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Abstrakt

Hlavńım ćılem práce je identifikovat proměnné, které maj́ı největš́ı vlyv na cel-
kový čas evakuace v rámci simulovaných evakuačńıch scénář̊u. Zkoumány jsou
dvě kontrastńı geometrie – dvoupatrový vlak a přednáškový sál. Pro každou z
těchto geometríı jsou zohledněny dva r̊uzné scénáře – prostřed́ı s ńızkou husto-
tou, kde je objekt přibližně na 50 % naplněný, a prostřed́ı s vysokou hustotou,
kde je objekt naplněn na 90 % jeho kapacity. Tyto scénáře jsou analyzovány
pomoćı technik citlivostńı analýzy se zvláštńım d̊urazem na jednotlivé zdroje
náhodnosti ve výstupu – parametry chodc̊u, jejich počátečńı pozice a inhe-
rentńı náhodnost simulačńıho procesu. Davy v experimentech jsou tvořeny
dvěma skupinami – skupinou fyzicky zdatných osob, která nemá žádné po-
hybové omezeńı, a skupinou s fyzickými znevýhodněńımi simulovanými po-
maleǰśı rychlost́ı a deľśım časem akcelerace. Výsledky ukazuj́ı, že při nižš́ıch
hustotách hraj́ı při určováńı celkové doby evakuace rozhoduj́ıćı roli počátečńı
pozice okupant̊u, ale se zvyšováńım hustoty přeb́ıraj́ı tuto roli makroskopické
charakteristiky davu.

Kĺıčová slova Simulovaná evakuace, citlivostńı analýza, heterogenńı dav,
náhradńı modelováńı, Sobolovi citlivostńı indexy, elementárńı efekty.
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Abstract

The thesis’ main goal is to identify the most influential variables in determining
the total evacuation time of a simulated egress scenario. Two contrasting
geometries are investigated – a double-decker train and a lecture hall. For
each of these geometries, two distinct scenarios are considered – a low-density
setting where the facility is at approximately 50 % capacity, and a high-density
setting where the facility is at 90 % capacity. These scenarios are analyzed by
means of sensitivity analysis with a special focus on the individual sources of
randomness in the output – the occupant parameters, their initial positions,
and the inherent uncertainty of the simulation process. The crowds in the
experiments are made up of two groups of occupants – an able-bodied group
with no movement limitations, and a movement-impaired group simulated by
a slower maximum speed and a higher acceleration time. The results show that
at lower densities, the initial positions of the occupants play a crucial role in
determining the total evacuation time, but at higher densities, the macroscopic
characteristics of the crowd take over as the most important factors.

Keywords Simulated evacuation, sensitivity analysis, heterogeneous crowd,
surrogate modeling, Sobol’ sensitivity indices, elementary effects.

viii



Contents

Introduction 1
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Pedestrian Dynamics 3
1.1 Measurable Variables . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Fundamental Diagram . . . . . . . . . . . . . . . . . . . . . . . 7

2 Pathfinder Simulation Model 11
2.1 Strategic Level . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Tactical Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Operational Level . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 SFPE Mode . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Steering Mode . . . . . . . . . . . . . . . . . . . . . . . 16

3 Sensitivity Analysis 19
3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Regression-Based Methods . . . . . . . . . . . . . . . . 23
3.3.2 Variance-Based Methods . . . . . . . . . . . . . . . . . . 24
3.3.3 Elementary Effects . . . . . . . . . . . . . . . . . . . . . 29

3.4 Software Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Experimental Setting 35
4.1 Geometry Selection . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Train . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Lecture Hall . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



4.2 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Simulation Pipeline 41
5.1 High-Level Overview . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Simulation Object . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Occupant Variables . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Position Generators . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6 Working with Profiles . . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.8 Caveats and Future Improvements . . . . . . . . . . . . . . . . 49

6 Empirical Findings 51
6.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Randomness Study . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Effects of Initial Positions . . . . . . . . . . . . . . . . . . . . . 54

6.3.1 Generating Positions . . . . . . . . . . . . . . . . . . . . 56
6.3.2 Movement-Impaired Individuals . . . . . . . . . . . . . . 59

6.4 Elementary Effects Analysis . . . . . . . . . . . . . . . . . . . . 62
6.4.1 Groups of Factors . . . . . . . . . . . . . . . . . . . . . 63
6.4.2 Individual Variables . . . . . . . . . . . . . . . . . . . . 64

6.5 Variance-Based Analysis . . . . . . . . . . . . . . . . . . . . . . 66
6.6 Surrogate Models . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.6.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . 71
6.6.2 Machine-Learning Models . . . . . . . . . . . . . . . . . 73

6.7 Discussion and Closing Thoughts . . . . . . . . . . . . . . . . . 74

Conclusion 79

Bibliography 81

A TET Scatter Plots 91

B Contents of CD 101

x



List of Figures

1.1 Density contours based on longitudinal and lateral spacing. . . . . 6
1.2 Fundamental diagram of flow as a function of density. . . . . . . . 7
1.3 Comparison of different analytical and empirical FDs. . . . . . . . 8

2.1 Example occupant route. . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Example scatter plots of Y = 2X1 −X2 with X1, X2 ∼ N (0, 1). . . 22
3.2 Conditional variances as a basis for SA. . . . . . . . . . . . . . . . 25
3.3 An example trajectory with three factors. . . . . . . . . . . . . . . 31

4.1 CityElefant train used in [1] and its Pathfinder model. . . . . . . . 37
4.2 C-219 lecture hall at the Faculty of Civil Engineering, CTU in

Prague, and its Pathfinder model. . . . . . . . . . . . . . . . . . . 38

5.1 The inputs and outputs of the simulation object. Dashed lines
denote optional arguments. . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Examples of a (continuous) probability field generated by (6.3).
The blue point is the exit and the orange points are the already-
generated occupants. The brightness of the color is proportional to
the probability of selecting a seat in said location. The setup on the
left is designed to generate positions rather close to the exit but far
away from the other occupants. The setup on the right will do the
opposite. Note that the actual seating positions are discrete, this
figure only serves to illustrate the interactions between the points. 58

6.2 The correlation between the α coefficients and the statistics com-
puted on the generated position configurations (lecture hall with
38 occupants). For a cleaner plot, the data was binned into 15
bins and the average of each bin as well as the standard deviation
is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xi



6.3 Miniature lecture hall. Red occupants correspond to individuals
with movement impairments. . . . . . . . . . . . . . . . . . . . . . 60

6.4 An example of an influential vs. a non-influential variable. For
readability, the scatter plot is constructed by binning the x-axis and
drawing the average of each bin along with the standard deviation
of the points belonging to said bin. . . . . . . . . . . . . . . . . . . 68

A.1 Velocity of AB group. . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2 Acceleration of AB group. . . . . . . . . . . . . . . . . . . . . . . . 92
A.3 Velocity of WL group. . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.4 Acceleration of WL group. . . . . . . . . . . . . . . . . . . . . . . . 94
A.5 Exit distance of all occupants. . . . . . . . . . . . . . . . . . . . . . 95
A.6 Inter-occupant distance of all occupants. . . . . . . . . . . . . . . . 96
A.7 Exit distance of WL occupants. . . . . . . . . . . . . . . . . . . . . 97
A.8 Inter-occupant distance of WL occupants. . . . . . . . . . . . . . . 98
A.9 Ratio of WL occupants. . . . . . . . . . . . . . . . . . . . . . . . . 99

xii



List of Tables

6.1 Decomposition due to the Law of total variance w.r.t. different
velocity and position configurations. The units are squared seconds. 53

6.2 Manually computed sensitivity indices w.r.t. randomly generated
positions and maximum velocities. . . . . . . . . . . . . . . . . . . 54

6.3 Estimates of Pr(Occ type = t | Run = r) for each seat. The exit is
located near the top row. . . . . . . . . . . . . . . . . . . . . . . . 61

6.4 Estimates of Pr(Run = r | Occ type = t) for each seat. . . . . . . . 62
6.5 Input variables of EE method. . . . . . . . . . . . . . . . . . . . . 64
6.6 Estimated µ∗ values along with the width of their 95 % confidence

intervals obtained by bootstrapping. . . . . . . . . . . . . . . . . . 65
6.7 Scenarios for EE computation w.r.t. the individual variables. . . . 65
6.8 Pairwise elementary effects w.r.t. the individual variables. . . . . . 67
6.9 Estimated first-order sensitivity indices Si and total effect indices Ti

based on 128 samples. The significant values variables are high-
lighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.10 Selected second-order sensitivity indices Sij . . . . . . . . . . . . . . 70
6.11 Standardized regression coefficients βi for each input dataset. Co-

efficients of determination are also shown, where R2 is computed
on the whole dataset and R2

avg is computed on the reduced dataset
obtained by averaging the runs with identical parameters but dif-
ferent random seeds and priorities. . . . . . . . . . . . . . . . . . . 72

6.12 Mean absolute errors of the surrogate models in seconds. Tr.
stands for the train set and Ts. for the test set. . . . . . . . . . . . 74

6.13 First-order sensitivity indices and total effect indices obtained via
surrogate models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.13 First-order sensitivity indices and total effect indices obtained via
surrogate models (cont.). . . . . . . . . . . . . . . . . . . . . . . . 76

xiii





Introduction

The study of evacuation scenarios and the process of safely evacuating a build-
ing or other premise has been a matter of active research for decades and re-
mains a challenge among architects and safety engineers. Indeed, when every
extra second could mean the difference between a successful evacuation and a
disaster, every detail must be optimized. Of course, some factors such as the
geometrical layout of the rooms (once they’ve been built) are fixed and out of
our reach. What we can influence, for example, is the seating of the occupants
where putting the slowest and/or most crucial evacuees too close to the exit
or too far from the exit will have a drastic effect on the total evacuation time.

To determine which factors have the largest impact on making an evacua-
tion scenario fast and safe, purely theoretical methods are insufficient. There-
fore, it is necessary to explore various configurations and observe which factors
have the most statistically significant effect. For practical as well as ethical
reasons, running live experiments for every configuration we think of is infea-
sible. Instead, we should form our hypotheses and obtain preliminary results
via simulation software. We should then design an actual experiment to val-
idate our model and confirm or deny our hypotheses. We can then improve
our model to match the true behavior more closely and refine our claims. This
thesis will focus on the first part of this process and set up the grounds for a
practical experiment to further verify its claims.

More specifically, the main aim of this thesis is to use the techniques of
sensitivity analysis to numerically quantify the effects of various factors con-
cerning the initial conditions of a simulated evacuation. Namely, I shall focus
on the maximum velocities and acceleration times for two occupant groups
– a group of able-bodied occupants with no movement impairment and a
group of occupants with limitations whose movement is impaired by a lower
free-movement velocity and higher acceleration time. Additionally, the ini-
tial positions (seating) of the occupants play a major role in determining the
total evacuation time and the analysis will pay special attention to this phe-
nomenon. Since there is no immediately apparent way to numerically describe
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Introduction

a seating configuration, for this thesis I shall employ the use of a probabilistic
way to generate the initial positions dictated by their attraction to the exit
and inter-pedestrian attraction, for both the able-bodied group and the with-
limitations group. Lastly, the effect that the ratio of the number of occupants
in each group has on the evacuation time will be explored, for a total of 9
variables. The simulation software of choice for this thesis is Pathfinder – an
industry-grade pedestrian simulation tool developed by Thunderhead Engi-
neering.

Structure

This thesis is an open continuation of my Bachelor’s thesis, which focused on
the estimation of fundamental diagrams from evacuation experiments [2]. The
thesis is structured as follows: The first three chapters focus on the theoret-
ical framework for the thesis. The first chapter provides a brief overview of
the relevant concepts of pedestrian dynamics as it is not a part of the fac-
ulty’s standard curriculum. The second chapter follows with a discussion of
Pathfinder’s simulation model and how it is implemented. The third chapter
presents the theoretical foundation of sensitivity analysis and all the methods
employed. The fourth chapter opens up the practical part of the thesis with
a discussion of the chosen evacuation scenarios and their implementation in
Pathfinder. The fifth chapter describes the Python implementation of the
simulation pipeline which was used to obtain the necessary data. The sixth
chapter is the experimental chapter which contains a detailed description of
the simulation scenarios and their results, as well the application of surro-
gate modeling to obtain more robust estimates. The thesis concludes with a
summary of the results and a discussion of their contributions to the topic.
Potential for further research is also highlighted.
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Chapter 1
Pedestrian Dynamics

This chapter aims to introduce the relevant concepts for pedestrian dynamics.
The main emphasis will be on the simulation model that is used by Pathfinder1

as it is the main tool that will later be used to collect data for the subsequent
analysis. Before diving deeper into the simulation model itself, I will define
the basic measurable variables with special attention to their Pathfinder im-
plementation and the concept of fundamental diagram. A more comprehensive
study can be found in [3] as well as in my bachelor’s thesis [2], which explored
the concept of the fundamental diagram in more detail.

1.1 Measurable Variables

The three main variables that are used to describe the movement of a crowd
of pedestrians on a macroscopic level are velocity, density, and flow. These
are all quantities taken directly from the field of traffic engineering, which are
in turn inspired by their counterparts in fluid dynamics. For this chapter, I
shall adopt the standard notation from physics where a vector is denoted by
an overhead arrow “→”, e.g., v⃗i(t) meaning the velocity of pedestrian i at
time t. Temporal averages will be denoted by ⟨·⟩∆t and spatial averages will
be denoted by ⟨·⟩∆x as is common in related literature such as [3].

1.1.1 Velocity

The (immediate) velocity of occupant i is the first derivative of the position
with respect to time, i.e., v⃗i(t) = d

dt x⃗i(t). In practice, this vector is approxi-
mated by a discretized derivative at time t and a small time step ∆t, i.e.,

v⃗i(t) = x⃗i(t + ∆t)− x⃗i(t)
∆t

, (1.1)

1https://www.thunderheadeng.com/pathfinder
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1. Pedestrian Dynamics

where ∆t could correspond to, for example, a couple of frames in video footage.
An alternative way to measure the (average) velocity of a pedestrian over
a given measurement region is taken from traffic engineering and involves
dividing the distance between the entry point and exit point by the time
spent in the measurement region and interpolating, i.e.,

v⃗i(t) = x⃗i(tout)− x⃗i(tin)
tout − tin

, t ∈ [tin, tout]. (1.2)

This method, however, will generally underestimate the true velocities because
it assumes that the pedestrian has traveled in a straight line, which is often not
the case. This problem could be solved by extracting their exact trajectory,
but this can be a difficult problem by itself.

So far, these were microscopic definitions, which only concern a single
pedestrian. It is important to distinguish them from macroscopic variables,
which describe the group of pedestrians as a whole. The spatial average ve-
locity over a given measurement area containing N pedestrians is simply the
arithmetic mean of their velocities at time t:

v(t) = ⟨v⟩∆x(t) = 1
N

N∑
i=1
∥v⃗i(t)∥. (1.3)

Note that we are only interested in the norms of the individual velocities
(speeds). The temporal average velocity over a given measurement line and a
period T is defined analogously:

v(T ) = ⟨v⟩∆t(T ) = 1
N

N∑
i=1
∥v⃗i(ti)∥, (1.4)

where ti ∈ T is the time at which pedestrian i crossed the measurement line.
Velocity is closely related to acceleration, which is its first derivative with

respect to time. It can be measured via discretized derivatives similarly to
velocity or via specialized gyroscopic sensors, but it is somewhat impractical
due to the high costs and long setup time. However, Pathfinder explicitly uses
an acceleration time parameter, which is the time it takes for a pedestrian to
reach their maximum free-flow velocity, to compute an occupant’s immediate
velocity. I will describe this in more detail in a later section.

1.1.2 Density

The density ρ of a pedestrian group in a given area A at time t is the number
of pedestrians N per unit area:

ρ(t) = ⟨ρ⟩∆x(t) = N(t)
|A|

, (1.5)
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1.1. Measurable Variables

where |A| is the size of area A. The associated unit is P/m2 (persons per square
meter). In three-dimensional cases, only the floor projection of the space is
considered. This quantity is macroscopic by default as it depends on an entire
area of interest. This also gives rise to several undesirable properties such
as convergence to zero when considering smaller and smaller measurement
regions and no clear way to look at per-pedestrian local densities.

For this reason, there exist several modifications of this definition such as
Voronoi density [4] or various local densities based on the distances to k nearest
neighbors. Pathfinder uses a modified 1-nearest neighbor local density for each
occupant in order to adjust the velocity computation to also take into account
the agent’s immediate surroundings.

Pathfinder’s technical reference [5] is not clear on the actual numerical
values used, however, conceptually, the calculation works in the following way:
The local density values are based on a study of average longitudinal and
lateral spacing of pedestrians [6] whose results are shown in Figure 1.1 where
each contour symbolizes a perceived level of local density. Each occupant’s
location is transformed into a local coordinate system with the origin at the
occupant’s center and their current facing direction is aligned with the x-axis
in Figure 1.1. The density contours are approximated with ellipses whose
major axis matches the occupant’s velocity vector so that occupants that are
directly in front of have less of an effect at the perceived local density. Then,
the nearby occupants in a given radius are retrieved and for each of them,
a local density value is computed by interpolating or extrapolating from the
density ellipses. Additionally, all the nearby occupants with x < 0 in the
local coordinate system are ignored so that the pedestrians directly behind
do not affect the perceived density. Finally, the resulting density is taken as
the maximum of the partial densities from each nearby occupant, effectively
proportional to a 1-nearest neighbor distance in a modified coordinate system.
This value is then used to lower each occupant’s desired speed in situations
with high local densities (crowds) as will be described in Section 2.3.1.

1.1.3 Flow

The final fundamental characteristic of pedestrian dynamics is the flow J .
It is most often defined as the number of pedestrians N crossing a given
measurement line per unit time. Due to the discrete nature of pedestrian
flow, this quantity has to be estimated using average measurements over a
time period T :

J(T ) = ⟨J⟩∆t(T ) = N

|T |
. (1.6)
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1. Pedestrian Dynamics

Figure 1.1: Density contours based on longitudinal and lateral spacing.

(Figure 3.4 from [6])

An alternative estimate can be obtained as the inverse of the average time
gap between consecutive pedestrians crossing the measurement line.

J(T ) =
(

1
N − 1

N−1∑
i=1

(ti+1 − ti)
)−1

, (1.7)

where ti ∈ T is the time at which occupant i crossed the measurement line.
The specific flow Js is another derived quantity concerning a measurement
line L which is defined as the flow per unit width,

Js(L) = J(L)
|L|

. (1.8)

The associated units are either P/s (persons per second) or P/(m · s) (persons
per meter per second). This characteristic is often used as a parameter in the
simulation setup when we want to signalize that some doors are “harder to
cross” than others and cause an increase or reduction in flow.

If we instead wanted to compute the instantaneous flow in an area A at
time t, we can obtain this quantity via the hydrodynamic-inspired relation
J = ρv (called the fundamental equation of pedestrian flow) using the spatial
averages of both the velocity and density [3].

J(t) = ⟨J⟩∆x(t) = v(t)ρ(t). (1.9)
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1.2. Fundamental Diagram

Note that the information about the direction of the flow gets lost this way.
In Pathfinder, doors are generally used as measurement lines and the flow

rate through doors plays a major part in determining the total evacuation
time.

1.2 Fundamental Diagram

The aforementioned fundamental equation of pedestrian flow is a characteristic
that describes the link between macroscopic velocity, density, and flow via the
equation J = ρv and is often called the fundamental diagram of pedestrian
flow. It is usually expressed as a graph of the relation between either flow
and density, velocity and density, or flow and velocity. All of these forms
are equivalent and one can freely move between the different representations
via the fundamental equation. An example of a ρ–J fundamental diagram is
shown in Figure 1.2.

Figure 1.2: Fundamental diagram of flow as a function of density.

(Figure 1 from [7])

The diagram captures various natural expectations such as that if we keep
increasing the density in a room then the flow will increase as well but only
up to a certain point (critical density) at which congestion takes place and
the flow will start decreasing until it completely stops (jam density). The
fundamental diagram has many more interesting properties such as the fact
that the slope of the graph with respect to the origin at a given density is,
in fact, the spatial average velocity corresponding to said density. A more
comprehensive study can be found in [8].
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1. Pedestrian Dynamics

Although the qualitative shape of the diagram is generally agreed upon,
there are still disagreements about the actual numerical values at which the
important points in the diagram are located, which can be attributed, for
example, to different facility types or even cultural differences [9, 10].

Perhaps the most commonly cited analytical approximation of pedestrian
fundamental diagram is due to Weidmann [11], who expressed velocity as a
function of density in the following way:

v(ρ) = v0

[
1− exp

(
−ρ0

(1
ρ
− 1

ρmax

))]
, (1.10)

where v0 = 1.34 m/s is the free-flow walking speed, ρ0 = 1.934 P/m2 is the
base density, and ρmax = 5.4 P/m2 is the jam density. The Js(ρ) form can
then be obtained as Js(ρ) = ρ · v(ρ). Other noteworthy forms are due to
Predtechenskii and Milinskii [12] and Fruin [6]. A comparison along with
experimental data is shown in Figure 1.3.

Figure 1.3: Comparison of different analytical and empirical FDs.

(Figure 2 from [13])

One that is of particular concern here is the fundamental diagram provided
by the SFPE handbook of fire protection engineering [14]. SFPE stands for
the Society of Fire Protection Engineers and their handbook contains a com-
prehensive overview of various topics surrounding fire protection engineering.
The chapter “Egress Concepts and Design Approaches” concerns itself with
evacuation dynamics and Pathfinder makes heavy use of its concepts and cal-
culations in its implementation. The proposed v(ρ) curve has the following
form:

v(ρ) =
{

v0 if ρ ∈ [0, ρ0] ,

vmax (1− ρ/ρmax) if ρ ∈ [ρ0, ρmax] ,
(1.11)

with the parameters maximum free-flow walking speed v0 = 1.19 m/s, bound-
ing velocity vmax = 1.40 m/s, density ρ0 = 0.54 P/m2 at which the average
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1.2. Fundamental Diagram

speed starts to decrease, and density ρmax = 3.76 P/m2 at which the flow
completely stops. The graph is a piece-wise linear function that’s constant at
densities lower than ρ0 (movement is not impaired by nearby occupants) and
then starts to linearly decrease until it hits zero at ρ = ρmax. The correspond-
ing Js(ρ) function hast the form

Js(ρ) = ρvmax (1− ρ/ρmax) (1.12)

which is a parabola with the maximum flow at the critical density ρc =
1.88 P/m2 (the constant part at low densities is discarded). Both of these
graphs can be seen in Figure 1.3, although the first graph is missing the
constant-velocity piece.

9





Chapter 2
Pathfinder Simulation Model

Now that we have defined the essential concepts of pedestrian dynamics, we
can move to the more practical part of simulating pedestrian movement. There
is a vast number of distinct competing approaches to modeling human locomo-
tion, most of which can be classified as macroscopic, in which the individual
pedestrians are modeled as particles guided by laws of fluid dynamics, or mi-
croscopic (including Pathfinder), in which each pedestrian is an individual
agent. In microscopic models, each agent has to concern themselves with
goals on three distinct levels: strategic level – activity planning, tactical level
– scheduling and route choice, and operational level – walking behavior [3].
The next sections will briefly describe the methods of simulating each level
and their implementations in Pathfinder. The implementation details that
follow are based on the descriptions in Pathfinder technical reference [5].

Each occupant is assigned a profile. Profiles define the physical character-
istics of an agent as well as agent metadata. This includes properties such as
maximum velocity, shape, diameter, or height, but also more complex traits
such as how much an occupant can “squeeze” themselves in order to fit in nar-
row geometry or how much their velocity reduces in high-density situations.
Each property is defined on a profile level, but it can be overwritten on a
per-occupant basis. The ones that will be of particular concern here are the
following:

Maximum velocity – The agent’s desired speed when their movement is
not impaired by terrain or other agents.

Acceleration time – The time it takes for an agent to reach their maximum
velocity from a complete stop.

Priority – A value that determines which agents are given higher priority
when resolving movement conflicts.

Initial orientation – The direction which an occupant is facing at the be-
ginning of the simulation.
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2. Pathfinder Simulation Model

In the context of this thesis, the former two are considered the agents’ deter-
ministic parameters used to group the occupants into an able-bodied and a
with-limitations group, while the latter is considered the random parameters
of the model and re-generating them will lead to different evacuation times
despite the physical characteristics of the occupants being the same. There is
also a random seed parameter rseed which is also treated as a strictly random
parameter, but the documentation is not clear on its exact effect.

2.1 Strategic Level

Making decisions on a strategic level answers questions such as “What will I
do next?”, “Where should I go?”, or “Should I stay in this queue or move to
a different one?”. The answer is simple when there the goal is evacuation and
there is only a single exit, but becomes non-trivial when there are multiple
points of interest such as queues in a shop or spaces in a parking lot. The
classical methods for decision-making include regression models, spatial inter-
action models, or Markovian models [15]. Modern methods also make use of
concepts from psychology [16].

Pathfinder’s implementation of strategical-level decision-making is based
on the concept of goals and behaviors. An occupant’s behavior is defined by a
sequence of goals that the occupant has to reach in order to exit the simulation.
The behavior can be as simple as “Go to any exit”, which is the one that will
be used in the analyses in this thesis. An example of a more complex behavior
is, for example, simulating a jump from a platform by instructing the occupant
to wait in front of the platform for a given time delay before actually making
the (instant) transition between the z coordinates as was shown in [1]. When
an appropriate seek goal has been selected, path-finding can take place.

2.2 Tactical Level

Pedestrian behavior on a tactical level consists of constructing an appropriate
path to the destination of choice. There, once again, exist a large number of
different methods, but the ones most often used are either field-based, graph-
based, or hybrid. The following is a short summary based on [17].

In field-based methods, each point in the geometry is assigned a scalar
value that depends on the distance towards the point of interest or travel time
therein. A path is then generated by minimizing the field value over the course
of the trajectory, either in a deterministic or a probabilistic way. The path is
periodically recomputed in order to account for other occupants in the area
who may or may not influence the agent’s trajectory.

In graph-based methods, which are also implemented in Pathfinder, a
static graph is generated using “checkpoints” like doors or room boundaries,
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2.2. Tactical Level

and the navigation mesh of the geometry is traversed using graph search al-
gorithms such as Dijkstra’s algorithm or A* algorithm.

In practice, most methods use a combination of both approaches. For
example, in presence of multiple paths to target in a field-based method,
a graph search using coarse checkpoints is done first in order to determine
which general route to choose. Similarly, in a graph-based setting, scalar
costs mimicking a field-based model can be assigned to each edge in the graph
before starting a search.

In Pathfinder, the pathfinding algorithm first begins by path planning, that
is, when there are multiple distinct paths to the seek goal, a specific one has
to be chosen, as the shortest one is not necessarily the optimal one due to the
presence of other occupants along the way. The method used in Pathfinder is
called locally quickest, in which a route is planned hierarchically using local
information about the current room and global information about the full
geometry. The process works as follows:

1. A list of local targets is generated that includes the available doors in
the current room and the seek goal itself if it is located in the current
room.

2. The next local target is chosen by minimizing a weighted sum of different
factors concerning the target.

3. The chosen target is followed using path generation and path following
algorithms.

The weighted sum mentioned in the second step takes into account the
following quantities:

Current room travel time tlt – The time it would take to reach the target
while traveling at full speed.

Current room queue time tq – If the target is a door, this quantity is
estimated using the number of occupants waiting in the queue and the
flow rate of the door, otherwise it is set to 0.

Global travel time tgt – The time it would take to get from the target to the
current seek goal traveling at full speed, also taking into consideration
other modifiers such as stairs or different terrain along the way.

Distance travelled in room dt – The distance already travelled in the cur-
rent room.

Each of these components has an associated cost factor klt, kq, kgt, and kdd,
along with a current door preference coefficient p. The total cost for the i-th
target is computed as

Ci = Clocal + Cglobal (2.1)
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with

Clocal = max(pdklttlt, kqhkqtq),
Cglobal = pdkgttgt,

pd = exp(kddt),

kd = log 2
kdd

,

and kqh = 1 for the most recently chosen target and 1 − p otherwise. A
target door is chosen once an occupant enters a room and then recomputed
periodically every second. A backtrack prevention mechanism is also present
so that agents do not circle back and forth between nearby rooms.

Once the next target is chosen, a concrete path can be generated. Pathfinder
employs a graph search procedure over the navigational mesh of the geometry
using the A* algorithm. Since a path obtained this way can be needlessly
jagged, it is additionally smoothed so that only the edges at which an actual
change in direction happens remain. An example of a generated path is shown
in Figure 2.1. The nodes along the path are called “waypoints”.

Figure 2.1: Example occupant route.

(Figure 9 from [5])

When a path is built, the occupant proceeds with path following. The
following algorithm is used:

1. The current waypoint and the next waypoint are tracked.

2. If the current waypoint is reached, it is swapped with the next one.

3. The path is reevaluated if the occupant cannot see a straight line to the
current waypoint or if the current target has been changed by the path
planning algorithm.

4. A seek curve is generated using the algorithm on the operational level.
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5. A move along the seek curve is attempted.

Interaction with other occupants and the movement itself is then computed
on the operational level.

2.3 Operational Level

The operational level of pedestrian simulation takes care of the movement
itself, i.e., how hard to accelerate, what steps to take, or how to avoid colli-
sions. It contains perhaps the most diverse set of models, of which the most
well-known include cellular automata models [18], social-force models[19], op-
timal velocity models [20], or the optimal steps model [21]. A nice overview
can be found in the introductory chapter of [22] and a more comprehensive
study in [9] and [23].

Pathfinder implements two distinct movement models: a simpler and faster
SFPE mode based on the guides and calculations in the SFPE Handbook of
Fire Protection Engineering [14] and a more complex steering mode based on
the works in [24] and [25].

2.3.1 SFPE Mode

In SFPE mode, the movement is modeled purely in a flow-based fashion where
no explicit occupant-to-occupant interactions take place. Each agent moves
towards their target independently of others which means that multiple occu-
pants can occupy the same space. The dynamics of the simulation are dictated
solely by the densities in the rooms, flow rates of the doors, and the SFPE
fundamental diagram presented in Section 1.2. Each room can additionally
have a speed modifier attached which makes the occupants move slower or
faster in order to simulate phenomena such as smoke. Stairs are a special
type of room with a speed modifier to reflect the effect of the slope on the
velocity.

The density in SFPE mode is considered uniform throughout the room
and is computed as ρ = N/A as in (1.5). It is used in the desired (“base”)
velocity vb computation in the following way:

vb = vmax · δ(ρ) · τ, (2.2)
where vmax is the free-flow speed, δ(ρ) ∈ [0, 1] is a scaling coefficient based on
the density in the room and τ > 0 is a scaling coefficient based on the terrain
in the room. This equation is also used in steering mode but uses a modified
form of density.

The δ(ρ) coefficient copies (1.11) from the fundamental diagram and is
normalized to [0, 1] interval:

δ(ρ) =

1 if ρ < 0.55 P/m2,

max
(
δmin, 1

0.85 (1− ρ/3.76)
)

if ρ ≥ 0.55 P/m2,
(2.3)
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with δmin = 0.15 used to prevent a complete stop and 1/0.85 being a normal-
ization constant. The τ coefficient is equal to 1 for level terrain and ramps,
and for stairs, it decreases almost linearly as the slope of the stairs increases.

The other defining factor of the SFPE mode is the door flow rate. Once
multiple occupants queue in front of a door, the first one crosses immediately,
and the others have to wait for a time period that depends on the door flow
rate. After that, another occupant is let through and the process repeats. The
flow rate calculation is based on the fundamental diagram in (1.12) as follows:

Js = kρ(1− ρ/3.76), (2.4)

where k is a speed constant that depends on the terrain of the previous room
and ρ is the maximum of the densities of the adjacent rooms. The resulting
flow is adjusted for the width of the door w as J = wJs and clamped so that
low densities do not slow the flow too much and high densities do not cause it
to degrade to zero. The time it takes for N occupants to pass through a door
is N−1

J as the first occupant does not have to wait for the door to clear.

2.3.2 Steering Mode

Steering mode provides a more complex way of following the seek curve where
occupants do not travel in a straight line but follow a more natural path.
Occupant-to-occupant interactions also take place and collision avoidance mech-
anisms are employed.

The desired velocity computation is the same as in (2.2), that is, it depends
on the maximum velocity of the occupant and the density and terrain of
the room. However, the density calculation is not uniform throughout the
room anymore as it is calculated in the way described in Section 1.1.2, i.e.,
it is dependent on the distance to the closest occupant in front of the one in
question.

Additionally, a maximum tangential forward acceleration component is
computed as af = vmax

taccel
, where taccel is the defined acceleration time. A tan-

gential backward acceleration component is obtained as ab = 2af and a radial
component as ar = 1.5af , which are combined to determine the final acceler-
ation value amax. Note that these quantities, as well as the velocity computed
in the previous paragraph, are only the magnitudes of their respective vectors,
their direction is yet to be determined.

The direction choice itself works by first generating several discrete move-
ment directions around the direction given by the seek curve. Then, for each
direction, several steering behaviors are evaluated and assigned a cost. The
number of directions and behaviors depends on the state that the occupant is
in (idle or seeking). The following behaviors are possible:

Seek – Follow the seek curve as closely as possible.

Idle separate – In an idle state, maintain distance from other occupants.
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Avoid walls – Detect walls and move to avoid collisions.

Avoid occupants – Detect occupants and move to avoid collisions.

Seek separate – Steer to lessen the perceived density.

Seek wall separate – Steer to maintain distance from walls.

Lanes – Move to a nearby lane.

Pass – Overtake slower occupants.

Cornering – Join a group of occupants that’s about to move along a corner.

The total cost for each direction is obtained as a weighted sum of the costs of
the individual behaviors and the one that minimizes the cost is chosen, i.e.,
the direction that provides the most utility based on the behaviors above.

Once the desired direction ddes is decided, it is scaled to the magnitude vb

computed above to obtain the desired velocity vector ⃗vdes and the acceleration
vector is computed as

a⃗ = amax
v⃗des − v⃗curr
∥v⃗des − v⃗curr∥

(2.5)

with ⃗vcurr being the current velocity vector. A stopping mechanism that pre-
vents taking too large steps is also employed.

The velocity vector v⃗next and position p⃗next in the next time frame is ob-
tained using explicit Euler integration as

v⃗next = v⃗curr + a⃗∆t (2.6)
p⃗next = v⃗curr + a⃗∆t, (2.7)

where ∆t is the time step.
The final component of the steering behavior is the priorities mentioned

in Section 2 which are used in conflict resolution. Each occupant is assigned a
priority level and when they meet an occupant with the same priority they act
as described above. When they, however, meet an occupant with a different
priority level (which will always be the case in the coming experiments), they
adapt their behavior. If the other occupant is of lower priority, no explicit
action is made. If the other occupant is of higher priority, the occupant will
temporarily switch to an idle state and essentially make way for the higher-
priority occupant.

In situations where there is a movement conflict, for example, when group-
ing in front of a bottleneck, the highest-priority occupants are let through first.
When the occupants are of equal priority and none of them has a clear path,
their priorities are locally elevated and the conflict is resolved with the new
priorities. The exact way is not described in the reference.

The steering system also implements other advanced techniques such as
further collision avoidance or door flow rate limiting, but for this thesis, they
are not as important.
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Chapter 3
Sensitivity Analysis

The second major theoretical prerequisite for this thesis is sensitivity analy-
sis (SA). A possible definition was given by Saltelli [26]: “The study of how
uncertainty in the output of a model (numerical or otherwise) can be appor-
tioned to different sources of uncertainty in the model input.”. It is essentially
a way of understanding how the system or model in question behaves with
respect to its input parameters. Which parameters are the most important?
Which ones are irrelevant? What combinations of input values correspond to
“interesting” outputs? Methods of sensitivity analysis can answer all of these
questions and more. For a detailed introduction to the topic, I would point
the readers to [26] and [27]. This chapter will provide an overview of the basic
concepts relevant to this thesis and present the available software solutions.

3.1 Model

Firstly, let us define the model setting. Most texts concerning SA work with
the model Y = f(X), where X = X1, . . . , Xk are the input variables (factors)
and Y is a scalar output. The model f is considered a black box, i.e., we have
no analytical knowledge about its inner structure. The model presented in
this fashion is deterministic – the uncertainty is located in the parameters. An
example provided in Chapter 3.1 of [26] is that of a bungee jumper preparing
for a jump from a bridge whose exact height he doesn’t know and wants
to choose a jumping cord to maximize his enjoyment but minimize the risk
of hitting the ground. The simplified physical model is deterministic – the
uncertainty is in the height of the bridge and the thickness of the cord.

This is different from our setting of measuring the total evacuation time
of simulated evacuations. This model is inherently nondeterministic because
of the dependence on random seeds which reflect the uncertainty in the be-
havior of a person’s decision-making process. In addition to the uncertainty
in the parameters, the output itself is a random variable. In order to suppress
the randomness of the model function, we will instead be working with the
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expected values at given points in the parameter space. Denoting the total
evacuation time with respect to the parameters X as TETX , the model takes
on the following form:

Y = f(X) = E [TETX ] . (3.1)

In practice, this means that for each combination of input parameters, the
model will be run several times with different random seeds and the outputs
averaged.

A distinctive property of the model is that it is often very computationally
expensive – a single evaluation of the model takes a long time. The simulations
in this thesis take approximately 5 seconds per run, but more complex models
may take up to hours or days at a time. Even with the relatively short run time
of 5 seconds, if we were to sample the k-dimensional parameter space with 1000
points for each variable and estimate each conditional mean with the average
of 50 runs, we would need to run the model k×1000×50 = 50 000k evaluations.
For k = 5 this equals approximately 14 days of computation time. For this
reason, the model is often replaced with a surrogate model using statistical
or machine-learning techniques. The surrogate model is less precise but fast
to evaluate which can be used to obtain preliminary results, assuming that
the surrogate model is a reasonably good approximation. Popular methods
include polynomial regression, Gaussian processes (kriging), random forests,
SVM regression, or artificial neural networks [28].

One more matter that is worth addressing are the individual probability
distributions of the factors. Many methods by-default work with a uniform
distribution on the interval [0, 1] because it is easy to evenly partition and sam-
ple. Real-world variables of interest will rarely have this distribution though,
so when working with different distributions we will instead sample the quan-
tiles uniformly and map them to the actual values via the inverse cumulative
distribution function (quantile function). This works because when a contin-
uous random variable X has the cumulative distribution function FX , we can
define the transformed variable U = FX(X) and if for a given u ∈ [0, 1] the
value F −1

X (u) exists, then

FU (u) = Pr (U ≤ u)
= Pr (FX (X) ≤ u)

= Pr
(
X ≤ F −1

X (u)
)

= FX

(
F −1

X (u)
)

= u,

(3.2)

which is the CDF of a standard uniform random variable, meaning that we
can freely move between the standard uniform distribution and other “well-
behaved” distributions. When working with discrete variables it is customary
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to also employ this continuous approach and then simply round to the nearest
integer [29].

3.2 Settings

There are various distinct use cases for sensitivity analysis as implied by the
questions in the first paragraph of this chapter. The most common settings
as identified by Saltelli in [26] are the following:

Factor prioritization (FP) The FP setting is concerned with identifying
the most important factors. The “importance” of a factor in this context is
understood in terms of variance – the most important factors contribute to
the total variance of the output the most or, equivalently, fixing the factor
to its conditional mean given all the other factors will lead to the largest
reduction in the total variance. The methods used in this setting are often
expensive in terms of the number of model evaluations and techniques such
as surrogate modeling or factor screening are employed. This is the main
setting this thesis focuses on with the method of choice being variance-based
sensitivity analysis [30].

Factor fixing (FF) The FF setting (also called screening) has the opposite
objective – it aims to identify the non-influential factors which can then be
fixed at an arbitrary value without losing too much information in the out-
put. The resulting model will then be simpler due to the presence of fewer
variables, enabling us to employ more computationally-demanding techniques
of factor prioritization. The method of elementary effects [31] (also called
Morris’ method) will be used in this thesis.

Variance cutting (VC) The goal of this setting is to get the unconditional
output variance below a given threshold by fixing the values of as few factors
as possible. This can be useful in risk analysis where we, for example, want to
eliminate various sources of uncertainty in order to keep the risk at an accept-
able value. The methods used in factor prioritization can also be employed in
this setting, but the setting itself will not be explored in this thesis.

Factor mapping (FM) The final basic setting is that of factor mapping
which aims to classify the output usually into two groups, e.g., interesting
and non-interesting or acceptable and unacceptable, and asks the question
“Which values of the input factors are the most likely to produce outputs in
the region of interest?”. An application is in reliability engineering where we
are interested in what combinations of features will cause a component to fail.
The method of choice is Monte Carlo filtering [32] and Smirnov test [33]. This
setting will likewise not be explored further in this thesis.
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As mentioned in their respective paragraphs, the main focus of the coming
chapters will be on factor prioritization and factor fixing. What follows is a
description of the used methods.

3.3 Methods

Over the course of previous decades, numerous distinct approaches to sensi-
tivity analysis have been developed. The simplest method that most people
use without realizing it is a basic scatter plot. Figure 3.1 shows an example
scatter plot of the function f(X1, X2) = 2X1 − X2 with X1, X2 ∼ N (0, 1)
against each of the variables. Clearly, X1 has a larger effect on the output
which is evident by a clearer “shape” of the plot. Scatter plots are an effec-
tive way of doing a preliminary analysis of the problem but when the number
of factors is in the tens or more, their usage becomes impractical, and more
sophisticated methods have to be employed.
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Figure 3.1: Example scatter plots of Y = 2X1 −X2 with X1, X2 ∼ N (0, 1).

Originally, SA methods were often based on partial derivatives ∂Y/∂Xi [34]
or their discrete approximations. These are the so-called local methods, also
called one-at-a-time (OAT) methods, in which a single factor Xi is being
varied while all the other Xj ̸= Xi are fixed. The change in the output
is then attributed to the change in Xi because the value of all the others
stayed the same. This method is still one of the most popular methods used
in practice [35]. Despite its popularity, it has two critical drawbacks and
A. Saltelli advises strongly against it [36]:
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• It does not explore the parameter space properly. If the model is non-
linear, the local behavior is unlikely to represent the overall behavior of
the model adequately.

• It fails to detect the interaction between variables. Using an OAT de-
sign when variable interactions are present, i.e., when varying multiple
variables at once has a specific effect on the output, can lead to under-
estimating the sensitivities of such factors [37].

Due to these limitations, I will not focus on OAT design in this thesis further.
On the other side of the spectrum are the global methods which aim to

explore the entire parameter space as efficiently as possible. The most popular
methods [38] are

• regression-based methods,

• variance-based methods, and

• elementary effects,

which are all used in this thesis.

3.3.1 Regression-Based Methods

A simple global sensitivity measure can be obtained by performing a standard
ordinary-least-squares linear regression on the model output using the input
factors, obtaining the proxy model

Y = b0 +
k∑

i=1
biXi + ε, (3.3)

where b1, . . . , bk are the regression coefficients and b0 is the intercept term, and
ε is the noise term with E[ε] = 0. We could then use the regression coefficients
as the “importance weights” of each variable. This approach, however, fails
when the individual factors have different scales. For example, if X1 was in
the order of hundreds and X2 in the order of thousands, but their relative
importance was equal, then X1’s importance would be underestimated while
X2’s importance would be overestimated.

This problem can be avoided by standardizing the regression coefficients
by the input–output standard deviations σXi/σY to obtain the standardized
regression coefficients (SRC)

βi = σXi

σY
bi. (3.4)

Technically, the division by σY is not necessary to determine the relative
importance of the factors, but it provides the model with certain desirable
properties, mainly that
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• the coefficients are unitless, i.e., one standard deviation change in Xi

will lead to βi standard deviations change in Y , and

• ∑k
i=1 β2

i = R2, where R2 is the coefficient of determination which, in
this case, measures the proportion of the output variance explained by
the linear model [27, Ch. 1.2].

Additionally, the sign of the coefficient signals whether the variable has a
positive or negative effect on the output. The regression-based approach is
fast and simple and can also be used as a surrogate model.

However, it also has several shortcomings. First of all, it is model-dependent
– it assumes that the linear model is a good fit. If the true model is nonlinear,
this assumption may not hold and the results may be misleading. For this
reason, it is necessary to check the goodness of fit before making any claims
about the variables’ effects – in [26, Ch. 2.2], Saltelli advises an R2 coefficient
of at least 0.7. Secondly, it fails to detect interactions between factors. The
β coefficients only measure the first-order interactions, i.e., the effects of the
variables “in a vacuum”. This is fine if the true model is linear because there
are no interactions in a linear model but as the nonlinearity of the model in-
creases, so does the strength of the variable interactions. This can be partially
improved upon by adding polynomial features to the linear model but this also
causes the complexity of the model to rapidly increase. For these reasons, more
complex techniques were developed that are model-free and consider variable
interactions by default.

3.3.2 Variance-Based Methods

A more sophisticated approach, and the de facto standard today, is the variance-
based approach. As a motivational example, I will explain the intuition behind
the first-order sensitivity index Si (the formal definitions will come later):

Si := VarXi (EX∼i [Y | Xi])
Var (Y ) , (3.5)

where the notation X∼i = X1, . . . , Xi−1, Xi+1, . . . , Xk means all the variables
except for Xi. The idea can be illustrated well via Xi–Y scatter plots. First,
we divide the x-axis into N bins B1, . . . , BN with an approximately equal
number of points in each bin. Then, for each bin Bn, we compute the average
value of Y w.r.t. Xi for all the points in said bin, essentially averaging out the
effect of all the other variables to obtain EX∼i [Y | Xi ∈ Bn]. Finally, we look
at how “spread out” these average values are w.r.t. the binning by looking
at the variance VarBn (EX∼i [Y | Xi ∈ Bn]). If they have a low variance, it is
likely that Xi only has a small effect on the output, and if their variance is
high, then Xi influences the output more. This, of course, depends on how
we construct the bins, but if we make them infinitely small and additionally
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3.3. Methods

divide them by the output variance, we will arrive at exactly the first-order
sensitivity index Si:

lim
|Bn|→0

VarBn (EX∼i [Y | Xi ∈ Bn])
Var (Y ) = VarXi (EX∼i [Y | Xi])

Var (Y ) = Si. (3.6)

The idea is illustrated in Figure 3.2 using the function

Y = sin(X1) + 0.1X2 (3.7)

with X1, X2 ∼ U(−π, π), where most of the variance can be attributed to X1,
and the sensitivity indices obtained by binning are S1 ≈ 0.9 and S1 ≈ 0.1.

2 0 2
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1.0

0.5

0.0

0.5

1.0

Y

2 0 2
X2

1.0

0.5

0.0

0.5

1.0
Y

Figure 3.2: Conditional variances as a basis for SA.

This process can easily be generalized to groups of factors where the bins
will become multidimensional, although the definition of the indices needs a
slight adjustment so as to not count any effect twice, as will be seen shortly.

Sobol’ sensitivity indices The method was originally proposed by Sobol’
in [30], where he proved that if the model function Y = f(X) of k variables is
square-integrable, the input factors are uncorrelated (orthogonal), and defined
over the unit hypercube2

Ωk = {x | 0 ≤ xi ≤ 1; i = 1, . . . , k} , (3.8)

then f can be decomposed into a sum of functions with increasing dimension-
ality

f = f0 +
k∑

i=1
fi +

k∑
i=1

k∑
j>i

fij + · · ·+ f1...k, (3.9)

2For practical scenarios we can assume that these are the quantiles of different continuous
distributions.
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where f0 is a constant and the others are functions only of the factors in its
index, e.g., fi = fi (Xi) or fij = fij (Xi, Xj). The fi are called the first-order
terms, fij are called the second-order terms, and so on. If all the functional
terms in (3.9) have zero means3, i.e., their integrals with respect to their
variables are zero, then the decomposition is unique and can be computed in
terms of conditional means of the variables:

f0 = E [Y ] ,

fi = E [Y | Xi]− f0,

fij = E [Y | Xi, Xj ]− fi − fj − f0,

(3.10)

and so on. This decomposition is called the high-dimensional model repre-
sentation (HDMR). To translate this into the language of variances, one can
square and integrate each term over the unit hypercube Ωk to obtain

∫
Ωk

f2 (X) dX − f2
0 =

k∑
n=1

k∑
i1<···<in

∫
· · ·
∫

Ωk
f2

i1...in
dXi1 . . . dXik

, (3.11)

where the term on the left is, in fact, the unconditional variance Var(Y ) and
the terms on the right are also variance terms decomposed with respect to
the variables in their index. In a more readable way, the decomposition is
analogical to the functional decomposition in (3.9):

Var(Y ) =
k∑

i=1
Vi +

k∑
i=1

k∑
j>i

Vij + · · ·+ V1...k, (3.12)

with

Vi = VarXi (EX∼i [Y | Xi]) ,

Vij = VarXi,Xj

(
EX∼i,j [Y | Xi, Xj ]

)
− Vi − Vj ,

(3.13)

and so on. Finally, by dividing each side by Var(Y ) we obtain the desired
Sobol’ sensitivity indices (SSI)

1 =
k∑

i=1
Si +

k∑
i=1

k∑
j>i

Sij + · · ·+ S1...k. (3.14)

The number of variables in the index of each term is called the order of
the interaction. The terms in the equation above are all in the range [0, 1]
and correspond to the portion of the total variance that can be attributed
directly to the combination of variables in its argument, as all the lower-order
interaction terms were filtered out. The decomposition is also possible for
correlated inputs, but it will not be explored in this thesis.

3Which will be true for uncorrelated inputs.
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The first-order indices Si also have a connection with the standardized
regression coefficients βi from Section 3.3.1 in that Si = β2

i if the model is
linear [27, Ch. 1.2]. The major advantage of the sensitivity indices, however,
is that they are model-agnostic. While the sum of the squared SRCs measures
the proportion of variance explained by a linear model, the sum of the first-
order SSIs measures the proportion of variance explained by an additive model,
i.e., a model in which the effects of the variables can be partitioned into
individual summands such as the one in (3.7).

Total effects Since the number of terms in (3.14) is 2k − 1, computing all
of them quickly becomes infeasible. Is there a way to aggregate all the effects
of Xi into a single number? We can look at the term

VarX∼i (EXi [Y |X∼i]) =
∑

j∈P+(∼i)
Vj , (3.15)

where P+(∼i) is the set of all non-empty subsets of {1, . . . , i− 1, i + 1, . . . , k}
that don’t contain i, meaning that (3.15) contains the effect of all the terms of
any order which don’t include Xi. Because the sum of all V terms is Var(Y ),
then the terms absent in (3.15) must make up all the terms of any order that
do contain Xi. This leads us to the definition of the total effect term (TE) Ti:

Ti = 1− VarX∼i (EXi [Y |X∼i])
Var(Y ) . (3.16)

The total effect statistic gives us a summary statistic of how much each
variable affects the output. It does not suffer from false negatives, where an
influential variable is not detected, as SRCs do. As an example, for a model
with three factors X1, X2, X3, the total effect terms have the following form:

T1 = S1 + S12 + S13 + S123,

T2 = S2 + S12 + S23 + S123,

T3 = S3 + S13 + S23 + S123.

(3.17)

It is worth noting that ∑i Ti ̸= 1 unless the model is purely additive be-
cause the higher-order terms will get counted more than once as is apparent
from (3.17).

Practical use and computation In order to compute the SSIs and TEs
in a naive way, one would need to first estimate the inner expectations with
M points and then the outer variance with N points, leading to M×N model
evaluations for each of the 2k − 1 indices. However, it is a standard practice
to only compute the Si and Ti [26, Ch. 5], cutting the cost to 2k ×M × N .
These generally give us enough information to make informed claims about
the model:
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• The Si values give us an idea of how much Xi participates in simple
additive interactions.

• The Ti values measure the overall importance of the variable.

• The differences Ti − Si indicate how much Xi participates in composite
interactions.

Furthermore, it is also possible to cut the M × N cost. A Monte Carlo
approach was suggested by Sobol’ in [39] and refined by Saltelli in [40], in which
both the Si and Ti can be computed using only N(k + 2) model evaluations,
or N(2k + 2) model evaluations if Sij are also required. I will not be going
too deeply into the algorithm as it is not the primary objective of this thesis,
but in short:

1. Two matrices A and B of size N × k are generated. These contain the
model inputs generated from the marginal distribution of each factor.

A =


x

(1)
1 . . . x

(1)
k

x
(2)
1 . . . x

(2)
k

... . . . ...
x

(N)
1 . . . x

(N)
k

 , B =


x̃

(1)
1 . . . x̃

(1)
k

x̃
(2)
1 . . . x̃

(2)
k

... . . . ...
x̃

(N)
1 . . . x̃

(N)
k

 . (3.18)

2. The model is evaluated for each point in A and B to obtain yA and yB.

yA = f(A), yB = f(B). (3.19)

3. For each Xi, the matrix Ci is constructed which contains all the columns
from A except for the i-th column, which is taken from B.

Ci =


x

(1)
1 . . . x̃

(1)
i . . . x

(1)
k

x
(2)
1 . . . x̃

(2)
i . . . x

(2)
k

... . . . ... . . . ...
x

(N)
1 . . . x̃

(N)
i . . . x

(N)
k

 . (3.20)

4. The model is evaluated for each point in each Ci to obtain yCi .

yCi = f(Ci). (3.21)

5. The unconditional mean and variance are estimated in the standard way.

Ê[Y ] = 1
N

N∑
j=1

y
(j)
A ,

V̂ar(Y ) = 1
N

N∑
j=1

(
y

(j)
A

)2
− Ê[Y ]2.

(3.22)
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6. Sensitivity indices and total effects are estimated for each Xi.

Ŝi =
(1/N)∑N

j=1 y
(j)
B y

(j)
Cj
− Ê[Y ]2

V̂ar(Y )
,

T̂i = 1−
(1/N)∑N

j=1 y
(j)
A y

(j)
Cj
− Ê[Y ]2

V̂ar(Y )
.

(3.23)

A discussion of why this works and possible improvements is provided
in [40]. One notable technique that speeds up the convergence is to not gen-
erate the matrices A and B randomly but to instead use low-discrepancy
sequences such as Sobol’ sequences [41].

Law of total variance One additional form of variance decomposition that
is connected to the variance-based methods and is of particular interest in our
setting is the so-called Law of total variance or Eve’s law which states that if
X1, . . . , Xk and Y are random variables, then

Var(Y ) = E[Var(Y | X1, . . . , Xk)] + Var(E[Y | X1, . . . , Xk]). (3.24)

A proof can be found, for example, in [42]. If X1 . . . Xn are the parameters of
the model (inputs), the term on the right can be interpreted as the variance
explained by the model parameters. This is because the inner expectation
eliminates the inherent stochasticity of the model and the resulting variance
is due to the deterministic part. The term on the left has the opposite mean-
ing – it is the average variance that is induced by the randomness of the
output. This formula allows us to quantify how much of the uncertainty in
the evacuation time can be attributed to purely random factors, as will be
shown in Section 6.2.

3.3.3 Elementary Effects

The final method used in this thesis is the so-called elementary effects method
developed by Morris [31] and later improved by Campolongo [43]. It is the
standard method used for screening – identifying the variables whose effect
on the output is negligible and fixing them to a baseline value. The goal is
mainly to reduce the dimensionality of the problem and enable the use of
more powerful but also more computationally expensive techniques such as
the variance-based methods.

For this to work, the method must provide reliable sensitivity estimates
with only a few model evaluations. The elementary effects method approxi-
mates the partial derivatives with respect to each input variable in different
sample points in the parameter space and aggregates them to obtain a global
measure. There are visible similarities with the one-at-a-time method, which
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was discouraged earlier, however, the usage of multiple sample points serves
to overcome the shortcomings of the OAT approach. This method has been
shown to produce reasonable rankings of the factors in as few as 10 to 100
samples per factor [43].

EE and derived measures As before, the input factors X1, . . . , Xk are
assumed to be defined over the unit hypercube Ωk, and translation to their
actual values can be done via the quantile function. Each factor’s input range
is evenly discretized into a p-level grid with a spacing of δ = 1/(p − 1) to
obtain Ωk

p. For example, if p = 4 (a common choice), then each Xi can take
on the values {0, 1/3, 2/3, 1}. Finally, a step size ∆ is chosen as n · δ for an
n ∈ {1, . . . , p− 2} so that for an x ∈ Xi, at least one of x + ∆ or x−∆ is still
in Xi. The recommended choice is p/2 · δ as it has some desirable sampling
properties, namely that it does not inherently favor any points in the sample
space [27, Ch. 2.4]. This also forces the p to be an even integer. To finish the
example, for p = 4, the corresponding ∆ would be chosen as 2/3. It is also
worth noting that the analogy with partial derivatives is not entirely accurate
as the step size ∆ is not necessarily a small one – the most commonly used
value makes for steps larger than half of the variable’s range.

We can now define the elementary effect associated with Xi as

EEi(X) = f(X1, . . . , Xi + ∆, . . . , Xk)− f(X1, . . . , Xi, . . . , Xk

∆ , (3.25)

or, in short,
EEi(X) = f(X + ∆ei)− f(X)

∆ , (3.26)

where ei is a vector of zeros with a one in position i and X ∈ Ωk
p such that

X + ∆ei is still in Ωk
p.

The number of elementary effects associated with Xi is finite due to the
discrete nature of the grid and their distribution is denoted Fi. Addition-
ally, the distribution of their absolute values is denoted Gi. The sensitivity
measures µi, σi, and µ∗

i are defined in the following way:

µi = EX∼Fi [EEi (X)] , (3.27)
σ2

i = VarX∼Fi (EEi (X)) , (3.28)
µ∗

i = EX∼Gi [ |EEi (X)| ] . (3.29)

Practical use and computation Morris originally proposed only the first
two measures µi and σi. A large (absolute) value of µi signals that a shift of
Xi by ∆ leads to a large (absolute) change in the output. However, a µi close
to 0 does not necessarily imply an unimportant variable because when f is
non-monotonic and the individual EEis have different signs, their effects could
cancel out and the method would not detect this. To overcome this, the µ∗

i
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measure was introduced by Campolongo which does not suffer from this issue.
There could, of course, be cases where even this measure fails to detect an
important variable, for example, if the function f was periodic with a period
coinciding with the minimum step size δ. If one wants to be extra careful, one
could try multiple different grids. It has been shown that the measure µ∗

i is
a good proxy for the total effect index Ti [43] and even an analytical link has
been proven [44].

The measure σ2
i indicates how much the factor participates in higher-order

interactions. Intuitively, if the value of EEi varies considerably across different
sample points, it means that the values of the other factors also determine how
big of an effect Xi has on the output in the given points.

The standard way of computing EEs and estimating the sensitivity mea-
sures is via trajectories. A trajectory is a sequence of k + 1 points in Ωk

p such
that each pair of consecutive points differs only in a single coordinate, which
is either increased or decreased by ∆, and this happens exactly once for every
dimension. An example trajectory is shown in Figure 3.3. A single trajectory
yields k elementary effects, one for each factor, obtained via (3.26) with the
slight adjustment that if the factor’s value in the trajectory was decreased
instead of increased, then the order of the terms in the numerator is inverted.
The µi, σi, and µ∗

i for each factor are then estimated from n independent
trajectories, for a total cost of n× (k + 1) model evaluations to obtain n× k
elementary effects.

Figure 3.3: An example trajectory with three factors.

(Figure 1 from [45])

Campolongo in [43] proposed an improved way of sampling the trajecto-
ries by first generating a large number of trajectories N and then selecting a
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subsample of n < N trajectories with maximum “spread” in the input space.
Saltelli also developed a so-called radial design which does not generate tra-
jectories at all but instead simply samples a number of random points in the
input space and performs an OAT analysis at each point, averaging the values
in the end [46]. The µ∗ measure can also be extended to groups of factors, as
shall be seen in Section 6.4.2. In this case, the factors are not perturbed one
at a time, but all the factors belonging to a group are moved at once.

3.4 Software Solutions

There are packages implementing the described methods in every major lan-
guage used for numerical computations. For instance, R language has the
package sensitivity4, Matlab has the Simulink environment5, and Julia has
the package GlobalSensitivity.jl6. There also exists dedicated software
for sensitivity analysis such as optiSLang7.

The language of choice for this thesis is Python and the leading SA library
is SALib [47, 48]. The library is open-source and implements both the Sobol’
method and the elementary effects method, as well as other popular techniques
that weren’t explored in this chapter such as the Fourier amplitude sensitivity
test (FAST) [49] or derivative-based global sensitivity measure (DGSM) [44].
A form of the HDMR decomposition from (3.9) via least-squares regression is
implemented as a method of surrogate modeling.

A topic that is closely connected to sensitivity analysis is experimental
design, which is concerned with answering the question “How to properly
sample the parameter space?”. When the dimension of the problem is high,
a full grid search (also called the full factorial design) is infeasible, but a
purely random sampling strategy may leave large gaps in one part of the
parameter space and form clusters in other parts. An overview of experimental
design is provided in [27, Ch. 2]. SALib implements various more-sophisticated
sampling strategies including fractional factorial, Latin hypercube sampling,
or Sobol’ sequences. The theory behind experimental design was not explored
in this thesis aside from the brief mention of Sobol’ sequences in Section 3.3.2.

SALib’s API is based on a four-step pipeline:

1. Define the problem via the ProblemSpec class. The class is essentially
an expanded dictionary that contains:

• The list of variables and their names.
• The distribution of each variable. By default, it is assumed that

the variable follows a uniform distribution with given bounds, but
4https://cran.r-project.org/web/packages/sensitivity
5https://www.mathworks.com/products/simulink.html
6https://docs.sciml.ai/GlobalSensitivity/stable
7https://www.ansys.com/products/connect/ansys-optislang
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different distributions such as normal or lognormal distributions
are also available.

• Optionally, the group to which each variable belongs, if the method
supports grouping.

• The output variable.

2. Generate a list of input samples via the sample() function.

3. Separately evaluate the model for each input sample.

4. Compute the sensitivity measure via the analyze() function.

Each SA method has its own implementation of the sample() and analyze()
function. A basic visualization of the results is also provided.

SALib, however, does not provide tools for surrogate modeling apart from
the aforementioned HDMR decomposition. This functionality is provided by
standard Python numerical libraries such as NumPy8 or SciPy9. More com-
plex models are implemented in scikit-learn10 or PyTorch11 (neural networks).

8https://numpy.org
9https://scipy.org

10https://scikit-learn.org
11https://pytorch.org
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Chapter 4
Experimental Setting

This chapter opens up the practical part of the thesis. Before beginning the
analysis, two concerns have to be addressed:

1. Selecting proper geometrical setting for analysis.

2. Modeling the pedestrians themselves.

Both of these points will be addressed in the coming sections, as well as a
description of the selected approaches.

4.1 Geometry Selection

There are various different geometries that share the general characteristics of
a cramped interior, i.e., narrow corridors and high occupant densities. Despite
sharing these properties, one would not expect every cramped layout to exert
the same pedestrian behavior. With consultation from the experts at the
Faculty of Civil Engineering, CTU in Prague, we have chosen the following
scenarios based on their accessibility and the potential of conducting real-life
experiments:

Multi-decked train – A highly irregular geometry with multiple decks con-
nected by stairs.

Lecture hall – A more homogeneous geometry with identical rows and single
stairs on the side.

These geometries contrast each other in many of their properties. The train
has a very closed and narrow interior, the field of vision is reduced due to
the presence of walls, and the route to exit will differ considerably based on
the initial position. The lecture hall, on the other hand, is a somewhat open
geometry where the occupant can directly see what is happening and the
evacuation process will consist of reaching the stairs and subsequently joining
the queue in front of the exit regardless of the occupant’s initial position.
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4.1.1 Train

There have been several studies concerning the egress of trains and railway cars
in the past. For example, [50] explored the behaviors of passengers induced
by narrow aisles under laboratory conditions, [51] analyzed the evacuation of
a metro train in Vienna with respect to the exit geometry, or [52] investigated
the effects of reduced visibility due to the presence of smoke. There have
also been models developed specifically to account for the intricacies of train
evacuation [53, 54].

The main publication of interest is [1] by Najmanová et al., which is based
on an experimental evacuation experiment of a ČD Class 471 train commonly
known as CityElefant, conducted in Prague in 2018. The study focused on
the effect of boundary conditions – types and widths of exit geometry, and
the composition of the crowd. Three exit geometries were tested:

• Exit to a high platform.

• Exit to an open line via stairs.

• Exit to an open line via a 75 cm jump.

Five different exit door widths were tested – 65 cm, 75 cm, 90 cm, 110 cm, and
134 cm. Additionally, there were two different types of crowds investigated –
a homogeneous crowd (HOM) consisting of 18–38 years old participants with
no movement limitations, and a heterogeneous crowd (HET), in which 28 %
of the group had some type of movement impairment (slower walking speed,
greater diameter). The study also employed sensitivity analysis techniques on
the effect of the exit width, exit type, and the number of movement-impaired
individuals.

There was also a follow-up study presented at the Fire and Evacuation
Modeling Technical Conference (FEMTC) 2022, which concerned itself with
modeling the evacuation in Pathfinder and validating the model against em-
pirical data [55]. Further sensitivity analysis was performed on the average
maximum speed, average diameter, and a probabilistic measure of the occu-
pancy of the bottom deck. Additionally, a preliminary analysis of the effects
of the initial positions of the occupants was conducted.

This thesis aims to expand upon the results of [1] and [55]. The model of
the train in Pathfinder was created as part of the aforementioned experimental
study. To keep the dimensionality of the problem at a reasonable level, only
the exit to a platform with a door width of 90 cm was chosen. A photo of
the train interior along with a screenshot of the modeled geometry is shown
in Figure 4.1.

The train itself has three decks – a bottom deck with a capacity of 23
occupants, a middle deck with a capacity of 13 occupants, and a top deck
with a capacity of 31 occupants. The individual decks are connected via
stairs and there is a small room with no seats near the exit door.
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Figure 4.1: CityElefant train used in [1] and its Pathfinder model.

(Photo taken with permission from https://www.railpage.net)

4.1.2 Lecture Hall

The second geometry of choice is that of a lecture hall. There have been
several experimental studies concerning lecture halls or theaters, for exam-
ple, [56] conducted a series of evacuation trials at the Faculty of Engineering
of Universiti Putra Malaysia, [57] did a similar experiment in China with em-
phasis on low visibility and developed a 3D extension of the social-force model
for pedestrian modeling, and [58] focused on the exit choice of occupants in
a monitored evacuation. The nature of the geometry with rows of seats ar-
ranged into a regular grid is similar to that of a cinema or a theater, which
have also been the subject of various studies [59, 60, 61].

The lecture hall geometry used in this thesis is modeled according to the
C-219 auditorium located at the Faculty of Civil Engineering, CTU in Prague.
The auditorium can seat 73 people in seven rows. The first six rows have 11
seats each, and the last row near the exit has 7 seats. The rows are arranged
on a slope, with the main desk and the first row at the lowest level. Each
row is elevated by 21 cm from the previous one. The exit is located at the
highest level of the room. There are two pairs of stairs, one on each side of the
room. The Pathfinder model was provided by H. Najmanová. It will also be
the location for an upcoming experimental evacuation experiment scheduled
for June 5th, 2023.

There were minor complications while modeling the room, namely that
sometimes three or more occupants would get stuck in the aisles, which was
likely caused by a clash of priorities when one agent would attempt to go the
long way around and join the queue from the other side, but there was a group
of agents with different priorities in the aisle, effectively blocking him from
getting to his target. This is a discrepancy in Pathfinder’s implementation
of tight geometries and is not realistic behavior. The issue was solved by
prohibiting the occupants from using the second pair of stairs by adding a
virtual wall at one end of each aisle. As lecture halls with only a single pair of
stairs are still a valid design, this should not interfere with the findings of the
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Figure 4.2: C-219 lecture hall at the Faculty of Civil Engineering, CTU in
Prague, and its Pathfinder model.

(Photo taken from https://portal.fsv.cvut.cz)

analysis. An alternative solution could be obtained by allowing the occupants
to “squeeze” themselves in the corridors, thus allowing the others to pass, but
it is questionable whether this behavior is actually realistic.

4.2 Variable Selection

It is no surprise that the composition of the crowd has a major effect on evac-
uation time [62]. From a macroscopic point of view, the fundamental diagram
has the form J = ρv, which gives us three possibilities for manipulating the
evacuation time:

• Adjusting J – Recall that J = Jsw, where Js is the specific flow and
w is the width of the exit. We could influence the evacuation time by
considering a wider exit door. In general, doors cannot be expanded in
a continuous manner. We could, at most, open a second wing of the
door, but for this thesis, we shall consider the door width fixed.

• Adjusting ρ – The density in the room can be influenced by adding or
removing occupants from the room. For practical purposes, the most
interesting situations are those where the room is full, or almost full.
Additionally, the perceived density can be controlled by increasing or
decreasing the diameter of the occupants – when the pedestrians take
up more space, fewer of them can fit into the room. However, in the
previous study [55], the effect of the diameter (within reasonable values)
proved to not be as influential.

• Adjusting v – The average velocity appears to be a good candidate for
analysis. In real-life scenarios, we cannot influence the speed of the
occupants, but in simulated environments, we have full control over the
distribution of maximum velocities. Additionally, the acceleration times
can be controlled and will also be taken to account for the analysis.
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Another factor that clearly influences the evacuation time are the initial
positions of the occupants. When the occupants are far from the exit, they
have to cover more distance to reach the exit, thus taking longer to reach
their destination. But when the density in the room is not uniform, i.e., the
occupants are seated in clusters, undesirable effects such as excessive blocking
can happen and lead to congestion. The true seating patterns of pedestrians
depend on many factors including the type of venue or even cultural factors.
For example, one study found that in lecture halls, the students tend to prefer
the left-hand side of the rows [63], while in cinemas, the right-hand side is
preferred [64]. The situation in trains is even more complicated due to the
irregularity of the geometry. For this reason, I will stick to descriptive mea-
sures of a given seating configuration such as the average distance to the exit
or the amount of “clustering” present.

Lastly, following the previous CTU studies, the heterogeneity of the crowd,
represented by a portion of slower occupants, will be explored. The study in
[65] showed a large decrease in average flow with the inclusion of multiple
slow-walking pedestrians, which the experiments in this thesis will attempt to
recreate. The simulated occupants will be divided into two groups – a group of
able-bodied individuals and a group with movement limitations simulated by
a slower maximum walking speed and higher acceleration time. The average
difference in velocities between a group of younger and a group of older pedes-
trians in open space was observed to be approximately 0.26 m/s [66] (1.51 m/s
vs. 1.25 m/s). The same study also measured a start-up time, which is the
time it takes a pedestrian to start moving after the traffic light turns green,
and found the average difference in reaction time of about 0.55 s (1.93 s vs.
2.48 s). The reaction time of Pathfinder agents is instant, therefore this quan-
tity could be simulated by the acceleration time.
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Chapter 5
Simulation Pipeline

The computation of sensitivity measures requires a large amount of data and
collecting it by running the simulations manually would quickly prove tire-
some. Pathfinder provides a basic Monte Carlo functionality that allows for
randomizing the maximum velocities and initial positions of the occupants,
but for more complex scenarios, finer control is needed. This chapter serves as
a documentation of the Python package simtools developed for the purposes
of this thesis which allows for fine control over the simulation pipeline. Orig-
inally, the simulation pipeline was a single command line utility that would
run a number of simulations and collect the results, but with the increasing
number of different types of experiments, each with a different set of parame-
ters, maintaining a single script became very difficult. For this reason, I have
chosen a more API-oriented approach that provides a simple interface over
Pathfinder’s command line tool and is heavily customizable, allowing the user
to focus on designing the experiments instead of the technicalities connected
to processing configuration files.

5.1 High-Level Overview

After creating a model in Pathfinder’s graphical user interface and running
the model, a configuration file is generated which is then used by Pathfinder
to start the simulation process. This configuration file contains all the infor-
mation necessary to conduct a simulation, including global parameters and
metadata, the entire geometry, or the occupants themselves. The simtools
package contains a class named Simulation, which processes the Pathfinder
configuration file and creates an internal representation of the information pro-
vided within the input file. This includes extracting the defined profiles, the
probability distributions that they reference, or the occupant properties along
with their initial positions. A simulation with the parameters provided by the
configuration file can then be run with the method run simulation(), which
starts Pathfinder and returns a SimulationResult object that contains the
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results of the simulation – basic statistics such as the total evacuation time,
average evacuation time (with respect to the occupants), standard deviation
of the evacuation times; and details about each occupant (initial position,
maximum velocity, exit time, and others). In its simplest form, a simulation
can be run in the following way:

1 from simtools.simulation import Simulation
2 config = './config.txt'
3 sim = Simulation(config, out_dir='out')
4 results = sim.run_simulation()
5 print(f'Evacuation time: {results.max_evac_time:.2f} s.')

The resulting TET will be displayed and the results including the animation
of the process will be in the ./out directory.

However, this functionality is also supported by Pathfinder’s Monte Carlo
framework. The main added functionality comes in the form of occupant vari-
ables and position generators. Occupant variables allow the user to specify
the quantity of interest that should be generated for each occupant prior to
the simulation. The values can be specified as constants or via their distribu-
tions. There is also a special type of variable – RandomnessVariable, which
processes the purely random parameters of the occupants (random seeds, pri-
orities, and initial directions). Likewise, position generators provide a way
of specifying how to generate occupant positions. By default, new positions
are generated randomly from a given list of positions, which can be extracted
from the configuration file or provided by the user. The variables and gen-
erators can be created before the simulation and then periodically updated
with new values. The individual sources of randomness can also be easily con-
trolled via methods that can, for example, re-generate only the random seeds
for each occupant or only their positions. A diagram of the inputs and the
outputs is shown in Figure 5.1. The example code in Listing 1 runs a total
of 60 simulations in the train geometry with three different configurations of
initial positions and two different maximum velocities, each averaged over 10
different random seed values. The available initial positions are in a separate
file called positions.csv.

This approach is very general because it aims to be as reusable as possible.
There are countless possible experimental designs and hand-picking a small
number of them would force the users into using a predefined structure that
may or may not fit their use case. Even so, a simple command line tool for
convenience is also available for those who do not have programming experi-
ence or do not have the time to spend acquainting themselves with a new API.
The following sections will provide a comprehensive overview of the simtools
package and its features without going too deeply into the implementation
details.
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Figure 5.1: The inputs and outputs of the simulation object. Dashed lines
denote optional arguments.

5.2 Simulation Object

The simulation object is represented by the class Simulation and it is the
main controller of the simulation pipeline. It collects all the other auxiliary
objects and calls their appropriate methods when they are needed. Its tasks
include:

• Processing the configuration file.

• Preparing and maintaining the directory structure.

• Managing the individual variables.

• Generating occupants and processing them via other objects.

• Creating modified temporary configuration files.

• Running the simulations and collecting the results.
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1 # Import the necessary classes.
2 from simtools.simulation import Simulation
3 from simtools.variable import VelocityVariable
4

5 # Define the experiment.
6 NUM_OCCUPANTS = 30
7 NUM_POSITIONS = 3
8 VELOCITIES = [1.0, 1.2]
9 NUM_ITERATIONS = 10

10

11 # Initialize the variables and the simulation object
12 vel_var = VelocityVariable()
13 sim = Simulation(config='train.txt',
14 positions='positions.csv',
15 variables=[vel_var])
16

17 # Generate occupants and start the loop.
18 sim.generate_occupants(NUM_OCCUPANTS)
19 for i in range(NUM_POSITIONS):
20 # Generate new positions.
21 sim.regenerate_positions()
22 for velocity in VELOCITIES:
23 # Update the variable object and generate velocities.
24 vel_var.to_constant(velocity)
25 sim.regenerate_variables()
26 for j in range(NUM_ITERATIONS):
27 # Generate new seeds.
28 sim.regenerate_randomness()
29 # Run the simulation and show the results.
30 results = sim.run_simulation()
31 print(f'TET: {results.max_evac_time:.2f} s.')

Listing 1: A more complex simulation script.

Initialization The object is initialized with the input file generated by
Pathfinder, whose structure is described in the technical reference [5]. The
sections occupants, profiles, and distributions are all extracted and con-
verted into a Python dictionary that contains all the defined attributes from
their configuration section. Additionally, the distributions are converted from
their text descriptors into SciPy distribution objects, for example, if the dis-
tribution with the key “1” corresponds to a truncated normal distribution, it
is converted into a scipy.stats.truncnorm object. If a CSV file with the
available initial positions is provided, it is processed and saved. Otherwise,
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the positions are extracted from the occupant.loc attributes in the occupant
section. Finally, the directory structure is prepared. If the argument out dir
is provided, this directory is created and will house the results of the simula-
tion, otherwise, the current directory is used (it can also be changed later via
the set out dir() method).

Managing occupants and running simulations New occupants can be
generated with the method generate occupants(). If the input is an integer
N , then N occupants with the default profile are created. Otherwise, the
input is assumed to contain per-profile numbers, either as a list with the form
[N 1,...,N p], where p is the total number of profiles in the configuration
file, or as a dictionary with the form {P i:N i}, i.e., profile name and number
of occupants key–value pairs. If the method is not called, then the occupants
already present are used.

Once the occupants are generated, they can be further processed with
respect to the individual sources of randomness – initial positions, physi-
cal parameters, or random seeds. Each of these components has a corre-
sponding regenerate [SOURCE]() method. The initial positions are han-
dled by the position generators (Sec. 5.5), physical parameters are handled
by the occupant variables (Sec. 5.4), and random seeds are handled by ran-
domness variables (also Sec. 5.4). The occupants can be retrieved with the
get occupants() method or the generate and return occupants() method.

Additionally, the occupants and their positions can be modified directly via
a set occupant variables() call which accepts a dictionary with the form
{key: list of values}, for example, assuming there are three occupants
available,

1 sim.set_occupant_variables({
2 "OccProfile.MAXVEL": [1.0, 1.2, 1.1]
3 })

will set their velocities to 1.0, 1.2, and 1.1. This is mainly useful when the
values are pre-computed. However, this option should be used with caution as
there are no checks performed as to whether the different keys are meaningful
and an error will cause the simulation to fail.

The simulation can then run with the run simulation() method which
generates a temporary configuration file with the current list of occupants
and saves the results in the specified directory. There is also a convenience
generate and run sim() method which performs all of the above at once.

5.3 Simulation Results

The results of a single simulation are represented by the SimulationResults
data class. It is simply an object which contains the results of the simulation
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and can be processed by the user according to their needs. The following
statistics are included:

max evac time – Evacuation time of the last occupant to exit (TET).

min evac time – Evacuation time of the first occupant to exit.

average evac time – Average evacuation time w.r.t. the occupants.

evac time std – Std. dev. of the evacuation times w.r.t. the occupants.

cpu time, startup time – Metadata about how long the process took.

occupant stats – A Pandas data frame that contains the exit times for the
individual occupants and the total distance they traveled. Their initial
positions and profiles are also included.

The rest of the results including the Pathfinder visualization file can be found
in the specified output directory.

5.4 Occupant Variables

Occupant variables represent the quantities under analysis such as velocity or
acceleration. They are represented by the OccupantVariable class, which de-
fines a single method process occupant() used by the simulation object, and
is meant for subclassing. The method takes a single occupant in the form of a
dictionary with the keys and values linked to Pathfinder’s occupant descrip-
tors and can perform arbitrary operations over the said dictionary, assuming
that once it modifies the dictionary, it will contain the valid definition of an
occupant.

There are multiple predefined subclasses of OccupantVariable which are
ready for use. A special one is RandomnessVariable which handles the pa-
rameters that govern the inherent randomness of the model, namely random
seeds, priorities, and initial orientations. It can also be redefined in case the
user wants to handle the inherent randomness differently.

The main subclass meant for use is the ScalarOccupantVariable which
processes a single key for each occupant. It is initialized with the correspond-
ing Pathfinder key and a distribution from which to generate the values. The
default available distributions are constant, (truncated) normal, and uniform,
but any discrete or continuous SciPy distribution can be used. For example,
the definition

1 acc_var = ScalarOccupantVariable(key='OccProfile.ACCEL_TIME',
2 distribution=1.2)
3 ...
4 acc_var.to_normal(mean=1.0, std=0.2)
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will create a variable that controls the acceleration time with a constant value
of 1.2 s and later convert to a normally distributed variable with µ = 1.0 s and
σ = 0.2 s. There is also a VectorOccupantVariable that works with multiple
keys and distributions at once.

Once the variables are created, they have to be passed to the simulation ob-
ject. This can be either done directly in the object’s constructor via the param-
eter variables, or at any later point via the register occupant variables()
method.

A simplified variable creation process is also possible. The variables can
be inferred directly from the configuration file. This is done by specifying
the variables of interest in the constructor of the simulation object with the
keyword infer variables which accepts a list of Pathfinder variable keys.
Their respective distributions are then extracted from the distributions
section. In the following example, the occupants’ velocities and diameters are
automatically processed from the configuration file.

1 sim = Simulation(
2 'config.txt',
3 infer_variables=['OccProfile.MAXVEL',
4 'OccProfile.DIAMETER']
5 )

Working with profiles is also supported using ProfiledOccupantVariable
which also takes a profile argument (the ID of the profile) and simply ignores
all the occupants with different profiles.

5.5 Position Generators

Generating new positions is handled by the position generators. The base class
PositionGenerator also defines a single method generate positions() which
takes in the number of requested positions (either a single integer or a list of
per-profile numbers), a data frame of available positions, and, optionally, the
dictionary of all the occupants in case the calculation requires them. The
method is expected to return a simple list of the generated positions (their x,
y, and z coordinates).

There is a predefined DefaultPositionGenerator which simply returns
N random positions from the list. The geometries used in this thesis also
have their own parametrized generators which will be described in the next
chapter.

5.6 Working with Profiles

As was mentioned before, working with occupant profiles is fully supported.
The profiles are automatically extracted from the configuration file when ini-
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tializing the simulation object. All the methods that generate occupants also
accept a profiles argument which allows the user to generate a given num-
ber of occupants from each profile, utilizing the values and distributions that
they defined in Pathfinder GUI. Below is a code that will run 10 simulations,
each with 10 occupants of profile 0 and 5 occupants of profile 1, which have
different average velocities.

1 vel0 = ProfiledVelocityVariable(profile=0).to_uniform(1.0, 1.2)
2 vel1 = ProfiledVelocityVariable(profile=1).to_uniform(0.6, 0.8)
3 sim = Simulation('config.txt', variables=[vel0, vel1])
4 for i in range(10):
5 results = sim.generate_and_run_sim(profiles={0: 10, 1: 5})
6 print(f'Evacuation time: {results.max_evac_time}')

5.7 Reproducibility

In order for the experimental results to be reproducible, fine control over ran-
dom seeds used to generate the parameters is possible. Each occupant variable
and position generator has a method called set random state() which up-
dates its internal random generator with the provided seed and ensures that
the values it generates will be reproducible. These methods are also accessible
directly from the simulation object.

A particularly convenient use case for setting random states is fixing a set
of parameters. For example, if one wanted to evaluate the model with 10 fixed
sets of different velocities and 10 fixed sets of positions, one could generate
them beforehand and set them manually before running each simulation. But
this would require needlessly saving and loading whole matrices of data. In-
stead, one could simply generate 20 integer seeds and use them as random
states. An example is shown below.

1 sim = Simulation('config.txt', variables=[VelocityVariable()])
2 for vel_seed in range(10):
3 for pos_seed in range(10):
4 sim.set_variable_random_state(vel_seed)
5 sim.set_positions_random_state(pos_seed)
6 results = sim.generate_and_run_sim(num_occupants=30)
7 print(f'Evacuation time: {results.max_evac_time}')

Internally, each variable owns a special RandomState object, which gen-
erates a sequence of pseudo-random integers that are then used to seed the
individual distributions while generating values. This is to ensure that the
different objects do not influence each other’s random generators as would
happen if the seeds were set globally.
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5.8 Caveats and Future Improvements

The main downside of the package is that it is somewhat limited to Pathfinder.
The concepts of occupant variables and position generators are simulator-
agnostic, but the simulation object is not, although it could certainly be ex-
tended to work with other simulators.

From the feature side, working with occupant behaviors is currently im-
possible as there was no use case for them in this thesis. They could be
implemented similarly to profiles, but the complexity of the implementation
would increase since there would now be many profile–behavior combinations
that would have to be handled unless behaviors were linked directly to profiles,
which is not always the intended use.

Directly modifying the geometry of the simulation is also not implemented
at the moment. Controlling, for example, the door widths or the properties
of the stairs is certainly an interesting topic, but it would require creating an
internal representation of the navigation mesh, which is not trivial.

Finally, there may still be bugs or design errors in the implementation as
software engineering is not the primary aim of this thesis.
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Chapter 6
Empirical Findings

This chapter will employ the methods introduced in Chapter 3 to conduct
multiple experiments focused on analyzing the different sources of randomness
and their effect on the total evacuation time with respect to the geometries
described in Chapter 4. For the remainder of the thesis, I will be considering
the following four scenarios:

• Lecture hall with 38 occupants (approximately at 50 % capacity).

• Lecture hall with 68 occupants (approximately at 90 % capacity).

• Train with 34 occupants (approximately at 50 % capacity).

• Train with 60 occupants (approximately at 90 % capacity).

I have chosen to keep the number of occupants fixed because preliminary
analysis showed that it is by far the most important factor whose effect would
drown out the effects of the more subtle variables. Besides, from a practical
point of view, only the situations where the facility is near full capacity are
interesting. The instances at 50 % occupancy are included so that the effect
of initial positions can be studied and the ones at 90 % capacity were chosen
to provide a more practical insight into the problem without completely dis-
regarding the effect of initial positions. However, the ratio of able-bodied to
movement-impaired occupants is not fixed and will be included in the analysis
as a separate variable.

As for the variable choice, the effects of the following groups of variables
will be analyzed (AB stands for able-bodied and WL for with-limitations):

• Ratio of WL to AB occupants r.

• Parameters of AB group – velocity vab and acceleration aab.

• Parameters of WL group – velocity vwl and acceleration awl.
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• Initial positions of all the occupants – exit-attraction coefficient αex
all and

occupant-attraction coefficient αocc
all (will be defined in Section 6.3).

• Initial positions of WL group – exit-attraction coefficient αex
wl and occupant-

attraction coefficient αocc
wl .

A baseline velocity of the AB individuals will be based on Pathfinder’s de-
fault value (1.19 m/s) and WL individuals will be roughly 30 % slower. The
intervals for the sensitivity analysis will be built around this baseline value.
The acceleration of the AB group will be slightly faster than the default value
of 1.1 s at approximately 0.9 s and the WL group will, again, take roughly
30 % more time to accelerate. The ratio of WL to AB occupants will vary
between 10 % and 30 %. Additionally, given a combination of vab, aab, vwl,
and awl, these values will be shared among all occupants of its type. More
realistically, they could be generated from distributions with means at the
given values, however, this proved to needlessly increase the variance of the
individual methods and was later reconsidered. The exception is Chapter 6.2,
where this variance is studied.

First, I will provide a brief overview of the previous use of sensitivity
analysis in evacuation dynamics. Then, a short analysis of the uncertainty
induced by different velocities, initial positions, and the stochasticity of the
model will follow. Next, we will take a more detailed look at the effects of
initial positions on a toy model and design a parametrized way to generate
initial positions. After that, the actual sensitivity analysis will take place
with an initial screening of the variables via elementary effects followed by the
computation of Sobol’ indices and interpretation of the results. The chapter
will conclude with a comparison of different surrogate modeling techniques
and how their results differ from the ones computed by the standard method.

6.1 Previous Work

Although not particularly common, there have been some uses of sensitivity
analysis in evacuation dynamics. Aside from the articles that directly preceded
this thesis [1, 55], sensitivity analysis was used in [67] to study the relationship
between model parameters (average velocity, number of occupants, “personal
space” and others) and maximum density in a simulated setting. The authors
of the article also note that the use of SA techniques in pedestrian dynamics
is very sparse. In [68], a sensitivity analysis of the evacuation safety level with
respect to the model parameters of a CFAST fire and smoke growth model
was conducted. A similar analysis that focused on traffic safety was performed
in [69]. Finally, there was another study presented at the FEMTC 2022 con-
ference that employed sensitivity analysis of evacuation time with respect to
occupant speed, size, and pre-movement time, and compared them across dif-
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ferent simulators [70]. They found that occupant speed dominated the other
factors in its influence over evacuation time.

6.2 Randomness Study

Since the methods of sensitivity analysis expect a deterministic model, it is
necessary to average multiple model runs with the same parameters in order
to suppress the inherent stochasticity of the model. However, it would be
good to know how significant the purely random effects are. We can obtain
a general estimate of their strength via the decomposition generated by the
Law of total variance from Section 3.3.2:

Var(Y ) = E[Var(Y |X)] + Var(E[Y |X]). (6.1)

The other sources of randomness can be traced to the agent parameters
and the initial positions, since we consider the geometries and the numbers of
occupants fixed. To get a baseline idea of the amount of uncertainty in the
output attributed to each of these sources of randomness, I have generated
16 different random seating configurations and 16 different maximum velocity
configurations for every scenario defined at the beginning of the chapter. The
uncertainty in the velocities, in this case, is represented by random sampling
from a (truncated) normal distribution, i.e., different velocity configurations
correspond to different realizations of the random variable. Each scenario
has approximately 20 % of movement-impaired occupants scattered uniformly
throughout. The velocities of the able-bodied occupants were generated from
N (1.25, 0.12) capped at 1.0 and 1.5. The movement-impaired individuals had
their velocities generated from N (0.8, 0.12) and capped at 0.6 and 1.0. Each
simulation was run 10 times with different seeds and priorities to obtain a
sample of the inherent randomness in each point, obtaining a 16×16×10 ten-
sor. The variance decomposition can be computed directly from the formula
above. The results are shown in Table 6.1.

Table 6.1: Decomposition due to the Law of total variance w.r.t. different
velocity and position configurations. The units are squared seconds.

Scenario Total variance Unexplained variance Explained variance
Absolute Percentage Absolute Percentage

hall 38 1.7382 0.8712 25.106 % 1.5042 74.894 %
hall 68 1.9322 1.4662 57.571 % 1.2582 42.429 %
train 34 2.6102 1.1102 18.077 % 2.3622 81.923 %
train 60 2.4102 1.8492 58.829 % 1.5472 41.171 %

It is clear from the results that the effect of random seeds on the output
can be significant, especially with higher densities. This can be expected, as
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when the facility is near its full capacity, most of the seats are taken and when
congestion happens, most occupants move at a pace much lower than their
maximum speed. Also, the total variance for the train scenario is significantly
higher than for the lecture hall scenario. This can be explained by the larger
complexity of the geometry where different starting positions can have very
different corresponding exit distances. However, these positions and velocities
represent the “average” scenario. The situation could be vastly different if the
parameters were generated from different distributions.

Additionally, we can further partition the variances induced by the po-
sitions and the velocities via variance-based sensitivity analysis. Since the
individual seating and velocity configurations are fixed, we can condition on
them and manually compute the Sobol’ sensitivity indices directly from their
definition in (3.14). The results are shown in Table 6.2.

Table 6.2: Manually computed sensitivity indices w.r.t. randomly generated
positions and maximum velocities.

Scenario First-order effect Si Total effect Ti Interaction Sij

Positions Velocities Positions Velocities
hall 38 0.424 0.209 0.791 0.576 0.366
hall 68 0.263 0.381 0.619 0.737 0.356
train 34 0.851 0.053 0.947 0.149 0.096
train 60 0.428 0.263 0.737 0.572 0.309

In this case, the positions generally have a larger effect on the outcome,
with the exception of the nearly-full lecture hall. This observation is especially
apparent with the half-empty train where almost all of the output variance
can be attributed to the initial positions. This leads us to the natural hypoth-
esis that the effect of initial positions decreases as the number of occupants
increases and that the train geometry is more sensitive to the initial positions
than the lecture hall geometry. As a sanity check, we can also observe the
various properties of the sensitivity indices mentioned in Section 3.3.2, namely
that the total effect Ti is equal to the sum of all the terms that contain i, and
that the sum of the first-order and second-order indices is equal to 1 (except
for rounding errors).

6.3 Effects of Initial Positions

Intuitively, the initial positions of the occupants should play a significant role
in determining the evacuation time – when the occupants have to travel more
distance, it is bound to take them more time. This property can easily be
quantified by the average distance to the exit. However, this single number
does not provide enough information. For example, in a lecture hall, if all
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the students were sat in a single row very close to the exit, their average exit
distance would be low, but the evacuation time could easily be longer than
if they were more evenly dispersed across the rows due to the high number
of occupant-to-occupant interactions. Furthermore, if they were uniformly
scattered throughout the room, we would get the same average exit distance
as if they were in two large clusters, one close to the exit and one far from the
exit, even though these are clearly different situations. It is not immediately
clear how the “energy” of a seating configuration can be quantified in an
interpretable manner. The “energy” in this context refers to a single number
or a small set of numbers which describe a the properties of a given seating
configuration.

The first measure I have chosen is the aforementioned average exit distance.
The second one, in an attempt to add a different dimension to the analysis, is
the average pairwise distance between occupants – when this number is low,
the occupants are seated in a single large cluster, and the higher this number
gets, the further away (on average) the occupants are from each other. The
advantage of these measures is that they can be used to effectively generate
seating configurations with the required properties, which is necessary for
sensitivity analysis. The generation process will be described shortly. I have
also experimented with several different statistics such as the variances of the
exit distances or distances to k nearest neighbors but was unable to implement
a proper way of generating such configurations.

Additionally, in the presence of a mixed crowd with a group of movement-
impaired individuals, it is necessary to think about the initial positions on
two levels – first, which positions are occupied, and second, which of these
positions are taken by the slower occupants. The measures described in the
previous paragraph can be applied recursively – first, they are computed for all
the selected positions to obtain a global measure, and then, they are computed
only for the movement-impaired group, obtaining a localized measure.

And lastly, there are two seemingly incompatible sides of the problem.
On one hand, the statistics described above are computed ex-post – after the
configuration has been generated. On the other hand, if we want to use them
as input to sensitivity analysis, we need to be able to specify them ex-ante and
only generate the configuration after the fact. The first approach would be
preferable, however, the distributions of such statistics are apriori unknown
and will depend on many factors including the specifics of the geometry or the
number of occupants. In order to be able to generate initial positions with
the desired properties, I have tried the following two approaches:

• A Monte Carlo approach in which a large number of random configura-
tions is generated and the ones closest to the desired values (with respect
to the L∞ norm) are chosen. To keep the values in a fixed range, the
values were normalized to lie approximately in [−1, 1] range.
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• A probabilistic approach in which the seats are sequentially chosen with
probabilities proportional to their distance to the exit and to other occu-
pants. The strength of the attraction is determined by two input coeffi-
cients, one for the exit attraction and one for the occupant-to-occupant
attraction.

The first method was unsuccessful for several reasons. Firstly, it was com-
putationally expensive, and even with the use of parallel processing it signifi-
cantly slowed down the simulation time. Secondly, the range of the distances
highly depends on the geometry and the number of occupants. In order to get
it into a reasonable range I had to normalize it via a low and a high quantile
to account for possibly skewing the range by outliers. This worked somewhat
well because of the normality due to the Central limit theorem, but there
were still instances where the process was unstable, especially with the train
geometry. Thirdly, certain combinations of the inputs were highly correlated,
for example, if we want the occupants to be very close to the exit, we cannot
expect their pairwise distances to be arbitrarily high. This would also break
the theoretical properties of the SA sampling process as it expects uncorre-
lated inputs. The second method was more successful and it will be described
in the next section.

6.3.1 Generating Positions

With the two measures given above in mind (average distance to the exit
and average inter-occupant distance), the goal is to create two proxy variables
with a bounded range that can be used as input to the position generator and
consequently to the sensitivity analysis. The configurations that it produces
need to match the expected characteristics, at least on average.

The approach that I’ve chosen uses two attraction coefficients as the input
variables – the exit attraction coefficient αex and the occupant attraction co-
efficient αocc. Essentially, the exit and the individual occupants all generate a
scalar field whose magnitude at each point is proportional to the distance from
the source of the field scaled by the attraction coefficient. If these coefficients
are positive then the exit and the individual occupants produce an attraction
force and when the coefficients are negative, they produce a repulsion force.
When the coefficient is zero, no force is generated. The resulting probability
of selecting a free seat is obtained as a superposition of all the forces acting on
it. For example, if the exit attraction coefficient is high, then the seats close
to the exit have a high probability of being selected.

The seating configuration is generated sequentially, i.e., seat by seat. The
field generated by exit attraction is fixed throughout the generation process,
but the one generated by occupant attraction changes over time. The configu-
ration is initially empty and the force field is given only by the exit attraction.
Then, a seat is chosen which begins to generate an attraction field. The prob-
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abilities are recomputed and another seat is chosen. This continues until the
required number of seats has been generated. Since there may be multiple
occupants generating a field but only a single exit, the forces generated by the
individual occupants are normalized by the current number of occupants in
each time step.

Formally, given a distance metric d, an exit point s∗, and a set of n selected
seats s1, · · · , sn, the force F acting on a free seat s ∈ S is obtained as

F (s) = −αexd(s, s∗)− αocc
n∑

i=1

d(s, si)
n

. (6.2)

The probability of selecting the seat s is then given by

p(s) = exp (F (s))∑
s′∈S exp (F (s′)) , (6.3)

which is coincidentally the softmax function over the forces acting on each free
seat. I have also experimented with using absolute and quadratic distance-
decay, but the exponential decay showed the best empirical results. An exam-
ple of the probability field generated by (6.3) in a continuous space is shown
in 6.1. In this case, a simple Euclidean distance is used in a rectangular grid
with dimensions similar to those of the lecture hall setting.

The selection of the distance metric d is crucial as it dictates which seats
are considered close to one another. For example, in the train scenario, two
passengers who are on different decks may be relatively close together with
respect to Euclidean distance, but in reality, they do not interact at all. For
this reason, I have implemented two custom distance metrics, one for each
geometry, which simulate the true distance the occupant has to travel in order
to reach the other point. This is done via checkpoints – for example, if the
occupant is seated in a different row in the lecture hall, he first has to reach
the stairs, then reach the other row, and only then can he reach the point of
interest.

Additionally, the ranges for the coefficients αex and αocc have to be fine-
tuned for each geometry, because past a certain threshold, the attraction (or
repulsion) becomes too strong, and the softmax function becomes saturated,
returning a probability close to 1 for a single seat and almost 0 for all the
others. Through empirical testing, I have determined the suitable ranges for
both coefficients as

• [−0.4, 0.4] for train geometry, and

• [−0.6, 0.6] for lecture hall geometry.

The endpoints of these intervals cause the process to generate configurations
close to the extremal cases described above and values from inside the intervals
cause an almost linear transition between these extremes.
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6. Empirical Findings

(a) αex = 0.2, αocc = −0.3 (b) αex = −0.3, αocc = 0.4

Figure 6.1: Examples of a (continuous) probability field generated by (6.3).
The blue point is the exit and the orange points are the already-generated
occupants. The brightness of the color is proportional to the probability of
selecting a seat in said location. The setup on the left is designed to generate
positions rather close to the exit but far away from the other occupants. The
setup on the right will do the opposite. Note that the actual seating positions
are discrete, this figure only serves to illustrate the interactions between the
points.

The entire process as an algorithm is shown in Algorithm 1. The same
procedure can be applied both when selecting the positions for all the occu-
pants and when selecting the positions of the movement-impaired individuals.

The last thing that needs to be checked is whether the configurations
generated this way actually have the properties that we expect, e.g., whether
high values of αex truly correspond to configurations where occupants are
close to the exit. Figure 6.2 shows a scatter plot of the input values of αex

and αocc with their average exit distances and average inter-occupant distances
computed ex-post for approximately 600 configurations (hall geometry with 38
occupants). There is a clear correlation between the input coefficients and the
properties of the sampled configurations. Some variance is present due to the
stochasticity of the process, but on average, a linear trend can be observed,
meaning that the αex and αocc are a reasonable substitute for the desired
statistics.
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6.3. Effects of Initial Positions

Algorithm 1 Position generation.
Input: Available positions A, Requested sample size N ; αex and αocc

Output: Sampled positions S
1: function sample positions(N , A)
2: S ← {}
3: for i← 1 to N do
4: P (A)← {p(a; αex, αocc),∀a ∈ A} ▷ Equation (6.3).
5: as ← sample(A, P (A)) ▷ Sample A w.r.t. probabilities P (A).
6: S ← S ∪ {as}
7: A← A \ {as}
8: return S
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(a) Exit distance. R2 = 0.84.
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(b) Inter-occupant distance. R2 = 0.68.

Figure 6.2: The correlation between the α coefficients and the statistics com-
puted on the generated position configurations (lecture hall with 38 occu-
pants). For a cleaner plot, the data was binned into 15 bins and the average
of each bin as well as the standard deviation is shown.

6.3.2 Movement-Impaired Individuals

So far, we’ve only looked at the effects of the initial positions of all the oc-
cupants as a whole. But the problem also has a second dimension – which
positions are taken by the individuals with movement impairments. This fac-
tor could be especially important when the facility is almost at full capacity
and there is a large number of WL occupants.

As part of the preliminary analysis, I have modeled a down-scaled version
of the lecture hall with three rows of three seats. A screenshot of this geometry
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6. Empirical Findings

is shown in Figure 6.3. With such a small geometry, it is possible to evaluate
all the different seating configurations with a simple brute-force approach.
Given 6 AB and 3 WL individuals, there is a total of

(9
3
)

= 84 possible seating
configurations. I have generated all of these combinations and evaluated the
model 10 times for each of them. The able-bodied individuals were modeled
by a constant maximum velocity of 1.2 m/s and acceleration time of 0.9 s.
The movement-impaired individuals had a maximum velocity of 1.2 m/s and
acceleration time of 1.3 s.

(a) Fast configuration. (b) Slow configuration.

Figure 6.3: Miniature lecture hall. Red occupants correspond to individuals
with movement impairments.

The results of the simulations were averaged for every configuration and
sorted by total evacuation time. We have seen in Section 6.2 that the variance
induced by random seeds can be significant. To check that the rankings ob-
tained by averaging are consistent, I have divided the 10 independent runs for
each configuration into two disjoint sets of 5 points and averaged each of them
separately to obtain two rankings R1 and R2. The correlation between two
rankings can be measured by Kendall rank correlation coefficient (Kendall’s
τ coefficient) which is computed as

τ(R1, R2) = #(concordant pairs)−#(discordant pairs)
#(all pairs) ≈ 0.824, (6.4)

where #(·) means “number of”. A value of τ higher than 0.8 can be regarded
as very high correlation, meaning that the estimates obtained by averaging 5
different runs should be robust. The rest of the analysis will be performed
over the average of all 10 runs.

Of the 84 total instances, I have extracted the 10 fastest and 10 slowest
configurations and computed the occupancy of each seat based on the type of
occupant seated there. The results are shown in Table 6.3. For example, the
cell Fast→WL shows the proportion of the 10 fastest runs in which the given
seat was taken by a movement-impaired occupant. The main observation from
this table is that in the fast configurations, the bottom row is mainly occupied
by fast individuals, meaning that the slow ones are closer to the exit. However,

60



6.3. Effects of Initial Positions

the total number of AB occupants is larger than the number of WL occupants,
meaning that these numbers can overestimate the effect of AB positions and
underestimate the effect of WL positions.

Table 6.3: Estimates of Pr(Occ type = t | Run = r) for each seat. The exit is
located near the top row.

Row Seat Fast Slow
AB WL AB WL

Top Aisle 0.9 0.1 0.4 0.6
Top Middle 0.5 0.5 0.9 0.1
Top Window 0.4 0.6 0.7 0.3
Middle Aisle 0.3 0.7 0.6 0.4
Middle Middle 0.5 0.5 0.6 0.4
Middle Window 0.8 0.2 0.8 0.2
Bottom Aisle 0.7 0.3 1.0 0.0
Bottom Middle 0.9 0.1 0.6 0.4
Bottom Window 1.0 0.0 0.4 0.6

Denoting the type of occupant as T = {ab, wl} and the type of the run
as R = {fast, slow}, we can realize that Table 6.3 shows an estimate of the
probability Pr(T = t | R = r) for each seat, i.e., the probability that the seat
is taken by an AB or WL occupant, given that the run is fast or slow. Using
Bayes’ theorem, we can estimate the probability Pr(R = r | T = t) for each
seat, i.e., the probability of a fast or slow run given that the seat is taken by
a specific type of occupant:

Pr(R = r | T = t) = Pr(T = t | R = r) Pr(R = r)
Pr(T = t) . (6.5)

The probabilities Pr(T = t) are equal to 2/3 for AB occupants and 1/3 for WL
occupants, and the probabilities Pr(R = r) are equal to 10/84 in both cases
since that’s how they were constructed. The results of these transformations
are shown in Table 6.4. From this properly normalized table we can make
clearer observations:

• The fast runs are characterized by having movement-impaired occupants
close to the exit as can be seen by the higher probabilities of a fast run
if the top and middle seats contain a slow occupant. The exception lies
in the seat closest to the exit – in this case the occupant becomes the
first in the crowd, slowing everyone behind him.

• The slowest runs are caused by a specific scenario – there is a slow
occupant in the spot closest to the exit as well as in the spot furthest
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from the exit, which causes a significant slowdown in two ways – the one
close to the exit slows the evacuation in the initial stages and the one
far from the exit slows it down in the later stages. This can be observed
from the animations of the process generated by Pathfinder.

Table 6.4: Estimates of Pr(Run = r | Occ type = t) for each seat.

Row Seat Fast Slow
AB WL AB WL

Top Aisle 0.160 0.035 0.017 0.214
Top Middle 0.089 0.178 0.160 0.035
Top Window 0.071 0.214 0.125 0.107
Middle Aisle 0.053 0.250 0.107 0.142
Middle Middle 0.089 0.178 0.107 0.142
Middle Window 0.142 0.071 0.142 0.071
Bottom Aisle 0.125 0.107 0.178 0.000
Bottom Middle 0.160 0.035 0.107 0.142
Bottom Window 0.178 0.000 0.071 0.214

Granted that these findings are specific to the small Pathfinder model and
it remains to be seen whether they will generalize to larger scenarios, the
main takeaways are that placing the slower occupants closer to the exit leads
to better performance, but only up to a certain point, past which the slow
occupants start to slow down the rest of the crowd. Additionally, the slow
occupants shouldn’t be placed too far from the exit because it will take them
too long to evacuate. This is in line with common safety-engineering practices.

6.4 Elementary Effects Analysis

This section will start the proper sensitivity analysis with the method of ele-
mentary effects described in Chapter 3.3.3. The main use of this method is for
factor fixing, i.e., determining which input factors are not important, which
can be done with a relatively small number of model evaluations. The use of
elementary effects in this section will be two-fold:

1. With factors divided into groups based on the source of randomness that
they represent.

2. With the individual factors, separately for each group.

The goal of the first level is to obtain high-level knowledge about the
importance of each source of randomness with a significantly reduced number
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6.4. Elementary Effects Analysis

of necessary model evaluations. The factors described at the beginning of the
chapter are divided into the following groups:

AB parameters – velocity of AB occupants, acceleration of AB occupants

WL parameters – velocity of WL occupants, acceleration of WL occupants

All positions – coefficient αex
all, coefficient αocc

all

WL positions – coefficient αex
wl, coefficient αocc

wl

Number of WL occupants – ratio r

The second level aims to obtain information about which factors are non-
influential and could be left out of the analysis. This will be done separately
for each group while the values of the other factors will be fixed in an OAT
style. To mitigate the risks of OAT analysis, the process will be repeated for
three carefully chosen points in the parameter space and the results averaged.

6.4.1 Groups of Factors

The cost of the EE method in terms of the number of model evaluations is Nt×
Lt ×Ns, where Nt is the number of requested trajectories, Lt is the length of
each trajectory (6 in the case of 5 groups), and Ns is the number of samples to
estimate E[TETX ] with. Since the individual trajectories are independent, we
can incrementally update the estimates of the sensitivity measures with more
trajectories and stop the computation once they are stable. Note that there
are now two levels of randomness in estimating E[TETX ] – the first is in the
random seeds and priorities of a fixed seating configuration as discussed before,
but the second one arises in the seat-generating process, which is bound to add
more variance to the estimate. To compensate for this extra uncertainty, the
model will be run 10 times for each X configuration. The speed of convergence
also depends on how finely the variables’ input ranges are discretized. The
standard number of levels for the method is 4, but for this experiment, I have
chosen 6 levels to get slightly more accurate estimates.

With Nt = 64, Lt = 6, and Ns = 10, the cost of analysis is 3840 model
runs for each of the four scenarios. Adjusted for simulation time, with ap-
proximately 5 seconds for each model run, the total time of the analysis is
T ≈ 768 000 s ≈ 21 h. The input ranges for each variable are shown in Ta-
ble 6.5. All α coefficients are additionally scaled by a factor of 0.6 for the
lecture hall scenario and 0.4 for the train scenario to account for the different
average distances in each geometry.

When working with groups of factors, only the µ∗ statistic is available. The
resulting values of µ∗ for each scenario are shown in Table 6.6. The following
observations can be made:

• None of the parameter groups are outright non-influential.
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Table 6.5: Input variables of EE method.

Variable Group Range Distribution
vab AB parameters [1.1, 1.4] Uniform
aab AB parameters [0.7, 0.9] Uniform
vwl WL parameters [0.7, 1.0] Uniform
awl WL parameters [1.0, 1.2] Uniform
αex

all All positions [−1.0, 1.0] Uniform
αocc

all All positions [−1.0, 1.0] Uniform
αex

wl WL positions [−1.0, 1.0] Uniform
αocc

wl WL positions [−1.0, 1.0] Uniform
r Ratio [0.1, 0.3] Uniform

• AB parameters are influential in every scenario and their influence in-
creases with the number of occupants. The ratio parameter behaves
similarly.

• WL parameters and positions have, on average, the lowest, but still
non-negligible effect. Their influence increases with a larger number of
occupants.

• The train scenario is much more sensitive to initial positions than the
lecture hall scenario.

In addition to these observations, we have also obtained a large sample of
model outputs which we can use to train a surrogate model. These samples
will be revisited in Chapter 6.6. It should be noted that the actual numerical
values of the µ∗s must be interpreted with caution. For example, when a
variable has a µ∗ twice as large as a different variable, it does not necessarily
mean that it is twice as important because its magnitude depends on multiple
factors including the ranges of the variables and the number of levels.

6.4.2 Individual Variables

In order to judge the effects of the individual variables, the experiment from
the previous section will be repeated separately with respect to each group.
While one group of variables is being tested, the other variables will be fixed
at the values corresponding to one of these scenarios:

ID 0 – Standard scenario.

ID 1 – Large difference between AB and WL group; WL group close to exit.

ID 2 – Small difference between AB and WL group; WL group far from exit.
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Table 6.6: Estimated µ∗ values along with the width of their 95 % confidence
intervals obtained by bootstrapping.

(a) Lecture hall, 38 occupants.

Group µ∗ 95 %CI
AB parameters 5.04 0.72
WL parameters 1.54 0.27
All positions 5.54 0.83
WL positions 1.35 0.25
Ratio 3.75 0.45

(b) Lecture hall, 68 occupants.

Group µ∗ 95 %CI
AB parameters 8.52 1.22
WL parameters 2.46 0.39
All positions 1.36 0.24
WL positions 2.26 0.45
Ratio 6.71 0.65

(c) Train, 34 occupants.

Group µ∗ 95 %CI
AB parameters 4.15 0.76
WL parameters 2.63 0.42
All positions 14.64 1.64
WL positions 2.20 0.53
Ratio 3.79 0.61

(d) Train, 60 occupants.

Group µ∗ 95 %CI
AB parameters 6.59 0.88
WL parameters 4.18 0.50
All positions 5.84 0.80
WL positions 2.95 0.53
Ratio 5.27 0.64

The concrete parameter values corresponding to each scenario can be found
in Table 6.7. The values of the αs are, again, scaled to match the appropriate
geometry. The ranges of the input variables are the same as in the previous
section (Table 6.5). The resulting elementary effects will be computed as the
average of the values obtained for each scenario. For complexity reasons, each
parameter configuration will be evaluated only 3 times. The total cost of the
analysis is 50 × 3 × 3 × 3 × 4 = 5400 model evaluations, where the numbers
are (in order) the number of trajectories, the length of each trajectory, the
number of independent samples, the number of scenarios described above, and
the number of groups. Adjusting for simulation times and different settings,
the approximate computation time is T ≈ 30 h. For this experiment, only a
four-level grid is used.

Table 6.7: Scenarios for EE computation w.r.t. the individual variables.

ID vab aab vwl awl αex
all αocc

all αex
wl αocc

wl r

0 1.2 1.1 0.9 1.4 0.0 0.0 0.0 0.0 0.2
1 1.4 0.9 0.8 1.5 0.5 −0.3 0.4 −0.2 0.3
2 1.1 1.0 1.0 1.3 −0.5 0.3 −0.4 0.2 0.2

When working with individual variables, the µ and σ measures are also
available. The results are shown in Table 6.8. Note that only the within-group
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values should be compared as each group was processed independently. The
data shows that:

• Velocity has a larger influence than acceleration in all cases.

• The positional parameters have similar effects on the output with the
exit distance being slightly more important. The exception is in train
scenario with 34 occupants, where the exit distance dominates.

• The pairwise interactions between variables indicated by σ values may
be significant as they are often in the same magnitude as the µ∗ values.

• The positions of the WL group have a non-monotonic effect on the out-
put as evidenced by the large (absolute) difference between µ∗ and µ.

As a result, the only variable we could fix is the acceleration, however, the
small reduction in the cost of the analysis is likely not worth the loss of infor-
mation.

6.5 Variance-Based Analysis

With the (relatively) quick preliminary analysis finished, we can move on to
large-scale variance-based sensitivity analysis. To summarize the findings up
to this point:

• The inherent stochasticity of the simulation model is non-negligible, es-
pecially in high-density situations.

• Physical properties of the majority group have a significant influence in
all cases, with the average velocity being the major contributor.

• The relative number of movement-impaired individuals is likewise highly
influential and its influence grows when the geometry becomes more
crowded. The concrete parameters and positions of the WL group are
not as important as their presence itself.

• There are considerable differences in the behavior of the system with
respect to the individual settings. The train scenario is significantly
more sensitive to the initial positions.

The computation of the sensitivity indices provided by SALib is imple-
mented in the way described in Chapter 3.3.2, with a slight modification that
allows for the estimation of the second-order interaction terms. The sample
matrices A and B are generated via Sobol’ sequences which provide favorable
sampling properties if the number of samples N is a power of two, i.e., if
N = 2n for some natural n. A benefit of SALib’s implementation is that the
number of samples can be incrementally increased (in powers of two) during
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Table 6.8: Pairwise elementary effects w.r.t. the individual variables.
(a) Lecture hall, 38 occupants.

Variable µ∗ µ σ

vab 3.98 −3.84 2.03
aab 1.64 0.86 1.81
vwl 5.14 −5.10 2.26
awl 1.75 0.71 2.02
αex

all 5.24 −5.12 3.43
αocc

all 3.07 2.30 3.23
αex

wl 1.62 −0.25 2.04
αocc

wl 1.54 0.17 1.91

(b) Lecture hall, 68 occupants.

Variable µ∗ µ σ

vab 7.34 −7.34 2.26
aab 2.12 1.55 2.18
vwl 8.18 −8.18 2.83
awl 2.35 1.21 2.51
αex

all 1.95 −0.35 2.49
αocc

all 1.84 −0.10 2.18
αex

wl 2.36 −1.32 2.40
αocc

wl 1.92 −0.34 2.43

(c) Train, 34 occupants.

Variable µ∗ µ σ

vab 3.26 −2.90 2.24
aab 2.11 1.29 2.24
vwl 4.31 −4.20 2.49
awl 2.02 1.09 2.38
αex

all 11.53 −11.50 7.27
αocc

all 6.79 5.89 6.58
αex

wl 1.61 0.19 2.01
αocc

wl 1.74 0.02 2.26

(d) Train, 60 occupants.

Variable µ∗ µ σ

vab 4.81 −4.71 2.72
aab 2.67 2.08 2.67
vwl 6.64 −6.54 3.52
awl 2.96 2.21 2.99
αex

all 5.18 −4.76 3.61
αocc

all 2.74 1.23 3.19
αex

wl 3.03 −0.85 3.75
αocc

wl 2.48 −0.13 3.20

the computation. Given an input matrix CN with N = 2n samples generated
via Sobol’ sequences, the matrix C2N will be comprised of two submatrices
with N rows, in which the first matrix is the CN matrix from above, provided
that they were both generated with the same random seed. This means that
if the confidence intervals of the resulting SSI estimates are too wide, more
samples can be generated to improve the accuracy without having to discard
the previously computed ones.

The number of necessary model evaluations to estimate the first-order,
second-order, and total effect indices is N(2k + 2), where N is the number
of samples and k is the number of variables (9 in our case). Additionally,
we need to estimate E[TETX ] for each configuration of X. In this case, I
estimated this quantity with 9 model runs – 3 different seating configurations,
each evaluated 3 times with different random seeds and priorities. Adjusted
for simulation time and the four different scenarios, with 128 samples the
estimated computation time is T ≈ 128× 20× 9× 4× 5 s = 128 h. The input
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ranges are identical to those in the previous section (Table 6.5).
The obtained Si and Ti estimates are shown in Table 6.9 along with their

95 % confidence intervals obtained by bootstrapping [71]. Selected interaction
terms are shown in Table 6.10. A good way to visualize the dependence of TET
on the individual variables is via scatter plots. An example of an influential
variable and a non-influential one is shown in Figure 6.4. Such scatter plots
for each variable are provided in Appendix A. Unfortunately, the confidence
intervals for Si and Sij terms of the less influential variables are often wider
than the value of the index itself, and providing more samples would be too
computationally demanding. The next section will address this problem using
surrogate models. There are also some negative numbers which are artifacts
of the numerical method used to compute the estimates. Nevertheless, we can
make the following observations:

• The observations made prior to the analysis still hold.

• The effect of velocities is mostly additive as evidenced by the similar
magnitude of its Si and Ti coefficients.

• The effects of acceleration are non-negligible and in the case of train
with 34 occupants, they overcome the velocity in importance.

• The effects of all the positional variables are highly non-additive, which
can be seen from the large difference between their Si and Ti estimates as
well as from the interaction terms in Table 6.10, although these estimates
are burdened by a high degree of uncertainty.
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(b) Train, 34 occ.

Figure 6.4: An example of an influential vs. a non-influential variable. For
readability, the scatter plot is constructed by binning the x-axis and drawing
the average of each bin along with the standard deviation of the points be-
longing to said bin.
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By summing up the first-order sensitivity indices, we can define a “degree
of additivity” of the model as δ = ∑k

i=1 Si and obtain the following values:

Lecture hall, 38 occ.: δ = 0.97

Lecture hall, 68 occ.: δ = 1.06

Train, 34 occ.: δ = 0.82

Train, 60 occ.: δ = 0.78

These values are clearly nonsensical as the sum of sensitivity indices cannot
be higher than 1, without even accounting for the higher-order terms. This is
a numerical artifact caused by the uncertainty in the estimates, which further
motivates us to construct a surrogate model in order to obtain more robust
estimates.

Table 6.9: Estimated first-order sensitivity indices Si and total effect indices Ti

based on 128 samples. The significant values variables are highlighted.
(a) Lecture hall, 38 occupants.

Variable Si Ti

vab 0.25± 0.11 0.28± 0.07
aab 0.12± 0.09 0.21± 0.05
vwl 0.07± 0.06 0.09± 0.02
awl 0.00± 0.06 0.07± 0.02
αex

all 0.25± 0.15 0.46± 0.12
αocc

all 0.00± 0.08 0.18± 0.05
αex

wl 0.03± 0.06 0.08± 0.02
αocc

wl 0.02± 0.05 0.07± 0.02
r 0.19± 0.08 0.25± 0.06

(b) Lecture hall, 68 occupants.

Variable Si Ti

vab 0.36± 0.14 0.41± 0.10
aab 0.25± 0.11 0.26± 0.07
vwl 0.06± 0.06 0.08± 0.02
awl 0.01± 0.04 0.04± 0.01
αex

all 0.02± 0.04 0.04± 0.01
αocc

all 0.00± 0.05 0.04± 0.01
αex

wl 0.02± 0.06 0.09± 0.03
αocc

wl 0.02± 0.04 0.04± 0.01
r 0.28± 0.11 0.37± 0.09

(c) Train, 34 occupants.

Variable Si Ti

vab 0.01± 0.07 0.10± 0.03
aab 0.04± 0.07 0.15± 0.04
vwl −0.01± 0.07 0.10± 0.04
awl 0.02± 0.05 0.08± 0.02
αex

all 0.75± 0.17 0.89± 0.23
αocc

all −0.05± 0.15 0.34± 0.10
αex

wl 0.00± 0.05 0.06± 0.02
αocc

wl 0.04± 0.06 0.10± 0.03
r 0.01± 0.06 0.12± 0.04

(d) Train, 60 occupants.

Variable Si Ti

vab 0.20± 0.11 0.25± 0.07
aab 0.11± 0.12 0.22± 0.05
vwl 0.08± 0.10 0.16± 0.04
awl 0.00± 0.07 0.10± 0.03
αex

all 0.21± 0.12 0.34± 0.08
αocc

all −0.03± 0.09 0.15± 0.05
αex

wl 0.00± 0.07 0.16± 0.04
αocc

wl 0.03± 0.05 0.10± 0.03
r 0.15± 0.11 0.26± 0.07
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Table 6.10: Selected second-order sensitivity indices Sij .

Scenario Variable Variable Sij

hall 38 αex
all αocc

all 0.13± 0.25
hall 38 αex

all αex
wl 0.11± 0.21

hall 38 αex
all αocc

all 0.15± 0.23
hall 38 αex

all r 0.11± 0.22
hall 38 αocc

all αex
wl 0.11± 0.13

hall 38 αocc
all αocc

all 0.13± 0.12
train 34 αex

all αocc
all 0.30± 0.27

train 34 αocc
all αex

wl 0.20± 0.22
train 34 αocc

all αocc
wl 0.19± 0.21

train 34 αocc
all r 0.23± 0.21

train 60 vwl αocc
all 0.10± 0.14

train 60 αex
all αocc

all 0.19± 0.21
train 60 αex

all αex
wl 0.13± 0.20

train 60 αex
all αocc

wl 0.14± 0.20
train 60 αex

all r 0.15± 0.19
train 60 αocc

all αex
wl 0.11± 0.12

6.6 Surrogate Models

We have seen in the previous section that despite the five-day computation
time, the resulting SSI estimates still contain a high amount of uncertainty.
Although the relative ranking of the variables based on their influence should
reflect reality, it would be unwise to make definitive statements about the con-
crete percentages of variance attributed to the individual variables. In order
to obtain estimates burdened by less uncertainty, we shall turn to surrogate
modeling. Surrogate models are essentially meta-models – they build a model
on top of another model using statistical or machine-learning techniques. Hav-
ing accepted the fact that we will lose some of the information provided by
the actual model, we can use the much-faster surrogate model to obtain an
(almost) arbitrarily high amount of samples and get more robust sensitivity
estimates.

During the course of the previous sections, we have accumulated a large
amount of data, both from the elementary effects method as well as from the
variance-based method. To get a qualitative idea about the dependence of
the SSI estimates on the input data, all surrogate models will be trained on 3
distinct datasets:

EE – Data obtained from elementary effects analysis.

VB128 – Full dataset from variance-based analysis with 128 samples.
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VB16 – Reduced dataset with only the first 16 samples from VB128.

Note that one “sample” from the VB method is, in fact, 2(k +1)×3×3 = 180
samples, meaning that even the small dataset contains almost 3000 samples
for each scenario. Since both VB datasets were constructed via Sobol’ se-
quences, they should provide a reasonably representative sample of the pa-
rameter space. The EE dataset contains a total of 3840 points for every
setting. Contrary to the VB datasets, the ranges of the individual variables
are each discretized into 6 levels. It remains to be seen whether this discrete
nature will significantly affect the performance of the models. Another ad-
vantage of the surrogate-modeling approach is that we do not need to average
any of the values – the models should do that implicitly.

The first part of this section will construct a simple linear regression model
and compute the standardized regression coefficients as described in Chap-
ter 3.3.1. The second part will then employ more advanced machine-learning
models and use them to compute the sensitivity indices, comparing them with
those obtained in the previous section.

6.6.1 Linear Regression

The simplest surrogate-modeling approach involves fitting a simple Ordinary
least squares model to the data and computing the standardized regression
coefficients as βi = σXi

σY
bi, where bi is the standard least-squares regression

coefficient. To keep this experiment simple, only the variables themselves will
be considered, i.e., no polynomial features. The resulting βi coefficients are
shown in Table 6.11. In order to judge the reliability of these coefficients,
the R2 coefficients are also shown, both for the full datasets and for their
reduced counterparts averaged over seeds and priorities (denoted R2

avg). The
most “important” variables are highlighted. We can observe the following
behavior:

• Almost all the R2
avg coefficients are higher than 0.8, meaning that the

model is, in fact, linear to a fairly high extent.

• The performance on the EE dataset is more optimistic than on the
more finely sampled VB datasets, meaning that the discretization pro-
cess caused a non-negligible loss of information. The performance on
both VB datasets is similar, with the exception of the train with 34
occupants, where the performance on the smaller dataset is still too
optimistic.

• Despite this, there are very minor differences in the actual β values
across the datasets.

• The relative ordering of the variables by their importance largely agrees
with the Si indices from the previous section, but there are some dif-

71



6. Empirical Findings

ferences, mainly that the linear model places high importance on the
velocity of the WL group. It is unclear to me where this discrepancy
originated as the individual factors have very little pairwise correlation.

To summarize, the use of standardized regression coefficients is an effective
way to gauge the effects of individual factors on the output, provided that we
know its limitations, mainly that it will fail to detect any interaction among
the input variables.

Table 6.11: Standardized regression coefficients βi for each input dataset. Co-
efficients of determination are also shown, where R2 is computed on the whole
dataset and R2

avg is computed on the reduced dataset obtained by averaging
the runs with identical parameters but different random seeds and priorities.

(a) Lecture hall, 38 occupants.

EE VB16 VB128

R2 0.79 0.70 0.69
R2

avg 0.91 0.86 0.85
vab −0.38 −0.39 −0.39
aab 0.13 0.08 0.13
vwl −0.34 −0.33 −0.30
awl 0.05 0.09 0.03
αex

all −0.51 −0.55 −0.50
αocc

all 0.22 0.17 0.19
αex

wl −0.08 −0.11 −0.12
αocc

wl 0.02 0.03 −0.01
r 0.39 0.34 0.37

(b) Lecture hall, 68 occupants.

EE VB16 VB128

R2 0.84 0.73 0.78
R2

avg 0.94 0.92 0.93
vab −0.56 −0.59 −0.56
aab 0.18 0.19 0.16
vwl −0.41 −0.46 −0.39
awl 0.03 0.10 0.04
αex

all −0.08 −0.08 −0.06
αocc

all 0.01 0.04 0.02
αex

wl −0.11 −0.17 −0.16
αocc

wl −0.04 −0.03 −0.05
r 0.50 0.52 0.49

(c) Train, 34 occupants.

EE VB16 VB128

R2 0.74 0.66 0.63
R2

avg 0.88 0.81 0.77
vab −0.10 −0.13 −0.14
aab 0.11 0.12 0.10
vwl −0.19 −0.15 −0.15
awl 0.05 0.07 0.03
αex

all −0.70 −0.72 −0.71
αocc

all 0.32 0.29 0.29
αex

wl −0.04 −0.02 −0.04
αocc

wl 0.00 0.03 0.00
r 0.23 0.12 0.15

(d) Train, 60 occupants.

EE VB16 VB128

R2 0.77 0.62 0.62
R2

avg 0.90 0.86 0.84
vab −0.35 −0.34 −0.34
aab 0.28 0.27 0.26
vwl −0.34 −0.32 −0.31
awl 0.06 0.09 0.06
αex

all −0.39 −0.44 −0.41
αocc

all 0.14 0.17 0.16
αex

wl −0.16 −0.20 −0.20
αocc

wl −0.02 0.00 −0.02
r 0.38 0.36 0.34
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6.6.2 Machine-Learning Models

The final experimental section will train a set of more complex machine-
learning models with the goal of predicting the total evacuation time as closely
as possible given a combination of input factors. These surrogate models will
then be used to estimate Sobol’ sensitivity indices by generating a SALib input
matrix with much more samples than before and using the surrogate model
instead of the actual simulator to estimate the TET at each of these points,
obtaining sensitivity indices with much less uncertainty. The datasets used to
train the models will be identical to those in the previous section. I will use a
standard machine learning pipeline which involves dividing the dataset into a
train and test set. I will use the following two models:

• Ridge regression with polynomial features (Ridge)

• Random forest regressor (Forest)

Evaluation will now be done via mean absolute error on the test set, as the use
of the R2 coefficient becomes problematic with nonlinear models and a split
dataset. The hyperparameter values will be chosen via grid search with cross-
validation, separately for each scenario and dataset. The hyperparameter of
the ridge regression is the regularization coefficient λ. The random forest
has multiple hyperparameters including the number of trees, their maximum
depth, the number of features per tree, and splitting criteria, all chosen via
cross-validation.

The mean absolute errors for each scenario and dataset are shown in Ta-
ble 6.12. The average test error for the lecture hall scenario is slightly over
one second and for the train scenario, it is approximately 2 seconds, with the
random forest generally reaching higher accuracy. Considering that the out-
put is noisy due to the randomness of the model, and these errors are close
to the lower bounds that have been identified in Chapter 6.2, these models
can be considered a reasonable fit. The sensitivity analysis using surrogate
models was conducted with 8192 samples, leading to very narrow confidence
intervals. The resulting Si and Ti are displayed in Table 6.13 with the most
influential variables highlighted. We can make the following conclusions:

• Both models agree on which variables are the most influential and on
their relative ranking, but disagree on their precise values, with the
exception of lecture hall with 68 occupants, where the random forest is
more biased towards vab.

• For the lecture hall scenario, there is little variation in the results with
respect to the chosen dataset. For the train scenario, the EE dataset
slightly differs in results, but not enough to influence the relative rank-
ings of the variables.
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• Ridge regression fails to detect any significant interaction even with poly-
nomial features. The random forest succeeded in detecting some inter-
actions as evidenced by the differences between Si and Ti coefficients.

• The selected influential features are largely in agreement with those
selected by the simple linear regression in the previous section.

• The velocity of the WL group was detected as important. In a way, the
model can “construct” the total macroscopic velocity as a sum of vab
and wwl weighted by the ratio r.

• The Si and Ti indices of the non-influential variables degraded to almost
zero.

With the numerical analysis finished, we can summarize our findings.

Table 6.12: Mean absolute errors of the surrogate models in seconds. Tr.
stands for the train set and Ts. for the test set.

Ridge Forest
EE VB16 VB128 EE VB16 VB128

Tr. Ts. Tr. Ts. Tr. Ts. Tr. Ts. Tr. Ts. Tr. Ts.
hall 38 1.27 1.29 1.23 1.23 1.26 1.28 1.10 1.28 1.05 1.13 1.10 1.19
hall 68 1.44 1.49 1.41 1.39 1.41 1.41 1.29 1.48 1.27 1.37 1.32 1.39
train 34 2.12 2.27 2.20 2.35 2.29 2.24 1.79 2.20 1.80 2.06 1.93 2.01
train 60 1.96 1.98 1.89 1.91 1.95 1.96 1.75 2.01 1.68 1.91 1.77 1.88

6.7 Discussion and Closing Thoughts

Let us summarize our findings in this chapter:

1. The train geometry is inherently more complex and sensitive to initial
positions than the lecture hall geometry.

2. With an increasing number of occupants, the problem becomes more lin-
ear, but the effect of the inherent randomness of the model also becomes
more significant.

3. Overall, the main determining factors of the total evacuation time are
the maximum velocities of the occupants and the number of movement-
impaired individuals. In the lower-density scenarios, the overall average
distance to the exit is also significant.

4. The individual methods agree about which factors are the most influen-
tial, but disagree on their exact amount of influence.

74



6.7. Discussion and Closing Thoughts

Table 6.13: First-order sensitivity indices and total effect indices obtained via
surrogate models.

(a) Lecture hall, 38 occupants.

Ridge Forest
EE VB16 VB128 EE VB16 VB128

Si Ti Si Ti Si Ti Si Ti Si Ti Si Ti

vab 0.21 0.21 0.19 0.20 0.19 0.20 0.24 0.25 0.21 0.23 0.22 0.23
aab 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vwl 0.26 0.26 0.26 0.26 0.24 0.25 0.15 0.17 0.08 0.10 0.10 0.12
awl 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00
αex

all 0.29 0.31 0.29 0.31 0.30 0.32 0.37 0.40 0.44 0.46 0.43 0.45
αocc

all 0.04 0.05 0.03 0.05 0.04 0.07 0.03 0.05 0.02 0.05 0.02 0.04
αex

wl 0.00 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
αocc

wl 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 0.00
r 0.14 0.14 0.14 0.15 0.14 0.15 0.13 0.15 0.15 0.18 0.16 0.17

(b) Lecture hall, 68 occupants.

Ridge Forest
EE VB16 VB128 EE VB16 VB128

Si Ti Si Ti Si Ti Si Ti Si Ti Si Ti

vab 0.36 0.36 0.33 0.33 0.36 0.36 0.47 0.49 0.52 0.54 0.47 0.48
aab 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01
vwl 0.36 0.37 0.38 0.38 0.36 0.37 0.19 0.22 0.13 0.15 0.19 0.21
awl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
αex

all 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
αocc

all -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
αex

wl 0.00 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.01
αocc

wl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00
r 0.23 0.24 0.22 0.22 0.21 0.22 0.25 0.28 0.28 0.30 0.27 0.29

5. Studying the effects of initial positions is, in general, problematic.

6. If the actual model is very computationally demanding, using a surrogate
model is crucial, although caution has to be taken when selecting and
training the model.

To address these points, the first observation can be seen from a) the overall
higher variance with respect to random seeds and priorities, b) wider confi-
dence intervals when estimating the sensitivity indices, and c) higher σ values
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Table 6.13: First-order sensitivity indices and total effect indices obtained via
surrogate models (cont.).

(c) Train, 34 occupants.

Ridge Forest
EE VB16 VB128 EE VB16 VB128

Si Ti Si Ti Si Ti Si Ti Si Ti Si Ti

vab 0.03 0.03 0.03 0.03 0.03 0.03 0.01 0.01 0.03 0.04 0.01 0.01
aab 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vwl 0.10 0.11 0.07 0.07 0.07 0.08 0.03 0.04 0.02 0.02 0.01 0.02
awl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00
αex

all 0.64 0.69 0.63 0.74 0.63 0.73 0.70 0.78 0.77 0.84 0.75 0.84
αocc

all 0.09 0.15 0.09 0.20 0.10 0.20 0.12 0.20 0.06 0.13 0.10 0.19
αex

wl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
αocc

wl 0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 0.00 0.00
r 0.04 0.05 0.02 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.01 0.02

(d) Train, 60 occupants.

Ridge Forest
EE VB16 VB128 EE VB16 VB128

Si Ti Si Ti Si Ti Si Ti Si Ti Si Ti

vab 0.20 0.21 0.16 0.16 0.17 0.17 0.23 0.27 0.23 0.26 0.19 0.21
aab 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.04 0.03 0.04 0.04 0.04
vwl 0.34 0.35 0.29 0.29 0.30 0.31 0.21 0.26 0.05 0.06 0.14 0.16
awl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
αex

all 0.16 0.17 0.22 0.23 0.22 0.23 0.25 0.28 0.44 0.48 0.35 0.38
αocc

all 0.02 0.02 0.05 0.06 0.03 0.04 0.02 0.03 0.01 0.03 0.01 0.02
αex

wl 0.02 0.03 0.03 0.03 0.03 0.05 0.01 0.02 0.02 0.04 0.03 0.04
αocc

wl 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 0.00
r 0.14 0.15 0.16 0.16 0.15 0.15 0.13 0.16 0.11 0.13 0.16 0.18

in the elementary effects method.
The second point can, likewise, be seen from the higher proportion of the

variance being explained by a simple linear model and the smaller differences
between the Si and Ti coefficients. This is ultimately a good thing because the
high-density situations are the most dangerous and therefore the most crucial
to optimize. If the evacuation time is more governed by the macroscopic
characteristics of the crowd than the microscopic subtleties of the geometry
and the initial positions, the analysis becomes simpler and more effective.
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The third point is in agreement with the referenced literature – the macro-
scopic characteristics are, indeed, the main determining factor of the overall
performance of the evacuation. In the presence of a mixed crowd, the macro-
scopic characteristics of the individual groups and their relative numbers are
important, but their initial positions are less so. This is unfortunate because,
in reality, we rarely have control over the specific composition of the crowd
and can influence only their initial positions. Nevertheless, placing the slower
occupants close to the exit is generally favorable.

The fourth point can be considered a good thing. In the end, we do not
care about the exact percentage of the variance attributed to each variable,
so long as they do not differ by orders of magnitude. There are many levels of
approximation in the whole process – the real-life scenario is approximated by
a simulation, and the dependence on the parameters is further approximated
by either averaging or building a separate model. Likewise, the input ranges
of the variables also have an effect on the magnitude of the outputs. Although
they were chosen based on previous research, they do not take into account
factors such as cultural differences. We cannot hope to determine the precise
influence each parameter has on the output. It is more important to be able
to tell which parameters are the most influential and how they relate to each
other.

The fifth point comes with a crucial remark – when talking about the
sensitivity to the exit distance or inter-occupant distance, we did not actually
test this quantity, but we tested the sensitivity to the α coefficients defined
earlier. The conclusions are based on the assumption that these α coefficients
model their respective variables well, which was shown to be true, at least
on average. However, the space of possible seating configurations is rather
high-dimensional, and describing them with only 4 numbers is bound to leave
much of it unexplored, which opens up the path for further research.

And finally, the sixth point is in line with the best sensitivity analysis
practices described in [72]. Given the large number of input variables and the
inherent stochasticity of the model, it is infeasible to run the entire analysis
using only the actual simulator evaluations. A more practical approach is
to first perform a screening analysis and discard the clearly non-influential
variables, then collect as much properly sampled data as is reasonable given
the time constraints, and perform the actual analysis using carefully chosen
surrogate models, comparing the results in the end.
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This thesis concerned itself with determining the factors that have the largest
influence on the total evacuation time in the presence of cramped interior
settings. This included a) selecting the appropriate evacuation scenarios for
analysis, b) constructing a programming framework that allows for repeatedly
running Pathfinder simulations with appropriately set parameters and collect-
ing the data, and c) analyzing the influence of the individual factors by means
of sensitivity analysis.

The two different geometry settings selected for the analysis were that of
a double-decker train and a lecture hall. These geometries have numerous
contrasting properties in terms of visibility, the spacing of the seats, or the
paths to the exit. These geometries were then modeled in the egress sim-
ulator Pathfinder as a courtesy of the researchers from the Faculty of Civil
Engineering, CTU in Prague. Additionally, two different evacuation settings
were chosen for each geometry – one where the facility is at approximately
50 % capacity, which allows for studying the effects of initial positions, and
one where the facility is at 90 % capacity, which is of more practical interest.

The programming solution involved developing a Python package that
builds an internal representation of the input file generated by Pathfinder. It
then allows the user to specify the variables of interest and their distributions,
including the number of occupants, the macroscopic characteristics of the
crowd, or the way in which their initial positions are generated. The simulation
is automatically run and the results are collected.

The analysis itself consisted of several stages. First, a preliminary analysis
of the effects of the inherent randomness of the model (random seeds, initial
directions, and occupant priorities) was conducted, which showed that in low
densities, the stochasticity of the model is not very significant, attributing to
roughly 20 % of the output variance, while in high-density situations, it can
amount to as much as 50 % of the output variance in some cases.

Then, a probabilistic approach to generating the initial positions of the oc-
cupants was proposed. The sampling process is parametrized by two numbers

79



Conclusion

– the attraction to the exit, and the inter-occupant attraction, which were
later used as a parameter for the sensitivity analysis

The sensitivity analysis itself employed two standard methods – the screen-
ing method of elementary effects which aims to identify the most influential
and the least influential variables with a relatively small number of model
runs, and the variance-based method based on estimating Sobol’ sensitivity
indices that measure the proportion of the output variance attributed to each
input variable. Special emphasis was placed on the heterogeneity of the crowd,
where a certain percentage of the occupants had a form of movement impair-
ment simulated by lower maximum speed and slower acceleration.

Both methods identified the macroscopic characteristics of the crowd (max-
imum speed of both groups and the number of movement-impaired individ-
uals) as the most important variables in high-density situations. However,
when the facility is only at 50 % capacity, the importance shifts to the initial
positions of the entire group. The initial positions of the movement-impaired
individuals were not shown to be as important as their presence in itself.

Since the variance-based approach is highly computationally demanding
and the results are burdened by a high degree of uncertainty, several surro-
gate models have been trained on smaller samples of the data obtained during
the simulation process and used as a proxy for the actual simulation model.
The results of the surrogate analysis largely agreed with the earlier results,
although the numerical values that they produce have to be interpreted with
caution. An interesting observation is that the surrogate models showed con-
sistent results, even when trained on only a small fraction of the full dataset or
on the highly discretized dataset generated by the elementary effects method.

There is room for follow-up research. The average distance of the individ-
ual occupants to the exit was shown to be highly influential, but there can
still be subtleties that this macroscopic statistic will miss. For example, it
was shown in Chapter 6.3.2 that there exist particular seating configurations
where the positions of the movement-impaired individuals will cause a major
slowdown of the crowd. Another interesting question would be to determine
whether these observations still hold with the presence of, for example, a wider
aisle or a more narrow exit door.
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Appendix A
TET Scatter Plots
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Figure A.1: Velocity of AB group.
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Figure A.2: Acceleration of AB group.
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Figure A.3: Velocity of WL group.
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Figure A.4: Acceleration of WL group.
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Figure A.5: Exit distance of all occupants.
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Figure A.6: Inter-occupant distance of all occupants.
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Figure A.7: Exit distance of WL occupants.
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Figure A.8: Inter-occupant distance of WL occupants.

98



0.10 0.15 0.20 0.25 0.30
r

34

36

38

40

42

44

TE
T 

[s
]

(a) Lecture Hall, 38 occ.

0.10 0.15 0.20 0.25 0.30
r

60.0

62.5

65.0

67.5

70.0

72.5

TE
T 

[s
]

(b) Lecture Hall, 68 occ.

0.10 0.15 0.20 0.25 0.30
r

25

30

35

40

TE
T 

[s
]

(c) Train, 34 occ.

0.10 0.15 0.20 0.25 0.30
r

47.5

50.0

52.5

55.0

57.5

60.0

TE
T 

[s
]

(d) Train, 60 occ.

Figure A.9: Ratio of WL occupants.
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Appendix B
Contents of CD

README.txt ....................... the file with CD contents description
src...................................the source code files of the thesis

simtools .................................... the simtools package
Experiments.............................the individual experiments

Randomness.......................the analysis of the randomness
BruteForceSeating.....the analysis of WL-group initial positions
ElementaryEffects................... the groupwise EE analysis
ElementaryEffectsPartial.............the pairwise EE analysis
Global...............................the variance-based analysis
Surrogate..........................the surrogate model analysis

hall.txt........................Pathfinder input of the lecture hall
train.txt.............................Pathfinder input of the train
hall all positions.csv...... the initial positions of the lecture hall
train all positions.csv....the initial positions of the lecture train
LaTeX............................................LATEX source code

text..........................................the thesis text directory
thesis.pdf............................... the thesis in PDF format
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