
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Evaluation of service compliance with SLO before production

release

Bc. Peter Žáčik

Ing. Martin Beránek

Informatics

Software Engineering

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

One of the most challenging issues facing backend service development is compliance

with the objectives introduced by the SLO (Service-level Objectives). Those objectives

could be error rate, latency, availability in time and more. Deciding if service release will

follow objectives once in production is generally tricky.

 1. Analyze the current state of proactive service testing before releasing to production.

 2. Implement a tool that generates tests of common SLOs (availability, latency, error

rate, ...) from API description (Swagger, proto files, ...):

 a. Generated tests must be usable in the Continous Delivery system and mark a service

invalid once it doesn't pass the given objectives.

 b. The test format should be a configuration of commonly used benchmarking tools (K6,

Locust, Gatling benchmark).

 3. Test the tool implementation on an example application deployment with basic SLO

values of 99.99% availability, 1% error rate and 100 ms latency:

 a. The application has to be able to simulate the SLO values.

It is not required to develop a benchmark tool, yet it is imperative to bridge the gap

between benchmark development and SLO service description. The tool has to help

validate the service and free the developer from the time of benchmark preparation.

Electronically approved by Ing. Michal Valenta, Ph.D. on 29 September 2022 in Prague.

Master’s thesis

Evaluation of service compliance with SLO
before production release

Bc. Peter Žáčik

Department of Software Engineering
Supervisor: Ing. Bc. Martin Beránek

May 4, 2023

Acknowledgements

I would like to thank my supervisor, Ing. Bc. Martin Beránek for the time
he dedicated to this project and his helpful insight into the world of practical
software engineering.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 4, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Peter Žáčik. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Žáčik, Peter. Evaluation of service compliance with SLO before production
release. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2023.

Abstrakt

Tato práce prezentuje implementaci softwarového nástroje poskytuj́ıćıho au-
tomatické vyhodnocováńı ćıl̊u SLO. Nový nástroj, Perfcheck, využ́ıvá speci-
fikace OpenAPI ke generováńı přizp̊usobitelného benchmarkového testu pro
webové služby. Perfcheck nav́ıc poskytuje integraci s platformou Google Cloud.
Nástroj je použitelný v Continuous Delivery (CD) systému. V práci je popsán
proces návrhu a implementace nástroje Perfcheck. Nástroj je Open source a
je k dispozici pro instalaci na v́ıce platformách.

Kĺıčová slova service-level agreement, service-level objective, testováńı soft-
waru, výkon aplikaćı, latence, implementace, automatizace, statistická analýza,
Golang, Google Cloud, OpenAPI

vii

Abstract

This thesis presents the implementation of a software tool providing automatic
service-level objective (SLO) evaluation. The new tool, Perfcheck, utilizes
the OpenAPI specification to generate a customizable benchmark test for
HTTP web services. Alternatively, Perfcheck integrates with the Google Cloud
Platform. The tool is usable in a Continuous Delivery (CD) system. The
process of designing and implementing Perfcheck is described in the thesis.
The tool is open source and is available for installation on multiple platforms.

Keywords service-level agreement, service-level objective, software testing,
application performance, latency, implementation, automatization, statistical
analysis, Golang, Google Cloud, OpenAPI

viii

Contents

Introduction 1

1 Goal 3

2 Software testing 5
2.1 Functional testing . 5
2.2 Non-functional testing . 6
2.3 SLA, SLO, SLI . 6

2.3.1 SLO examples . 7
2.3.2 Error budget . 7
2.3.3 SLO evaluation . 8

2.4 Pre-release service testing . 9
2.4.1 Staging environment . 9
2.4.2 Blue-green deployments 9
2.4.3 Canary deployments . 10
2.4.4 Service evaluation in a serverless environment 10

3 State-of-the-art 11
3.1 Service monitoring . 11

3.1.1 Kubernetes Dashboard 11
3.1.2 Prometheus . 12
3.1.3 NGINX Amplify . 12
3.1.4 Google Cloud Platform SLOs 12
3.1.5 Other cloud providers 13

3.2 Service evaluation . 13
3.2.1 Artillery . 14
3.2.2 Gatling . 15
3.2.3 JMeter . 16
3.2.4 Grafana k6 . 17
3.2.5 Locust . 19

ix

3.2.6 Benchmark tools summary 19

4 Analysis 21
4.1 Target audience . 21
4.2 Target SLIs . 21
4.3 Requirements . 22

4.3.1 Functional requirements 22
4.3.2 Non-functional requirements 23

4.4 Use cases . 24

5 Design and Architecture 27
5.1 Benchmarking tool . 27
5.2 Language . 27

5.2.1 Go templates . 28
5.3 Input and Output . 28

5.3.1 generate . 30
5.3.2 test . 31
5.3.3 get-template . 31

5.4 SLO parsing . 31
5.4.1 OpenAPI SLOs . 31
5.4.2 Google Cloud SLOs . 34

5.5 SLO evaluation . 34
5.6 Architecture . 35
5.7 Release management . 35

5.7.1 GoReleaser . 36

6 Implementation 39
6.1 Environment . 39
6.2 License . 40
6.3 Command-line interface . 40
6.4 SLO parsing . 41

6.4.1 OpenAPI SLOs . 43
6.4.2 Google Cloud SLOs . 43

6.5 Benchmark template . 43
6.5.1 Thresholds . 44
6.5.2 Virtual users and duration 44
6.5.3 The response size metric 45
6.5.4 Parameter generation 45

6.6 Test execution . 46
6.7 Statistical analysis . 46
6.8 Documentation . 49
6.9 Release management . 50

7 Examples 53

x

7.1 OpenAPI . 53
7.2 Google Cloud . 54
7.3 Statistical analysis . 55
7.4 Deployment pipeline . 56
7.5 Examples summary . 57

Conclusion 59

Bibliography 61

A Acronyms 65

B Contents of enclosed media 67

C Example GitHub Actions pipeline 69

xi

List of Figures

3.1 JSON representation of a GCP service-level objective 13
3.2 Artillery: YAML definition of a test scenario. 14
3.3 Artillery: YAML definition of a test configuration. 14
3.4 Artillery: YAML definition of SLOs. 15
3.5 Gatling: simple Java benchmark. 16
3.6 JMeter UI: definition of an HTTP request 17
3.7 k6: test of a single GET endpoint. 17
3.8 k6: test of a single POST endpoint with custom body and headers. 18
3.10 Locust: simple benchmark test implementation. 19
3.9 k6: latency threshold definition. 19

4.1 UML use case diagram . 25

5.1 Go template: Input structure and execution logic (main.go). . . . 29
5.2 Go template: Template definition for a k6 benchmark. 29
5.3 Go template: Final generated benchmark. 30
5.4 OpenAPI vendor extensions at the top level of the document. . . . 32
5.5 OpenAPI vendor extensions at the endpoint level. 33
5.6 The Perfcheck package structure. 35
5.8 Installation using the Go command-line interface. 35
5.7 UML Activity Diagram: Perfcheck packages. 36

6.1 Initialization of the command-line interface. 41
6.2 Definition of a CLI command with a single flag. 41
6.3 Parsers: Generic representation of the API 42
6.4 Parsers: Generic representation of a single API endpoint (path).

The Metric type is an alias for a Go string. 42
6.5 Parsers: Generic representation of a endpoint parameter genera-

tion logic. 43
6.6 Perfcheck: latency threshold template. 44
6.7 Perfcheck: generated latency thresholds. 45

xiii

6.8 Perfcheck: custom response size metric definition. 45
6.9 Perfcheck: parameter generation sub-template. 46
6.10 Perfcheck: the generateFromPattern function. 47
6.11 Perfcheck: the benchmark execution. 48
6.12 Perfcheck: Example usage of a statistical SLO. 49
6.13 Perfcheck: One-sided one sample t-test execution. 49
6.14 GoReleaser: Linux packages configuration 50
6.15 GoReleaser: Snapcraft store configuration 51
6.16 GoReleaser: Docker image configuration 51

7.1 Example: application entrypoint with global SLO specification. . . 54
7.2 Example: application entrypoint with global SLO specification. . . 55
7.3 Google Cloud: SLO definition for a Cloud Run application. 56
7.4 Example: application endpoint with a statistical latency requirement 56

xiv

List of Tables

2.1 Examples of service-level objectives 8

4.1 Functional requirements coverage. 24

5.1 OpenAPI parameter generation for Perfcheck. 34

xv

Introduction

Performance is an often overlooked aspect of software products. Being dif-
ficult to define, measure, and guarantee, performance may not be a priority
and efforts are instead placed on new features and pleasing aesthetics. Upper
management may find it difficult to express exact performance requirements
without technical knowledge or prior experience, which could lead to negli-
gence by the development team. Many projects could benefit by being able
to increase availability and reduce loading times or the number of outages.
Poor performance discourages both new and existing consumers from using
the product, which is undesirable when user engagement is a key indicator of
company success.

In situations where high performance is essential to the product, one must
be able to precisely specify the acceptance criteria of the product. One way to
define performance requirements is through a Service Level Agreement (SLA)
document. The components of the Service Level Agreement describe indi-
vidual objectives (service-level objectives, SLO) and respective metrics that
need to be monitored and kept above or below a certain threshold (service-
level indicator, SLI). Not fulfilling the objectives results in penalties against
the provider of the product. Having the ability to predict and monitor the
affected metrics is beneficial for both the customer and the supplier of the
product.

It is time consuming for developers to write benchmark tests that verify
the fulfillment of service-level objectives. Although tools and frameworks are
available to implement simple or advanced benchmarks, most require knowl-
edge of a certain programming language and a mastery of complex configura-
tion mechanisms. It is even more tricky to decide whether a service complies
with the SLOs before being deployed to production. In this case, benchmark
tests must be executed manually before the release in a staging environment,
or included in the deployment pipeline and executed automatically. Automa-
tion is essential for a continuous deployment process. Therefore, one could
also benefit from the tests being autogenerated, either from the source code,

1

Introduction

documentation, or a description of an interface.
Backend services commonly offer a public description of their Application

Programming Interface (API), which helps consumers of the service familiarize
themselves with their functionality. The API description is used primarily to
define the required inputs and expected outputs of individual endpoints. The
formats of the API descriptions are heavily standardized and well known by
developers. Therefore, it is often used for the generation of client-side code.
However, it could also be used to specify non-functional requirements, either
globally or for parts of the service. An external tool would then be able to
extract the requirements, generate benchmark tests for the API, and run them
in a given environment. As a result, human efforts would decrease and the
reliability of the testing process will improve.

2

Chapter 1
Goal

The goal of this thesis is to design, implement, and test a software tool which
will reduce development efforts related to non-functional service testing. The
new tool will provide a way to easily create and run benchmark tests for a given
service. The use of the tool should be language-agnostic and will enable the
description of the requirements for the service within the implementation. All
benchmarks will be automatically generated, based on service level objectives
(SLOs). It would only be necessary to include the service level objectives in
the application programming interface (API) description.

The tool will be usable in continuous integration (CI) and continuous de-
livery (CD) workflows. A service that does not conform to the selected require-
ments will be marked invalid by the workflow. The results of the benchmark
tests will be easily available to service developers and could be advantageous
in improving the service. Once the workflow has been completed successfully,
the service can be considered compliant with the SLO requirements and can
proceed to the next release step.

The following are the steps necessary to complete the task:

• familiarization with current software testing techniques, described in
Chapter 2,

• familiarization with the current possibilities of benchmark testing and
description of specific shortcomings of existing benchmark tools, de-
scribed in Chapter 3,

• analysis of requirements and use cases, described in Chapter 4

• outlining the architecture and design of the new tool, and deciding which
technologies are suitable for development, described in Chapter 5,

• implementation of the tool, described in Chapter 6

• evaluation of the functionality and usability of the new tool, with the
use of examples, described in Chapter 7.

3

Chapter 2
Software testing

Software testing is the process of evaluating the validity of a software product
by identifying defects or errors that negatively affect the users of the prod-
uct. The concept of software testing has evolved greatly since it was first
introduced, but it is not an exact science [1]. Many different approaches are
used in the software development industry, each covered by a wide selection
of tools.

2.1 Functional testing

Functional testing is the act of checking whether a given service follows a
predefined set of functional (business) requirements. It is used to verify that
the application is working as intended [2].

It is rarely possible to completely verify the behavior of a service. Tech-
niques such as program verification can be used, but their use is problematic
for complex applications. Normally, the test case developer must cover as
many possible execution paths as possible in order to consider the application
as correct.

Functional testing is typically applied at multiple levels, with each level
focusing on a different aspect of a standard software application. Possible
examples are listed below [2]:

• unit testing,

• integration testing,

• system (end-to-end) testing,

• acceptance testing.

5

2. Software testing

2.2 Non-functional testing

Non-functional testing is the act of measuring and evaluating how well a
system performs the required tasks. Non-functional requirements typically
define thresholds for various metrics that need to be followed. Ignoring non-
functional testing might lead to the service being rendered unusable or imprac-
tical for the user, even if the system behavior is correct. Possible examples
of non-functional requirements are a certain level of security, performance,
usability, or accessibility [3].

2.3 SLA, SLO, SLI

Non-functional requirements are usually defined by the customer in a service-
level agreement (SLA) document. The SLA is a documented agreement
that binds the supplier and the customer of the product and contains the
objectives that the service must achieve to comply with the agreement. If the
objectives are not met, sanctions can be placed against the service provider. A
common way to define objectives is to specify relevant metrics and appropriate
thresholds that must be followed [3].

Service-level objectives (SLOs) are targets within the SLA, agreed be-
tween the customer, the supplier, and stakeholders, and are used to measure
how the service performs. Used in combination with alerting mechanisms,
SLOs help prevent breaches of the SLA document[3].

The status of an SLO is evaluated by service-level indicators (SLIs),
which track a measurable quantity. SLIs are used to determine whether the
objectives in the respective document are met. Common examples of SLIs
are [3]:

• Latency is the time between the initiation of the request and the acqui-
sition of the first part of the response (time to first byte, TTFB). It can
be interpreted as the delay caused by the network connection plus the
server computation [4]. Latency requirements can be based on several
statistics, such as the mean, median or a certain percentile [5].

• Error rate is the ratio of the number of failed requests to the number
of all requests. In the HTTP protocol, a failed request is one that did
not receive a response or received a response with a 5xx status code. [3].

• Availability is the ability of the system to perform the required task at
a given point in time. Availability windows are usually calendar-based or
hour-baseds [3]. For example, a service may need to be available during
regular work hour. The availability thresholds can be expressed as a
percentage of requests that receive a correct response during the defined
availability window. When taking into account only simple objectives,
the error rate is inversely proportional to availability [3].

6

2.3. SLA, SLO, SLI

• Response size is the size in bytes of the response body. The require-
ments can be based on average size, maximum size, or a similar metric.

• Throughput is the number of requests per second that the system can
handle before becoming saturated. When a system is saturated, perfor-
mance will decrease for any additional users [3]. As such, it defines the
maximum number of concurrent users. It is commonly used in conjunc-
tion with latency [6].

• Mean time between failure (MTBF) is the average time delay be-
tween two consecutive system outages.

• Mean time to repair (MTTR) is the average time delay between a
system outage and its recovery.

• Freshness is the proportion of accessed data that was updated more
recently than a certain threshold. It is often related to data caching [3].

• Durability is the probability that the data received from a service will
be up-to-date for a specified period of time [6]

• Correctness is the ratio of correctly and incorrectly performed actions
within the service. It is usually a property of the service, not of the
infrastructure [6].

Some of the above-mentioned service-level indicators may overlap. It is
important for the customer to specify what affects the business and what
does not. It is rare that more than a few SLIs are used [3].

2.3.1 SLO examples

Examples of SLOs are shown in Table 2.1.

2.3.2 Error budget

It is highly desirable to monitor the operation of the services in production,
to remain within the SLO error budget [3]. The error budget for an SLO
represents the total amount of time that a service can be noncompliant before
it is in violation of its SLO [5]. The SLO error budget enables tracking how
many unwanted SLI measurements are allowed to occur until the end of the
current compliance period, which might be helpful in managing release tasks
and preventing sanctions against the supplier [3].

7

2. Software testing

Indicator Threshold Statistic Description
Latency 100 ms mean The average latency must be

less than 100 milliseconds.
Latency 50 ms 99% 99% of requests must be faster

than 50 milliseconds.
Error rate 0.01 - Less than 1% of requests can

fail.
Throughput 1 million, 1 s 95 % 95% of throughput requests

must be handled under 1 sec-
ond

Mean time to repair 60 min mean The average time to repair
must be less than 60 minutes.

Availability 99% - The system must be available
99% of the time.

Table 2.1: Examples of service-level objectives

2.3.3 SLO evaluation

It is possible to define two distinct SLO evaluation methods that specify when
an SLI metric is collected [7]:

• Request-based evaluation compares the number of requests that
meet the evaluation criteria versus the number of requests that do not,
in a given period.

• Windows-based evaluation compares the number of evaluation pe-
riods that meet a ”goodness” criterion with those that do not. For
example, in an evaluation period of one week, one could check that 99 %
of one-hour intervals were good enough to meet the SLO objectives.

Furthermore, it is necessary to specify the compliance period for the SLOs.
Compliance periods are time intervals that specify when an SLO is evalu-
ated [3, 7].

• Rolling window evaluation uses a sliding period with defined length
and granularity. For example, a rolling window of 7 days has a daily
evaluation. On a new day, the compliance and error budgets are recal-
culated for the length of the rolling window [7]. Rolling windows are
more closely aligned with the user experience of the service [3].

• Calendar window evaluation measures compliance over a fixed period
of time. The error budget is reset when a new period begins [7]. The
calendar window approach is more closely aligned with business planning
tasks [3].

8

2.4. Pre-release service testing

This thesis focuses on the non-functional testing of services, using service-
level objectives and the API description as the input, and verifying whether
the service conforms to the specified objectives, before releasing to production.

2.4 Pre-release service testing

For most software, it is vital to run tests automatically before releasing them
to production. Functional tests can be easily performed in a non-production
environment, with no effect on the results. It is expected that the system’s
functional behavior does not depend on the resources available in its environ-
ment [1].

However, non-functional testing usually depends on the service’s environ-
ment. Evaluation of non-functional requirements before releasing to produc-
tion is not trivial and requires having computational resources similar to pro-
duction resources available in the testing phase. This can be achieved by one
of the following techniques [3]:

• staging (pre-production) environment,

• blue-green deployments,

• canary deployments.

2.4.1 Staging environment

A staging, or pre-production, environment is typically a replica of the produc-
tion environment from a given point in time. It should include all services,
data, and resources found in a production environment. To accurately evaluate
non-functional requirements, the performance test must be able to generate a
load similar to real-world traffic [3]. In practice, ephemeral environments are
often used to reduce the costs associated with the maintenance of a complete
environment [8].

An advantage of using a staging environment is that the execution of any
kind of test does not affect the production application. A test may insert
unwanted entries into the database that would then need to be deleted. In a
staging environment, this is usually not a problem. The disadvantage of using
a staging environment is the need to replicate all of the services running in
production. These may include several business-related services, databases,
message queues, or caches. Additionally, APIs of external dependencies may
need to be mocked, in order for the staging environment to function properly.

2.4.2 Blue-green deployments

Blue-green deployment is a method of releasing changes safely to production.
Two versions of a production service are deployed at the same time. With

9

2. Software testing

blue-green deployments, only one of these servers is handling traffic. The new
version can be monitored and tested before receiving production traffic [3].

2.4.3 Canary deployments

Canary deployments are partial, time-limited releases directly to the produc-
tion environment. Once evaluated, they are completely deployed or reversed
back to the original (control) deployment [3].

In canary deployments, only a small subset of users are affected [3]. The
requirement for using blue-green or canary deployments is having multiple
instances of a single service, which allows for routing different users to different
versions of the program.

2.4.4 Service evaluation in a serverless environment

In certain serverless environments (Cloud Run, AWS Fargate), it is possible
to deploy a new instance of an application independently of the live version,
without needing to manually allocate resources. Therefore, it is feasible to
perform service benchmark testing on a computationally equivalent replica
with little effort. This approach is similar to a blue-green deployment with
no affected end users. After the successful evaluation of the new revision,
production traffic can be re-routed from the previous version [9, 10].

10

Chapter 3
State-of-the-art

This chapter outlines the current methods of service monitoring and proactive
service evaluation with respect to service-level objectives.

3.1 Service monitoring

Most popular cloud providers (AWS, GCP, Azure, Vercel) have the option
to monitor managed cloud services, such as containers, Kubernetes clusters,
serverless functions, databases, API gateways, or static file servers. They
provide metrics, alerts, and visualization of the performance of an application.
Monitoring self-hosted systems is possible with the help of dedicated software,
for example, Kubernetes Dashboard, Prometheus, or NGINX Amplify. The
functionality of these tools is analyzed in the following sections, with regard
to the ability to monitor running services, displaying analytical dashboards,
and specifying SLOs.

3.1.1 Kubernetes Dashboard

Dashboard is a web-based Kubernetes user interface. You can use Dashboard
to deploy containerized applications to a Kubernetes cluster, troubleshoot your
containerized application, and manage the cluster resources. You can use
Dashboard to get an overview of applications running on your cluster, as well
as for creating or modifying individual Kubernetes resources (such as Deploy-
ments, Jobs, DaemonSets, etc.). For example, you can scale a Deployment,
initiate a rolling update, restart a pod or deploy new applications using a de-
ploy wizard. [11]

Service monitoring is possible using Kubernetes Dashboard, but it does
not include alerts. It is also not possible to define and monitor custom SLOs
for deployments.

11

3. State-of-the-art

3.1.2 Prometheus

Prometheus is an open-source monitoring system designed to collect, store,
and analyze metrics data. It also includes an alerting mechanism. A cus-
tom query language, PromQL, is used to extract data from Prometheus. It is
also possible to define custom SLOs in Prometheus using an external genera-
tor. [12].

3.1.3 NGINX Amplify

NGINX Amplify is a SaaS tool for monitoring NGINX proxy servers. It pro-
vides real-time monitoring and diagnostics of an application’s performance.
Alerts can be configured in NGINX Amplify. It does not provide an option to
define SLOs. [13]

3.1.4 Google Cloud Platform SLOs

Google Cloud Platform (GCP) is a collection of cloud services offered by
Google Cloud that include computing, storage, analytics, monitoring, and
machine learning [14]. The most popular computing services include: Com-
pute Engine, Kubernetes Engine, and Cloud Run.

Computing services with an exposed API running on GCP can be moni-
tored using the GCP Monitoring service. GCP Monitoring collects telemetry
from the services, provides analytics, and has the option to define custom
SLOs [15].

GCP automatically assesses compliance with defined SLOs and displays
the remaining error budget based on the SLO specifications, such as the SLI
metric, the evaluation method and the compliance period [7]. SLOs defined in
Cloud Monitoring are available via the Google Cloud API or various language-
specific SDKs. This makes it possible to collect the SLOs and work with them
in an external service. Within GCP, it is not possible to verify SLO compliance
before a release.

Figure 7.3 shows an example of an SLO defined in GCP, represented in
JSON. The SLO defines a request-based requirement for 1-second latency in
99 % of requests. The compliance period is one calendar day.

12

3.2. Service evaluation

1 {
2 "name": "projects/[PROJECT_ID]/services/
3 [SERVICE_ID]/serviceLevelObjectives/
4 [SLO_ID]",
5 "displayName": "99% - Latency - Calendar day",
6 "goal": 0.99,
7 "calendarPeriod": "DAY",
8 "serviceLevelIndicator": {
9 "basicSli": {

10 "latency": {
11 "threshold": "1s"
12 }
13 }
14 }
15 }

Figure 3.1: JSON representation of a GCP service-level objective

3.1.5 Other cloud providers

In AWS and Azure, it is not possible to set up service-level objectives and
monitoring in a similar fashion to Google Cloud Platform SLOs.

3.2 Service evaluation

Evaluating service performance before production release is possible by using
benchmarking tools. The tools are typically configured using a script (Load-
Test-as-Code) or a custom configuration format. Afterwards, the benchmark
is performed by executing the required HTTP communication. Results of the
benchmark are typically available to the developer in a structured format.
The most popular open-source options, based on the size of the user base and
the activity of project development, are [16]:

• Artillery

• Gatling

• Apache JMeter

• Grafana k6

• Locust

13

3. State-of-the-art

3.2.1 Artillery

Artillery is a load test platform, designed to integrate with other monitoring
tools and CI/CD tools [17]. Test scenarios and configurations are defined using
a YAML format. An example of a simple test scenario is shown in Figure 3.2.
In this scenario, items are first listed using a GET request. Then, the details
of the first item are viewed using another GET request.

1 scenarios:
2 - name: "List items and view details of first"
3 flow:
4 - get:
5 url: "/items"
6 capture:
7 - json: "$.results[0].id"
8 as: "id"
9 - get:

10 url: "/items/{{ id }}"

Figure 3.2: Artillery: YAML definition of a test scenario.

To simulate real-world traffic, a test scenario may be executed with mul-
tiple concurrent virtual users (VUs). Each test can consist of multiple stages,
with a specific number of VUs, or a ramping strategy for users [17]. Figure
3.3 shows the configuration of two consecutive testing stages.

1 config:
2 target: https://example.com
3 phases:
4 - duration: 10
5 arrivalRate: 1
6 - duration: 10
7 arrivalRate: 10

Figure 3.3: Artillery: YAML definition of a test configuration.

Artillery will automatically collect metrics from requests defined in the
scenarios and display them in the standard output of the test execution [17].
To define and verify SLOs, artillery uses a threshold concept. Figure 3.4
shows the definition of SLOs for latency in milliseconds, using the built-in

14

3.2. Service evaluation

http.response time metric. A custom percentile is defined using the p99
and p95 specifiers. If the service successfully complies with the SLOs, the test
exits successfully, otherwise it displays the problem and exists with an error
code.

1 config:
2 ensure:
3 thresholds:
4 - "http.response_time.p99": 250
5 - "http.response_time.p95": 100

Figure 3.4: Artillery: YAML definition of SLOs.

3.2.2 Gatling

Gatling is a load-testing tool, designed to verify the objectives of HTTP in-
terfaces. Gatling is executable in a Java environment. The test scenario may
be defined in a Java, Kotlin, or Scala program [18]. Figure 3.5 shows a sim-
ple Java benchmark with the definition of the target endpoint, the number of
users, and the frequency of calling the service. Gatling also provides a way
to define the testing scenario using a visual user interface. Gatling does not
provide a way to specify SLOs. Instead, a report is generated from each run
of the benchmark.

15

3. State-of-the-art

1 import io.gatling.javaapi.core.*;
2 import io.gatling.javaapi.http.*;
3

4 import static io.gatling.javaapi.core.CoreDsl.*;
5 import static io.gatling.javaapi.http.HttpDsl.*;
6

7 public class BasicSimulation extends Simulation {
8

9 HttpProtocolBuilder httpProtocol = http
10 .baseUrl("http://example/com");
11

12 ScenarioBuilder scn = scenario("BasicSimulation")
13 .exec(http("request")
14 .get("/"))
15 .pause(1);
16

17 {
18 setUp(
19 scn.injectOpen(atOnceUsers(10))
20).protocols(httpProtocol);
21 }
22 }

Figure 3.5: Gatling: simple Java benchmark.

3.2.3 JMeter

Apache JMeter is an open-source Java-based benchmarking software. Com-
pared to other popular benchmarking tools, Jmeter does not implement the
Load-Test-As-Code approach. Instead, JMeter provides a window-based user
interface. It enables the definition of test scenarios and displays metrics in a
user-friendly way [19]. Figure 3.6 displays the JMeter user interface.

16

3.2. Service evaluation

Figure 3.6: JMeter UI: definition of an HTTP request

Source: https://github.com/apache/jmeter

3.2.4 Grafana k6

Grafana k6 is an open-source benchmarking tool that makes it easy to execute
load-testing scripts in a NodeJS environment. The test is expressed using a
JavaScript program that uses multiple k6 libraries [20]. The developer only
defines the details of the HTTP requests. At execution, k6 measures key
performance metrics. An example test of a single endpoint is shown in figure
3.7.

1 import http from 'k6/http';
2

3 export default function () {
4 http.get('https://example.com');
5 }

Figure 3.7: k6: test of a single GET endpoint.

Figure 3.8 shows how to execute more complex requests in k6, such as a
POST request with headers and a body, where additional information must
be included.

17

https://github.com/apache/jmeter

3. State-of-the-art

1 import http from 'k6/http';
2

3 export default function () {
4 const body = {
5 example: 'string'
6 };
7

8 const headers = {
9 'Content-Type': 'application/json'

10 }
11

12 http.post('https://example.com', body, { headers });
13 }

Figure 3.8: k6: test of a single POST endpoint with custom body and headers.

By default, k6 collects the following metrics [20]:

• http reqs: number of total HTTP requests executed,

• http req blocked: time spent waiting for a TCP connection slot,

• http req connecting: time spent establishing a TCP connection,

• http req tls handshaking: time spent exchanging TLS secrets

• http req sending: time spent sending data,

• http req waiting: time to first byte (TTFB),

• http req receiving: time spent receiving data,

• http req duration: total time of a request,

• http req failed: ratio of failed requests.

Using metrics http req duration and http req failed, it is possible to
check both the latency and error rate of a service. To implement pass/fail
criteria for a k6 benchmark, thresholds for the test metric must be defined.
Thresholds are a method to encode SLOs in k6 [20]. An example of a 200 ms
threshold for the average latency of a request is shown in Figure 3.9.

18

3.2. Service evaluation

1 from locust import HttpUser, task
2

3 class AppUser(HttpUser):
4 @task
5 def hello_world(self):
6 self.client.get("/foo")

Figure 3.10: Locust: simple benchmark test implementation.

1 import http from 'k6/http';
2

3 export const options = {
4 thresholds: {
5 http_req_duration: ['avg < 200']
6 },
7 };
8

9 export default function () {
10 http.get('https://example.com');
11 }

Figure 3.9: k6: latency threshold definition.

To simulate real-world traffic, k6 has the option of specifying the number of
concurrent requests to the service, using virtual users. Additionally, multiple
stages can be executed with varying durations and numbers of virtual users
to simulate increasing and decreasing traffic.

3.2.5 Locust

Locust is an open-source load-testing framework, provided as a Python pack-
age. The test configuration and scenarios are expressed as a Python script [21].
An example of a simple testing scenario is shown in Figure 3.10. In this con-
figuration, Locust will add a new user of the service every second, with each
of them regularly accessing the service. Compared to other popular bench-
marking tools, Locust does not provide an option to specify SLOs.

3.2.6 Benchmark tools summary

All of the above-mentioned tools provide a similar set of capabilities, such as:

19

3. State-of-the-art

• Test scenarios - the test may consist of multiple consecutive requests to
the service.

• Test stages - the scenario may be executed in stages with varying num-
bers of virtual users or a custom ramping strategy.

• Test thresholds - the test will succeed or fail based on whether the
tracked metrics comply with the specified thresholds. In most cases,
thresholds can directly express service-level objectives for the service.

20

Chapter 4
Analysis

In this chapter, an analysis of a new software tool for automated benchmark
testing is performed. The tool will parse the SLO definitions embedded in
the API description of a service or in an SLO monitoring platform. It will
automatically generate and run a benchmark test for the service. In practice,
this should free the developer from manual benchmark preparation. The target
audience, functional and non-functional requirements, and use cases of the tool
are described. The name Perfcheck (=performance check) was chosen for this
tool.

4.1 Target audience

Software testing is mainly performed by the developers of the software in
question or a dedicated tester. This tool aims to help developers verify their
own software services. Full access rights and technical knowledge of the tested
service may be required to use the tool. Deployment architecture and other
infrastructure specifics are required to include the tool in a continuous delivery
pipeline.

4.2 Target SLIs

This tool will be able to verify latency, error rate, and response size of
a service or its individual endpoints. To include and evaluate other types of
SLOs, the developer will be able to customize the benchmark configuration.

In theory, latency, error rate, response size, and throughput are the only
SLIs independent of the current internal state of the system and therefore
can be tested in a clean environment. Testing throughput is similar to spec-
ifying the number of virtual users and monitoring performance. Therefore,
throughput will not be included in the SLI options for the new tool. Other
SLIs, such as availability, freshness, MTBF, MTTR, or durability, depend on

21

4. Analysis

the current point in time and the internal state of the system [3]. These are
not easily tested with automatic benchmark generation. Furthermore, metrics
such as quality or correctness may require additional business logic knowledge
to provide a proper evaluation [3].

4.3 Requirements

This section defines the requirements for Perfcheck in order to be a useful and
usable tool for software developers.

4.3.1 Functional requirements

• FR01: Parse API description from an external source
The service developer must be able to specify the source of the API
description. The API description is used to collect metadata about the
service and metadata about the individual endpoints. The supported
formats must be OpenAPIv2 and OpenAPIv3. The supported protocols
must be at least HTTP as HTTPS.

• FR02: Parse the SLO description from an external source
The service developer must be able to specify the source of the service-
level objectives. The SLOs are necessary to generate a benchmark test
for a service. The supported sources must be OpenAPIv2, OpenAPIv3,
and Google Cloud SLOs. The format of the SLO specification for Ope-
nAPI will be defined by Perfcheck.

• FR03: Benchmark generation
The tool should generate a benchmark as a configuration of an existing
benchmarking framework, for example, k6.

• FR04: Benchmark execution
The benchmark must be executable in any supported environment with
network access to the API of the service and enough computational
resources to perform the test.

• FR05: Benchmark results availability
The benchmark results must be available to the developer via a JSON
file. The results might be used for further analysis of the performance.

• FR06: Benchmark customization
The generated benchmark test must be customizable by the developer
prior to execution, either by modifying the template or modifying the
final benchmark test.

• FR07: Statistical evaluation
The tool must be able to statistically assess compliance with SLOs based

22

4.3. Requirements

on the benchmark data. Mainly, it must decide whether compliance with
the SLOs based on limited testing data is statistically significant. The
affected metrics are the average latency, the error rate, and the average
response size. The results of the statistical evaluation must be taken
into account when including the service in a CI/CD pipeline.

4.3.2 Non-functional requirements

• NFR01: Installation availability
The tool must be available for installation at any time for Linux, Win-
dows, and MacOS environments. Installation using a command-line in-
terface is sufficient. Both prebuilt packages and an option to build from
source should be available for all supported platforms. A docker image
containing the pre-installed tool should be publicly available.

• NFR02: Language interoperability
The functionality of the tool must not depend on the implementation
specifics of the target service. It must be language and framework ag-
nostic.

• NFR03: Configurability
Tool configuration must be performed using command-line arguments
or environment variables.

• NFR04: Input extensibility
The tool should follow good software development patterns to be exten-
sible in terms of input sources. Additional formats of API descriptions
and SLO definitions may be added.

• NFR05: Output extensibility
The tool should follow good software development patterns, to be ex-
tensible in terms of defining new output targets for the results of the
benchmark.

• NFR06: SLO extensibility
Developers should be able to extend the tool to support other types of
SLOs, such as response size, availability, throughput, mean time between
failure (MTBF), or mean time to repair (MTTR).

• NFR08: Source availability
The tool should be open source. The code must be available on GitHub,
with proper issue tracking, pull request strategy, and member access. A
proper license must be attached to the source code.

23

4. Analysis

Use case / requirement FR1 FR2 FR3 FR4 FR5 FR6 FR7
UC01 √ √

UC02 √ √

UC03 √ √ √ √ √ √

UC04 √ √ √ √ √ √

UC05 √

UC06 √

Table 4.1: Functional requirements coverage.

4.4 Use cases

• UC01: Install Perfcheck in a local environment
A developer installs Perfcheck in his personal environment.

• UC02: Include Perfcheck in a CI/CD pipeline
A developer or DevOps engineer installs Perfcheck in a continuous inte-
gration/deployment pipeline.

• UC03: Execute a benchmark using the OpenAPI definition
The developer or an automatic job executes the benchmark by providing
the URL of the OpenAPI definition with custom annotations defined by
Perfcheck.

• UC04: Execute a benchmark using Google Cloud
The developer or an automatic job executes the benchmark by providing
the information required to access the Google Cloud SLO definition.

• UC05: Customize the benchmark template prior to generation
The developer edits the benchmark template to obtain a customized
benchmark test.

• UC06: Customize the benchmark prior to execution
The developer or an automatic job edits the resulting benchmark, in
order to include service-specific requirements.

Use cases are visualized in the UML use case diagram in Figure 4.1. Table
4.1 shows the coverage of functional requirements by use cases. All require-
ments must be covered by at least one use case.

24

4.4. Use cases

Figure 4.1: UML use case diagram

25

Chapter 5
Design and Architecture

This chapter introduces the methods and tools used to implement Perfcheck,
proposes the overall architecture of the new tool, and describes the design
choices behind the implementation of the tool. The design is the blueprint for
the implementation of the product.

5.1 Benchmarking tool

The tool used to execute the generated benchmarks will be k6 [20]. This tool
was chosen because of the use of the JavaScript language for the benchmark
definition. According to the FR06 (benchmark customization) requirement,
the benchmark must be customizable by the developer. Using a well-known
language for the benchmark configuration enables more developers to access
this functionality. JavaScript currently stands as the most commonly used
programming language, according to the 2022 Stack Overflow Developer Sur-
vey [22]. As a result, benchmark customizability should be accessible to most
developers. Furthermore, because of the open source nature of this project,
more people may contribute to the future development of the project.

5.2 Language

The programming language of choice for the project is Golang (Go). Go is a
low-level, statically typed, compiled imperative language created by Google [23].
Go is typically used to develop web applications, cloud services, and network-
ing services. Examples of applications written in Go are Docker, Kubernetes,
Prometheus, NATS, Terraform, or IPFS.

Go was chosen for its ease of use, wide library ecosystem, performance, and
most importantly, the Go text/template package. According to the FR03
(benchmark generation) requirement, the tool must generate a test configu-
ration of an external benchmarking tool. Therefore, it might be appropriate

27

5. Design and Architecture

to use a generic template for the test which would be filled in based on the
input data. The go text/template is one of the most popular choices for text
template processing [23].

In addition, the Golang ecosystem is very well suited to cover the NFR01
(installation availability) requirement. The release management technique is
described in Section 5.7.1.

5.2.1 Go templates

The built-in text/template package implements a templating engine to gen-
erate textual output. As such, it can be used to automatically generate con-
figuration files for a benchmarking tool, given a uniform SLO definition struc-
ture. Therefore, it could even be used to generate configurations for multiple
benchmarking systems with no additional logic.

Go templates generate text based on input parameters. Executing a tem-
plate means applying it to a Golang data structure (map, array, struct), which
is available in the template definition using references. Any text enclosed in
double curly braces is a dynamic content of the template. Inside the braces,
the input data structure can be accessed. The full input is available using
the dot (.) symbol. Nested values are accessible via the dot notation on the
object. An example of a template execution is shown with a Go structure as
input. Figure 5.1 displays the input structure for the template, Figure 5.2
displays the definition of a k6 benchmark template, and Figure 5.3 displays
the output benchmark.

To cover FR06, the template file will be available for modification by the
developer, before template execution. To cover FR07, the output file can be
modified before running the benchmark test itself.

5.3 Input and Output

This tool is going to be used primarily by software developers; therefore, a
command-line interface will be sufficient. A command-line interface will be
uniform in a local environment and in a CI/CD pipeline, reducing the time
spent learning the tool. Parameters (flags) can be passed either as command-
line arguments, as environment variables, or from a configuration file. While
testing in a local environment, using command-line arguments or configura-
tion files is more efficient. In an CI/CD pipeline, environment variables are
recommended to protect sensitive information. Popular CI/CD services have
the option of variable masking [24].

An external Go module, such as urfave/cli [25], may be used to parse
subcommands, arguments, flags, and generate documentation for the command-
line interface.

The tool will have the following subcommands:

28

5.3. Input and Output

1 import (
2 "os"
3 "text/template"
4)
5

6 type LatencySLO struct {
7 Latency int
8 Target float64
9 Url string

10 }
11

12 // template input
13 slo := LatencySLO{500, 99, "https://example.com"}
14

15 template, err := template.ParseFiles("benchmark.tmpl")
16 if err != nil {
17 panic(err)
18 }
19

20 // execute and print result
21 template.Execute(os.Stdout, slo)

Figure 5.1: Go template: Input structure and execution logic (main.go).

1 import http from "k6/http";
2

3 export const options = {
4 thresholds: {
5 http_req_duration: ["p({{ .Target }}) < {{ .Latency }}"]
6 },
7 };
8

9 export default function () {
10 http.get("{{ .Url }}");
11 }

Figure 5.2: Go template: Template definition for a k6 benchmark.

29

5. Design and Architecture

1 import http from "k6/http";
2

3 export const options = {
4 thresholds: {
5 http_req_duration: ["p(99) < 500"]
6 },
7 };
8

9 export default function () {
10 http.get("https://example.com");
11 }

Figure 5.3: Go template: Final generated benchmark.

• generate: Generate a benchmark from specified sources,

• test: Generate a benchmark from specified sources and execute it,

• get-template: Print the default template in a file to allow modifica-
tions.

All sub-commands have the --config flag, which specifies the path to a
configuration file. The priorities for the configuration methods are:

1. Command-line arguments

2. Configuration file (if specified)

3. Environment variables

With this approach, variables from the configuration file or from the envi-
ronment can be easily overwritten by the command-line arguments, if needed.

5.3.1 generate

The generate subcommand creates a benchmark configuration from specified
sources. All flags, with their full name, shorthand, and environment variable
name, are listed below:

• --source, -s, [$SOURCE]: Source of the API and SLO definitions.
The allowed values are openapi and gcloud.

• --docsUrl, -d, [$DOCS URL]: URL of the OpenAPI documentation,
used if the source is set to openapi.

30

5.4. SLO parsing

• --gcloudProjectId, [$GCLOUD PROJECT ID]: Google Cloud project ID,
used if the source is set to gcloud.

• --gcloudServiceId, [$GCLOUD SERVICE ID]: Google Cloud monitor-
ing service ID, used if the source is set to gcloud.

• --gcloudServiceUrl, [$GCLOUD SERVICE URL] URL of the Google Cloud
target service, used if the source is set to gcloud.

• --template, -t, [$TEMPLATE]: Template file for the benchmark. If
not specified, the default template is used.

• --outFile, -o, [$OUT FILE]: Output file for the benchmark, the de-
fault value is benchmarks/benchmark.js.

5.3.2 test

The test subcommand uses the same syntax as the generate subcommand,
with two additional flags that control the execution of the test.

• --k6DataFile, [$K6 DATA FILE]: Output file for the k6 benchmark
JSONL data (measurements). The default value is data/k6.jsonl.

• --alpha, [$ALPHA]: The significance level for statistical tests. The
default value is 0.05.

5.3.3 get-template

The get-template sub-command prints the default template to a file specified
by a flag or an environment variable:

• --outputFile, -o, [$OUTPUT FILE]: Output file for the benchmark.
The default value is benchmark.tmpl.

5.4 SLO parsing

Parsing the SLO definition from an external source is one of the core function-
alities of the application. Two distinct sources must be supported according
to FR02: OpenAPI documentation and Google Cloud SLOs.

5.4.1 OpenAPI SLOs

Both the OpenAPIv2 and OpenAPIv3 standards allow developers to include
additional information in the OpenAPI document. Such properties are named
vendor extensions [26]. This is achieved by adding a custom property prefixed
with -x to the JSON or YAML representation of the document. Vendor
extensions can be included at multiple different levels [26]:

31

5. Design and Architecture

{
"swagger": "2.0",
"info": {

"title": "Example API"
},
"paths": {},
"x-perfcheck": {

"stages": [
{ "duration": "1s", "target": 5 },
{ "duration": "3s", "target": 10 }

]
}

}

Figure 5.4: OpenAPI vendor extensions at the top level of the document.

• at the top level of the document,

• in the info section,

• at operation (endpoint) level.

• in operation parameters,

• in operation responses,

• in security schemes.

For Perfcheck, it is relevant to define custom information at the top level
of the document, at the endpoint level, and in the endpoint parameters. Top-
level information will be used to define the number of virtual users for the
test or the sequence of test stages. In addition, top-level vendor extensions
are used to define SLO requirements for the entire application. This informa-
tion is equivalent to the vus and stages options in k6. Figure 5.4 shows an
example of defining multiple testing stages in an OpenAPI document, using
the x-perfcheck key.

Adding vendor extensions at the endpoint level is achieved by defining
an x-perfcheck property within the definition of an API operation. Figure
5.5 displays an example of defining SLOs for a single GET endpoint. The
semantics of the SLO definition are equivalent to the threshold definitions of
k6 [20], with additional options to support the statistical evaluation of the
results of the k6 test.

In most cases, calling an endpoint requires the inclusion of additional pa-
rameters. The types of parameters for a typical HTTP request are:

32

5.4. SLO parsing

{
"swagger": "2.0",
"info": {

"title": "Example API",
},
"paths": {

"/": {
"get": {

"summary": "Hello World",
"x-perfcheck": {

"latency": ["avg < 50"]
}

}
}

}
}

Figure 5.5: OpenAPI vendor extensions at the endpoint level.

• path parameters,

• query parameters,

• cookie parameters,

• HTTP headers,

• HTTP body.

An example of an endpoint that does not require any parameters is the in-
dex file of a website. In cases where parameters need to be included, Perfcheck
needs to know how to generate them, based on the endpoint description. By
default, OpenAPI allows the developer to specify one example value for a pa-
rameter, which might be sufficient in some cases. If more complex logic is
required, the developer will be able to define how the value should be gener-
ated. This is achieved by adding the x-perfcheck vendor extension to the
“parameters” section of an OpenAPI operation. This property will contain a
string that specifies the generation method. Possible methods for parameter
generation are listed in Table 5.1. This operation takes precedence over the
default example.

33

5. Design and Architecture

Method Description Example usage Example output
pick Pick a random example pick("foo", "bar") "foo"
bool Random boolean bool() true
string Random string with a

specified length
string(8) "as64gh9+"

uuid Random UUID with a
specified version

uuid(4) "f886...2ce"

range Random integer from a
range with a specified
lower and upper limit

range(0, 50) 27

Table 5.1: OpenAPI parameter generation for Perfcheck.

5.4.2 Google Cloud SLOs

Parsing SLO definitions from Google Cloud Monitoring is straightforward.
However, Google Cloud supports only the definition of SLOs for the entire
application, not for a specific endpoint. Therefore, when using Google Cloud
as the source, Perfcheck is limited to testing only the root endpoint of an
application. In some cases, such as single-page applications (SPAs) or simple
APIs, this is sufficient.

5.5 SLO evaluation

The tool will use the built-in SLO evaluation methods of k6. Objectives are
always evaluated using a certain statistic obtained from the benchmarking
data. By default, k6 includes the following statistics [20]:

• rate: the ratio between the number of successful requests and the number
of failed requests,

• mean: the average value of a metric,

• median: the median value of a metric,

• n-th percentile: percentage of values that must fall below or above the
threshold,

• min, max: minimum or maximum value of the metric.

Furthermore, Perfcheck needs to employ statistical methods to evaluate
SLO compliance more precisely. The benchmark test is a sample of limited
size; therefore, the prediction can be improved by implementing statistical
hypothesis testing. In theory, this approach should eliminate statistical errors
and increase the reliability of the test.

34

5.6. Architecture

The results of the SLO evaluation must be available to developers after
the test execution. With this information, developers can focus on fixing the
application shortcomings. Results in text will be printed on the standard
output of the console. Most CI/CD systems have the ability to display the
console output of individual jobs.

Individual events from k6 will be stored directly in a file, which can then
be used to further process the results or send them to an external service, such
as a data warehouse.

5.6 Architecture

To be testable and extendable, the functionality of the tool is split into multi-
ple components. This section describes the architecture of the internal compo-
nents of Perfcheck. In Go, separation of concerns is achieved through the use
of nested packages [23]. Figure 5.6 displays the package structure of Perfcheck.

main..Application entrypoint
benchmark...................Template generation and test execution
parsers......................................API and SLO parsers
stat..Statistical analysis

Figure 5.6: The Perfcheck package structure.

The responsibility of individual packages is displayed in the UML activity
diagram 5.7.

5.7 Release management

The Perfcheck package needs to be available for installation by developers
either by using the Go environment or by downloading a pre-compiled binary
if the Go environment is unavailable. By making the project publicly available
on GitHub, the project is automatically published for installation using the
Go command-line interface. Other developers can install the latest version
of the tool using the shell command shown in figure 5.8. Go automatically
downloads the source and builds the correct binary for the operating system.

> go install github.com/zacikpet/perfcheck:latest

Figure 5.8: Installation using the Go command-line interface.

35

5. Design and Architecture

Figure 5.7: UML Activity Diagram: Perfcheck packages.

Pushing new changes to the master branch on GitHub updates the latest
version of the package. Developers can choose a specific version by appending
a tag name of a revision instead of the “latest” keyword.

If the Go command-line interface is not available, developers must be
able to install the tool using other package management systems. Releasing
Go projects for multiple platforms is easily achievable using the GoReleaser
tool [27].

5.7.1 GoReleaser

GoRelaser is a tool that is used to cross-compile Golang packages, deploy
them to multiple platforms, and create Docker images with a pre-installed
binary [27]. With GoRelaser, Perfcheck will be released on the following plat-
forms:

• Linux x86 64bit

• Linux i386

• Linux ARM 64bit

• Darwin x86 64bit

• Darwin ARM 64bit

• Windows x86 64bit

36

5.7. Release management

• Windows i386

• Windows ARM 64bit

Afterwards, installation is possible by downloading the correct binary from
the GitHub release page or using the default OS package manager, such as
brew for MacOS or apt for Ubuntu [27].

37

Chapter 6
Implementation

In this section, the process of implementing, documenting, and releasing Per-
fcheck is described. Only critical sections of the code are presented; additional
context may be required to execute the code. The eclipse symbol (. . .) repre-
sents the left-out lines.

6.1 Environment

The first step of creating a Go application is to start with a clean GitHub
project. The Go release system only works within repositories that are publicly
available on the Internet. As such, the GitHub repository must be marked as
public. The URL of the repository must be provided when creating a new Go
application. The Go module is initialized using the following command:

$ go mod init github.com/zacikpet/perfcheck

Afterwards, any developer will be able to download and build the module
using the Go command-line interface. The command displayed above also
creates a go.mod file that maintains the project metadata and a list of direct
and indirect dependencies. The installation and upgrading of dependencies is
achieved with the following command, with the -u flag signaling to also patch
indirect dependencies of the package.

$ go get -u example.com/package@version

Below is a list of direct dependencies of Perfcheck:

• cloud.google.com/go/monitoring@1.13.0: a part of the Google Cloud
SDK for service monitoring

• github.com/aclements/go-moremath@0.0.0: a package that provides
advanced math functions

39

6. Implementation

• github.com/pb33f/libopenapi@0.5.1: support for OpenAPI docu-
mentation writing and parsing

• github.com/urfave/cli/v2@2.25.0: a command-line arguments parser

• google.golang.org/api@0.114.0: a set of packages that provide low-
level access to Google APIs.

Installing dependencies also creates the go.sum file, which maintains the
checksums of all dependencies and allows for exact installations on any sys-
tem. Running the go get command without any arguments automatically
downloads the correct versions of all dependencies listed in the go.sum file.

6.2 License

Regarding NFR08 (source availability), the new tool should be open-source.
As such, it must include a permissive license. The dependencies of the project
are provided under either the MIT License or the BSD 3-Clause Revised Li-
cense. This project does not redistribute the dependencies; therefore, the
license choice is not limited by their licenses. The MIT license is selected for
this project and included in the root directory.

6.3 Command-line interface

The command line interface creation capability for an application is provided
by the github.com /urfave/cli/v2 package. All of the required logic is
located in the main.go file, the application’s entrypoint.

A CLI application is initialized and executed by the code in Figure 6.1, with
the individual commands listed in the Commands array. Figure 6.2 defines the
get-template command with the required list of flags and the action function.
Flags and their respective shorthand names and environment variable names
are also defined in this section.

Using this approach, github.com/urfave/cli/v2 also generates a docu-
mentation page for each command and for the entire application. The docu-
mentation page is displayed to developers by appending a --help flag to any
command.

40

6.4. SLO parsing

1 func main() {
2

3 app := &cli.App{
4 Name: "perfcheck",
5 Usage: "Automatic benchmarks of APIs",
6 Commands: []*cli.Command{}
7 }
8

9 app.Run(os.Args)
10 }

Figure 6.1: Initialization of the command-line interface.

1 {
2 Name: "get-template",
3 Usage: "Output default template to file",
4 Flags: []cli.Flag{
5 &cli.StringFlag{
6 Name: "outFile",
7 Aliases: []string{"o"},
8 Usage: "Name of output file",
9 Value: "benchmark.js.tmpl",

10 EnvVars: []string{"OUT_FILE"},
11 },
12 },
13 Action: func(ctx *cli.Context) error {
14 return benchmark.GetTemplate(ctx.String("outFile"))
15 },
16 },

Figure 6.2: Definition of a CLI command with a single flag.

6.4 SLO parsing

This section describes the implementation of the perfcheck/parsers pack-
age. The main functionality of this package is to collect SLO information
from various sources and provide a generic interface. The dependents of this
package do not need to differentiate between the sources of the SLOs. The

41

6. Implementation

generic representation of the API is shown in figures 6.3, 6.4, and 6.5. The
structures are initialized by the individual SLO parsing mechanisms.

type Api struct {
BaseUrl string
Paths []Path
Config Config

}

Figure 6.3: Parsers: Generic representation of the API

type Path struct {
Method string
Pathname string
Detail PathDetail

}

type PathDetail struct {
Latency []Metric
ErrorRate []Metric
ResponseSize []Metric
Params Params

}

Figure 6.4: Parsers: Generic representation of a single API endpoint (path).
The Metric type is an alias for a Go string.

42

6.5. Benchmark template

type Params struct {
Path map[string]ParamDescription
Query map[string]ParamDescription

}

type ParamDescription struct {
Example any
Pattern *string

}

Figure 6.5: Parsers: Generic representation of a endpoint parameter genera-
tion logic.

6.4.1 OpenAPI SLOs

The OpenAPI documentation is parsed into a Go structure, defined in Figure
6.3, using the libopenapi library [28]. Using this library, Perfcheck extracts
the information necessary to generate the benchmark. This includes the pro-
tocol scheme, the base URL, the base SLO, and a list of operations with their
respective SLOs and parameter generation logic.

6.4.2 Google Cloud SLOs

Service-level objectives defined within the Google Cloud are collected using
the cloud.google.com/go/monitoring library [29]. The monitoring library
is part of the Google Cloud SDK, which enables developers to work with,
create, and edit Google Cloud resources. Proper authentication is required
for Perfcheck to collect the required information. The Google Cloud SDK can
read the credentials generated by the following shell command.

> gcloud auth

This command stores Google credentials in an available location on the sys-
tem. Afterwards, the Google Cloud client libraries running on the given ma-
chine are authenticated to Google Cloud. Therefore, Perfcheck does not need
to explicitly create or manage authentication tokens. In a CI/CD pipeline, a
similar method that employs Google Cloud service accounts may be used.

6.5 Benchmark template

The default template contains a k6 benchmark with latency, error rate, and
response size threshold checks. Domain-specific information is filled in by the

43

6. Implementation

1 export const options = {
2 thresholds: {
3 {{- range .Paths }}
4 {{- $pathname := .Pathname }}
5 'http_req_duration{group:::{{ $pathname }}}': [
6 {{- range .Detail.Latency -}}
7 {{- if .IsK6Supported -}}
8 '{{- . -}}',
9 {{- end -}}

10 {{- end -}}
11],
12 ...
13 {{- end }}
14 },
15 ...
16 }

Figure 6.6: Perfcheck: latency threshold template.

parsers package. The template is executed on the structure defined in figures
6.3, 6.4, and 6.5.

6.5.1 Thresholds

In k6, the SLOs are defined using thresholds. The Perfcheck template spec-
ifies a threshold for each path individually using the k6 groups system [20].
In the generated benchmark, each group corresponds to a single endpoint,
with the name of the group derived from the endpoint path. The section of
the template, which specifies latency thresholds, is shown in figure 6.6. The
thresholds are defined in the global options object of k6. An example output,
after the template has been applied to an API with two endpoints, each with
a different latency requirement, is shown in figure 6.7. Objectives that are not
supported by k6 are not included in the final benchmark.

6.5.2 Virtual users and duration

The k6 syntax for defining the number of VUs and the duration of the test can
be used directly within the global x-perfcheck property. During generation,
the values are simply included in the options object of the final benchmark.

44

6.5. Benchmark template

1 export const options = {
2 thresholds: {
3 'http_req_duration{group:::/foo}': ['avg < 100',],
4 'http_req_duration{group:::/bar}': ['avg < 50',],
5 }
6 }

Figure 6.7: Perfcheck: generated latency thresholds.

1 import { Trend } from 'k6/metrics';
2

3 const responseBytes = new Trend('response_bytes');
4

5 export default function () {
6 ...
7 const response = http.get(url); // make HTTP request
8

9 responseBytes.add(res.body.length); // populate metric
10 ...
11 }

Figure 6.8: Perfcheck: custom response size metric definition.

6.5.3 The response size metric

The response size metric is not included in k6 by default. It is possible to define
custom metrics of various types in k6. Figure 6.8 shows the definition of the
response bytes metric and the population of the metric after each request.
The metric is of type Trend, which allows one to calculate different statistics
on the values [20]. Afterwards, the new custom metric can be included in the
threshold definition, similarly to built-in metrics.

6.5.4 Parameter generation

Some requests need to be provided with additional parameters in order to run
the test. The generation options are described in Table 5.1. The function to
produce parameters is included directly in the benchmark file. Therefore, the
generation itself is performed during the execution of the benchmark. Figure
6.9 shows the subtemplate that generates parameters of any type, with the
help of the generateFromPattern function.

45

6. Implementation

1 {{ define "params" }}
2 {{- range $name, $value := . }}
3 {{- if $value.Pattern }}
4 {{ $name }}: generateFromPattern('{{ $value.Pattern }}'),
5 {{- else if $value.Example }}
6 {{ $name }}: '{{ $value.Example }}',
7 {{- end }}
8 {{- end }}
9 {{- end }}

Figure 6.9: Perfcheck: parameter generation sub-template.

The generateFromPattern function parses the generation methods de-
scribed in Table 5.1 and substitutes the parameters. The code of the function,
which makes use of regular expressions to match the pattern string, is shown
in figure 6.10.

The parameter generation sub-template is used in the definition of query
parameters, path parameters, HTTP headers, and JSON body properties.

6.6 Test execution

Once the benchmark is generated, it is executed or provided to the user for
further modification. If the test subcommand is used, the template is ex-
ecuted using the k6 binary installed on the system. If k6 is not installed,
Perfcheck exits with an error code.

The benchmark execution itself is a subprocess of Perfcheck. Therefore,
the output from k6 can be redirected to the standard output of Perfcheck.
Figure 6.11 shows the detection and execution of the k6 binary.

6.7 Statistical analysis

Statistical analysis is performed after running the k6 benchmark. Precise data
from the benchmark are needed to verify statistical significance. Benchmark
data are stored in a JSON line (JSONL) file. A JSONL file contains a JSON
object per line of the file. Each line corresponds to a single event that contains
a timestamp, request details, and request metrics. After filtering the required
events, the metrics are used as a data set for analysis.

With statistical analysis, Perfcheck is able to verify compliance with SLOs
that use average (mean) as their statistic. These SLOs are as follows:

• average latency lower than a certain threshold,

46

6.7. Statistical analysis

1

2 import { uuidv4, randomString } from 'https://jslib.k6.io...';
3

4 const generateFromPattern = (pattern) => {
5 const uuidPattern = /string\((\d+)\)/
6 const stringPattern = /string\((\d+)\)/
7 const boolPattern = /bool\(\)/
8 const rangePattern = /range\((\d+),(\d+)\)/
9

10 if (uuidPattern.test(pattern)) {
11 const version = parseInt(pattern.match(uuidPattern)[1]);
12 if (version === 4) return uuidv4();
13 throw new Error('Only UUID v4 is supported');
14

15 } else if (stringPattern.test(pattern)) {
16 const length = parseInt(pattern.match(stringPattern)[1]);
17 return randomString(length);
18

19 } else if (boolPattern.test(pattern)) {
20 return Math.random() < 0.5;
21

22 } else if (rangePattern.test(pattern)) {
23 const [_, min, max] = pattern
24 .match(rangePattern)
25 .map(x => parseInt(x);
26

27 return Math.round(Math.random() * (max - min) + min);
28 }
29 }

Figure 6.10: Perfcheck: the generateFromPattern function.

47

6. Implementation

1 import (
2 "fmt"
3 "os"
4 "os/exec"
5)
6 ...
7 _, err := exec.LookPath("k6")
8 if err != nil {
9 fmt.Fprintln(os.Stderr, "k6 binary is not present in

10 your path. Install it or add it to your path.")
11 panic(err)
12 }
13

14 cmd := exec.Command(
15 "k6", "run", benchmark.Name(),
16 "--out", fmt.Sprintf("json=%s", outFile)
17)
18

19 cmd.Stdout = os.Stdout // redirect output
20 cmd.Stderr = os.Stderr // redirect err
21

22 err = cmd.Run()

Figure 6.11: Perfcheck: the benchmark execution.

• average response size lower than a certain threshold.

Example usage of these SLOs is shown in figure 6.12. A new avg stat
indicator is implemented, which is not included in the k6 benchmark. Instead,
it is only used for the purpose of statistical evaluation.

To verify that the mean of an unknown population is below a specified
value, a one-sided, one-sample t-test can be used [30]. The random vari-
able X is defined as either the latency or the response size of the system. The
following hypotheses are chosen for the test:

• H0: X ≥ µ0

• HA: X < µ0

The significance level (α) is 0.05 by default. The user can customize the
strictness of the test by changing the α value, using the --alpha command-
line flag. If the null hypothesis is rejected, the random variable is assumed to

48

6.8. Documentation

1 {
2 "swagger": "2.0",
3 "info": {
4 "title": "Example API"
5 },
6 "paths": {},
7 "x-perfcheck": {
8 "latency": ["avg_stat" < 50]
9 }

10 }

Figure 6.12: Perfcheck: Example usage of a statistical SLO.

1 import (
2 "github.com/aclements/go-moremath/stats"
3)
4

5 res, err := stats.OneSampleTTest(
6 makeSample(data),
7 target,
8 stats.LocationLess
9)

Figure 6.13: Perfcheck: One-sided one sample t-test execution.

be below the specified threshold, and the system will pass the test. If the null
hypothesis is not rejected, Perfcheck will mark the service as invalid.

The github.com/aclements/go-moremath library is used to perform the
one-sample t-test. Figure 6.13 shows the implementation. The third argu-
ment, stats.LocationLess is used to specify the directionality of the test [31].

6.8 Documentation

The source repository includes a README file that contains the steps neces-
sary to include Perfcheck in a service testing process. The Go package system
automatically generates more detailed documentation for the tool and can be
found on https://pkg.go.dev. Descriptive comments are required to properly
generate the documentation.

49

https://pkg.go.dev/github.com/zacikpet/perfcheck

6. Implementation

1 nfpms:
2 - package_name: perfcheck
3 homepage: https://github.com/zacikpet/perfcheck
4 maintainer: Peter Žáčik
5 description: >
6 This tool is used to evaluate the compliance
7 of a service with service-level objectives
8 specified in the API description of
9 the service.

10 license: MIT
11 formats:
12 - apk
13 - deb
14 - rpm
15 - termux.deb
16 - archlinux
17 recommends:
18 - k6
19 release: "1.0.0"

Figure 6.14: GoReleaser: Linux packages configuration

6.9 Release management

Releasing Perfcheck is achieved using GoReleaser. By specifying a configura-
tion file in the root directory, GoReleaser can compile and package the appli-
cation for multiple platforms. The default options include builds for Linux,
Windows, and MacOS [27]. These builds are automatically published on the
GitHub release page. Linux packages in the .apk, .deb, .rpm formats are also
published. All Linux package formats are specified in Figure 6.14.

In addition, GoReleaser is used to generate a package for the Snapcraft
store, which is available on all the most common Linux distributions [27].
Figure 6.15 contains the snapcrafts section of the GoReleaser configuration
file.

Lastly, as per NFR01 (Installation availability), a Docker image with the
pre-installed Perfcheck binary is generated and published to DockerHub. Fig-
ure 6.16 displays the required GoReleaser section. The name of the Docker
image is derived from the GitHub user name and repository name. The re-
sulting image is available on DockerHub.

50

https://hub.docker.com/repository/docker/zacikpet/perfcheck/general

6.9. Release management

1 snapcrafts:
2 - name: perfcheck
3 publish: true
4 summary: Automatic SLO compliace evaluation
5 description: >
6 This tool is used to evaluate the compliance
7 of a service with service-level objectives
8 specified in the API description of
9 the service.

10 grade: stable
11 confinement: classic
12 license: MIT
13 base: core18

Figure 6.15: GoReleaser: Snapcraft store configuration

1 dockers:
2 - image_templates:
3 - zacikpet/perfcheck

Figure 6.16: GoReleaser: Docker image configuration

51

Chapter 7
Examples

This chapter contains the example usage of Perfcheck with all of the available
features. For demonstration, a new HTTP web service is created using the
Gin Web Framework [32]. The endpoints within this service simulate various
values of SLIs, to verify the correctness of the testing process. The values
are simulated in a manner that allows easy human verification. Perfcheck is
expected to exit successfully only if all specified SLOs are met.

7.1 OpenAPI

Using the swaggo/swag package, the OpenAPI documentation is automati-
cally generated from comments in the source code [33]. Therefore, the de-
veloper can include the service-level objectives directly in the service source
code. Alternatively, the documentation can be generated dynamically. Figure
7.1 displays the entrypoint of a Gin web framework application. A global SLO
is specified for the response size metric. The information required to perform
the load test is also included.

Two example endpoints are defined in the service, with service-level objec-
tives for latency and error rate. Figure 7.2 displays the definition of the two
example endpoints, with their respective service-level objectives. One of the
endpoints requires a UUID path parameter that is automatically generated by
Perfcheck. Both endpoints simulate delay, in order to present the correctness
of Perfcheck.

Subsequently, the OpenAPI documentation is generated using the swaggo/swag
package. Once the service is running, the visual documentation is available
on the /swagger/index.html path. The JSON representation of the docu-
mentation is available on the /swagger/doc.json path. To run Perfcheck,
the application must be running and must be available via a network. In this
case, the service is listening to localhost:8080. The following command is
used to execute Perfcheck:

53

7. Examples

1 // @title Example API
2 // @x-perfcheck {
3 // "users": 20,
4 // "duration": 3,
5 // "responseSize": ["avg" < 1024]
6 / }
7

8 func main() {
9 r := gin.Default()

10

11 host := os.Getenv("HOST")
12 port := os.Getenv("PORT")
13 scheme := os.Getenv("SCHEME") // http or https
14

15 docs.SwaggerInfo.Host = fmt.Sprintf("%s:%s", host, port)
16 docs.SwaggerInfo.Schemes = []string{scheme}
17

18 r.GET("/example-a", ExampleA)
19 r.GET("/example-b/:foo", ExampleB)
20

21 r.Run(fmt.Sprintf(":%s", port))
22 }

Figure 7.1: Example: application entrypoint with global SLO specification.

$ perfcheck test \
--source openapi \
--docsUrl localhost:8080/swagger/doc.json

The k6 output is printed directly on the console, followed by the results of
the statistical evaluation. As expected, the first endpoint has passed the test,
whereas the second test has not, because it does not comply with the latency
requirement.

7.2 Google Cloud

To demonstrate integration with the Google Cloud Platform, a new appli-
cation is created in the Cloud Run service. A similar setup to 7.1 is used.
However, the application contains only one endpoint that listens on the root
path. No OpenAPI documentation is required; therefore, the service does not
include comments. A service-level objective for the application is defined us-

54

7.3. Statistical analysis

1 // @Summary Example A
2 // @Router /example-a [get]
3 // @x-perfcheck { "latency": ["avg < 200"] }
4 func ExampleA(g *gin.Context) {
5 time.Sleep(time.Millisecond * time.Duration(100))
6 g.JSON(http.StatusOK)
7 }
8

9 // @Summary Example B
10 // @Router /example-b/:foo [get]
11 // @x-perfcheck {
12 // "latency": ["avg < 100"],
13 // "params": { "path": { "foo": "uuid(4)" } }
14 // }
15 func ExampleA(g *gin.Context) {
16 time.Sleep(time.Millisecond * time.Duration(500))
17 g.JSON(http.StatusOK)
18 }

Figure 7.2: Example: application entrypoint with global SLO specification.

ing the Cloud Run Monitoring subsystem, shown in Figure 7.3. Google Cloud
authentication is required to perform the load test. The following series of
commands can be used to execute Perfcheck:

gcloud login
perfcheck test \

--source gcloud \
--docsUrl localhost:8080/swagger/doc.json

7.3 Statistical analysis

Statistical analysis of an SLO is demonstrated by the definition of an endpoint
with the avg stat indicator metric. Figure 7.4 shows the endpoint definition
with the required annotations. The objective is a latency of less than 100
milliseconds. The endpoint pauses the execution of the handler for a ran-
dom duration between 0 and 201 milliseconds, resulting in an average latency
slightly higher than the required value. This demonstration does not take into
account network latency, as the server and Perfcheck are running on the same
machine.

55

7. Examples

Figure 7.3: Google Cloud: SLO definition for a Cloud Run application.

1 // @Router / [get]
2 // @x-perfcheck { "latency": ["avg_stat < 100"] }
3 func Test(g *gin.Context) {
4 sleep := rand.Intn(201)
5 time.Sleep(time.Millisecond * time.Duration(sleep))
6 g.JSON(http.StatusOK, nil)
7 }

Figure 7.4: Example: application endpoint with a statistical latency require-
ment

The test is executed with 20 VUs for a duration of 1 second. In one
run, the average latency is found to be X = 97.18 ms. The total number of
requests to the server is n = 3289. Applying the one-sided one-sample t-test,
as defined in Section 6.7, the p-value is calculated to be approximately 0.235.
The p-value is higher than the default significance level α. Therefore, the null
hypothesis is not rejected, resulting in a failed test. This result is in line with
the fact that the average value generated by the rand.Intn(201) function
call should be higher than 100. However, a regular test of the average latency
would arrive at the same conclusion.

7.4 Deployment pipeline

The inclusion of Perfcheck in a deployment pipeline is demonstrated using
GitHub Actions. GitHub Actions is a system capable of running CI/CD
pipelines directly in the GitHub source repository [34]. Individual pipeline
steps are defined in the .github/workflows/deploy.yaml file. In this example,

56

7.5. Examples summary

Perfcheck is used in the testing phase of a blue-green deployment. A sample
Google Cloud Run application from Section 7.2 is used. The following are the
steps executed by the pipeline:

1. Download source code

2. Authenticate to Google Cloud

3. Set up Google Cloud SDK

4. Install k6

5. Deploy the new (green) version of the application with no production
traffic

6. Install and run Perfcheck on the green version

7. Route production traffic to the new version.

The full definition of the GitHub actions deployment pipeline is listed in
the Appendix C.

7.5 Examples summary

All of the essential features are covered in the examples. In conclusion, the
tool performs correctly with respect to the functional requirements defined in
Section 4.3.1

57

Conclusion

This thesis describes how the goal of implementing software a tool that pro-
vides automatic SLO verification was achieved. The new tool, Perfcheck,
enables developers to specify service-level objectives in the API description of
a service and utilizes the k6 load testing tool to evaluate compliance. An em-
phasis is placed on correct evaluation of SLO compliance by employing basic
statistical methods.

An overview of current software testing techniques was presented. Com-
mon load testing and monitoring tools were introduced, highlighting their
most important features.

The use cases, functional requirements, and non-functional requirements
for the new tool are introduced. Unlike other load testing tools, Perfcheck
does not require knowledge of an additional programming language. Rather,
developers only have to modify the existing API description. In addition,
Perfcheck can integrate with the Google Cloud ecosystem. Service-level ob-
jectives defined in the Google Cloud Monitoring subsystem can be collected
and a load test will be generated.

The design and architecture of the new tool is detailed in the thesis. The
principles and methods of software engineering are applied to the develop-
ment. The programming language, tools, and external libraries required to
implement the tool in a concise, extensible, and modular manner were se-
lected. The new tool is open source, enabling contributions and improvements
by other developers. Due to the wide knowledge of the Go programming lan-
guage, the participation of other developers is straightforward.

The implementation of the tool itself is described in the thesis. Code
examples are used to illustrate the most critical sections of the program. The
release management of the tool is refined and the tool is successfully deployed.

Examples of usage are attached that showcase the principal features of the
new tool, along with a sample integration in a CI/CD pipeline.

In conclusion, all the tasks of the assignment were completed. However,
there are ways Perfcheck can be improved in the future. Possible new features

59

Conclusion

include additional types of SLO, support for more service protocols, and per-
fecting the load test generated by the new tool. Therefore, further work is
expected on the project.

60

Bibliography

[1] Myers, G. J.; Sandler, C.; et al. The art of software testing. John Wiley
& Sons, 2011.

[2] Jorgensen, P.; DeVries, B. Software Testing: A Craftsman’s Approach. 05
2021, ISBN 9781003168447, doi:10.1201/9781003168447.

[3] Beyer, B.; Murphy, N. R.; et al. The Site Reliability Workbook: Practical
Ways to Implement SRE. O’Reilly Media, Inc., first edition, 2018, ISBN
1492029505.

[4] Mozilla Corporation. Understanding Latency. Available from:
https://developer.mozilla.org/en-US/docs/Web/Performance/
Understanding_latency

[5] Google LLC. Designing SLOs. Available from: https://
cloud.google.com/service-mesh/docs/observability/design-slo

[6] Beyer, B.; Jones, C.; et al. Site reliability engineering: How Google runs
production systems. ” O’Reilly Media, Inc.”, 2016.

[7] Google LLC. Creating an SLO. Available from: https:
//cloud.google.com/stackdriver/docs/solutions/slo-monitoring/
ui/create-slo

[8] Ward, C. Ephemeral Environments for Testing. Jun 2020. Available
from: https://humanitec.com/blog/ephemeral-environments-for-
testing

[9] Google LLC. Cloud run. Available from: https://cloud.google.com/run

[10] Amazon Web Services LLC. AWS Fargate. Available from: https://
aws.amazon.com/fargate/

61

https://developer.mozilla.org/en-US/docs/Web/Performance/Understanding_latency
https://developer.mozilla.org/en-US/docs/Web/Performance/Understanding_latency
https://cloud.google.com/service-mesh/docs/observability/design-slo
https://cloud.google.com/service-mesh/docs/observability/design-slo
https://cloud.google.com/stackdriver/docs/solutions/slo-monitoring/ui/create-slo
https://cloud.google.com/stackdriver/docs/solutions/slo-monitoring/ui/create-slo
https://cloud.google.com/stackdriver/docs/solutions/slo-monitoring/ui/create-slo
https://humanitec.com/blog/ephemeral-environments-for-testing
https://humanitec.com/blog/ephemeral-environments-for-testing
https://cloud.google.com/run
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/

Bibliography

[11] Kubernetes. Kubernetes Dashboard. Available from: https:
//kubernetes.io/docs/tasks/access-application-cluster/web-
ui-dashboard/

[12] Rabenstein, B.; Volz, J. Prometheus: A Next-Generation Monitoring
System (Talk). Dublin: USENIX Association, May 2015.

[13] NGINX, Inc. NGINX Amplify. Available from: https://www.nginx.com/
products/nginx-amplify/

[14] Google LLC. Creating an SLO. Available from: https:
//cloud.google.com/why-google-cloud

[15] Google LLC. Monitoring. Available from: https://
console.cloud.google.com/monitoring

[16] Lönn, R. Open source load testing tool review 2020. Mar 2020. Avail-
able from: https://k6.io/blog/comparing-best-open-source-load-
testing-tools/

[17] Artillery Software, Inc. Artillery. Available from: https:
//www.artillery.io/docs

[18] Gatling, Corp. Gatling. Available from: https://gatling.io/

[19] The Apache Software Foundation. Apache JMeter. Available from:
vhttps://jmeter.apache.org/

[20] Grafana Labs. k6. Available from: https://k6.io/docs/

[21] Locust. Locust. Available from: https://locust.io/

[22] Stack overflow developer survey 2022. Available from: https://
survey.stackoverflow.co/2022/

[23] The Go Programming Language. 2023. Available from: https://go.dev/

[24] Gitlab CI/CD variables. Available from: https://docs.gitlab.com/ee/
ci/variables/

[25] Buch, D. Welcome to urfave/CLI¶. Oct 2022. Available from: https:
//cli.urfave.org/

[26] OpenAPI Extensions. 2023. Available from: https://swagger.io/docs/
specification/openapi-extensions/

[27] Becker, C. A. GoReleaser. Available from: https://goreleaser.com/

[28] Shanley, D. libopenapi. Apr 2023. Available from: https://pkg.go.dev/
github.com/pb33f/libopenapi

62

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://www.nginx.com/products/nginx-amplify/
https://www.nginx.com/products/nginx-amplify/
https://cloud.google.com/why-google-cloud
https://cloud.google.com/why-google-cloud
https://console.cloud.google.com/monitoring
https://console.cloud.google.com/monitoring
https://k6.io/blog/comparing-best-open-source-load-testing-tools/
https://k6.io/blog/comparing-best-open-source-load-testing-tools/
https://www.artillery.io/docs
https://www.artillery.io/docs
https://gatling.io/
vhttps://jmeter.apache.org/
https://k6.io/docs/
https://locust.io/
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://go.dev/
https://docs.gitlab.com/ee/ci/variables/
https://docs.gitlab.com/ee/ci/variables/
https://cli.urfave.org/
https://cli.urfave.org/
https://swagger.io/docs/specification/openapi-extensions/
https://swagger.io/docs/specification/openapi-extensions/
https://goreleaser.com/
https://pkg.go.dev/github.com/pb33f/libopenapi
https://pkg.go.dev/github.com/pb33f/libopenapi

Bibliography

[29] Google Monitoring. Available from: https://pkg.go.dev/
cloud.google.com/go/monitoring/apiv3

[30] Ross, A.; Willson, V. L. One-Sample T-Test. Rotterdam: SensePublish-
ers, 2017, ISBN 978-94-6351-086-8, pp. 9–12, doi:10.1007/978-94-6351-
086-8 2. Available from: https://doi.org/10.1007/978-94-6351-086-
8_2

[31] Clements, A. gomoremaths. Jan 2021. Available from: https://
pkg.go.dev/github.com/aclements/go-moremath

[32] Gin web framework. 2022. Available from: https://gin-gonic.com/

[33] The swaggo/swag package. 2023. Available from: https://pkg.go.dev/
github.com/go-openapi/swag

[34] GitHub actions documentation. 2023. Available from: https://
docs.github.com/en/actions

63

https://pkg.go.dev/cloud.google.com/go/monitoring/apiv3
https://pkg.go.dev/cloud.google.com/go/monitoring/apiv3
https://doi.org/10.1007/978-94-6351-086-8_2
https://doi.org/10.1007/978-94-6351-086-8_2
https://pkg.go.dev/github.com/aclements/go-moremath
https://pkg.go.dev/github.com/aclements/go-moremath
https://gin-gonic.com/
https://pkg.go.dev/github.com/go-openapi/swag
https://pkg.go.dev/github.com/go-openapi/swag
https://docs.github.com/en/actions
https://docs.github.com/en/actions

Appendix A
Acronyms

SLA Service-level agreement

SLO Service-level objective

SLI Service-level indicator

API Application programming interface

HTTP Hypertext Transfer Protocol

JSON JavaScript object notation

UML Unified Modeling Language

MTBF Mean time between failure

MTTR Mean time to repair

TCP Transmission Control Protocol

TTFB Time to first byte

VU Virtual user

SDK Software development kit

YAML YAML Ain’t Markup Language

SPA Single-page application

UI User Interface

65

Appendix B
Contents of enclosed media

perfcheck..
pkg .. Sub-packages

benchmark...
parsers ...
stat...

templates........................Template definition and execution
templates.go..

.goreleaser.yaml The GoRelaser configuration file
Dockerfile.............................A Dockerfile for GoReleaser
go.mod....................................Go module configuration
go.sum List of dependecy checksums
LICENSE................................The text of the MIT license
main.go.................................The application entrypoint
README.md.......................Instructions on how to run the tool

perfcheck-example...............................Example application
.github/workflows/deploy.yaml GitHub Actions workflow
docs.......................Auto-generated OpenAPI documentation
go.mod....................................Go module configuration
go.sum...............................List of dependency checksums
main.go.....................................Application entrypoint

67

Appendix C
Example GitHub Actions

pipeline

1 on:
2 push:
3 branches:
4 - master
5

6 env:
7 PROJECT_ID: <PROJECT_ID>
8 SERVICE_NAME: <GCP_CLOUD_RUN_SERVICE_NAME>
9 REGION: us-central1

10 MONITORING_SERVICE: <GCP_MONITORING_SERVICE_ID>
11

12 jobs:
13 deploy:
14 runs-on: ubuntu-latest
15

16 permissions:
17 contents: 'read'
18 id-token: 'write'
19

20 steps:
21 - uses: 'actions/checkout@v3'
22

23 - name: 'Authenticate to Google Cloud'
24 uses: 'google-github-actions/auth@v1'
25 with:
26 workload_identity_provider: <OIDC_PROVIDER>
27 service_account: <GCP_SERVICE_ACCOUNT_ID>

69

C. Example GitHub Actions pipeline

28

29 - name: 'Set up Cloud SDK'
30 uses: 'google-github-actions/setup-gcloud@v1'
31 with:
32 version: '>= 363.0.0'
33

34 - name: Install k6
35 run: |
36 <GPG_SETUP>
37 sudo apt-get update
38 sudo apt-get install k6
39

40 - name: Deploy green
41 id: deploy
42 uses: 'google-github-actions/deploy-cloudrun@v1'
43 with:
44 service: 'perfcheck-example'
45 source: '.'
46 tag: green
47

48 - name: Setup Go environment
49 uses: actions/setup-go@v4.0.0
50

51 - name: Install perfcheck
52 run: go install github.com/zacikpet/perfcheck@latest
53

54 - name: Run perfcheck
55 run: >
56 perfcheck test
57 --source gcloud
58 --gcloudProjectId=$PROJECT_ID
59 --gcloudServiceId=$MONITORING_SERVICE
60 --gcloudServiceUrl ${{ steps.deploy.outputs.url }}
61

62 - name: Route production traffic
63 run: |
64 export GREEN=$(
65 gcloud run services describe $SERVICE_NAME \
66 --platform managed \
67 --region $REGION \
68 --format=json \
69 | jq --raw-output ".spec.traffic[] |\
70 select (.tag==\"green\")|.revisionName"

70

71)
72 export BLUE=$(
73 gcloud run services describe $SERVICE_NAME \
74 --platform managed \
75 --region $REGION \
76 --format=json \
77 | jq --raw-output ".spec.traffic[] |\
78 select (.tag==\"blue\")|.revisionName"
79)
80

81 gcloud run services update-traffic $SERVICE_NAME \
82 --update-tags=blue=$GREEN \
83 --platform managed \
84 --region $REGION
85

86 gcloud run services update-traffic $SERVICE_NAME \
87 --to-revisions=$GREEN=100 \
88 --platform managed \
89 --region $REGION

71

	Introduction
	Goal
	Software testing
	Functional testing
	Non-functional testing
	SLA, SLO, SLI
	SLO examples
	Error budget
	SLO evaluation

	Pre-release service testing
	Staging environment
	Blue-green deployments
	Canary deployments
	Service evaluation in a serverless environment

	State-of-the-art
	Service monitoring
	Kubernetes Dashboard
	Prometheus
	NGINX Amplify
	Google Cloud Platform SLOs
	Other cloud providers

	Service evaluation
	Artillery
	Gatling
	JMeter
	Grafana k6
	Locust
	Benchmark tools summary

	Analysis
	Target audience
	Target SLIs
	Requirements
	Functional requirements
	Non-functional requirements

	Use cases

	Design and Architecture
	Benchmarking tool
	Language
	Go templates

	Input and Output
	generate
	test
	get-template

	SLO parsing
	OpenAPI SLOs
	Google Cloud SLOs

	SLO evaluation
	Architecture
	Release management
	GoReleaser

	Implementation
	Environment
	License
	Command-line interface
	SLO parsing
	OpenAPI SLOs
	Google Cloud SLOs

	Benchmark template
	Thresholds
	Virtual users and duration
	The response size metric
	Parameter generation

	Test execution
	Statistical analysis
	Documentation
	Release management

	Examples
	OpenAPI
	Google Cloud
	Statistical analysis
	Deployment pipeline
	Examples summary

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed media
	Example GitHub Actions pipeline

