
In the second step of the computational loop, usually referred as particle weight-

ing, the charge and current densities are assigned from the position of macro-particles
to the discrete grid points. These terms, given by:

𝜌(𝑡, �⃗�) =
∑︁

𝑠

𝑞𝑠

∫︁
𝑓𝑠(𝑡, �⃗�, 𝑝)d𝑝 (2.22)
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𝐽(𝑡, �⃗�) =
∑︁

𝑠

𝑞𝑠

∫︁
�⃗� · 𝑓𝑠(𝑡, �⃗�, 𝑝)d𝑝 (2.23)

will be later used to solve Maxwell equations. The charge and current density pro-
jection onto the grid is performed using the charge-conserving algorithm proposed
by Esirkepov [43]. Considering the expression for macro-particle distribution func-
tion (2.7) it is possible to obtain following discretization of equations (2.22) and
(2.23) [37]:

𝜌
(𝑛)
𝑖,𝑗,𝑘 = 𝑞𝑠𝑤𝑝𝑆𝑥(�⃗�𝑖,𝑗,𝑘 − �⃗�𝑝), (2.24)

(𝐽𝑥,𝑝)(𝑛+ 1
2 )

𝑖+ 1
2 ,𝑗,𝑘

= (𝐽𝑥,𝑝)(𝑛+ 1
2 )

𝑖− 1
2 ,𝑗,𝑘

+ 𝑞𝑠𝑤𝑝
Δ𝑥

Δ𝑡
(𝑊𝑥)(𝑛+ 1

2 )
𝑖+ 1

2 ,𝑗,𝑘
. (2.25)

Here (𝑊𝑥)(𝑛+ 1
2 is a quantity computed from the particle current and former positions

𝑥𝑛+1
𝑝 and 𝑥𝑛

𝑝 using the method developed by Esirkepov [37]. Let us note that only
the equation for x-component of vector 𝐽 is given above, however, equations for
y- and z-components would be analogous.

The deposited charge density is calculated only if required e.g. for diagnostic
purposes. The reason is that charge densities are not needed to advance the elec-
tromagnetic fields, which will be shown in the next section.

2.2.4 Field solver
The next step is to advance electromagnetic fields in time according to Maxwell’s

equations using the deposited current as source term. Hence, we need to solve
following equations:

𝜕�⃗�

𝜕𝑡
= ∇′ × �⃗� − 𝐽, (2.26)

𝜕�⃗�

𝜕𝑡
= −∇′ × �⃗�, (2.27)

where ∇′ is the curl operators discretized using finite differences. The remaining
divergence Maxwell’s equations can be considered as initial conditions (if the conti-
nuity equation is fulfilled), hence, it is not necessary to solve them in this step.

To solve equations (2.26) and (2.27) the FDTD method is used. The continuous
derivatives in space and time are approximated using a second-order accurate, two-
point centered difference forms. Fields are staggered in space according to fig.2.2
and in time as follows: �⃗� is defined at times 𝑡𝑛, �⃗� and 𝐽 are defined at times 𝑡𝑛+ 1

2 .
For advancing the fields in time, the leap-frog scheme is used, which was described

earlier. Therefore, the discretized equations (2.26) and (2.27) have the following
form:

�⃗�(𝑛+1) − �⃗�(𝑛)

Δ𝑡
= ∇′ × �⃗�(𝑛+ 1

2 ) − 𝐽 (𝑛+ 1
2 ), (2.28)

�⃗�(𝑛+ 1
2 ) − 𝐵(𝑛− 1

2 )

Δ𝑡
= −∇′ × �⃗�(𝑛). (2.29)

To give a concrete example, considering the discrete form of the curl operator, the
time derivative of 𝐸𝑥 can be written as:

(𝐸𝑥)(𝑛+1)
𝑖+ 1

2 ,𝑗,𝑘
− (𝐸𝑥)(𝑛)

𝑖+ 1
2 ,𝑗,𝑘

Δ𝑡
= (𝐽𝑥)(𝑛+ 1

2 )
𝑖+ 1

2 ,𝑗,𝑘
+ (𝜕𝑦𝐵𝑧)(𝑛+ 1

2 )
𝑖+ 1

2 ,𝑗,𝑘
− (𝜕𝑧𝐵𝑦)(𝑛+ 1

2 )
𝑖+ 1

2 ,𝑗,𝑘
, (2.30)
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where the partial derivatives in space are discretized as follows:

(𝜕𝑥𝐹 )𝑖,𝑗,𝑘 =
𝐹𝑖+ 1

2 ,𝑗,𝑘 − 𝐹𝑖− 1
2 ,𝑗,𝑘

Δ𝑥
, (2.31)

and corresponds to the usual curl-operator discretization used in the FDTD method.
The definition for partial derivatives in 𝑦 and 𝑧 dimension are analogous.

2.2.5 Field interpolation
At this step of the loop, the fields acting on the macro-particles are computed.

Using the electromagnetic field known at the discrete points (in the cells), we obtain
the acting field for each particle 𝑝 as:

�⃗�(𝑛)
𝑝 =

∫︁
�⃗�(𝑛)(�⃗�)𝑆𝑥(�⃗� − �⃗�(𝑛)

𝑝 )d�⃗�, (2.32)

�⃗�(𝑛)
𝑝 =

∫︁
�⃗�(𝑛)(�⃗�)𝑆𝑥(�⃗� − �⃗�(𝑛)

𝑝 )d�⃗�, (2.33)

where �⃗�(𝑛) and �⃗�(𝑛) are the cell averaged values of electric and magnetic fields. The
interpolated fields at the macro-particle position can be calculated as:

�⃗�(𝑛)
𝑝 =

∑︁
𝑖,𝑗,𝑘

�⃗�
(𝑛)
𝑖,𝑗,𝑘𝑆𝑥(�⃗� − �⃗�(𝑛)

𝑝 ), (2.34)

�⃗�(𝑛)
𝑝 =

∑︁
𝑖,𝑗,𝑘

�⃗�
(𝑛)
𝑖,𝑗,𝑘𝑆𝑥(�⃗� − �⃗�(𝑛)

𝑝 ). (2.35)

For computing the macro-particle position later in the next step, we need the above
mentioned time-centered magnetic fields �⃗�(𝑛), which is easily obtained from �⃗�(𝑛+ 1

2 )

and �⃗�(𝑛− 1
2 ) as:

�⃗�(𝑛) = 1
2[�⃗�(𝑛+ 1

2 ) + �⃗�(𝑛− 1
2 )]. (2.36)

2.3 Numerical stability and accuracy of the algo-
rithm

Knowledge of stability conditions is crucial for all numerical methods. In PIC
codes, stability of the simulation depends directly on the size of the time step Δ𝑡
and spatial step Δ𝑥, i.e. the cell size, hence, also Δ𝑦 and Δ𝑧 in multidimensional
simulations. In most cases, all spatial steps can have the same size. However, in
highly computationally demanding simulations cell size in directions transverse to
the laser propagation tends to be larger to limit the overall number of cells.

Since the PIC codes are usually very robust numerical stability itself does not
guarantee physically correct results. Therefore, the choice of the cell size is heavily
influenced by the investigated physical phenomena. In many cases, we need to suc-
cessfully unravel of the physical phenomenons at plasma-vacuum boundary. Hence
the spatial step in the direction of large density gradient is limited by the plasma
skin depth [44]:

Δ𝑥 ≤ 𝑐

𝜔𝑝𝑒

. (2.37)
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In the general electromagnetic case, the time step 𝛿𝑡 limited by Courant-Friedrichs-
Lewy (CFL) condition required for stable propagation of electromagnetic waves [45]:

𝐶 = 𝑐2Δ𝑡2
(︃

1
Δ𝑥2 + 1

Δ𝑦2 + 1
Δ𝑧2

)︃
, (2.38)

where C is the CFL number (0 < 𝐶 < 1). This condition ensures that macroparticles
can not move further than one cell per time step, otherwise the calculation of currents
would be inaccurate and the growth of non-physical effects can be quite rapid.

The second condition for the time step emerge from the requirement to resolve all
important frequencies (according to the Nyquist-Shannon theorem) [46]:

𝜔𝑚Δ𝑡 ≤ 2. (2.39)

2.4 Used PIC codes
Simulations for the master’s thesis were performed using two different codes -

first was an open-source, high-performance, and multi-purpose PIC code called
Smilei (for “Simulating Matter Irradiated by Light at Extreme Intensities”) de-
veloped in France as a joint effort between scientists from CEA (Alternative En-
ergies and Atomic Energy Commission), CNRS (Centre national de la recherche
scientifique) and two universities (Université Paris-Saclay and Université Versailles
Saint-Quentin). The second code is called WarpX, also an open-source, which sup-
ports many features including mesh refinement and the boosted-frame technique.
WarpX was developed at UC Berkeley and Lawrence Berkeley National Laboratory.

Both codes offers advanced numerical techniques (e.g. azimuthal modes decom-
positions or Perfectly-Matched Layers boundary conditions) and various additional
physics modules (e.g. field ionization or binary collisions). Codes are able to cover
a wide range of physical problems, from astrophysics to relativistic laser-plasma
interaction, which is also the topic of this research project.

2.4.1 Smilei
The parameters for simulation are set using an input file, which is called namelist

and it is written in Python. It is possible to control various aspects of the simulation,
for example, the number of grid points in the simulation domain (in particular
directions), particle shape function, or the initial distribution of particles. The code
also allows running simulations in one, two, and three dimensions and to choose
between various Maxwell solvers, particle pushers, etc.

Like many PIC codes, Smilei handles only dimension-less variables, normalized to
reference quantities [37]. It is convenient to use the speed of light 𝑐, the elementary
charge 𝑒, and the electron mass 𝑚𝑒 as a basis of the normalizations. A summary
of the arbitrary reference quantities used in Smilei, is given in the Appendix. The
scale of the problem is not decided a priori, and the user is free to scale the result of
the simulation to any value based on an unknown reference frequency 𝜔𝑟. Usually,
it will be an important frequency of the problem (for example, the electron plasma
frequency or angular laser frequency). It is worth mentioning that for simulating
ionization or collisions 𝜔𝑟 needs to be defined in the namelist, in SI units.

Smilei has its own module for post-processing called happi, which can be directly
imported to Python. Hence, apart from several methods for finding information
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on the namelist and opening various diagnostics, all of the Python packages like
NumPy or Matplotlib are also available for processing the results.

To ensure the versatility of the code, Smilei is written in C++ and based on
an object-oriented architecture. It was co-developed by both physicists and HPC ex-
perts to best benefit from the new high-performance computing (HPC) architectures.
The main computational features include dynamic load balancing and state-of-the-
art hybrid MPI/OpenMP parallelization simple instruction multiple data (SIMD)
vectorization.

2.4.2 WarpX
The input parameters for WarpX are basically the same as for Smilei (or any other

PIC code), however, they are defined in a simple text file. This makes writing the
input file a little bit less versatile nonetheless, the code uses PICMI (The Particle-In-
Cell Modeling Interface) standard, which allows writing input files also using Python
and then converting them into suitable format for WarpX. Another difference from
Smilei is that WarpX operates in SI units.

WarpX is very versatile in regard to post-processing. The code offers different for-
mats for output data (plotfile (AMReX) or openPMD formats like HDF5 or ADIOS)
which can be further visualized using variable Python based software or ParaView.
In addition, WarpX also has in-situ visualization capabilities (i.e. visualizing the
data directly from the simulation, without dumping data files to disk).

WarpX is highly-parallel and highly-optimized code, running on GPUs and multi-
core CPUs written in C++ and designed for high-performance on the world’s largest
supercomputers. In addition, WarpX is also a multi-platform code (running on
Linux, macOS or Windows) and was awarded the ACM Gordon Bell Prize in 2022.
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Advanced numerical techniques
in PIC simulations

The process of laser-plasma acceleration inherently includes strongly nonlinear
phenomena, which are intrinsically three-dimensional and cannot be appropriately
described using 1D or 2D geometries. These phenomena include e.g. pulse self-
focusing and beam loading. Moreover, determining, for example, the beam charge
from a 2-D simulation is very tricky, since the macroparticles are represented as
infinite lines instead of spheres.

These problems become even more severe while modeling the laser interaction
with solid objects, e.g. a nanoparticle (as is the case of this thesis), which is in
2-D represented as a wire. Consequently, even if the whole problem is cylindri-
cally symmetrical, the properties of the accelerated electron bunch obtained from
2-D simulations can significantly differ depending on whether the laser polarization
is parallel or perpendicular to the “wire”. Hence, performing 3-D simulations is
absolutely necessary for designing a nanoparticle gas target and for a proper under-
standing of the processes involved during the electron injection.

However, 3-D PIC simulations demand extreme computer resources and can be
challenging even for current supercomputers. As a first step to reduce the overall
computational cost, it is standard for PIC simulations of the LWFA process to use
a so-called moving window to follow the laser driver, the wake, and the accelerated
beam. The simulation domain moves at a constant speed (close to the speed of light)
which means that particles are removed from the left-hand edge of the domain and
new particles are introduced at the right-hand edge (assuming that the laser pulse
propagates from the left to the right) [47]. This results in huge savings, by avoiding
the meshing of the entire plasma that is orders of magnitude longer than the other
length scales of interest.

Most high-performance PIC codes have also implemented some advanced tech-
niques that may help significantly reduce the simulation run time. Nonetheless, it
is necessary to know which assumptions were made during the implementation and
therefore, whether a particular numerical technique can be used for our purposes.

In this chapter, some of the common means to make 3-D PIC simulations less
computationally expensive will be briefly discussed. More emphasis will be on two
particular techniques, namely azimuthal modes (AM) decomposition (sometimes
called quasi-3D approach) and mesh refinement, which is suitable for simulations of
the electron acceleration using nanoparticle gas targets.
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3.1 Azimuthal modes decomposition
This approach is suitable for systems with (or close to) cylindrical symmetry,

which is quite common for LWFA. In this case, the three-dimensional description is
achieved using cylindrical geometry and Fourier decomposition of the electromag-
netic fields along the azimuthal coordinate 𝜃 hence, the azimuthal modes decom-
position. The cost of such simulation is approximately m-times the cost of 2-D
simulation where 𝑚 is the number of used modes.

Note that the AM decomposition concerns only the grid quantities (i.e. electro-
magnetic fields and current densities), which are defined on a 2D grid. However
macro-particles evolve in a 3-D space described by cartesian geometry (using recon-
structed 3D cartesian electromagnetic fields) [48]. Simulations, which are using this
method, are frequently referred to as quasi-3D simulations.

Figure 3.1: Schematic picture of the geometry of an AM decomposition computational
domain; (red) 2-D grid where the electromagnetic fields are defined, (green dots) macro-
particles defined in 3-D [48].

3.1.1 Mathematical description
At first, to decompose vector fields in azimuthal modes one needs to express their

components along the cylindrical coordinates (�⃗�𝑧, �⃗�𝑟, �⃗�𝜃). For example, the trans-
verse field of a laser pulse linearly polarized in the �⃗� direction with a cylindrically
symmetric envelope can be written as:

�⃗�(𝑟, 𝑧, 𝜃, 𝑡) = 𝐸𝑦(𝑟, 𝑧, 𝜃, 𝑡)�⃗�𝑦 = 𝐸𝑦(𝑟, 𝑧, 𝑡)
(︁

cos(𝜃)�⃗�𝑟 − sin(𝜃)𝑒𝜃

)︁
. (3.1)

Here 𝐸𝑦(𝑟, 𝑧, 𝜃, 𝑡) is now a scalar field, whereas any scalar field 𝐹 (𝑟, 𝑧, 𝜃, 𝑡) can be
represent as a sum of azimuthal modes, using Fourier decomposition along 𝜃:

𝐹 (𝑟, 𝑧, 𝜃, 𝑡) = R

(︃ +∞∑︁
𝑚=0

𝐹 𝑚(𝑟, 𝑧)𝑒−𝑖𝑚𝜃

)︃
, (3.2)

where 𝑚 is the number of the mode and 𝐹 𝑚 is the Fourier coefficient. An infinite
expansion sum is by all means not suitable for numerical calculations hence, we
assume that only the first 𝑁𝑚 modes are important (i.e. the higher modes are
omitted).

𝐹 (𝑟, 𝑧, 𝜃, 𝑡) = R

(︃
𝑁𝑚−1∑︁
𝑚=0

𝐹 𝑚(𝑟, 𝑧)𝑒−𝑖𝑚𝜃

)︃
. (3.3)
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As already mentioned, the AM decomposition is most suited for physical problems
close to cylindrical symmetry as a low number of modes is sufficient. Note that
expression (3.1) corresponds to the first order term (𝑚 = 1) in a Fourier expansion
of the laser field. Similarly, an elliptically (or cylindrically) polarized laser can be
described also using only mode 𝑚 = 1, as it can be seen as the linear superposition
of two linearly polarized lasers. Note the laser envelope needs to be cylindrically
symmetrical, else higher modes are necessary (e.g. to get a laser beam with an
elliptically shaped trace, one needs to use a minimum of three modes). However, in
practice, for LWFA simulations only the first two or three orders are usually used.

In PIC codes the time evolution of electric and magnetic fields is obtained by
solving time-dependent Maxwell’s equations (2.4a, 2.4b). As these equations are
linear, different Fourier modes evolve independently in the vacuum thus, can be
solved independently for each mode. Naturally, in presence of the plasma, modes
become coupled, for example, the laser pulse (𝑚 = 1) will create a plasma wave
with corresponding wakefield (𝑚 = 0). However, the coupling between the modes
manifests itself during the field interpolations step, i.e. when the total electromag-
netic fields push the macro-particles. Hence, the evolution of fields is obtained by
solving equations (2.4a, 2.4b) in cylindrical coordinates separately for each mode,
for example, equation (2.4b) can be rewritten as:

𝜕�̃�𝑚
𝑟

𝜕𝑡
= 𝑖𝑚

𝑟
�̃�𝑚

𝑧 + 𝜕�̃�𝑚
𝜃

𝜕𝑧
− 𝐽𝑚

𝑟 , (3.4a)

𝜕�̃�𝑚
𝜃

𝜕𝑡
= −𝜕�̃�𝑚

𝑟

𝜕𝑧
− 𝜕�̃�𝑚

𝑧

𝜕𝑟
− 𝐽𝑚

𝜃 , (3.4b)

𝜕�̃�𝑚
𝑧

𝜕𝑡
= −1

𝑟

𝜕

𝜕𝑟
(𝑟�̃�𝑚

𝜃 ) − 𝑖𝑚

𝑟
�̃�𝑚

𝑟 − 𝐽𝑚
𝑧 . (3.4c)

Note that equation (2.4a) could be expressed equivalently and that we assumed
that the densities and currents can also be decomposed in modes. Whereas, currents
are calculated by projecting macro-particle velocities over the grid (r, z) and the
Fourier modes. However, this algorithm is not charge conserving thus, to ensure
the fulfillment of the Poisson equation a field 𝐸𝑐 is added to the electric field. This
correction field is obtained by solving the Poisson equation [49]:

∇ · �⃗�𝑐 = 𝜌 − ∇ · �⃗�. (3.5)

The rest of PIC loop runs as described in chapter 2.

3.2 Mesh refinement
Plasma simulations are frequently linked with challenges regarding the disparity of

scales which must be resolved. An example is, for instance, detailed modeling of the
beam behavior from end-to-end in a Heavy Ion Fusion accelerator [50]. However, in
LWFA we seldom encounter this problem, because the main resolution requirements
usually come from resolving the laser wavelength. On the other hand, it is possible
one would like to have a finer mesh, for example, in the region of anticipated electron
injection. In this thesis, we need to appropriately resolve the nanoparticle with a size
under 100 nm, its ionization, and following electron injection, which requires better
resolution than the rest of the simulation domain.
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Above mentioned examples have one thing in common, that is mentioned dispar-
ities are in distinctive regions of the simulation domain. This issue can be solved
by so-called mesh refinement (MR), a technique used for refining certain regions of
the computational grid. This method serves as a “numerical microscope,” allowing
one to “zoom in” on the specific regions, that are most important to the solution of
a particular problem [50]. Although mesh refinement has proven to be very effective
and the approach is widely used in other areas of computational physics, e.g. com-
putational fluid dynamics, it is not commonly used in PIC simulations. The reason
is the rather challenging implementation of the MR to PIC algorithm.

The implementation of the MR technique to PIC simulations requires special care
to avoid the introduction of spurious effects into the model, or at least to mini-
mize them. As the two main generic issues were identified the spurious self-force on
macroparticles close to the mesh refinement interface [50] and the reflection (and
possible amplification) of short wavelength electromagnetic waves at the mesh re-
finement interface [51]. The reason is that a wavelength resolved on a region with
finer mesh may not be described on a coarser grid, therefore, it is reflected on the
interface. Such behavior is nonphysical and by multiple reflections on the bound-
aries, it can significantly increase the field energy, creating instability. Moreover,
these waves may affect the particle motion, unless they are heavily damped inside
the grid, or absorbed at the interface.

As a result, the implementation of the mesh refinement to a PIC code is quite
challenging and complicated. Moreover, for reasons described in the next chapter
we eventually decided not to run simulations using the mesh refinement technique.
Therefore, this thesis will not provide a detailed description of the implementation
of the mesh refinement technique. However, it can be find e.g. in [50], [52] or [53].

3.3 Additional numerical schemes
In this section, four additional numerical techniques designed to reduce the com-

putational cost of 3-D PIC simulations will be described. The common denominator
of these methods is an effort to lower the number of cells in the computational do-
main (i.e. get larger cells) to enable studying of very long propagation paths (cm-m).
This kind of simulation is necessary to design accelerators obtaining electrons with
GeV energies, which is out of reach using fully 3-D PIC simulations.

In LWFA simulations, the main restrictions for resolution usually come from the
need to resolve laser wavelength. Thus, the following methods use either some ap-
proximations for quickly varying electromagnetic fields of laser oscillations (laser
envelope model and quasi-static simulations) or a convenient transformation of co-
ordinates.

3.3.1 Lorentz boosted frame
As the name of the method indicates, it is based on relativistic Lorentz trans-

formation. Hence, the simulation is not calculated in a laboratory frame as usual,
but in a frame of reference traveling close to the speed of light in the direction of
the laser beam. As a result of well-known properties of the Lorentz transformation,
i.e. the contraction and dilation of space and time, the fast and short laser driver
beam elongates, while the stationary plasma is contracted. Hence, the inequality
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between scales is reduced, and thereby the number of time steps to complete the
simulation decrease by orders of magnitude (up to a few hundred [51]). Note this
method does not make any approximations of the physics model.

However, this approach has also a few limitations. The first involves macropar-
ticle statistics and emerges as a consequence of plasma being represented by fewer
macroparticles in the boosted frame and it can cause issues e.g. for modeling of
electron injection. The second one concerns backward-propagating waves, which are
harder to resolve because the Lorentz transformation “shrinks” them (as opposed to
forward propagating laser). This makes it impossible for boosted-frame simulations
to model e.g. colliding pulse injection. Also, the speedup of simulations using this
method is not sufficient to model acceleration stages leading to GeV electrons.

Figure 3.2: Schematic image of the effect of the Lorentz transformation on laser beam
travelling close to the speed of light and plasma at rest [51].

3.3.2 Laser envelope model
Another method to substantially improve the performance of LWFA simulations

is by modeling the evolution of the laser envelope rather than the rapidly oscillating
field itself. Hence, one only needs to resolve the plasma wavelength 𝜆𝑝 and not the
laser wavelength 𝜆𝐿, which allows the coarsening of the grid, particularly in the
direction of the laser propagation. Thus, fewer timesteps are required. The savings
of computational resources correspond approximately to (𝜆𝑝/𝜆𝐿)2 (≈ three orders
of magnitude) [54].

Some drawbacks of this method are its inability to describe self-injection or elec-
tron trapping in regions of strong laser field and the fact that laser oscillations may
not be the only phenomena requiring high resolution (e.g. sharp bubble edges).
Other complications may emerge while modeling the laser depletion, because the
laser wavelength may change during depletion.

3.3.3 Quasi-static PIC codes
Codes using the quasi-static approximation (QSA) are particularly useful for

studying very long propagation paths (cm-m). The QSA assumes that the laser
pulse does not vary during the time a plasma electron needs to pass the pulse, hence
the evolution of the beam and plasma is decoupled. Note this approximation also
requires the assumption of a slowly evolving wakefield structure, thus neither the
laser period nor the plasma period, need not be resolved in time. Under this ap-
proximation, the Maxwell equations take the form of the Poisson equation, and the
scheme is no longer subject to a CFL condition [55]. This makes it possible to use
time steps orders of magnitude larger than those in conventional electromagnetic
PIC.
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The main problem of quasi-static PIC codes is their inability to model the particle
injection. On the other hand, they often enable consistent initialization of particle
beams in the plasma. This is an important presumption towards running so-called
hybrid PIC simulations [55], which is a way of simulating the whole acceleration
process. A hybrid simulation is a combination of full 3-D PIC code, used for simu-
lating the internal electron injection (length scale 𝜇m-mm), and a quasi-static PIC
code, to model further propagation of the laser driver and electron beam after the
injection process (length scale cm-m).



Chapter 4

Comparison of 3D and quasi-3D
approach

The decision whether to choose an azimuthal modes decomposition (cylindrical
geometry) or a full 3D simulation with mesh refinement, was made based on several
factors. The main aspects taken into consideration were: the computational cost of
a single simulation, differences in results obtained using these two approaches, and
also achieved code performance since different PIC codes were used. In this chapter,
a detailed comparison of both geometries is provided.

4.1 Computational cost and code performance

4.1.1 Computational cost
Computational cost of full 3D simulation, respectively quasi-cylindrical simula-

tion, can be estimated as follows:

𝑁𝑐𝑜𝑚𝑝,3𝐷 ≈
(︃

𝐿𝑥

Δ𝑥

)︃
×
(︃

𝐿𝑦

Δ𝑦

)︃
×
(︃

𝐿𝑧

Δ𝑧

)︃
×
(︃

𝑇𝑠𝑖𝑚

Δ𝑡

)︃
, (4.1)

𝑁𝑐𝑜𝑚𝑝,𝑅𝑍 ≈
(︃

𝐿𝑟

Δ𝑟

)︃
×
(︃

𝐿′
𝑧

Δ𝑧′

)︃
×
(︃

𝑇 ′
𝑠𝑖𝑚

Δ𝑡′

)︃
× 𝑀. (4.2)

Here 𝐿𝑥, 𝐿𝑦, 𝐿𝑧, 𝐿′
𝑧 and 𝐿𝑟 are the dimensions of the simulation domain, Δ𝑥, Δ𝑦, Δ𝑧,

Δ𝑧′ and Δ𝑟 are cell sizes in corresponding directions, 𝑇𝑠𝑖𝑚 is the simulation time,
Δ𝑡 and Δ𝑡′ are timesteps and 𝑀 = 2 is the number of azimuthal modes used for
the decomposition of electromagnetic fields.

Now, considering the use of mesh refinement in the 3D simulation and require-
ments for the stability of quasi-cylindrical simulation, it is possible to compare the
computational cost of both considered approaches. For an identical simulation run
in 3D and cylindrical geometry holds:

𝐿𝑧 = 𝐿′
𝑧, 𝐿𝑥 = 𝐿𝑦 = 2𝐿𝑟, (4.3)

since in cylindrical geometry (as a result of cylindrical symmetry) is sufficient to use
only half of the simulation domain in the radial direction.

Furthermore, the minimum cell size for resolving the nanoparticle with diameter
𝑑𝑛𝑝 and its ionization is Δ‖ = 𝑑𝑛𝑝/4 in the direction of the laser propagation and
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Δ⊥ = 𝑑𝑛𝑝/2 in the perpendicular direction. Considering the vast majority of cells
can be (at least) twice as big while using the mesh refinement one can write:

Δ𝑥 = Δ𝑦 = 2Δ𝑟 = 𝜆

10 , Δ𝑧 = 4Δ𝑧′ = 𝜆

20 . (4.4)

The second condition is a consequence of the quasi-cylindrical simulation stability
requirement for the cell size in the z-direction to be at least four times larger than the
cell size in the radial direction. Although the resolution specifications would allow
using even Δ𝑥 = Δ𝑦 = 4Δ𝑟, the maximum refinement ratio currently implemented
in WarpX is only 2.

Finally, the relation between time variables for the respective simulation geome-
tries is as follows:

𝑇𝑠𝑖𝑚 = 𝑇 ′
𝑠𝑖𝑚, Δ𝑡 ≈ 10

3 Δ𝑡′, (4.5)

whereas the second relation was obtained combining equation (2.38) and (4.4). Now,
one can determine the ratio between 𝑁𝑐𝑜𝑚𝑝,3𝐷 and 𝑁𝑐𝑜𝑚𝑝,𝑅𝑍 :

𝑁𝑐𝑜𝑚𝑝,3𝐷

𝑁𝑐𝑜𝑚𝑝,𝑅𝑍

≈

(︁
𝐿𝑥

Δ𝑥

)︁
×
(︁

𝐿𝑥

Δ𝑥

)︁
×
(︁

𝐿𝑧

Δ𝑧

)︁
×
(︁

𝑇𝑠𝑖𝑚

Δ𝑡

)︁
(︁

2𝐿𝑥

2Δ𝑥

)︁
×
(︁

4𝐿𝑧

Δ𝑧

)︁
×
(︁

𝑇𝑠𝑖𝑚

Δ𝑡
10
3

)︁
× 2

= 3
80

(︃
𝐿𝑥

Δ𝑥

)︃
. (4.6)

Therefore, the ratio between 𝑁𝑐𝑜𝑚𝑝,3𝐷 and 𝑁𝑐𝑜𝑚𝑝,𝑅𝑍 is directly dependent on the
number of cells in the direction perpendicular to the direction of the laser propaga-
tion. Furthermore, considering Δ𝑥 = 𝑑𝑛𝑝 ≈ 100 nm (before the mesh refinement)
and 𝐿𝑥 between 50 𝜇m and 200 𝜇m one can obtain an estimate:

𝑁𝑐𝑜𝑚𝑝,3𝐷

𝑁𝑐𝑜𝑚𝑝,𝑅𝑍

≈ 20 − 75. (4.7)

Thus, by choosing cylindrical geometry over full 3D simulation, one can save a signif-
icant amount of computational resources. Moreover, savings would be even higher
for nanoparticles with smaller diameters. Note, that the considered resolution in
every direction is also good enough to satisfy requirements for resolving laser wave-
length about 1𝜇m.

4.1.2 Code performance
The next criterion used to decide, whether to choose the full 3D or cylindrical

geometry, was the difference in performance of the two considered PIC codes; Smilei
and WarpX. Since we have already had certain experiences with Smilei, we known
how to properly decompose the computational domain and how effectively perform
the parallelization on a super computer.

However, the WarpX code was explored solely for the purpose of using the mesh
refinement technique to resolve the nanoparticle, hence, we do not have any prior
experiences with this PIC code. Hence, due to a lack of time, we were not able to
determine a suitable domain decomposition and/or MPI parallelization to acquire
a good code performance. Nevertheless, in the future, we would like to revisit this
issue, possibly try using GPU nodes instead of CPU nodes and realize a full 3D (or
quasi-cylindrical) simulation with mesh refinement to model the nanoparticle more
effectively.
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4.2 Results comparison
As already mentioned, using the AM decomposition and running a simulation

in cylindrical geometry results in a significant reduction of the computational cost.
However, a significant part of the scientific community is often skeptical about results
acquired using the AM decomposition instead of full 3D PIC simulations. Hence,
a couple of simulations were performed to compare the results obtained with both
approaches.

For the sake of simplicity, and to avoid wasting computational time, simulations
meant for the comparison of 3D and quasi-3D method are ran without the presence
of a nanoparticle, hence, a coarser resolution is sufficient. Therefore, chosen cell size
in direction of the laser propagation in full 3D simulation is 42.5 nm (𝜆0/20), and
85 nm (𝜆0/10)in the perpendicular direction. The size of the simulation domain
is 55 × 55 × 55 𝜇m hence, there are approximately 640 cells in the transversal
directions and 1300 cells in the longitudinal direction. In the cylindrical geometry,
the cell size is 21.25 nm × 85 nm (𝜆0/40 × 𝜆0/10) and the simulation domain is
27.5 × 55 𝜇m, yielding 320 cells in the r-direction and 2600 cells in the z-direction.

The laser parameters are as follows; the laser wavelength 𝜆0 = 850 nm, the focal
spot is characterized by 𝑑𝐹 𝑊 𝐻𝑀 = 3 𝜇m the pulse duration is 𝑡𝐹 𝑊 𝐻𝑀= 15 fs (con-
sidering Gaussian profile in time and space). The energy contained in the pulse is
40 mJ, which corresponds to the intensity of 9.2 × 1018 W/cm2 and 𝑎0 = 2.2.

In this simulation, a 1 mm long gas target with double Gaussian shape and particle
density 1.6×1019 cm−3 composed of nitrogen molecules was used. Note that only
a part of the gas target was simulated as its plateau is only 200 𝜇m wide and the
wakefield quickly diminishes with decreasing gas density and weakening laser pulse.
The total simulated length (using the moving window algorithm) is 680 𝜇m, which
corresponds to a simulation time of 2266 fs or 800 𝑇0 (𝑇0 is the laser period). The
simulation timestep is chosen according to the CFL condition with 𝐶 = 0.95.

In the case of the 3D simulation 4 particles per cell were used. Hence, the total
amount of macro-particles in the computational domain was approximately 4 × 109.
As for the simulation using cylindrical geometry, two azimuthal modes had to be
used to model the linearly polarized laser pulse. Since simulations using the AM
decomposition usually require more macro-particles to obtain a representative sam-
ple, 32 particles per cell were used. In total, this makes 1.3 ×107 particles in the
computational domain. The 3D simulation requires approximately 17 000 timesteps,
whereas the quasi-cylindrical simulation requires cca 35 000 timesteps.

4.2.1 Electron beam
In this subsection, the differences in properties of the generated electron beam

will be addressed. First, notice the figure 4.1 depicting the energy spectra of the
electron beams for different geometries. Qualitatively, these results are in very good
agreement, the mean energy is approximately 20 MeV and the relative energy spread
is around 17 %. The amount of injected electrons is approximately twice as high
in the quasi-cylindrical simulation than in the case of 3D geometry. This quantity
is directly connected with electron beam charge, which can consequently differ in
different simulation geometries.

However, this should not be a crucial obstacle, since the results differ only slightly
and we can take this fact into account. Regardless, it cannot be expected to obtain
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exactly the same results from experiments and numerical simulations. Hence, to
get an estimate of the most suitable gas target parameters, the quasi-cylindrical
simulation seems to be a viable option.

Figure 4.1: Comparison of electron energy spectra obtained from 3D and quasi-
cylindrical simulation. Note the electron beam energy and energy spread are in a good
agreement although the amount of injected electrons is lower in the case of 3D simulation.

Apart from the energy spectrum, it is useful to also examine the spatial profile of
the accelerated electron beam, results from both simulations is depicted in fig. 4.2.
Similar to the energy spectrum a good resemblance was obtained, there is only one
generated electron beam, whereas the beam diameter is approximately 15 𝜇m. The
only notable differences are in the amount of injected electrons in the z-direction
(the left picture in fig. 4.2) and in the number of electrons farther from the center of
the computational domain in x-direction, which is slightly higher in the 3D geometry
(middle picture in fig. 4.2).

Figure 4.2: Electron beam profiles in longitudinal and transversal directions from 3D
(blue line) and quasi-cylindrical (orange line) simulation. In left picture, a longitudinal
profile is depicted. In this case the number of electrons obtained from the quasi-cylindrical
simulation is approximately twice as high compared to the 3D simulation. The center and
right picture display the transversal profiles. Both simulations give almost identical results.

Finally, one more set of plots (fig. 4.3), related to the electron beam longitudinal
phase space, is presented. This quantity follows the same trend as previous results,
both simulations are in good agreement qualitatively, but the amount of electrons
obtained from quasi-cylindrical simulation is higher than from 3D simulation. One
can also notice the beam from the quasi-cylindrical simulations occupies a smaller
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area in the longitudinal phase space and has higher share of electrons with higher
energy.

(a) (b)

Figure 4.3: Longitudinal phase space of electrons obtained from (a) 3D and (b) quasi-
cylindrical simulation. Note the scales are logarithmic and saturated to ensure a good
contrast.

4.2.2 Wakefield and electron density
The second part of the comparison of the results is dedicated to the distribution

of fields, which is depicted in fig. 4.4. For the analysis, only the area of the gas tar-
get plateau was chosen. This region was chosen because the laser pulse has a short
Rayleigh length. Hence, its intensity rapidly decreases as the laser pulse quickly
diverges farther from its focus. Consequently, the wakefield weakens and pertur-
bations in the electron density are less distinctive. Thus, it is difficult to compare
results from respective simulations, because plots do not contain any characteristic
details. Moreover, these regions have a rather minor influence on the acceleration
process, since the electron injection takes place in the gas target plateau and as the
the wakefield weakens it is no longer able to accelerate injected electrons.

Therefore, figure 4.4 depicts the driving laser pulse (green), electron density distri-
bution (grey), and the profile of the plasma wave longitudinal electric field (orange
line) at 𝑥 ≈ 0. This choice was made on the fact that in quasi-cylindrical simulations
there is usually quite a strong noise present at the simulations axis. This can be
observed e.g. on fig. 4.4(b) or (d).

First, discrepancies in the electron density distribution at different times will be
described. Every pair of plots differs solely in minor details, while the most impor-
tant characteristics are almost identical. Most differences can be spotted comparing
cases (a) and (b). For example, in the picture from the 3D simulation (case (a)),
the edge of the first bubble is sharper and the shape of the second bubble is slightly
different than in case (b). Furthermore, in the majority of cases one can spot lower
electron density (especially farther from the center of the computational domain)
in the case of 3D simulations. Between cases (e),(f), and (g),(h) no other notable
differences were found. Moreover, profiles of the longitudinal electric field, as well
as their amplitude, are also in good agreement.

To sum up, results from simulations using 3D and cylindrical geometry, are overall
in good agreement. Hence, for designing a gas target for an LWFA experiment,
quasi-3D simulations based on AM decomposition, are a great compromise between
inaccurate 2D simulations and costly full 3D simulations.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Electron density distribution obtained from 3D (left column) and quasi-
cylindrical simulation (right column). The plots are plotted at following times (a,b) t =
300 T0, (c,d) t = 360 T0, (e,f) t = 420 T0 and (g,h) t = 480 T0. The color scales are
saturated and in case of electron density also logarithmic. Note, that the profile of the
electric field is not plotted exactly at 𝑥 = 0 since there is a lot of noise at the axis, instead
it is plotted two cells below the axis.
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Simulations for study of
nanoparticle electron injection

For the parametric study of the nanoparticle influence on the electron injec-
tion and accelerated electron beam, several PIC simulations in cylindrical geometry
(quasi-3D approach) were carried out using open-source PIC code Smilei [48]. Since
we would like to perform an experiment using the nanoparticle injection scheme
in the future, two different gas targets (approximately 1 mm and 20 mm long)
affiliated with two particular experiments ALFA (Allegra Laser For Acceleration)
and ELBA (ELectron Beam Accelerator for fundamental sciences and applications)
at ELI Beamlines were chosen. The goal was to determine whether this injection
scheme is suitable for these experiments and if so, try to find an optimal combina-
tion of nanoparticle size, material and position for fixed laser parameters and the
density profile of the gas target.

5.1 Gas target for ALFA experiment
The first set of simulations was carried out primarily to determine the impact of

nanoparticle parameters on the accelerated beam. The reason is that the gas target
for the ALFA experiment is only about 1 mm long, thus, these simulations are sig-
nificantly less computationally expensive compared to the second set of simulations
performed for the ELBA experiment with 20 mm long gas target. However, the
process of electron injection facilitated by the nanoparticle is discussed as well.

In the end of this section a short discussion concerning the decision whether the
nanoparticle injection scheme would be suitable for the ALFA experiment is given.
The experiment is performed using multi-TW, 1 kHz laser system L1-Allegra and
has already shown generation of collimated and quasi-monoenergetic electron beams
with energy up to 50 MeV [56]. These results hold a promise towards developing
high brilliance X-ray sources for medical imaging or novel devices for brain cancer
treatment. We are interested in finding out, whether we can further improve these
already impressive results.

5.1.1 Simulation parameters
As already mentioned, the laser used in this experiment was laser L1-Allegra.

Thus, the laser central wavelength is 𝜆𝐿 = 850 nm, the focal spot is defined by
𝑤0 = 3 𝜇m and the pulse duration is 𝑡𝐹 𝑊 𝐻𝑀 = 15 fs (considering Gaussian profile
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in time and space). The pulse energy is 40 mJ, which gives us the intensity of
𝐼 = 9 × 1018 W/cm2, and normalized vector potential 𝑎0 = 2.2. Note, that pulse
energy used for simulations is higher than in the experiment [56]. We made this
decision to obtain higher intensity and 𝑎0, based on the nominal pulse energy for
laser L1-Allegra, which is 100 mJ. The laser is linearly polarized.

The size of the computational domain is 55 × 27.5 𝜇m, the same as in the quasi-
cylindrical simulation from the previous chapter. The cell size is 10.6 × 42.5 nm,
hence, there are 5120 cells in the longitudinal direction and 640 cells in the transver-
sal direction. The simulation time is set to 𝑡𝑠𝑖𝑚 = 2266 fs = 800 𝑇0 (𝑇0 is the laser
period). Using the moving window algorithm, this corresponds to the total simulated
length of 680 𝜇m. The simulation timestep is set according to the CFL condition
with 𝐶 = 0.95.

The gas target, composed of nitrogen molecules, was also chosen according to the
ALFA experiment, and its profile is depicted in fig. 5.1. The laser is focused in the
gas target plateau at 𝑧 = 250 𝜇m. Only a part of this 1 mm long gas target was
chosen for the simulation to reduce the computational cost. Also, for 𝑧 > 600 𝜇m
the density of the gas target is set to zero to better distinguish accelerated electrons
from the background. By running additional simulations, it was verified that these
adjustments do not affect the results.

Figure 5.1: The dependency of the gas target density on longitudinal coordinate 𝑧. In
the transversal direction a constant density profile is assumed.

The nanoparticle is defined as a sphere of diameter 𝑑 = 85 nm with the center
at [𝑧, 0]. The nanoparticle is resolved using 8 cells (4 in the longitudinal direction,
2 in the transversal direction), whereas each oh these cells contains 1600 macro-
particles. Note that one cell of nitrogen consists only of 16 macro-particles. In
total, the simulation domain contains approximately 5.2×107 macro-particles. The
whole simulation requires approximately 70 000 timesteps. Note, the process of
ionization of the nitrogen as well as the nanoparticle is included in the simulation.

Performed simulations can be further divided in two sets. The first one is focused
on parameters influencing the shape and amplitude of the plasma wave in the mo-
ment of electron injection, i.e. the plasma density and nanoparticle position. Note,
the latter is connected to the laser waist, hence the intensity, at the moment when
electron injection takes place. Since the Rayleigh range of the laser is only about
37 𝜇m, the intensity of the laser significantly differs throughout the simulation even
if we consider self-focusing of the laser pulse.
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Therefore, two different gas target densities (𝑛 = 9×1018 cm−3 and 𝑛 = 1.6×1019)
and three different nanoparticle positions (z = 170 𝜇m, z = 210 𝜇m and z = 250 𝜇m)
were chosen to study the conditions during the electron injection and their influence
on the accelerated electron beam. Gas target densities were chosen based on previous
simulations. The first value 𝑛 = 9×1018 cm−3 is the highest particle density at which
the self-injection does not occur at all, while the higher value (𝑛 = 1.6×1019 cm−3)
corresponds to a particle density at which the energy spectrum of the electron beam,
obtained from simulation with nanoparticle located at z = 210 𝜇m, has a decent
energy spread. Note, because of the laser parameters, a high density gas target was
originally intended for this experiment (in ALFA 𝑛 = 5.7×1019 cm−3 was used).
Therefore, we want to use as high gas target density as possible, while preserving
one of the main advantages of the nanoparticle injection scheme, which is low energy
spread. Nanoparticle positions were simply chosen in the first half of the gas target
so that the acceleration length is limited as little as possible.

The second set of simulations is focused on parameters of the nanoparticle, namely
its size and material. For this purpose two different materials, already used in exper-
iments ([8], [9]) were chosen - aluminium and copper. Moreover, three nanoparticle
sizes were tested 𝑑 = 68 nm, 𝑑 = 85 nm and 𝑑 = 102 nm. Note, for nanoparticle
diameters 𝑑 = 68 nm and 𝑑 = 102 nm the simulation resolution had to be adjusted
to model the nanoparticle. The new cell size was set to 8,5 × 34 nm, hence, the
number of cells over the simulation domain has changed to 6400 in longitudinal
and 800 in transversal directions and the required number of timesteps has risen to
approximately 88 0000.

To sum up, parameters of all simulations, whose results will be presented in this
section, are listed in table 5.1. In total 11 simulations were carried out. However,
the results generally follow the same trend, hence, these results are not presented
due to the limited space.

Simulation number 1 2 3 4 5 6 7
nanoparticle size 𝑑[nm] 85 85 85 85 85 68 102

nanoparticle position 𝑧[𝜇m] 210 170 250 210 210 210 210
nanoparticle material Al Al Al Al Cu Al Al

gas target density 𝑛𝑒[1019 cm−3] 1.6 1.6 1.6 0.9 1.6 1.6 1.6

Table 5.1: Table summarizing the parameters of performed simulations. Note, four more
simulations were carried out (for 85 nm Al nanoparticles located at 𝑧 = 170 𝜇m and
𝑧 = 250 𝜇m with 𝑛 = 0.9×1019 cm−3 and for Cu nanoparticles located at 𝑧 = 210 𝜇m
with 𝑑 = 68 nm and 𝑑 = 102 nm and 𝑛 = 1.6×1019). These results are not presented due
to limited space.

5.1.2 Simulation results
In this section, the influence of nanoparticle parameters on the electron injection

will be discussed. However, we shall start with a brief description of the whole
acceleration process in this gas target, with emphasis on the injection process itself.
For this purpose, the simulation with 85 nm aluminium nanoparticle located at
𝑧 = 210𝜇m and gas target density 𝑛 = 1.6×1019 cm−3 was chosen. Simulation with
these parameters will also be used as a reference for future comparison.
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The course of acceleration process (evolution of electric fields and the electron
density) is illustrated in figure 5.2. The laser propagates from left to right, expelling
electrons from its path and creating a linear plasma wave (case (a)). The plasma
wave hereafter reaches highly nonlinear regime, this phenomenon is accompanied by
creation of a positively charged cavity, also called a bubble (case (b)). At this point,
one can also spot the ionized nanoparticle inside the bubble.

Moving on to case (c), we can already see the injected electrons represented by
orange (gas electrons) and yellow (nanoparticle electrons) dots. For the sake of
legibility, only a fraction of electron (macro-particles) with energy higher than 3 MeV
is displayed. Note that the majority of nanoparticle electrons is injected into the
first bubble, while the gas electrons mostly occupy the second one. As the laser
propagates, it loses its energy mostly due to absorption in plasma and excitation
of the plasma wave, moreover it is moving farther from the focal spot, hence, its
intensity decreases. Consequently, the plasma wave weakens and its profile changes
to weakly nonlinear (case (d)).

(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Electric fields (laser field and wakefield) and the electron density at different
times (a) t = 190 T0, (b) t = 280 T0, (c) t = 325 T0, (d) t = 370 T0, (e) t = 460 T0,
(f) t = 550 T0. Orange and yellow dots represent the electrons created by ionization
from nitrogen molecules and aluminium nanoparticle, respectively. The color scales are
saturated and in cases (a)-(d) the electron density is displayed in logarithmic scale.
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In cases (e) and (f) we observe a further weakening of the driving laser pulse as
well as a rapid decline of the electron density and consequently, a gradual dissipation
of the plasma wave. In fig. 5.3(f) the electric field of the plasma wave is already too
weak and is no longer able to accelerate injected electrons, thus, the acceleration
length in this case is only about 200 𝜇m. Note, for the case of the gas target density
𝑛 = 0.9×1019 cm−3, the evolution of electric fields and electron density distribution
is very similar.

The injection process is illustrated by fig. 5.3, the first plot (a) captures the imme-
diate moment after the interaction of the driving laser pulse and the nanoparticle.
Ionization of the nanoparticle is illustrated by plotting tracked electrons (yellow
dots) created by this process. At this point one can also notice a fraction of the
plasma electrons (orange dots) with energy higher than 0.5 MeV. These electrons
are currently forming edges of the bubble or are trapped in the electric field of the
laser. Although case (b) displays electrons with energy higher than 0.5 MeV as well,
at this moment, electrons with this energy are present in the whole plasma region.
Hence, we observe plasma electrons being attracted by very strong electric field of
the nanoparticle, (see fig. 5.4 to compare the electric field of the plasma wave with
the electric field created by the ionization of the nanoparticle).

These electrons are injected into the accelerating field of the plasma wave, as
shows case (c), which displays only electrons with energy over 2.5 MeV. It is clear
that vast majority of the nanoparticle electrons was injected into the first period of
the plasma wave, whereas the plasma electrons are present in both periods. One can
also notice a significant amount of electrons forming a “bowtie” structure outside
the acceleration field. Finally, in fig. 5.3(d) we can observe injected electrons in
both plasma wave periods already without displaying the tracked macro-particles.

(a) (b)

(c) (d)

Figure 5.3: Illustration of the electron injection process, figures are plotted at (a)
t = 260 T0, (b) t = 280 T0, (c) t = 300 T0 and (d) t = 320 T0. Orange and yellow
dots represent electrons created by ionization from nitrogen and aluminium nanoparticle,
respectively. Only a fraction of tracked particles is displayed for the sake of clarity.
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(a) (b)

Figure 5.4: Illustration of the strength of the nanoparticle electric field compared to the
electric field of the plasma wave. (a) At 𝑧/𝜆0 = 250 the electric field of ionized nanoparticle
is distinctive. This field is more than two orders of magnitude stronger than electric field
created by the ionization of gas. (b) Closer look at the electric field of the plasma wave.
For this purpose the maximum displayed value of the electric field was adjusted.

Electron injection

At this point, we will discuss the influence of various nanoparticle parameters on
the electron injection, starting with the electron density and nanoparticle position in
the gas target. These mostly influence the shape and amplitude of the plasma wave
at the moment of the electron injection. Four different situations are depicted in
fig. 5.5, showing plasma wave profiles at the moment of the nanoparticle ionization,
hence, just before the electron injection.

(a) (b)

(c) (d)

Figure 5.5: Plasma wave profile and amplitude before the electron injection for different
gas target densities and nanoparticle positions; (a) 𝑛 = 1.6 × 1019 cm−3, 𝑧 = 210 𝜇m,
(b) 𝑛 = 0.9 × 1019 cm−3, 𝑧 = 210 𝜇m, (c) 𝑛 = 1.6 × 1019 cm−3, 𝑧 = 170 𝜇m,
(d) 𝑛 = 1.6 × 1019 cm−3, 𝑧 = 250 𝜇m.
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The first two figures display the situation with nanoparticle at the same po-
sition but with different gas target density (a) 𝑛 = 1.6 × 1019 cm−3 and
(b) 𝑛 = 0.9 × 1019 cm−3. Consequently, in case (a) one can observe a plasma
wave with shorter period and higher amplitude (electric field). Therefore, in case (a)
one can expect more plasma electrons to be injected (because of the higher electron
density) and accelerated to higher energies (because of the stronger accelerating
field).

Secondly, we will compare figures with fixed gas target density and nanoparticles
located at different positions ((a) 𝑧 = 210 𝜇m, (c) 𝑧 = 170 𝜇m and (d) 𝑧 = 250 𝜇m).
Figure 5.5(c) shows quite weak, linear plasma wave, the reason is that the laser beam
is still far from its focal plane, thus, its intensity is low. This will probably cause
a low number of injected electrons and low beam charge. However, these electrons
should gain the highest energies from all performed simulations.

The last situation, which will be described is depicted in fig.5.5(d). Despite the
same gas target density as in case (a) was used, we observe a lower electron density
at the moment of the nanoparticle ionization and subsequent electron injection. This
can be caused, for example, by weakening of the laser pulse due to the ionization of
the nitrogen gas. Therefore, one can again expect a lower charge of the accelerated
electron beam. Note, in this case, it is not possible to compare the strength of the
nanoparticle field, since the figures are not plotted at the exact same moment of the
ionization and the strength of the nanoparticle electric field varies very quickly.

Moving to another set of simulations, we will now investigate how the electron
injection is affected by different nanoparticle size and material. Figure 5.6 displays
the difference in the ionization of the aluminium (a) and copper (b) nanoparticle.
An atom of copper has more than twice the number of electrons than the aluminium
atom. Moreover, the copper electrons are located in higher electron shells, hence,
their ionization is easier. Therefore, in case of the aluminium nanoparticle a smaller
amount of electrons is created, whereas the majority of them is trapped in the first
bubble, as was already described. In case of the copper nanoparticle. However,
a significant amount of nanoparticle electrons will be injected also into the second
plasma period and we can not rule out that the injection will continue in the third
or the fourth plasma wave period as well.

(a) (b)

Figure 5.6: Comparison of the ionization of (a) aluminium and (b) copper nanoparticle.
Significantly more electrons are created by the ionization of copper nanoparticle. One
can also notice a strong noise introduced into the axis region of the simulation domain in
case (b).
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Moreover, the ionization of the copper nanoparticle creates a considerably stronger
electric field than the aluminium one (see fig. 5.7). According to the theory described
in section 1.4, this should cause injection of greater amount of electrons, hence,
higher beam charge. This will be discussed in bigger detail in the following part of
this section, which focuses on the parameters of the accelerated beam.

(a) (b)

Figure 5.7: Comparison of the strength of the electric field created by ionization of (a)
aluminium and (b) copper nanoparticle. The field in case (b) is considerably stronger.
Note, the copper nanoparticle also causes more distinctive modulation of the plasma den-
sity around and in the bubble region. However, this is only temporary and without
significant influence on the acceleration process.

A similar dependence can be observed for different nanoparticle sizes. From bigger
nanoparticle a higher amount of electrons is created, thus, we should obtain higher
beam charge. However, the strength of the electric field does not differ so immensely,
only about 10 %. Therefore, we do not expect substantial electron injection in the
third plasma wave period. Counter intuitively, slightly stronger electric field was
generated by a smaller nanoparticle. At this time, we do not have a good explanation
for this phenomenon.

Electron beam

This part of chapter 5 is dedicated to the parameters of the accelerated electron
beam. In the first place, the energy spectra will be discussed. For the sake of
legibility, results are divided in two figures 5.8 and 5.9. The first one contains energy
spectra for different nanoparticle positions and gas target densities, while the second
one displays the same quantity for different nanoparticle sizes and materials. Every
plot shows the energy spectrum of all accelerated electrons and also the respective
contributions of electrons from plasma and from ionized nanoparticle. Note, these
plots confirm most of our deductions from previous section.

Figures 5.8(a) and (b) capture electron energy spectra for different gas target
densities. Due to stronger accelerating field the maximum achieved electron en-
ergy in case (a) 𝑛 = 1.6 × 1019 cm−3 is about 5 MeV (22 %) higher than in case
(b) 𝑛 = 0.9 × 1019 cm−3. Moreover, the amount of electrons injected in case (b) is
approximately ten times lower, which is caused by both - lower gas target density as
well as the weaker acceleration field. Similar phenomenon can be observed compar-
ing cases depicting different nanoparticle positions (a) 𝑧 = 210 𝜇m,(c) 𝑧 = 170 𝜇m
and (d) 𝑧 = 250 𝜇m. Moreover, from these plots, the dependency of maximum
achieved energy on the acceleration length is apparent.
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One can notice that the figure 5.8(c) significantly differs from the other cases in
terms of energy spread and the amount of injected electrons. The reason for the
latter one was already described in previous section. The wide energy spread arises
probably due to self injection occurring in the plateau of the gas target, which is
more distinctive in this case, because of the low amount of injected electrons by the
ionization of the nanoparticle.

Another noteworthy fact is, that in both figures 5.8 and 5.9, the majority of
nanoparticle electrons are accelerated to higher energies than the plasma electrons.
In previous section we have found out that the nanoparticle electrons are mostly
injected into the first plasma wave period. This is consistent with the fact, that
the amplitude of the first plasma wave period is higher, which is also apparent from
plots from the previous section.

Furthermore, comparing simulations for the gas target density 𝑛 = 1.6×1019 cm−3

with nanoparticles (fig. 5.8 cases (a) and (d)) and the simulation without nanopar-
ticle from the previous chapter (fig. 4.1), one can notice a significant growth in
the amount of injected electrons. Thus, using nanoparticles it is possible to signifi-
cantly increase the electron beam charge without changing any other parameters of
the experiment. Note, that due to different scales on the y-axis, it may seem that
maximum energies dropped if the nanoparticles were used. However, this is not
the case and the maximum energies are approximately the same for all the simula-
tions with 𝑛 = 1.6×1019 cm−3, except for the simulations with nanoparticles located
at z = 170 𝜇m. In this case, a low amount of electrons reached higher maximum
energy due to the longer acceleration length.

(a) (b)

(c) (d)

Figure 5.8: Energy spectra of accelerated electron beams obtained with different gas
target densities and nanoparticle positions; (a) 𝑛 = 1, 6 × 1019 cm−3, 𝑧 = 210 𝜇m,
(b) 𝑛 = 0, 9 × 1019 cm−3, 𝑧 = 210 𝜇m, (c) 𝑛 = 1, 6 × 1019 cm−3, 𝑧 = 170 𝜇m,
(d) 𝑛 = 1, 6 × 1019 cm−3, 𝑧 = 250 𝜇m.
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In terms of energy spread, a slight improvement from 15 MeV (fig. 4.1(b)) to
approximately 10 MeV (fig. 5.8(a) and 5.8(d)) was achieved using the nanoparticles.
This corresponds to a drop from approx. 35% to a little over 25% energy spread.

The second set of plots (fig. 5.9) depicts the electron energy spectra dependent
on the nanoparticle size and material. If the copper nanoparticle is used (case (b)),
one can observe a few times higher amount of injected and accelerated electrons, as
was expected (and predicted by theory). Even though a slightly lower maximum
energy was achieved, there is more electrons with energies between 15 and 20 MeV.
One can also notice a bigger amount of injected electrons created by the ionization
of the nanoparticle compared to simulations with aluminium nanoparticle.

As we expected based on results from the previous section, different nanoparticle
size causes only minor changes to the electron spectrum. In cases (a), (c) and (d)
one can notice a distinctive peak around approximately 17 MeV, which consists
mainly of plasma electrons. Because the smaller nanoparticle (case (c) 𝑑 = 68 nm)
creates slightly stronger electric field more plasma electrons are injected. Whereas
a smaller number of electrons is created by the ionization of the nanoparticle, thus,
less of them is injected. This makes the mentioned peak even more distinctive.

(a) (b)

(c) (d)

Figure 5.9: Energy spectra of accelerated electron beams obtained with different
nanoparticle materials and sizes; (a) Al, 𝑑𝑛𝑝 = 85nm, (b) Cu, 𝑑𝑛𝑝 = 85 nm,
(c) Al, 𝑑𝑛𝑝 = 68 nm, (d) Al, 𝑑𝑛𝑝 = 102 nm.

To obtain more information about the distribution of the energy in the electron
beam another set of plots, depicting longitudinal electron phase space, is presented
(fig. 5.10). From this figure, it is apparent that electrons were injected in the first
three plasma periods, creating three separate electron bunches. However, they are
only few 𝜇m apart, which is distance too short to be detectable in any experiment.
The only plot picturing solely two beams is 5.11(b) which corresponds to the simu-
lation with lower gas target density (𝑛 = 0.9 × 1019 cm−3).



5.1. Gas target for ALFA experiment 47

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.10: The longitudinal phase space of accelerated electron beams obtained with
various simulation parameters, which are noted in the respective plots. The color scales
are logarithmic and saturated.
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Therefore, in this case the period of the plasma wave is longer. Thus, it is possible
there is also a third beam but the simulation domain is too small to capture it. Note,
in the other cases it seems only a part of the third beam is present in the plots.
Another feature we can observe in cases (a), (e) and (f), displaying the phase spaces
from simulations with different nanoparticle sizes, is that the distinctive peak in
the electron spectra is indeed formed in the second plasma wave period. Moreover,
one can notice also a smaller “secondary” peak present in the energy spectrum,
which is most probably composed of electrons accelerated by the third plasma wave
period. Since, as we mentioned, this beam is probably not completely captured in
our simulations, it is reasonable to assume that this peak is in reality somewhat
higher, than shows for example fig. 5.9(a).

Furthermore, in case (d) one can see a small amount of electrons reaching energies
over 25 MeV (1 MeV corresponds to approximately 2 m𝑒c, which is a normalized
unit of momentum in Smilei, see Appendix A). These electrons are not properly
visible in the electron spectrum plot in fig. 5.8(d). Finally, taking a look at case (g),
depicting the phase space from simulation with copper nanoparticle, one can notice
that the second and third beam contain a considerably larger number of electrons
than in any other simulation. This is also in agreement with our deduction from the
previous section.

Finally, one more set of plots (fig. 5.11), related to the transversal profile of the
electron beam, is presented. As a consequence of the linear laser polarization, all of
those profiles are more or less elliptical, whereas the larger number of electrons is
present in the accelerated beam (higher charge), the less is the ellipticity apparent.
One can compare e.g. case (b) or (c) with the smallest beam charge, with case (g),
where the biggest beam charge was achieved.

In most cases (a,d,e,f), the obtained beam charge is around 2.5 pC, these cases cor-
respond to simulations with the same gas target density, nanoparticles with different
sizes located at 𝑧 = 210 𝜇m and to simulation with nanoparticle at 𝑧 = 250 𝜇m.
Based on our assumptions from the previous section, we did expect that these sim-
ulations will produce a similar beam charge. Moreover, in cases (b) and (c) one can
notice the total beam charge is fairly lower (slightly over 0.5 pC) as a consequence
of the lower gas target density (case (b)) and the unsuitable nanoparticle location
(case (c)). Finally, the highest beam charge (7.6 pC) was achieved using copper
nanoparticle instead of aluminium one, as a result of the stronger nanoparticle field
as well as a greater number of electrons created by the nanoparticle ionization, which
were subsequently injected into the accelerating field.

Note, the values of the total beam charge stated in the respective plots may not
be entirely accurate for two reasons. On the one hand, our results from chapter
4 showed, that quasi-cylindrical simulations may overestimate the total number
of injected electrons in comparison to full 3D simulations, which would results in
higher beam charge than in reality. On the other hand, it was already mentioned
that the simulation domain was not big enough to fully contain more than two
plasma periods. Hence, in most cases the beam charge should be higher. This
underestimation would be the most apparent in case (g), where the strongest electron
injection is anticipated for reasons described in previous section. Nevertheless, in
most cases, we can expect the total beam charge to be in order of few pC.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.11: The transversal beam profiles obtained with various simulation parameters,
which are noted in the respective plots. The color scales are logarithmic and saturated.
The laser is linearly polarized along y-axis.
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5.1.3 Summary
From the presented results is apparent that with this gas target density significant

improvements in terms of the beam charge and energy spread can be achieved with
the nanoparticle injection scheme. The most suitable nanoparticle position seems
to be 𝑧 = 210 𝜇m, however, 𝑧 = 250 𝜇m is also a viable option. Unfortunately,
with nanoparticle located at 𝑧 = 170 𝜇m there is only a minor improvement in the
maximum energy, but the energy spread is worse than in case of the self injection.
The fact that the results can vary distinctly, even if the nanoparticle is misplaced
only by 40 𝜇m, is a crucial problem for a possible utilization of this injection scheme
in the ALFA experiment.

On the other hand, the fact that the nanoparticle size has rather minor influence
on the parameters of the accelerated electron beam is a positive for future exper-
iments. The reason is that the best way to create nanoparticles and deliver them
to the gas target is currently the laser ablation, which is a technique that does not
allow an exact control of the nanoparticle size. Moreover, a nanoparticle material
offers control over the beam charge as well as the nanoparticle size, hence, we can
tune the beam charge this way.

Concerning the suitability of the nanoparticle injection scheme for the ALFA ex-
periment, we probably would not recommend it. Not only the maximum achieved
energy is rather lower due to low gas target density and the energy spread is not
improved in most cases, but this injection scheme brings further complexity to the
experiment. Moreover, the greatest challenge lies in finding a way to deliver nanopar-
ticles to the gas target with precision better than 100 𝜇m (achieved in [9]). Other-
wise it will not be possible to deliver stable electron beams because of the strong
dependency of the beam parameters on the nanoparticle position.

5.2 Gas target for ELBA experiment
The second experiment, we are interested in, is called ELBA and it is focused

mainly on achieving the highest energy (several GeV) and high-quality electron
beams with the prospects of using them for fundamental science studies. To reach
GeV energies, a long acceleration distance, hence, effective laser guiding, is necessary.
Thus, the nanoparticle injection scheme, which allows the decoupling of the electron
injection and laser pulse evolution, could be the right choice, for this experiment.
Therefore, this section is more focused on finding the optimal parameters for a future
experiment than on a parametric study of influence of the nanoparticle parameters.

5.2.1 Simulation parameters
The laser used for the ELBA experiment is laser L3-HAPLS, which is a Ti:sapphire

system designed to generate 30 J pulses with duration 𝑡𝐹 𝑊 𝐻𝑀 = 30 fs, and central
wavelength 𝜆𝐿=800 nm. The laser system generates a square flat top beam in space.
However, for the experiment the laser will be focused and have a Gaussian profile
with focal spot 𝑤0 = 52 𝜇m. Since a certain amount of the laser energy can be
lost during the guiding and focusing, we will assume the energy contained in the
pulse is 20 J. These parameters yield intensity approximately 9.8 ×1018 Wcm−2 and
normalized vector potential 𝑎0 = 2.1.
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The gas target profile, chosen according to the experiment, is depicted in fig. 5.12.
It is approximately 20 mm long, formed by helium molecules, whereas its density
is set to 𝑛 = 1.5 ×1018. However, the ionization of the gas is not included in this
simulation, we assume the helium is fully ionized, hence, the plasma density is set to
𝑛𝑒 = 3 × 1017 cm−3. This value was determined by preliminary analytic calculations
to obtain dephasing and depletion length roughly the same as the gas target length.
The laser focus is at 𝑧 = 7 mm.

Figure 5.12: The dependency of the gas target density on longitudinal coordinate 𝑧. In
the transversal direction a constant density profile is assumed.

Computational domain dimensions are 155 × 110 𝜇m, to properly contain the
laser pulse and prevent its reflection at the borders of the grid. Since running the
whole simulation with the resolution necessary to resolve the injection facilitated by
the nanoparticle would be very computationally expensive even using the cylindrical
geometry, we decided to divide the simulation into two parts.

First, we simulated the whole gas target (20 mm) without the nanoparticle to
establish the strength of the accelerating field. In this case, the used cell size was
40 × 160 nm, which makes 3840 cells in the longitudinal and 800 cells in the
transversal direction. The total simulation time using the moving window is ap-
proximately 62 ps (24 000 T0).

The purpose of the second simulation is to study the electron injection. Hence,
the simulation resolution had to be enhanced to 10 × 40 nm and consequently, the
number of cells increased to 13 900 × 3200 cells. The nanoparticle is located at
the beginning of the gas target (𝑧 ≈ 3 mm). We are interested only in the electron
injection, hence, the simulation starts 200 𝜇m before the nanoparticle and ends
after 400 𝜇m. The plasma density is assumed constant over in this simulation.
The simulation time is 𝑡 = 500 𝑇0. In both cases, the simulation timestep is set
according to the CFL condition (C = 0.95). The nanoparticle is defined in the same
manner as in previous simulations as well as the number of macro-particles per cell.
This yields approximately 4.9 × 107 macro-particles per cell for the first simulation
and 7.1 ×108 macro-particles per cell for the simulation with the nanoparticle. Note,
we omitted the ionization of the gas for this simulations, however, the ionization of
the nanoparticle is taken into account.

For this gas target we eventually decided to run only two simulations to study
the electron injection, one with aluminium and one with copper nanoparticle. This
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decision was based on results presented in the previous section and on the fact that
the optimal gas target density is determined by the laser parameters.

Furthermore, we want to place the nanoparticle at the beginning of the gas target
to obtain the longest acceleration length possible. Because the Rayleigh range of this
laser is about 8 mm and the achieved precision of nanoparticle placement in previous
experiment [9] is 100 𝜇m, there is no point in studying the influence of nanoparticle
position on the electron injection. Finally, the influence of the nanoparticle size on
the electron injection process is not as significant. Besides, this would be better to
inspect once we know how big nanoparticles we can create for the experiment.

Note, we also ran a simulation with a 10 J laser pulse (𝑎0 = 1.56), which cor-
responds to energy slightly lower than the current pulse energy generated by the
L3-HAPLS system. However, with this setup we did not detect any injected elec-
trons, even after increasing the plasma density. Hence, we deduced that the laser is
too weak to create sufficiently strong electric field of the plasma wave to facilitate
the electron injection (even if the nanoparticle is present). Better and more detailed
explanation would require further examination.

5.2.2 Simulation results
In this section, results from the last two simulations performed for this thesis will

be described. First, a plot depicting the moment of the aluminium nanoparticle
ionization (fig. 5.13) is presented. One can notice the contrast between the electric
field of the nanoparticle and the longitudinal electric field of the plasma wave is
similar to the situation from the previous section. Similar behaviour shows also the
simulations with the copper nanoparticle.

The plasma wave is in weakly nonlinear regime, to which corresponds also the
distribution of the electron density. In the second plasma wave period, we observe
a light disruption in the electron density, which is most probably caused by the
sharp edge of the plasma region (the laser propagates in vacuum for 50 𝜆0 and then
hits the plasma with the constant profile). This disruption diminishes as the laser
propagates further.

Figure 5.13: Electron density distribution (grey), the laser pulse (green) and the profile
of the longitudinal electric field at 𝑥 ≈ 0 (orange line).
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The next figure (5.14) offers look at the electric fields created by the ionization
of the aluminium and copper nanoparticle. From this picture is obvious that not
only the electric field created by the copper nanoparticle is stronger, it is also more
spread out. This will have an influence on the electron density distribution, which
we already observed in the previous section.

However, in the case of the ALFA experiment the perturbation of the electron
density is significantly stronger. Therefore, the impact of the nanoparticle electric
field on the electron density distribution and the accelerations process is only minor.
This fact is not true for the ELBA experiment and will be discussed in the next
paragraphs.

(a) (b)

Figure 5.14: Comparison of the electric field created by the ionization of (a) aluminium
and (b) copper nanoparticle. Significantly stronger and widespread electric field is created
by the ionization of copper nanoparticle.

Figure 5.15 depicts the injected electrons symbolized by yellow (nanoparticle)
and orange (plasma) dots for nanoparticles from different material. Results from
the simulation with aluminium nanoparticle (case (a)) are in agreement with our
previous conclusion, the majority of the electrons created by the nanoparticle ion-
ization is injected into the first plasma wave period, while the plasma electrons are
mostly present in the second period.

However, if the copper nanoparticle was used (case (b)) we observe several differ-
ences. First, one can notice the distribution of the electron density is distinctively
disturbed by electric field of the ionized nanoparticle. Furthermore, even though in
the first plasma wave period we observe a larger amount of nanoparticle electrons
than in the previous case (as expected), it seem there is less electrons present in the
second period. This is in contradiction with our expectations, stronger electric field
created by the ionization of the copper nanoparticle should attract more plasma
electrons. Moreover, electrons in plasma wave periods are not forming a narrow
beam as one can see in case (a), which is probably caused by the electron density
distortion.

Nevertheless, at the end of the second plasma wave period one can observe an
instability at the axis of the simulation domain, created by the ionized nanoparticle.
Therefore, it is possible that the results at this region are not accurate. It is currently
not clear, whether this is caused solely by the strong electric field of the nanoparticle
or whether the specific numerical treatment of the electromagnetic fields in the
cylindrical geometry at the axis also played a role. Probably it is a combination of
both, since we observe this instability also later in the simulation (see fig. 5.16).
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Unfortunately, we were not able to find a way to completely eliminate this instability.
Nonetheless, we plan to perform a full 3D simulation for further examination.

(a) (b)

Figure 5.15: Illustration of the injected electrons using (a) aluminium and (b) copper
nanoparticle. Yellow and orange dots represent electrons from the ionized nanoparticle
and from plasma, respectively. Both figures are plotted at t = 500 T0.

The last figure presented (5.16) depicts the further development of the electron
density and injected electrons in case the copper nanoparticle was used. We can
observe the distortions in electron density gradually diminishing and electrons in
the first plasma wave period forming a narrower beam. Therefore, we assume that
the electron beam divergence is caused by the electron density perturbation.

(a) (b)

Figure 5.16: Illustration of the development of the injected electrons using the copper
nanoparticle. Blue and green dots represent electrons from the ionized nanoparticle and
from plasma, respectively. Figures are plotted at (a) t = 600 T0 (b) t = 700 T0.

5.2.3 Summary
Because the gas target for ELBA experiment was too long to simulate the whole

acceleration process and do a parametric study, like in the case of the ALFA gas
target, we decided to perform two different types of simulations. One with fine
resolution to study only the electron injection and the second one to examine the
evolution of the plasma wave thorough the gas target.

Furthermore, we wanted this simulation to be a baseline for a future experiment
at ELI Beamlines. Hence, the majority of parameters (e.g. the gas target profile
and density and nanoparticle size) has been already determined by the available
equipment. Moreover, the nanoparticle should be placed at the beginning of the
gas target, to obtain the longest acceleration length possible. Therefore, the only
relevant nanoparticle parameter, whose influence on the electron injection seemed
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worth to study, is the nanoparticle material. This decision was also supported by
the results from the previous section.

The simulation performed to study the evolution of the plasma wave showed the
amplitude of the accelerating field varied from 20 GV/m to 45 GV/m over the whole
simulation. Whereas at about 17 mm, the electric field of the plasma wave started
to weaken. By a rough estimate, the maximum energy of the accelerated electrons
should be around 600 MeV. Therefore, to reach the electron energy over 1 GeV
several adjustments need to be made. One possible solution is to design a longer gas
target with lower density to get a longer acceleration length. However, to obtain a
more suitable gas target profile, which could also be used for the experiment, requires
running CFD simulations of supersonic gas jets, which create the gas target.

A second way to accelerate electrons to higher energies is to use laser with higher
intensity. This can be achieved, while retaining the same laser energy, e.g. by focus-
ing laser into a tighter spot. Unfortunately, this could result in higher divergence
of the laser pulse and, more importantly, it would require extensive tests in the
laboratory.

To sum up, the nanoparticle injection scheme is certainly suitable for the ELBA
experiment. If we were to suggest a parameters of a nanoparticle gas target, using
only currently available equipment, we would use the gas target from fig. 5.12, with
density about 𝑛 = 1.25 × 1018 cm−3, to better match the pump depletion length.
Based on results from this section, the nanoparticle material should be aluminium
and the position of the nanoparticle would remain at 𝑧 ≈ 3 mm. Nevertheless,
to design a nanoparticle gas target with potential to accelerate electrons to GeV
energies, further adjustments need to be made. We plan to continue pursuing this
goal in the future.





Conclusion

This master’s thesis handles the novel electron injection scheme proposed for the
laser wakefield acceleration. This injection scheme uses nanoparticles to achieve
robust and localized electron injection, with a possibility to obtain high energy
electron beams with very small energy spread. Furthermore, by the suitable choice of
the nanoparticles parameters (such as diameter or density) or their position, one can
to a certain extent control the parameters of the electron beam. The main purposes
of this thesis were to examine an influence of the nanoparticle parameters on the
injection process and accelerated electron beam, determine whether the nanoparticle
injection scheme is suitable for experiments at ELI Beamlines and if so, propose a
parameters of the gas target for such an experiment.

The first three chapters are devoted to a theoretical introduction. The first chapter
covers the basic physics involved in the process of laser wakefield electron acceler-
ation (LWFA). Then, a brief description of the PIC algorithm, which was used to
investigate the nanoparticle influence on the acceleration process, as well as a short
introduction of the PIC code Smilei, used for running simulations within this work,
are provided in the second chapter. The third chapter is dedicated to advanced nu-
merical techniques implemented in various PIC codes to reduce the computational
cost of the simulation. The techniques chosen for performing simulations (azimuthal
modes decomposition) is discussed in a detail.

In the fourth chapter, a comparison of a full 3D and quasi-3D (cylindrical) sim-
ulation is given. First, the computational demands of a full 3D simulation using
the mesh refinement technique compared to a quasi-cylindrical simulation are dis-
cussed. Even though, the cylindrical simulation requires a finer resolution, it is
still a less computationally expensive approach, especially if a big computational
grid is required. The second part of this chapter is focused on the comparison of
results obtained using the two above mentioned geometries. A good resemblance in
the majority of aspects (electron density distribution, energy spectrum and profile
of the accelerated electron beam) is achieved with both approaches. The only no-
table difference is in the number of accelerated electrons, which is overestimated by
the quasi-3D simulation. This fact is taken into account in the next chapter while
discussing results of our simulations.

The last chapter contains results from several PIC simulations, studying the in-
fluence of nanoparticle parameters on acceleration process. At first, we thoroughly
examined the influence of different nanoparticle size, material and position on the
energy spectrum, charge and profile of accelerated beam in a 1 mm long gas target
used for the ALFA experiment. With majority of parameters combinations we ob-
tained electron beams with mean energies from 13 to 17 MeV. The only exception
was the simulation with nanoparticle located in the up-ramp region of the gas tar-
get. In this case, the mean energy of the electron beam is about 25 MeV, but the
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energy spread is considerably wider than in other simulations.
We also verified that it is possible to significantly increase the charge of the ac-

celerated electron beam, especially by using nanoparticles made from high density
(and high Z) materials. Assuming the same gas target density 𝑛 = 1.6 × 1019 cm−3,
the estimated electron beam charge without the nanoparticle is few hundreds fC.
Whereas with the aluminium nanoparticle this value increased to approximately 2.5
pC and with copper nanoparticle to even 7.6 pC. The second value would mean also
a considerable improvement compared to the results achieved in ALFA experiment,
although at a cost of lower energy.

We also observed a strong dependence of the beam parameters on the nanoparticle
positions in the gas target, which is caused by a different strength of the plasma
wave electric field at these positions. Unfortunately, this fact makes the nanoparticle
injection scheme rather unsuitable for the ALFA experiment, since we are currently
not able to deliver nanoparticles with required precision.

The second part of the last chapter is focused mainly on the determining suitable
parameters for the ELBA experiment generating electron beams with GeV energies
at ELI Beamlines. Since long accelerating distances are required to obtain electrons
with energies this high, a 20 mm long gas target was designed for this experiment. In
this case, we do not need to deliver nanoparticles to the gas target as precisely so the
nanoparticle injection scheme could be a great advantage for the ELBA experiment.

The density of the gas target 𝑛 = 1.25×1018 cm−3 was chosen to obtain dephasing
and depletion length roughly the same as the gas target length. Furthermore, we
propose the usage of aluminium nanoparticles positioned at 𝑧 ≈ 3 mm. The size
of the nanoparticles will be (to some extent) determined by the parameters of the
laser used for the ablation, however, a smaller nanoparticles seem to be beneficial
for lower energy spread.

In the future, we plan to finish the optimization of the parameters of the nanopar-
ticle gas target and perform an experiment using our design. The ultimate goal of
the experiment is generation of stable and high quality electron beams, which can be
used for further research. Moreover, we would like to perform additional simulations
to examine some of the observed phenomena, e.g. the electron density perturbation
in the bubble structures created by the the ionization of the copper nanoparticle in
the simulation of the ELBA gas target, or the cause of the instability at the axis of
the simulation domain in the same simulaiton.
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Appendices

A Normalized units in Smilei

Reference quantity Symbol Units Comment

velocity 𝑉𝑟 𝑐 the speed of light

charge 𝑄𝑟 𝑒 the elemental charge

mass 𝑀𝑟 𝑚𝑒 the electron mass

momentum 𝑃𝑟 𝑚𝑒𝑐

energy, temperature 𝐾𝑟 𝑚𝑒𝑐
2

time 𝑇𝑟
1

𝜔𝑟

length 𝐿𝑟
𝑐

𝜔𝑟

number density 𝑁𝑟 𝜀0𝑚𝑒
𝜔2

𝑟

𝑒2 the critical density

current density 𝐽𝑟 𝑒𝑐𝑁𝑟

electric field 𝐸𝑟 𝑚𝑒𝑐
𝜔𝑟

𝑒

magnetic field 𝐵𝑟 𝑚𝑒
𝜔𝑟

𝑒

Table 2: List of the most common normalizations used in Smilei.
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