
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Randomness Testing of the Elephant Stream Cipher

Bc. Jiří Hájek

Mgr. Olha Jurečková

Informatics

Computer Security

Department of Information Security

until the end of summer semester 2023/2024

Instructions

The National Institute of Standards and Technology (NIST) initiated the Lightweight

Cryptography (LWC) project to standardize lightweight cryptography algorithms for

resource-constrained devices. In 2021, after two rounds, NIST announced ten finalists,

including the Elephant stream cipher, which this work focuses on. The task of the thesis is

to explain the structure of this cipher and test the randomness of its keystream using

known tests.

Instructions:

1. Describe the Elephant cipher from the LWC project and at least five tests from the NIST

Statistical Test Suite.

2. Describe and implement the Monomial for testing the randomness of binary

sequences.

3. Apply the above tests to the Elephant cipher and compare the results.

4. In addition, try applying the Cube testers on the Elephant cipher.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 26 January 2023 in Prague.

Master’s thesis

Randomness Testing of the Elephant
Stream Cipher

Jiří Hájek

Department of Information Security
Supervisor: Mgr. Olha Jurečková

May 4, 2023

Acknowledgements

I would like to thank my supervisor, Mgr. Olha Jurečková, for the feedback
she has provided during the whole process of writing this thesis. I would also
like to thank my friends and family for their support and encouragement.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 4, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Jiří Hájek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Hájek, Jiří. Randomness Testing of the Elephant Stream Cipher. Master’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2023.

Abstract

This thesis presents an analysis of the randomness of the Dumbo instance of
the Elephant cipher. The author used various statistical tests, including tests
from NIST’s Statistical Test Suite, the d-monomial test and cube testers.

The results showed that Dumbo passed the majority of the tests from
NIST’s STS with only a few failures that were not considered significant. The
d-monomial test also showed no bias in any particular keystream bit. The most
significant finding of this work was the discovery that Dumbo had difficulty
passing the balance test from the family of cube testers as some keystream
bits only passed every other test case and many cubes resulted in a pass rate
of around 20%.

The thesis concludes that Dumbo demonstrates good randomness proper-
ties overall but highlights the need for further investigation of this cipher to
identify any potential major issues.

Keywords random bit generator, statistical testing, randomness, NIST STS,
d-monomial test, cube testers, Dumbo, Elephant, Lightweight Cryptography
project

vii

Abstrakt

Tato práce předkládá analýzu náhodnosti instance Dumbo šifry Elephant.
Autor využil různé statistické testy, včetně testů ze sady statistických testů
od NIST, d-monomiálního testu a cube testerů.

Výsledky ukázaly, že Dumbo prošla většinou testů ze sady statistických
testů od NIST s pouhými několika selháními, která nebyla považována za
významná. Podobně ani d-monomiální test neukázal žádné zaujetí v jakémko-
liv z bitů keystreamu. Nejvýznamnějším nálezem této práce bylo zjištění, že
Dumbo má problém s tzv. balance testem z rodiny cube testerů, kdy některé
bity keystreamu uspěly pouze v každém druhém testovacím případě a mnoho
voleb tzv. cubes vykázalo úspěšnost kolem pouhých 20%.

Práce je završena konstatováním, že Dumbo celkově prokazuje dobré vlast-
nosti týkající se náhodnosti, ale zdůrazňuje potřebu dalšího výzkumu pro iden-
tifikaci potenciálních závažných problémů této šifry.

Klíčová slova generátor náhodných bitů, statistické testy, náhodnost, NIST
STS, d-monomiální test, cube testery, Dumbo, Elephant, Lightweight Cryp-
tography project

viii

Contents

Introduction 1

1 Elephant cipher 3
1.1 Preliminaries . 3

1.1.1 Notation . 3
1.1.2 Stream ciphers . 3
1.1.3 Linear feedback shift register 5
1.1.4 Spongent permutation . 7

1.2 Lightweight Cryptography project 9
1.3 Elephant cipher . 10

1.3.1 Keystream extraction . 10

2 Testing of random bit generators 13
2.1 Random bit generators . 13
2.2 Motivation . 14
2.3 Randomness in ciphers . 14
2.4 Issues with lack of randomness . 14

3 Basics of hypothesis testing 17
3.1 Preliminaries . 17
3.2 χ2 goodness of fit test . 20

4 Known RBG tests 21
4.1 NIST STS . 21

4.1.1 Notation . 21
4.1.2 Frequency (Monobit) test 22

4.1.2.1 Test purpose . 22
4.1.2.2 Test description 22
4.1.2.3 Decision rule . 23

ix

4.1.2.4 Input size recommendation 23
4.1.2.5 Example . 23

4.1.3 Frequency test within a block 23
4.1.3.1 Test purpose . 23
4.1.3.2 Test description 24
4.1.3.3 Decision rule . 24
4.1.3.4 Input size recommendation 24
4.1.3.5 Example . 24

4.1.4 Runs test . 25
4.1.4.1 Test purpose . 25
4.1.4.2 Test description 25
4.1.4.3 Decision rule . 25
4.1.4.4 Input size recommendation 25
4.1.4.5 Example . 26

4.1.5 Binary matrix rank test 26
4.1.5.1 Test purpose . 26
4.1.5.2 Test description 26
4.1.5.3 Decision rule . 27
4.1.5.4 Input size recommendation 27
4.1.5.5 Example . 27

4.1.6 Discrete Fourier transform (Spectral) test 28
4.1.6.1 Test purpose . 28
4.1.6.2 Test description 29
4.1.6.3 Decision rule . 29
4.1.6.4 Input size recommendation 29
4.1.6.5 Example . 30

4.1.7 Maurer’s “universal statistical” test 30
4.1.7.1 Test purpose . 30
4.1.7.2 Test description 31
4.1.7.3 Decision rule . 32
4.1.7.4 Input size recommendation 32
4.1.7.5 Example . 32

4.1.8 Linear complexity test . 34
4.1.8.1 Test purpose . 34
4.1.8.2 Test description 34
4.1.8.3 Decision rule . 35
4.1.8.4 Input size recommendation 35
4.1.8.5 Example . 35

4.1.9 Serial test . 36
4.1.9.1 Test purpose . 36
4.1.9.2 Test description 36
4.1.9.3 Decision rule . 37
4.1.9.4 Input size recommendation 37
4.1.9.5 Example . 37

x

4.1.10 Cumulative sums (Cumsum) test 39
4.1.10.1 Test purpose . 39
4.1.10.2 Test description 39
4.1.10.3 Decision rule . 40
4.1.10.4 Input size recommendation 40
4.1.10.5 Example . 40

4.1.11 Random excursions test 42
4.1.11.1 Test purpose . 42
4.1.11.2 Test description 42
4.1.11.3 Decision rule . 44
4.1.11.4 Input size recommendation 44
4.1.11.5 Example . 44

4.2 Monomial tests . 45
4.2.1 Preliminaries . 45
4.2.2 d-monomial test . 46

4.2.2.1 Example . 47
4.3 Cube testers . 48

4.3.1 Preliminaries . 48
4.3.2 Testing with cube testers 50

4.3.2.1 Balance test . 50
4.3.2.2 Balance test example 51
4.3.2.3 Presence of linear variables test 52
4.3.2.4 Presence of linear variables test example 52
4.3.2.5 Presence of neutral variables test 53
4.3.2.6 Presence of neutral variables test example . . . 53

5 Results 55
5.1 NIST STS . 55
5.2 d-monomial test . 57
5.3 Cube testers . 59

5.3.1 Balance test . 59
5.3.2 Presence of linear variables test 60
5.3.3 Presence of neutral variables test 66

Conclusion 71

Bibliography 73

A NIST STS results 75
A.1 ks1 . 75
A.2 ks2 . 77
A.3 ks3 . 79

B Acronyms 81

xi

C Contents of attached archive 83

xii

List of Figures

1.1 Depiction of encryption transformation Ek and decryption trans-
formation Dk of a symmetric stream cipher 5

1.2 A linear feedback shift register (LFSR) of length L 6
1.3 Sponge construction based on a b-bit permutation πb 8
1.4 Depiction of the Elephant encryption algorithm 11

4.1 Depiction of the first step of Maurer’s “universal statistical” test . 31

5.1 Histogram of p-values from all d-monomial test cases 58

xiii

List of Tables

3.1 Possible outcomes of a statistical hypothesis test in the context of
type I and type II errors . 18

3.2 Possible outcomes of a statistical hypothesis test based on p-value
and level of significance α . 19

4.1 Table of precomputed values for expectedValue(L) 32
4.2 Input size recommendation for Maurer’s “universal statistical” test 33
4.3 Last occurrences of 6-bit blocks in the initialization segment of our

example for the Maurer’s “universal statistical” test 33
4.4 Example of the computation of partial sums Si in forward and

backward mode . 40
4.5 Precomputed πk values . 43
4.6 Results for our example of the random excursions test 45
4.7 Truth table for function f in our d-monomial test example 48

5.1 Results of tests from the NIST STS 56
5.2 Results of the failed d-monomial tests 58
5.3 Balance test pass rates of the top 25 out of 32 analyzed keystream

bits with the lowest pass rates . 61
5.4 Balance test pass rates of the top 25 out of 256 cubes with the

lowest pass rates . 62
5.5 Presence of linear variables test pass rates of the top 25 out of 32

analyzed keystream bits with the lowest pass rates 63
5.6 Presence of linear variables test pass rates of the top 25 out of 256

cubes with the lowest pass rates . 64
5.7 Presence of linear variables test pass rates of the top 25 cube and

keystream bit position combinations with the lowest pass rates . . 65
5.8 Presence of neutral variables test pass rates of the top 25 out of 32

analyzed keystream bits with the lowest pass rates 67

xv

LIST OF TABLES

5.9 Presence of neutral variables test pass rates of the top 25 out of
256 cubes with the lowest pass rates 68

5.10 Presence of neutral variables test pass rates of the top 25 cube and
keystream bit position combinations with the lowest pass rates . . 69

xvi

Introduction

We have seen rapid technology advancements in the last few decades and
recently also a boom of Internet of Things (IoT) devices. Many people are
adopting smart home appliances, such as smart refrigerators, security cameras
or alarms.

These devices, especially in the case of a smaller form factor, do not pack
much computing power compared to traditional desktop computers or laptops.
Aside from the size limitations, there is also a desire to keep the costs down
for the consumers, which also puts a limit on the amount of computing power
contained in the device. Last but not least, if the device is wireless, i.e.,
powered by a battery, it is in the interest of the manufacturer to keep the
power consumption as low as possible to make the device last longer on a
single charge, putting yet another constraint on computing power.

To ensure secure and efficient data transmission for these devices, there is a
need for cryptographic algorithms that take into account these constraints. In
2019, the National Institute of Standards and Technology (NIST) has initiated
a process to standardize lightweight cryptographic algorithms that are suitable
for use in these constrained environments. A couple of years went by and in
March 2021, after two rounds of evaluations, NIST announced ten finalists of
the initial 56 candidates.

This thesis focuses on one of these finalists — the Elephant cipher, namely
the Elephant-Spongent-π[160] (Dumbo) instance, which is the primary mem-
ber of the submission.

The main goal of this thesis is to assess whether the keystream of the
cipher has good randomness properties, which is something we would want
for the sake of security. If the keystream was not random, various attacks
could take advantage of the biases in keystream bits.

In Chapter 1, we provide the necessary mathematical background, present
the Lightweight Cryptography (LWC) project and describe the inner workings
of the Elephant cipher.

1

Introduction

In Chapter 2, we define what a Random Bit Generator (RBG) is, why we
need to test RBGs and how the Elephant cipher fits into this concept.

In Chapter 3, we go over some of the basics of statistics and hypothesis
testing, which are employed in the next chapter.

In Chapter 4, we discuss known tests of randomness for RBGs and dive
into the details of their implementation. We focus on tests from the NIST
Statistical Test Suite (STS), monomial tests and cube testers.

Finally, in Chapter 5, we apply the described tests to the Elephant cipher
and discuss the results.

2

Chapter 1
Elephant cipher

In this chapter, we will start off by introducing fundamental definitions and
theorems necessary to understand the concepts behind the Elephant cipher.
Then, we will present the LWC project and discuss the motivation behind it.
We will dive into the inner workings of the Elephant-Spongent-π[160] (Dumbo)
instance of the Elephant cipher, where we will describe how encryption is done
as well as some inner structures used by the Dumbo instance of the Elephant
cipher. Finally, we will conclude the chapter by describing a modification of
the encryption algorithm to extract the keystream.

1.1 Preliminaries

1.1.1 Notation
In this section, we will describe the notation used throughout the rest of this
chapter. We denote by x ≪ i (resp., x ≫ i) a shift to the left (resp., right)
over i positions and likewise by x⋘ i (resp., x⋙ i), we denote a rotation of
x to the left (resp., right) over i positions. For X ∈ {0,1}∗, we define

X1 . . .Xℓ
n←ÐX

to be a function that partitions X into ℓ = ⌈∣X ∣/n⌉ blocks of n bits, where the
last block is padded with zeros. We denote by ⌊x⌋i the i left-most bits of x.

1.1.2 Stream ciphers
Elephant is a symmetric stream cipher. In this section, we will define these
terms and briefly go over the basics of stream ciphers.

The following definitions in this section come from [1]. Let us first define
what a cipher is. This definition applies to both symmetric and asymmetric
ciphers.

3

1. Elephant cipher

Definition 1 (Cipher) Cipher is a quintuple (M,C,K,E,D), where M is
the space of all plaintexts, C is the space of all ciphertexts and K is the space
of all keys. E and D are functions, which for each unique key k ∈ K specify
the encryption transformation Ek ∶M → C and the decryption transformation
Dk ∶ C →M . Every combination of (m,k) ∈M ×K satisfies Dk(Ek(m)) =m.

From the perspective of the nature of the encryption and decryption trans-
formations, ciphers can be divided into two groups — symmetric ciphers and
asymmetric ciphers.

Definition 2 (Symmetric cipher) A symmetric cipher is a cipher with a
construction such that it is possible to determine a decryption transformation
Dk from the knowledge of the encryption transformation Ek and vice versa for
all k ∈K.

Definition 3 (Asymmetric cipher) An asymmetric cipher is a cipher, for
which it is impossible for almost all keys k ∈ K to determine a decryption
transformation Dk from the knowledge of the encryption transformation Ek.
In practice, the key k is a secret used to set up two parameters (e, d), which
are called the public key and the private key respectively. These are then used
to derive the final encryption and decryption transformations.

Next, we divide ciphers into another two groups based on how they use
the key to derive ciphertext corresponding to the given plaintext — stream
ciphers and block ciphers. For the sake of simplicity, we will limit ourselves
to symmetric stream ciphers as we will not work with asymmetric nor block
ciphers in this thesis.

Definition 4 (Symmetric stream cipher) Let A be an alphabet of q sym-
bols, M = C a set of all strings over A and K set of all keys. Symmetric stream
cipher consists of transformation G, function E and function D. For every
key k ∈ K, the generator G generates a keystream sequence h(1), h(2), . . . ,
where h(i) represents arbitrary substitutions Eh(1),Eh(2), . . . over the alpha-
bet A. Functions E and D define the encryption transformation Ek and
the decryption transformation Dk based on given key k ∈ K. Ciphertext for
given plaintext m =m(1),m(2), . . . is calculated as c(1) = Eh(1)(m(1)), c(2) =
Eh(2)(m(2)), . . . , c(∣m∣) = Eh(∣m∣)(m(∣m∣)), where ∣m∣ is the length of the plain-
text. Similarly, plaintext for given ciphertext c = c(1), c(2), . . . is calculated as
m(1) = Dh(1)(c(1)),m(2) = Dh(2)(c(2)), . . . ,m(∣c∣) = Dh(∣c∣)(c(∣c∣)), where ∣c∣
is the length of the ciphertext. Note that Dh(i) = E−1

h(i). See Figure 1.1 for a
depiction of the encryption and decryption transformations.

In order to allow for encryption of multiple messages with the same key
without compromising on security, a stream cipher usually uses an Initial-
ization Vector (IV), also referred to as a nonce. The IV is usually a random

4

1.1. Preliminaries

m(1) m(2) m(3) ...

Eh(1) ...Eh(2) Eh(3)

c(1) c(2) c(3) ...

k

m(1) m(2) m(3) ...

Dh(1) ...Dh(2) Dh(3)

Figure 1.1: Depiction of encryption transformation Ek and decryption trans-
formation Dk of a symmetric stream cipher. Adapted from [1].

sequence of bits or a number, which is, together with the key, used to generate
the keystream. This results in generating a different ciphertext for the same
plaintexts and keys (assuming the IVs differ) and therefore masks the fact that
two ciphertexts that used the same key correspond to the same plaintext.

1.1.3 Linear feedback shift register
Linear Feedback Shift Registers (LFSRs) are used in many stream ciphers as
keystream generators [2]. The authors of [2] list several reasons for this:

1. LFSRs are well suited for hardware implementation,

2. they can produce sequences of large period,

3. they can produce sequences with good statistical properties,

4. they can be easily analyzed using algebraic techniques due to the nature
of their structure.

An LFSR is a shift register which consists of L stages 0, . . . , L − 1, each
capable of storing some information and a clock controlling data exchange [3].
Although the Elephant cipher uses an LFSR that stores an 8-bit word in each
stage [4], we will explain the principles of LFSRs using stages with one-bit
storage for the sake of simplicity. At each clock cycle, the following operations
are performed [2].

1. The content of the initial stage 0 is output and forms part of the output
sequence,

2. the content of stage i is moved to stage i − 1 for each i ∈ {1, . . . , L − 1},

5

1. Elephant cipher

196 Ch. 6 Stream Ciphers

(ii) the content of stage i is moved to stage i− 1 for each i, 1 ≤ i ≤ L− 1; and
(iii) the new content of stage L − 1 is the feedback bit sj which is calculated by adding

together modulo 2 the previous contents of a fixed subset of stages 0, 1, . . . , L− 1.

Figure 6.4 depicts an LFSR. Referring to the figure, each ci is either 0 or 1; the closed
semi-circles are AND gates; and the feedback bit sj is the modulo 2 sum of the contents of
those stages i, 0 ≤ i ≤ L− 1, for which cL−i = 1.

Stage Stage
L-2

sj

L-1

c2c1 cL−1 cL

output0
StageStage

1

Figure 6.4: A linear feedback shift register (LFSR) of length L.

6.8 Definition The LFSR of Figure 6.4 is denoted 〈L,C(D)〉, where C(D) = 1 + c1D +
c2D

2 + · · ·+ cLDL ∈ Z2[D] is the connection polynomial. The LFSR is said to be non-
singular if the degree of C(D) is L (that is, cL = 1). If the initial content of stage i is
si ∈ {0, 1} for each i, 0 ≤ i ≤ L− 1, then [sL−1, . . . , s1, s0] is called the initial state of
the LFSR.

6.9 Fact If the initial state of the LFSR in Figure 6.4 is [sL−1, . . . , s1, s0], then the output
sequence s = s0, s1, s2, . . . is uniquely determined by the following recursion:

sj = (c1sj−1 + c2sj−2 + · · ·+ cLsj−L) mod 2 for j ≥ L.

6.10 Example (output sequence of an LFSR) Consider the LFSR 〈4, 1 + D + D4〉 depicted
in Figure 6.5. If the initial state of the LFSR is [0, 0, 0, 0], the output sequence is the zero
sequence. The following tables show the contents of the stagesD3,D2,D1,D0 at the end
of each unit of time t when the initial state is [0, 1, 1, 0].

t D3 D2 D1 D0

0 0 1 1 0
1 0 0 1 1
2 1 0 0 1
3 0 1 0 0
4 0 0 1 0
5 0 0 0 1
6 1 0 0 0
7 1 1 0 0

t D3 D2 D1 D0

8 1 1 1 0
9 1 1 1 1
10 0 1 1 1
11 1 0 1 1
12 0 1 0 1
13 1 0 1 0
14 1 1 0 1
15 0 1 1 0

The output sequence is s = 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, . . . , and is periodic with
period 15 (see Definition 5.25). �

The significance of an LFSR being non-singular is explained by Fact 6.11.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

Figure 1.2: A linear feedback shift register (LFSR) of length L. Adapted
from [2].

3. the new content of stage L − 1 is the feedback denoted by sj , which
is calculated by mixing together contents of a fixed subset of stages
0, . . . , L − 1 using the XOR operation.

The following definitions and theorems in this section are adapted from [2].

Definition 5 The LFSR in Figure 1.2 is defined by a couple ⟨L,C(D)⟩, where
L is the length and C(D) = 1+c1D+c2D

2+⋯+cLD
L ∈ Z2[D] is the connection

polynomial. The LFSR is said to be non-singular if the degree of C(D) is L
(i.e., cL = 1). The initial content [sL−1, . . . , s0], where for each i ∈ {0, . . . , L −
1}, si is the initial content of stage i, is called the initial state of the LFSR.

Theorem 1 If the initial state of the LFSR in Figure 1.2 is [sL−1, . . . , s0],
then the output sequence s = s0, s1, s2, . . . is uniquely determined by the fol-
lowing recursion:

sj = c1sj−1 ⊕ c2sj−2 ⊕⋯⊕ cLsj−L for j ≥ L.

Theorem 2 Every output sequence (i.e., for all initial states) of an LFSR
⟨L,C(D)⟩ is periodic if and only if the connection polynomial C(D) has degree
L (i.e., the LFSR is non-singular).

The LFSR used in Dumbo is defined as a Z2-linear map by the following
formula [4]:

(x19, . . . , x0)↦ (x0⋘ 3⊕ x3 ≪ 7⊕ x13⋙ 7, x19, . . . , x1),

where xi is an 8-bit word (i.e., xi ∈ {0,1}8).

Example 1 Let us consider the LFSR used in Dumbo with decimal represen-
tation of its stages. Let

a0 = (19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0)

6

1.1. Preliminaries

be the initial state. Let us walk through the first three clock cycles. In the first
cycle, 19 will be replaced by

0⋘ 3⊕ 3≪ 7⊕ 13⋙ 7 = 0⊕ 129⊕ 26 = 155,

resulting in

a1 = (155,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1).

In the second cycle, 155 will be replaced by

1⋘ 3⊕ 4≪ 7⊕ 14⋙ 7 = 8⊕ 2⊕ 28 = 22,

resulting in

a2 = (22,155,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2).

Finally, in the third cycle, 22 will be replaced by

2⋘ 3⊕ 5≪ 7⊕ 15⋙ 7 = 16⊕ 130⊕ 30 = 140,

resulting in

a3 = (140,22,155,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3).

1.1.4 Spongent permutation
Spongent is a family of lightweight hash functions with various hash sizes based
on a sponge construction with a Present-type permutation [5]. The sponge
construction is an iterated design that takes an input of variable length and
produces an output of arbitrary length based on a permutation πb operating
on a state of fixed number of bits b [5]. The size of the internal state b is called
width and satisfies b = r + c ≥ n, where r is the rate (the number of bits input
or output per one permutation call) and c is the capacity (internal state bits
not used for input or output) [5]. As described in [5], the sponge construction
proceeds in the following three phases. See Figure 1.3 for a depiction of this
process.

Initialization phase The message is padded by a single 1 bit followed by 0
bits up to a multiple of r bits (e.g., if r = 4, then a one-bit message “0”
could be transformed to “0100”) and then cut into blocks of r bits.

Absorbing phase The r-bit input message blocks are mixed into the first r
bits of the state using the XOR operation, interleaved with applications
of the permutation πb.

Squeezing phase The first r bits of the state are returned as output, inter-
leaved with applications of the permutation πb until n bits are returned.

7

1. Elephant cipher spongent: A Lightweight Hash Function 315

m1 m2 m3 m4

p p p p

h2 h3h1

squeezingabsorbing

0

0

πb πb

r

c

Fig. 1. Sponge construction based on a b-bit permutation πb with capacity c bits and
rate r bits. mi are r-bit message blocks. hi are parts of the hash value.

– Initialization phase: the message is padded by a single bit 1 followed by a
necessary number of 0 bits up to a multiple of r bits (e.g., if r = 8, then the
1-bit message ‘0’ is transformed to ‘01000000’). Then it is cut into blocks of
r bits.

– Absorbing phase: the r-bit input message blocks are xored into the first
r bits of the state, interleaved with applications of the permutation πb.

– Squeezing phase: the first r bits of the state are returned as output, in-
terleaved with applications of the permutation πb, until n bits are returned.

In spongent, the b-bit 0 is taken as the initial value before the absorbing phase.
In all spongent variants, except spongent-88, the hash size n equals capacity
c. The message chunks are xored into the r rightmost bit positions of the state.
The same r bit positions form parts of the hash output.

Let a permutation-based sponge construction have n ≥ c and c/2 > r which
is fulfilled for the parameter choices of all spongent variants. Then the works
[3,4,9] imply the preimage security of 2n−r as well as the second preimage and
collision securities of 2c/2 if this construction is hermetic (that is, if the underly-
ing permutation does not have any structural distinguishers). The best preimage
attack we are aware of in this case has a computational complexity of 2n−r+2c/2.

2.2 Parameters

We propose five variants of spongent with five different security levels:

n b c r R number security(bit)
(bit) (bit) (bit) (bit) of rounds preimage 2nd preimage collision

spongent-88 88 88 80 8 45 80 40 40
spongent-128 128 136 128 8 70 120 64 64
spongent-160 160 176 160 16 90 144 80 80
spongent-224 224 240 224 16 120 208 112 112
spongent-256 256 272 256 16 140 240 128 128

Figure 1.3: Sponge construction based on a b-bit permutation πb with capacity
c bits and rate r bits. mi are r-bit message blocks and hi are parts of the hash
value. Adapted from [5].

Algorithm 1 160-bit Spongent permutation. Adapted from [4].
1: for i = 1, . . . ,80 do
2: X ←X ⊕ 0153∣∣lCounter160(i)⊕ rev(0153∣∣lCounter160(i))
3: X ← sBoxLayer160(X)
4: X ← pLayer160(X)

In the context of the Elephant cipher, we denote by Spongent-π[160]:
{0,1}160 → {0,1}160 the 80-round Spongent permutation from [5]. It takes
a 160-bit input X [4] and operates as described in Algorithm 1.

Let us now describe the functions used in Algorithm 1 as defined in [4].

rev This function reverses the order of the bits of its input.

lCounter160 This function represents a 7-bit LFSR 1 defined by the polyno-
mial p(x) = x7+x6+1 and initial state “1110101”. It outputs the state of
the LFSR at the given clock cycle. The first output is the initial state.

sBoxLayer160 This function consists of an S-box S ∶ {0,1}4 → {0,1}4 applied
40 times in parallel defined as

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(X) E D B 0 2 1 4 F 7 A 8 5 9 C 3 6

1The authors of [5] used a slightly different LFSR construction which shifts the stages
to the left, maps the feedback coefficients c1, . . . , cL in reverse order and puts the feedback
in stage 0.

8

1.2. Lightweight Cryptography project

pLayer160 This function moves the j-th bit of its input to bit position P160(j),
where

P160(j) =
⎧⎪⎪⎨⎪⎪⎩

40 ⋅ j mod 159 if j ∈ {0, . . . ,158},
159 if j = 159.

Example 2 Let us walk through the first iteration of the 160-bit Spongent
permutation (Algorithm 1). We will start with initial state X = 0160 for
the sake of simplicity. Since the first output of the lCounter160 function
is the initial state, lCounter160(1) = 1110101. This results in the following
computation on line two of the algorithm:

X = 0160 ⊕ 0153∣∣1110101⊕ rev(0153∣∣1110101)
= 0160 ⊕ 0153∣∣1110101⊕ 1010111∣∣0153

= 10101110∣∣0144∣∣01110101.

After line two, the state is X = AE 00 00 . . . 00 00 75.
On line three, we apply the sBoxLayer160 function to each of the 40 bytes

in the state separately. The first two bytes AE are mapped to 83 because
S(A) = 8 and S(E) = 3, zero bytes are mapped to S(0) = E and the last two
bytes 75 are mapped to F1 because S(7) = F and S(5) = 1. This results in state
X = 83 EE EE . . . EE EE F1.

On line four, we apply the pLayer160 function, which mixes the bits of the
state. The first bit X[0] = 1 stays at position P160(0) = 40 ⋅0 mod 159 = 0, the
second bit X[1] = 0 moves to position P160(1) = 40 ⋅ 1 mod 159 = 40, the fifth
bit X[4] = 1 moves to position P160(4) = 40 ⋅ 4 mod 159 = 1 and so on. After
applying pLayer160, the first iteration is finished and the state is

X = BF FF FF FF FE 3F FF FF FF FE 7F FF FF FF FE 40 00 00 00 03.

The remaining 79 iterations would be computed in a similar manner. The
next state of the LFSR would be lCounter160(2) = 1101010 (the XOR of the
first two bits is appended to the right and the left-most bit is then discarded).

1.2 Lightweight Cryptography project
A couple of years ago, NIST has initiated a process to standardize lightweight
cryptographic algorithms suitable for use in constrained environments, for
which the regular NIST cryptographic standards were not adequate due to
poor performance [6]. With the recent growth of IoT devices like home assis-
tants or security cameras, which people are still adopting today, there was a
need for a cryptography standard that would be suitable for these devices in
terms of performance while still providing good security.

In August 2018, NIST published a call for algorithms to be considered for
lightweight cryptographic standards and received 57 submissions [6]. NIST

9

1. Elephant cipher

then performed three rounds of reviews and evaluations and selected ten fi-
nalists, one of which is the Elephant cipher this thesis focuses on [6, 7]. It
should be noted that NIST has recently announced the selection of the Ascon
family for lightweight cryptography standardization [6], meaning the cipher
this thesis focuses on did not end up being the lightweight cryptography stan-
dard.

1.3 Elephant cipher
Elephant is an authenticated encryption scheme, whose mode is a nonce-based
encrypt-then-MAC construction, where encryption is performed using counter
mode and message authentication using a variant of the protected counter
sum MAC function [4]. Both of these modes internally use a cryptographic
permutation masked using LFSRs [4]. The Elephant encryption algorithm
generates a keystream, which is then mixed with the given plaintext using
the XOR operation [4], making it a stream cipher. There are three different
instances of the Elephant cipher [4]. As listed in [4], these are

Dumbo: Elephant-Spongent-π[160] This instance achieves 112-bit security
as long as the online complexity does not exceed around 246 blocks.

Jumbo: Elepehant-Spongent-π[176] The Jumbo instance is similar to the
Dumbo instance, but achieves 127-bit security under the same conditions
for online complexity.

Delirium: Elepehant-Keccak-f[200] This instance uses the Keccak permu-
tation instead of Spongent and is more aimed towards use in software.
It also achieves 127-bit security, but has a higher bound for online com-
plexity at around 270 blocks.

In the rest of this thesis, we will only focus on the Elephant-Spongent-
π[160] (Dumbo) instance of the Elephant cipher, which is the primary member
of the LWC project submission and the most optimized instance for hard-
ware [4].

1.3.1 Keystream extraction
In this section, we will finally dive into the Elephant cipher. First, we will
introduce the regular encryption algorithm as defined in [4] and then modify
it so that it only extracts the keystream instead of returning the ciphertext.

Let k,m,n, t ∈ N, where k,m, t ≤ n. In the case of the Dumbo instance,
n = 160. Let P ∶ {0,1}160 → {0,1}160 be a 160-bit permutation as specified in
Section 1.1.4 and φ1 ∶ {0,1}n → {0,1}n be an LFSR. Define φ2 = φ1⊕id, where
id is the identity function. Define the function mask ∶ {0,1}k × N2 → {0,1}n
as

10

1.3. Elephant cipher

A1

P

A2

mask1,0
K

P

A`A

mask`A−1,0
K

· · ·

P

C1

mask0,2
K

P

C`C

mask`C−1,2
K

· · · P

mask0,0
K

b·ct T

P

N‖0n−m

mask0,1
K

P

N‖0n−m

mask`M−1,1
K

M1 M`M

C1 C`M

· · ·

Figure 1: Depiction of Elephant. For the encryption part (top): message is
padded as M1 . . .M`M

n←− M , and ciphertext equals C = bC1 . . . C`M c|M |. For
the authentication part (bottom): nonce and associated data are padded as
A1 . . . A`A

n←− N‖A‖1, and ciphertext is padded as C1 . . . C`C
n←− C‖1.

a message M ∈ {0, 1}|M | if the tag is correct, or a dedicated ⊥-sign otherwise.
The description of dec is given in Algorithm 2.

2.3 160-Bit Permutation and LFSR

Section 2.3.1 defines the Spongent-π[160] permutation. The 160-bit masking
LFSR ϕ1 is defined in Section 2.3.2. These components are used in Dumbo.

2.3.1 Spongent Permutation

We denote by Spongent-π[160] : {0, 1}160 → {0, 1}160 the 80-round Spongent
permutation of Bogdanov et al. [23]. It operates on a 160-bit input X as follows:

for i = 1, . . . , 80 do
X ← X ⊕ 0153‖lCounter160(i)⊕ rev

(
0153‖lCounter160(i)

)
X ← sBoxLayer160(X)
X ← pLayer160(X)

where the function rev reverses the order of the bits of its input, and where the
functions lCounter160, sBoxLayer160, and pLayer160 are defined as follows:

• lCounter160: this function is a 7-bit LFSR defined by the primitive poly-
nomial p(x) = x7 + x6 + 1 and initialized with “1110101”;

• sBoxLayer160: this function consists of an S-box S : {0, 1}4 → {0, 1}4 ap-
plied 40 times in parallel. In hexadecimal notation, this S-box is defined
as

5

Figure 1.4: Depiction of the Elephant encryption algorithm. The message
is padded as M1 . . .MℓM

n←Ð M and ciphertext equals C = ⌊C1 . . .CℓM
⌋∣M ∣.

Adapted from [4].

maska,b
K = mask(K,a, b) = φb

2 ○φa
1 ○ P (K ∣∣0n−k)

The input of the regular Elephant encryption algorithm consists of a key
K ∈ {0,1}k, a nonce N ∈ {0,1}m, associated data A ∈ {0,1}∗ and a message
M ∈ {0,1}∗. The algorithm returns corresponding ciphertext C ∈ {0,1}∣M ∣
and a tag T ∈ {0,1}t. See Algorithm 2 and Figure 1.4 for more details.

Algorithm 2 Elephant encryption. Adapted from [4].
1: M1 . . .MℓM

n←ÐM
2: for i = 1, . . . , ℓM do
3: Ci ←Mi ⊕ P (N ∣∣0n−m ⊕ maski−1,1

K)⊕ maski−1,1
K

4: C ← ⌊C1 . . .CℓM
⌋∣M ∣

5: A1 . . .AℓA

n←ÐN ∣∣A∣∣1
6: C1 . . .CℓC

n←Ð C ∣∣1
7: T ← A1
8: for i = 2, . . . , ℓA do
9: T ← T ⊕ P (Ai ⊕ maski−1,0

K)⊕ maski−1,0
K

10: for i = 1, . . . , ℓC do
11: T ← T ⊕ P (Ci ⊕ maski−1,2

K)⊕ maski−1,2
K

12: T ← P (T ⊕ mask0,0
K)⊕ mask0,0

K
13: return (C, ⌊T ⌋t)

To extract the keystream, we simply remove the XOR operation, which
mixes it with the message. We can also take out the tag computation, since
the tag does not serve us any purpose. The input of the keystream extraction
algorithm consists of a key K ∈ {0,1}k, a nonce N ∈ {0,1}m and a message

11

1. Elephant cipher

M ∈ {0,1}∗. At the end, the corresponding keystream S ∈ {0,1}∣M ∣ is returned.
See Algorithm 3 for the modified pseudocode.

Algorithm 3 Elephant keystream extraction
1: M1 . . .MℓM

n←ÐM
2: for i = 1, . . . , ℓM do
3: Si ← P (N ∣∣0n−m ⊕ maski−1,1

K)⊕ maski−1,1
K

4: S ← ⌊S1 . . . SℓM
⌋∣M ∣

5: return S

12

Chapter 2
Testing of random bit

generators

In this chapter, we will start off with motivation behind testing of RBGs.
Then, we will elaborate on how this topic is connected to stream ciphers and
finally discuss why lack of randomness in stream ciphers is an issue.

2.1 Random bit generators

The security of many cryptographic systems depends on being able to gener-
ate unpredictable sequences of bits [2] — e.g., the keystream in stream ciphers
or secret parameters in various encryption schemes. In all cases, the gener-
ated sequences must be of sufficient size and random in the sense that the
probability of any particular value being selected must be sufficiently small to
prevent an adversary from gaining an advantage though the optimization of
a search strategy based on such probability [2].

Let us now define what a random bit generator is. The following definitions
in this section are adapted from [2].

Definition 6 (Random bit generator) Random Bit Generator (RBG) is
a device or algorithm that outputs a sequence of statistically independent and
unbiased binary digits.

Definition 7 (Pseudorandom bit generator) Pseudorandom Bit Gener-
ator (PRBG) is a deterministic algorithm, which, given a truly random binary
sequence of length k, outputs a binary sequence of a much greater length l which
“appears” to be random. The input of the PRBG is called the seed, while the
output of the PRBG is called a pseudorandom bit sequence.

13

2. Testing of random bit generators

2.2 Motivation
The output of a PRBG is not truly random [2]. The idea behind PRBGs is
to take a small truly random sequence and expand it to a sequence of a much
greater length in a way such that an adversary cannot efficiently distinguish
between output sequences of the PRBG and truly random sequences [2].

A True Random Bit Generator (TRBG) requires a naturally occuring
source of randomness [2]. Designing a device or a piece of software to uti-
lize this randomness in order to produce a bit sequence that is free of biases
and correlations is a difficult task [2]. On top of that, for most cryptographic
applications, the generator must not be subject to observation or manipulation
by an adversary [2].

RBGs based on natural sources of randomness are subject to influence by
external factors as well as malfunction [2]. Therefore, it is important that
such devices be tested periodically, e.g., by using statistical tests, some of
which we will introduce in Chapter 4. Although PRBGs are not subject to
the same external influences as TRBGs, they should also undergo some testing
to ensure the underlying algorithms really generate unpredictable sequences,
which is exactly what we will be doing later on in this thesis.

2.3 Randomness in ciphers
As we have hinted earlier in this chapter, stream ciphers depend on the ability
to generate unpredictable sequences — the keystream. If the keystream was
not random and contained some form of bias, an adversary would be able
to guess some of its bits and have an easier time attacking the cipher, e.g.,
recovering plaintext from given ciphertext without the knowledge of the key
that was used. This applies to Elephant as well, since, as we have mentioned
before, it too is a stream cipher.

2.4 Issues with lack of randomness
Take the RC4 stream cipher as an example. The authors of [8] showed how
an attacker can exploit biases in the keystream to distinguish RC4 keystreams
of 226 bytes from random sequences with success rate of more than 66%.
They also discovered a family of patterns in the keystream, which can be used
to predict bits and words, e.g., after 245 output words, a single bit can be
predicted with probability of 85% and after 250 output words, a single byte
can be predicted with probability of 82%, contradicting the unpredictability
property.

Consider the DES encryption algorithm as another example. DES has a
key space of size 256 [2]. If the secret key was selected using a TRBG, an
adversary would on average have to try 255 possible keys before guessing the

14

2.4. Issues with lack of randomness

correct one [2]. On the other hand, if the key was selected by first choosing a
16-bit random secret that would then be expanded into a 56-bit key using a
publicly known (or predictable in some way) function f , the adversary would
on average only have to try 215 keys obtained by running each one of the 215

possible values through the function f or some prediction algorithm [2].

15

Chapter 3
Basics of hypothesis testing

In this chapter, we will introduce the mathematical background behind testing
of hypotheses, which will be applied in the next chapter.

3.1 Preliminaries
Let us begin by explaining what a statistical hypothesis and statistical hy-
pothesis test is. The explanations in the rest of this chapter are adapted
from [9].

A statistical hypothesis is a statement about the properties of the proba-
bility distribution observed from a random variable. Hypotheses that concern
the parameter values of probability distributions of random variables are called
parametric hypotheses. Conversely, hypotheses that do not make assumptions
about the distribution of a random variable are called nonparametric hypothe-
ses. Hypotheses that are formulated such that the probability distribution of
a random variable is uniquely determined are called simple hypotheses. Op-
posite of that are composite hypotheses, which do not specify the probability
distribution of a random variable uniquely.

Statistical hypothesis testing is a procedure that allows us to determine
whether the experimentally observed data satisfy an assumption we made
before conducting the test. In hypothesis testing, we always compare two
hypotheses. The hypothesis being tested is called the null hypothesis H0 and
we contrast it with an alternative hypothesis HA.

Let X = (X1, . . . ,Xn) be a random sample from distributionR(θ), where θ
is a (possibly multidimensional) parameter. Let h(θ) be a parametric function
and k ∈ R a constant. Furthermore, let the null hypothesis be

H0 ∶ h(θ) = k.

The alternative hypothesis may be defined in the following three ways.

1. Right-tailed alternative hypothesis: HA ∶ h(θ) > k.

17

3. Basics of hypothesis testing

Reality Test outcome
H0 not rejected H0 rejected

H0 is true correction decision type I error
H0 is false type II error correct decision

Table 3.1: Possible outcomes of a statistical hypothesis test in the context of
type I and type II errors. Adapted from [9].

2. Left-tailed alternative hypothesis: HA ∶ h(θ) < k.

3. Two-tailed alternative hypothesis: HA ∶ h(θ) ≠ k.

During the testing procedure, we decide whether or not to reject the given
hypothesis H0. Note that errors can be made during the decision process.
There are two types of errors — type I error and type II error. Type I error
occurs when the null hypothesis H0 is true and we reject it. Type II error
occurs when the null hypothesis H0 is not true and we fail to reject it. There
are four possible outcomes of a statistical hypothesis test, which are shown in
Table 3.1.

In the case of a simple hypothesis, the probability of type I error is called
the level of significance and is usually denoted by α. In the case of a composite
hypothesis, α is the smallest upper bound of the probability of type I error.
Suppose X = (X1, . . . ,Xn) is a random sample from a certain distribution
and there is a null and alternative hypothesis laid out. The decision whether
to reject the hypothesis H0 or not is based on building a certain statistic
T = T (X1, . . . ,Xn), which we call the test statistic. The test statistic T is
a random variable that is a function of the observations X1, . . . ,Xn. The
decision is made by choosing a suitable set W ⊂ R, called the critical region.
In case that T ∈ W , we reject the null hypothesis H0. Otherwise, we do not
reject it. We choose the size of the critical region so that we reject the null
hypothesis with probability α at most. Usually, we choose α = 0.05 or α = 0.01.

There is also a procedure, which we employ during testing of hypotheses to
determine the smallest level of significance at which we would still reject the
null hypothesis H0. We call this level of significance the p-value. It expresses
the smallest upper bound of the probability that we would obtain precisely
our realization of the test statistic T or even more contradictory realizations
of the tested hypothesis assuming the null hypothesis H0 is true.

Let X = (X1, . . . ,Xn) be a random sample from a certain distribution,
T = T (X1, . . . ,Xn) be a test statistic and t0 be its value. Then, we can
calculate the p-value using one of the three possible formulas, depending on
the shape of the alternative hypothesis.

1. If we have a right-tailed alternative hypothesis, we compute the p-value

18

3.1. Preliminaries

Condition Test outcome
p-value ≤ α Reject H0

p-value > α Do not reject H0

Table 3.2: Possible outcomes of a statistical hypothesis test based on p-value
and level of significance α. Adapted from [9].

using the following formula:

p-value = Pr(T ≥ t0).

We use this definition of p-value in cases where the observed data sug-
gests that the test statistic could take on larger values than those corre-
sponding to the distribution of the test statistic under the assumption
that the null hypothesis H0 is true.

2. If we have a left-tailed alternative hypothesis, we compute the p-value
using the following formula:

p-value = Pr(T ≤ t0).

We use this definition of p-value in cases where the observed data sug-
gests that the test statistic could take on smaller values than those cor-
responding to the distribution of the test statistic under the assumption
that the null hypothesis H0 is true.

3. If we have a two-tailed alternative hypothesis, we calculate the p-value
using the following formula:

p-value = 2 ⋅min{Pr(T ≤ t0),Pr(T ≥ t0)}.

We use this definition of p-value in cases where the observed data sug-
gests that the test statistic could take on either larger or smaller values
than the values corresponding to the distribution of the test statistic
under the assumption that the null hypothesis H0 is true. In this case,
we can use the above method of calculating the p-value only when the
density of the distribution corresponding to the null hypothesis is sym-
metric.

The outcome of hypothesis testing depends on the chosen level of signifi-
cance α. Given the calculated p-value, the decision regarding the rejection of
the null hypothesis shall be made based on Table 3.2.

19

3. Basics of hypothesis testing

3.2 χ2 goodness of fit test
Let us now describe one of statistical hypothesis tests that is commonly used
when testing RBGs — the χ2 goodness of fit test.

This test assesses the fit of the observed frequencies X1, . . . ,Xn of events
A1, . . . ,An with corresponding expected frequencies mp1, . . . ,mpn, where the
probabilities p1, . . . , pn are based on an assumption of a certain probability
model and m is the size of the sample, i.e., the sum of observed frequencies
X1 +⋯ +Xn.

The null hypothesis states that the probabilities of events A1, . . . ,An are
equal to p1, . . . , pn respectively. The test statistic takes the form:

X2 =
n

∑
i=1

(Xi −mpi)2

mpi
.

The random variable X2 is approximately χ2-distributed with n−1 degrees
of freedom. The null hypothesis is rejected at the significance level α if X2 >
χ2

1−α;n−1, where χ2
1−α;n−1 is the (1−α)-quantile of the χ2 distribution with n−1

degrees of freedom. If this is the case, it means that the probabilities of the
events are different from the probabilities p1, . . . , pn. It should be noted that
the χ2 goodness of fit test is asymptotic and can only be used for a sufficiently
large sample sizem. It is often recommended in various literature thatmpi ≥ 5
for every i ∈ {1, . . . , n}.

20

Chapter 4
Known RBG tests

In this chapter, we will describe some known tests that assess the randomness
of a given bit sequence. These tests will later be applied to the Dumbo instance
of the Elephant cipher to test the randomness of its keystream. We will start
with tests from the NIST STS, which are very well known and widely utilized.
Then, we will follow up with monomial tests and finally conclude the chapter
with cube testers.

4.1 NIST STS
The STS from NIST is a statistical test suite for random and pseudorandom
bit generators for cryptographic applications consisting of 15 tests that were
developed to test the randomness of arbitrarily long binary sequences produced
by either hardware or software based cryptographic random or pseudorandom
bit generators [10]. These tests focus on a variety of different types of non-
randomness that could exist in a sequence and may be useful as a first step
in determining whether or not a generator is suitable for a particular crypto-
graphic application [10]. However, no set of statistical tests is able to prove
that a given generator is truly random [10]. In other words, statistical testing
cannot serve as a substitute for cryptanalysis [10]. In the rest of this section,
we will explain 10 out of 15 tests from this suite. All of the descriptions in
the rest of this section apart from examples are adapted from [10]. Note that
the recommendations for input size will sometimes not be satisfied in our ex-
amples for the sake of simplicity. We will assume level of significance α = 0.01
for all tests.

4.1.1 Notation

We denote the input bit sequence by ϵ1, . . . , ϵn and its length by n. By erfc,
we denote the ANSI C complementary error function contained in the math.h

21

4. Known RBG tests

header file and its corresponding mathematical library, defined as

erfc(z) = 2√
π
∫
∞

z
e−u2

du.

By igamc, we denote the incomplete gamma function based on an approx-
imation formula. Depending on the values of its parameters a and x, the
incomplete gamma function may be approximated using either a continued
fraction development or a series development.

Gamma function Γ(z) = ∫
∞

0 tz−1e−tdt.

Incomplete gamma function P (a, x) ≡ γ(a,x)
Γ(a) ≡

1
Γ(a) ∫

x
0 e−tta−1dt, where

P (a,0) = 0 and P (a,∞) = 1.

Incomplete gamma function Q(a, x) ≡ 1 − P (a, x) ≡ Γ(a,x)
Γ(a)

≡ 1
Γ(a) ∫

∞
x e−tta−1dt, where Q(a,0) = 1 and Q(a,∞) = 0.

By Φ, we denote the Standard Normal Cumulative Distribution Function
(SNCDF) defined as

Φ(z) = 1√
2π ∫

z

−∞
e−u2/2du.

4.1.2 Frequency (Monobit) test

4.1.2.1 Test purpose

This test focuses on the proportion of zeros and ones for the entire sequence.
The purpose of this test is to determine whether the number of ones and zeros
in a sequence is approximately the same as what would be expected for a
truly random sequence. The test assesses how close the fraction of ones is to
1
2 , meaning the number of ones and zeros in the sequence should be about the
same. All subsequent tests depend on the passing of this test.

4.1.2.2 Test description

1. Convert zeros and ones of the input sequence to values of −1 and +1
respectively and add them together to produce Sn = X1 +X2 +⋯ +Xn,
where Xi = 2ϵi − 1 for i ∈ {1, . . . , n}.

2. Compute the test statistic sobs = ∣Sn∣√
n
.

3. Compute p-value = erfc(sobs√
2
), where erfc is the complementary error

function as defined in Section 4.1.1.

22

4.1. NIST STS

4.1.2.3 Decision rule

If the computed p-value is less than 0.01, conclude that the sequence is non-
random. Otherwise, conclude that the sequence is random.

4.1.2.4 Input size recommendation

It is recommended that each sequence to be tested consist of a minimum of
100 bits, i.e., n ≥ 100.

4.1.2.5 Example

• Let the input sequence be

ϵ =1101110000011100110101100111100011110000000101111010
1010100000010101011011111000001101000110010001011000

of length n = 104.

• Summing the transformed sequence {+1,−1}104 gives us Sn = −6.

• We compute the test statistic

sobs =
∣Sn∣√
n
= −6√

104
≈ 0.5883

and the p-value

p-value = erfc(sobs√
2
) = erfc(0.5883√

2
) ≈ 0.5563.

• Since the computed p-value ≈ 0.5563 is greater than the level of signifi-
cance α = 0.01, we conclude that the sequence is random.

4.1.3 Frequency test within a block

4.1.3.1 Test purpose

This test focuses on the proportion of zeros and ones within M -bit blocks.
The purpose of this test is to determine whether the frequency of ones and
zeros in an M -bit block is about the same as would be expected under the
assumption of randomness. For block size M = 1, this test degenerates to the
Frequency (Monobit) test described in Section 4.1.2.

23

4. Known RBG tests

4.1.3.2 Test description

1. Partition the input sequence into N = ⌊ n
M ⌋ non-overlapping blocks and

discard any unused bits.

2. Determine the proportion of ones πi in each M -bit block using the for-
mula πi =

∑M
j=1 ϵ(i−1)M+j

M for i ∈ {1, . . . ,N}.

3. Compute the test statistic χ2(obs) = 4M ∑N
i=1 (πi − 1

2)
2.

4. Compute p-value = igamc(N/2, χ2(obs)/2), where igamc is the incom-
plete gamma function for Q(a, x) as defined in Section 4.1.1.

4.1.3.3 Decision rule

If the computed p-value is less than 0.01, conclude that the sequence is non-
random. Otherwise, conclude that the sequence is random.

4.1.3.4 Input size recommendation

It is recommended that each sequence to be tested consist of a minimum of
100 bits, i.e., n ≥ 100. Note that n ≥ MN . The block size M should be
selected such that M ≥ 20, M > 0.01n and N < 100.

4.1.3.5 Example

• Let the input sequence be

ϵ =1101110000011100110101100111100011110000000101111010
1010100000010101011011111000001101000110010001011000

of length n = 104 and block size M = 20.

• We partition the input sequence into n = ⌊ n
M ⌋ = ⌊

104
20 ⌋ = 5 non-overlapping

blocks. The last four unused bits are discarded.

• We determine the proportion of ones πi in each M -bit block:

π1 =
∑M

j=1 ϵj

M
= 11

20
= 0.55,

π2 =
∑M

j=1 ϵM+j

M
= 10

20
= 0.5,

π3 =
∑M

j=1 ϵ2M+j

M
= 9

20
= 0.45,

π4 =
∑M

j=1 ϵ3M+j

M
= 10

20
= 0.5,

π4 =
∑M

j=1 ϵ4M+j

M
= 8

20
= 0.4.

24

4.1. NIST STS

• We compute the test statistic

χ2(obs) = 4M
N

∑
i=1
(πi −

1
2
)

2

= 4 ⋅ 20 ⋅ ((0.55 − 0.5)2 + (0.5 − 0.5)2

+ (0.45 − 0.5)2 + (0.5 − 0.5)2 + (0.4 − 0.5)2)
= 1.2

and the p-value

p-value = igamc(N/2, χ2(obs)/2) = igamc(5/2,1.2/2) ≈ 0.9449.

• Since the computed p-value ≈ 0.9449 is greater than the level of signifi-
cance α = 0.01, we conclude that the sequence is random.

4.1.4 Runs test
4.1.4.1 Test purpose

This test focuses on the total number of runs in the sequence, where a run is an
uninterrupted sequence of identical bits. A run of length k consists of exactly
k identical bits and is bounded before and after with a bit of the opposite
value. The purpose of this test is to determine whether the number of runs
of ones and zeros of various lengths is as expected for a random sequence. In
particular, this test determines whether the oscillation between such zeros and
ones is too fast or too slow.

4.1.4.2 Test description

1. Compute the pre-test proportion π of ones in the input sequence: π =
∑j ϵj

n .

2. Compute the test statistic Vn(obs) = ∑n−1
k=1 r(k) + 1, where r(k) = 0 if

ϵk = ϵk+1 and 1 otherwise.

3. Compute p-value = erfc(∣Vn(obs)−2nπ(1−π)∣
2
√

2nπ(1−π)
), where erfc is the comple-

mentary error function as defined in Section 4.1.1.

4.1.4.3 Decision rule

If the computed p-value is less than 0.01, conclude that the sequence is non-
random. Otherwise, conclude that the sequence is random.

4.1.4.4 Input size recommendation

It is recommended that each sequence to be tested consist of a minimum of
100 bits, i.e., n ≥ 100.

25

4. Known RBG tests

4.1.4.5 Example

• Let the input sequence be

ϵ =1101110000011100110101100111100011110000000101111010
1010100000010101011011111000001101000110010001011000

of length n = 104.

• We compute the pre-test proportion of ones in the input sequence

π =
∑j ϵj

n
= 49

104
≈ 0.4712.

• We compute the test statistic

Vn(obs) =
n−1
∑
k=1

r(k) + 1 = 50

and the p-value

p-value = erfc(∣Vn(obs) − 2nπ(1 − π)∣
2
√

2nπ(1 − π)
)

= erfc(∣50 − 2 ⋅ 104 ⋅ 0.4712(1 − 0.4712)∣
2
√

2 ⋅ 104 ⋅ 0.4712(1 − 0.4712)
)

≈ 0.7192.

• Since the computed p-value ≈ 0.7192 is greater than the level of signifi-
cance α = 0.01, we conclude that the sequence is random.

4.1.5 Binary matrix rank test
4.1.5.1 Test purpose

This test focuses on the rank of disjoint sub-matrices of the entire sequence.
The purpose of this test is to check for linear dependence among fixed-length
substrings of the original sequence. Let M = 32 be the number of rows in each
matrix and Q = 32 the number of columns in each matrix.

4.1.5.2 Test description

1. Sequentially divide the sequence into (M ⋅Q)-bit disjoint blocks; there
will be N = ⌊ n

MQ⌋ such blocks. Discarded bits will be reported as not
being used in the computation within each block. Collect the M ⋅Q bit
segments into M by Q matrices. Each row of the matrix is filled with
successive Q-bit blocks of the original sequence ϵ.

26

4.1. NIST STS

2. Determine the binary rank Rℓ of each matrix, where ℓ ∈ {1, . . . ,N}. To
determine the rank, apply elementary row operations where the addition
operator is taken to be the XOR operation. The matrices are reduced to
upper triangular form using forward row operations and the operation
is repeated in reverse in order using backward row operations in order
to arrive at a matrix in triangular form. The rank is then taken to be
the number of nonzero rows in the resulting Gaussian-reduced matrix.

3. Let FM be the number of matrices with Rℓ = M (full rank), FM−1 the
number of matrices with Rℓ =M − 1 (full rank − 1) and N − FM − FM−1
the number of remaining matrices.

4. Compute the test statistic
χ2(obs) = (FM−0.2888N)2

0.2888N + (FM−1−0.5776N)2
0.5776N + (N−FM−FM−1−0.1336N)2

0.1336N .

5. Compute p-value = e−χ2(obs)/2.

4.1.5.3 Decision rule

If the computed p-value is less than 0.01, conclude that the sequence is non-
random. Otherwise, conclude that the sequence is random.

4.1.5.4 Input size recommendation

The minimum number of bits to be tested must be such that n ≥ 38MQ, i.e.,
at least 38 matrices are created. For M = Q = 32, each sequence to be tested
should consist of a minimum of 38,912 bits.

4.1.5.5 Example

• Let the input sequence be

ϵ =1101110000011100110101100111100011110000000101111010
1010100000010101011011111000001101000110010001011000

of length n = 104 and M = Q = 5.

• We divide the sequence intoM ⋅Q = 25-bit disjoint blocks; there are N =
⌊ n

MQ⌋ = ⌊
104
25 ⌋ = 4 such blocks. The last four unused bits are discarded.

27

4. Known RBG tests

• We collect the 25-bit segments into four 5 × 5 matrices

M1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 1
1 0 0 0 0
0 1 1 1 0
0 1 1 0 1
0 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

,M2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 0
0 0 1 1 1
1 0 0 0 0
0 0 0 1 0
1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

M3 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 1 0 1
0 1 0 0 0
0 0 0 1 0
1 0 1 0 1
1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

,M4 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 0 0 0
0 0 1 1 0
1 0 0 0 1
1 0 0 1 0
0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

• We determine the rank Rℓ of each matrix:

R1 = 5, R2 = 4, R3 = 3, R4 = 4.

• We count the number of matrices with Rℓ =M (full rank) FM = 1, the
number of matrices with Rℓ = M − 1 (full rank − 1) FM−1 = 2 and the
number of remaining matrices N − FM − FM−1 = 4 − 2 − 1 = 1.

• We compute the test statistic

χ2(obs) = (FM − 0.2888N)2

0.2888N
+ (FM−1 − 0.5776N)2

0.5776N

+ (N − FM − FM−1 − 0.1336N)2

0.1336N

= (1 − 0.2888 ⋅ 4)2

0.2888 ⋅ 4
+ (2 − 0.5776 ⋅ 4)2

0.5776 ⋅ 4

+ (1 − 0.1336 ⋅ 4)2

0.1336 ⋅ 4
≈ 0.5771

and the p-value

p-value = e−χ2(obs)/2 = e−0.5771/2 ≈ 0.7494.

• Since the computed p-value ≈ 0.7494 is greater than the level of signifi-
cance α = 0.01, we conclude that the sequence is random.

4.1.6 Discrete Fourier transform (Spectral) test
4.1.6.1 Test purpose

This test focuses on the peak heights in the Discrete Fourier Transform of the
sequence. The purpose of this test is to detect periodic features (i.e., repetitive

28

4.1. NIST STS

patterns that are near each other) in the tested sequence that would indicate
a deviation from the assumption of randomness. The intention is to detect
whether the number of peaks exceeding the 95 % threshold is significantly
different than 5 %.

4.1.6.2 Test description

1. The zeros and ones of the input sequence are converted to values of
−1 and +1 respectively to create the sequence X = x1, x2, . . . , xn, where
xi = 2ϵi − 1 for i ∈ {1, . . . , n}.

2. Apply the Discrete Fourier Transform (DFT) on X and store the result
in S. A sequence of complex variables is produced which represents
periodic components of the sequence of bits at different frequencies.

3. CalculateM = modulus(S′) ≡ ∣S′∣, where S′ is the substring consisting of
the first n

2 elements in S and the modulus function produces a sequence
of peak heights.

4. Compute the 95 % peak height threshold value T =
√
(log 1

0.05)n. Under
the assumption of randomness, 95 % of the values obtained from the test
should not exceed T .

5. Compute N0 = 0.95n
2 . N0 is the expected theoretical (95 %) number of

peaks that are less than T under the assumption of randomness.

6. Compute N1 — the actual observed number of peaks in M that are less
than T .

7. Compute d = (N1−N0)√
0.95⋅0.05⋅n/4

.

8. Compute p-value = erfc(∣d∣√
2
), where erfc is the complementary error

function as defined in Section 4.1.1.

4.1.6.3 Decision rule

If the computed p-value is less than 0.01, conclude that the sequence is non-
random. Otherwise, conclude that the sequence is random.

4.1.6.4 Input size recommendation

It is recommended that each sequence to be tested consist of a minimum of
1000 bits, i.e., n ≥ 1000.

29

4. Known RBG tests

4.1.6.5 Example

• Let the input sequence be

ϵ =1101110000011100110101100111100011110000000101111010
1010100000010101011011111000001101000110010001011000

of length n = 104.

• We produce a transformed sequence X by converting the zeros and ones
of ϵ to values of −1 and +1 respectively and apply DFT on X to produce
S.

• We store the first n
2 elements of S in S′ and calculate the sequence of

peak heights M = modulus(S′).

• We compute

T =
√
(log 1

0.05
)n =

√
(log 1

0.05
) ⋅ 104 ≈ 17.65,

N0 =
0.95n

2
= 0.95 ⋅ 104

2
= 49.4.

• We count the number of peaks in M that are less than T ≈ 17.65 and
obtain N1 = 49.

• We compute the test statistic

d = (N1 −N0)√
0.95 ⋅ 0.05 ⋅ n/4

= (49 − 49.4)√
0.95 ⋅ 0.05 ⋅ 104/4

≈ −0.3599.

• We compute the p-value

p-value = erfc(∣d∣√
2
) = erfc(∣ − 0.3599∣√

2
) ≈ 0.7189.

• Since the computed p-value ≈ 0.7189 is greater than the level of signifi-
cance α = 0.01, we conclude that the sequence is random.

4.1.7 Maurer’s “universal statistical” test
4.1.7.1 Test purpose

This test focuses on the number of bits between matching patterns — a mea-
sure that is related to the length of a compressed sequence. The purpose of
this test is to detect whether or not the sequence can be significantly com-
pressed without loss of information. A significantly compressible sequence is
considered to be non-random.

30

4.1. NIST STS

4.1.7.2 Test description

1. Partition the n-bit input sequence into two segments: an initialization
segment consisting of Q L-bit non-overlapping blocks and a test segment
consisting of K L-bit non-overlapping blocks. Bits remaining at the end
of the sequence that do not form a complete L-bit block are discarded.
The first Q blocks are used to initialize the test. The remaining K =
⌊n

L⌋−Q blocks are the test blocks. See Figure 4.1 for a depiction of this
step.

Initialization Segment Test Segment
Q×L bits K×L bits Discard

| L bits | L bits | ... | L bits | L bits | L bits | L bits | ... | L bits | L bits |
n bits

Q blocks K blocks

Figure 4.1: Depiction of the first step of Maurer’s “universal statistical” test.
Adapted from [10].

2. Using the initialization segment, a table is created for each possible L-
bit value (i.e., the L-bit value is used as an index into the table). The
block number of the last occurrence of each L-bit block is noted in the
table as Tj = i for i ∈ {1, . . . ,Q}, where j is the decimal representation
of the contents of the ith L-bit block.

3. Examine each of the K blocks in the test segment and determine the
number of blocks since the last occurrence of the same L-bit block (i.e.,
i − Tj). Replace the value in the table with the location of the current
block (i.e., Tj = i). Add the calculated distance between reoccurrences of
the same L-bit block to an accumulating log2 sum of all the differences
detected in the K blocks (i.e., sum = sum + log2(i − Tj)).

4. Compute the test statistic fn = 1
K ∑

Q+K
i=Q+1 log2(i − Tj), where Tj is the

table entry corresponding to the decimal representation of the contents
of the ith L-bit block.

5. Compute p-value = erfc(∣fn−expectedValue(L)√
2σ

∣), where erfc is the com-
plementary error function as defined in Section 4.1.1. Values for the
function expectedValue(L) are taken from Table 4.1 of precomputed
values. Under the assumption of randomness, expectedValue(L), i.e.,
the sample mean, is the theoretical expected value of the computed

31

4. Known RBG tests

statistic for the given L-bit length. The theoretical standard deviation
is given by σ = c

√
variance(L)

K , where c = 0.7 − 0.8
L + (4 +

32
L)

K−3/L

15 .

L expectedValue variance
6 5.2177052 2.954
7 6.1962507 3.125
8 7.1836656 3.238
9 8.1764248 3.311

10 9.1723243 3.356
11 10.170032 3.384
12 11.168765 3.401
13 12.168070 3.410
14 13.167693 3.416
15 14.167488 3.419
16 15.167379 3.421

Table 4.1: Table of precomputed values for expectedValue(L). Adapted
from [2].

4.1.7.3 Decision rule

If the computed p-value is less than 0.01, conclude that the sequence is non-
random. Otherwise, conclude that the sequence is random.

4.1.7.4 Input size recommendation

This test requires a long sequence of bits (n ≥ (Q +K)L) which are divided
into two segments of L-bit blocks, where L should be chosen so that 6 ≤ L ≤ 16.
The first segment consists of Q initialization blocks, where Q should be chosen
so that Q = 10 ⋅ 2L. The second segment consists of K test blocks, where
K = ⌈n

L⌉ − Q ≈ 1000 ⋅ 2L. The values of L, Q and n should be chosen as
indicated in Table 4.2.

4.1.7.5 Example

• Let the input sequence be ϵ = {1111000000}38784 of length n = 387840,
block size L = 6, length of the initialization segment Q = 640 and length
of the test segment K = 64000.

32

4.1. NIST STS

n L Q = 10 ⋅ 2L

≥ 387,840 6 640
≥ 904,960 7 1,280
≥ 2,068,480 8 2,560
≥ 4,654,080 9 5,120
≥ 10,342,400 10 10,240
≥ 22,753,280 11 20,480
≥ 49,643,520 12 40,960
≥ 107,560,960 13 81,920
≥ 231,669,760 14 163,840
≥ 496,435,200 15 327,680
≥ 1,059,061,760 16 655,360

Table 4.2: Input size recommendation for Maurer’s “universal statistical” test.
Adapted from [10].

Block Last occurrence
000000 640
000011 637
001111 639
110000 638
111100 636

Table 4.3: Last occurrences of 6-bit blocks in the initialization segment of our
example for the Maurer’s “universal statistical” test. Only non-zero values are
shown.

• Using the initialization segment, we create a table mapping the block
number of the last occurrence of each possible 6-bit block. The table is
shown in Table 4.3.

• We examine each of the K = 64000 blocks in the test segment and
compute a log2 sum of distances between reoccurrences of the same 6-
bit blocks. We obtain sum ≈ 148603.4.

33

4. Known RBG tests

• We compute the test statistic

fn =
1
K

Q+K

∑
i=Q+1

log2(i − Tj) =
1

64000

640+64000
∑

i=640+1
log2(i − Tj) ≈ 2.3219.

• We compute the p-value

p-value = erfc(∣fn − expectedValue(L)√
2σ

∣) = erfc(∣2.3219 − 5.2177√
2 ⋅ 0.0039

∣) ≈ 0.

• Since the computed p-value ≈ 0 is less than the level of significance
α = 0.01, we conclude that the sequence is non-random.

4.1.8 Linear complexity test
4.1.8.1 Test purpose

This test focuses on the length of an LFSR. The purpose of this test is to
determine whether or not the input sequence is complex enough to be con-
sidered random. Random sequences are characterized by longer LFSRs. An
LFSR that is too short implies non-randomness.

4.1.8.2 Test description

1. Partition the n-bit input sequence into N independent blocks ofM bits,
where n =MN .

2. Using the Berlekamp-Massey algorithm from [2], determine the linear
complexity Li of each of the N blocks (i ∈ {1, . . . ,N). Li is the length
of the shortest LFSR sequence that generates all bits in the block i.
Within any Li-bit sequence, some combination of the bits, when added
together modulo 2, produces the next bit in the sequence (bit Li + 1).

3. Under the assumption of randomness, calculate the theoretical mean

µ = M
2
+ 9 + (−1)M+1

36
−

M
3 +

2
9

2M
.

4. For each substring, calculate Ti = (−1)M(Li − µ) + 2
9 .

5. Let v0 = v1 = ⋯ = v6 = 0 and record the Ti values in v0, . . . , v6 as follows:

• If Ti ≤ −2.5, increment v0 by one.
• If −2.5 < Ti ≤ −1.5, increment v1 by one.
• If −1.5 < Ti ≤ −0.5, increment v2 by one.
• If −0.5 < Ti ≤ 0.5, increment v3 by one.

34

4.1. NIST STS

• If 0.5 < Ti ≤ 1.5, increment v4 by one.
• If 1.5 < Ti ≤ 2.5, increment v5 by one.
• If Ti > 2.5, increment v6 by one.

6. Compute the test statistic χ2(obs) = ∑K
i=0
(vi−Nπi)2

Nπi
, where π0 = 0.010417,

π1 = 0.03125, π2 = 0.125, π3 = 0.5, π4 = 0.25, π5 = 0.0625 and π6 =
0.020833 are precomputed probabilities 2.

7. Compute p-value = igamc(K
2 ,

χ2(obs)
2), where igamc is the incomplete

gamma function for Q(a, x) as defined in Section 4.1.1.

4.1.8.3 Decision rule

If the computed p-value is less than 0.01, conclude that the sequence is non-
random. Otherwise, conclude that the sequence is random.

4.1.8.4 Input size recommendation

It is recommended that each sequence to be tested consist of a minimum of
1,000,000 bits, i.e., n ≥ 106. The value of M must be in the range 500 ≤M ≤
5000 and N must satisfy N ≥ 200 for the χ2 result to be valid.

4.1.8.5 Example

• Let the input sequence be ϵ = {1010011010}100000 of length n = 106 and
M = 500. The input sequence is partitioned into N = 2000 blocks.

• We determine the linear complexity Li of each of the N blocks using the
Berlekamp-Massey algorithm.

• We calculate the theoretical mean

µ = M
2
+ 9 + (−1)M+1

36
−

M
3 +

2
9

2M

= 500
2
+ 9 + (−1)500+1

36
−

500
3 +

2
9

2500

≈ 250.28.

• For each substring, we calculate

Ti = (−1)M(Li − µ) +
2
9
= (−1)500(Li − 250.28) + 2

9
.

• We collect v0, . . . , v6 by processing values of Ti and obtain

v0 = 2000, v1 = v2 = ⋯ = v6 = 0.
2Refer to [10] for more details about how these probabilities were computed.

35

4. Known RBG tests

• We compute the test statistic

χ2(obs) =
K

∑
i=0

(vi −Nπi)2

Nπi
=

6
∑
i=0

(vi − 2000 ⋅ πi)2

2000 ⋅ πi
≈ 189022.07.

• We compute the p-value

p-value = igamc(K
2
,
χ2(obs)

2
) = igamc(6

2
,
189022.07

2
) ≈ 0.

• Since the computed p-value ≈ 0 is less than the level of significance
α = 0.01, we conclude that the sequence is non-random.

4.1.9 Serial test
4.1.9.1 Test purpose

This test focuses on the frequency of all possible overlapping m-bit patterns
across the entire sequence. The purpose of this test is to determine whether
the number of occurrences of the 2m m-bit overlapping patterns is approxi-
mately the same as what would be expected for a random sequence. Random
sequences have uniformity, i.e., every m-bit pattern has the same probability
of appearing as every other m-bit pattern. Note that for m = 1, the Serial test
is equivalent to the Frequency (Monobit) test described in Section 4.1.2.

4.1.9.2 Test description

1. Extend the input sequence by appending the first m − 1 bits to the end
of it to form an augmented sequence ϵ′.

2. Determine the frequency of all possible overlappingm-bit blocks, all pos-
sible overlapping (m−1)-bit blocks and all possible overlapping (m−2)-
bit blocks. Let υi1...im denote the frequency of them-bit pattern i1 . . . im,
υi1...im−1 denote the frequency of the (m − 1)-bit pattern i1 . . . im−1 and
υi1...im−2 denote the frequency of the (m − 2)-bit pattern i1 . . . im−2.

3. Compute

• ψ2
m = 2m

n ∑i1...im
(υi1...im − n

2m)2 = 2m

n ∑i1...im
υ2

i1...im
− n,

• ψ2
m−1 = 2m−1

n ∑i1...im−1 (υi1...im−1 − n
2m−1)2

= 2m−1

n ∑i1...im−1 υ
2
i1...im−1

− n,

• ψ2
m−2 = 2m−2

n ∑i1...im−2 (υi1...im−2 − n
2m−2)2

= 2m−2

n ∑i1...im−2 υ
2
i1...im−2

− n.

4. Compute

36

4.1. NIST STS

• ∇ψ2
m = ψ2

m −ψ2
m−1,

• ∇2ψ2
m = ψ2

m − 2ψ2
m−1 +ψ2

m−2.

5. Compute

• p-value1 = igamc(2m−2,∇ψ2
m),

• p-value2 = igamc(2m−3,∇2ψ2
m),

where igamc is the incomplete gamma function for Q(a, x) as defined in
Section 4.1.1.

4.1.9.3 Decision rule

If the p-values obtained in step five of Section 4.1.9.2 are both larger or equal
to 0.01, conclude that the sequence is random. Otherwise, conclude that the
sequence is non-random.

4.1.9.4 Input size recommendation

It is recommended to choose m and n such that m < ⌊log2 n⌋ − 2.

4.1.9.5 Example

• Let the input sequence be

ϵ =1101110000011100110101100111100011110000000101111010
1010100000010101011011111000001101000110010001011000

of length n = 104 and block size m = 4. The input sequence is extended
by appending the first m − 1 = 3 bits (110) to the end of it to form an
augmented sequence ϵ′.

• We determine the frequency of all possible overlapping 4-bit blocks,
all possible overlapping 3-bit blocks and all possible overlapping 2-bit

37

4. Known RBG tests

blocks:

υ0000 = 11, υ000 = 19, υ00 = 30,
υ0001 = 8, υ001 = 11, υ01 = 25,
υ0010 = 4, υ010 = 12, υ10 = 25,
υ0011 = 7, υ011 = 13, υ11 = 24,
υ0100 = 3, υ100 = 11,
υ0101 = 9, υ101 = 14,
υ0110 = 7, υ110 = 13,
υ0111 = 6, υ111 = 11,
υ1000 = 8,
υ1001 = 3,
υ1010 = 8,
υ1011 = 6,
υ1100 = 8,
υ1101 = 5,
υ1110 = 6,
υ1111 = 5.

• We compute

ψ2
m =

2m

n
∑

i1...im

(υi1...im −
n

2m
)

2

= 2m

n
∑

i1...im

υ2
i1...im

− n

= 24

104 ∑
i1...im

υ2
i1...im

− 104

≈ 11.08,

ψ2
m−1 =

2m−1

n
∑

i1...im−1

(υi1...im−1 −
n

2m−1)
2

= 2m−1

n
∑

i1...im−1

υ2
i1...im−1 − n

= 23

104 ∑
i1...im−1

υ2
i1...im−1 − 104

≈ 3.85,

38

4.1. NIST STS

ψ2
m−2 =

2m−2

n
∑

i1...im−2

(υi1...im−2 −
n

2m−2)
2

= 2m−2

n
∑

i1...im−2

υ2
i1...im−2 − n

= 22

104 ∑
i1...im−2

υ2
i1...im−2 − 104

≈ 0.85.

• We compute the test statistics

∇ψ2
m = ψ2

m −ψ2
m−1 = 11.08 − 3.85 ≈ 7.23,

∇2ψ2
m = ψ2

m − 2ψ2
m−1 +ψ2

m−2 = 11.08 − 2 ⋅ 3.85 + 0.85 ≈ 4.23.

• We compute the p-values

p-value1 = igamc(2m−2,∇ψ2
m) = igamc(22,7.23) ≈ 0.5120,

p-value2 = igamc(2m−3,∇2ψ2
m) = igamc(21,4.23) ≈ 0.3757.

• Since the computed p-values 0.5120 and 0.3757 are both greater than the
level of significance α = 0.01, we conclude that the sequence is random.

4.1.10 Cumulative sums (Cumsum) test
4.1.10.1 Test purpose

This test focuses on the maximal excursion from zero of the random walk
defined by the cumulative sum of adjusted (-1, +1) digits in the sequence.
The purpose of the test is to determine whether the cumulative sum of partial
sequences occurring in the tested sequence is too large or too small relative
to the expected behavior of that cumulative sum for random sequences. This
cumulative sum may be considered as a random walk. For a random sequence,
the excursions of the random walk should be near zero. For certain types of
non-random sequences, the excursions of this random walk from zero will be
large.

4.1.10.2 Test description

1. Convert the zeros and ones of the input sequence to values Xi of −1 and
+1 using the formula Xi = 2ϵi − 1 to form a normalized sequence.

2. Compute partial sums Si of successively larger subsequences, each start-
ing with X1 (if mode = 0) or Xn (if mode = 1). In other words,

39

4. Known RBG tests

Sk = Sk−1 + Xk for mode = 0 and Sk = Sk−1 + Xn−k+1 for mode = 1.
See Table 4.4 for an example of this computation.

mode = 0 (forward) mode = 1 (backward)
S1 =X1 S1 =Xn

S2 =X1 +X2 S2 =Xn +Xn−1
S3 =X1 +X2 +X3 S3 =Xn +Xn−1 +Xn−2
⋅ ⋅
⋅ ⋅
Sk =X1 +X2 +⋯ +Xk Sk =Xn +Xn−1 +⋯ +Xn−k+1
⋅ ⋅
⋅ ⋅
Sn =X1 +X2 +⋯ +Xk +⋯ +Xn Sn =Xn +Xn−1 +⋯ +Xk−1 +⋯ +X1

Table 4.4: Example of the computation of partial sums Si in forward and
backward mode. Adapted from [10].

3. Compute the test statistic z = max1≤k≤n ∣Sk∣, where max1≤k≤n ∣Sk∣ is the
largest of the absolute values of the partial sums Sk.

4. Compute p-value = 1 −∑
(n

z
−1)/4

k=(−n
z
+1)/4[Φ(

(4k+1)z√
n
) −Φ((4k−1)z√

n
)]

+∑
(n

z
−1)/4

k=(−n
z
−3)/4[Φ(

(4k+3)z√
n
) −Φ((4k+1)z√

n
)], where Φ is the standard normal

cumulative distribution function defined in Section 4.1.1.

4.1.10.3 Decision rule

If the computed p-value is less than 0.01, conclude that the sequence is non-
random. Otherwise, conclude that the sequence is random.

4.1.10.4 Input size recommendation

It is recommended that each sequence to be tested consist of a minimum of
100 bits, i.e., n ≥ 100.

4.1.10.5 Example

• Let the input sequence be

ϵ =1101110000011100110101100111100011110000000101111010
1010100000010101011011111000001101000110010001011000

of length n = 104.

40

4.1. NIST STS

• We transform the input sequence to values of −1 and +1 using the for-
mula Xi = 2ϵi − 1 to form a normalized sequence.

• We compute partial sums Si of successively larger subsequences, each
starting with X1 (forward / mode 0) or Xn (backward / mode 1).

• We compute the test statistic

z = max
1≤k≤n

∣Sk∣ = max
1≤k≤n

∣Sk∣ = 6 (forward / mode 0),

z = max
1≤k≤n

∣Sk∣ = max
1≤k≤n

∣Sk∣ = 12 (backward / mode 1).

• We compute the p-value

p-value = 1 −
(n

z
−1)/4

∑
k=(−n

z
+1)/4
[Φ((4k + 1)z√

n
) −Φ((4k − 1)z√

n
)]

+
(n

z
−1)/4

∑
k=(−n

z
−3)/4
[Φ((4k + 3)z√

n
) −Φ((4k + 1)z√

n
)]

= 1 −
(104

6 −1)/4

∑
k=(−104

6 +1)/4
[Φ((4k + 1) ⋅ 6√

104
) −Φ((4k − 1) ⋅ 6√

104
)]

+
(104

6 −1)/4

∑
k=(−104

6 −3)/4
[Φ((4k + 3) ⋅ 6√

104
) −Φ((4k + 1) ⋅ 6√

104
)]

≈ 0.9639(forward / mode 0),

p-value = 1 −
(n

z
−1)/4

∑
k=(−n

z
+1)/4
[Φ((4k + 1)z√

n
) −Φ((4k − 1)z√

n
)]

+
(n

z
−1)/4

∑
k=(−n

z
−3)/4
[Φ((4k + 3)z√

n
) −Φ((4k + 1)z√

n
)]

= 1 −
(104

12 −1)/4

∑
k=(−104

12 +1)/4
[Φ((4k + 1) ⋅ 12√

104
) −Φ((4k − 1) ⋅ 12√

104
)]

+
(104

12 −1)/4

∑
k=(−104

12 −3)/4
[Φ((4k + 3) ⋅ 12√

104
) −Φ((4k + 1) ⋅ 12√

104
)]

≈ 0.4778(backward / mode 1).

41

4. Known RBG tests

• Since the computed p-values 0.9639 (forward / mode 0) and 0.4778
(backward / mode 1) are both greater than the level of significance
α = 0.01, we would conclude in both cases (modes) that the sequence is
random.

4.1.11 Random excursions test

4.1.11.1 Test purpose

This test focuses on the number of cycles having exactly K visits in a cumu-
lative sum random walk. The cumulative sum random walk is derived from
partial sums after the input sequence of zeros and ones is transformed to the
appropriate sequence of -1 and +1 values. A cycle of a random walk consists
of a sequence of steps of unit length taken at random that begin at and return
to the origin. The purpose of this test is to determine if the number of visits
to a particular state within a cycle deviates from what one would expect for a
random sequence. This test is actually a series of eight tests (and thus results
in eight conclusions) — one test for each of the states: -4, -3, -2, -1 and +1,
+2, +3, +4.

4.1.11.2 Test description

1. Form a normalized sequence X, where the zeros and ones of the input
sequence are transformed into values of -1 and +1 using the formula
Xi = 2ϵi − 1.

2. Compute the partial sums Si of successively larger subsequences, each
starting with X1. Form a set S = {Si ∣ i ∈ {1, . . . , n}}.

S1 =X1

S2 =X1 +X2

S3 =X1 +X2 +X3

⋅

⋅

Sk =X1 +X2 +X3 +⋯ +Xk

⋅

⋅

Sn =X1 +X2 +X3 +⋯ +Xk +⋯ +Xn

3. Form a new sequence S′ by attaching zeros before and after the set S.
That is, S′ = 0, S1, S2, . . . , Sn,0.

42

4.1. NIST STS

4. Let J be the total number of zero crossings in S′, where a zero crossing
is a value of zero in S′ that occurs after the starting zero. J is also
the number of cycles in S′, where a cycle in S′ is a subsequence of
S′ consisting of an occurrence of zero, followed by non-zero values and
ending with another zero. The ending zero in one cycle may be the
beginning zero in another cycle. If J < 500, discontinue the test 3.

5. For each cycle and for each non-zero state value x having values −4 ≤
x ≤ −1 and 1 ≤ x ≤ 4, compute the frequency of each x within each cycle.

6. For each of the eight states of x, compute υk(x), the total number of
cycles in which state x occurs exactly k times among all cycles, for k ∈
{0,1, . . . ,5}. Store all frequencies ≥ 5 in υ5(x). Note that ∑5

k=0 υk(x) =
J .

7. For each of the eight states of x, compute the test statistic χ2(obs) =
∑5

k=0
(υk(x)−Jπk(x))2

Jπk(x) , where πk(x) is the probability that the state x oc-
curs k times in a random distribution. See Table 4.5 for precomputed
πk values 4.

π0(x) π1(x) π2(x) π3(x) π4(x) π5(x)
x = 1 0.5000 0.2500 0.1250 0.0625 0.0312 0.0312
x = 2 0.7500 0.0625 0.0469 0.0352 0.0264 0.0791
x = 3 0.8333 0.0278 0.0231 0.0193 0.0161 0.0804
x = 4 0.8750 0.0156 0.0137 0.0120 0.0105 0.0733
x = 5 0.9000 0.0100 0.0090 0.0081 0.0073 0.0656
x = 6 0.9167 0.0069 0.0064 0.0058 0.0053 0.0588
x = 7 0.9286 0.0051 0.0047 0.0044 0.0041 0.0531

Table 4.5: Precomputed πk values. Adapted from [10].

8. For each state of x, compute p-value = igamc(5
2 ,

χ2(obs)
2), where igamc is

the incomplete gamma function for Q(a, x) as defined in Section 4.1.1.
Eight p-values will be produced.

3This is because the empirical rule for χ2 computations would not be satisfied. Refer
to [10] for details.

4Refer to [10] for details about the calculation method of πk(x).

43

4. Known RBG tests

4.1.11.3 Decision rule

If the p-values obtained in step eight of Section 4.1.11.2 are all larger or equal
to 0.01, then conclude that the sequence is random. Otherwise, conclude that
the sequence is non-random.

4.1.11.4 Input size recommendation

It is recommended that each sequence to be tested consist of a minimum of
1,000,000 bits, i.e., n ≥ 106.

4.1.11.5 Example

• Let the input sequence be ϵ = {1010011010}100000 of length n = 106.

• We transform the input sequence to values of −1 and +1 using the for-
mula Xi = 2ϵi − 1.

• We compute partial sums Si of successively larger subsequences, each
starting with X1.

• We form a new sequence S′ = 0, S1, S2, . . . , Sn,0.

• We determine the number of zero crossings in S′ and obtain J = 500000.

• We compute the frequency of each −4 ≤ x ≤ −1 and 1 ≤ x ≤ 4 within each
cycle.

• We compute vk(x) for each −4 ≤ x ≤ −1, 1 ≤ x ≤ 4 and k ∈ {0,1, . . . ,5}:

v0(−4) = 500000, v0(−3) = 500000, v0(−2) = 500000, v0(−1) = 400000,
v0(1) = 100000, v0(2) = 500000, v0(3) = 500000, v0(4) = 500000,
v1(−4) = 0, v1(−3) = 0, v1(−2) = 0, v1(−1) = 100000,
v1(1) = 400000, v1(2) = 0, v1(3) = 0, v1(4) = 0,
v2(−4) = 0, v2(−3) = 0, v2(−2) = 0, v2(−1) = 0,
v2(1) = 0, v2(2) = 0, v2(3) = 0, v2(4) = 0,
v3(−4) = 0, v3(−3) = 0, v3(−2) = 0, v3(−1) = 0,
v3(1) = 0, v3(2) = 0, v3(3) = 0, v3(4) = 0,
v4(−4) = 0, v4(−3) = 0, v4(−2) = 0, v4(−1) = 0,
v4(1) = 0, v4(2) = 0, v4(3) = 0, v4(4) = 0,
v5(−4) = 0, v5(−3) = 0, v5(−2) = 0, v5(−1) = 0,
v5(1) = 0, v5(2) = 0, v5(3) = 0, v5(4) = 0.

• We compute the test statistic and p-value for each −4 ≤ x ≤ −1 and
1 ≤ x ≤ 4. We obtain the results shown in Table 4.6.

44

4.2. Monomial tests

State χ2(obs) p-value
-4 71428.57 0
-3 100000.00 0
-2 166666.67 0
-1 220000.00 0
1 820000.00 0
2 166666.67 0
3 100000.00 0
4 71428.57 0

Table 4.6: Results for our example of the random excursions test

• Since all of the computed p-values are zero, which is less than the level
of significance α = 0.01, we conclude that the sequence is non-random.

4.2 Monomial tests
In this section, we will explore monomial tests described in [11]. The original
concept was introduced by E. Filiol in 2002 as “Möbius tests” [12]. Let us start
off with mathematical preliminaries adapted from [11] that are necessary to
understand the tests.

4.2.1 Preliminaries
A boolean function f of n variables is simply a mapping f ∶ Zn

2 ↦ Z2. There
are exactly 22n distinct boolean functions of n variables, each uniquely defined
by its truth table.

Definition 8 (Algebraic normal form of a boolean function)
A function f̂ ∶ Zn

2 ↦ Z2 satisfying

f̂(x) = ∑
a∈Zn

2

f(a)
n

∏
i=1
xai

i

is an algebraic normal form representation of a boolean function f ∶ Zn
2 ↦ Z2.

Let us now briefly go over some of the important properties of the Algebraic
Normal Form (ANF).

(P1) A unique f̂ exists for all boolean functions f .

45

4. Known RBG tests

(P2) The ANF transform is its own inverse, i.e., an involution. Therefore, if
g = f̂ , then ĝ = f .

(P3) We define a partial order for vectors x as x ≤ y if xi ≤ yi for all i. Using
this partial order, Definition 8 can be written as f̂ = ∑a≤x f(a).

(P4) The Hamming distance d(x, y) between x and y is the number of posi-
tions where xi ≠ yi.

(P5) A norm wt(x) = d(0, x) called the Hamming weight is equivalent to the
number of positions in x where xi = 1.

(P6) The algebraic degree deg(f) is the maximum Hamming weight x that
satisfies f̂(x) = 1. This is equivalent to the length of the longest mono-
mial (most variables) in the polynomial representation of f .

We will also introduce an algorithm for computing the ANF of a boolean
function. Let z ∶ Zn

2 ↦ Z be the standard mapping from binary vectors to
integers; z(x) = ∑i=1 n2i−1xi. Let v be a binary-valued vector of length 2n

that contains the truth table of a boolean function f ; vz(x)+1 = f(x) for all x.
The method for computing the ANF is captured in Algorithm 4. It uses two
auxiliary vectors t and u of length 2n−1 and stores the result in v.

Algorithm 4 ANF computation. Adapted from [11].
1: for j = 1, . . . , n do
2: for i = 1, . . . ,2n−1 do
3: ti ← v2i−1
4: ui ← v2i−1 ⊕ v2i

5: v ← t∣∣u

4.2.2 d-monomial test
Contrary to the NIST STS which takes one long keystream sequence and
applies various statistical tests, the d-monomial test is based on generating
a lot of short keystream sequences from different IV values and looking at
the statistical properties of a small portion of the output, e.g., only the first
bit [13].

The d-monomial test examines whether or not an ANF expression of a
boolean function has the expected number of d-degree monomials [11]. For
d = 0, the test is called the Affine test and for d > 0 the d-monomial test [11].
The explanations in the rest of this section are adapted from [11].

The d-monomial test involves counting the number of ones f̂(x) = 1 of an
ANF-transformed function f at positions x with Hamming weight wt(x) =
d. A χ2 statistical test is then applied to this count to see if the count is

46

4.2. Monomial tests

exceptionally high or low. Note that for a randomly chosen n-bit boolean
function f , Pr[f̂(x) = 1] = 1

2 for all x.
Consider an n-bit function f . Our null hypothesis is that the expected

bit count ∑wt(x)=d f̂(x) is equal to 1
2(

n
d
) and binomially distributed. The

alternative hypothesis is that there is a bias in this sum.
Suppose that we sample f̂ at N distinct points with wt(x) = d and M of

those points satisfy f̂(x) = 1. We apply Pearson’s classic χ2 goodness of fit
test and calculate the test statistic as

χ2 = 1
N
(2M −N)2.

Since “0” and “1” cases in bit count are mutually exclusive, there is one
degree of freedom in the test. See Algorithm 5 for a description of the entire
test process. The algorithm takes as input the position of keystream bit to
analyze p, key to be used for the encryption k, target monomial weight d and
level of confidence α. The bit length of the keystream is denoted by n. The
algorithm returns cipher when the keystream bit is biased and random when
it is random.

Algorithm 5 d-monomial test. Adapted from [13].
1: for iv = 1, . . . ,2n − 1 do
2: s← keystream derived from key k and nonce iv
3: v[iv]← s[p]
4: v ← ANF of vector v
5: for i = 1, . . . ,2n − 1 do ▷ Iterate over monomials
6: if v[i] = 1 then
7: w ← wt(i)
8: distr[w]← distr[w] + 1

9: χ2 ← (distr[d]− 1
2(n

d
))2

1
2(n

d
)

10: if χ2 > χ2(1 − α,1) then
11: return cipher
12: else
13: return random

4.2.2.1 Example

• Consider a stream cipher with 3-bit IV and that we want to analyze the
first keystream bit for biases. Let f be a boolean function derived from
23 keystream computations of all possible IVs and d = 2. The truth table
of f is shown in Table 4.7.

47

4. Known RBG tests

x f(x)
000 0
001 1
010 0
011 1
100 1
101 0
110 1
111 0

Table 4.7: Truth table for function f in our d-monomial test example

• We compute the ANF of f :

f̂(x1, x2, x3) = x1 ⊕ x3.

• We sample f̂ at all three points with wt(x) = 2 and count the number
of ones. We obtain distr[2] = 2.

• We compute the test statistic

χ2 =
(distr[d] − 1

2(
n
d
))2

1
2(

n
d
)

=
(2 − 1

2(
3
2))

2

1
2(

3
2)

≈ 0.1667.

• We compare the test statistic with the critical value χ2(1 − α,1) =
χ2(0.99,1) ≈ 6.635. Since χ2 ≈ 0.1667 < χ2(0.99,1) ≈ 6.635, the test
passed, i.e., the 2-monomial test does not indicate any biases in the first
bit of the keystream.

4.3 Cube testers
In this section, we will describe what cube testers are and how they can be
used to determine whether a given bit sequence is random. We begin by
presenting the preliminaries from [14] necessary to understand the concepts
of cube testers.

4.3.1 Preliminaries
Let Fn be the set of all functions mapping {0,1}n to {0,1}, where n > 0. Let
f ∈ Fn be a boolean function. Notice that for any function f ∈ Fn, the XOR

48

4.3. Cube testers

sum of all entries in the truth table

∑
x∈{0,1}n

f(x)

is equal to the coefficient of the highest degree monomial x1 . . . xn in the ANF 5

of f . For example, let n = 4 and f be a boolean function defined as

f(x1, x2, x3, x4) = x1 ⊕ x1x2 ⊕ x1x2x3 ⊕ x1x2x3x4 ⊕ x4.

By summing f over all 16 distinct inputs, we get one, i.e., the coefficient of
the monomial x1x2x3x4. In the case of cube testers, we sum over a subset of
the inputs. For example, summing over the four possible values of (x1, x2)
gives

f(0,0, x3, x4)⊕ f(0,1, x3, x4)⊕ f(1,0, x3, x4)⊕ f(1,1, x3, x4) = 1⊕ x3 ⊕ x3x4,

where 1⊕ x3 ⊕ x3x4 is the polynomial that multiplies x1x2 in f :

f(x1, x2, x3, x4) = x1 ⊕ x1x2(1⊕ x3 ⊕ x3x4)⊕ x4.

In general, given a set of indices I ⊊ {1, . . . , n}, any function in Fn can be
represented algebraically in the form

f(x1, . . . , xn) = tI ⋅ p(⋯)⊕ q(x1, . . . , xn),

where tI is the monomial containing all xi for which i ∈ I and p is a polynomial
that has no variable in common with tI . Also, no monomial in the polynomial
q contains tI . In other words, we factored f by the monomial tI . As for the
terminology, p is called the superpoly of I in f . A cube tI is called a maxterm
if and only if its superpoly p has degree 1, i.e., it is linear but not a constant.
The polynomial f is called the master polynomial.

For a given n, a random function is a random element of Fn (∣Fn∣ = 22n).
A distinguisher for a family F ⊊ Fn is a procedure that, given a function
f randomly sampled from F⋆ ∈ {F ,Fn}, efficiently determines which one of
these two families was chosen as F⋆. A family F is pseudorandom if and only
if there exists no efficient distinguisher for it.

To distinguish F ⊊ Fn from Fn, cube testers partition the set of public
variables {x1, . . . , xn} into two complementary subsets:

• Cube Variables (CVs),

• Superpoly Variables (SVs).
5See Definition 8 for the definition of ANF.

49

4. Known RBG tests

Let us reuse the example from above. Given

f(x1, x2, x3, x4) = x1 ⊕ x1x2 ⊕ x1x2x3 ⊕ x1x2x3x4 ⊕ x4.

we considered the cube x1x2 and computed its superpoly 1⊕x3⊕x3x4. Here,
the CVs are {x1, x2} and the SVs are {x3, x4}. Therefore, by setting a value to
x3 and x4, e.g., x3 = 1 and x4 = 0, we can compute 1⊕x3⊕x3x4 = 1⊕1⊕1 ⋅0 = 0
by summing f(x1, x2, x3, x4) for all possible choices of (x1, x2). Note that it
is not required for an SV to actually appear in the superpoly of the cube. For
example, if f(x1, x2, x3, x4) = x1 ⊕ x1x2 ⊕ x1x2x3, then the superpoly for CVs
{x1, x2} is 1⊕ x3, but both x3 and x4 are SVs. For the sake of efficiency, not
all inputs have to necessarily be considered as variables. For example, if f
maps 1024 bits to 256 bits, we may choose 20 CVs and 10 SVs and set a fixed
value to the other inputs.

A family tester for a family of functions F takes as input a function f of
the same domain D and tests if f is close to F , with respect to a bound ϵ on
the distance

δ(f,F) =min
g∈F

∣{x ∈ D, f(x) ≠ g(x)}∣
∣D∣

.

The tester accepts if δ(f,F) = 0, rejects with high probability if f and F are
not ϵ-close and behaves arbitrarily otherwise. Such test captures the notion
of property testing when a property is defined by belonging to a family of
functions P . A property tester is thus a family tester for property P .

Suppose we wish to distinguish a family F ⊊ Fn from Fn, i.e., given a
random f ∈ F∗, to determine whether F∗ is F or Fn. If F is efficiently
testable, we can use a family tester for F on f to distinguish it from a random
function.

4.3.2 Testing with cube testers
In this section, we will finally dive into how cube testers are used to assess the
randomness of a given sequence of bits. The concepts described in the rest of
this section apart from examples are adapted from [14].

Cube testers distinguish a family of functions from random functions by
testing properties of their superpolys for a specific choice of CVs and SVs.
They combine an efficient property tester on the superpoly, which is viewed
either as a polynomial or as a mapping, with a statistical decision rule. As
soon as the superpoly has some “unexpected” property, it is identified as non-
random.

4.3.2.1 Balance test

A random function is expected to contain the same amount of zeros and ones
in its truth table. Superpolys that have a strongly unbalanced truth table
can thus be distinguished from random polynomials by testing whether they

50

4.3. Cube testers

evaluate to one or zero. We can do this either deterministically by evaluating
the superpoly for each possible input or probabilistically over a random subset
of SVs. Let x1, . . . , xC be CVs, xC+1, . . . , xn be SVs and D be some decision
rule. Algorithm 6 describes the deterministic balance test.

Algorithm 6 Deterministic balance test. Adapted from [14].
1: c← 0
2: for all values of (xC+1, . . . , xn) do
3: compute p(xC+1, . . . , xn) = ∑(x1,...,xC) f(x1, . . . , xn)
4: c← c + p(xC+1, . . . , xn)
5: return D(c) ∈ {0,1}

4.3.2.2 Balance test example

• Let
f(x1, x2, x3, x4) = x1 ⊕ x1x2 ⊕ x1x2x3 ⊕ x1x2x3x4 ⊕ x4

be the ANF of a boolean function derived from keystream computations
for various IVs and a particular keystream bit. Let x1, x2 be CVs and
x3, x4 be SVs.

• The superpoly of f for cube x1x2 is p(x3, x4) = 1⊕ x3 ⊕ x3x4.

• We count the number of ones in superpoly evaluations for all possible
values of x3, x4:

p(0,0) = 1⊕ 0⊕ 0 ⋅ 0 = 1,
p(0,1) = 1⊕ 0⊕ 0 ⋅ 1 = 1,
p(1,0) = 1⊕ 1⊕ 1 ⋅ 0 = 0,
p(1,1) = 1⊕ 1⊕ 1 ⋅ 1 = 1,

and obtain c = 3.

• Using some decision rule, e.g., the χ2 goodness of fit test, we conclude
whether the superpoly is balanced.

• We compute the test statistic

χ2 =
(c − 2n

2)
2

2n

2
=
(3 − 24

2)
2

24

2
= 3.125.

• We compare the test statistic with the critical value χ2(1 − α,1) =
χ2(0.99,1) ≈ 6.635. Since χ2 = 3.125 < χ2(0.99,1) ≈ 6.635, the test
passed.

51

4. Known RBG tests

4.3.2.3 Presence of linear variables test

The ANF of a random function contains a given variable in at least one mono-
mial of degree at least 2 with probability close to 1. Therefore, we can test
whether a given superpoly variable appears only linearly in the superpoly. See
Algorithm 7 for a description of this process for variable x1. The test succeeds
when the algorithm returns “non-linear” and fails when it returns “linear”.
It answers correctly with a probability of about 1 − 2−N . If a stream cipher
is shown to have an IV bit linear with respect to a set of CV s in the IV,
independently of the choice of the key, then it directly gives a distinguisher.

Algorithm 7 Presence of linear variables test. Adapted from [14].
1: for i← 1 to N do
2: pick random (x2, . . . , xS)
3: if p(0, x2, . . . , xS) = p(1, x2, . . . , xS) then
4: return non-linear
5: return linear

4.3.2.4 Presence of linear variables test example

• Let
f(x1, x2, x3, x4) = x1 ⊕ x1x2 ⊕ x1x2x3 ⊕ x1x2x3x4 ⊕ x4

be the ANF of a boolean function derived from keystream computations
for various IVs and a particular keystream bit. Let x1, x2 be CVs and
x3, x4 be SVs.

• The superpoly of f for cube x1x2 is p(x3, x4) = 1⊕ x3 ⊕ x3x4.

• Suppose we want to test the SV x4.

• We can see that x4 is contained in monomial x3x4 of degree 2. Therefore,
it is not linear and we would expect the test to pass.

• Since there are only two possible inputs for x3, we perform two iterations
of the test:

p(0,0) = 1⊕ 0⊕ 0 ⋅ 0 = 1,
p(0,1) = 1⊕ 0⊕ 0 ⋅ 1 = 1,
p(1,0) = 1⊕ 1⊕ 1 ⋅ 0 = 0,
p(1,1) = 1⊕ 1⊕ 1 ⋅ 1 = 1.

• In the first iteration, we find that p(0,0) = p(0,1) = 1. Therefore, we
right away conclude that the variable x4 is not linear in the superpoly,
i.e., the test passed.

52

4.3. Cube testers

4.3.2.5 Presence of neutral variables test

Similarly to the previous test, we can test whether an SV is neutral in the
superpoly, i.e., whether it appears in at least one monomial. See Algorithm 8
for a description of this process for variable x1. The test succeeds when the
algorithm returns “non-neutral” and fails when it returns “neutral”. It answers
correctly with a probability of about 1 − 2−N .

Algorithm 8 Presence of neutral variables test. Adapted from [14].
1: for i← 1 to N do
2: pick random (x2, . . . , xS)
3: if p(0, x2, . . . , xS) ≠ p(1, x2, . . . , xS) then
4: return non-neutral
5: return neutral

4.3.2.6 Presence of neutral variables test example

• Let
f(x1, x2, x3, x4) = x1 ⊕ x1x2 ⊕ x1x2x3 ⊕ x1x2x3x4 ⊕ x4

be the ANF of a boolean function derived from keystream computations
for various IVs and a particular keystream bit. Let x1, x2 be CVs and
x3, x4 be SVs.

• The superpoly of f for cube x1x2 is p(x3, x4) = 1⊕ x3 ⊕ x3x4.

• Suppose we want to test the SV x4.

• We can see that x4 is contained in monomial x3x4. Therefore, it is not
neutral and we would expect the test to pass.

• Since there are only two possible inputs for x3, we perform two iterations
of the test:

p(0,0) = 1⊕ 0⊕ 0 ⋅ 0 = 1,
p(0,1) = 1⊕ 0⊕ 0 ⋅ 1 = 1,
p(1,0) = 1⊕ 1⊕ 1 ⋅ 0 = 0,
p(1,1) = 1⊕ 1⊕ 1 ⋅ 1 = 1.

• In the first iteration, we find that p(0,0) = p(0,1) = 1, so we continue
the test.

• In the second iteration, we find that p(1,0) = 0 ≠ 1 = p(1,1). Therefore,
we conclude that the variable x4 is not neutral in the superpoly, i.e., the
test passed.

53

Chapter 5
Results

In this chapter, we will discuss the results we obtained by applying previously
described tests to the Dumbo instance of the Elephant cipher.

5.1 NIST STS
Let us start off with the NIST STS. Using the crypto.randomBytes function
in Node.js version 19.0.0, we generated three random keys and nonces. With
these parameters, we then generated corresponding keystreams ks1, ks2 and
ks3 of 10,485,760 bits (10MB) each using Algorithm 3. These keystreams
were then fed to the NIST STS 6 version 3.2.6 7 to assess their randomness
by utilizing the tests we described in Section 4.1. Each pair of parameters
(key, nonce) was divided into ten iterations of 1,048,576 bits and the level of
significance α was left at the default value of 0.01. The tests were run using
the following command.

sts -t 1,2,3,4,6,7,10,12,14,15 -F a -S 1048576
-i 10 /path/to/data.bin

The results were mostly positive. Keystreams ks1 and ks2 passed all of the
tests, while ks3 failed the Runs test and one of the eight Random excursions
tests. Complete results are shown in Appendix A. Upon further inspection,
we discovered that two out of ten iterations of ks3 failed the Runs test with
p-values 0.001105 and 0.004236. The random excursions tests performed four
iterations each 8. One of these tests failed in one iteration with state x = 3
as it resulted in a p-value of 0.00929. Detailed results for ks3 are shown in
Table 5.1. Failed tests are highlighted with an asterisk next to their name.

6https://github.com/arcetri/sts
7The repository was cloned at commit 8359589e2446f84a4f803ec4753a4b6b5b460e4c.
8This is because six of the iterations were discarded due to insufficient amount of cycles

(< 500).

55

https://github.com/arcetri/sts

5. Results

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P Prop. Test
2 3 2 1 0 0 0 2 0 0 0.21 10/10 Freq.
1 1 0 1 1 1 1 1 2 1 0.99 10/10 BF
2 1 2 2 2 0 0 0 1 0 0.53 10/10 CS
2 0 4 1 1 1 0 0 0 1 0.12 10/10 CS
2 0 1 1 0 0 2 2 0 2 0.53 8/10 *Runs
1 0 1 2 0 0 1 3 0 2 0.35 10/10 Rank
0 2 2 1 1 1 0 1 1 1 0.91 10/10 DFT
1 0 0 3 1 1 1 2 1 0 0.53 10/10 Univ.
0 0 0 0 0 0 2 1 0 1 4/4 RE
0 0 0 1 1 0 0 1 0 1 4/4 RE
1 2 0 0 0 0 0 0 1 0 4/4 RE
0 0 0 1 1 1 1 0 0 0 4/4 RE
0 1 0 1 0 0 0 1 0 1 4/4 RE
0 1 1 0 1 1 0 0 0 0 4/4 RE
1 1 0 0 0 0 0 2 0 0 3/4 *RE
0 1 0 1 0 0 1 0 1 0 4/4 RE
1 2 0 0 2 2 0 2 0 1 0.53 9/10 Ser.
1 2 1 0 1 1 1 1 0 2 0.91 10/10 Ser.
1 1 2 0 1 1 1 1 1 1 0.99 10/10 LC

Table 5.1: Results of tests from the NIST STS. Columns C1, . . . ,C10 indicate
how many p-values fell into intervals [0,0.1), [0.1,0.2), . . . , [0.9,1), P repre-
sents the resulting p-value of uniformity testing of p-values computed for the
given test and Prop. says what proportion of sequences (iterations) passed
the given test.

56

5.2. d-monomial test

The failed Random excursions test iteration does not immediately raise a
red flag because its p-value is very close to the level of significance α = 0.01.
On the other hand, failed iterations of the Runs test may be an issue since they
resulted in very low p-values. This could indicate that keystreams produced
by Dumbo may be biased such that some runs appear more often than others.
However, since this only appeared in one of the three pairs of (key, nonce)
input parameters, we do not consider this to be a major issue. Perhaps this
bias could be linked to some subset of the input resulting in some class of
“weak” keys or nonces, though this is outside the scope of this thesis.

5.2 d-monomial test
For the d-monomial test, we used the same three keys we generated earlier for
tests from NIST STS. As for the nonce, we wish to find a subset of input bits
that is likely to receive less mixing during the nonce setup process than other
bits [11]. This is likely to be either at the beginning or the end of the nonce
bit-vector [11]. Therefore, we used the following methods of nonce iteration.

begin0 Iterate the first n nonce bits from 0 to 2n − 1. Set the remaining bits
to 0.

begin1 Iterate the first n nonce bits from 0 to 2n − 1. Set the remaining bits
to 1.

end0 Iterate the last n nonce bits from 0 to 2n − 1. Set the remaining bits to
0.

end1 Iterate the last n nonce bits from 0 to 2n − 1. Set the remaining bits to
1.

We collected the first 32 bytes of the keystream using Algorithm 3 for each
of the three keys and each of the four nonce iteration methods with n = 24.
We then built the corresponding truth tables mapping the n bits of nonce that
were being iterated to the value of a particular keystream bit. We did this
for the first 32 bits of the keystream. After that, we computed the ANF for
each one of the truth tables and evaluated the d-monomial test described in
Algorithm 5 for d ∈ {0, . . . ,24}. The level of significance α was set to 0.01.

All in all, a total of 3 ⋅ 4 ⋅ 32 ⋅ 25 = 9600 d-monomial tests were conducted.
The vast majority of the tests passed — only six tests failed and none of them
shared the keystream bit position or the d parameter. Also, p-values of the
failed tests were still relatively high, the lowest one being 0.0023. Let us label
the used keys K1, K2 and K3. The results of the failed d-monomial tests can
be seen in Table 5.2.

Since only very few cases of the d-monomial test failed and their p-values
were still relatively high, we do not think there is any significant bias in the

57

5. Results

Key Iteration method Bit position d p-value
K1 end1 20 6 0.0043
K2 begin0 11 22 0.0083
K2 end0 3 3 0.0023
K2 end0 6 18 0.0073
K3 end0 32 11 0.0071
K3 end1 5 7 0.0064

Table 5.2: Results of the failed d-monomial tests

0 0.2 0.4 0.6 0.8 1

101

102

103

p-value

nu
m
be

r
of

te
st

ca
se
s

Figure 5.1: Histogram of p-values from all d-monomial test cases with interval
size 0.01

keystream produced by Dumbo based on these results. Let us also examine the
p-values of the remaining tests that passed. The histogram of these p-values
is depicted in Figure 5.1. We can see a slight trend of increasing number of
test cases with increasing p-value with noticably lower amount of test cases
having p-value less than 0.2. There are a few intervals with significantly more
test cases than others. For example, the [0.47,0.48) interval contains 855 test
cases, though this does not raise any red flags.

58

5.3. Cube testers

5.3 Cube testers
Once again, we used the same three keys from previous tests. We also chose
the same four nonce iteration methods used in the d-monomial test to build
the truth tables.

begin0 Iterate the first n nonce bits from 0 to 2n − 1. Set the remaining bits
to 0.

begin1 Iterate the first n nonce bits from 0 to 2n − 1. Set the remaining bits
to 1.

end0 Iterate the last n nonce bits from 0 to 2n − 1. Set the remaining bits to
0.

end1 Iterate the last n nonce bits from 0 to 2n − 1. Set the remaining bits to
1.

Due to a noticeable increase in computational complexity, we only iterated
through the first n = 8 bits of the nonce. Once we collected the truth tables,
we computed the ANF for each one of them. As for the choice of CVs and
SVs, we chose to only use the nonce. We iterated through all possible choices
of CVs (bits) in n = 8 bits of the nonce and labeled the remaining bits (within
the n = 8 bits) that were not chosen as SVs. The cubes (i.e., choices of CVs
in the n = 8 bits of nonce that were being iterated) were represented as n-
character strings {1,−}n (e.g., 11-1--1-). The same representation was used
for SVs, where the characters 1 and - denoted whether the given variable was
chosen as an SV or not respectively. For every iteration of CVs and SVs, we
computed the corresponding superpoly and applied property testers described
in Section 4.3.

We performed the balance, presence of linear variables and presence of
neutral variables tests for each combination of key, nonce iteration method,
keystream bit position (from 1 to 32) and cube. This resulted in 884,736
unique tests, which were then merged by cube and keystream bit position as
an attempt to uncover “well-performing” cubes and biased keystream bits.

5.3.1 Balance test
We performed the balance test as described in Algorithm 6 by evaluating the
superpoly for all possible choices of CVs in the nonce and counting how many
times it evaluated to zero or one. We then arrived at a conclusion using the
χ2 goodness of fit test by computing the test statistic

χ2 =
(c − 2n

2)
2

2n

2
,

59

5. Results

where c is the amount of times the ANF evaluated to one and n is the number
of bits in the nonce that were being iterated, i.e., there were 2n possible CV
inputs. In the case of a random function, half of those inputs would evaluate
to zero and the other half would evaluate to one. We then computed the p-
value with one degree of freedom. The test passed if the p-value was greater
or equal to the level of significance α = 0.01 and failed otherwise.

Overall, 56,169 out of the 98,304 balance tests passed (57.14% pass rate).
The pass rates for different keystream bit positions and cubes are shown in
Table 5.3 and Table 5.4 respectively. Pass rates grouped by keystream bit
position ranged from 54.75% to 60.29%, while pass rates grouped by cube
ranged from 0% to 100%. Note that pass rates of 0% and 100% were achieved
using cubes 11111111 and -------- respectively, though there were also cubes
with one CV that achieved a pass rate of over 99% and cubes with 2 CVs that
achieved a pass rate of almost 95%.

Since a random function is expected to contain as many zeros as ones in
its truth table [14], we were able to find cubes for which the superpoly is
distinguishable from a random polynomial as their pass rates are very low.
This is a notable weakness of Dumbo.

5.3.2 Presence of linear variables test

We performed the presence of linear variables test as described in Algorithm 7
for all SVs. We randomly set the rest of the SVs to zero or one aside from
the currently selected SV. We then checked whether the superpoly evalua-
tion changed when the selected variable was flipped from zero to one. If
the evaluation changed, we continued, otherwise we labeled the SV as non-
linear. We repeated this process up to N = 10 times for each SV to achieve
1 − 2−10 ≈ 99.9 % confidence in case the variable was labeled linear. The test
passed if the variable was labeled non-linear within ten iterations and failed
otherwise.

We did this for a total of 393,216 tests, 378,716 of which (96.31%) passed.
The pass rates for different keystream bit positions and cubes are shown in
Table 5.5 and Table 5.6 respectively. Pass rates grouped by keystream bit
position ranged from 94.87% to 97.67%, while pass rates grouped by cube
ranged from 44.79% to 99.96%.

For this test, it is also interesting to look at results for combinations of
cubes and keystream bit positions (12 tests in total for each combination). If
we were to show that a nonce bit is linear with respect to a set of CVs in
the nonce independently of the choice of the key, the test would directly give
us a distinguisher [14]. However, we were not able to showcase this since the
combination of CVs and keystream bit position with the lowest pass rate still
had a pass rate of 8.33% across all keys and nonce iteration methods. The
top 25 combinations with the lowest pass rates are shown in Table 5.7.

60

5.3. Cube testers

Keystream bit position Pass rate
12 54.75%
31 54.92%
11 55.57%
7 55.76%
4 55.99%
28 55.99%
22 56.02%
32 56.05%
5 56.18%
26 56.38%
14 56.54%
17 56.61%
20 56.61%
15 56.67%
8 56.74%
2 56.77%
1 56.84%
19 57.03%
29 57.06%
16 57.26%
9 57.29%
13 57.49%
18 57.58%
21 57.81%
6 58.17%

Table 5.3: Balance test pass rates of the top 25 out of 32 analyzed keystream
bits with the lowest pass rates, sorted by pass rate

61

5. Results

Cube Pass rate
11111111 0%
-1--1111 20.05%
--11-111 21.61%
11--1-11 21.88%
-1-111-1 22.92%
1-11-1-1 22.92%
1-1111-- 22.92%
1111---1 22.92%
11-11--1 23.18%
1-1-111- 23.44%
11--11-1 23.44%
11-1-1-1 23.44%
111--1-1 23.44%
--1-1111 23.70%
1--111-1 23.70%
111-11-- 23.70%
--111-11 23.96%
-111--11 23.96%
1-1-11-1 23.96%
-1-11-11 24.22%
1-1--111 24.22%
1-11--11 24.22%
11---111 24.22%
11--111- 24.22%
111-1--1 24.22%

Table 5.4: Balance test pass rates of the top 25 out of 256 cubes with the
lowest pass rates, sorted by pass rate

62

5.3. Cube testers

Keystream bit position Pass rate
10 94.87%
30 95.00%
3 95.52%
23 95.52%
8 95.60%
2 95.67%
18 95.73%
25 95.74%
24 96.06%
19 96.07%
6 96.18%
9 96.22%
27 96.30%
20 96.31%
15 96.33%
1 96.35%
29 96.37%
31 96.41%
16 96.49%
17 96.49%
21 96.50%
14 96.53%
4 96.65%
11 96.69%
32 96.80%

Table 5.5: Presence of linear variables test pass rates of the top 25 out of 32
analyzed keystream bits with the lowest pass rates, sorted by pass rate

63

5. Results

Cube Pass rate
-1111111 44.79%
1-111111 44.79%
11-11111 44.79%
111-1111 44.79%
1111-111 44.79%
11111-11 44.79%
111111-1 44.79%
1111111- 44.79%
1--11111 75.13%
11-11-11 75.65%
1-111-11 75.78%
11--1111 76.43%
-1-11111 76.69%
1-1-1111 76.69%
--111111 76.82%
11-1-111 76.82%
1-11-111 76.95%
111-1-11 77.34%
-1111-11 77.47%
1111--11 77.47%
11-1111- 77.60%
1-11111- 77.73%
11-111-1 77.99%
-11-1111 78.13%
1-1111-1 78.13%

Table 5.6: Presence of linear variables test pass rates of the top 25 out of 256
cubes with the lowest pass rates, sorted by pass rate

64

5.3. Cube testers

Cube Keystream bit position Pass rate
-1111111 5 8.33%
1-111111 5 8.33%
11-11111 5 8.33%
111-1111 5 8.33%
1111-111 5 8.33%
11111-11 5 8.33%
111111-1 5 8.33%
1111111- 5 8.33%
-1111111 7 25%
-1111111 12 25%
-1111111 13 25%
-1111111 26 25%
1--11111 10 25%
1-111111 7 25%
1-111111 12 25%
1-111111 13 25%
1-111111 26 25%
11-11111 7 25%
11-11111 12 25%
11-11111 13 25%
11-11111 26 25%
111-1111 7 25%
111-1111 12 25%
111-1111 13 25%
111-1111 26 25 %

Table 5.7: Presence of linear variables test pass rates of the top 25 cube and
keystream bit position combinations with the lowest pass rates, sorted by pass
rate

65

5. Results

5.3.3 Presence of neutral variables test
Similarly, we performed the presence of neutral variables test as described in
Algorithm 8 for all SVs. We once again randomly set the rest of the SVs to
zero or one aside from the currently selected SV and then checked whether
the superpoly evaluation changed when the selected variable was flipped from
zero to one. If the evaluation did not change, we continued, otherwise we
labeled the SV as non-neutral. We repeated this process up to N = 10 times
for each SV to achieve 1 − 2−10 ≈ 99.9 % confidence in case the variable was
labeled neutral. The test passed if the variable was labeled non-neutral within
ten iterations and failed otherwise.

We did this for a total of 393,216 tests, 378,732 of which (96.32%) passed.
The pass rates for different keystream bit positions and cubes are shown in
Table 5.8 and Table 5.9 respectively. Pass rates grouped by keystream bit
position ranged from 93.82% to 98.31%, while pass rates grouped by cube
ranged from 55.21% to 99.96%.

We also looked at results for combinations of cubes and keystream bit po-
sitions (12 tests in total for each combination) like we did in the previous test.
We were once again unable to show that a particular nonce bit was neutral
with respect to a set of CVs independently of the choice of the key or nonce
iteration method. The combination of cube and keystream bit position with
the lowest pass rate still passed 8.33% of the tests. The top 25 combinations
with the lowest pass rates are shown in Table 5.10.

66

5.3. Cube testers

Keystream bit position Pass rate
30 93.82%
8 94.63%
23 94.78%
10 95.38%
2 95.52%
19 95.52%
18 95.64%
9 95.74%
3 95.98%
29 96.07%
25 96.15%
7 96.17%
31 96.19%
1 96.21%
15 96.23%
20 96.24%
14 96.34%
4 96.42%
24 96.44%
32 96.48%
11 96.69%
6 96.73%
28 96.77%
17 96.79%
16 96.79%

Table 5.8: Presence of neutral variables test pass rates of the top 25 out of 32
analyzed keystream bits with the lowest pass rates, sorted by pass rate

67

5. Results

Cube Pass rate
-1111111 55.21%
1-111111 55.21%
11-11111 55.21%
111-1111 55.21%
1111-111 55.21%
11111-11 55.21%
111111-1 55.21%
1111111- 55.21%
111111-- 74.61%
-11111-1 75.26%
1111-1-1 75.39%
111-11-1 75.65%
-111111- 75.78%
1111-11- 75.78%
111-111- 76.04%
11111--1 76.17%
-111-111 76.69%
-11-1111 76.82%
111--111 76.82%
11111-1- 76.82%
1-1111-1 76.95%
11-111-1 77.21%
1-11111- 77.47%
11-1111- 77.47%
-1111-11 77.60%

Table 5.9: Presence of neutral variables test pass rates of the top 25 out of
256 cubes with the lowest pass rates, sorted by pass rate

68

5.3. Cube testers

Cube Keystream bit position Pass rate
-1111111 10 8.33%
1-111111 10 8.33%
11-11111 10 8.33%
111-1111 10 8.33%
1111-111 10 8.33%
11111-11 10 8.33%
111111-1 10 8.33%
1111111- 10 8.33%
-1111111 23 25%
1-111111 23 25%
11-11111 23 25%
111-1111 23 25%
1111-111 23 25%
11111-11 23 25%
111111-1 23 25%
1111111- 23 25%
-1111111 18 33.33%
-1111111 25 33.33%
-1111111 30 33.33%
1-111111 18 33.33%
1-111111 25 33.33%
1-111111 30 33.33%
11-11111 18 33.33%
11-11111 25 33.33%
11-11111 30 33.33%

Table 5.10: Presence of neutral variables test pass rates of the top 25 cube
and keystream bit position combinations with the lowest pass rates, sorted by
pass rate

69

Conclusion

This thesis focused on testing the randomness of the Dumbo instance of the
Elephant cipher. In the beginning, we explained the ideas behind stream
ciphers, presented the Elephant cipher, specifically the Dumbo instance, and
discussed the motivation behind the Lightweight Cryptography project, which
the Elephant cipher competed in.

We then delved into random bit generators and why there is a need to
test these generators. We also touched on why we need randomness in ciphers
and the issues that may arise when there is lack of it. We followed up with
basics of hypothesis testing, which we concluded with an introduction of the
χ2 goodness of fit test.

Next, we presented several categories of tests, which we later applied to
Dumbo, namely the Statistical Test Suite from NIST, variations of monomial
tests and cube testers. We chose to use ten tests from NIST’s suite, the d-
monomial test inspired by Filiol’s Möbius tests and three superpoly property
testers from the family of cube testers. For all of those tests, we provided the
necessary mathematical background and algorithms that describe the tests.

After that, we presented the results of our tests. Dumbo passed the vast
majority of tests from NIST’s STS, failing only two out of ten iterations of the
runs test and one iteration of the random excursions test. We did not consider
this a major issue because the resulting p-values were still relatively high (in
the case of the random excursions test) or because the test only failed for one
out of three tested keystreams (in the case of the runs test). We also conducted
9,600 d-monomial tests, out of which only six failed and did not suggest bias
in any particular keystream bit. We provided the histogram of p-values from
all of the d-monomial tests and found nothing suspicious. Finally, we used
property testers to test the superpoly for many choices of cube and superpoly
variables. We conducted balance tests, presence of linear variables tests and
presence of neutral variables tests. We found that some keystream bits only
passed almost every other balance test and also that many cubes resulted in
a pass rate of around 20% in this test. In the author’s opinion, this was the

71

Conclusion

most significant finding of this work. As for the linear and neutral variables
presence tests, we were unable to show that a distinguisher independent of
the used key exists, although the pass rates of those tests were very low for
some combinations of (cube, keystream bit).

72

Bibliography

1. KLÍMA, Vlastimil. Základy moderní kryptologie – Symetrická krypto-
grafie II. 2005. Version 1.3.

2. VAN OORSCHOT, Paul C; MENEZES, Alfred J; VANSTONE, Scott A.
Handbook of applied cryptography. CRC press, 1996.

3. CUSICK, Thomas W.; STANICA, Pantelimon. Chapter 2 - Fourier Anal-
ysis of Boolean Functions. In: CUSICK, Thomas W.; STANICA, Pante-
limon (eds.). Cryptographic Boolean Functions and Applications (Second
Edition). Second Edition. Academic Press, 2017, pp. 7–29. isbn 978-0-
12-811129-1. Available from doi: https://doi.org/10.1016/B978-0-1
2-811129-1.00002-X.

4. MENNINK, B. et al. Elephant v2 Specification [online]. 2021. [visited on
2023-02-21]. Available from: https://csrc.nist.gov/CSRC/media/Pro
jects/lightweight-cryptography/documents/finalist-round/upd
ated-spec-doc/elephant-spec-final.pdf.

5. BOGDANOV, A.; KNEŽEVIĆ, M.; LEANDER, G.; TOZ, D.; VARICI,
K.; VERBAUWHEDE, I. spongent: A Lightweight Hash Function. In:
PRENEEL, B.; TAKAGI, T. (eds.). Cryptographic Hardware and Em-
bedded Systems – CHES 2011. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2011, pp. 312–325. isbn 978-3-642-23951-9.

6. National Institute of Standards and Technology. Lightweight Cryptog-
raphy Overview [online]. [N.d.]. [visited on 2023-02-21]. Available from:
https://csrc.nist.gov/projects/lightweight-cryptography.

7. National Institute of Standards and Technology. Lightweight Cryptog-
raphy Finalists [online]. [N.d.]. [visited on 2023-02-21]. Available from:
https://csrc.nist.gov/Projects/lightweight-cryptography/fin
alists.

73

https://doi.org/https://doi.org/10.1016/B978-0-12-811129-1.00002-X
https://doi.org/https://doi.org/10.1016/B978-0-12-811129-1.00002-X
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
https://csrc.nist.gov/Projects/lightweight-cryptography/finalists

Bibliography

8. MANTIN, Itsik. Predicting and distinguishing attacks on RC4 keystream
generator. In: Advances in Cryptology–EUROCRYPT 2005: 24th Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Aarhus, Denmark, May 22-26, 2005. Proceedings
24. Springer, 2005, pp. 491–506.

9. JUREČKOVÁ, Olha. Testy generátorů pseudonáhodných čísel. 2015.
10. BASSHAM III, Lawrence E; RUKHIN, Andrew L; SOTO, Juan; NECH-

VATAL, James R; SMID, Miles E; BARKER, Elaine B; LEIGH, Stefan
D; LEVENSON, Mark; VANGEL, Mark; BANKS, David L, et al. Sp
800-22 rev. 1a. a statistical test suite for random and pseudorandom
number generators for cryptographic applications. National Institute of
Standards & Technology, 2010.

11. SAARINEN, Markku-Juhani O. Chosen-IV statistical attacks on eS-
TREAM stream ciphers. Proc. Stream Ciphers Revisited SASC. 2006.

12. FILIOL, Eric. A new statistical testing for symmetric ciphers and hash
functions. In: Information and Communications Security: 4th Interna-
tional Conference, ICICS 2002 Singapore, December 9–12, 2002 Proceed-
ings 4. Springer, 2002, pp. 342–353.

13. ENGLUND, H.; JOHANSSON, T.; SÖNMEZ TURAN, M. A frame-
work for chosen IV statistical analysis of stream ciphers. In: Progress in
Cryptology–INDOCRYPT 2007: 8th International Conference on Cryp-
tology in India, Chennai, India, December 9-13, 2007. Proceedings 8.
Springer, 2007, pp. 268–281.

14. AUMASSON, Jean-Philippe; DINUR, Itai; MEIER, Willi; SHAMIR,
Adi. Cube testers and key recovery attacks on reduced-round MD6 and
Trivium. In: Fast Software Encryption: 16th International Workshop,
FSE 2009 Leuven, Belgium, February 22-25, 2009 Revised Selected Pa-
pers. Springer, 2009, pp. 1–22.

74

Appendix A
NIST STS results

A.1 ks1

A total of 19 tests (some of the 15 tests actually consist
of multiple sub-tests) were conducted to evaluate the
randomness of 10 bitstreams of 1048576 bits from:

data/ks1.bin

- -

The numerous empirical results of these tests were then
interpreted with an examination of the proportion of
sequences that pass a statistical test (proportion analysis)
and the distribution of p-values to check for uniformity
(uniformity analysis). The results were the following:

19/19 tests passed successfully both the analyses.
0/19 tests did not pass successfully both the analyses.

- -

Here are the results of the single tests:

- The "Frequency" test passed both the analyses.

- The "Block Frequency" test passed both the analyses.

- The "Cumulative Sums" (forward) test passed both the
analyses.

75

A. NIST STS results

The "Cumulative Sums" (backward) test passed both the
analyses.

- The "Runs" test passed both the analyses.

- The "Binary Matrix Rank" test passed both the analyses.

- The "Discrete Fourier Transform" test passed both the
analyses.

- The "Maurer's Universal Statistical" test passed both the
analyses.

- 8/8 of the "Random Excursions" tests passed both the
analyses.

- The "Serial" (first) test passed both the analyses.
The "Serial" (second) test passed both the analyses.

- The "Linear Complexity" test passed both the analyses.

- -

The missing tests (if any) were whether disabled manually by
the user or disabled at run time due to input size
requirements not satisfied by this run.

76

A.2. ks2

A.2 ks2

A total of 19 tests (some of the 15 tests actually consist
of multiple sub-tests) were conducted to evaluate the
randomness of 10 bitstreams of 1048576 bits from:

data/ks2.bin

- -

The numerous empirical results of these tests were then
interpreted with an examination of the proportion of
sequences that pass a statistical test (proportion analysis)
and the distribution of p-values to check for uniformity
(uniformity analysis). The results were the following:

19/19 tests passed successfully both the analyses.
0/19 tests did not pass successfully both the analyses.

- -

Here are the results of the single tests:

- The "Frequency" test passed both the analyses.

- The "Block Frequency" test passed both the analyses.

- The "Cumulative Sums" (forward) test passed both the
analyses.
The "Cumulative Sums" (backward) test passed both the
analyses.

- The "Runs" test passed both the analyses.

- The "Binary Matrix Rank" test passed both the analyses.

- The "Discrete Fourier Transform" test passed both the
analyses.

- The "Maurer's Universal Statistical" test passed both the
analyses.

- 8/8 of the "Random Excursions" tests passed both the
analyses.

77

A. NIST STS results

- The "Serial" (first) test passed both the analyses.
The "Serial" (second) test passed both the analyses.

- The "Linear Complexity" test passed both the analyses.

- -

The missing tests (if any) were whether disabled manually by
the user or disabled at run time due to input size
requirements not satisfied by this run.

78

A.3. ks3

A.3 ks3

A total of 19 tests (some of the 15 tests actually consist
of multiple sub-tests) were conducted to evaluate the
randomness of 10 bitstreams of 1048576 bits from:

data/ks3.bin

- -

The numerous empirical results of these tests were then
interpreted with an examination of the proportion of
sequences that pass a statistical test (proportion analysis)
and the distribution of p-values to check for uniformity
(uniformity analysis). The results were the following:

17/19 tests passed successfully both the analyses.
2/19 tests did not pass successfully both the analyses.

- -

Here are the results of the single tests:

- The "Frequency" test passed both the analyses.

- The "Block Frequency" test passed both the analyses.

- The "Cumulative Sums" (forward) test passed both the
analyses.
The "Cumulative Sums" (backward) test passed both the
analyses.

- The "Runs" test FAILED the proportion analysis.

- The "Binary Matrix Rank" test passed both the analyses.

- The "Discrete Fourier Transform" test passed both the
analyses.

- The "Maurer's Universal Statistical" test passed both the
analyses.

- 7/8 of the "Random Excursions" tests passed both the
analyses.

79

A. NIST STS results

1/8 of the "Random Excursions" tests FAILED the
proportion analysis.

- The "Serial" (first) test passed both the analyses.
The "Serial" (second) test passed both the analyses.

- The "Linear Complexity" test passed both the analyses.

- -

The missing tests (if any) were whether disabled manually by
the user or disabled at run time due to input size
requirements not satisfied by this run.

80

Appendix B
Acronyms

ANF Algebraic Normal Form. 45, 46, 48, 49, 52, 57, 59, 60

CV Cube Variable. 49–53, 59, 60, 66

DFT Discrete Fourier Transform. 29, 30

IoT Internet of Things. 1, 9

IV Initialization Vector. 4, 5, 46, 47, 51–53

LFSR Linear Feedback Shift Register. 5, 6, 8–10, 34

LWC Lightweight Cryptography. 1, 3, 10

NIST National Institute of Standards and Technology. 1, 2, 9, 10, 21, 46, 55

PRBG Pseudorandom Bit Generator. 13, 14

RBG Random Bit Generator. 2, 13, 14, 20

SNCDF Standard Normal Cumulative Distribution Function. 22

STS Statistical Test Suite. 2, 21, 46, 55

SV Superpoly Variable. 49–53, 59, 60, 66

TRBG True Random Bit Generator. 14

81

Appendix C
Contents of attached archive

implementation
data......................................directory with testing data
elephant160v2 directory with Elephant160v2 implementation
scripts..........directory with RBG tests, utilities and other scripts
sts........directory with NIST Statistical Test Suite implementation

text
thesis.pdf.......................compiled text of the thesis in PDF

thesisdirectory with LATEX sources of the thesis
README.md..description of contents

83

	Introduction
	Elephant cipher
	Preliminaries
	Notation
	Stream ciphers
	Linear feedback shift register
	Spongent permutation

	Lightweight Cryptography project
	Elephant cipher
	Keystream extraction

	Testing of random bit generators
	Random bit generators
	Motivation
	Randomness in ciphers
	Issues with lack of randomness

	Basics of hypothesis testing
	Preliminaries
	2 goodness of fit test

	Known RBG tests
	NIST STS
	Notation
	Frequency (Monobit) test
	Test purpose
	Test description
	Decision rule
	Input size recommendation
	Example

	Frequency test within a block
	Test purpose
	Test description
	Decision rule
	Input size recommendation
	Example

	Runs test
	Test purpose
	Test description
	Decision rule
	Input size recommendation
	Example

	Binary matrix rank test
	Test purpose
	Test description
	Decision rule
	Input size recommendation
	Example

	Discrete Fourier transform (Spectral) test
	Test purpose
	Test description
	Decision rule
	Input size recommendation
	Example

	Maurer's ``universal statistical'' test
	Test purpose
	Test description
	Decision rule
	Input size recommendation
	Example

	Linear complexity test
	Test purpose
	Test description
	Decision rule
	Input size recommendation
	Example

	Serial test
	Test purpose
	Test description
	Decision rule
	Input size recommendation
	Example

	Cumulative sums (Cumsum) test
	Test purpose
	Test description
	Decision rule
	Input size recommendation
	Example

	Random excursions test
	Test purpose
	Test description
	Decision rule
	Input size recommendation
	Example

	Monomial tests
	Preliminaries
	d-monomial test
	Example

	Cube testers
	Preliminaries
	Testing with cube testers
	Balance test
	Balance test example
	Presence of linear variables test
	Presence of linear variables test example
	Presence of neutral variables test
	Presence of neutral variables test example

	Results
	NIST STS
	d-monomial test
	Cube testers
	Balance test
	Presence of linear variables test
	Presence of neutral variables test

	Conclusion
	Bibliography
	NIST STS results
	ks1
	ks2
	ks3

	Acronyms
	Contents of attached archive

