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May 4, 2023



Czech Technical University in Prague
Faculty of Information Technology
© 2023 Bc. Tat Dat Duong. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Duong Tat Dat. Math expression evaluator for literal types in TypeScript.
Master’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2023.



Contents

Acknowledgments viii

Declaration ix

Abstract x

Acronyms xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 What is a static type system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Structure of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Analysis 3
2.1 Static Typing in JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Elm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 ReScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.4 TypeScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Usage of TypeScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Typescript syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Primitive Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Literal Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 Types for data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.4 Union and intersection types . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.5 Indexed access type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.6 Special types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.7 Enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.8 Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.9 Generic types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.10 Type constraints with extends . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.11 Conditional types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.12 Mapped types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.13 Recursive types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.14 Template Literal Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iii



iv Contents

3 Implementation 21
3.1 Type representation of numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Addition and Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Division and modulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Numeric rounding operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7 Exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8 n-th root extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.9 Statement parser and evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.9.1 Lexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9.2 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9.3 Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.10 Higher-kinded types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Development Tooling and Testing 47
4.1 Testing and development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 CI/CD workflow and release management . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Performance testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Conclusion 53
5.1 Practical usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Limitations of the TypeScript type system . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A Performance measurements 55

Contents of the attached media 63



List of Figures

3.1 An example of ambiguous grammar and the parsing tree for 3 + 4 ∗ 5 . . . . . . . 41
3.2 LL(1) grammar for mathematical expressions . . . . . . . . . . . . . . . . . . . . 42

4.1 Inferred type on hover in VSCode . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Twoslash syntax of vscode-twoslash-plugin . . . . . . . . . . . . . . . . . . . . 48
4.3 Formatting errors with Pretty TypeScript Errors extension . . . . . . . . . . . . 48
4.4 Comparison of instantiation count for selected operations . . . . . . . . . . . . . 51
4.5 Comparison of time spent type-checking between selected operations . . . . . . . 51

List of Tables

3.1 Associativity and precedence rules for math expressions . . . . . . . . . . . . . . 42
3.2 Grammar comparison between left-associativity and right-associativity . . . . . . 42

A.1 Instantiation count and check time for Add . . . . . . . . . . . . . . . . . . . . . . 56
A.2 Instantiation count and check time for Multiply . . . . . . . . . . . . . . . . . . 56
A.3 Instantiation count and check time for Divide . . . . . . . . . . . . . . . . . . . . 57
A.4 Instantiation count and check time for Root . . . . . . . . . . . . . . . . . . . . . 57

List of Listings

2.1 Basic TypeScript annotation example . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Type aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Primitive Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Literal Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Structured typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Nominal typing in TypeScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

v



vi List of Listings

2.8 Union types with simple narrowing . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.9 Intersection types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.10 Indexed access types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.11 Usage of keyof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.12 Assignability of any . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.13 Assignability of unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.14 Return type void . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.15 Numeric enums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.16 String-based enums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.17 Namespace usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.18 Array type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.19 Type constraints with extends . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.20 Conditional types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.21 Infer in conditional types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.22 Type constraints within infer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.23 Distributing union types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.24 Assignability check of never . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.25 Mapped types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.26 Using as in mapped types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.27 Modeling a binary tree with recursive types . . . . . . . . . . . . . . . . . . . . . 18
2.28 Reduce example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.29 Recursive types and type constraints . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.30 Distributive nature of unions in template literal types . . . . . . . . . . . . . . . 19
2.31 Pattern matching with template literal types . . . . . . . . . . . . . . . . . . . . 20

3.1 Tuple representation of a number . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Parse a number literal type to a tuple type . . . . . . . . . . . . . . . . . . . . . 22
3.3 Parse by digit expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Interface representation of numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Number parsing into objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Formatting of object types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 Addition with tuple types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 Subtraction with tuple types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.9 Lookup table for addition operation . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10 Addition algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.11 Subtraction switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.12 Signed number addition and subtraction . . . . . . . . . . . . . . . . . . . . . . . 27
3.13 Floating point addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.14 Naive multiplication algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.15 Long multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16 Float multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.17 Conversion of an integer number back to a fractional number . . . . . . . . . . . 30
3.18 Euclidean division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.19 Long division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.20 Modulo operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.21 Type-level comparison operation of single digit . . . . . . . . . . . . . . . . . . . 33
3.22 Digit tuple comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



List of Listings vii

3.23 Truncation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.24 Floor function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.25 Round function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.26 Parity check of digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.27 Auxilary exponentiation by squaring . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.28 n-th root - incorrect version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.29 n-th root - correct version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.30 Lexer token namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.31 Lexer structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.32 Core parser interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.33 Implementation of exponentiation parser . . . . . . . . . . . . . . . . . . . . . . . 43
3.34 Evaluator example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.35 Duplicate generic types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.36 Proposed HKT syntax in TypeScript . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.37 HKT emulation using lightweight higher-kinded polymorphism . . . . . . . . . . 45
3.38 Type intersection for emulating HKTs . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Type assertion with $ExpectType . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Programmatic access to internal extended performance metrics . . . . . . . . . . 50



I would like to thank Ing. Jaroslav Šmoĺık, my supervisor, for all
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Abstract

This thesis introduces a type-level library for evaluating mathematical expressions in TypeScript.
The main goal of this thesis is the implementation of the core mathematical operations and the
accompanying evaluator, demonstrating the power of the TypeScript type system and the ability
to perform complex meta-programming within the type system itself. A comprehensive guide
to the TypeScript syntax and type-level programming techniques is provided to broaden the
understanding of the capabilities of this language. The implementation is properly unit tested
for correctness while describing the tools and methods used for testing types. Performance impact
on type checking of selected operations has been measured to gauge the effect on the developer
experience. Finally, various limitations and possible workarounds of the TypeScript type system
are presented.

Keywords TypeScript, static typing, type system, type-level meta-programming, mathemat-
ical expressions, LL(1) parser, template literal types

Abstrakt

Tato práce se věnuje tvorbě typové knihovny pro vyhodnocováńı matematických výraz̊u v jazyce
TypeScript. Hlavńım ćılem této práce je implementace stěžejńıch matematických operaćı a
př́ıslušného vyhodnocovače, slouž́ıćı pro demonstraci typového systému v TypeScriptu a kom-
plexńıho meta-programováńı v samotném typovém systému. Součást́ı této práce je také ucelený
pr̊uvodce syntax́ı TypeScriptu a technikami meta-programováńı na typové úrovni pro objasněńı
schopnost́ı programovaćıho jazyka. Implementace je řádně otestována pro ověřeńı korektnosti,
přičemž jsou popsány použité nástroje a metody pro testováńı vytvořených typ̊u. Bylo prove-
deno měřeńı dopadu na proces ověřováńı typ̊u u vybraných operaćı za účelem zjǐstěńı vlivu na
vývojářské prostřed́ı. V neposledńı řadě jsou prezentovány r̊uzné limitace typového systému
v TypeScriptu a jejich možné řešeńı.

Kĺıčová slova TypeScript, statické typováńı, typový systém, meta-programováńı na typové
úrovni, matematické výrazy, LL(1) parser, šablonové literálové typy
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Chapter 1

Introduction

1.1 Motivation
TypeScript, a typed superset of JavaScript, is quickly gaining popularity in the JavaScript devel-
opment ecosystem, and type-safety, the concept of validating data types, is “eating the world,”
as Fred K. Schott said [1]. As of 2023, over 66% of frontend developers are using TypeScript
most of the time, either avoiding JavaScript entirely or spending the majority of time working
with TypeScript codebases [2]. Over the years, TypeScript has transformed from a simple type
annotation tool to a full-fledged programming language within the type system itself. Multiple
libraries have emerged with advanced TypeScript types to improve the developer experience, for
example, Prisma for database type-safety [3], Zod for combining schema validation and static
type inference [4], or tRPC for API end-to-end type-safety across boundaries [5]. With intelli-
gent suggestions in the editor of choice, TypeScript ensures high code quality while avoiding most
runtime performance costs due to the type system being evaluated during compilation. With
editors and IDEs using a language server powered by the Language Server Protocol (LSP) to
provide the developer with valuable suggestions, there is an incentive to utilise the type system
instead of running a daemon alongside or adding a build step.

However, TypeScript is only as powerful as the types declared and received. A significant
burden is laid on the maintainers of libraries to provide descriptive and valuable types. This thesis
aims to lay out and highlight the capabilities and techniques of the TypeScript type system when
applied to a non-trivial problem domain. The type-only implementation of the mathematical
expression evaluator serves as a practical case study, demonstrating the power of the TypeScript
type system and the benefits of type safety.

1.2 What is a static type system
For years, type systems in programming languages have been a well-known and heavily discussed
topic. The main goal of a type system is to provide a formal specification of the types of data
that a program can manipulate.

In statically typed languages, the type of a variable is known at compile time. The compiler
uses the additional information about data types to verify the source code during compilation.
The data type itself can be deduced from the usage in the code (type inference), or a programmer
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2 Introduction

explicitly specifies the data type of a variable before usage. Examples of such languages using
static typing are, for instance, Java, C# or C++.

Whereas in dynamically typed languages, the type of a variable is determined at runtime
based on the value being assigned, and it does not need to be explicitly declared by the developer
nor known at compile time via type inference. Some of the popular dynamically typed languages
include Python, Ruby, PHP, and, most notably, JavaScript, which is widely used to create
interactive and dynamic user interfaces on the web platform. Dynamically typed languages tend
to be more flexible and allow developers, especially beginner developers, to write code faster and
iterate quicker.

On the other hand, static typing offers numerous compelling benefits that can enhance the
development process. First, a large class of errors is caught earlier in the process. This reduces
the likelihood of bugs and runtime issues that can be difficult to diagnose and debug. With static
typing, developers can rely on a compiler system to ensure the code conforms to the expected
data types. Developers can also refactor existing typed code more confidently, as the system
gives developers direct feedback when refactoring.

Furthermore, by writing type annotations, developers are actively self-documenting the code,
making it more readable and easier to understand, especially when dealing with unfamiliar
code. Finally, even though an initial commitment is necessary by writing type annotations at
first, a more powerful type system can determine the intent of the developer without writing
additional code as the development progresses.

1.3 Structure of the work
This thesis will provide a comprehensive analysis of relevant constructs found in the TypeScript
type system and how they can be used to allow robust meta-programming within the types
themselves. An implementation of a generic math expression evaluator library that operates
strictly on the type level is provided to demonstrate the capabilities of the type system, followed
by a discussion on testing and performance of the library and the impact on type-checking and
development experience in the editor.



Chapter 2

Analysis

2.1 Static Typing in JavaScript

JavaScript is a dynamically typed programming language where developers do not need to assign
types to a variable or a function. The type is automatically inferred by the JavaScript engine at
runtime. This feature lowers the barrier of entry to writing JavaScript code, allowing developers
to prototype and write code quickly. It can plausibly be one of the possible growth drivers
of JavaScript in the last decade, making it the most commonly used programming language,
according to the 2022 Stack Overflow Developer Survey [6].

However, dynamic typing has its drawbacks. It is harder to detect trivial errors in the code
without running it beforehand, and it is more difficult to refactor the code without breaking it,
which often leads to poor software quality [7]. Proponents of static typing insist that static types
allow developers to spot potential bugs and mistakes earlier during development and that static
typing allows for better tooling, such as richer code completion and better refactoring tools.

There is an upcoming TC39 proposal for adding type annotations in JavaScript, broadly
inspired by the TypeScript syntax [8]. These annotations are only useful for build-time tooling
as they are ignored in runtime. The proposal suggests that these annotations should be erased
by an additional compilation step. Even though users can already provide static types using
JSDoc right now, the syntax is not as clean as the proposed TypeScript-like syntax.

Regardless, many projects aim to introduce static typing to JavaScript, such as Flow or
TypeScript, or alternative languages which compile back to JavaScript, such as Elm or ReScript.

2.1.1 Elm
Elm is a functional programming language designed specifically for building web applications [9].
The language compiles to JavaScript and has a strong static Hindley-Milner-based type system,
which allows inferring types more often and reliably. Elm does not provide any escape hatches,
such as any in TypeScript. Thus it is harder to write type-unsafe code, as the types must be
valid for the code to be successfully compiled.

Elm also includes a lot of quality-of-life improvements and benefits, for instance: enforced
purity of functions, out-of-the-box immutability, case pattern matching, JSON decoders and
encoders for strict parsing, Maybe and Result monads for avoiding null and undefined references

3
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or its own virtual DOM implementation for efficient rendering of interactive user interfaces.
Notably, the Elm Architecture, where the application code is organised into three parts: model,
update and view [10], has greatly inspired other libraries and frameworks such as Redux [11].

2.1.2 ReScript
ReScript is a programming language built on top of the OCaml toolchain. Unlike Flow or Type-
Script, ReScript is not a superset of JavaScript. Instead, the language compiles into JavaScript.
ReScript was created as a spin-off from the Reason programming language and accompanying
BuckleScript compiler, aiming to vertically integrate and streamline the adoption barrier caused
by the need to be familiar with multiple unrelated tools and toolchains [12].

The language aims to be more sound with more powerful type inference than TypeScript,
borrowing the Hindler-Milner type system from OCaml implementation [13, 14]. Thus, most of
the time, the types can be automatically inferred without annotating them explicitly, whereas
TypeScript utilises bidirectional type-checking [15].

2.1.3 Flow
Flow is a static type checker for JavaScript [16, 17], which allows developers to annotate their
code with static types. Flow is developed by Meta and is internally used in production by
Facebook, Instagram and React Native. Type annotations in Flow are fully erasable, meaning
that the type annotations are fully removed from the Flow code in order to emit valid JavaScript
code. The checking of these types occurs at compile-time before removal in build-time. Flow is
also a superset of JavaScript, which means any JavaScript code is a valid Flow code.

One of the primary goals of Flow is to provide type soundness, the ability to catch every error
that might happen in runtime at compile-time, no matter how likely it is to happen. A valid
Flow code can provide developers with some guarantees about the type a value has in runtime,
at the expense of catching errors that are unlikely to happen in runtime.

Both Flow and TypeScript are similar regarding features as of the time of writing. Most of
the type-safety differences between Flow and TypeScript have been addressed with the newer
versions of TypeScript, even though a “provably correct” type system is a specific non-goal of
the TypeScript team [18]. However, developers must opt-in to these features by setting "strict"

to "true" in tsconfig.json, whereas these features are enabled by default in Flow.

2.1.4 TypeScript
TypeScript is a statically typed programming language developed and maintained by Microsoft
[19]. It is a language that transpiles into JavaScript and adds static type-checking to JavaScript
[20]. Unlike Elm or ReScript, TypeScript is a syntactical superset of JavaScript, which means
that any valid JavaScript code can be a valid TypeScript code.1 Similar to Flow, type annotations
provided by the developer are fully erasable either by the TypeScript compiler CLI or by other
community build tools, such as babel [21], esbuild [22] or swc [23].

Type system in TypeScript is considered to be less sound and more forgiving, as soundness
is stated as an explicit non-goal of the design team of TypeScript [18], with emphasis on striking
a balance between productivity and correctness. By default, the TypeScript type checker is not

1With a lax configuration of the type checker
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strict, and the language itself includes an escape hatch for developers to opt out of type-checking
by using the any type or using @ts-ignore comment annotations. Nevertheless, with proper type
checker configuration, the type system of TypeScript can be as sound as in Flow.

Both Flow and TypeScript support advanced features such as generics and utility types,
with the latter supporting template string literal types and better support for conditional types,
unlocking the potential of writing more expressive types, which this master thesis will further
explore in more detail.

With deep integration with Visual Studio Code [24], the rich build ecosystem and high com-
patibility with existing JavaScript libraries and tools, TypeScript has become one of the fastest
growing languages in terms of usage according to the 2022 Octoverse report by Github [25].

2.2 Usage of TypeScript
The TypeScript project is made of two major parts available to developers:

tsc: The TypeScript Compiler, which is responsible for both type-checking and outputting
valid JavaScript files.

tsserver: The TypeScript Standalone Server, which encapsulates the TypeScript Compiler
and language services for use in editors and IDEs [26].

While the TypeScript Compiler (tsc) tends to be the main entry point for developers when
using TypeScript and is executed manually more often, the language server is equally as useful,
as it communicates with the editor via Language Server Protocol (LSP) to provide important
language services. These include code completion, auto-importing and symbol renaming, for
example.

The term “compilation” in this thesis refers specifically to the process of type erasure itself.
Although the source code may contain various type-related errors, the TypeScript Compiler (tsc)
will generate valid JavaScript files by default as long as the input source file can be correctly
parsed. This enables developers to gradually improve their code and quickly iterate on its
functionality without fixing type errors immediately. In this sense, the TypeScript Compiler
functions more like a code analyser rather than a traditional compiler seen in other programming
languages. Regardless, in this thesis, the terms “compiling” and “type-checking” will be used
interchangeably.

2.3 Typescript syntax
In TypeScript, types are generally annotated using the :[type annotation] syntax, which intro-
duces annotations to various JavaScript constructs, such as variables, function parameters and
function return values, in order to add constraints to values. Type annotations in TypeScript
can be classified into multiple categories, such as primitive types, literal types, data structure
types, union types and intersection types. The subsequent sections will provide a comprehensive
exploration of these types alongside more advanced types, such as conditional, mapped, and
recursive types. A basic example of TypeScript type annotation is presented in Listing 2.1.

At runtime, every variable has a single concrete value, but in TypeScript, the variable is
represented solely by its type. A useful mental model for understanding types is to think of the
type as a set of permitted values [27], effectively constituting the domain of the type.
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const prefix: string = "Hello world"
const user: {
name: string;
age: number

}

function formatUserGreeting(
user: {

name: string;
age: number;

},
message: string

): string {
return [message, user.name].join(" ");

}

const greeting: string = formatUserGreeting(user, prefix);

Listing 2.1 Basic TypeScript annotation example

Developers have the ability to declare types directly in type annotations, but in some in-
stances, there may be a need to reuse the same type in multiple annotations. In order to avoid
excessive repetition of the same declaration, type aliases can be employed to refer to a type by
a name. These type variables act as an alias, which can be used in place of the type itself. The
Listing 2.2 shows a refactored formatUserGreeting function of the previous Listing 2.1 using
type aliases.

type User = {
name: string;
age: number

}

const prefix: string = "Hello world"
const user: User

function formatUserGreeting(
user: User,
message: string

): string {
return [message, user.name].join(" ");

}

Listing 2.2 Type aliases
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2.3.1 Primitive Types
A primitive value refers to data that is neither an object nor possesses methods or properties.
These primitive values are immutable, which means they cannot be altered. The TypeScript
type system provides a comprehensive representation of these primitives, as seen in Listing 2.3
describing the following primitive types:

type StringPrimitive = string
type NumberPrimitive = number
type BigintPrimitive = bigint
type BooleanPrimitive = boolean
type UndefinedPrimitive = undefined
type NullPrimitive = null
type SymbolPrimitive = symbol

Listing 2.3 Primitive Types

Certain primitive types represent a singular data value, such as null or undefined, but many
of these primitives can represent multiple values (boolean can represent either true or false),
or even an infinite range of values, as observed in the case of number, bignumber or string type.

2.3.2 Literal Types
Literal types are used to describe an exact value as a type. From the point of view of the
type system, a literal type is a subset of one of the following primitive types: string, number,
bignumber or boolean,2 as seen in Listing 2.4.3

type Literal = "foo" | 42 | true | 100n;

// Valid code
const Valid: Literal = "foo"

// @ts-expect-error Type '"bar"' is not assignable to type 'Literal'
const Invalid: Literal = "bar"

Listing 2.4 Literal Types

2.3.3 Types for data structures
TypeScript also allows annotating data structures such as objects and arrays with four possible
types, depending on the enumerability of items and their types. The syntax overview can be
seen here in Listing 2.5.

2Both null and undefined are literal types as well
3The following Listing 2.4 uses union types, described in Section 2.3.4



8 Analysis

tuple type for describing an array with a fixed number of elements, possibly with a different
type for each element,

array type for describing an array with an unknown length, and the values are of the same
type,

record type for describing an object with an unknown number of keys, and the values are of
the same type,

object type or an interface for describing an object with a finite set of keys with values of
different types per key.

interface ObjectStructure {
foo: string;
bar: number;

}

type ObjectStructure =
| { foo: string, bar: number }

type RecordStructure
| { [key: string]: number }
| Record<string, number>

type TupleStructure = [number, string]

type ArrayStructure = number[]

Listing 2.5 Data structures

TypeScript syntax offers two notations which can be used for describing objects with a finite
set of key-value pairs in TypeScript: object and interface. There are some key differences
between these two notations:

1. The object type uses the type alias syntax, whereas an interface is defined using a special
interface keyword.

2. TypeScript allows multiple declarations of interface to be later merged during interpreta-
tion. This feature can be especially useful when augmenting non-TypeScript modules [28].

3. Even though both support object merging, interface can be implemented by classes, ensuring
that the class adheres to the structure defined by the interface. The object type cannot be
directly implemented by a class.

4. Merging multiple interface declarations is more performant when compared to an intersec-
tion of object types [29].

TypeScript uses structured typing, which entails that TypeScript only validates the shape of
the data. In essence, if the shape of the data is consistent with that of the type, it is considered
to be of that type, as seen in Listing 2.6. This concept is commonly referred to as duck typing,
essentially: “If it walks like a duck and quacks like a duck, it is a duck.”



Typescript syntax 9

type DuckLike = { quack: () => void; type: string };

const Duck: DuckLike = {
quack: () => console.log("duck!"),
type: "duck",

};

// This will still be valid
const Goose: DuckLike = {
quack: () => console.log("goose!"),
type: "goose",

};

Listing 2.6 Structured typing

However, there are real-world use cases for a nominal type system, where two variables are
distinguished by their type name, despite having the same shape. Emulating nominal typing
in TypeScript can be achieved by introducing an unused property in order to break structural
compatibility [30], as demonstrated in Listing 2.7.

type DuckLike = { quack: () => void; type: "duck" };

const Duck: DuckLike = {
quack: () => console.log("duck!"),
type: "duck",

};

// This will not be valid
const Goose: DuckLike = {
quack: () => console.log("goose!"),
type: "goose",

};

Listing 2.7 Nominal typing in TypeScript

2.3.4 Union and intersection types
Revisiting the concept of types as sets of values, as seen in Listing 2.4, assigning a value disallowed
by the literal type will result in a type error. In TypeScript, a type is considered “assignable”
if it is either a “member of” the set of permitted values defined by the type (when describing
relationships between a value and a type) or a “subset of” the set (when describing relationships
between two types).

When there is a requirement to describe a type that encompasses multiple types, combining
multiple sets of permitted values into a single set, union types can be utilised. Union types are
defined by the union operator represented by the | symbol, separating the types that are being
combined, referred to as “union members” [31]. Essentially, X | Y can be read as a type for
a value that can either be of type X or Y.



10 Analysis

Since a union type can contain a value from any of the member types, TypeScript permits
only those operations that are valid for all member types within the union. If an operation is only
valid for some of the union member types, type narrowing must be performed. Type narrowing
is a process of refining a broader type to a more specific narrow one, capturing a subset of values
of the original broader type.

An example of type narrowing can be seen in Listing 2.8, where the function printUserId

can accept both a string or a number as an argument. In order to invoke toUpperCase(), a
method valid only for values of string type, it is necessary to check if the argument is assignable
to a string type. Afterwards, TypeScript has the necessary information to infer that the type
of the checked value must be of a string type and permits the invocation of toUpperCase().

function printUserId(id: string | number) {
if (typeof id === "string") {

return id.toUpperCase()
} else {
return id

}
}

Listing 2.8 Union types with simple narrowing

An intersection of types can be represented by the & operator. Similarly to the union type,
X & Y can be read as a type for a value that can simultaneously belong to the type X and Y.
In terms of sets, the set of permitted values of an intersection type is equal to an intersection
of each of the sets of permitted values for each of the member types. Intersection types are
particularly relevant when working with object types, as an intersection of two object types has
properties from both object types. The rationale is that an object with merged properties is
assignable to any of the intersection member types. For this particular reason, intersection types
are commonly used to merge multiple object types, as seen in 2.9.4

type Intersection = { a: string } & { b: number }
const item: Intersection = { a: "a", b: 1 }

Listing 2.9 Intersection types

2.3.5 Indexed access type
The indexed access type is used to access a specific property type of a record or a tuple type.
The syntax of indexed access types mirrors the syntax for accessing an object in JavaScript, as
seen in Listing 2.10. It is also possible to use unions as keys to get types of multiple properties
of an object type.

The keyof keyword operator can be used to get all possible keys of an object type. This will
return an union of all keys of the provided data structure type. These are especially useful when
working with mapped types in Section 2.3.12. An example can be seen in Listing 2.11.

4It is also possible to use the extends keyword to merge interfaces instead
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type User = { firstName: string; lastName: string; age: number }

type Age = User["age"]
type Names = User["firstName" | "lastName"]

Listing 2.10 Indexed access types

type User = { firstName: string; lastName: string; age: number }
type Keys = keyof User
// ˆ? "firstName" | "lastName" | "age"

Listing 2.11 Usage of keyof

2.3.6 Special types
When working with unions and intersections, it is often necessary to be able to describe a type,
which can describe a union of all possible types or a type created by intersecting two types with
no related properties. These types are referred to as universal supertypes and universal subtypes,
respectively. Universal supertypes, also known as top types, are types that are a superset of all
types and are used to represent any possible value. Whereas universal subtypes, also known as
bottom types, are types that are a subset of all types and are often used to describe a type with
no permitted values.

TypeScript includes two top universal supertypes: any and unknown. In the case of any, every
type is assignable to type any and type any is assignable to every type [32]. Generally, any can be
used as an escape hatch to opt out of type-checking. This does have unintended consequences, as
any is assignable to every type; it can be assigned to a different type without any warnings. This
is especially problematic when dealing with external data as the return type of JSON.parse() is
any. An example of assignability can be seen at Listing 2.12.

let data: any = JSON.parse("...")

// All of these are valid TypeScript code
data = null
data = true
data = {}

// Still valid code, opting out of type-checking
const a: null = data
const b: boolean = data
const c: object = data

Listing 2.12 Assignability of any

unknown acts as a more restrictive version of any. Every type is assignable to type unknown,
but unknown is not assignable to any other type, which can be seen at Listing 2.13. In order
to assign unknown to a different type, type narrowing must be performed either by using type
guards, type assertions, equality checks or other assertion functions.
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let data: unknown = JSON.parse("...")

// All of these are valid TypeScript code
data = null
data = true
data = {}

// Not valid, as unknown is not assignable to any other type
const a: null = data
const b: boolean = data
const c: object = data

Listing 2.13 Assignability of unknown

Finally, never is a bottom type, acting as a subtype of all other types, representing a value
that should never occur. In the context of the theory of mathematical logic, never acts as
a logical contradiction, describing a value that may never exist, whereas in terms of set theory,
never represents an empty set of values. No other type can be assigned to never nor never can
be assigned to any other type. never can be found when attempting to intersect two types that
have no properties in common, such as string & number. The never type can also represent an
empty union, which will be important when discussing conditional types in Section 2.3.11.

void is a specific type used to signify a function which does not return a value. There is
a notable difference between the usage of void when used for describing a type of a function
with void return type and when used in the function declaration, as seen in Listing 2.14. The
former is used to describe a situation when an implementation of a “void function” does return
a value but should be ignored. The latter does enforce that a function should not return a value
at all.

type voidFn = () => void

// Valid code
const fn1: voidFn = () => true

function fn2(): void {
// @ts-expect-error Not valid, as void functions cannot return a value
return true

}

Listing 2.14 Return type void

2.3.7 Enumerations
enum type is a distinct type for describing a set of named constants. Instead of using individual
variables for each constant, an enum provides an organised way to express a collection of related
values. enum is one of the few TypeScript features introducing an additional code added to the
compiler output, and enums refer to real objects at runtime.

An enum type consists of members and their corresponding initialisers for the runtime value
of the member. There are two types of enums in TypeScript: numeric and string-based enums.
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In numeric enums, each member is assigned a numeric value, as seen in Listing 2.15. Each
member can have an optional initialiser to specify an exact number corresponding to a member. If
omitted, the value of the member will be generated by auto-incrementing the values of previous
enum members. This may be undesired, as the reordering of members may result in different
runtime values if not explicitly defined in the initialisers.

enum Direction {
Up = 1,
Down,
Left,
Right,

}

Listing 2.15 Numeric enums

String-based enums are similar to numeric enums, but each member is assigned a string value
instead of a numeric value. Each member thus must have an initialiser with a string literal, as
seen in Listing 2.16. The key benefit of string-based enums is that they tend to preserve their
semantic value when serialising, which is especially helpful when debugging, as the values of
numeric enums tend to be opaque.

enum Direction {
Up = "UP",
Down = "DOWN",
Left = "LEFT",
Right = "RIGHT",

}

Listing 2.16 String-based enums

2.3.8 Namespaces
In TypeScript, namespaces, formally known as internal modules, are used to organise code and
prevent naming conflicts in the global scope. In order to create a namespace, the namespace

keyword is used, followed by the identifier of the namespace. The code within the namespace,
also known as the scope of the namespace, is isolated from the global environment, as seen
in Listing 2.17. Only constructs explicitly marked as exported are accessible outside of the
namespace, exposed as a single variable with the namespace identifier as its name.

One key benefit of namespaces is the ability to merge multiple namespaces across files. As
long as the names of multiple namespaces are the same, the declarations will be merged into
a single declaration. This feature can split large scopes into multiple files while exposing all of
the properties as a single variable.
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namespace Example {
type Foo = "Foo"
const foo: Foo = "Foo"

export type Bar = "Bar"
export const bar: Bar = "Bar"

}

// @ts-expect-error Not accessible
const a = Example.foo

// Valid code
const b = Example.bar

Listing 2.17 Namespace usage

2.3.9 Generic types
In many cases, it is necessary to write sufficiently reusable code that must function with types
not known beforehand. Generic types allow the development of such reusable components that
can work over a variety of types rather than a single specific one. Generic types are created by
defining type parameters that can be used as placeholders for a specific type. Together with type
constructors, the contents of the generic type, the consumers can then replace the placeholder
with their desired types when using the component. In TypeScript, generic types can be defined
on interfaces, functions and classes. Type aliases can be generic as well.

To illustrate the point, consider the implementation of the built-in Array type found in the
lib.*.d.ts files (a subset can be seen at Listing 2.18). The Array<T> is a generic type, which
accepts a single type argument T, and is used to describe the type of the elements in the array.
The type argument T is later used both in arguments and return types of the methods of the
Array<T> type: push() accepts only elements of the same type as the array while pop() will
return an element of the same type.

Generic types can be interpreted as functions in a meta-programming language found inside
the TypeScript type system itself. The meta-programming language implements some of the key
concepts found in the functional programming paradigm.

Generic types are considered first-class citizens in the language, being able to be passed as
arguments into other generic types, similar to functions in a functional programming language.
Generic types are also pure and cannot have any side effects during type-checking. Recursion is
also used in the meta-programming language to break down complex problems into smaller ones
and solve them independently.

However, there is a notable omission: generic types cannot receive other generic types as type
arguments [33]. Thus, higher-kinded types are not permitted.5

5There is a way to emulate the behaviour of HKTs. Refer to Chapter 3.10
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interface Array<T> {
push(...items: T[]): number;

pop(): T | undedfined;
}

const strArr: Array<string> = []
const numArr: Array<number> = []

strArr.push("one", "two")
numArr.push(1, 2)

const a = strArr.pop()
// ˆ? string

const b = numArr.pop()
// ˆ? number

Listing 2.18 Array type

2.3.10 Type constraints with extends

When writing generic types, it is essential to describe some expectations a type argument must
satisfy. For example, it may be necessary to only accept types which do have a certain property,
such as length as seen in Listing 2.19. In order to achieve this, the extends keyword can be used
to describe the constraints of the type.

type HasLength = { length: number }
function getLength<T extends HasLength>(obj: T): number {
return obj.length

}

const a = getLength("hello")
const b = getLength([1, 2, 3])
const c = getLength({ length: 10 })

// @ts-expect-error
// Argument of type '{ foo: string; }' is not
// assignable to parameter of type 'HasLength'.
const d = getLength({ foo: "bar" })

Listing 2.19 Type constraints with extends

As intended, the generic getLength function will no longer accept arbitrary types. Instead,
only types that satisfy the imposed constraints can be passed to the function as an argument.
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2.3.11 Conditional types
Within the TypeScript meta-language, developers can write conditions and branching logic using
conditional types. Conditional types follow a syntax similar to the conditional ternary operators
with overloading the extends keyword: Input extends Expect ? A : B. This can be read as “If
type Input is assignable to type Expect, then the type resolves to type A, otherwise to type B.”
An example can be seen in Listing 2.20, where the IsString<T> type will resolve to true if the
type argument T is assignable to string and to false otherwise.

type IsString<T> = T extends string ? true : false

Listing 2.20 Conditional types

The infer keyword can be used to deduce and extract a specific type within the scope
of conditional types, essentially acting as a way to perform pattern matching. With infer,
a new generic type variable is introduced, which can be later used within the true branch of the
conditional type, as seen in the implementation of the ReturnType<T> utility type in Listing 2.21.
The ReturnType<T> type will resolve to the return type of the type argument T.

type ReturnType<T> = T extends (...args: any) => infer R ? R : never;

Listing 2.21 Infer in conditional types

Since TypeScript 4.7 [34], an additional type constraint can be added for the inferred type,
which will be checked before the conditional type is resolved. This method is useful when
attempting to avoid an additional nested conditional type, as seen in Listing 2.22, where the aim
is to return the first element of the tuple type only if it is a string type.

type FirstIfString<T> =
T extends [infer S, ...unknown[]]

? S extends string ? S : never
: never;

// is equivalent to...
type FirstIfString<T> =
T extends [infer S extends string, ...unknown[]]

? S
: never;

Listing 2.22 Type constraints within infer

When a union type is provided within the conditional type, the conditional type will be
resolved for each member type in the union separately, effectively distributing the union type.
In order to prevent such behaviour, the type argument can be wrapped in a tuple or any other
structure type, as can be seen in Listing 2.23.

There is a caveat when checking for assignability of never. As never can also denote an
empty union, the conditional type will attempt to distribute the empty union and because there
are no types to distribute over, the entire conditional type resolves to never, as seen in Listing
2.24. Wrapping the type argument in a tuple will prevent undesired union type distribution.



Typescript syntax 17

type ToArray<Type> = Type extends any ? Type[] : never;
type A = ToArray<string | number> // $ExpectType string[] | number[]

type ToArrayNonDist<Type> = [Type] extends [any] ? Type[] : never;
type B = ToArrayNonDist<string | number> // $ExpectType (string | number)[]

Listing 2.23 Distributing union types

type IsNeverInvalid<T> = T extends never ? true : false
type Invalid = IsNever<never> // $ExpectType never

type IsNeverValid<T> = [T] extends [never] ? true : false
type Valid = IsNever<never> // $ExpectType true

Listing 2.24 Assignability check of never

2.3.12 Mapped types
Occasionally, it is necessary to transform a type into another type. For instance, a new type that
is a copy of the original type may need to be created but with all properties marked as optional.
This can be accomplished with mapped types. Mapped types are created using the syntax for
index signatures, commonly used in JavaScript for accessing properties. An example is shown
in Listing 2.25, where the generic type ToBoolean<T> will create a new type which will take all
properties from T and change their values to boolean.

Mapping modifiers can also be specified to affect the mutability or optionality of a property,
denoted by readonly and ?, respectively. Prefixing the modifier with + or - symbol will either
add or remove the modifier to the property.6 This can be seen in the Optional<T> type in Listing
2.25, which will create a new type, which is a copy of the original type, but with all properties
being optional.

type ToBoolean<T> = { [K in keyof T]: boolean }
type Optional<T> = { [K in keyof T]+?: T[K] }

Listing 2.25 Mapped types

Introduced in TypeScript 4.1 [35], the as keyword can be used to re-map keys in mapped
types, allowing developers to create, transform or filter out keys when creating a new type.
An example is shown in Listing 2.26, where the Omit<T, Key> creates a new object type based
on type T while omitting properties which are assignable to Key.

type Omit<T, Key> = { [K in keyof T as Exclude<K, Key>]: T[K] }

Listing 2.26 Using as in mapped types

6+ is assumed by default if omitted
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2.3.13 Recursive types
A recursive type is a data type that includes a reference to itself within the type definition.
Recursive types are useful for modelling complex or hierarchical data structures, such as linked
lists or trees. An example can be seen in Listing 2.27, where the Tree<Value> generic type
represents an object with a value of type Value and optional left and right subtrees of the same
type.

type Tree<Value> = {
value: Value,
left?: Tree<Value>,
right?: Tree<Value>

}

Listing 2.27 Modeling a binary tree with recursive types

Typical recursive algorithms key for this thesis can be implemented in TypeScript by com-
bining recursive types with generic types. One such example can be seen at Listing 2.28, where
a FromEntries<Entries> generic type is implemented, converting a list of [Key, Value] tuples
into a single object type.

type FromEntries<Entries, Accumulator = {}> =
Entries extends [infer Entry, ...infer Rest]

? FromEntries<Rest,
Entry extends [infer Key, infer Value]
? { [K in Key]: Value } & Accumulator
: Accumulator

>
: Accumulator;

Listing 2.28 Reduce example

First, an optional generic type parameter Accumulator is defined, with an initial type value
of {}. For every tuple in a list, an object type containing the wrapped current key-value pair
with { [K in Key]: Value } is created and merged with the accumulator using the & operator.
The merged object type is subsequently passed as the accumulator to the next iteration. Finally,
the accumulator is returned when the list is empty, serving as the final object type.

There are some limitations regarding recursive types. To prevent infinite recursion, Type-
Script limits the instantiation depth to ensure a consistent and performant developer experience.
As of writing, the limit is set to 100 depth levels for recursion types [36]. Thanks to the tail-
recursion elimination optimisation, the limit is set to 1000 depth levels for tail-optimised recursion
types. Thus, it is desired to use tail recursion whenever possible.

Another limitation related to the generic recursive types is that the variables declared with
infer do not inherit the constraints of the parent type, as seen in Listing 2.29 presenting an
implementation of a generic type which filters out a literal string type found in Needle from
a tuple of literal string types Haystack. As the Tail type lost the type constraint of Haystack,
the tail cannot be passed as the new haystack of the FilterWrong type. Addressing this problem
requires adding an extra type constraint to the inferred type, as seen in FilterCorrect generic
type.
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type FilterWrong<Haystack extends string[], Needle extends string> =
Haystack extends [infer Head, ...infer Tail]
? Head extends Needle
// $ExpectError Type 'Tail' does not satisfy the constraint 'string[]'.
? [Head, ...FilterWrong<Tail, Needle>]
: FilterWrong<Tail, Needle>

: [];

type FilterCorrect<Haystack extends string[], Needle extends string> =
Haystack extends [infer Head, ...infer Tail extends string[]]
? Head extends Needle
? [Head, ...FilterCorrect<Tail, Needle>]
: FilterCorrect<Tail, Needle>

: [];

Listing 2.29 Recursive types and type constraints

2.3.14 Template Literal Types
Finally, template literal types are based on the string literal types, allowing string interpolation
and manipulation within the TypeScript type system. In the context of this thesis, template
literal types are used to create a parser of mathematical expressions. However, template literal
types can be also utilised to create fully typed string-based Domain Specific Languages (DSL).

Similar to the syntax of JavaScript template literal strings, backticks are used to create a new
template literal type. When used with a string literal type, a template literal will create a new
string literal type by concatenation [37]. For example, the type ˋHello ${"World"}ˋ will create
a new string literal type "Hello World".

Template literal types can be used with primitive types as well, the only limitation being
that the primitive type must be stringifiable. That includes all of the primitive types except
the symbol type. When created, these types are a subset of the string type and can be used
as a validation mechanism matching a string of an expected format. For instance, the type
ˋlocalhost:${number}ˋ will create a new string literal type that will match a string of the
format localhost:PORT, where PORT is a number.

The distributive nature of union types applies to template literal strings as well: the type
will be applied for every member type of the union to the template literal, as seen in the Listing
2.30, where a new Style type is created with all of the possible combinations of the Variants

and Weights types. Generally, avoiding combinations of big union types is preferable, as it can
lead to worse type-checking performance or an error if a union type reaches 1 000 000 member
types [36].

type Variants = "primary" | "secondary"
type Weights = 100 | 200 | 300
type Style = `${Variants}-${Weights}`
// ˆ? | "primary-100" | "primary-200" | "primary-300"
// | "secondary-100" | "secondary-200" | "secondary-300"

Listing 2.30 Distributive nature of unions in template literal types
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Ultimately, inference in template literal types can be used to perform pattern matching within
string literals with the combination of conditional types and the infer keyword. As shown in
Listing 2.31, a generic type SplitString is presented, which splits a string literal type into
a tuple of substrings with a space as the delimiter. The aim is to perform pattern matching on
a string with the inferred types Head and Rest as a result of the matching. Head contains the first
character, and Rest contains the rest of the split string, separated by a space character. Type
constraints are also applied for the inferred types to ensure the types are assignable to string.7
Both of the inferred types are used to create a new tuple type, with Head being the first element
of the tuple and Rest used in a recursive call to split the rest of the string.

type SplitString<Input extends string> =
Input extends `${infer Head extends string} ${infer Rest extends string}`

? [Head, ...SplitString<Rest>]
: [Input];

Listing 2.31 Pattern matching with template literal types

2.4 Prior Art
There are multiple basic implementations of math operations in TypeScript. Tasks regarding
basic math operations are even part of the TypeChallenges collection [38]. However, most of
them only work on integers, as they work on tuple expansion, which will be further discussed in
the implementation part of this thesis.

Nevertheless, multiple libraries in the NPM registry provide basic math calculations within
the TypeScript type system, but none provide a fully typed parser of mathematical expressions.
Some of the libraries found do provide type utilities that operate on floating-point numbers
instead of integers, such as type-fest [39] or typescript-lodash [40]. The most comprehen-
sive implementation of math operations can be found in the ts-arithmetic library [41], which
provides a fully typed implementation of division.

7Albeit unnecessarily, as TypeScript automatically applies the string type constraint in this instance
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Implementation

This chapter delves into the implementation of the mathematical expression evaluator using
the TypeScript type system. The work being done in this thesis is realised into two major
parts: implementing various mathematical operations and parsing and evaluating string literals
containing a mathematical expression. The limitations and workarounds for TypeScript literal
types are discussed, and by the end of this chapter, readers should gain a deeper understanding
of the TypeScript type system when applied to non-trivial problem domains.

3.1 Type representation of numbers
As powerful as the type system in TypeScript is, there are certain limitations present when
working with number literal types. Namely, although TypeScript type syntax does support
representing specific numeric values through number literal types, these types do not directly
support mathematical operations, such as addition or subtraction. Due to these limitations,
other methods of representing numbers are explored for this thesis.

One approach to representing numbers in TypeScript is to use tuple types. As described in
Section 2.3.3, tuple types allow developers to define a fixed-length JavaScript array where each
element can have a specific type. As it represents a JavaScript array, the type includes all of
the properties and methods found in an array, including the length property, which contains the
actual number of elements in the tuple. This feature can be used to represent a number, as the
length of the tuple can represent the number itself, as seen in Listing 3.1. The actual type of
a member item in a tuple is irrelevant, as the implementation only cares about the length of the
tuple, but for readability purposes, the literal type 0 can be used as the element type of a tuple.

However, manually describing a tuple is tedious. Recursion can be employed to parse a num-
ber literal type to a tuple type, as seen in Listing 3.2. The ParseNumber<Value> generic type
accepts a mandatory type argument Value that should be the length of the final tuple and an
optional type argument Acc used to preserve the state of the recursion.

First, a check is performed to see if the length of Acc is equal to the Value by checking the
assignability of types. If that is the case, the tuple type found in Acc is returned. Otherwise, the
list is prepended with a new 0 element, and the generic type is instantiated recursively until the
length of Acc is assignable to Value.

21
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type Zero = []
type Four = [0, 0, 0, 0]

// $ExpectType 0
type ZeroValue = Zero['length']

// $ExpectType 4
type ZeroValue = Four['length']

Listing 3.1 Tuple representation of a number

type ParseNumber<
Value extends number,
Acc extends Array<0> = []

> = Acc["length"] extends Value ? Acc : ParseNumber<Value, [0, ...Acc]>

Listing 3.2 Parse a number literal type to a tuple type

It is possible to reduce the number of recursions needed to create a tuple by expanding
by digits instead of by increments of one. As seen in Listing 3.3, where ParsedNumber2 will
first perform stringification of the number literal type T and infer the first digit recursively.
The accumulator type parameter Rest is first expanded ten times by the ExpandArrayTenTimes

generic type, and then the parsed digit is spread into Rest as well. The recursion is performed
until the string found in T is empty, and the final Rest type is returned.

type ExpandArrayTenTimes<R extends Array<0>> = [
...R, ...R, ...R, ...R, ...R,
...R, ...R, ...R, ...R, ...R

]

type ParseNumber2<
T extends number | string,
Rest extends Array<0> = []

> = `${T}` extends `${infer Digit extends number}${infer R}`
? ParseNumber2<R, [...ExpandArrayTenTimes<Rest>, ...ParseNumber<Digit>]>
: Rest

Listing 3.3 Parse by digit expansion

Even though this method of representing numbers is reasonably simple, it does come at
a performance cost, as the length of the tuple must be equal to the represented number itself.
As such, the checking time of the addition and subtraction operations grows as the number is
larger. This issue alone poses a significant problem, primarily when representing large numbers,
as TypeScript has an upper limit on the number of elements in a tuple to avoid performance
degradation. As of writing, the limit is set to 10 000 elements [36], which is only enough for
representing integer numbers no greater than 10 000.
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Another approach is to represent a number as a tuple of digits instead. This approach
does reduce the likelihood of reaching the tuple size limitation imposed by TypeScript, as it is
now possible to represent much larger numbers whilst reducing the performance overhead for
operations working on individual digits. The number type is parsed into various object types
beforehand to simplify the development of implementing arithmetic operations, keeping the sign,
the integer and the fractional parts of a decimal representation number separate. An example can
be seen in Listing 3.4, where two object types are created: FloatNumber, representing a number
with integer and fractional digits, and SignFloatNumber, which is used to store the number sign
of a parsed number.

type Sign = "+" | "-"
type Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

type FloatNumber<
IntDigits extends Digit[] = Digit[], FracDigits extends Digit[] = Digit[]

> = { int: IntDigits; frac: FracDigits }

type SignFloatNumber<
Sign extends "+" | "-" = "+" | "-",
Float extends FloatNumber<Digit[], Digit[]> = FloatNumber

> = { sign: Sign; float: Float }

Listing 3.4 Interface representation of numbers

Parsing a number type into digits can be done with recursive types, as seen in Listing 3.5.
First, ParseSignFloatNumber attempts to infer the sign of the stringified number literal type
into a new TSign type. Afterwards, the ParseFloatNumber generic type attempts to split the
stringified literal into two parts: an integer part and a fractional part. Both parts are later
parsed separately in ParseNumber, matching if each string contains only digits.

type ParseNumber<S extends string> =
S extends `${infer TInt extends Digit}${infer Rest}`
? [TInt, ...ParseNumber<Rest>]
: []

type ParseFloatNumber<S extends NumberLike> =
`${S}` extends `${infer Int}.${infer Frac}`

? FloatNumber<ParseNumber<Int>, ParseNumber<Frac>>
: FloatNumber<ParseNumber<`${S}`>, []>

type ParseSignFloatNumber<T extends NumberLike> =
`${T}` extends `${infer TSign extends Sign}${infer Rest}`

? SignFloatNumber<TSign, ParseFloatNumber<Rest>>
: SignFloatNumber<"+", ParseFloatNumber<T>>

Listing 3.5 Number parsing into objects

The formatting of the object representation of a number is implemented in a similar fashion,
where a digit is concatenated with a string-type accumulator, as seen in a short code snippet in
Listing 3.6.
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type JoinDigit<T extends number[]> = T extends [
infer A extends number,
...infer R extends number[]

]
? `${A}${JoinDigit<R>}`
: ""

Listing 3.6 Formatting of object types

3.2 Addition and Subtraction
When representing the numbers as tuple lengths, some operations, such as addition and sub-
traction, can be implemented by spreading or inference. In the case of the addition operation,
as seen in Listing 3.7, a new tuple type is created by spreading the elements of both tuples into
a new tuple, which is then used to obtain the length representing the result.

type Add<A extends number, B extends number> = [
...ParseNumber<A>,
...ParseNumber<B>

]['length']

Listing 3.7 Addition with tuple types

The subtraction operation, assuming the first number is larger than the second one, is im-
plemented with the idea that the tuple type of a first number contains all of the elements of the
second number with a remainder. As seen in Listing 3.8, the Subtract generic type accepts two
type arguments, A and B, which represent the numbers to subtract. A conditional type is used to
check if ParseNumber<A> is assignable to a tuple that contains the elements of ParseNumber<B>

followed by a remainder of the number[] type, inferred in a new type named Remainder. If true,
the length of the Remainder is returned as the result of the subtraction operation. Otherwise,
the never type is returned instead.

type Subtract<
A extends string | number,
B extends string | number

> = ParseNumber<A> extends [
...infer Remainder extends number[],
...ParseNumber<B>

]
? Remainder["length"]
: never

Listing 3.8 Subtraction with tuple types

The final implementation of the addition operation based on object representation of numbers
uses the traditional schoolbook addition with carry. The algorithm adds the numbers digit by
digit and keeps track of the carry as it moves from one digit to the next. This technique has
a time complexity of Θ(n), where n is the number of digits in the number taking part in the
addition.
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The core building block of the schoolbook addition and subtraction algorithm is the ability
to obtain the next digit alongside the carry or borrow flag when performing the operation on
pairs of decimal digits. This can be done purely in the type system alone using tuple expansion
and checking for the stringified length of the tuple, as seen in Listing 3.9, but to improve the
performance and avoid unnecessary type instantiations, a lookup table is used to obtain the
next digit and the carry flag instead. The subtraction operation is implemented similarly, where
a two-dimensional lookup table of tuples is used to obtain the next digit and the borrow flag.

The lookup table is created by iterating over all possible combinations of two digits and storing
the result of the operation and the carry or borrow flag in a two-dimensional map. In order to
improve the performance even further, the lookup tables of both the addition and subtraction
operations are generated as a build step in JavaScript and stored in a separate file, which is later
imported into the code.

type AddDigitsResult<A extends Digit, B extends Digit> =
[...ParseNumber<A>, ...ParseNumber<B>]["length"] extends
infer Length extends number
? `${Length}` extends `${Digit}${infer Value extends Digit}`

? [Value, true]
: `${Length}` extends `${infer Value extends Digit}`
? [Value, false]
: never

: never

// This is generated by a build step
type AddMapCarry = {
[A in Digit]: {
[B in Digit]: AddDigitsResult<A, B>

}
}

Listing 3.9 Lookup table for addition operation

The schoolbook addition algorithm, seen in Listing 3.10, is implemented as three generic
types. AddWithCarry accepts two digits named Left and Right and a carry flag as type arguments
and is responsible for adding the two digits and propagating the carry flag to the next digit. It
will first check if the Carry type is assignable to true; if it is assignable, it will increment the
Left digit. The AddMapCarry is used to obtain the result of the digit addition, and the Or generic
type implements the binary disjunction operation to determine the carry flag in case of multiple
additions due to Carry being true.

AddArr is responsible for adding two tuples of digits. AddArr will attempt to extract the
rightmost digit from both tuples and add them using AddWithCarry. The AddArr will be called
recursively with the remaining digits and the carry flag from the previous addition until both of
the tuples are empty. Note that both of the digit tuples must have the same length to prevent
premature bailouts.

Finally, AddInt will add two digit tuples by first padding them into tuples of the same length
by prefixing them with zeroes and then calling AddArr to perform addition itself. If Carry is
assignable to true, an extra 1 digit is prepended to the result.
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type AddWithCarry<
Left extends number,
Right extends number,
Carry extends boolean
> = Carry extends true
? AddMapCarry[Left][1] extends [

infer LeftTmp extends number,
infer LeftCarry extends boolean

]
? AddWithCarry<LeftTmp, Right, false> extends [

infer Result extends number,
infer RightCarry extends boolean

]
? [Result, Or<LeftCarry, RightCarry>]
: never

: never
: AddMapCarry[Left][Right]

type AddArr<
A extends number[],
B extends number[],
Tmp extends [number[], boolean] = [[], false]

> = [A, B, Tmp] extends [
[...infer ARest extends number[], infer ARight extends number],
[...infer BRest extends number[], infer BRight extends number],
[infer Result extends number[], infer Carry extends boolean]

]
? AddWithCarry<ARight, BRight, Carry> extends [

infer Digit extends number,
infer Carry extends boolean

]
? AddArr<ARest, BRest, [[Digit, ...Result], Carry]>
: never

: Tmp

export type AddInt<A extends Digit[], B extends Digit[]> = PadStartEqually<
A,
B

> extends [infer PA extends Digit[], infer PB extends Digit[]]
? AddArr<PA, PB> extends [

infer Rest extends Digit[],
infer Carry extends boolean

]
? Carry extends true
? [1, ...Rest]
: Rest

: never
: never

Listing 3.10 Addition algorithm
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These foundational blocks can be further chained to add support for fractional numbers
and signed numbers. As seen in Listing 3.13, AddFloatNumber will first extract the integer and
fractional parts of a number, performing integer addition on both parts separately. The carry
flag is propagated appropriately from the fractional part to the integer part by recursively calling
AddFloatNumber with [1] to increment the result.

When working with subtraction, underflows are resolved by implementing digit-wise compar-
ison. Similarly to addition and subtraction, the comparison operation is performed per digit,
utilising an additional two-dimensional lookup table with all possible digit comparison results
represented as a number from the following set: {−1, 0, 1}. Based on the comparison result, the
operation can be decided by using a map object type with the comparison result as the key and
the operation as the value, seen in Listing 3.11.

type SubOperatorSwitch<A extends FloatNumber, B extends FloatNumber> = {
[-1]: SignFloatNumber<"-", SubFloatNumber<B, A>>
[0]: SignFloatNumber<"+", FloatNumber<[0], []>>
[1]: SignFloatNumber<"+", SubFloatNumber<A, B>>

}[CompareAbsNumbers<A, B>]

Listing 3.11 Subtraction switching

Finally, to simplify dealing with signed operations, an object type with all possible sign pairs
can be used to determine whether to invoke addition or subtraction, as seen in Listing 3.12.

type AddSignFloatNumber<
A extends SignFloatNumber,
B extends SignFloatNumber

> = {
"+": {
"+": SignFloatNumber<"+", AddFloatNumber<A["float"], B["float"]>>
"-": SubOperatorSwitch<A["float"], B["float"]>

}
"-": {
"+": SubOperatorSwitch<B["float"], A["float"]>
"-": SignFloatNumber<"-", AddFloatNumber<A["float"], B["float"]>>

}
}[A["sign"]][B["sign"]]

Listing 3.12 Signed number addition and subtraction
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type AddFloatNumber<
A extends FloatNumber,
B extends FloatNumber

> = PadFloat<A, B> extends [
FloatNumber<

infer IntA,
infer FracA

>,
FloatNumber<
infer IntB,
infer FracB

>
]
? AddArr<FracA, FracB> extends [

infer FracResult extends Digit[],
infer FracCarry extends boolean

]
? AddArr<IntA, IntB> extends [

infer IntResult extends Digit[],
infer IntCarry extends boolean

]
? IntCarry extends true
? FracCarry extends true
? AddFloatNumber<

FloatNumber<
[1, ...IntResult],
FracResult

>,
FloatNumber<[1], []>

>
: FloatNumber<

[1, ...IntResult],
FracResult

>
: FracCarry extends true
? AddFloatNumber<

FloatNumber<IntResult, FracResult>,
FloatNumber<[1], []>

>
: FloatNumber<IntResult, FracResult>

: never
: never

: never

Listing 3.13 Floating point addition
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3.3 Multiplication
A naive implementation of the multiplication algorithm can be created by repeatably adding the
multiplicand when numbers are represented by tuple length, as seen in Listing 3.14. Multiply

generic type has two mandatory type parameters: A and B representing the multiplicand and
multiplier, respectively. The optional type parameter Left is used to track how many iterations
are left before the recursion terminates. This method is considered ineffective, as the number of
recursion calls is proportional to the size of the multiplicand, and the method can easily reach
the instantiation depth limit with large multiplicands.

type Multiply<
A extends number,
B extends number,
Left extends number = B

> = Left extends 0 ? 0 : Multiply<Add<A, B>, B, Subtract<B>>

Listing 3.14 Naive multiplication algorithm

Because of this reason, the library implements the long multiplication method instead. Simi-
larly to the addition and subtraction algorithm, a two-dimensional lookup object type is used to
obtain the resulting multiplication digit and the appropriate carry number. First, MultiplyInt
will iterate on multiplier digits from right to left and multiply each digit with the multiplicand by
invoking the MultiplySingleInt generic type. The result of each multiplication, appropriately
offset with zeroes to account for the position of the digit in the multiplier, is then added together
to obtain the final result. An example can be seen in Listing 3.15.

type MultiplyInt<
X extends Digit[], Y extends Digit[],
Tmp extends { result: Digit[]; offset: Digit[] } = { result: [0]; offset: [] }

> = Y extends [...infer Rest extends Digit[], infer Single extends Digit]
? MultiplySingleInt<X, Single> extends infer SingleResult extends Digit[]
? AddInt<

Tmp["result"], [...SingleResult, ...Tmp["offset"]]
> extends infer Result extends Digit[]
? MultiplyInt<X, Rest, { result: Result; offset: [0, ...Tmp["offset"]] }>
: never

: never
: Tmp["result"]

Listing 3.15 Long multiplication

With the core building block for integer multiplication, extending the algorithm to floating-
point numbers and signed numbers is straightforward.

The MultiplyFloat generic type, as seen in Listing 3.16, converts the floating point number
to an integer by concatenating the integer part of a number with the fractional part, preserving
the precision, number of digits in the fractional part, as the length of a tuple. The precision
is encoded as a tuple because the precision of the multiplication is the sum of the multiplicand
and multiplier precisions. This can be done by spreading the tuples representing the precisions
instead of instantiating per-digit addition recursive types.
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type ExpandIntFloat<X extends FloatNumber> = IntFloat<
[...X["int"], ...X["frac"]],
ExpandNumberToArray<X["frac"]["length"]>

>

type MultiplyFloat<
X extends FloatNumber,
Y extends FloatNumber

> = ExpandIntFloat<X> extends infer A extends IntFloat
? ExpandIntFloat<Y> extends infer B extends IntFloat

? CompressIntFloat<
IntFloat<
MultiplyInt<A["mantissa"], B["mantissa"]>,
[...A["precision"], ...B["precision"]]

>
>

: never
: never

Listing 3.16 Float multiplication

The result of the integer multiplication is then converted back to a floating-point number by
shifting the integer part to the right, as seen in Listing 3.17. This is done by iteratively taking
the elements from the tuple representing the precision, now acting as a counter, and prepending
the fractional part with the rightmost digit of the integer part. The recursion terminates when
the precision tuple is empty.

type Compress<
Count extends Array<0>,
Left extends Digit[],
Right extends Digit[] = []

> = Count extends [0, ...infer RestCount extends 0[]]
? Left extends [...infer LeftRest extends Digit[], infer End extends Digit]

? Compress<RestCount, LeftRest, [End, ...Right]>
: Compress<RestCount, Left, [0, ...Right]>

: [Left, Right]

Listing 3.17 Conversion of an integer number back to a fractional number

3.4 Division and modulo
The implementation of the division algorithm is split into two main parts: the Euclidean division
and the long division algorithm. Given two integers, a dividend x and a divisor y, the Euclidean
division aims to find a quotient q and a remainder r, which satisfies the following equation 3.1:

x = y · q + r if 0 ≤ r < |b| (3.1)

The Euclidean algorithm finds the quotient and the remainder using repeated subtraction as
seen in Listing 3.18. The DivisionResult contains both the temporary quotient and remainder
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values passed to the next iteration. The EuclideanDivision generic type first checks if the
remainder is greater than or equal to the divisor. If that is the case, the quotient is incremented
by one using the AddInt generic type and the remainder is subtracted by the divisor using
SubDigit. The process is repeated until the remainder is less than the divisor, at which point
the computed quotient and remainder are returned.

interface DivisionResult<
Quotient extends Digit[] = Digit[],
Remainder extends Digit[] = Digit[]

> { quotient: Quotient; remainder: Remainder }

type EuclideanDivision<
Dividend extends Digit[],
Divisor extends Digit[],
Tmp extends DivisionResult = DivisionResult<[0], Dividend>

> = CompareDigits<Tmp["remainder"], Divisor> extends 1 | 0
? EuclideanDivision<

Dividend,
Divisor,
DivisionResult<
AddInt<Tmp["quotient"], [1]>,
SubDigit<Tmp["remainder"], Divisor>

>
>

: DivisionResult<TrimStart<Tmp["quotient"]>, TrimStart<Tmp["remainder"]>>

Listing 3.18 Euclidean division

The long division algorithm, seen in 3.19 as the LongDivisionDigit generic type, builds upon
the foundation of the Euclidean division. In each iteration, the leftmost digit is popped from
the dividend and pushed to the end of the accumulated remainder. Subsequently, the newly
created tuple and the divisor are passed as the remainder for the Euclidean division. The next
recursive instantiation of LongDivisionDigit accepts the resulting dividend, the divisor and the
updated accumulator of the DivisionResult type. The updated DivisionResult instance found
in the accumulator has the remainder copied and the quotient concatenated from the result of
the Euclidean division. The process is repeated until all digits in the dividend have been used,
rendering the Dividend tuple empty. Finally, the quotient and remainder are returned, with the
leading zeros removed.

When conducting division operations involving two numbers with fractional components,
the digit tuples of fractional parts are right-padded with zeroes to ensure equal lengths for
both tuples. Afterwards, the fractional part is concatenated behind the integer part, creating
an integer number compatible with the long division algorithm. Further digit shifting is not
necessary, as the orders of magnitude get cancelled out during the division process, and the
division itself will return a FloatNumber. An example of how the numbers are processed can be
seen in equation 3.2:

123.456 = 123.456 = 123456 × 10−3

2.5 = 2.500 = 2500 × 10−3

123.456
2.5 = 123.456

2.500 = 123456×10−3

2500×10−3 = 123456
2500

(3.2)
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type LongDivisionDigit<
Dividend extends Digit[],
Divisor extends Digit[],
Acc extends DivisionResult = DivisionResult<[], []>

> = Dividend extends [
infer Head extends Digit,
...infer RestDividend extends Digit[]

]
? EuclideanDivision<

[...Acc["remainder"], Head],
Divisor

> extends infer IntDivision extends DivisionResult
? LongDivisionDigit<

RestDividend,
Divisor,
DivisionResult<
[...Acc["quotient"], ...IntDivision["quotient"]],
IntDivision["remainder"]

>
>

: never
: DivisionResult<TrimStart<Tmp["quotient"]>, TrimStart<Tmp["remainder"]>>

Listing 3.19 Long division

Since both the long division and Euclidean division algorithms exhibit greater complexity and
are prone to deep recursion, it is likely that when used, the instantiation depth limit imposed by
TypeScript will be exceeded. As a workaround, it is possible to defer the evaluation of a type
by rephrasing it as a distributive conditional type. This workaround will be remarkably useful
when multiple complex arithmetic operations are chained together, as the n-th root operation
will exemplify in Section 3.8.

Modulo operation builds on top of the division, multiplication and subtraction algorithm by
calculating the floor of the division result obtained when dividing the dividend by the divisor.
Subsequently, the result is multiplied back by the divisor and finally subtracted from the dividend
to get the final result of the modulo operation. The implementation of the modulo operation
can be seen in Listing 3.20.

export type Modulo<X extends SignFloatNumber, Y extends SignFloatNumber> =
IsNotZero<Y> extends true

? DivideSignFloatNumber<X, Y> extends infer Divided extends SignFloatNumber
? SubSignFloatNumber<X, MultiplySignFloat<Y, FloorSignFloatNumber<Divided>>>
: never

: never

Listing 3.20 Modulo operation
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3.5 Comparison

Some operations, such as the Euclidean division, require an additional type-level operation for
comparing two numbers. In the case of the Euclidean division, a comparison is needed to decide
whether to continue or halt the recursion. For that purpose, a type-level three-way comparison
operator has been implemented, also known as the “spaceship operator” in the C++ program-
ming language [42].

The spaceship operator for comparing two numbers x and y, denoted by x <=> y, is defined
in equation 3.3 as follows:

x <=> y =


−1 if x < y

0 if x = y

1 if x > y

(3.3)

It is possible to implement the operator entirely within the TypeScript type system by decom-
posing each number into a tuple of elements, where the size of the tuple is equal to the number
itself. As seen in Listing 3.21, the CompareTuples attempts to remove the first element of both
tuples until one or both of the tuples are empty. The generic type returns the appropriate value
depending on which tuple is empty first.

type CompareTuples<X extends Array<0>, Y extends Array<0>> =
X extends [0, ...infer XRest extends Array<0>]
? Y extends [0, ...infer YRest extends Array<0>]
? CompareTuples<XRest, YRest>
: 1

: Y extends [0, ...Array<0>]
? -1
: 0

type Compare<X extends number, Y extends number> =
CompareTuples<
ParseNumber<X>,
ParseNumber<Y>

>

Listing 3.21 Type-level comparison operation of single digit

As is the case for addition, subtraction and multiplication, it is desirable to precompute these
values for every combination of digits and store them in a lookup table.

The comparison of digit tuples is implemented by first ensuring the two tuples are of equal
length by left-padding the shorter tuple with zeroes. The first elements of both tuples are
extracted into two type variables, XHead and YHead, and are compared using the lookup table. If
the digits are equal, the recursion continues with the rest of the tuples, named XRest and YRest.
Otherwise, the result of the last digit comparison is returned. The full implementation can be
seen in Listing 3.22.
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type CompareArr<X extends Digit[], Y extends Digit[]> =
PadStartEqual<X, Y> extends [

[infer XHead extends Digit, ...infer XRest extends Digit[]],
[infer YHead extends Digit, ...infer YRest extends Digit[]]

]
? CmpMap[XHead][YHead] extends infer Result extends number
? Result extends 0
? CompareArr<XRest, YRest>
: Result

: never
: 0

Listing 3.22 Digit tuple comparison

3.6 Numeric rounding operations
The library implements four operations performing numeric rounding. Truncation is the simplest
of the four implementations, where the parsing of numbers into a structured object type is doing
the heavy lifting. The truncation itself is done by replacing the fractional part of a number with
an empty tuple, as seen in Listing 3.23

type Truncate<Number extends SignFloatNumber> =
SignFloatNumber<

Number["sign"],
FloatNumber<Number["float"]["int"], []>

>

Listing 3.23 Truncation function

Ceiling and flooring are more complex operations. In the case of the ceiling operation, the
number is first truncated and then checked to see if the input number is greater than the truncated
number. If that is the case, the truncated number is incremented by one and returned. Otherwise,
the truncated number is returned as-is. This behaviour is done to obtain the correct result when
performing ceiling on a negative number. For flooring, the process is similar, but the truncated
number is decremented by one if the original number is less than the truncated number. The
implementation can be seen in 3.24.

type Floor<Number extends SignFloatNumber> =
TruncateSignFloatNumber<Number> extends

infer TrucateNumber extends SignFloatNumber
? CompareSignNumbers<Number, TrucateNumber> extends -1
? SubSignFloatNumber<

TrucateNumber,
SignFloatNumber<"+", FloatNumber<[1], []>>

>
: TrucateNumber

: never

Listing 3.24 Floor function
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Rounding is the most complex of the four rounding operations. The first digit of the frac-
tional part is checked to determine whether it is assignable to the union of rounding up digits
({5, 6, 7, 8, 9}). If that is the case, the truncated number is incremented by one and returned.
Otherwise, the truncated number is returned as is, seen in Listing 3.25.

type RoundSignFloatNumber<Number extends SignFloatNumber> =
Number["float"]["frac"] extends [infer Head extends Digit, ...Digit[]]
? Head extends 5 | 6 | 7 | 8 | 9
? SignFloatNumber<

Number["sign"],
AddFloatNumber<
FloatNumber<Number["float"]["int"], []>,
FloatNumber<[1], []>

>
>

: SignFloatNumber<Number["sign"], FloatNumber<Number["float"]["int"], []>>
: Number

Listing 3.25 Round function

3.7 Exponentiation

A naive implementation of exponentiation would be based on repeated multiplication. This is an
inefficient approach, as the complexity of such an algorithm would be O(M(x)·10n) = O(n2 ·10n),
where n is the number of digits and M(x) is the complexity of multiplication algorithm, in this
instance O(n2). A more efficient exponentiation method is to perform binary exponentiation
instead, as seen in equation 3.4:

xn =


x · (x2) n−1

2 if n > 0 is odd
(x2) n−1

2 if n > 0 is even
1 if n = 0
( 1

x )n if n < 0

(3.4)

It can be shown that the complexity of the algorithm is O(n2 · log2(10n)), a notable improve-
ment over the naive approach.

Parity checks done by IsEventInt as seen in Listing 3.26 are performed by checking the last
digit of the exponent. The even digits are represented by a union type of number literal types.
Notably, the conditional type is not a type itself. Developers still need to write the true and
false literal types explicitly.

type IsEvenInt<X extends Digit[]> =
X extends [...Digit[], infer Tail extends Digit]
? Tail extends 0 | 2 | 4 | 6 | 8 ? true : false
: false

Listing 3.26 Parity check of digits



36 Implementation

The final implementation shown in Listing 3.27 does require trimming of excess zeroes in the
exponent to ensure the correctness of a fast assignability check for termination conditions. The
implementation also differs from the algorithm in equation 3.4 in that the PowerAuxInt includes
an optional type argument Y used to convert the method into a tail-recursive generic type,
bypassing the need for deferring the instantiation to avoid the instantiation depth limitation.

type PowerAuxInt<
X extends SignFloatNumber,
N extends Digit[],
Y extends SignFloatNumber = SignFloatNumber<

"+",
FloatNumber<[1], []>

>
> = TrimEnd<N> extends [0]
? Y
: IsEvenInt<N> extends true
? PowerAuxInt<

MultiplySignFloat<X, X>,
LongDivisionDigit<
N,
[2]

>["quotient"],
Y

>
: PowerAuxInt<

MultiplySignFloat<X, X>,
LongDivisionDigit<
SubDigit<N, [1]>,
[2]

>["quotient"],
MultiplySignFloat<X, Y>

>

Listing 3.27 Auxilary exponentiation by squaring

3.8 n-th root extraction
There are some cases where an operation is so complex that the type instantiation limit is
reached, and TypeScript will prematurely abort the type-checking of the entire file. One such
example is the n-th root extraction of a number. The implementation uses the Newton-Raphson
method.

The Newton-Raphson method [43] is an iterative numerical method for estimating the roots
of real-valued functions. Assuming the function f(x) is derivable on x ≥ 0 and an initial guess
for root is x0, then:

xk+1 = xk − f(xk)
f ′(xk) (3.5)
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Thus, to estimate the n-th root of a number, declared by the function f(x) = xn − α, where
α is the target number to apply n-th root and n is the degree of the root, the following definition
for the next approximation is used:

xk+1 = xk − f(xk)
f ′(xk)

= xk − xn
k − α

n · xn−1
k

= 1
n

(
(n − 1) · xk + α

xn−1
k

)
= n − 1

n︸ ︷︷ ︸
L

xk + α

n︸︷︷︸
R

1
xn−1

k

= L · xk + R · 1
xn−1

k

(3.6)

A naive implementation can be done by intimately mirroring the algorithm and nesting
the generic types for readability, shown in Listing 3.28. However, as it turns out, TypeScript
will prematurely stop type-checking due to the instantiation depth limitatation. Instead, to
bypass the limit, the final implementation, as seen in Listing 3.29, uses the infer keyword to
defer instantiation of types as much as possible, essentially treating infer as a way to assign
intermediate values to type variables.

Even so, it is not desired for the algorithm to run indefinitely; instead, the iteration is cut off
after seven iterations, as more iterations will cause the type checker to reach the instantiation
limit when evaluating.

type RootDigit<
Alpha extends SignFloatNumber,
N extends Digit[],
Step extends SignFloatNumber = SignFloatNumber<"+", FloatNumber<[1], []>>,
StepCnt extends Array<0> = []

> = StepCnt["length"] extends 5
? Step
: RootDigit<Alpha, N, MultiplySignFloat<

SignFloatNumber<"+", DivideInt<[1], N>>,
AddSignFloatNumber<
MultiplySignFloat<RootNSubOne<N>, Step>,
DivideSignFloatNumber<Alpha, PowerSignFloatNumbers<Step, RootNSubOne<N>>>

>
>, [...StepCnt, 0]>

Listing 3.28 n-th root - incorrect version



38 Implementation

type OneSignFloatNumber = SignFloatNumber<"+", FloatNumber<[1], []>>

type RootDigitIter<
NSubOne extends SignFloatNumber,
L extends SignFloatNumber,
R extends SignFloatNumber,
Step extends SignFloatNumber = OneSignFloatNumber,
StepCnt extends Array<0> = []

> = StepCnt["length"] extends 7
? Step
: MultiplySignFloat<L, Step> extends infer LStep extends SignFloatNumber
? PowerSignFloatNumbers<

Step,
NSubOne

> extends infer StepPowNSubOne extends SignFloatNumber
? DivideSignFloatNumber<

R,
StepPowNSubOne

> extends infer RStep extends SignFloatNumber
? AddSignFloatNumber<

LStep,
RStep

> extends infer Sum extends SignFloatNumber
? RootDigitIter<NSubOne, L, R, Sum, [...StepCnt, 0]>
: never

: never
: never

: never

type RootDigit<
Alpha extends SignFloatNumber,
N extends Digit[]

> = SignFloatNumber<
"+",
FloatNumber<N, []>

> extends infer N extends SignFloatNumber
? SubSignFloatNumber<

N,
OneSignFloatNumber

> extends infer NSubOne extends SignFloatNumber
? DivideSignFloatNumber<NSubOne, N> extends infer L extends SignFloatNumber
? DivideSignFloatNumber<Alpha, N> extends infer R extends SignFloatNumber
? RootDigitIter<NSubOne, L, R>
: never

: never
: never

: never

Listing 3.29 n-th root - correct version
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3.9 Statement parser and evaluator

The generic types for mathematical operations are well suited for simple expressions. However,
the proposed interface can be too verbose when describing complex formulas. A more elegant
solution is to represent both input and output as a string literal type and let a compiler do the
parsing and evaluation of the expression. The input string literal type will contain a mathematical
expression in infix notation, and the output string literal type will contain the result of the
expression. The compiler is built in three parts: the lexer, the parser and the evaluator, which
will be described in the following sections.

3.9.1 Lexer
The lexical analyser (lexer) is responsible for dividing the input string literal type into a sequence
of meaningful units called tokens. The goal of a lexer is to remove whitespaces and inconsistencies
to simplify the input stream, which is helpful for later stages of parsing. One such example is
the parsing of numbers: consuming a single number token is easier than parsing each digit of
a number, which can unnecessarily complicate the design of a parser.

The following section will provide an in-depth look into the handwritten lexer implementation.
Namespaces have been used to isolate and contain the object types representing tokens, ensuring
proper isolation between different type aliases and preventing naming clashes without the need
to resort to prefixing. An example can be seen in Listing 3.30, where Plus and Minus are type
aliases for the object types, whereas _ is a union type for when a placeholder for a token is
needed. Also, instead of utilising the never type for errors, a string enum is used to prevent
unintended matches when performing assignability checks, as never is a subtype of all types.

enum Error {
Lexer = "LexerError",
Parser = "ParserError",

}

namespace Token {
export type Plus = { type: "Plus" }
export type Minus = { type: "Minus" }
export type _ = Plus | Minus

}

Listing 3.30 Lexer token namespace

The lexing itself is done by a generic type, which accepts a string literal type as a type
argument and returns either a string enum as an error or an object type containing the matched
token and the remaining unparsed input. As seen in Listing 3.31, the HandleToken attempts to
perform pattern matching on the first character of the input string literal type T. If succeeded, the
matched token, wrapped in an object type constructed by the LexResult generic type, is returned,
passing both the matched token and the remaining input to the next recursive instantiation of
the HandleToken generic type. If the pattern matching fails, the Error.Lexer string enum is
returned instead. This structure can be chained together to create a lexer for multiple token
types, such as function keywords or numbers.
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type LexResult<Rest extends string, Result extends Token._> = {
result: Result
rest: Rest

}
type HandleToken<T extends string> =
T extends `${infer Head}${infer Rest}`
? Head extends "+"
? LexResult<Rest, Token.Plus>
: Error.Lexer

: Head extends "-"
? LexResult<Rest, Token.Minus>
: Error.Lexer

: Error.Lexer

Listing 3.31 Lexer structure

3.9.2 Parser
Infix notation is the most common way of writing mathematical expressions and is more intuitive
for humans to read and write. However, it is not ideal for computers due to the complexity of
parsing algorithms, which must adequately evaluate parentheses and operator precedence rules.
Other notations, such as the postfix notation, address the shortcomings of infix notation by
explicitly stating the order of computation, making the evaluation unambiguous.

Various methods exist for converting an expression in infix notation. However, this thesis
focuses on implementing a top-down LL(1) parser for mathematical expression. The main reason
for choosing the LL(1) parser is the extendibility and suitability for supporting other LL(1)
grammar more readily. Some other common parsers were considered for this thesis, including
the Shunting-Yard algorithm, using two stacks for operators and output operands, and the Pratt
parser, a recursive descent parsing algorithm utilising a precedence table for extendability.

In order to explain the LL(1) parser, the following sections will describe the core concepts
of grammar and parsing. Grammar is a set of rules that defines the syntax of a language. The
grammar G = (Σ, N, R, S) consists of a set of terminals Σ, a set of non-terminals N , a set of
production rules R and a start symbol S. Terminals are the basic unit of the grammar, while
non-terminals are placeholders for other terminals and non-terminals. Production rules define
how non-terminals can be expanded into a sequence of other non-terminals and terminals, while
the start symbol defines the starting non-terminal. The parsing itself will create a derivation,
which is a sequence of production rules applications transforming a string of symbols, starting
from the start symbol of the grammar.

A derivation can be visualised as a tree, also known as the derivation tree or parse tree. Each
node of the tree represents a symbol in the string, and each edge represents a production rule
application. The root of the tree is the start symbol of the grammar, and the leaves are the
terminal symbols of the string.

There are multiple ways to construct a derivation tree: either by replacing the leftmost non-
terminal symbol with the righthand side of a production rule or by replacing the rightmost
non-terminal symbol with the righthand side of a production rule. The former is known as the
leftmost derivation, while the latter is known as the rightmost derivation. Finally, ambiguous
grammar is one that can produce multiple derivation trees for the same string.
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As an example, consider the given simplified grammar for mathematical expressions applied
for the expression 3 + 4 ∗ 5. As can be seen in Figure 3.1, the given grammar is ambiguous, as
there are multiple possible derivation trees for the given input string.

E

E

3

+ E

E

4

* E

5

E

E

E

3

+ E

4

* E

5

1. E → E "+" E . 2. E → E "*" E . 3. E → "number" .

Figure 3.1 An example of ambiguous grammar and the parsing tree for 3 + 4 ∗ 5

LL(1) parsers are a class of top-down parsers that read the input string from left to right and
construct a leftmost derivation of the input. They use a single token of lookahead when parsing
a sentence, meaning that the parser can only see the next token before parsing. LL(1) parsers
recognise LL(1) grammar, which is a special case of context-free grammar. The grammar must
be unambiguous, without any left recursion and common prefixes among the alternatives of any
expansion rule to be deterministic.

The parser relies upon two important concepts: the FIRST(α) and FOLLOW(A) sets. As-
suming a context-free grammar G = (Σ, N, R, S), the FIRST(α) set is a set of terminals that
can appear as the first symbol in a string derived from α. Formally, FIRST(α) can be defined
as follows:

FIRST(α) = {a|α ⇒⋆ aβ, a ∈ Σ, α, β ∈ (N ∪ Σ)⋆} ∪ {ε|α ⇒⋆ ε}

The FOLLOW(A) set is a set of terminals that can appear as the next symbol in a string
derived from a given non-terminal symbol A. Formally, FOLLOW(A) can be defined as follows:

FOLLOW(A) = {a|S ⇒⋆ αAβ, a ∈ FIRST(β)}

Given both the FIRST(α) and FOLLOW(A) sets, a parsing table can be constructed. The
parsing table is created as follows: for each of the production rule A → α found in the grammar,
do the following:

1. For each terminal a found in the FIRST(α), add the production role A → α to the parsing
table at the position [A, a].

2. If the ε token, determining the end of input, is present in the FIRST(α) set, add A → α to
the parsing at position [A, b] for each terminal b in the FOLLOW(A) set.

When designing a LL(1) grammar for mathematical expressions, operator precedence must
be taken into consideration, as the expression found in the input string literal type is written
in the infix notation. Left or right associativity is a key constraint as well, with exponentiation
being an operator with right associativity instead of left associativity as the other operators.
The precedence and associativity rules for the operators can be seen in Table 3.1.
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Precedence Operator Type Associativity
1 Addition, Subtraction left-to-right
2 Multiplication, Division, Remainder left-to-right
3 Factorial non-associative
4 Unary plus, Unary negation non-associative
5 Exponentiation right-to-left
6 Function call, grouping non-associative

Table 3.1 Associativity and precedence rules for math expressions

The final grammar used for this thesis can be seen in Figure 3.2. The operator precedence rules
are baked into the grammar itself, where the non-terminals representing the higher precedence
operations are expanded later. The associativity of operators has been taken into consideration
as well by changing the position of the non-terminal from the left side to the right side, essentially
switching from left recursion to right recursion and vice versa. An example can be seen in Table
3.2, where both the previous context-free grammar and the appropriately modified LL(1) version
of the grammar is shown to demonstrate the difference between these two examples.

1. START → ADD .

2. ADD → MUL ADDx .

3. ADDx → "+" MUL ADDx .

4. ADDx → "-" MUL ADDx .

5. ADDx → ε .

6. MUL → FACT MULx .

7. MULx → "*" FACT MULx .

8. MULx → "/" FACT MULx .

9. MULx → "%" FACT MULx .

10. FACT → UNARY FACTx .

11. FACTx → "!" FACTx .

12. FACTx → ε .

13. UNARY → "-" UNARY .

14. UNARY → "+" UNARY .

15. UNARY → POW .

16. POW → TERM POWx .

17. POWx → "ˆ" POW .

18. POWx → ε.

19. TERM → "unary" "(" ADD ")" .

20. TERM → "binary" "(" ADD "," ADD ")" .

21. TERM → "(" ADD ")" .

22. TERM → "number" .

Figure 3.2 LL(1) grammar for mathematical expressions

Left associativity Right associativity
ADD → TERM .
ADD → ADD "+" TERM .

ADD → TERM .
ADD → TERM "+" ADD .

ADD → TERM ADD’ .
ADD’ → "+" TERM ADD’ .
ADD’ → ε .

ADD → TERM ADD’ .
ADD’ → "+" ADD .
ADD’ → ε .

Table 3.2 Grammar comparison between left-associativity and right-associativity



Statement parser and evaluator 43

A custom code generation tool has been developed to generate a parser running entirely in the
TypeScript type system from the provided LL(1) grammar, using the aforementioned algorithm
for creating the parsing table and appropriate recursive descent parser. The interface of a parser
is defined as a generic type Parser, accepting a tuple of lexer tokens and a possible output AST
node type as type parameters, seen in Listing 3.32. The generic type returns an object type
with an additional head property for simplifying the matching of the current lookahead token
needed by the LL(1) parser. ConsumeParser is a generic type for consuming a token from the
input stream and returning a new object type with the rest of the token stream.

interface Parser<T extends Token._[] = Token._[], A extends AST._ = AST._> {
tokens: T; head: T[0]; return: A

}

type ConsumeParser<Match extends Token._, TParser extends Parser> =
TParser["head"] extends Match
? TParser["tokens"] extends [Token._, ...infer Rest extends Token._[]]
? Parser<Rest, TParser["return"]> : []

: Error.Parser

Listing 3.32 Core parser interface

With the following building blocks, it is possible to write a recursive descent parser based on
the obtained parser table. An example can be seen in Listing 3.33, where a non-terminal POW
and POWx are transformed into generic types accepting a type instance of Parser as the type
parameter. The generic type attempts to match a lexer token by performing an assignability
check. If succeeded, either the token can be consumed by using ConsumeParser, yielding a new
parser to work with, or the parser can be passed on to the next generic type. The ReturnParser

generic type reassigns the AST node, essentially acting as a way to return a new AST node.

type POWx<T extends Parser> = T["head"] extends Token.Power
? ConsumeParser<Token.Power, T> extends infer T extends Parser
? POW<T> extends infer R extends Parser
? ReturnParser<R, AST.Binary<T["return"], "ˆ", R["return"]>>
: Error.Parser

: Error.Parser
: T["head"] extends

| Token.EOF | Token.Factorial | Token.Multiply | Token.RightBracket
| Token.Divide | Token.Modulo | Token.Plus | Token.Minus | Token.Comma

? T : Error.Parser

type POW<T extends Parser> = T["head"] extends
| Token.UnaryFunction | Token.BinaryFunction | Token.LeftBracket | Token.Number
? TERM<T> extends infer T extends Parser
? POWx<T> extends infer T extends Parser
? T : Error.Parser

: Error.Parser
: Error.Parser

Listing 3.33 Implementation of exponentiation parser
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3.9.3 Evaluator
Finally, the evaluator takes the AST returned by the parser as the input and returns a string
literal type containing the result of the expression.

As the AST does already take operator precedence and associativity into account, the evalu-
ator itself only recursively traverses the tree, visiting each of the AST nodes and performing the
appropriate operation by pattern matching. A shortened example can be seen in Listing 3.34.

export type Evaluate<T> = T extends AST.Binary<
infer Left,
infer Op,
infer Right

>
? Op extends "+"

? Evaluate<Left> extends infer LeftStr extends NumberLike
? Evaluate<Right> extends infer RightStr extends NumberLike
? Add<LeftStr, RightStr>
: never

: never
: never

: T extends AST.Number<infer Value extends string>
? Value
: never

Listing 3.34 Evaluator example

The evaluator itself is not required per se, and the expression can be evaluated directly in the
parser, but to avoid the instantiation depth limit and to simplify debugging and unit testing, the
parser emits an AST as a temporary result, and the evaluation is performed in a separate step.
This does have the additional benefit of simplifying testing of the entire parsing mechanics, as
the AST can be easily inspected and compared to the expected result.

3.10 Higher-kinded types

Higher-kinded types (HKT), also known as higher-order types, are a powerful type system lan-
guage feature that enables describing expressive generic types by allowing accepting other generic
types as type arguments. To demonstrate, consider the following Listing 3.35. As it can be seen,
all three generic types do essentially the same type instantiation, only with different type con-
structors.

type Foo<O> = O extends string ? `Foo<${O}>` : never
type Bar<O> = O extends string ? `Bar<${O}>` : never
type Baz<O> = O extends string ? `Baz<${O}>` : never

type MapValuesWithFoo<O> = { [K in keyof O]: Foo<O[K]> }
type MapValuesWithBar<O> = { [K in keyof O]: Bar<O[K]> }
type MapValuesWithBaz<O> = { [K in keyof O]: Baz<O[K]> }

Listing 3.35 Duplicate generic types
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With HKTs, it is possible to define a single higher-order generic type that accepts a type
constructor as an argument. The type constructor is then applied to each property of the object
type. The result is shown in Listing 3.36.

type MapValuesWith<O, T<˜>> = { [K in keyof O]: T<O[K]> }

type MapValuesWithFoo<O> = MapValuesWith<O, Foo>;
type MapValuesWithBar<O> = MapValuesWith<O, Bar>;
type MapValuesWithBaz<O> = MapValuesWith<O, Baz>;

Listing 3.36 Proposed HKT syntax in TypeScript

With higher-kinded types, it is possible to declare a monad type [44] or applicative functors
[45], design patterns commonly found in functional programming languages such as Haskell or
Scala. However, as of writing, higher-kinded types are not natively supported by TypeScript
[46]. Fortunately, it is possible to emulate the behaviour of higher-kinded types.

There are two ways to achieve the behaviour of HKT. One such way can be achieved by
implementing lightweight higher-kinded polymorphism [47] and defunctionalisation of kinds [48],
a technique for translating higher-order programs into a first-order language. The main idea is
to create a mapping of unique names of type constructors to their implementations. Afterwards,
a Kind utility converts the name and the appropriate type argument to the corresponding higher-
kinded type. An example can be seen in Listing 3.37.

type URItoKind<A> = { "Foo": Foo<A>; "Bar": Bar<A>; "Baz": Baz<A> }
type URI = keyof URItoKind<unknown>
type Kind<F extends URI, A> = URItoKind<A>[F];

type MapValuesWith<O, Type extends URI> = Kind<Type, O>

Listing 3.37 HKT emulation using lightweight higher-kinded polymorphism

This method is historically used in libraries for typed functional programming such as fp-ts

[49]. Unfortunately, this method requires a central registry of URIs that are used to identify the
appropriate type constructor and extendability based on module augmentation is limited.

The other possible method for implementing HKTs is by utilising the properties of type
intersection with this. The interface Fn provides a generic template for a callable function.
Each such callable function must extend from Fn and depend on this["input"] to instantiate
the type of output key. The Call generic type accepts such a function as a type parameter
Function alongside the input as Input type parameter. Finally, the type constructor of Call

will intersect the provided Function with the object type wrapping the Input type parameter,
essentially providing the function with the desired arguments. The created output key can be
extracted using indexed access types. This method is thoroughly used in HOTscript [50], and
a simplified implementation can be seen in Listing 3.38.
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interface Fn { input: unknown; output: unknown; }

type Call<Function extends Fn, Input> = (Function & { input: Input })["output"];

interface Foo extends Fn {
output: this["input"] extends infer O extends string ? `Foo<${O}>` : never;

}

interface Bar extends Fn {
output: this["input"] extends infer O extends string ? `Bar<${O}>` : never;

}

interface Baz extends Fn {
output: this["input"] extends infer O extends string ? `Baz<${O}>` : never;

}

type MapValuesWith<O, Wrap extends Fn> = {
[K in keyof O]: Call<Wrap, O[K]>

}

Listing 3.38 Type intersection for emulating HKTs

The most popular implementation of the latter method, HOTScript, exposes most of the
core functionality of the library as a public-facing API. Thus, an additional public-facing API
for mathematical operations has been exposed for users of HOTScript, extending the library
with an advanced mathematical expression evaluator implemented in this work.
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Development Tooling and Testing

4.1 Testing and development
During the development of the type-level mathematical expression evaluator, several invaluable
tools were utilised that significantly contributed to the implementation. This section is devoted
to discussing these tools and their impact on the overall development process.

The core of the development experience is underpinned by TypeScript Standalone Server, also
known as tsserver. tsserver encapsulates both the compiler and the accompanying language
services for use in editors and IDEs, communicating via LSP to add support for code completion,
auto-importing, symbol renaming, to name a few. tsserver also provides the ability to see the
inferred types of any symbol by hovering on top of the symbol, as seen in Figure 4.1. This service
is invaluable when developing a type-level library allowing the developer to break down complex
types into smaller pieces, achieving better readability.

Figure 4.1 Inferred type on hover in VSCode

Another key tool used when developing the implementation is the vscode-twoslash-plugin

extension [51]. In order to avoid constantly hovering the cursor on top of symbols to see their
inferred types, developers can write the // ˆ? comment, with the caret pointing to the targeted
symbol. The plugin will then display an inlay hint with the inferred type of the selected symbol,
as seen in Figure 4.2.

47



48 Development Tooling and Testing

Figure 4.2 Twoslash syntax of vscode-twoslash-plugin

Finally, Pretty TypeScript Errors [52] attempts to parse and reformat the TypeScript error
messages to be more human-readable in VSCode. This is especially helpful when dealing with
complex object types, where the error messages can become unreadable since the error message
and the serialised type is printed out on a single line, as seen in Figure 4.3.

Figure 4.3 Formatting errors with Pretty TypeScript Errors extension

Some generic types include an accompanying unit test to ensure correctness and prevent re-
gression. Testing is backed with eslint [53], a static code analyser for JavaScript and TypeScript.
Configuration-wise, @typescript-eslint/parser has been set up as the parser used by ESLint
for properly analysing TypeScript code, and eslint-plugin-expect-type has been added for
writing type assertions as comments. eslint-plugin-expect-type enables writing $ExpectType,
$ExpectError and twoslash type assertions (// ˆ?). An example test assertion can be seen in
Listing 4.1.

// $ExpectType "0.3619047620"
type EvaluateCase = Evaluate<
RecursiveParser.Parse<Lexer<"3.1 + 2.5 * (1 - 5.6) / 4.2">>

>

Listing 4.1 Type assertion with $ExpectType
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4.2 CI/CD workflow and release management

Continuous Integration and Continuous Delivery are the two key parts of the software devel-
opment process that help developers deliver high-quality software. Continuous Integration (CI)
is the practice of automating the integration of code changes into a version control repository
[54], encouraging developers to merge their changes to the main branch as often as possible. CI
establishes an automated method for building, packaging and testing the software. The main
benefit of this approach is to avoid major integration challenges when releasing a version by
continuously integrating more minor changes during the development instead of doing all the
integration on the release day.

Whereas Continuous Delivery (CD) is an extension of Continuous Integration, where the
code changes are automatically deployed to the production environment after the build and test
stage. CD aims to simplify the deployment as much as possible, making it a routine process that
can be performed as many times as needed, even multiple times during a day [55]. Note that
there is a distinction between Continuous Delivery and Continuous Deployment where the former
requires human intervention to deploy changes to production, and the latter is fully automated
without any manual steps.

Both Continuous Integration and Continuous Delivery are set up in the implementation
part of the thesis. The core of the CI/CD setup is the Github Action platform. The GitHub
Actions platform allows developers to automate the build, test, and deployment pipeline within
an existing GitHub repository [56]. The main components of GitHub Actions include workflows,
jobs and actions defined using YAML files saved in the .github/workflows. This project uses two
workflows, one for running unit and integration tests and a second one for performing Continuous
Delivery to the NPM registry.

The first workflow, found in .github/workflows/main.yml, runs both yarn run test and
yarn run build after every push to the repository event, regardless of branch or reference. The
second workflow, found in .github/workflows/publish.yml, is responsible for managing releases
when pushed to the main branch, publishing packages into the NPM registry using Changesets
[57]. Changesets allow developers to keep track of the release history of a package and automate
both versioning and release note generation.

The Changesets tool works by separating versioning into two stages: adding a changeset,
describing the changes made in a commit or a branch, and combining created changesets with
version incrementing. Creation of a changeset is done by running the yarn changeset command,
which will ask the developer to provide the appropriate version bump type (either MAJOR,
MINOR or PATCH, following the Semver versioning) and a message describing the changes.
The changeset will be saved as a Markdown file with a unique identifier in the .changesets

folder. The file will be committed to the Git repository. These changesets are preserved in the
repository until the release is ready to be published.

After pushing to the main branch, the release process is performed by running the yarn

changeset publish command. When new changesets are found in the main branch, Changesets
will automatically create a new pull request, which will perform all of the key steps for releasing
a package: incrementing the version, updating the CHANGELOG.md file and removing the accumu-
lated changesets. When the pull request is merged, Changesets will automatically publish the
new version to the NPM registry, using the granular access token provided as a secret variable
for CI, and create an appropriate git tag for the release. The final package is published to the
NPM registry under the name ts-math-evaluate [58].
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4.3 Performance testing

Advanced utility types do have a significant strain on type-checking and can have a negative
impact on the developer experience with elevated latency of language services and longer build
times when building with tsc. The performance test suite has been created to measure the
impact of various implemented math operations on type-checking performance.

Two metrics are measured in the performance test suite: the “check time” obtained from
extended diagnostics when compiling via tsc and the number of type instantiations created
when evaluating utility types. These metrics can be obtained from the tsc CLI with the
--extendedDiagnostics flag. However, the TypeScript API does expose an internal performance
singleton, which, combined with internal extendedDiagnostics flag and Compiler API, can be
used to obtain the same metrics programmatically, as seen in Listing 4.2.

import * as ts from "typescript"
const performance = (ts as any).performance

performance.enable()
const program = ts.createProgram(fileNames, {
noEmit: true,
incremental: false,
extendedDiagnostics: true,

})
program.emit()

console.log(`Instantiation count: ${program.getInstantiationCount()}`)
console.log(`Check time: ${performance.getDuration("Check")}`)
performance.disable()

Listing 4.2 Programmatic access to internal extended performance metrics

Together with ts-morph library [59] and the insights from the Compiler API, a benchmarking
tool was created, found in scripts/bench.ts. ts-morph is a wrapper around the Compiler API
that provides convenient methods for setup, navigation and manipulation of the TypeScript
AST. The benchmarking tool accepts a path to a benchmarking file and parses the file into an
AST. Each test case of a benchmark file is denoted as an exported type alias, which is read by
the benchmarking tool. The tool then creates a new separate valid TypeScript code for each
test case, containing just the benchmark type alias, omitting all other unnecessary types and
constructs. The evaluation of a test case follows the same logic as described in Listing 4.2. The
tool performs multiple measurement iterations, and both the mean and variance are calculated
for each metric. At the time of writing, the benchmarking tool performs twelve iterations in
total, with two iterations being warmup iterations. The idea of warmup iterations is to increase
the likelihood of the JavaScript engine deciding to optimise the interpreted code.

In order to measure the impact of the library on type-checking, some mathematical opera-
tions were selected for benchmarking: Add, Multiply, Divide and Root, ordered by the increasing
computational complexity. As shown in Figure 4.4, the number of type instantiations propor-
tionally increases with the digit length. As expected, Root, the most complex operation of the
selected few, creates an order of magnitude more type instantiations than other operations.
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Figure 4.4 Comparison of instantiation count for selected operations

However, when comparing the actual time spent by the type checker, there does not seem
to be a strong indication of performance degradation when comparing check times between Add,
Multiply and Divide, as seen in Figure 4.5. Only the Root operation does seem to have a mean-
ingful negative impact on the type-checking performance. As can be seen, there is a significant
performance hit when the number of type instantiations is in the magnitude of millions. For full
benchmarking results, refer to the tables found in Section A.
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Figure 4.5 Comparison of time spent type-checking between selected operations
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Chapter 5

Conclusion

This thesis set out to implement a mathematical expression evaluator entirely written in the
type system of TypeScript. Core concepts and techniques of TypeScript type-level programming
were introduced and explained. The implementation of the expression evaluator was described
in detail, and the implementation was evaluated in terms of correctness and performance using
type-level unit tests and benchmarking suites.

The created evaluator is a proof-of-concept, demonstrating the capabilities of the TypeScript
type system while addressing some of the limitations of the type system by applying workarounds.

This thesis also provides a comprehensive guide to the TypeScript syntax and type system and
can be used as a reference for beginners to the type-level programming in TypeScript. Additional
tools and utility types were introduced to aid the development of the mathematical evaluator,
namely the benchmarking tool and the LL(1) parser generator.

The rest of this chapter will discuss both the practicality of the created types and the limi-
tations of the type system found during development. Finally, the future work will be outlined.

5.1 Practical usage
The TypeScript type system is powerful for static type-checking and inference. However, it is
not without its limitations. These advanced types are considered to be extreme and are generally
not recommended to be used in production code, as they can severely impact the compilation
time and the in-editor developer experience.

Nevertheless, there are some possible practical use cases for these advanced types. Literal
types are often used to describe a design system and accompanying design tokens. Namely,
numeric literal types are used to describe the spacing and sizing of components. When the
spacing is defined in other units, such as rem or em, developers often need to convert the values
into pixels manually. A utility type can be introduced to convert values in rem or em units into
pixels and reverse. This can be further expanded to allow more type transformations, such as
converting a Tailwind CSS class name into a CSS string without any TypeScript editor plugins.

The parser and the accompanying parser generator can accept any LL(1) grammar and can
be used to parse more complex formats, such as JSON. Finally, the benchmarking tool can be
used to benchmark any type-level code in isolation, keeping all the test cases in a single file.
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5.2 Limitations of the TypeScript type system
When developing the implementation of the evaluator, some limitations of the TypeScript type
system were discovered.

In general, error messages in TypeScript are suboptimal. They tend to be displayed in
one line without any formatting, and if they include complicated types, the types are trun-
cated, which leads to a subpar debugging experience. Even with the noErrorTruncation flag
turned on in tsconfig.json, the type message is still truncated due to a hard limit. The limit
can be artificially raised by patching the TypeScript source code, namely by increasing the
defaultMaximumTrucationLength limit, but this is not a viable long-term solution. The only
other option is to manually recreate intermediate types when debugging complicated types.

The type checker itself contains many hardcoded constraints to prevent performance degra-
dation, ranging from the maximum tuple size to the limit on both instantiation count and depth.
Some checks can be bypassed using various workarounds, often at a performance cost, discussed
in previous chapters. However, these workarounds are poorly documented in the official Type-
Script documentation and can break with new TypeScript releases without further notice.

Even though the TypeScript type system is powerful for complex types, some highly requested
features are still missing as of the writing of this thesis, such as the lack of partial type argument
inference [60] or lack of built-in utility types for type-level assertions. Some of these features
can be partially emulated, such as the lack of higher-kinded types, but the behaviour can also
change with new TypeScript releases.

Finally, as the type checker itself is written in TypeScript to dogfood the language, it can
be inherently slow when working with larger TypeScript codebases. Some of these performance
issues are being solved by rewriting the type checker in a different programming language, such
as Rust [61], but the project is still under active development.

5.3 Future work
Most of the future work is geared towards the underlying tooling and utilities rather than the
mathematical expression evaluator itself, which can be further extended by adding additional
mathematical operations based on the existing utility types implemented in this thesis.

For instance, the LL(1) parser generator is not flexible enough, as it can only generate code
for LL(1) grammar, which, while being sufficient for mathematical expressions and other simple
formats such as JSON, is not sufficient enough for more complex grammar. Future work could
include creating a more generic Look-Ahead LR parser generator, which would be able to parse
more complex grammar and even programming languages.

The benchmarking utility itself can be extended and packaged both as an NPM package
and as a GitHub Action. This is especially useful for library maintainers, who can use the
additional CI step to monitor potential performance regressions when reviewing pull requests
from contributors.
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Performance measurements
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Instantiation Count Check Time (ms)
Add<"1", "1"> 50389 626.1480 ± 2732.4835
Add<"1", "10"> 50541 608.1964 ± 1490.2754
Add<"1", "100"> 50637 628.2837 ± 1187.9201
Add<"1", "1000"> 50734 590.4544 ± 1323.4114
Add<"1", "10000"> 50833 563.4551 ± 503.1991
Add<"1", "100000"> 50934 564.6383 ± 326.1892
Add<"1", "1000000"> 51037 590.2288 ± 800.6683
Add<"1", "10000000"> 51142 566.8994 ± 1322.4848
Add<"1", "100000000"> 51249 592.8983 ± 2703.7284
Add<"1", "1000000000"> 51358 580.8956 ± 732.7624
Add<"1", "10000000000"> 51469 602.9816 ± 2772.3885
Add<"1", "100000000000"> 51582 574.9316 ± 443.2602
Add<"1", "1000000000000"> 51714 573.1765 ± 288.5311
Add<"1", "10000000000000"> 51849 593.7831 ± 815.4532
Add<"1", "100000000000000"> 51987 576.2892 ± 1581.0826
Add<"1", "1000000000000000"> 52128 564.1985 ± 226.5942
Add<"1", "10000000000000000"> 52272 561.8088 ± 202.4868
Add<"1", "100000000000000000"> 52419 588.9620 ± 1605.4446
Add<"1", "1000000000000000000"> 52569 598.1670 ± 2184.9193

Table A.1 Instantiation count and check time for Add

Instantiation Count Check Time (ms)
Multiply<"1", "1"> 52418 566.2856 ± 1304.8233
Multiply<"1", "10"> 52742 586.9069 ± 2054.9946
Multiply<"1", "100"> 53057 548.8409 ± 291.8180
Multiply<"1", "1000"> 53436 552.7645 ± 1010.9699
Multiply<"1", "10000"> 53879 573.1269 ± 1982.9075
Multiply<"1", "100000"> 54383 552.6068 ± 404.8264
Multiply<"1", "1000000"> 54948 543.9872 ± 156.1134
Multiply<"1", "10000000"> 55574 552.3896 ± 391.9594
Multiply<"1", "100000000"> 56261 569.8469 ± 1450.4120
Multiply<"1", "1000000000"> 57009 582.6160 ± 2282.8004
Multiply<"1", "10000000000"> 57818 588.8492 ± 2708.3371
Multiply<"1", "100000000000"> 58705 571.0721 ± 1108.1628
Multiply<"1", "1000000000000"> 59654 561.9530 ± 502.5156
Multiply<"1", "10000000000000"> 60665 586.2230 ± 1929.5835
Multiply<"1", "100000000000000"> 61738 582.3424 ± 1791.3684
Multiply<"1", "1000000000000000"> 62873 594.4613 ± 2638.3184
Multiply<"1", "10000000000000000"> 64070 586.1715 ± 1270.7923
Multiply<"1", "100000000000000000"> 65329 580.8701 ± 641.9969
Multiply<"1", "1000000000000000000"> 66650 587.0313 ± 1519.6371

Table A.2 Instantiation count and check time for Multiply
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Instantiation Count Check Time (ms)
Divide<"1", "3"> 56065 611.1183 ± 3712.1221
Divide<"10", "3"> 56007 566.6266 ± 1312.9779
Divide<"100", "3"> 56190 554.2810 ± 178.3204
Divide<"1000", "3"> 56257 545.5406 ± 1368.3422
Divide<"10000", "3"> 56317 552.3237 ± 1120.0729
Divide<"100000", "3"> 56377 579.1138 ± 841.8474
Divide<"1000000", "3"> 56437 590.3914 ± 2730.2088
Divide<"10000000", "3"> 56497 552.0362 ± 983.1479
Divide<"100000000", "3"> 56557 552.2182 ± 1549.2122
Divide<"1000000000", "3"> 56617 576.9744 ± 1538.6618
Divide<"10000000000", "3"> 56677 584.4138 ± 1771.3998
Divide<"100000000000", "3"> 56767 575.2797 ± 2817.7110
Divide<"1000000000000", "3"> 56875 574.0339 ± 1187.0906
Divide<"10000000000000", "3"> 56985 572.9396 ± 1845.7412
Divide<"100000000000000", "3"> 57097 544.0291 ± 187.0663
Divide<"1000000000000000", "3"> 57211 610.6468 ± 1628.6978
Divide<"10000000000000000", "3"> 57327 597.4917 ± 751.0289
Divide<"100000000000000000", "3"> 57445 549.7234 ± 404.5449
Divide<"1000000000000000000", "3"> 57565 580.1838 ± 1396.0654

Table A.3 Instantiation count and check time for Divide

Instantiation Count Check Time (ms)
Root<"1", "2"> 101781 657.9258 ± 4637.2670
Root<"10", "2"> 943579 2231.2624 ± 26354.7449
Root<"100", "2"> 995709 2358.4428 ± 46642.8882
Root<"1000", "2"> 1150338 2457.2318 ± 7974.3022
Root<"10000", "2"> 1290084 2717.1363 ± 22569.9561
Root<"100000", "2"> 1390432 3114.9099 ± 89929.3402
Root<"1000000", "2"> 1480678 3476.8778 ± 132963.1171
Root<"10000000", "2"> 1715701 3535.6702 ± 217462.3269
Root<"100000000", "2"> 1944285 4017.5913 ± 22143.6082
Root<"1000000000", "2"> 2264897 4512.2763 ± 45757.7304
Root<"10000000000", "2"> 2614395 5477.2640 ± 64109.5688
Root<"100000000000", "2"> 2898459 6333.6284 ± 9891.4644
Root<"1000000000000", "2"> 3157392 6439.0302 ± 36044.4666
Root<"10000000000000", "2"> 3400798 6758.4044 ± 84619.0587
Root<"100000000000000", "2"> 3630962 6763.4433 ± 32105.0016
Root<"1000000000000000", "2"> 3861157 7483.2405 ± 52541.9327
Root<"10000000000000000", "2"> 4087750 7638.8097 ± 163773.6981
Root<"100000000000000000", "2"> 4319968 8199.8814 ± 306798.3177
Root<"1000000000000000000", "2"> 4558096 8563.6442 ± 363040.7800

Table A.4 Instantiation count and check time for Root
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