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interaction tasks.

3. Apply the selected representative tools and (optionally) the proposed new model to 
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Abstrakt

Cévńı mozková př́ıhoda paťŕı celosvětově mezi hlavńı př́ıčiny úmrt́ı a

invalidity, a mezi ostatńımi zdravotńımi poruchami představuje jednu

z nejtěžš́ıch socioekonomických zátěž́ı. V této práci aplikujeme nejmo-

derněǰśı metody strojového učeńı s ćılem návrhu nové generace trom-

bolytika stafylokinázy. Naše př́ıpadová studie zdůrazňuje silné a slabé

stránky existuj́ıćıch metod pro návrh interakćı mezi proteiny, které dále

adresujeme vývojem nového modelu samoř́ızeného geometrického hlu-

bokého učeńı PPIFORMER. Předběžná analýza našeho př́ıstupu uka-

zuje na jeho vysoký potenciál překonat omezeńı současných metod pro

návrh protein–protein interakćı a stát se tak nástrojem nové generace

pro návrh trombolytik a jiných léků.

Kĺıčová slova protein–protein interakce, proteinové inženýrstv́ı, stafy-

lokináza, samoř́ızené učeńı, geometrické hluboké učeńı
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Abstract

Stroke is a leading cause of death and disability worldwide, resulting in

one of the heaviest socioeconomic burdens of any disease kind. In this

thesis, we apply state-of-the-art machine-learning methods with the

goal of designing a next-generation thrombolytic staphylokinase. Our

case study highlights the strengths and weaknesses of existing methods

for the design of protein–protein interactions, which we further address

by developing a novel self-supervised geometric deep-learning model

PPIFORMER. The preliminary analysis of our approach demonstrates its

high potential to overcome the limitations of current methods for de-

signing protein–protein interactions and thus become a next-generation

tool for the design of thrombolytics and other medicines.

Keywords protein–protein interactions, protein design, staphylokinase,

self-supervised learning, geometric deep learning
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CHAPTER 1
Introduction

Stroke is a leading cause of death and disability worldwide, as well as one of

the most frequent causes of dementia and epilepsy. The rapidly growing bur-

den of stroke (102% increase in prevalent strokes and 143% increase in disability

from 1990 to 2019) necessitates urgent measures. However, the high cost of well-

established thrombolytics limits their widespread application, leading to the bulk

of the global burden (86% of deaths and 89% of disability) residing in lower-

income and lower-middle-income countries (Feigin et al., 2022). The staphylok-

inase (SAK) protein offers hope for overcoming the hard burden of stroke. This

therapeutic protein has the potential to be a widely affordable, as well as safer,

alternative to the best existing thrombolytics (Nikitin et al., 2022).

The primary bottleneck limiting the widespread clinical use of staphylokinase

is its weak tendency to interact with plasmin, a protein present in blood. Together,

these two proteins effectively catalyze the cleavage of blood clots and restore blood

circulation. Therefore, in order to make the staphylokinase mechanism efficient,

one needs to redesign a part of the protein for higher affinity towards plasmin.

This can be achieved by introducing several favorable mutations, accurately se-

lected from billions of possible and prevalently-disruptive ones. The complex

combinatorial nature of protein design substantially exceeds human capabilities

and motivates the application of machine learning.

In our work, we apply the best available machine-learning models to propose a

set of favorable staphylokinase mutations. At the time of writing, the selected vari-

ants are being experimentally validated at Loschmidt Laboratories (Masaryk Uni-
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1. INTRODUCTION

versity, Brno). From a broader perspective, our case study reveals that although

reliable machine-learning models exist for general-purpose protein design, there

is a significant gap in models developed specifically for the task of protein–protein

interaction design. This gap is critical, as protein–protein interactions are involved

in nearly all cellular processes (Alberts et al., 2015). We reason that the primary

cause of the unreliability of the existing methods is their dependence on small

annotated data. Consequently, we develop a self-supervised training scheme and

a geometric deep learning model to train on a thoroughly pre-processed dataset

of potentially all known structures of protein–protein interactions. Our prelimi-

nary analysis of the model demonstrates the concept of the proposed approach. In

summary, the main contributions of this thesis are the following:

1. We employ the most-advanced machine-learning models available to select

a limited number of promising staphylokinase mutations for experimental

validation at Loschmidt Laboratories. To achieve the robust selection, we

develop a consensus algorithm that accounts for optimizing multiple pro-

tein properties while utilizing the collective knowledge of diverse predictive

models.

2. We analyze and prepare existing protein–protein interaction datasets, reveal-

ing the severe limitations of their conventional usage. To perform the large-

scale analysis, we develop a fast algorithm for comparing protein–protein

interfaces.

3. We develop PPIFORMER, a self-supervised geometric deep-learning model

that overcomes the data scarcity limitation of existing machine-learning mod-

els for the design of protein–protein interactions. Preliminary analysis of our

approach indicates its strong potential.

Structure and notation

In Chapter 2 of the thesis, we cover the necessary biochemistry and machine learn-

ing background. In Chapter 3, we discuss the state of the art in machine learning

relevant to the design of protein–protein interactions. Chapter 4 is dedicated to

our case study of staphylokinase design. We describe our application of existing

machine-learning methods to redesign the staphylokinase protein for higher affin-

ity towards plasmin. In Chapter 5, we describe the analysis and preparation of

2



big protein–protein interaction data. We highlight the severe limitations of their

standard usage and propose measures for their effective utilization. Finally, in

Chapter 6, we present the PPIFORMER model trained on the prepared data. We

provide the proof of concept for our approach by demonstrating its promising pre-

liminary capabilities.

Throughout the thesis, we use standard mathematical notation. Linear algebra

objects are marked in bold: uppercase letters for matrices (e.g. M ∈ ℝr,c) and

lowercase letters for vectors (e.g. v ∈ ℝd). Then, the i-th row and the i, j-th

element of a matrix M are denoted as mi and mi,j, respectively, while the i-th

element of a vector v is written as vi.
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CHAPTER 2
Background

In this chapter, we present the essential concepts and terminology required to

understand the thesis. First, we introduce the biochemical background, followed

by a brief description of the main ideas in modern deep learning. For a more in-

depth understanding of biochemistry, we recommend the book by Alberts et al.

(2015), while for further insight into deep learning, we recommend the books by

Goodfellow et al. (2016) and Bronstein et al. (2021).

2.1 Biochemistry

2.1.1 Proteins

Proteins are the key building blocks of cells, accounting for the majority of a cell’s

dry mass. These macromolecules typically contain thousands of atoms and are

critical to nearly every cellular function, including catalyzing chemical reactions

and acting as antibodies, transporters, or hormones. Proteins also perform spe-

cialized roles as antifreeze molecules, elastic fibers, or luminescence generators.

Moreover, proteins transport organelles within the cytoplasm and facilitate com-

munication between cells. Remarkably, the countless functions of proteins stem

from relatively simple combinatorial principles underlying their structure. In fact,

a unique combination of small building blocks determines the specific function of

each protein, enabling it to bind and process other molecules or carry out a variety

of other specialized tasks. Overall, proteins play an essential role in cellular biol-

ogy and are critical to the proper functioning of living organisms. Understanding

the principles underlying protein structure and function is critical to advancing

5



2. BACKGROUND

our knowledge of fundamental biological processes and developing new therapies

for diseases (Alberts et al., 2015).

Proteins, like all macromolecules in a cell, are composed of a specific sequence

of subunits that define their primary structure (Figure 2.1 A, left). These sub-

units are known as amino acids, and there are 20 different types found in most

living organisms. All amino acids have a common structure, consisting of an

alpha-carbon atom (C𝛼), amino group and carboxyl group, and a distinctive

side chain (Figure 2.1 B). The side chains vary in chemical composition, giving

each amino acid unique properties. Roughly half of the amino acids are polar (or

hydrophilic), meaning they form hydrogen bonds with water molecules, while the

other half are nonpolar (or hydrophobic), tending to cluster together in water so-

lution. The nonpolar amino acids include alanine (Ala, A), glycine (Gly, G), valine

(Val, V), leucine (Leu, L), isoleucine (Ile, I), proline (Pro, P), phenylalanine (Phe,

F), methionine (Met, M), tryptophan (Trp, W), and cysteine (Cys, C). Among the

polar amino acids, aspartic acid (Asp, D) and glutamic acid (Glu, E) are negatively

charged, while arginine (Arg, R), lysine (Lys, K), and histidine (His, H) are posi-

tively charged. The remaining five polar amino acids are neutrally charged, with

some of their fragments being positive and others negative, thereby compensating

each other. These five amino acids are asparagine (Asn, N), glutamine (Gln, Q),

serine (Ser, S), threonine (Thr, T), and tyrosine (Tyr, Y).

The complementarity of the carboxyl and amino groups enables amino acids

to connect into chains. This is done by ribosomes (mixture of RNAs and pro-

teins), which tightly link amino acids (or residues) one by one with covalent

(strong, electron-sharing) bonds to form protein chains. While the whole chain

(or sequence) is being constructed, the protein folds to adopt a specific three-

dimensional shape. This is achieved by the formation of a complex network of

non-covalent (weaker, no electron sharing) bonds. These include mostly hydro-

gen bonds, which occur between atoms that strongly sacrifice their electrons in

other, covalent bonds and atoms that, conversely, pull electrons, resulting in pos-

itive and negative charges respectively. During the first 5 milliseconds of folding,

hydrogen bonds between amino hydrogens and carboxyl oxygens shape the pro-

tein’s secondary structure (Figure 2.1 A, middle), thus defining the high-level

geometry of the protein backbone (the composition of all non-side chain atoms).

Then, for up to a second, the protein structure is being refined by the formation of

6



2.1. Biochemistry

other bonds between the amino acids until the molecule achieves its final, ener-

getically minimal state. The coordinates of atoms in this state define the tertiary

structure of the protein (Figure 2.1 A, right). The huge number of possible tertiary

structures of proteins leads to the impressive variety of their functions.

A

B

Secondary structure Tertiary structurePrimary structure

Side chain

Amino
group

Carboxyl
group

Tryptophan (T)

Glycine (G)

Proline (P)

C
...

Figure 2.1: Protein structure. A) Three levels of protein structure. Primary structure
is a linear sequence made of 20 possible amino acids. The protein chain is colored in
sequential order. Secondary structure captures common folding patterns such as 𝛼-helices
(visualized as helices), 𝛽-sheets (arrows) and loops (the rest). Tertiary structure defines
the three-dimensional arrangement of atoms. The visualized protein is staphylokinase
(PDB code 2SAK). B) Generic structure of an amino acid (left) and three selected amino
acids (right). While tryptophan is the heaviest and bulkiest of all twenty amino acids,
glycine does not contain a side chain at all, and the side chain of proline is covalently
linked to its amino group.

2.1.2 Protein–protein interactions

Proteins rarely function alone, with protein-protein interactions (PPIs) playing a

critical role in various biological processes, such as cell signaling, metabolism, and

gene regulation (Alberts et al., 2015). These interactions occur when two or more

proteins bind to form a complex and can be transient or long-lasting. Understand-

ing PPIs is crucial for drug design, as disruptions in PPIs can cause diseases such as

7



2. BACKGROUND

cancer and neurodegenerative disorders (Hardcastle, 2017). For instance, uncon-

trolled protein aggregation underlies Creutzfeldt–Jakob and Alzheimer’s diseases

(Marques et al., 2023). Conversely, PPIs between antibodies and antigens are fa-

vorable since they serve to identify and block foreign objects. Thus, drugs can

be designed to either enhance or inhibit the interaction, modulating the biolog-

ical process dependent on it. The study of PPIs is an ever-expanding field, with

researchers continually developing new techniques to comprehend these intricate

interactions and design more effective therapeutics.

The structure of a protein complex is known as a quaternary structure. When

the complex involves multiple protein chains, it is often called a protein oligomer

or, in the case of two chains, a dimer. Unlike multi-domain proteins (i.e. pro-

teins of a single chain but several parts that fold independently and may have

different functions), protein complexes involve separate chains, each having its

own backbone. Nevertheless, the principles that govern PPIs are similar to those

guiding protein folding. The formation of a quaternary structure is governed by

the establishment of many weaker, non-covalent attractions between two protein

surfaces. These attractions include previously mentioned hydrogen bonds, ionic

interactions (i.e. attractions between complementarily charged amino acids), Van

der Waals forces (i.e. weak bondings between atoms due to their fluctuating elec-

trical charges), or hydrophobic bonds (i.e. non-polar amino acids getting close to

each other to “avoid” interacting with water). In this way, PPIs are highly-specific,

depending on the strong complementarity of the corresponding surface shapes

and charge distributions.

The binding affinity of a protein–protein interaction (i.e. the “willingness” of

proteins to interact) is typically measured by the free-energy change upon binding

ΔG, defined as

ΔG = Gfree – Gcomplex, (2.1)

where Gfree and Gcomplex are the free energies of the systems of unbound and

bound proteins, respectively. Free energy G can be understood as an amount of

useful energy that can be harnessed to do work, or a thermodynamic potential, a

reduction in energy that is necessary for a transition, e.g. from free to complex,

to be spontaneous under the given conditions. This means that only bindings

with a negative ΔG are energetically favorable and can occur spontaneously. This

also implies that the lower the ΔG value is, the “easier” it is for the binding to

8



2.1. Biochemistry

A
C (staphylokinase)

1BUI

A

B

B

N

5DM6

O

4N78

D

F

C

3FZ8

A (microplasmin)

C

Figure 2.2: Examples of protein–protein interactions. A) Staphylokinase-microplasmin
complex (left) and its interface (right). B) The diversity of protein–protein interfaces.
Left) Disjoint interface. Middle) Extensive helical binding. Right) Extremely intertwined
interaction. The highlighted interfaces are based on 6Å distance between heavy atoms.

occur. Alternatively, ΔG can be expressed as the logarithmic ratio between the

dissociation and association rates

ΔG = RT ln K = RT ln
koff

kon
, (2.2)

where R and T are positive gas and temperature environmental constants, and koff

and kon are the rates of PPI unbinding and binding, respectively. The ratio K is

commonly referred to as the equilibrium constant. If the proteins tend to bind

(i.e. kon > koff ), the ΔG is negative, corresponding to an energetically favorable

reaction. From this point of view, a lower ΔG corresponds to a higher fraction of

interacting proteins in equilibrium. Additionally, Equation 2.4 outlines a standard

way to measure the free energy change experimentally (Alberts et al., 2015).

When the quaternary structure of a protein–protein interaction is available,

the most common approach to study the PPI is by examining its interface, that

9



2. BACKGROUND

is, the residues directly involved in the interaction. There is no standard defini-

tion for a protein–protein interface, but most studies define interfacial residues as

those that are in close proximity to the partner. For instance, Gao and Skolnick

(2010b) define an interface as a set of residues with at least one heavy (i.e. non-

hydrogen) atom no more than 4.5Å1 away from a heavy atom in the other protein.

Table 2.1 provides other examples of interface definitions. An important property

of protein–protein interfaces is their buried surface area (BSA), which is defined

for a dimer with two chains A and B as

BSA = ASAA
free + ASAB

free – ASAcomplex, (2.3)

where ASA represents the available (i.e. exposed to the environment) surface area

of a corresponding structure measured in Å2. BSA is a significant determinant of

binding affinity and is sometimes used to define an interface (Kastritis and Bonvin,

2013; Levy, 2010). The interfacial residues that contribute to the establishment

of an interaction the most are known as hotspots or hot regions (Keskin et al.,

2008).

Considered atoms Maximum distance Reference

Heavy atoms 4.5Å Gao and Skolnick (2010b)

Heavy surface atoms 5Å Shin et al. (2023)

All atoms 5Å Mirabello and Wallner (2018)

Heavy atoms 6Å Townshend et al. (2019)

C𝛼 atoms 8Å Ganea et al. (2021)

C𝛽 atoms 10Å Watson et al. (2022)

Heavy atoms 10Å Jankauskaitė et al. (2019)

Table 2.1: Examples of protein–protein interface definitions.

2.1.3 Protein design

Protein design, also known as protein engineering, is a cutting-edge technique

that enables the creation of proteins with enhanced or novel functional properties.

Modern experimental biochemistry allows modifying the genetic information of a

cell to produce virtually any desired protein sequence. As such, protein design

1Ångström (Å) is a metric unit of length. 1Å = 10–10m.
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2.1. Biochemistry

aims to identify advantageous mutations (i.e. protein sequence substitutions that

increase a property of interest) in natural (wild-type) proteins or to create entirely

new proteins through a process called de novo protein design.

A primary challenge in protein engineering is the combinatorial complexity of

the protein space. An average protein of 400 residues can have 19 × 400 = 7600

single-point mutations (i.e. substitutions of a single residue), and the number of,

for example, three-point mutations counts up to tens of billions. The search for

beneficial mutations has a “needle in a haystack principle” as most mutations have

unfavorable effects, while in practice one is interested in higher-order, multi-point

mutants with ten or more substitutions to achieve a significant impact (Laroche

et al., 2000). Navigating through this vast space of potential mutants is compli-

cated by the phenomenon of epistasis, which refers to the non-additive effects

of mutations. Miton and Tokuriki (2016) analyzed nine case studies and found

that half of the effects of multi-point mutations are unpredictable from single-

point mutation data. For instance, combining two highly favorable single-residue

substitutions could result in a disruptive joint effect.

One of the directions of protein design is the design of protein–protein inter-

actions. For example, one may be interested in redesigning the interface of an

antibody to enhance its binding affinity towards the antigen. In such cases, the

effects of mutations can be measured using the ΔΔG metric, defined as

ΔΔG = ΔGmut – ΔGwt, (2.4)

where ΔGmut and ΔGwt correspond to the binding affinity of mutated and wild-

type complexes, respectively. Negative ΔΔG values indicate favorable mutations

that increase affinity, while positive values signify a disruptive effect on binding.

Traditional protein-design approaches utilize evolutionary statistics or physics-

based simulations to determine the favorability of mutations. For instance, a

position-specific scoring matrix (PSSM) enables the estimation of evolutionary

plausibility for all single-point substitutions (Beckstette et al., 2006). To construct

the matrix, a set of sequences homologous (i.e. evolutionarily related, structurally

similar) to the studied one is required. Then, one can align sequences and count

the probabilities of amino acids at each position. The scores derived from the prob-

abilities can help to narrow down the range of possible mutations to those that

have been naturally selected during evolution. While this approach can ensure
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safer mutation selection, it may also lead the design away from highly-favorable

novel substitutions. Conversely, force field-based physics simulators such as FoldX

and Rosetta provide estimates of ΔG and ΔΔG based on protein tertiary or qua-

ternary structure, without relying on the evolutionary information (Schymkowitz

et al., 2005; Das and Baker, 2008).

Some notable examples of hybrid methods combining evolutionary and physics-

based calculations are HotSpot Wizard and Affilib. HotSpot Wizard integrates var-

ious traditional protein-design approaches, such as PSSM, FoldX and Rosetta, into

a single software pipeline for comprehensive analysis of protein mutations. This

method facilitates the selection of the most crucial residues for design (Sumbalova

et al., 2018). Affilib is another software that can be employed to design protein–

protein interactions with enhanced properties (Netzer et al., 2018). This method

initially preselects a range of single-point substitutions based on PSSM scores and

single-point ΔΔG estimates by Rosetta. It then uses Rosetta to exhaustively score

the selected multi-point mutants.

2.1.4 Staphylokinase

An important case study for the design of protein–protein interactions are throm-

bolytics. Those are proteins that break up clots by activating fibrinolysis and con-

verting the plasminogen protein to plasmin. The latter then degrades fibrin clots

in blood, prompting the use of thrombolytics for the emergency treatment of an

ischemic stroke, a heart attack, or a massive pulmonary embolism. The staphylok-

inase (SAK) protein is an attractive thrombolytic drug candidate. In comparison to

the most commonly used alteplase, it is a smaller, more affordable, and highly spe-

cific agent. As a result, it has the potential to be a cost-effective and safer alterna-

tive for stroke treatment. Staphylokinase has already demonstrated its beneficial

properties in multiple clinical trials (Nikitin et al., 2022). However, the primary

limitation hindering its widespread clinical use is its low efficiency. Since the ac-

tivity of SAK is directly related to its interactions with other proteins, our study

aims to design the staphylokinase interface to improve its binding properties.

Figure 2.3 offers a more comprehensive understanding of the thrombolytic ac-

tivity of staphylokinase. Upon introduction to the bloodstream, staphylokinase

forms a complex with the human protein plasmin (or its truncated version mi-

croplasmin). In close proximity to fibrin clots, they jointly catalyze the generation
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of additional plasmin molecules by plasminogen. The abundance of plasmins then

effectively breaks down the clot, reopening the blood vessel and reestablishing

blood circulation. The primary bottleneck of the mechanism is the low affinity of

SAK towards plasmin, which is the main motivation of the thesis. Our objective is

to redesign the interface of staphylokinase for increased affinity to plasmin. Fur-

thermore, we take into consideration the hypothesis that SAK’s activity may be

constrained by its dimerization, and thus aim to reduce the potential for SAK–SAK

interactions.

Introducing mutations into the interface of SAK, it is essential to preserve the

protein’s vital properties. Specifically, maintaining high stability is crucial, allow-

ing the protein to retain its fold and continue functioning despite environmental

fluctuations. Moreover, staphylokinase must be well-tolerated by the human body,

meaning it should not be targeted by antibodies as a foreign object. Further, we

refer to these two properties as simply stability and immunogenicity. The affin-

ity of SAK for plasmin is simplified to affinity, while the tendency for SAK–SAK

interactions is denoted as dimerization.

Staphylokinase
(SAK)

Microplasmin

SAK-microplasmin
complex

Microplasmin

Fibrin
clot

Fibrin
degradation

product

Plasminogen

Microplasmin

Staphylokinase
(SAK)

SAK dimer

Figure 2.3: Thrombolytic mechanism of staphylokinase. The diagram is partially re-
produced from Toul et al. (2022) and highlights protein–protein interactions relevant to
the present study.
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2.2 Machine learning

2.2.1 Deep learning

In general terms, machine learning is a method to utilize data to improve computer

performance on specific tasks. There are four primary components in machine

learning: a parametrized computer program f , commonly known as a model, a

task(s) T along with the corresponding performance measure(s) P, and a dataset D

(Goodfellow et al., 2016). For instance, a researcher in protein design may define

a task T to associate a protein and its mutations with the ΔΔG value. In this case,

the data D could be provided by experimental observations, and the performance

measure P might be set as the absolute difference between a computer-generated

ΔΔG value and the actual one. Then, the goal is to train the machine by imple-

menting an algorithm that finds the best shape of f from a defined set F :

arg max
f∈F

∑︁
(x,y)∈D

P(f(x), y), (2.5)

where x and y represent the input and desired output in the data (e.g., mutated

protein and ΔΔG). Machine learning research primarily focuses on the develop-

ment of more effective models f , performance measures P, tasks T, and datasets

D, along with improved methods for optimizing Expression 2.5.

Deep learning is a subfield of machine learning which studies artificial neural

networks. An artificial neural network (also known as a multi-layer perceptron,

MLP) is a machine-learning model of the form

f = fl ◦ fl–1 ◦ · · · ◦ f1, (2.6)

fi(x) = 𝝈(Wix + bi), (2.7)

where x is an input vector, Wi, bi are the matrix and vector parameters of the

function that are being optimized (i.e. that define a set F ), and 𝝈 is an element-

wise non-linearity, typically ReLU(x) = max (0, x). Functions fi are called layers

and parameters Wi and bi are typically referred to as weights and biases. In plain

words, each layer of an artificial neural network applies a linear transformation

(i.e. scaling, rotation or reflection) to a vector, then shifts it and applies a simple

non-linear transformation.

Once a neural network is trained (i.e. the function f ∈ F with the best pa-

rameters Wi, bi according to Expression 2.5 is found), it is typically evaluated on
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an independent set of data. In practice, one typically has a single dataset and,

therefore, requires to split it into the training and test folds to evaluate the gen-

eralization capacity of the model by training it on one part and testing on the

other. For example, the dataset of handwritten digits for image classification can

be split by the people who author the writing (LeCun, 1998). Such an approach

ensures that the evaluation of the model’s performance corresponds to its practical

deployment: to classify the writing of new, previously unseen, people. In many

cases, there is no natural scheme to establish a data split, which poses a challenge

for fair evaluation.

2.2.2 Geometric deep learning

A multi-layer perceptron can approximate practically any vector function (Lu et al.,

2017; Hornik, 1991). Nevertheless, deep learning is known for its breakthroughs

in computer vision, natural language processing and other domains where data

extends beyond simple tabular representations. The success of deep learning can

be largely attributed to the invention of ways to properly adapt neural networks

to complex data such as images or sequences of words. For example, convolu-

tional neural networks (CNNs) combine multi-layer perceptrons, so that they can

efficiently operate on grids of pixels with RGB values. Essentially, a convolutional

neural network iteratively applies a certain type of multi-layer perceptron to each

local patch of an image, mapping pixels to higher-dimensional internal represen-

tations. By functioning locally, CNNs exhibit translation equivariance. In simple

terms, this means that CNNs are insensitive to image translations, enabling data-

efficient training.

Formally, the property of equivariance is defined with respect to a set of trans-

formations2 G. A function f is said to be G-equivariant if it satisfies

f(g(x)) = g(f(x)) for any g ∈ G and input x. (2.8)

The translational equivariance of a convolutional neural network, therefore, means

that translating an image x leads to the same translation of the network’s output

f(x). For example, if f is designed to detect a cat in the photo, outputting a seg-

mentation map (i.e. a photo colored to highlight the detected cat), the property

2Formally, G is called a symmetry group and must satisfy several natural properties. Addition-
ally, we further simplify Equation (2.8) by having the same g acting on both sides of the equation,
while formally it may have different representations.
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of equivariance ensures that translating the input photo will result in the same

translation of the colored output.

In many cases, one is, however, interested in the special case of equivariance

known as invariance:

f(g(x)) = f(x) for any g ∈ G and input x, (2.9)

which ensures that the output of a network remains entirely unaffected by the con-

sidered transformations. For example, invariance is desired when the objective

is to classify whether an image contains a cat rather than to detect its location.

Provably, an invariant function can be obtained by stacking several equivariant

functions followed by an invariant one (Bronstein et al., 2021). Consequently,

in practice, one typically builds invariant deep-learning models by stacking sev-

eral equivariant functions followed by a simple invariant one. Referring back to

the example of image classification, a common approach would be to employ an

equivariant CNN, followed by a simple averaging of the final per-pixel representa-

tions and applying an ordinary classification multi-layer perceptron.

The architecture of virtually any existing neural network for complex data can

be justified by the equivariance to a certain group of transformations (Bronstein

et al., 2021). For example, state-of-the-art graph neural networks are equivariant

to permutations of node neighborhoods, which is a central property of a graph.

Similarly, for example, modern deep-learning models for learning from spherical

data (e.g. to predict temperature on the globe) are constructed to be equivariant

to spherical rotations. When learning from 3-dimensional objects such as protein

structures one is particularly interested in being agnostic to the arbitrariness of

the underlying coordinate system, and, therefore, in SE(3)-equivariance. SE(3)

denotes a special Euclidean group in three dimensions, which represents the set

of all 3-dimensional rigid-body transformations, i.e. combinations of translations

and rotations. The principle of SE(3)-equivariance is illustrated in Figure 2.4 A.

2.2.3 Self-supervised learning

Another revolutionary paradigm in deep learning is self-supervision. The concept

of self-supervised training involves the construction of the x, y training pairs arti-

ficially, from unannotated input x alone. By learning to solve a synthetic task, the

model can acquire a general understanding of the input domain, which can enable
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A B

Figure 2.4: Principles of modern deep learning illustrated on a protein–protein in-
teraction. A) The principle of equivarance, a central idea of geometric deep learning. The
visualized property of SE(3)-equivariance guarantees that the deep-learning model f is
insensitive to any rigid roto-translation of the input g, enabling data-efficient training. B)
Self-supervised learning, a major deep-learning approach to overcome data scarcity. The
figure visualizes an artificial task of completing a corrupted protein–protein interface. The
illustrated interaction is the SAK–SAK dimer (PDB code 1C78).

its easy adaption to many downstream problems of interest. Such an approach en-

ables to overcome the limitations of traditional supervised learning, which often

requires expensive and time-consuming labeling efforts. For example, in the ab-

sence of a sufficiently large annotated dataset for specific image classification, one

can initially pre-train a model to fill in missing image parts. In this manner, a net-

work can learn common patterns in image data and then be efficiently fine-tuned

(i.e. adapted through further training) for classification. Figure 2.4 B illustrates a

possible adaptation of the concept to the protein domain.

Successful application of self-supervised learning has led to the development of

foundation models, large deep-learning models trained on vast quantities of un-

labeled data via self-supervision. These models exhibit a general “understanding”

of the domain and can be easily fine-tuned for various downstream tasks. Notable

examples of foundation models include ChatGPT and GPT-4 (Bubeck et al., 2023).

Most likely, the GPT models, or Generative Pre-trained Transformers, were mainly

trained on the task of predicting artificially-masked subsequent text.
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CHAPTER 3
Related work

This chapter is dedicated to the overview of the current advancements in machine

learning for protein science, focusing on the design of protein–protein interactions.

We do not aim to provide a comprehensive review of the approaches but rather

highlight the most relevant methods along with the most noteworthy ones in the

field.

3.1 Machine learning for proteins

In this section, we briefly review some of the most prominent achievements of

deep learning on proteins. We first discuss the applications of deep learning to

isolated proteins and then proceed with applications related to the interactions of

proteins with other molecules in a living cell.

3.1.1 Single proteins

Arguably, the most outstanding application of deep learning in protein science is

the development of AlphaFold2 (Jumper et al., 2021). This method solved the pro-

tein folding problem by demonstrating the ability to predict the three-dimensional

structure of a protein from its sequence with a high accuracy, a challenge that had

remained open for 50 years. At its core, AlphaFold2 relies primarily on an SE(3)-

equivariant Transformer-like architecture, which operates jointly on the input se-

quence along with evolutionary-related ones to iteratively refine the positions and

orientations of residues in the predicted structure. Protein folding remains an

active research area, with new approaches proposing, for example, ways to re-
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move the dependency on evolutionary information (Wu et al., 2022b) or enable

the prediction of quaternary structures of protein complexes (Evans et al., 2021).

Additionally, novel methods explore alternative architectures for protein folding,

such as those based on diffusion generative modeling (Wu et al., 2022a) or large

language models (Lin et al., 2022).

Many other successful applications of deep learning to protein-related prob-

lems draw inspiration from traditional deep learning domains. For instance, the

primary structure of proteins has been actively studied through the lens of natural

language processing. Methods such as ESM-2 and Ankh are Transformer-based

language models capable of predicting secondary structure, fold type, solubility,

or fluorescence of proteins solely from sequences of letters representing the amino

acids (Lin et al., 2022; Elnaggar et al., 2023). Likewise, tertiary structures of pro-

teins have been extensively analyzed through 3D convolutional neural networks.

These applications include the prediction of protein interactions with water (Park

and Seok, 2022) or with small molecules, often drugs (Li et al., 2019).

Similarly, graph neural networks have been playing an important role in tack-

ling protein problems with deep learning (Zhou et al., 2020b). The ProteinMPNN

model is a highly-prominent example of a graph neural network-based approach

to learning from protein structures (Dauparas et al., 2022). ProteinMPNN has

solved the problem known as inverse folding. In this task, a network is provided

with a protein backbone of interest and predicts a sequence that can fold into

the shape of the backbone. Internally, ProteinMPNN constructs a sequence in an

autoregressive manner, amino acid by amino acid. Since the model implicitly pre-

dicts probabilities for each of the 20 possible amino acids at every step, it can also

be employed to estimate the likelihood of specific substitutions for protein-design

purposes.

3.1.2 Protein interactions

Recently, the tasks related to understanding how proteins interact with other

molecules have become an active machine-learning research area. Tasks in this

category include the prediction of protein–protein and protein–ligand docking.

Docking is a molecular modeling task that aims to predict the mutual position and

orientation of two molecules forming a complex. In the case of protein–protein

docking, a network is given the structures of two proteins and learns to predict
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the rototranslation that puts two proteins together in their native mode of inter-

action. Similarly, in a protein–ligand scenario, the task is defined to predict the

position and orientation of a ligand (i.e. a small molecule, typically a drug) to

describe where it binds to the protein.

EquiDock and EquiBind are the first attempts to tackle the docking problems

with deep learning (Ganea et al., 2021; Stärk et al., 2022). The methods were

shown to achieve performance competitive with traditional algorithms while be-

ing substantially faster. Essentially, these models rely on a graph neural network to

find a match between graph representations of two molecules. Once the match is

established they apply an alignment algorithm to estimate the rotation and trans-

lation that docks the molecules. Recently, diffusion generative models DiffDock

and DiffDock-PP were shown to outperform the matching-based methods by learn-

ing to directly generate optimal transformations (Corso et al., 2022; Ketata et al.,

2023).

Other tasks related to protein interactions include the closely related problems

of docking pose scoring and binding energy prediction (Shen et al., 2020). Re-

cently, Jin et al. (2023) introduced NERE, a deep-learning model that predicts the

binding energy of protein–protein interactions using unsupervised deep learning.

The primary concept behind the method involves maximizing the likelihood of na-

tive crystal structures of complexes. This is inspired by the fact that crystallized

structures represent the lowest energy states.

Furthermore, machine learning can be employed to analyze protein–protein

interactions at a more abstract level. For instance, given a network with nodes

representing individual proteins and edges corresponding to various interaction

types, one can apply machine learning to uncover previously unknown interactions

or deduce their properties (Hu et al., 2020). Recently, Gao et al. (2023) proposed

the HIGH-PPI graph neural network, which employs both a high-level network

representation and a detailed residue-level graph representation of proteins to

predict protein–protein interactions.

3.2 Machine learning for protein design

In recent years, machine learning has been increasingly utilized in protein de-

sign tasks. In this section, we begin by discussing machine learning techniques
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for predicting the effects of mutations. These methods facilitate the screening

of numerous protein mutations to identify the ones with the highest potential to

improve a specific protein property. As the primary focus of our work is the de-

sign of protein–protein interactions, we provide a more detailed review of existing

approaches for predicting ΔΔG upon binding. Additionally, we briefly mention

generative techniques in protein design, which enable the creation of entirely new

proteins that meet desired constraints.

3.2.1 Mutation effect prediction

Deep mutational scanning datasets offer millions of sequences annotated with the

effects of introduced mutations (Fowler and Fields, 2014). Recent deep learning

applications have explored the potential of predicting labels in deep mutational

scanning data without relying on supervised training. For instance, DeepSequence

utilizes a latent variable model to estimate the likelihood of mutated sequences

(Riesselman et al., 2018). The more recent ESM-1v model leverages masking-

based self-supervised pre-training of a large Transformer model on millions of

unannotated sequences. Trained to predict missing amino acids in protein chains,

the model was shown to be effective in scoring mutations. To estimate the score,

ESM-1v first infers the probabilities of individual substitutions for a mutated posi-

tion of interest and then calculates log-odds ratios that capture the relative plau-

sibility of the wild-type and mutated sequences.

A similar approach was employed by Shroff et al. (2020) to score mutations

based on self-supervised training from protein crystal structures. The proposed

MutCompute utilizes a three-dimensional convolutional neural network trained to

predict missing residues in atomic structures of proteins. Similar to the ESM-1v

Transformer, MutCompute has proven to be practically useful for protein design.

To select promising residue substitutions, one can mask its atoms in a protein

structure and infer the probabilities of individual substitutions using the method.

Residues with low predicted probabilities for wild-type amino acids can then be

considered promising candidates for mutagenesis.

3.2.2 Mutation effect prediction for protein–protein

interactions

While the described machine-learning methods for general-purpose protein design

leverage self-supervision, current approaches for binding ΔΔG prediction heavily
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Figure 3.1: Evolution of ΔΔG predictors. The arrows illustrate published outperfor-
mance of methods on different subsets of the SKEMPI2 dataset. While the figure does not
provide a comprehensive overview, it highlights key representative methods in the field.

rely on supervised training from the SKEMPI2 dataset. SKEMPI2 contains ΔΔG-

labeled mutations introduced to protein interfaces (see to Section 4.1.2 for a more

detailed description). Earlier non-machine-learning approaches for predicting the

effects of interfacial mutations rely on physics-based simulations or statistical po-

tentials. For example, FoldX and DiscoveryStudio estimate ΔΔG by simulating a

mutant structure with a force field (Delgado et al., 2019; Biovia et al., 2017),

while BeAtMuSiC uses statistical potentials derived from coarse-grained protein

models (Dehouck et al., 2013). BindProfX improves upon force-field simulations

by incorporating evolutionary information (Xiong et al., 2017).

The iSee model represents one of the first approaches for predicting ΔΔG us-

ing machine learning on an earlier version of the SKEMPI2 dataset (Geng et al.,

2019a). This method employs 31 structural, evolutionary, and energy-based fea-

tures to estimate mutation effects with a random forest. Similarly, mCSM-PPI

uses graph-based geometric features of the interface along with biochemical and

evolutionary properties to train extra trees for ΔΔG prediction (Rodrigues et al.,

2021). In the same line, SAAMBDE-3D employs 33 knowledge-based features

representing the physical environment surrounding a mutation site (Pahari et al.,

2020). TopNetTree enhances protein feature representation by utilizing extended

persistent homology barcodes to capture topological and chemical features of the

interface, which are then used to train gradient boosting trees (Wang et al., 2020).

DGCddG does not rely on manually-crafted features but rather extracts them by
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leveraging a graph neural network (Jiang et al., 2023). SAAMBE-SEQ focuses

solely on sequences of interacting proteins but is limited to scoring single-point

mutations (Li et al., 2021). MuPIPR, another sequence-based approach, lever-

ages bi-directional recurrent neural networks to predict the mutation effects (Zhou

et al., 2020a).

To the best of our knowledge, GeoPPI is the most advanced ΔΔG predictor (Liu

et al., 2021). During the first step of inference, it constructs a mutated structure

with FoldX. Then, it applies an attention-based graph neural network, pre-trained

on a synthetic task of restoring correct rotations of residue side chains, to both

wild-type and mutant-type structures to extract interface features. These features

then serve as input for gradient boosting trees that estimate the mutation effect.

The evolution of the described ΔΔG predictors is summarized in Figure 3.1.

3.2.3 De novo protein design

In contrast to mutation effect prediction, the approaches for de novo (literally ”of

new”) protein design aim to generate novel proteins that satisfy specified con-

straints. For instance, ProT-VAE combines a Transformer pre-trained on protein

sequences with a lightweight, adaptable autoencoder to generate novel protein

sequences possessing desired properties (Sevgen et al., 2023). RFdiffusion is a

recent approach that enables the generation of novel protein backbones (Watson

et al., 2022). At its core, the model employs a deep learning architecture pre-

trained on protein folding and learns to produce novel protein structures by dif-

fusing existing ones from random noise. Similarly, FoldingDiff generates novel

backbones by reconstructing native ones that have been corrupted by random

twisting (Wu et al., 2022a). In our work, we do not further discuss de novo de-

sign methods, as our primary focus is on accurately improving the existing protein

staphylokinase.

3.3 Analysis of big protein data

Proteins of higher importance have been studied more extensively than others. As

a result, the datasets of proteins tend to cover the space of existing proteins in a

highly non-uniform manner. This, along with other sources of biases in protein

data, necessitates large-scale comparison and clustering of proteins to analyze

24



3.3. Analysis of big protein data

and prepare datasets for efficient machine learning and fair evaluation. While in

traditional deep-learning domains such as computer vision or natural language

processing, analysis and pre-processing can be achieved with the help of many

non-expert annotators (Deng et al., 2009), the complexities of proteins are not

easily understood by everyone. This strongly necessitates automated methods to

filter, compare, and cluster large protein data. In this section, we discuss such

approaches for proteins and their absence for protein–protein interactions.

3.3.1 Protein space

The most common way to compare two biological sequences is to align them and

calculate the ratio of identical or similar characters at corresponding positions.

However, this approach typically requires dynamic programming, which does not

scale well for performing billions of comparisons. Steinegger and Söding (2017)

have revolutionized protein chain analysis by developing the fast MMseqs2 al-

gorithm for searching similar sequences. The core concept of the algorithm is

constructing a database of k-mers from sequences and querying them in a highly

optimized manner. The algorithm has enabled the clustering of all known pro-

tein sequences, resulting in the non-redundant database of protein chains UniRef

(Steinegger and Söding, 2018).

Although fast search for similar sequences can be considered solved, it is not

always sufficient for analyzing large-scale protein data. For instance, when search-

ing for structural homologs of a protein, sequence similarity is typically not enough.

As an example, proteins with highly different sequences can fold into almost iden-

tical shapes (van Kempen et al., 2022). Furthermore, multi-domain proteins have

a highly modular structure, which poses challenges for methods based on whole

sequence comparisons (Draizen et al., 2022). These facts strongly necessitate

methods that directly compare protein structures.

Traditional approaches for comparing protein structures rely on alignment. For

example, one can convert two protein structures into point clouds of residues and

align them to minimize root mean squared deviation (RMSD). The RMSD value

can then serve as a measure of similarity. TM-score improves upon RMSD by

measuring global fold similarity rather than local structural deviations, and by

making the score length-independent (Zhang and Skolnick, 2004). The TM-score

for two protein structures represented by the alpha-carbons of their residues is
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calculated using the following formula:

TM–score =
1

LQ
max

Na∑︁
k=1

1/(1 + d2
k/d2

0), (3.1)

where the maximum iterates over possible alignments of the alpha-carbons of two

proteins. The LQ value represents the number of residues in one of the struc-

tures, considered as the query, and Na denotes the number of residues being

matched. Additionally, dk is the distance between the alpha-carbons at the aligned

position k, and d0 is a constant that normalizes the distances to achieve length-

independence of the score. The score varies between 0 and 1, with the value of 1

corresponding to the alignment of two identical structures.

Clearly, alignment-based structural similarity methods face the same challenges

as sequence alignment methods: they are not scalable to large-scale data anal-

ysis. Recently, van Kempen et al. (2022) proposed the Foldseek algorithm for

single-domain protein structures, which offers performance similar to structural

alignment-based methods while being at least 20,000 times faster. The primary

concept behind Foldseek is converting a protein structure into a sequence based

on its backbone geometry and subsequently utilizing MMseqs2 for fast searching.

3.3.2 Protein–protein interaction space

While scalable comparison methods have been successfully established for protein

sequences and single-domain structures, fast comparison of protein–protein inter-

faces remains unsolved. In this section, we briefly overview the most advanced

available methods. First, Gao and Skolnick (2010a) proposed the iAlign algo-

rithm, building upon TM-score. The IS-score of iAlign for a query interface with

LQ residues and any other interface calculates their similarity score by finding an

optimal alignment of their alpha-carbons such that:

IS–score = (S + s0)/(1 + s0), (3.2)

where

S =
1

LQ
max

Na∑︁
k=1

fk/(1 + d2
k/d2

0) (3.3)

and the maximum iterates over possible alignments, akin to TM-score. The Na

value represents the number of residues being matched, and dk denotes the dis-
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tance between the corresponding alpha-carbons at the kth position of the align-

ment. Finally, fk provides the ratio of matching distance-based contacts at the kth

position, and d0 and s0 are fine-tuned constants to ensure length-independence

of the score. IS-score has the same interpretation as TM-score but measures the

similarity between interfaces.

Similarly, Mirabello and Wallner (2018) proposed the InterComp algorithm,

which aims to find an optimal geometric alignment of interfacial residues while

also considering the evolutionary similarity of matched residues. PCalign improves

upon the aforementioned methods by additionally incorporating physiochemical

features of residues (Cheng et al., 2015). Recently, Shin et al. (2023) proposed the

PPI-Surfer algorithm, which performs alignment at the level of surface patches de-

scribing the physicochemical properties of the interfaces. All of these approaches

rely on computationally-expensive alignment procedures and, therefore, are not

scalable for big data analysis. To our knowledge, the only alignment-free method

developed for comparing protein–protein interfaces is PatchBag (Budowski-Tal

et al., 2018). The method utilizes the bag-of-words model applied to local patches

of protein surfaces converted to a vector representation. This method is, however,

not publicly available.
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CHAPTER 4
Staphylokinase design with

state-of-the-art machine
learning methods

In this chapter, we discuss the selection of promising mutations of staphylokinase

(SAK) with the goal of increasing its thrombolytic activity while preserving its

necessary properties of high stability, low immunogenicity and limited dimeriza-

tion. First, we apply several state-of-the-art ML methods to evaluate the effects of

all possible single-point mutations on these properties. Next, we design an algo-

rithm to robustly combine the obtained results and identify a limited number of

the most promising substitutions. Finally, we discuss the construction of desired

affinity-increasing multi-point mutations, which are currently undergoing experi-

mental validation in the wet lab.

4.1 Datasets of labeled protein–protein interactions

4.1.1 Staphylokinase mutants

While rich data are essential for successful application of machine learning, it is

often very difficult to gather comprehensive mutational scanning datasets specific

to a given protein property. For instance, acquiring experimental data on biophys-

ical properties such as ΔΔG of protein binding can be both time-consuming and

expensive, with a single data point potentially costing thousands of dollars. On
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the other hand, developing a statistical understanding of intricate combinatorial

phenomena like epistasis necessitates a large number of samples (Dallago et al.,

2021; Miton and Tokuriki, 2016).

Laroche et al. (2000) conducted experimental mutagenesis of staphylokinase,

resulting in over 200 single- and multi-point mutations labeled with their impact

on the activity (i.e. rate of plasminogen activation) and immunogenicity (i.e. rate

of undesired antigen binding) of the protein. In our study, however, we aim to

enhance the native affinity of staphylokinase towards plasmin. The Loschmidt

Laboratories have compiled multiple studies into a small dataset of 13 staphy-

lokinase variants with corresponding binary labels indicating the enhancement or

disruption of binding towards plasmin. With such data scarcity, training a reliable

staphylokinase-specific machine-learning model for affinity increase is unfeasible.

Nonetheless, the available data can still be employed for evaluation purposes.

4.1.2 SKEMPI2 dataset

While rich PPI-specific data are typically unfeasible, aggregating experimental re-

sults from numerous studies offers a promising solution. The SKEMPI2 dataset is a

manually-curated collection of annotated mutations in protein–protein interfaces,

representing a significant stride towards addressing the general data scarcity issue

in PPI design (Jankauskaitė et al., 2019). The dataset encompasses 295 published

studies, covering a diverse range of interactions, including complexes of antibod-

ies with antigens and proteases with inhibitors. Each SKEMPI2 entry is essentially

represented by (i) a protein complex derived from the Protein Data Bank (PDB),

(ii) a list of introduced mutations, and (iii) an experimentally measured value de-

noting the observed effect on binding affinity. The vast majority of the latter values

can be converted to ΔΔG measurements, which represents the primary contribu-

tion of the dataset.

SKEMPI2 contains a total of 7085 annotated mutations, originating from 348

PPIs in 345 PDB files. These entries are grouped into “hold out types” according

to the structural similarity of interfaces and the sequence identity of underlying

partners, allowing for natural train-test splitting. It is important to note that the

dataset has certain biases, including the dominance of naturally disruptive mu-

tations (≈ 80%) and the overrepresentation of single-point mutations (≈ 75%),

limiting the potential understanding of multi-point mutational effects. Addition-
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ally, the substitutions are not uniform, reflecting common practices of mutagenesis

experiments. In particular, almost half of the single-point mutations are substitu-

tions to alanine, corresponding to conventional alanine scanning experiments.

4.2 Pre-selection of single-point staphylokinase

mutations

4.2.1 Mutation evaluation

The SKEMPI2 dataset can be straightforwardly utilized to train a ΔΔG predictor,

which can then be applied to score SAK mutations for improved affinity. However,

the screening of the entire space of possible mutants is unfeasible. Even selecting

10 interface positions for mutagenesis results in 2010, or approximately 10 trillion,

multi-point variants. Consequently, the space of considered substitutions must be

carefully reduced to the most promising ones. It is important to guarantee that

any potential high-affinity mutant maintains crucial drug properties, ensuring its

viability as a potential thrombolytic agent. The properties include high stability

(i.e. the protein can survive) and low immunogenicity (i.e. the protein is accepted

by the human body). Additionally, the potential for the dimerization of SAK must

be minimized to ensure its therapeutic activity. Therefore, before approaching a

SKEMPI2-based ΔΔG predictor to enhance the affinity of SAK to plasmin, we pre-

select a limited number of the most reliable substitutions to combine. For this

purpose, we employ several well-established methods that address all aforemen-

tioned properties.

To assess protein stability, we utilize the sequence of staphylokinase and its

crystal structure in a free, unbound form (PDB code 2SAK). First, we construct

a position-specific scoring matrix (PSSM) and obtain the calculations from the

HotSpot Wizard software. Next, we estimate the probabilities of amino acid sub-

stitutions in the sequence by a forward pass of the ESM-1v transformer (Meier

et al., 2021). To take advantage of the available tertiary structure, we also utilize

ProteinMPNN to redesign the SAK sequence based on its native backbone, obtain-

ing a 20-class probability distribution for each position in the sequence (Dauparas

et al., 2022). Additionally, we obtain similar probability predictions using Mut-

Compute (Shroff et al., 2020). Please see Section 2.1.3 and Chapter 3 for the

description of the individual methods.
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The affinity between partners in a protein–protein interaction is closely re-

lated to the stability of the resulting complex structure. This allows utilizing the

structure-based methods ProteinMPNN and MutCompute to approximate affin-

ity by predicting the stability of the complex structure (PDB code 1BUI). Using

these models, we obtain probability predictions for all twenty amino acids at each

residue in the context of bound microplasmin. We get predictions of dimer insta-

bility using exactly the same approach for the dimer structure (PDB code 1C78).

Finally, we get immunogenicity predictions from a specialized SAK-specific model

trained at Loschmidt Laboratories on the corresponding immunogenicity data. The

methodology is summarized in Table 4.1.

Method Description
Addressed
properties Reference

PSSM Evolutionary-
based statistics

Stability Beckstette et al. (2006)

HotSpot Wizard Biochemical
software
pipeline

Stability Sumbalova et al. (2018)

ESM-1v Sequence-
based
self-supervised
deep learning

Stability Meier et al. (2021)

MutCompute Structure-based
self-supervised
deep learning

Stability,
affinity,
dimerization

Shroff et al. (2020)

ProteinMPNN Structure-based
self-supervised
deep learning

Stability,
affinity,
dimerization

Dauparas et al. (2022)

PLS SAK-specific
machine
learning

Immunogenicity Loschmidt Laboratories

Table 4.1: Methods applied to score the single-point mutational space of staphylokinase.

4.2.2 Mutation selection

The obtained machine-learning predictions and software calculations lead to a vast

amount of information which is not obvious how to systematically combine and re-

duce. Therefore, to achieve the pre-selection of a limited number of substitutions,

we develop a consensus algorithm. We observe that the output of many protein-
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Figure 4.1: Staphylokinase stability matrix predicted by ProteinMPNN. The horizontal
axis corresponds to the sequence of staphylokinase, while the vertical axis represents all
the possible single-point mutations. The magenta boxes depict wild-type amino acids
in a native SAK chain. Note that the residues 0-15 are missing in the crystal structure
of 2SAK and, therefore, do not have predictions. Top) The raw probabilities predicted
by ProteinMPNN. Bottom) The corresponding normalized improvement scoring matrix
obtained in step 9 of Algorithm 1.

design methods, including the ones in Table 4.1, can be represented as a matrix

of 20 rows and L columns, where 20 is the number of natural amino acids and L

is the length of a protein sequence (see Figure 4.1 Top for an example). We base

the algorithm on two principles. First, we focus on whether substitutions improve

upon native amino acids, and on the magnitude of the improvements, rather than

how “good” the substitutions absolutely are. Second, we prioritize precision over

recall. In other words, we do not aim to retrieve all favorable mutation candidates

but the selected ones must be reliable.

The proposed method is detailed in Algorithm 1. The primary input for the

algorithm is a wild-type protein sequence w and a collection of mutation matri-

ces {Mi}ni=1 such that their columns indicate any kind of scores of substitutions

at each position. Additionally, each matrix must be associated with a property pi

that it evaluates (in our case the stability, affinity, dimerization, or immunogenic-

ity), and each property must be assigned a sign gi based on whether it is desired

or not. Further, the algorithm requires assigning weights to all the matrices and

properties, denoted as 𝜶 and 𝜷 , respectively. The weights can all be set to one,

manually adjusted according to expert understanding, or fitted to labeled data

using simple linear or logistic regression, depending on the nature of the labels.

The algorithm’s output is a consensus set of the most promising single-point sub-
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stitutions. The procedure can also be viewed as a robust filtering of the space of

single-point mutations.

The algorithm consists of four primary steps. First, each matrix is transformed

into a normalized improvement scoring matrix. This is accomplished by stan-

dardizing each matrix S using its standard deviation 𝜎2
S , which is estimated from

all its entries (i.e. a sample of all available scores). It is important to note that

estimating the mean is not necessary, as standardization is directly followed by

subtracting the values corresponding to wild-type amino acids in each column.

This results in the conversion of normalized scores to normalized improvement

scores. If the matrix is stochastic (i.e. the columns are probability vectors), it is

first converted to logarithmic space to operate on log-likelihoods rather than raw

probabilities. This implies that the obtained improvements are, in fact, normalized

log-odds ratios well-established in mutation effect prediction (Riesselman et al.,

2018). Additionally, if the matrix represents a property that must be minimized

rather than maximized (e.g. dimerization in our study), the signs of its values are

preliminarily flipped according to the provided sign gi.

In the second step, the normalized improvement scoring matrices are aver-

aged based on the properties pi they represent and assigned weights 𝛼i to gen-

erate property scoring matrices. For instance, if the algorithm is provided with

five matrices representing protein stability and two matrices corresponding to im-

munogenicity, these two groups are averaged separately using the assigned matrix

weights. Similarly, the property matrices are averaged in accordance with property

weights 𝛽i to produce a final scoring matrix. The final fourth step involves filter-

ing the entries of the final matrix by selecting only non-disruptive (i.e. those with

non-negative final normalized improvement scores) and non-identity (i.e. those

that are not trivial substitutions to themselves) mutations.

4.3 Construction of multi-point staphylokinase

mutations

After the space of all possible substitutions is reduced to a limited number of

reliable ones with Algorithm 1, we can finally focus on the optimization of SAK’s

affinity to plasmin. Since a significant enhancement of protein function can be

seldom achieved through a single-point mutation alone, we are interested in the

34



4.3. Construction of multi-point staphylokinase mutations

Algorithm 1: Consensus selection from single-point mutation matrices

Input: Wild-type protein sequence w ∈ {1, . . . , 20}L, mutation matrices
{Mi}ni=1 (Mi ∈ ℝ20,L), property labels p ∈ {1, . . . , m}n, property
signs g ∈ {–1, 1}m, matrix weights 𝜶 ∈ ℝn and property weights
𝜷 ∈ ℝm.

Output: Non-disruptive non-identity single-point mutations
M ⊂ {1, . . . , 20} × {1, . . . , L}.

/* Get normalized improvement scoring matrices */
1 for i← 1 to n do
2 S← Mi
3 if S is stochastic then
4 S← log S // Convert probability to score

5 S← giS // Invert scores if necessary
6 𝜎2

S ← stddev(flatten(S))
7 for r← 1 to 20, c← 1 to L do
8 sr,c ← (sr,c – swc,c)/𝜎2

S // Standardize and center at wild types

9 Si ← S

/* Get property scoring matrices */
10 for j← 1 to m do
11 I← {i ∈ {1, . . . , n} | pi = m}
12 Pj ← 1∑

i∈I 𝛼i

∑
i∈I 𝛼iSi

/* Get final scoring matrix */
13 F← 1∑m

j∈1 𝛽j

∑m
j=1 𝛽jPj

/* Select non-disruptive non-identity mutations */
14 M← {(r, c) ∈ {1, . . . , 20} × {1, . . . , L}|fr,c ≥ 0 ∧ r ≠ wc}
15 return M

construction of affinity-increasing multi-point mutants. Referring to Figure 3.1,

we identify GeoPPI as the best available multi-point ΔΔG predictor (Liu et al.,

2021). However, the original source code only includes a model trained on a

single-point part of the SKEMPI2 data. Therefore, we re-train the model on the

whole SKEMPI2 dataset.

First, we preprocess the dataset to minimize the inherent biases and achieve

indicative evaluation. In the first step, we balance the data by augmenting each

mutation with a reversed one, flipping the ΔΔG values. Then, we leave out 6%

of the data as a test set by selecting mutations from the 3BT1 A U, 2B11 A B, and

1KBH A B complexes, which are likely to be most similar to SAK-microplasmin.

While the first chosen interaction (3BT1 A U) involves urokinase, i.e. another plas-
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minogen activator, the other two (2B11 A B, 1KBH A B) are selected as the best

SAK-microplasmin matches by the iAlign and InterComp tools respectively (see

Section 3.3.2). We partition the remaining data using a stratified group 5-fold

split, ensuring a balanced distribution of ΔΔG labels across folds, with groups

determined by the “hold-out types” in the SKEMPI2 dataset. After replacing the

native random forest regressor with XGBoost (Chen and Guestrin, 2016), we se-

lect the best hyperparameters through cross-validation. This yields the best model

with a mean RMSE of 2.21 on ΔΔG predictions. While this cannot be directly com-

pared to the published GeoPPI performance because of the different data split, the

obtained value is in the expected range according to the publication. Finally, the

model demonstrates satisfactory performance on the test SAK-related data points,

with an RMSE of 0.91 and a Pearson correlation coefficient of 0.46. After we re-fit

the model to the whole dataset, we evaluate its performance on ΔΔG inference on

13 labeled mutations of staphylokinase. This independent test suggests the crucial

effect of re-training, as visualized in Figure 4.2 A.
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Figure 4.2: Staphylokinase-specific evaluation of GeoPPI. A) Evaluation of the GeoPPI
models on an independent set of 11 single-point and 2 double-point staphylokinase muta-
tions. The original GeoPPI model, trained on single-point data, predicts all mutations as
disruptive (positive ΔΔG), while the re-trained model identifies favorable mutations (by
correctly predicting negative ΔΔG). B) Pairwise mean column correlations of normalized
improvement scoring matrices for 20 SAK interface positions reveal distinct scoring pat-
terns of GeoPPI compared to the methods used for mutation pre-selection. Note also how
several dissimilar methods, such as PSSM (sequence-based evolutionary statistics) and
ProteinMPNN (structure-based evolutionary-agnostic deep learning), remarkably exhibit
a high positive mutual correlation.
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Whilst the validation of re-trained GeoPPI demonstrates promising scoring ca-

pabilities, its further application reveals some concerning behavior. First, we ob-

serve that the model is not robust to minor, seemingly negligible changes in the

SAK structure. For example, subtle side-chain optimization with the force-field

software FoldX (Delgado et al., 2019) often leads to opposite-sign ΔΔG predic-

tions by GeoPPI. Additionally, to directly compare GeoPPI to the previously se-

lected substitution pre-selection methods, we apply GeoPPI to score all single-

point mutations and obtain a corresponding mutation matrix. Figure 4.2 B shows

that the GeoPPI matrix does not positively correlate with the other ones. This

discrepancy could either indicate that its predictions are orthogonal, introducing

new information, or that they are unreliable. Biochemistry experts from Loschmidt

Laboratories notice that the top-ranked amino acids at 18 out of 20 positions are

aromatic residues (W, Y, F, or H), which are bulky and often risky to mutate to.

This observation significantly undermines the reliability of GeoPPI, even for single-

point substitutions. As a result, for the evaluation of multi-point mutants, we use

a traditional non-ML method Affilib (see Section 2.1.3).

4.4 Results

To select the final mutation candidates for wet-lab experiments, we begin by

choosing the most promising single-point substitutions, as discussed in Section 4.2.

We combine the methods from Table 4.1 using Algorithm 1. We set the weights

according to the contemporary understanding of SAK properties by experts at

Loschmidt Laboratories. The procedure results in the selection of 39 favorable

single-point mutations out of all 20 × 136 = 2720 possible ones. 17 of them cor-

respond to different substitutions at two interface positions, indicating their high

potential for affinity increase. Additionally, several from the other 22 mutations

exhibit very high final normalized improvement scores, suggesting themselves as

promising candidates. The simplicity of Algorithm 1 allows explaining the cho-

sen mutations by backtracking through the corresponding intermediate matrices.

For instance, although the mutation of glutamic acid at position 46 to serine is

suggested as an affinity-improver by both ProteinMPNN and MutCompute, it has

very low predictions for free SAK stability and is, therefore, not included in the

final pool. We create a simple interactive website that visualizes the selection,
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including intermediate steps for analysis3. As discussed in Section 4.3, the pre-

selected single-point mutations are further combined with Affilib to construct sev-

eral dozens of multi-point mutations.

The final obtained variants represent an effort to increase the thrombolytic ac-

tivity of staphylokinase by the application of the best currently-available machine-

learning methods. At the moment of writing, the selected candidates are under-

going the stage of experimental wet-lab validation. From the broader perspective,

our case study illustrates that while the state-of-the-art machine learning tools for

protein design enable robust pre-selection of single-point protein substitutions, a

reliable method for mutational PPI design is still critically lacking. This fact moti-

vates the remainder of the thesis. We aim to establish a machine-learning model

capable of reliably scoring single- and multi-point mutations for future rounds of

SAK design and other studies on protein–protein interactions.

3Protected link: https://anton-bushuiev.notion.site/Combination-of-mutation-
matrices-for-SAK-design-8d24de0292634db9bf08909be0030277
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CHAPTER 5
Preparing the datasets of

protein–protein interactions

In the previous chapter, we have identified the unreliability of the state-of-the-art

machine-learning models for the design of protein–protein interactions. We argue

that the primary cause of this unreliability lies in their dependency on the small

annotated data represented by SKEMPI2. While we expand on this argument in

the following Chapter 6, here we discuss the analysis and preparation of a large

unannotated dataset of protein–protein interactions extracted from the whole Pro-

tein Data Bank. We find that there is a weak contemporary understanding of the

composition and biases of the existing data of this kind. Consequently, we con-

duct an analysis that reveals significant limitations of their current utilization, as

exemplified by the typical validation of models on test data that is highly similar

to the training data.

5.1 Datasets of unlabeled protein–protein

interactions

5.1.1 Protein Data Bank

The Protein Data Bank (PDB) is a central resource for machine learning from

protein structures, consisting of entries obtained via X-ray crystallography, NMR

spectroscopy, or cryo-electron microscopy, submitted by biologists and biochemists

worldwide (Berman et al., 2000). With over 200,000 structures, the large subsets
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of the database have served to train the models discussed in Chapter 3. Each PDB

entry contains the 3D coordinates of one or more arranged molecules (primarily

proteins) and is associated with a four-letter code. For example, 2SAK corresponds

to the file which contains a crystal structure of staphylokinase.

It’s important to recognize that PDB contains non-trivial biases. Proteins of

significant practical interest have been studied more extensively, resulting in their

over-representation (Draizen et al., 2022). For instance, querying Protein Data

Bank for “Hemoglobin” returns nearly 600 structures that are indistinguishable for

typical machine learning purposes but, for example, arise from different species.

Not only is PDB non-uniform, but it’s also highly redundant. On average, a pro-

tein is represented over four times in the database (Burra et al., 2009). On the

other hand, Skolnick et al. (2012) showed that PDB is complete for single-domain

structures.

Similar conclusions have been drawn regarding the protein–protein interac-

tions represented in PDB. Through the application of iAlign to a representative

sample of 1,519 PPIs, Gao and Skolnick (2010b) demonstrated that PDB may

be complete for protein–protein interactions by containing 90% of the possible

native interfaces. Furthermore, the study revealed that there may be approxi-

mately 1,000 distinct interaction types, emphasizing the extreme redundancy of

the space. Besides that, about 80% of protein–protein interactions were shown

to form a dense network with a diameter of seven, meaning that the majority of

interfaces have highly homologous structures. These results offer promise in the

comprehensive statistical understanding of the vast human interactome, which is

represented by over 100,000 PPIs (Geng et al., 2019b).

5.1.2 Database of Interacting Protein Structures

The Database of Interacting Protein Structures (DIPS) was created with the goal of

extracting all protein–protein interactions from the Protein Data Bank (Townshend

et al., 2019). As far as we know, this is currently the only dataset of its kind and we

review it below. DIPS was initially constructed for the task of rigid-body protein–

protein docking by identifying all dimeric structures in PDB and extracting their

interfaces. In the case of DIPS, an interface was defined as a set of amino acids that

have at least one non-hydrogen atom within 6Å of a non-hydrogen atom belonging

to the other partner (hydrogen atoms are typically not observed in experimental
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structures). The extracted interfaces were then filtered to meet four criteria:

1. The underlying structure is the first model in a file and solved using X-ray

crystallography or cryo-electron microscopy at better than 3.5Å resolution.

2. The underlying chains are longer than 50 amino acids.

3. The buried surface area (BSA) of the interface is ≥ 500Å2.

4. None of the partnering proteins has over 30% sequence identity when aligned

to any protein in the DB5 docking dataset.

While (1) removes low-quality or trivially repeated entries and (2) ensures the

partners are proper proteins rather than peptides, (3) guarantees the selected in-

terfaces are large “enough” to form interactions. Condition (4) is task-specific and

designed to prevent data leakage with respect to the test set used in the study.

The described pre-processing resulted in the collection of 42,826 PPI structures.

Morehead et al. (2021) have further enriched the data with multiple kinds of per-

residue features resulting in DIPS-Plus.

5.2 Fast algorithm to compare protein–protein

interactions

Despite the active utilization of DIPS for machine learning, its composition and bi-

ases have never been analyzed due to the absence of scalable methods to compare

protein–protein interactions. In this section, we present the iDist algorithm which

enables large-scale analysis of protein–protein interface data.

5.2.1 Motivation

Despite the widespread use of DIPS in machine learning applications, its compo-

sition and inherent biases have never been addressed (Ketata et al., 2023; Wang

et al., 2023; Ganea et al., 2021; Morehead et al., 2021; Townshend et al., 2019).

Likewise, the quality of the train-test splits employed has never been examined.

By detecting strong biases in DIPS (see Section 6.2) and taking into account im-

portant facts about the composition of the underlying Protein Data Bank, we pose

three fundamental questions:
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Q1) What is the exact composition (i.e. redundancy, connectivity, and complete-

ness) of DIPS?

Q2) What is the quality of existing data splits of DIPS?

Q3) What is the relationship between PPIs in DIPS and SKEMPI2?

Answering the first question (Q1) is essential to gaining a comprehensive un-

derstanding of the applicability of the dataset, and to interpret the results derived

from training. Firstly, learning from redundant subsets of PDB has been demon-

strated to hinder machine learning performance by introducing biases towards

overrepresented proteins (Shroff et al., 2020). Consequently, the redundancy of

DIPS may cause machine learning to rely on biases rather than learning biochem-

ical features. Secondly, discovering that DIPS is highly connected may suggest

that creating leakage-free splits of DIPS is extremely challenging or impossible.

Likewise, a high incompleteness of DIPS may imply that training on the dataset

may not generalize to many other protein–protein interactions of practical inter-

est. Since train-test splits of DIPS have never been analyzed, answering the second

question (Q2) may provide a better understanding of the practical applicability of

the models trained on them. Additionally, the answer may indicate which data

split, if any, should be considered a standard benchmark. In general, it is crucial

to avoid having identical or highly similar entries in the training and test parts of

the data. Finally, answering the third question (Q3) is crucial for understanding

the potential of transfer learning from the large-scale, unannotated DIPS to the

small ΔΔG-annotated SKEMPI2 dataset for protein design.

Answering all three questions can be reduced to the comparison of protein–

protein interfaces. Indeed, (Q1) can be majorly answered by clustering the dataset,

and (Q2, Q3) only require measuring distances between the sets of interfaces.

Additionally, the primary interest of comparison lies in the detection of highly

related protein–protein interfaces rather than differentiation between various lev-

els of similarity. This is analogous to the problem of near-duplicate detection in

computer vision (Thyagharajan and Kalaiarasi, 2021). While image data can be

affected by issues such as copied or repeated images, minor variations in condi-

tions or rotations, the protein data can be similarly affected by small mutations,

conformational changes, or arbitrariness in the coordinate systems used in PDB

files. The detection of near-duplicate protein–protein interfaces can further serve
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to remove inherent biases from PPI data, reduce computational time by creating a

representative subset of cleaned data, and facilitate fair evaluations by construct-

ing appropriate, non-leaked data splits.

Furthermore, to be efficient, the desired method to compare protein–protein

interactions should be scalable to analyze the described large-scale DIPS. How-

ever, the available methods discussed in Section 3.3 are not scalable because they

require pairwise alignment. For example, iAlign is relatively fast, enabling approx-

imately three comparisons per second on a single CPU. Nonetheless, analyzing the

entire DIPS dataset would require 42, 8262 ≈ 1, 8 billion comparisons, resulting

in nearly two months of computational time when utilizing 128 CPUs in parallel.

Note that the time complexity of pairwise comparison of N interfaces may be de-

composed as O(r · N) + O(c · N2), where r and c are constants representing the

time needed to suitably represent a PPI and the time to compare two represen-

tations, respectively. Available alignment-based algorithms, therefore, have high

c and relatively low r. However, to enable large-scale comparison, one needs to,

conversely, significantly reduce c, which can be achieved by increasing the repre-

sentation time r.

5.2.2 iDist algorithm

In this work, we develop a simple scalable algorithm to measure the distance be-

tween protein–protein interfaces, which we further refer to as iDist. We reason

that by embedding PPIs in low-dimensional vector space we can minimize the

pair-wise complexity c by reducing comparison to a simple well-optimized dis-

tance measure on vectors d. Nevertheless, to be effective, representations should

satisfy certain properties. First, the algorithm should be invariant to the ordering

of partnering chains in PPIs. Second, it should be invariant to the ordering of

residues in chains, also known as topology independence. Importantly, the rep-

resentations should be roto-translationally invariant, guaranteeing that for any

interface I and any rigid transformation f ∈ SE(3), the given distance measure d

satisfies d(I, f(I)) = 0. This property can be seen as implicit alignment. Lastly,

the representations should be as rich as possible to effectively capture differences

between interfaces.

Algorithms 2 and 3 outline iDist, a fast method for comparing protein-protein

interfaces while satisfying the described properties. Algorithm 2 details the con-
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Algorithm 2: iDistEMBED
Input: Protein–protein interface I of n residues.
Output: vector representation of the interface zI .
/* Get coordinates, features, and binary partner information of residues */

1 X ∈ ℝn,3, F ∈ ℝn,d, p ∈ {0, 1}n ← get residues(I)
/* Embed residues */

2 for i← 1 to n do
3 Jintra ← {j ∈ {1, . . . , n} | pj = pi ∧ j ≠ i}
4 Jinter ← {j ∈ {1, . . . , n} | pj ≠ pi}

5 mintra ← 1
|Jintra |

∑
j∈Jintra fj · e–

∥xi–xj ∥22
𝛼

6 minter ← 1
|Jinter |

∑
j∈Jinter fj · e–

∥xi–xj ∥22
𝛼

7 hi ← 1
2fi + 1

4mintra – 1
4minter

/* Embed interface */
8 J0 ← {j ∈ {1, . . . , n} | pj = 0}
9 J1 ← {j ∈ {1, . . . , n} | pj = 1}

10 zI ← 1
2( 1
|J0 |

∑
j∈J0 hj + 1

|J1 |
∑

j∈J1 hj)

11 return zI

Algorithm 3: iDist
Input: Two protein–protein interfaces I and J .
Output: Distance ≥ 0.

1 zI ← iDistEMBED(I)
2 zJ ← iDistEMBED(J )
3 return ∥zI – zJ ∥2

version of a protein-protein interface I into a vector representation zI . Initially,

the features of the interface X, F and p are extracted. The residue coordinates X

are determined by the positions of the C𝛼 atoms. Next, the residue vector features

F are initialized with simple 20-dimensional one-hot encodings of amino acids.

We also experiment with ESM-1 features (see Chapter 3), but get slightly lower

performance. We observe that the reduced performance is attributed to ESM-1 bi-

asing the comparison towards entire chains rather than interfaces. Subsequently,

each residue is associated with a binary label based on the arbitrarily chosen order

of interacting chains, forming the vector p.

In the following step, detailed in lines 2-7, the hidden representations hi for

each residue i are constructed. The key idea behind the approach is that each
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residue receives messages from other residues within the same chain Jintra as well

as from the other chain Jinter. Inspired by (Dauparas et al., 2022), the messages

are represented by exponential radial basis functions (with 𝛼 set to 16). Each node

averages intra- and inter-messages into contact patterns mintra and minter. The

representation hi is then obtained by averaging the difference between mintra and

minter (we reason that the difference may capture the nature of complementarity

of biochemical interactions), followed by averaging with the initial features.

Lastly, in steps 8-11, the interface representation zI is derived by averaging

the hidden features across chains and then across the interaction. As described

in Algorithm 3, iDist then simply computes the Euclidean distance between two

representations zI and zJ to compare two interfaces I and J .

5.2.3 Validation of the proposed iDist algorithm

To evaluate the performance of the proposed iDist algorithm, we benchmark it

against the alignment-based IS-score of iAlign (Gao and Skolnick, 2010a) de-

scribed in Section 3.3. This approach is well-justified by common practices. For

example, Foldseek was evaluated by the comparison with TM-score (van Kempen

et al., 2022). As IS-score is the adaptation of the latter to protein–protein inter-

faces, the benchmarking of iDist against the IS-score is a natural choice. For the

evaluation, we randomly sample 100 PDB codes from DIPS and select all PPIs from

the corresponding files, resulting in 1646 interfaces.

We compute all 1646×1646 = 2, 709, 316 pairwise distances between sampled

interfaces with both iDist and iAlign. The pairwise computation of IS-score on 128

CPUs in parallel took 2 hours, consistent with the estimate mentioned above, while

the same calculation with iDist took 15 seconds. Figure 5.1 A displays the joint

histogram, indicating a significant correlation between the pairwise comparisons

with iDist and iAlign (𝜌Pearson = –0.38, 𝜌Spearman = –0.36). The discrepancy be-

tween the methods increases as the IS-scores decrease, implying that the variance

of iDist increases when the interfaces do not align well. This observation is in

line with the general observation by LeCun and Misra (2021): “To paraphrase Leo

Tolstoy’s Anna Karenina: “Happy families are all alike; every unhappy family is

unhappy in its own way.” This applies to any family of high-dimensional objects,

it seems.” Indeed, unalignable interfaces correspond to a wide range of distances,

whereas the distance spectrum narrows as the alignment improves. Figures 5.1
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iDist: 0.0035
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Figure 5.1: Performance of iDist. A) Joint log-scale histogram displaying pair-wise IS-
scores and iDist values of 1646 sampled PPI interfaces. The IS-score varies between 0 and
1, with high values corresponding to well-alignable interfaces (1 for identical interfaces)
and low values corresponding to poorly-alignable ones. The iDist varies between 0 and
0.3 with high values corresponding to structurally-distant interfaces and low values corre-
sponding to similar ones (0 for identical interfaces). Figures (C, D, E) depict samples from
regions where the methods correlate, while (B) shows an example of disagreement. Each
figure displays two interfaces colored by amino acid types, with one protein’s palette in
reddish hues and the other one in greenish. B) Ambiguous comparison. The IS-score cor-
responds to the expected value of the alignment of two random PPIs, while iDist suggests
high similarity due to the identity of several fragments of chains M and N (note the Y-like
green shape and its further continuation) and similar composition of helices belonging
to E and D (similar combination of reddish colors). In fact, the two interfaces represent
different interaction modes of the same two chains in a big symmetric complex. C) Un-
related interfaces. D) Interfaces on the edge of being considered near-duplicates. The
interactions are obviously related, but the geometry and primary structure differ at every
local fragment. E) Near-duplicates.
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B-E illustrate the examples of comparison.

Next, we evaluate the retrieval capabilities of iDist by taking IS-score values

as the ground-true labels of relevance. As such, we select a threshold of IS-score

𝜏IS–score and define comparisons with IS-score greater than 𝜏IS–score as relevant

items, or hits. Then, we select a similar threshold for iDist 𝜏iDist and use standard

information retrieval metrics to evaluate the performance – precision and recall.

As, in this work, we are primarily interested in near-duplicate detection, we set

𝜏IS–score = 0.7 which corresponds to a separate mode in a marginal distribution of

IS-score in Figure 5.1 A (see also the difference between Figures 5.1 B, D and Fig-

ure 5.1 E). By fixing 𝜏iDist = 0.04 and considering the (I,J ) interface pair a hit if

iDist(I,J ) < 𝜏iDist, we obtain a fast near-duplicate detector with 0.99% precision

and 0.97% recall with respect to IS-score (see the dashed lines in Figure 5.1 A).

5.3 Data analysis and preparation

In this section, we apply the proposed iDist algorithm to answer the questions

raised in Section 5.2.1. We begin by answering (Q1) with the analysis of the

composition of DIPS. Then, we provide an answer for (Q2) demonstrating that the

existing splits suffer from data leakage. Finally, we show that DIPS and SKEMPI2

are almost disjoint, answering (Q3). We conclude the section by constructing our

own data splits with the aid of iDist.

5.3.1 DIPS is highly-connected, redundant and not complete

To analyze the composition of DIPS, we first calculate the pairwise distances be-

tween all PPIs using iDist. We construct a near-duplicate network of DIPS by

connecting two interfaces if their distance is lower than 𝜏iDist = 0.04, as discussed

in the previous section. This results in a graph with 8.5K components, while the

largest component comprises 36% of the interfaces. Increasing 𝜏iDist to 0.06 re-

sults in 84% of the interfaces forming a single component, indicating the high

connectivity of the PPI space in DIPS. We then iteratively remove entries with

near-duplicates (measured by the same 𝜏iDist = 0.04). This reduces the size of

DIPS to 22% of its initial size. For instance, the B-D interaction from 3P9R shown

in Figure 5.1 E has 79 near-duplicates from 33 PDB files, while the most abundant

interface is instantiated in the interaction between chains C and D in 1YOV, having
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592 near-duplicates. These observations additionally suggest that DIPS is highly

redundant.

We further analyze the relationship between PPIs in DIPS and those in SKEMPI2.

We find that DIPS contains only 7 out of the 348 interfaces present in SKEMPI2,

meaning that 98% of the interfaces did not pass one of the four filtering criteria

described in Section 5.1.2. While the filtering source code of DIPS is not available,

we hypothesize that condition 3 (BSA ≥ 500Å2) is either erroneous or too strict

for practical purposes beyond protein–protein docking. For example, calculating

the buried surface area of the interfaces formed by chains B and C from 3SE3 and

A, B from 4G0N with the independent software dr sasa, we obtain values higher

than 500Å2, while the interactions are not present in the DIPS file comprising en-

tries that passed the filter (Ribeiro et al., 2019). Overall, the fact that DIPS and

SKEMPI2 are almost disjoint indicates the incompleteness of the former.

The obtained results are in agreement with those by Gao and Skolnick (2010b).

While searching for structurally-related interfaces in a smaller sample of PDB in-

terfaces with iAlign led to the hypothesis that the space of PPIs in PDB is highly-

connected, redundant, and close to complete, applying iDist to a contemporary

large-scale DIPS similarly suggests that it is connected and redundant, however

not complete due to its seemingly too strict construction. Additionally, the ob-

tained order of interface redundancy (78%) interestingly agrees with the above-

mentioned fact that an average protein is represented in PDB over four times.

5.3.2 Existent data splits do not measure generalization

Previous research conducted on machine learning from DIPS has not given much

importance to data splitting and its analysis. In this study, we aim to address this

gap by utilizing iDist to evaluate the quality of available splits. For the analysis,

we first find the nearest neighbor of each test PPI in the training fold and consider

it to be a leak if the distance falls below the near-duplicate threshold 𝜏iDist = 0.04.

Our findings indicate that the random split used in DIPS-Plus results in the test set

with 88% of leaks (Morehead et al., 2021). Meanwhile, the EquiDock split, based

on protein families of interacting partners, has 53% of leaks (Ganea et al., 2021;

Ketata et al., 2023). This may pose a significant limitation on the validation and

benchmarking of well-designed models. Figure 5.1 E illustrates a leakage example,

with the top interaction being used for training and the bottom one for the testing
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of EquiDock and DiffDock-PP. While the protein classification taxonomy used in

the study is not specified, we speculate that the high leakage ratio may be caused

by sequence-based splitting pitfalls discussed in Section 3.3, as family definitions

are typically based on sequence similarity (Andreeva et al., 2014). Moreover,

previous studies have demonstrated that even different proteins can form almost

identical interactions, indicating that partner-level splitting may be insufficient

(Gao et al., 2023).

Although we do not employ iDist to analyze the small space of protein–protein

interactions in SKEMPI2, it is worth noting that the current methods of splitting

mutations on these interfaces are often näıve, potentially leading to data leak-

age as well. For practical purposes, one is interested in estimating the perfor-

mance of a ΔΔG predictor on unseen interfaces. This corresponds to the inde-

pendent downstream application of the method to the screening of a particular

protein–protein interaction such as staphylokinase–microplasmin. SKEMPI2 of-

fers a clustering of interfaces specifically designed for this purpose, as discussed in

Section 4.1.2. However, these annotations are often disregarded in favor of stan-

dard k-fold cross-validation on the level of mutations (Wang et al., 2020; Zhou

et al., 2020a). Inspired by the fact that some complexes in SKEMPI2 are highly

related, Liu et al. (2021) constructed their own alternative to the clustering of

complexes provided in SKEMPI2, which is, however, not publicly available.

5.3.3 Constructed datasets

To achieve efficient deep learning from protein–protein interactions, we prepro-

cess the DIPS and SKEMPI2 datasets. We clean the data using our near-duplicate

detector and divide each dataset into two parts for training and validation. In this

study, we do not require a conventional three-part split (training, validation, and

test) as we explore the generalization between DIPS and SKEMPI2.

First, we clean the DIPS dataset by applying iDist with the standard threshold

𝜏iDist = 0.04 to iteratively detect and remove near-duplicate entries, as described

previously. We then divide the remaining data according to (Ganea et al., 2021).

Note that after the cleaning, only the representative interfaces remain, and there-

fore, the split does not introduce data leakage as identified previously considering

the raw data. In total, the training and test portions of DIPS contain 8675 and 497

protein–protein interfaces, respectively.
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Figure 5.2: Statistics of constructed datasets. The first row of histograms displays
the overall amino acid composition of the interfaces, while the second row shows the
distribution of interface sizes, i.e. total numbers of residues. The third row illustrates the
distributions of ΔΔG labels associated with all annotated interfacial mutations.

Next, we extract all protein–protein interfaces from SKEMPI2 that contain at

least one annotated mutation, i.e. have at least one associated ΔΔG label. To

ensure consistent data representation, we extract interfaces from SKEMPI2 ac-

cording to the DIPS interface definition. Consequently, not all available annotated

mutations are included in the obtained interfaces. Furthermore, in this study, we

only consider single-point mutations, which further reduces the number of uti-

lized labels. We divide the data based on the distribution of ΔΔG labels and the

SKEMPI2 hold-out types that cluster interfaces into biologically and structurally

related groups. Specifically, we apply a stratified group 5-fold split to the whole

SKEMPI2 dataset, dividing all mutations into five parts with similar distributions

of ΔΔG labels and complexes with the same hold-out types in separate groups.

We then select four of the mutation groups to define the interfaces for the training

part and use the remaining one for the validation part. In total, the training part

of SKEMPI2 contains 592 interfaces and 2253 annotated single-point mutations,

while the test part comprises 23 interfaces with 122 mutations.

Figure 5.2 displays the statistics of the resulting datasets. Interestingly, the

amino acid composition of interfaces in the training and validation portions of
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DIPS is nearly identical, despite the removal of data leakage. We attribute this

phenomenon to the identified extreme connectivity of DIPS. In contrast to the

high similarity between the training and validation portions of DIPS, SKEMPI2

exhibits a distinct distribution. Moreover, in line with our hypothesis regarding

overly strict DIPS filtering for interfaces with large buried surface areas, SKEMPI2

contains interfaces consisting of a smaller number of residues on average.
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CHAPTER 6
Self-supervised learning from

protein–protein interactions

In recent years, deep learning has significantly transformed the field of protein

science, offering solutions to several fundamental biochemical problems, such as

protein folding and inverse protein folding (Jumper et al., 2021; Dauparas et al.,

2022). However, despite active research in these areas, as well as, for exam-

ple, de novo protein design or rigid-body docking, there has been limited focus

on understanding the statistical principles governing protein–protein interfaces.

In contrast, many problems related to protein–protein interactions, such as ΔΔG

prediction or docking pose scoring, have been studied separately, undergoing a

similar gradual development over more than a decade Geng et al. (2019b). The

resulting task-specific models often suffer from instability or poor generalization

due to the small sizes of their underlying datasets (Jin et al., 2023; Geng et al.,

2019b), an issue encountered in our staphylokinase design case study described

in Chapter 4.

Inspired by the successes of deep learning discussed in Chapter 3 and the avail-

ability of large-scale protein–protein interaction data analyzed in Chapter 5, we

aim for the establishment of a foundational model for protein–protein interfaces.

Specifically, we hypothesize that self-supervised training using a vast amount of

unlabeled protein–protein interactions can lead to a general understanding of the

statistical principles governing the interfaces. Consequently, a model trained in

this manner could potentially generalize across various downstream problems,

unifying task-specific approaches that tend to suffer from the constraints of lim-
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ited annotated data.

In the subsequent sections, we present our approach, a self-supervised geo-

metric deep learning model, which we refer to as PPIFORMER. We first discuss

the data representation, model architecture, and masking-based training proce-

dure. Given that the primary focus of our work is protein design, we also explain

how the model can be adapted for the task of ΔΔG prediction. We conclude this

chapter by demonstrating the proof of concept for the proposed approach. Specif-

ically, we show that (i) PPIFORMER , by learning the biochemical principles gov-

erning protein–protein interactions, can generalize to statistically distinct interac-

tions drawn from an independently collected dataset, and (ii) the representations

emerging in PPIFORMER capture protein-design principles, enabling unsupervised

ΔΔG scoring.

6.1 PPIFORMER

Hidden representation

A

B1C78

Preprocess
and mask

Input PPI Input representation Probabilities

Input mutation
YB62A

Encode Classify

Figure 6.1: Training and inference of PPIFORMER. The black arrows in the pipeline de-
pict the model’s architecture, while the red arrows demonstrate the self-supervised train-
ing process for classifying missing amino acid side chains. A single training step begins
with randomly sampling a protein–protein interaction (e.g. A-B from 1C78). After convert-
ing the interface into a point-cloud representation, the features defining the side chain of
a randomly chosen node (e.g. 62 from chain B) are masked (shown by the grey point).
The model subsequently learns to classify the masked type of the amino acid by acquiring
an appropriate hidden representation of the whole interface. The blue arrows illustrate
the masked-marginals regime of ΔΔG inference. To predict the mutational effect of sub-
stituting tyrosine (Y) with alanine (A) at protein position 62, the corresponding position
is masked, and the probabilities are predicted using the trained model. Finally, the ΔΔG
is estimated according to the derived probabilities.
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6.1.1 Data representation

In order to apply deep learning to protein–protein interfaces it is crucial to se-

lect an appropriate representation. In this study, we represent an interface as an

oriented point cloud of residues, meaning that the smallest unit considered is an

entire amino acid. We believe that abstracting residues from their internal atomic

structure allows capturing the inherent flexibility of proteins. Within a living cell,

proteins continuously undergo fluctuations due to thermal motions, and the avail-

able crystal structures from the Protein Data Bank represent their local energetic

minima. In line with this intuition, relevant studies seem to suggest that more

fine-grained representations provide only minor improvements at best for a range

of tasks (Wang et al., 2023). Meanwhile, residue-level representation has proven

effective in some of the most prominent applications (Jumper et al., 2021; Watson

et al., 2022). Although we consider the detailed atomic structure of interfacial

side chains to be flexible, we assume the protein backbone to be relatively rigid

(Townshend et al., 2019).

Formally, a protein-protein interface consisting of n residues is represented as

a point cloud X ∈ ℝn,3 of C𝛼 atoms. The points are further associated with type-0

and type-1 features (e.g., invariant and equivariant under SE(3) transformations),

denoted as F0 ∈ ℝn,21 and F1 ∈ ℝn,3. For the purpose of this study, the features

are chosen to be minimalistic. Specifically, the type-0 features are set to:

f0,i = [partner(i), one hot(i)] ∈ ℝ21, (6.1)

where partner(i) returns 0 or 1, depending on which of the two interacting chains

the ith residue belongs to, and one hot(i) returns the one-hot encoded amino acid

type. The type-1 features capture the orientation of the corresponding side chains:

f1,i = C∗
𝛽
(i) – C𝛼(i) ∈ ℝ3. (6.2)

The C𝛼(i) vector is represented by the alpha-carbon coordinates of the ith residue,

and C∗
𝛽
(i) corresponds to the coordinates of a virtual beta-carbon, calculated based

on idealized geometry:

b = C𝛼 – N, (6.3)

c = C – C𝛼 , (6.4)

a = b × c, (6.5)

C∗
𝛽

= –0.58273431a + 0.56802827b – 0.54067466c + C𝛼 , (6.6)
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where C and N represent the other corresponding backbone atoms (Dauparas

et al., 2022). Virtual beta-carbons provide an effective approximation of real ones

and offer several advantages. First, they resolve the representation of glycine, the

amino acid that lacks a beta-carbon. Second, virtual beta-carbons are beneficial

for the proposed self-supervised learning schema discussed below.

An interfacial point cloud is additionally associated with an auxiliary undi-

rected k-NN (k-nearest neighbors) graph G = (V, E). In detail, |V | = n, where

n is the number of residues in the interface, and two nodes i, j ∈ V are consid-

ered adjacent if at least one of them is among the k nearest neighbors of the other

one with respect to coordinates X. In summary, each protein–protein interface is,

therefore, characterized by residue positions X, their associated features F0, F1,

and a k-NN graph G.

6.1.2 Architecture

Representing a protein–protein interface as a point cloud allows utilizing the po-

tential of modern geometric deep learning. Specifically, we employ SE(3)-Transformer

proposed by Fuchs et al. (2020) as the foundation of our model. SE(3)-Transformer

operates as a point cloud to point cloud encoder and, like most contemporary

deep-learning architectures, is composed of L equivariant blocks (or layers). In

the context of SE(3)-Transformer, the features associated with the points of a point

cloud are referred to as fibers. Formally, a fiber is a set of all type-0, type-1, . . . ,

type-l features associated with a point. One block of SE(3)-Transformer, therefore,

maps fibers to new fibers while preserving SE(3)-equivariance. The versatility

of the fiber-based representation is a significant advantage of SE(3)-Transformer

compared to some other state-of-the-art SE(3)-equivariant approaches. For exam-

ple, the EGNN by Satorras et al. (2021) can serve a similar purpose. However,

it is not immediately apparent how to apply EGNN to equivariant learning from

type-1 features rather than solely from the type-0 ones. Additionally, there exist

other methods that go in line with SE(3)-Transformer, such as recently developed

Equiformer (Liao and Smidt, 2022). Nevertheless, in this study, we proceed with

the former approach due to its proven well-established applications (Watson et al.,

2022).

As the name implies, SE(3)-Transformer is heavily influenced by the revolution-

ary Transformer architecture (Vaswani et al., 2017). In fact, SE(3)-Transformer
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modifies the self-attention block from the original Transformer to achieve equivari-

ance. The core concept behind constraining the Transformer block to be an SE(3)-

equivariant function involves attaining equivariant key, query, and value matrices

K, Q, V. This can be accomplished by restricting the linear projections WK, WQ, WV

used in the Transformer to the combinations of equivariant basis functions, which

consequently leads to equivariant self-attention. For a more comprehensive under-

standing, we recommend the well-written original paper by Fuchs et al. (2020).

Despite its name, SE(3)-Transformer is conceptualized and implemented as a

graph neural network (see (Joshi, 2020) for the close relationship between the

Transformer and graph neural networks). This means that, due to the constraints

of equivariance, self-attention is, in fact, realized as a point-wise aggregation

rather than a single series of large matrix multiplications updating all tokens at

a time. Although this results in higher computational demands, it also offers the

advantage of easy adaptation of self-attention to a graph structure (i.e., message

passing). This can significantly reduce the quadratic computational complexity

of self-attention and introduce a better inductive bias of locality by utilizing an

appropriate graph structure.

Thus, to learn from a protein–protein point cloud specified by coordinates

X ∈ ℝn,3, type-0 features F0 ∈ ℝn,21, type-1 features F1 ∈ ℝn,3 and a k-

NN graph G, we utilize a series of SE(3)-Transformer blocks f (i) with the goal of

achieving the final invariant point embeddings H ∈ ℝn,dout:

H(1)
0 , H(1)

1 , . . . , H(1)
deg = f (0)(X, G, F0, F1), (6.7)

H(i+1)
0 , H(i+1)

1 , . . . , H(i+1)
deg = f (i)(X, G, H(i)

0 , H(i)
1 , . . . , H(i)

deg), (6.8)

H := H(L)
0 , (6.9)

where the dimensions and degrees of f (i) are set appropriately. A H(i)
l matrix

contains hidden type-l features given by the output of the ith SE(3)-Transformer

block. Consequently, the deg value is a hyperparameter of the architecture defin-

ing the maximum hidden feature type (known as degree), as well as the dhidden

dimension specifying the common domain ℝdhidden for all hidden features in H(i)
l

for 1 < i < L and any l. We further refer to the encoder function given by the

above equations shortly as the SE(3)-encoder f and due to the properties of SE(3)-

Transformer it has the desired property of invariance to any rigid transformation
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given by a rotation matrix R ∈ ℝ3,3 and a translation vector t ∈ ℝ3:

f : X, G, F0, F1 ↦→ H, (6.10)

f(X, G, F0, F1) = f(XR + 1tT, G, F0, F1), (6.11)

where 1 ∈ ℝn,1 is a matrix full of ones. In plain words, the encoding process

consists of lifting the initial type-0 and type-1 features to a higher-dimensional

and higher-degree space, “rethinking” their abstract representation by applying

several other layers, and finally obtaining invariant high-dimensional per-point

features H by extracting the type-0 output.

6.1.3 Training and inference

In this section, we describe the main motivation and advantage of PPIFORMER –

leveraging a vast amount of annotated data, potentially encompassing all crystal-

lized protein–protein interactions. As discussed in Chapter 2, the primary chal-

lenge in protein design lies in the non-additive combinatorial nature of muta-

tions, which is nearly impossible to learn from limited data. Considering that the

best available dataset of annotated interfacial mutations, SKEMPI2, contains only

seven thousand entries, its potential for training rather than validation is ques-

tionable. The review by Geng et al. (2019b) and our case study on staphylokinase

design highlight the unreliability of state-of-the-art methods fitted to SKEMPI2.

In this work, we propose to overcome the data scarcity constraint by generating

millions of artificial training examples of a nature similar to the task of mutation

effect prediction. We reason that training a model to complete missing amino-acid

side chains in protein–protein interface structures is similar to predicting muta-

tional effects, as both tasks require understanding the principles of amino acid

substitutions. For this artificial task, we can generate a virtually unlimited num-

ber of training examples by masking random combinations of interfacial residues

and training the model to classify them. Furthermore, we believe that masked

modeling can give rise to generally-powerful neural representations of protein–

protein interactions, as the approach has revolutionized the fields of natural lan-

guage processing and computer vision, as well as protein sequence understanding

(Balestriero et al., 2023; Meier et al., 2021).

Formally, we define masked modeling as the task of predicting the amino acid

types (i.e. side chains) of residues with masked features. The first step to generate
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a single training example involves sampling a random protein–protein interface

and randomly selecting one of its partnering chains p ∈ {0, 1}. Then, we sample a

set of indices to mask, M ⊂ {i ∈ {1, . . . , n} | partner(i) = p}. This implies that we

only mask amino acids from one partner at a time, which corresponds to a practical

scenario of protein design where one protein is typically fixed (e.g. microplasmin)

while the other one (e.g. staphylokinase) is being designed.

After sampling the set M, we mask the corresponding features. Specifically, we

mask the type-0 features F0 to obtain F∗0, defined as follows:

f0,i =


[𝟙partner(i)=p, 0] if i ∈ M,

[𝟙partner(i)=p, f0,i[2 :]] if i ∉ M,
(6.12)

where 𝟙partner(i)=p is an indicator that returns 0 or 1, ensuring training invariance

to partner choice. In other words, we mask the one-hot amino acid types f0,i[2 :]

of selected residues with zeroes and leave the rest unchanged, additionally swap-

ping partner information to have the interpretation of “belongs to/does not belong

to the same chains as the masked residues”. It is important to note that we do not

mask type-1 features, taking advantage of setting them to virtual beta-carbons.

Using the unmasked real beta-carbons could result in data leakage, as they may

contain amino acid-specific information. In contrast, virtual beta-carbons solely

represent the backbone structure of a protein, remaining agnostic to specific side

chains.

To train the model from masked representations, we define a simple classifier

to predict amino acid types of masked residues:

g : H ↦→ P, (6.13)

where H contains the final hidden features of the points and P ∈ ℝn,20 is a prob-

ability matrix defining the predicted categorical distribution for each point in the

corresponding rows. The classifier acts point-wise with pi = softmax(gh(hi)),

where gh : ℝdout → ℝ20 is a multi-layer perceptron and softmax is an ordinary

softmax function such that softmaxj(x) = exj∑20
k=1 exk

.

Finally, training a model from one example includes sampling a random protein–

protein interface given by X, G, F0, F1, masking type-0 features F0 to obtain F∗0 and

making a forward pass to obtain probabilities

P = g(f(X, G, F∗0, F1)), (6.14)
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where g is the classifier given by Equation (6.13) and g is the SE(3)-encoder given

by Equation (6.12). All the parameters in the underlying SE(3)-Transformer blocks

and the classifier are then updated with a gradient descent step minimizing the

cross-entropy loss on masked amino acid types:

L = –
∑︁
i∈M

20∑︁
j=1

log (pij)𝟙j=wt(i), (6.15)

where wt(i) returns the index of a wild-type amino acid (i.e. class) of the ith

residue and pij is the corresponding predicted probability of the wild type. The

loss is thus minimized when the model correctly predicts all the masked wild-

type amino acids given their structural neighborhoods. In practice, we train the

model with mini-batches of masked interfaces and for each epoch we sample new

masked indices M for each interface, which is known as dynamic masking (Liu

et al., 2019).

We expect that the model trained in the described way, can be practically useful

for a variety of downstream tasks. In this study, we concentrate on protein design

applications and demonstrate how the PPIFORMER method can be employed to

predict ΔΔG. To estimate the effect of a single-point mutation, one can initially

predict two probabilities corresponding to wild-type and mutated amino acids, fol-

lowed by combining them with an appropriate binary function that captures their

relative plausibility. The log-odds ratio heuristic, which is the difference between

corresponding log-likelihoods, has been shown to accurately predict the effects of

mutations across various domains (Riesselman et al., 2018). Therefore, we em-

ploy a well-established additive log-odds model to predict the effects of mutations

in this work. Formally, given a multi-point mutation specified by the index set of

mutated residues M ⊂ {1, . . . , n} (i.e. points in a point cloud representation) and

a function mut : M→ {1, . . . , 20} returning the classes of mutations, we estimate

the mutation effect as following:�ΔΔG =
∑︁
i∈M

log(pi,wt(i)) – log(pi,mut(i)). (6.16)

Note that the underlying predicted probabilities pi,j in Equation (6.16) can be

predicted in several meaningful ways (Meier et al., 2021). Namely, in this work

we consider two possibilities. In one scenario one can mask the wild types and

estimate ΔΔG solely from the context. In contrast, one can also estimate ΔΔG
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accounting for the wild types. Formally, in the first case the predictions can be

obtained based on the masked type-0 features F∗0 and in the second one using

the unmasked input F0. The former scenario better corresponds to the concept of

masked training but requires performing one forward pass with different F∗0 for

each unique M, rather than a single pass for any possible mutation on the same

interface. Further, we refer to the probabilities predicted based on the masked

features as masked marginals, while the wild-type-based predictions are referred

to as wild-type marginals. It is important to note that in both scenarios the model

does not require a mutant structure. It may offer several orders of magnitude

faster ΔΔG prediction compared to state-of-the-art methods that rely on force-

field simulations to build the mutated structure first.

6.2 Experimental setup

We evaluate the potential of our PPIFORMER using two performance measures.

First, we assess the quality of self-supervised training by measuring the standard

20-class accuracy, i.e. the proportion of correctly classified masked amino acids.

Additionally, we analyze the model’s performance on the task of ΔΔG inference us-

ing zero-shot predictions, which means that we do not employ any further training

and utilize PPIFORMER trained in a purely self-supervised way. We leave fine-

tuning experiments for future work. To assess the model’s performance on ΔΔG

inference, we calculate Pearson and Spearman correlation coefficients between

the predicted values and the values obtained in wet-lab experiments. The Pearson

correlation measures linear dependency between values and reflects the correct-

ness of the signs of predicted mutation effects, while the Spearman correlation

measures the model’s ability to order mutations correctly.

The most critical hyperparameter for training and performance analysis is the

dataset choice. As described in Section 5.3.3, we consider four data partitions:

training and validation parts of the large unannotated DIPS and training and

validation folds of small ΔΔG-annotated SKEMPI2. We observe that mining the

DIPS dataset alone does not result in generalization to other data. Specifically,

we find that achieving nearly 80% validation accuracy is easily possible when

using the training and validation portions of DIPS for training and validation, re-

spectively. However, subsequent accuracy measurement on the training part of

SKEMPI2 yields poor accuracy below 10%, indicating strong overfitting. There-
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fore, to measure the practical usability of the trained model, we use the entire

DIPS dataset for training, and the training and validation parts of SKEMPI2 for

validation and testing, respectively.

The other important hyperparameter of self-supervised learning via masked

modeling is the masking regime, including the number of masked residues for

each sampled interface. For the proof-of-concept purpose of this work, we sim-

ply mask one residue at a time (i.e. |M | = 1) with 100% probability, and leave

the advanced training for future work. Accordingly, we only consider single-point

mutations from SKEMPI2 for evaluation. To select the other hyperparameters of

PPIFORMER for training, we partially explore the grid given by Table 6.1, evaluat-

ing 28 combinations in total.

We implement PPIFORMER in Python, primarily leveraging PyTorch, PyTorch

Geometric, PyTorch Lightning, and Graphein (Paszke et al., 2019; Fey and Lenssen,

2019; Falcon and The PyTorch Lightning team, 2019; Jamasb et al., 2022). For

training, we use the Czech supercomputer Karolina. For all hyperparameter con-

figurations, we train a model for 24 hours on 8 NVIDIA A100 Tensor Core GPUs

utilizing data parallelism. In 24 hours, a model can make up to 32,000 training

steps, depending on the hyperparameter configuration.

6.3 Results

6.3.1 Ablations

We analyze the performance of all 28 selected instances of PPIFORMER with differ-

ent hyperparameters and choose the best one according to manual inspection of

validation accuracy and correlations. Interestingly, we find that setting the number

of considered nearest neighbors k to 10 results in the highest validation accuracy,

outperforming both k = 5 and k = 20. Although the combinations of the learning

rate, batch size, weight decay, and other parameters that define model complex-

ity do not have an additive effect on the model’s performance, the optimal one is

achieved with a learning rate of 10–3, a batch size of 8 masked protein–protein

interfaces per GPU, and disabling weight decay. The optimal combination of 7 lay-

ers and 8 heads is consistent with some of the best-established applications of the

SE(3)-Transformer architecture (Fuchs et al., 2020; Watson et al., 2022). Overall,

the best model contains 2,340,756 parameters. The dependency of the model’s
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Hyperparameter Values

k neighbors {5, 10, 20}
Learning rate {10–4, 10–3, 20–3, 50–3, 10–2}
Batch size per GPU {2, 4, 8, 16}
Weight decay {0, 10–5, 10–1}
# SE(3)-Transformer layers L {5, 7}
# SE(3)-Transformer heads {2, 4, 8}
Hidden degree deg {2, 3}
Hidden dimension dhidden {4, 32}
# Classifier layers L {1, 2}
Output dimension dout {128, 256, 512}
ΔΔG inference kind {wt-marginals, masked-marginals}

Table 6.1: Investigated hyperparameter space of PPIFORMER. The selected combina-
tion of hyperparameters is highlighted in bold.

ΔΔG scoring capabilities on the inference type is particularly interesting. We ob-

serve that the masked-marginals regime leads to consistently better performance.

We will explore this phenomenon in future research. Below, we always assume

masked marginals when discussing the results. For further evaluation, we select a

model with the optimal hyperparameter configuration described above at training

step 12095 (see Figure 6.2 A) and refer to it simply as PPIFORMER. This model

achieves the validation accuracy of 0.2 and 𝜌Pearson = 0.25, 𝜌Spearman = 0.28.

6.3.2 PPIFORMER is capable of generalization under

distribution shift

Training and validating machine-learning models on different parts of the same

dataset may not accurately represent real-world performance, particularly when

a natural schema for data partitioning is lacking. This is due to the potential in-

fluence of biases introduced during data preparation on validation performance.

Consequently, in this study, we employ an extreme validation strategy by mea-

suring generalization with respect to an independently collected dataset with a

shifted distribution (Wiles et al., 2021), i.e. generalization from DIPS to SKEMPI2.

Under such a stringent evaluation setup, the only way a model can achieve satis-

factory performance is by effectively solving the task while minimizing reliance on

potential biases.

Figure 6.2 A demonstrates that PPIFORMER is capable of robust generalization,
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Figure 6.2: PPIFORMER generalizes through capturing biochemical principles. A)
Learning curves of PPIFORMER with selected hyperparameters. The model was trained
in a self-supervised way to predict missing amino acids on the whole DIPS dataset (blue
curve). The purple and orange curves correspond to the validation on the training part
of SKEMPI2, an independently-collected dataset with the shifted distribution. The orange
curve illustrates the emerging capability of the model to score mutations, while not be-
ing explicitly optimized for the task. B) Confusion matrix for side-chain classification on
the validation set, corresponding to the chosen training step 12095. Cysteine (C), glycine
(G) and proline (P) are classified with high accuracy and are exactly three special cases
of amino acids with unique biochemical properties4(see Figure 2.1 for the illustration of
G and P). Molecular representations of amino acids corresponding to highlighted blocks
(dashed squares) in the matrix are displayed below the figure. Aspartic (D) and glu-
tamic (E) acids are the only negatively-charged amino acids and share a similar structure,
resulting in their frequent mutual misclassification. Similar reasoning applies to other
highlighted groups: all molecules within the groups share common properties including
polarity/charge.

while Figure 6.2 B provides a rationale for this fact. The latter figure reveals that

the model learns the statistical patterns that determine the contextual suitability

of specific amino acids, capturing their biochemical properties. Special-case amino

acids possess highly specific properties and are challenging to replace, which is re-

flected in their most accurate prediction by the model. In contrast, many amino

acids have close analogs, which is captured by the model through their frequent

mutual misclassification. Overall, given the chosen flexible residue-level data rep-

resentation, misclassifications can be interpreted as potentially higher suitability of
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the predicted amino acids compared to the wild-type ones. This implies that they

may lead to increased binding affinity in the underlying interactions. Although

we believe that the performance of PPIFORMER can be further improved (for in-

stance, we hypothesize that achieving higher accuracy in classifying native amino

acids may be advantageous), the presented results serve as a proof of concept for

the strong generalization capabilities of the method.

6.3.3 PPIFORMER is capable of zero-shot transfer to mutation

effect prediction

The conclusions related to misclassification in the previous paragraph suggest that

PPIFORMER has the potential to identify favorable substitutions that increase bind-

ing affinity without any fine-tuning. Consequently, we assess the potential of

zero-shot transfer of the model to predict the effects of mutations. Figure 6.2

A demonstrates the emergence of ΔΔG scoring capabilities during the training

process. Further, we assess the performance of PPIFORMER on the test set (i.e. the

validation part of SKEMPI2). Figure 6.3 shows a significant correlation between

predictions and experimentally measured ΔΔG values (Pearson p-value < 10–5).

Since in a practical scenario, one is typically interested in scoring mutations on a

single interface (e.g. staphylokinase–microplasmin), we additionally measure per-

complex performance. Therefore, we calculate correlations on the subsets of the

test set corresponding to individual complexes. We find that PPIFORMER achieves

a high positive correlation for the majority of test interfaces.

Interestingly, we observe that the range of zero-shot predictions approximately

aligns with the experimentally accepted range, often considered to be [–8, 8] (Liu

et al., 2021). We reason that this fact can be at least partially attributed to the

log-likelihood nature of both the minimized cross-entropy loss and log-odds ratios

employed for zero-shot predictions. This combination ensures an adequate range

of predicted values, which may incidentally match the experimental one. On the

other hand, the correspondence between the ranges may indicate an intriguing

relationship between the emerging properties of predicted probabilities and the

equilibrium constants of protein bindings. According to Equations (2.2), (2.4)

4https://en.wikipedia.org/wiki/Amino_acid#/media/File:
ProteinogenicAminoAcids.svg
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Figure 6.3: Zero-shot ΔΔG predictions by PPIFORMER correlate with experimental
measurements. The figure visualizes the correlation of ΔΔG values from the SKEMPI2
test set and zero-shot predictions of PPIFORMER in the masked-marginals regime. A) Scat-
ter plot corresponding to the whole test set (𝜌Pearson = 0.27, 𝜌Spearman = 0.29). B) Dis-
tributions of the per-interaction correlations. The mean and median values are 0.25 and
0.47 for Pearson correlation, and 0.27 and 0.44 for Spearman correlation, respectively. C)
Scatter plots corresponding to all test interactions with more than 4 annotated mutations.

and (6.16), for a single-point mutation of residue i it holds:

ΔΔG = ΔGmut – ΔGwt = –RT(ln (Kwt) – ln (Kmut)), (6.17)�ΔΔG = log(pi,wt(i)) – log(pi,mut(i)), (6.18)

where ΔΔG and �ΔΔG represent the predicted and experimental binding affinity

changes, repsectively. Further, Kwt and Kmut are the equilibrium constants for the

binding of wild-type and mutated complexes and pi,wt(i) and pi,mut(i) correspond

to the predicted probabilities. Therefore, the match of the range of predictions

with the experimental one, may, for example, suggest the potential of the zero-

shot transfer of PPIFORMER for the inference of binding energy ΔG as well.
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CHAPTER 7
Conclusion

In our study, motivated by the task of designing a next-generation thrombolytic

staphylokinase, we have explored the problematics of machine learning for the

design of protein–protein interactions. First, we applied several state-of-the-art

methods to predict favorable mutations of staphylokinase with the potential of

enhancing its thrombolytic activity. To accomplish the robust prediction, we have

developed a consensus selection algorithm, which accounts for optimizing multi-

ple protein properties while utilizing the collective knowledge of diverse methods.

We have created a simple interactive website that visualizes the selection proce-

dure. Several mutations proposed by the algorithm demonstrated high potential,

and the ones approved by biochemistry experts are currently undergoing wet-lab

validation at Loschmidt Laboratories to assess their influence on the thrombolytic

activity of staphylokinase.

Our case study on staphylokinase revealed the strengths and weaknesses of the

state of the art in machine learning for protein–protein interaction design. Namely,

existing methods enable reliable preselection of plausible single-point substitu-

tions. However, methods that could combine the preselected substitutions to con-

struct multi-point mutations enhancing the binding affinity of the protein–protein

interaction are severely missing. As the reliability of current methods stems from

dependence on small annotated data, we propose to break this limitation by min-

ing a vast amount of available crystallized protein–protein interactions. There-

fore, in the first place, we have prepared and analyzed the big data of known

protein–protein interactions from the whole Protein Data Bank. To achieve this,

we have developed a fast algorithm for comparing protein–protein interfaces, en-
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abling a large-scale analysis of all available interactions. Our analysis revealed

strong, previously unaddressed biases of existent big protein–protein interaction

data. Additionally, we identified strong limitations of the conventional utilization

of such data, exemplified by the testing of machine learning models on data por-

tions highly similar to the training data. Consequently, we have processed the

extracted data to minimize biases, ensuring effective machine learning and fair

evaluation.

Finally, we used the refined data to establish a novel self-supervised geometric

deep learning model, PPIFORMER. The model leverages vast unannotated data by

learning to solve an artificial task of predicting missing amino acids in the struc-

tures of protein–protein interactions. We demonstrated that the model effectively

generalizes to independently-collected data with a different distribution by learn-

ing biochemical patterns. Furthermore, we showed that the proposed learning

scheme enables PPIFORMER to predict the effects of mutations without any su-

pervised training. This emergent property serves as a proof of concept for the

approach, offering strong hope for overcoming the data scarcity issue that con-

strains existing methods for protein–protein interaction design.

In our future research, we will focus on unlocking the full potential of PPIFORMER.

First, we will create a larger and more comprehensive database of crystallized

protein–protein interactions for training, and enhance the architecture and train-

ing scheme of the model. We expect these improvements to result in a new, sub-

stantially more powerful version of PPIFORMER. Second, we plan to explore the

fine-tuning potential of the model. While PPIFORMER has demonstrated its abil-

ity to score mutational effects without any supervision, we expect it to become

a powerful protein-design assistant as a result of further fine-tuning. Addition-

ally, we are intrigued to investigate the potential of the method for other tasks,

such as predicting binding energy or scoring docking poses. Likewise, analyzing

the neural representations of PPIFORMER may provide insights into complex bio-

chemical phenomena such as epistasis or provide a state-of-the-art approach to

comparing and clustering protein–protein interactions, which may, for example,

enable the effective analysis of the vast human interactome. Finally, we will lever-

age PPIFORMER in the future rounds of staphylokinase design, and we expect the

method to be broadly applicable in many case studies, including the design of

other protein drugs.
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APPENDIX A
Acronyms

DIPS Database of Interacting Protein Structures

PDB Protein Data Bank

PPI Protein–protein interaction

SAK Staphylokinase

SKEMPI2 Structural database of Kinetics and Energetics of Mutant Protein Inter-

actions v2.0
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APPENDIX B
Contents of enclosed CD

cd.............................................................Enclosed CD
sak...............Python package containing experiments from Chapter 4
ppi.Python package containing experiments from Chapter 5 and Chapter 6
mutils...................Supplementary Python package for experiments
tex...........................Directory of LATEX source codes of the thesis
thesis.pdf..............................Text of the thesis in PDF format
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