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Instructions

Despite modern scientific advances, only a tiny fraction of molecules from nature have 
been discovered to date. Tandem mass spectrometry is a powerful technique enabling 
the identification of molecules present in biological and environmental samples (Kind et 
al., 2010). For each molecule, it measures a mass spectrum – a set of fragments of the 
molecule represented in terms of their masses and abundances. However, existing 
methods for elucidating the whole unknown molecule from its measured fragments are 
extremely limited, because they rely on narrow annotated libraries (Dührkop et al., 2019 
and Stravs et al., 2022). 
The objective of the thesis is to explore the paradigms of deep self-supervised machine 
learning and subsequent transfer learning for the interpretation of mass spectra. More 
precisely, the tasks are:
1. Collect a large dataset (millions of samples) of unannotated mass spectra suitable for 
self-supervised training.
2. Design a deep-learning model and a training objective allowing the model to learn 
effective representations (embeddings) of mass spectra without annotations.
3. Experimentally validate the capacity of the learned representations on downstream 
tasks aiming to discover new molecules.
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Abstrakt

Objevováńı nových molekul je zásadńı pro vědecký pokrok v biologických vědách

a pro výzkum nových léčiv. Doposud však bylo popsáno méně než deset procent

chemikálńı př́ıtomných v lidském těle nebo v celé rostlinné ř́ı̌si. Hmotnostńı spek-

trometrie je nejpopulárněǰśı analytická technika pro detekci nových molekulárńıch

struktur. Avšak kvůli složitosti experimentálńıch dat dokáž́ı současné výpočetńı

metody interpretovat pouze nepatrnou část z dostupných hmotnostńıch spekter. V

této práci představujeme nový př́ıstup k dekódováńı hmotnosně-spektrometrických

dat. Zat́ımco stávaj́ıćı nástroje se spoléhaj́ı na lidskou expertizu nebo na anoto-

vané referenčńı knihovny, naše metoda umožňuje extrakci molekulárńıch infor-

maćı př́ımo z experimentálńıch měřeńı na základě samoř́ızeného učeńı. Konkrétně,

vyvinuli jsme neuronovou śıt’ založenou na Transformeru a zkompilovali nové da-

tasety MSV𝑛 obsahuj́ıćı 700 milionů neanotovaných hmotnostńıch spekter. Ukazu-

jeme, že model trénovaný na MSV𝑛 pomoćı syntetických úloh, jako je např́ıklad

predikce maskovaných část́ı vstupńıch spekter, se sám naučil různé vlastnosti mo-

lekulárńıch struktur. Tyto neurálńı reprezentace hmotnostńıch spekter označujeme

jako DREAMS (Deep Representations Empowering the Annotation of Mass Spectra)

a ukazujeme, že se samostatně organizuzj́ı do bohatých molekulárńıch śıt́ı a přitom

odhaluj́ı nové druhy znalost́ı, nedosažitelné předchoźımi metodami. Źıskané

výsledky potvrzuj́ı potenciál samoř́ızeného učeńı posunout paradigma výpočetńı

hmotnostńı spektrometrie, a pokládaj́ı tak solidńı základ pro budoućı výzkum v

této oblasti.

Kĺıčová slova hmotnostńı spektrometrie, metabolomika, samoř́ızené učeńı, Trans-

former
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Abstract

Discovery of new molecules is crucial for scientific progress in life sciences and in

drug discovery. Yet, currently, less than ten percent of chemicals have been uncov-

ered within the human body as well as in the entire plant kingdom. Mass spec-

trometry is the most popular analytical technique for detecting novel molecular

structures. However, due to the complexity of experimental data, current com-

putational methods can interpret only a tiny fraction of available mass spectra.

In this work, we introduce a novel approach for deciphering mass spectral data.

While existing tools rely on human expertise or annotated reference libraries, our

method enables extraction of molecular information directly from raw experimen-

tal measurements using self-supervised deep learning. Specifically, we developed

a Transformer-based neural network and compiled new MSV𝑛 datasets comprising

700 million unannotated mass spectra. We demonstrate that the model trained on

MSV𝑛 using artificial annotation-free objectives, such as predicting masked por-

tions of input spectra, learns diverse properties of molecular structures. We term

these neural representations of mass spectra as DREAMS (Deep Representations

Empowering the Annotation of Mass Spectra) and show that they are uncondition-

ally organized in rich molecular networks, revealing new knowledge unattainable

by previous methods. The obtained results confirm the potential of self-supervised

learning to shift the paradigm of computational mass spectrometry and, therefore,

lay a solid groundwork for future research in this direction.

Keywords metabolomics, mass spectrometry, self-supervised learning, Transformer
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CHAPTER 1
Introduction

The discovery and identification of small molecules and metabolites has a signifi-

cant impact on many scientific fields, including drug development [1, 2], environ-

mental analysis [3, 4], and disease diagnosis [5]. However, only a tiny fraction of

small molecules has been discovered to date, with estimates ranging from 5% to

10% within the human body and the entire plant kingdom [6, 7]. The vast major-

ity of the chemical space remains unexplored. Yet, the discovery of new molecular

structures represents a major technological opportunity and challenge to expand

our biochemical knowledge base for both uncharacterized and well-characterized

organisms [8, 9].

Mass spectrometry (MS) based metabolomics [10], enabled by the Nobel Prize

winning electrospray ionization (ESI) technique [11], has been established as a

comprehensive approach for studying molecules and their biological processes in

organisms. In essence, mass spectrometry ionizes and separates compounds based

on their mass-to-charge ratio (m/z), providing information about the molecular

structures present in a sample.

To enhance the depth and specificity of mass spectrometry analysis, tandem

mass spectrometry (MS/MS or MS2) [12] has been developed as a powerful ex-

tension of the technique. Tandem mass spectrometry involves the coupling of two

or more mass analyzers in a single instrument, allowing for the selection and fur-

ther fragmentation of specific molecular ions. For each selected ion, this process

generates a mass spectrum describing the m/z ratios and abundances of individual

fragments providing additional information on a molecular structure. The combi-

natorial nature of the fragmentation process enables more precise characterization

1



1. INTRODUCTION

of unknown molecules and therefore significantly enhances their identification.

However, the complete annotation of chemical structures from mass spectra

still remains a crucial bottleneck of metabolomics. In fact, a mere 2% of mass spec-

trometry data can be annotated with reference standards [13] and around 10%

with a contemporary machine-learning toolbox [14]. The state-of-the-art SIRIUS

platform [15] (comprising fragmentation trees [16], CSI:FingerID [17], CANO-

PUS [18], and other methods) has been developed for the last two decades and

became a working horse for the interpretation of mass spectra. SIRIUS comprises

tools of discrete optimization, combinatorics, and classic machine learning, which

are laboriously regularized by human expertise in metabolomics. Despite the rev-

olutionary success of deep learning in other domains of biochemistry [19, 20, 21],

neural networks have not yet surpassed SIRIUS in mass spectrometry.

Our work is a first step towards the foundation model for metabolomics – a

general pre-trained neural network capable of solving a wide range of tasks cur-

rently limiting mass-spectrometry-based scientific discovery. We observe that the

current bottleneck of deep learning methods is a limited scope of spectral libraries

(Figure 1.1, Figure 4.1, Figure 4.2). As a solution, we propose a self-supervised

learning approach that can efficiently extract knowledge from millions of raw, un-

labeled data points. This is achieved by training the neural network on artificial

tasks, such as predicting hidden parts of input spectra. We experimentally show

that such an artificial pre-training leads to the emergence of structural features

of small molecules derived purely from millions of unannotated mass spectra. We

demonstrate how our method can be employed for molecular networking and how

it can be effectively fine-tuned to learn from small annotated datasets.

1.1 Contributions

Our work presents the following key advancements toward the development of a

large-scale foundation model for metabolomics:

• We conduct a systematic review of related work, to the best of our knowl-

edge, encompassing all deep learning methods for tandem mass spectrome-

try.

• We examine the annotated NIST20 and MoNA spectral libraries and deter-

mine that their size is insufficient for strictly supervised learning. To max-

2



1.2. Thesis structure and notation

imize their utility in a semi-supervised setting, we develop a novel strat-

egy for train/validation splitting called Murcko histograms. Our approach

is specifically designed to account for the fragmentation nature of tandem

mass spectrometry and surpasses existing approaches in both qualitative and

quantitative aspects.

• We extract over 700 million tandem mass spectra from diverse metabolomics

studies published in the MassIVE repository and establish nine high-quality

subsets, which we term MSV𝑛 datasets. To achieve this, we design a dis-

tributed pipeline of algorithms for processing metabolomics data files, as-

sessing the quality of the underlying data, and effectively clustering mass

spectra.

• We develop a new Transformer-based neural network for mass spectrometry.

Specifically, we improve the inductive bias of the Transformer toward mass

spectrometry by utilizing Fourier features, allowing the model to effectively

operate on high-accuracy measurements of molecular masses.

• We examine the pre-training of the proposed neural network toward sev-

eral self-supervised objectives on MSV𝑛 datasets. Our newly developed ap-

proach for evaluating the effectiveness of pre-training enables us to select

the optimal model among 100 experiments with different hyperparameters

and training setups. We term the intermediate representations extracted

from the model as DREAMS (Deep Representations Empowering the Anno-

tation of Mass Spectra)1. Our results demonstrate that these representa-

tions gain knowledge about molecular structures through the course of self-

supervision.

1.2 Thesis structure and notation

We begin the thesis with the Background chapter, which defines the studied prob-

lem and introduces essential concepts. Next, we provide a systematic overview

of Related work, with a particular emphasis on existing deep learning models.

Subsequently, we describe our analysis of the annotated spectral libraries and the

collection of unannotated MSV𝑛 datasets in chapter Training data collection and

analysis. The following chapter Methods and experimental setup describe the ar-
1We choose DreaMS as the naming consonant with SMILES (Simplified molecular-input line-

entry system) to highlight the correspondence between the deep representations of spectra and
molecular structures. Similarly to BERT (Bidirectional Encoder Representations from Transform-
ers), we use DreaMS to refer to both the representations and the neural network architecture.

3



1. INTRODUCTION

chitecture of the DREAMS neural network, self-supervised pre-training objectives,

and methods for evaluating self-supervision. Following that, we present our re-

sults and key findings regarding the pre-training in chapter Results. Finally, we

outline the Conclusions & Future work.

Throughout the thesis, we use the standard mathematical notation [22]. To

avoid ambiguity, we reserve m, i ∈ ℝ𝑛 to represent the m/z and intensity values

of a mass spectrum containing 𝑛 peaks. We may also use i to denote binned

mass spectra, where 𝑛 represents the number of m/z bins, i denotes the sum of

intensities in each bin, and m denotes the average m/z in each bin. In line with

deep learning literature, we use the ·∥· operator to denote the concatenation of

two tensors along the first dimension. We use arg max𝑥 𝑦 either to retrieve the

indices of 𝑥 ∈ ℕ largest elements from 𝑦 ∈ ℝ𝑘 or to retrieve the argument 𝑥 ∈ 𝑋
minimizing some function 𝑓 (𝑥) : 𝑋 → ℝ.

4
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Figure 1.1: The boundaries of supervised methods for mass spectrometry. The figure
shows the small molecules of annotated spectral libraries projected onto known natural
products. Spectral libraries sparsely populate specific regions with chemical derivatives,
not rendering the biological diversity of small molecules and thus severely limiting su-
pervised methods. The projection is a TMAP [23] computed on the molecules of NIST20
[24], MoNA [25] (spectral), COCONUT [26] (natural products) within the mass range of
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CHAPTER 2
Background

In this chapter, we present an overview of the fundamental concepts that under-

pin this thesis. Our objective is not to delve into an exhaustive discussion of these

fields but rather to offer the essential background required for the subsequent

analysis. For a more in-depth exploration of the subjects, readers are encouraged

to consult specialized literature [28, 29, 30]. Also, it should be understood that

within the domain of biochemistry, there is hardly ever a rule without an excep-

tion.

2.1 Biochemistry

2.1.1 Small molecules

An atom is the fundamental building block of matter. Each atom is formed of

protons and neutrons comprising a nucleus, as well as electrons orbiting around

the nucleus. The number of protons defines a chemical element of an atom. For

example, H (hydrogen) atom has 1 proton, C (carbon) atom has 6 protons, Br

(bromine) atom has 35 protons, and so on. A molecule is a compound made up

of two or more atoms that are chemically bonded together by sharing electrons.

The more pairs of electrons they share the stronger the bond between atoms.

Molecular structure is typically understood as a labeled undirected graph, where

nodes represent atoms and are labeled by the corresponding chemical elements

along with their spatial coordinates. Edges represent bonds and are labeled by the

number of shared electron pairs (Figure 2.1).
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Figure 2.1: Molecular structure of firefly luciferin – a compound responsible for the char-
acteristic yellow light emission from many firefly species.

Molecular representations

Molecules containing carbon-hydrogen bonds are named organic compounds.

Since they constitute the majority of known chemicals, it is convenient to repre-

sent them using simplified planar graph representations - skeletal structures. In

a skeletal structure, nodes are implicitly associated with carbon atoms, and hydro-

gens adjacent to carbons are omitted. Noteworthy, this adaptation does not affect

the expressivity of the representation because hydrogens can be unambiguously

filled based on the bonding capacity of each element given by its composition. A

spatial arrangement of atoms is encoded in special stereochemical types of bonds

visualized as either dashed or solid triangles representing two opposite directions

orthogonal to a molecular plane. Molecules differing only in stereochemical bonds

are referred to as stereoisomers.

In order to simplify computer storage and processing, molecular structures are

commonly encoded as strings. The three most widely used variants are SMILES

(Simplified molecular-input line-entry system), InChI (International Chemical Iden-

tifier), and InChIKey. Although both SMILES and InChI serve the purpose of

uniquely identifying a molecule as a sequence of characters, SMILES are more

human-readable and simpler but do not undergo a unified standard. In contrast,

InChI strings have more complex yet standardized grammar. To give an example,

SMILES string of firefly luciferin, depicted in Figure 2.1, is C1[C@@H](N=C(S1)C2=

NC3=C(S2)C=C(C=C3)O)C(=O)O, while it’s InChI string is InChI=1S/C11H8N2O3S2/

c14-5-1-2-6-8(3-5)18-10(12-6)9-13-7(4-17-9)11(15)16/h1-3,7,14H,4H2,(H

,15,16)/t7-/m1/s1. InChIKey representations are fixed-size hashes (e.g. IWJYW
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2.1. Biochemistry

BVPCGUPLO-BFUDMSGGSA-N) derived from InChI strings, which are convenient, for

instance, to perform searches of molecules in large databases. Another compact

coarse-grained representation of a molecule is its chemical formula, which rep-

resents the histogram of chemical elements within a molecule. Accordingly, the

chemical formula of firefly luciferin is C11H8N2O3S2.

The comparison of molecular structures is commonly conducted by utilizing

their fingerprints, which are fixed-size binary vectors. A basic example of a molec-

ular fingerprint is the Molecular ACCess System (MACCS) [31], where each of its

166 bits represents the presence or absence of a specific predefined substructure.

The most widely-adopted family of fingerprints is the extended-connectivity fin-

gerprints (ECFP) [32], which are fixed-size hashes encoding the local neighbor-

hoods of molecular atoms. To compare two molecules, the most common approach

is to generate the corresponding fingerprints and compute their Tanimoto similar-

ity. The Tanimoto similarity is defined as a ratio of the number of shared positive

bits to the total number of unique positive bits present in both fingerprints.

Molecular properties

As “mass spectrometry” in the title of the thesis suggests, molecular mass is a

central notion for this work. It is characterized as a sum of atomic masses con-

stituting the molecule and is usually measured in Da (Daltons). Single Dalton is

defined as 1
12 of the mass of 12C (carbon atom containing 6 protons and 6 neu-

trons). Importantly, a molecule is roughly termed as a “small molecule” if its mass

is less than 1000 Da. As a consequence of the definition of a Dalton and the signif-

icantly smaller mass of electrons compared to protons and neutrons, one nuclear

particle has a mass approximately equal to 1 Da. Specifically, a proton has a mass

of approximately 1.007 Da, a neutron has a mass of approximately 1.009 Da, and

an electron has a mass of approximately 0.0005 Da2. While the number of protons

in the atom of a chemical element is given by the definition, the notation 12C is

used to explicitly express the number of neutrons and protons.

Atoms having the same number of protons but different numbers of neutrons

are referred to as isotopes of a chemical element. For instance, Cl (chlorine) el-

2Although the mass of an atom might be expected to equal the sum of the masses of its particles,
it is always slightly less (with the exception of the hydrogen atom). This phenomenon is caused by
the nuclear binding energy and is termed the mass defect of the nucleus.
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ement has two stable3 isotopes: 35Cl having a mass of 34.96885269(4) Da and
37Cl having a mass of 36.96590258(6) Da. Naturally, 35Cl occurs in roughly 76%

of cases and 37Cl occurs in remaining 24% of cases. Another element S (sulfur)

has four stable isotopes: 32S, 33S, 34S, and 36S with natural abundances 94.99%,

0.75%, 4.25%, and 0.01% respectively. In contrast, F has only a single stable

isotope 19F. The mass of the most abundant isotope is often termed as a monoiso-

topic mass of an element.

Another molecular property essential for the domain of mass spectrometry is

a molecular charge. A molecule is defined as negatively charged, neutral, or

positively charged if its atoms in total have more, equal, or fewer electrons than

protons respectively. A charged molecule is termed ion and its charge is often

expressed as an integer indicating the difference between the number of protons

and electrons. The sign of such an integer can be often found in different notations

and depictions of a molecule. For example, a positively-charged ion of a molecule

M can be denoted as M+.

2.1.2 Liquid chromatography tandem mass spectrometry

The identification of molecules present in a sample is a fundamental task in various

fields of biology and environmental science. To achieve this, Liquid Chromatogra-

phy Tandem Mass Spectrometry (LC-MS/MS) is the most widely employed tech-

nique. It constitutes an intricate pipeline formed of liquid chromatography and

several stages of mass spectrometry (i.e. tandem mass spectrometry) to separate,

elucidate, and quantify compounds in complex mixtures. Nevertheless, the inter-

pretation of the output data from LC-MS/MS presents a significant challenge as

information about the molecules is only available in terms of their masses or the

masses of their fragments. To better understand the challenge, it is necessary to

briefly discuss the individual components of LC-MS/MS and define several impor-

tant terms.

Acquisition of mass spectra

Mass spectrometry (MS) plays a critical role in the workflow of LC-MS/MS, en-

abling the determination of the molecular mass of a compound. The fundamental

principle of MS involves ionizing a sample to create charged molecules or frag-

3Isotope is stable if it does not decay into other elements on geologic timescales.
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Figure 2.2: Examples of MS1 and MS2 spectra. (Top) An example of an MS1 spectrum,
featuring haloperidol (designated as “M”), with a mass of 375.14 Da. Several peaks are
labeled, while others may correspond to different compounds. Isotopes are denoted by
13C (1x) and 13C (2x), and 37Cl, indicating ions ([M+H]+ or [M+Na]+) containing corre-
sponding isotopes. Notice, that the spectrum is simplified for visualization purposes, and
one can frequently observe more intricate isotopic patterns and adduct species. (Bottom)
MS2 spectrum acquired by fragmenting protonated haloperidol from MS1 belonging to the
isolation window highlighted in green.

ments that are subsequently separated based on their mass-to-charge ratio (m/z)

and detected using a mass analyzer. It is important to note that MS instruments

are only capable of measuring m/z values and not the mass or charge4 of the

ions individually. The resulting mass spectrum is a collection of two-dimensional

points, with the first dimension representing m/z values and the second dimension

corresponding to their respective abundances (i.e. the intensities of the detected

signals).

The ionization process in MS can occur through a variety of methods, including

electron impact ionization (EI), electrospray ionization (ESI), and matrix-assisted

laser desorption ionization (MALDI). Regardless of the method used, the result is

4Although, advanced mass spectrometry instruments report charges.
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the formation of ions with different m/z ratios, which are then separated by the

mass analyzer. ESI is the most convenient and common method to couple with LC.

During the electrospray ionization, the liquid sample is sprayed through a small

needle that has a high voltage applied to it. The high voltage causes the liquid

to form tiny droplets, and as these droplets move through the air, they pick up

an electrical charge. These droplets will either be positively or negatively charged

depending on the polarity of the applied voltage. Further, the charged droplets

continue to break apart and re-form until they eventually become individual ions.

During the ionization process, ions form adducts, which are clusters of molecules

that stick together due to electrostatic interactions. For example, a molecule in

the sample may pick up a positively charged droplet ion such as a proton, Na

(sodium), or K (potassium). As a consequence, the resulting ion measured in a

mass spectrum has a higher mass-to-charge ratio than the original molecule. Such

adduct species of molecule M are then denoted as [M+H]+, [M+Na]+, or [M+K]+

respectively.

It is important to note that the understanding of the sample introduced to MS

system should not be limited to a set of mutually exclusive molecules. Instead,

it should be regarded as a complex mixture of compounds with millions of dupli-

cates for each molecular structure. For the sake of simplicity, we often refer to a

“molecule” as a group of identical compounds in the state prior to the ionization.

In fact, within a single mass spectrometry experiment one can frequently observe

m/z values that correspond to various adduct species of “the same molecule”, as

well as differing isotopic compositions of “the same molecule” (Figure 2.2).

After ionization, the mass analyzer separates the ions based on their m/z ra-

tios. There are various types of mass analyzers, such as time-of-flight (TOF),

quadrupole, and Orbitrap, each with unique strengths and weaknesses. However,

they all operate on the principle of using a combination of electromagnetic fields

to isolate ions. Finally, the ion detector, typically integrated into the mass analyzer,

measures the m/z value and intensity of the signal. While we won’t delve into the

technicalities, it’s worth noting certain peculiarities of the measurement that are

significant for subsequent MS data analysis.
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2.1. Biochemistry

Properties of mass spectra and MS instruments

To begin with, the detector records the entire ion signal as a function of time,

resulting in a mass spectrum that exhibits a continuous signal proportional to

the intensity of ions relative to their mass-to-charge (m/z) ratio. This type of

spectrum is known as a profile mass spectrum. In contrast, the instrument often

produces centroid spectra, which undergo pre-processing via an algorithm that

extracts peak information from the profile mass spectrum. The resulting signals

are reported at specific m/z values and are termed peaks. Also, it is a common

practice to pre-process intensities such that they are represented as fractions of the

maximum spectrum intensity (corresponding to the base peak), and are referred

to as relative intensities.

The accuracy of the measured m/z ratios is profoundly reliant on the instru-

ment’s quality and its constituents. The two most crucial indicators of quality are

the resolution and accuracy of the instrument. Resolution denotes the ability to

differentiate ions with nearly identical masses, whereas accuracy indicates how

close the measured m/z value is to the actual ground-truth value. Since modern

instruments generally possess high separation capabilities, the resolution is often

not a problem for downstream data analysis. Nonetheless, accuracy remains a

pivotal concept.

Vendors typically provide the accuracy of individual instruments in ppm (parts

per million), which means that accuracy is inversely proportional to the measured

mass. Specifically, a ppm of 5 would indicate that for the ground-truth m/z𝑚, the

measured value would fall within the interval𝑚 ± 5 ∗ 10−6𝑚.

Another critical property of an instrument is its sensitivity. Low-sensitivity

measurements may fail to detect all anticipated molecules. Conversely, high-

sensitivity measurements may lead to a significant amount of noise - peaks that

do not correspond to any actual molecules.

Annotation of mass spectra

To annotate a mass spectrum means to annotate its individual peaks with molec-

ular structures. Despite the seemingly straightforward nature of this task, it is

fraught with several significant challenges.
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First of all, spectral peaks are not necessarily associated with the anticipated

molecules. Some may represent contaminants present in the MS system, others

may be molecular fragments (known as in-source fragments). Furthermore, the

prevailing majority of low-intensity peaks in a typical spectrum are simply instru-

ment noise.

Even the ability to distinguish noise from real anticipated signals cannot re-

solve a central challenge. A single peak of a compound does not provide a unique

characterization of its structure. Indeed, even assuming a high resolution of an

instrument, there may exist millions of combinatorially generated elemental com-

positions satisfying the same m/z. The information contained within an MS1

spectrum can offer some insights into the possible structural features of the un-

derlying molecule. For instance, assuming a rich isotopic distribution, one could

guess a template for the chemical formula. Alternatively, types of adduct species

may characterize ionization sites of a molecule suggesting the presence of certain

functional groups. However, the information obtained from MS1 alone does not

contain any information about atom connectivity and is generally insufficient for

a comprehensive characterization of the desired molecular structure.

Tandem mass spectrometry

Tandem mass spectrometry (MS/MS or MS2) is a powerful technique enabling the

enrichment of mass spectrometry data with structural information. It involves us-

ing two or more subsequent mass spectrometry experiments. After the first stage of

mass spectrometry (MS1) as described above, the instrument selects specific ions

of interest termed precursor ions. It is realized by defining an isolation window

of specific width sliding across the m/z range and selecting ions of interest. The

selected m/z values can be either arbitrary (data-independent acquisition; DIA) or

pre-defined beforehand (data-depended acquisition; DDA).

Once the precursor ion is identified, it is then subjected to a second stage of

mass spectrometry (MS2), where the machine brakes it into fragments. The most

prominent technique to fragment the ion is collision-induced dissociation (CID).

It works by accelerating the molecule towards a gas, causing it to collide with the

gas molecules and recursively break into smaller substructures. The more colli-

sion energy is provided, the more molecular fragments are obtained as a result.

The second mass spectrometer is then used to measure the MS2 (MS/MS, frag-
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2.1. Biochemistry

mentation) spectrum, where peaks represent m/z ratios of individual fragments.

Additionally, the process of selecting and fragmenting ions can be recursively re-

peated up to the MS𝑛 level for any reasonable positive integer 𝑛 retaining frag-

ments.

Because the instrument can only detect ionized fragments, only a portion of

substructures are recorded. For instance, a singly-charged ion broken into two

fragments will form one ion and one neutral molecule (neutral loss) depending

on the current location of the charge within the molecule. However, since “pre-

cursor ion” is in fact a group of identical molecules (as described in Acquisition

of mass spectra) and the charge site is not deterministic with respect to molecule,

MS2 spectrum often contains peaks for both parts with intensities reflecting their

probability distribution. In particular, fragmentation spectrum often contains pre-

cursor peak corresponding to the whole non-fragmented precursor ion.

It is important to note that the graph-theoretical abstraction of fragmentation

as a consequent removal of bonds is often, but not always, correct. For exam-

ple, during CID fragmentation, a molecule can undergo rearrangement or trans-

fer reactions leading to graph deformations, such as the formation of new rings

[33, 34].

Annotation of tandem mass spectra

The distribution of masses provided in an MS𝑛 spectrum offers substantially more

structural information about the precursor molecule than a sole MS1 spectrum.

Given an MS𝑛 spectrum the aim is to “arrange” the masses into a complete molec-

ular structure. The extent to which MS𝑛 information is sufficient for deducing the

complete structure remains a fundamental open question. However, regardless of

the completeness of the structural information, a complex high-accuracy fragmen-

tation spectrum usually uniquely describes the molecule. The opposite statement

is true only under the assumption of a similar experimental setup. The same

compound can be fragmented in completely different ways depending on circum-

stances such as adduct species or applied collision energy. Rationally, this obser-

vation motivates the repeated measurement of the same compound with different

instrument parameters enabling the enrichment of the structural information.

The goal of the annotation of an MS𝑛 spectrum typically only consists of elu-

cidating its underlying precursor molecule. However, in practice, this procedure
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requires the annotation of individual peaks. In addition to the aforementioned

annotation challenges such as dealing with noise and contamination, MS𝑛 spectra

may also encounter problems caused by the precursor selection setup.

Firstly, the width of the isolation window significantly affects the informa-

tion present in a fragmentation spectrum. A wide window may isolate multiple

molecules of similar masses and fragment them, resulting in a single chimeric

spectrum, which is be misleading for further annotation. On the other hand, a

narrow window may miss desired isotopes of the same molecule. Ultimately, the

isolation window may be triggered for a wrong m/z range, resulting in a spectrum

containing nothing but noise.

Secondly, collision energy affects the number of fragments, their size, and their

structure, which in turn affects the number of peaks and their positions. Fre-

quently, as a result of low collision energy, an MS𝑛 spectrum may contain only a

single meaningful peak representing an unfragmented molecule. In contrast, high

energy may result in too severe fragmentation, limiting structural annotation.

Finally, CID fragmentation has limitations with regard to the absolute interpre-

tation of a molecular structure. For example, it is nearly impossible to distinguish

stereoisomers with sole MS𝑛 data. However, orthogonal sources of information,

such as liquid chromatography, may separate the isomers before introducing them

to the mass spectrometry stage [35, 36].

Liquid chromatography

Liquid chromatography is frequently used as a sample preparation step before

mass spectrometry analysis. Its purpose is to separate and purify the compounds

of interest. The technique works by carrying the mixture with a liquid mobile

phase through a column packed with a stationary phase (immobile material with

specific chemical composition). Depending on the physical and chemical proper-

ties, each compound interacts with the column in different ways. As a result, the

molecules are separated as they travel through the column and emerge at differ-

ent timestamps, which are termed retention times (RT). Intensities of subsequent

mass spectrometry signals as a function of RT is referred to as chromatogram. LC-

MS/MS experiment is then represented as a three-dimensional collection of data

points – mass spectra ordered by retention time.
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2.2. Machine learning

2.2 Machine learning

2.2.1 Deep learning

Solving a problem with deep learning begins by formulating the problem as a con-

tinuous function 𝑓 : ℝ𝑛 → ℝ𝑚. For example, to predict the chemical class of a

molecule from its mass spectrum, the spectrum must be represented as a contin-

uous vector x ∈ ℝ𝑛 or as a collection of such vectors. Likewise, each chemical

class of interest should be encoded as a vector y ∈ ℝ𝑚 or in terms of multiple

such vectors. Rather than attempting to manually construct 𝑓 to map any input x

to the desired output y, it is assumed that 𝑓 possesses degrees of freedom 𝜽 (i.e.

parameters). More specifically, 𝑓 is assumed to belong to a class of parametrized

functions 𝑓 ∈ {𝑓𝜽∈Θ}, where Θ represents the space of all possible values for each

parameter. By adjusting the parameters 𝜽 , 𝑓 can take various forms. The objec-

tive of learning is to identify the optimal form of 𝑓 solving a problem on a given

dataset of𝑛 reference input/output examples𝐷 = {(x1, y1), (x2, y2), . . . , (x𝑛, y𝑛)},
where y’s are commonly referred to as labels or annotations. This goal is accom-

plished by solving the following continuous optimization problem:

arg min
𝑓 ∈F

∑︁
(x,y)∈𝐷

L(𝑓 (x), y),

where the function L (loss function) produces smaller values when the output of

𝑓 for input x closely resembles the desired output y, and larger values otherwise.

The optimization problem is typically addressed using variations of the gradient

descent algorithm. The iterative process of searching for the optimum is referred

to as training.

The most prominent variation of gradient descent is stochastic gradient de-

scent. This approach involves performing optimization iterations on random dis-

joint batches of training examples within the dataset rather than on the entire 𝐷.

This modification typically results in more robust training, leading to better local

optima. Furthermore, training is usually conducted over multiple traversals (i.e.

epochs) of all dataset batches.

The core principle of deep learning is to employ an expressive functional class

F and impose minimal assumptions on the problem, allowing the optimization

process to discover the most performant model with respect to the loss function L
over the dataset 𝐷. The most canonical example of such class is a feed-forward
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neural network (FFN; 𝑓 : ℝ𝑛 → ℝ𝑚), which is defined as follows:

𝑓 = 𝑓𝑙 ◦ 𝑓𝑙−1 ◦ · · · ◦ 𝑓1,
𝑓𝑖 (x) = 𝜎 (W𝑖x),

𝜎 (x)𝑖 = max {0, x𝑖},

Here, matrices W𝑖 represent the parameters that are estimated during the train-

ing. In other words, an FFN consists of layers 𝑓𝑖 , alternating linear functions W𝑖

with non-linear maps 𝜎 (i.e., activation functions). Here, non-linearity 𝜎 is de-

fined as the most-popular ReLU activation. A fundamental theoretical result of

deep learning is the Universal Approximation Theorem, which roughly states that

such a composition of layers “is expressive enough to approximate any continu-

ous function” [37]. However, to solve a practical problem one typically needs to

strengthen the assumptions on the functional class (i.e. impose inductive biases)

and to adjust the described approach for the definition of a loss function and a

dataset.

Typically, the process of modeling an input data modality (e.g., molecular

graph or image) as a continuous vector is not entirely unambiguous. Consequently,

a variety of neural networks exist, such as graph neural networks (GNNs), convo-

lutional neural networks (CNNs), and numerous others, each adept at capturing

the specific characteristics of the modality. The prominent class of neural networks

is Transformers. Although they were originally proposed for long sequences, such

as text [38], they have gained considerable attention across all major data modal-

ity domains. The success of Transformers can be attributed to their effective scal-

ability to large datasets and the “generic” inductive bias that simply focuses on

identifying relationships between all pairs of input objects.

Also, it may be advantageous not to exclusively regard the training examples

(x𝑖, y𝑖) as ultimate inputs and outputs. For instance, generative diffusion models,

employed for generating novel objects, express both x𝑖 and y𝑖 in terms of y𝑖 . Train-

ing batches are formed by sampling two random frames from the trajectories of

the Markov process noising the input data points. Subsequently, a neural network

is trained to denoise the data frames. As a result, when provided with random

noise as input, the network is capable of generating a novel object that resembles

those present in the dataset.
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2.2.2 Self-supervised learning

In many cases, there may not be enough labeled data to train a neural network to

directly output the desired y from the given x. This situation is particularly evident

in mass spectrometry, where billions of mass spectra exist, but only a tiny fraction

has corresponding annotations. The paradigm of self-supervised learning (SSL)

helps to overcome the limitations of such strictly supervised settings.

The primary concept of SSL is to train the neural network on a dataset ar-

tificially constructed solely from unannotated x’s. Label-free tasks are typically

created by corrupting inputs and training the model to correct them. The un-

derlying idea is that the neural network internally learns the “semantics” of the

data by solving such “syntax-based” tasks. A canonical example of successful self-

supervision was demonstrated in natural language processing (NLP) by Devlin et

al. [39]. They pre-trained a Transformer-based neural network, BERT, to pre-

dict the masked parts of input sentences and showed that further supervised fine-

tuning of the model with an additional layer achieves state-of-the-art performance

across a wide range of NLP tasks.

Subsequent analysis of the pre-trained BERT and its embeddings (i.e. in-

termediate outputs of some layer 𝑓𝑖 on a given input x) reveals that the neural

network gains a deep understanding of natural language exclusively through self-

supervision [40, 41].

Inspired by the success of self-supervised learning in NLP, its applicability in

other domains is continually being investigated. However, the effectiveness of SSL

varies across different domains. For example, it has been successfully applied to

protein sequences [42] and computer vision [43, 44], but has not yet achieved

remarkable results for small molecules [45]. Our work explores whether self-

supervised learning can be effective for mass spectrometry.
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CHAPTER 3
Related work

Although the annotation of tandem mass spectra is crucial for accurately iden-

tifying small molecules, it continues to be a central challenge in computational

metabolomics. Research efforts directed towards addressing the problem can be

classified into three primary categories: forward annotations, inverse annotations,

and spectral similarity measures.

Forward annotations aim to predict the fragmentation spectrum of a given

molecule, whereas Inverse annotations focus on inferring the molecular structure

or its properties based on the observed spectrum. Spectral similarity enables the

comparison of experimental spectra with reference standards or forward predic-

tions, thereby facilitating the clustering of similar spectra to propagate the inverse

annotations (i.e. Molecular networking). Our method aims to advance each of the

research directions by deriving general representations of mass spectra. There-

fore, we separately discuss it in the context of considerably different yet related

works (section Unsupervised representation learning).

The chapter has two goals: (i) to provide an exhaustive overview and sys-

tematization of state-of-the-art methods operating on tandem mass spectra, with

a particular emphasis on deep learning, and (ii) to frame our work in the con-

text of existing methods. Note that, we do not aim to cover the literature on

machine learning applied to other MS data modalities, such as predictions from

imaging mass spectrometry data [46, 47], tabular MS datasets [48], or retention

time prediction [49, 50]. Similarly, since machine learning approaches for nar-

rower subdomains of metabolomics (e.g. proteomics [51] and lipidomics [52])

can rely on molecule-specific priors, we only mention several relevant methods
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Figure 3.1: Conceptual systematization of related work framing our method. For-
ward annotations, inverse annotations, and spectral similarities are employed to create
molecular networks. Our method of unsupervised representation learning can serve as a
starting point for each of the approaches.

without discussing the entire fields.

3.1 Spectral similarity

Spectral similarity is at the core of computational mass spectrometry methods.

With an experimentally measured spectrum, one can determine the underlying

molecule if an almost identical spectrum exists in annotated databases, commonly

referred to as spectral libraries. In general, it is challenging to define a metric that

perfectly reflects the similarity between the underlying compounds. Consequently,

there exist at least 43 traditional (non-machine learning-based) algorithms [53],

which can be prioritized depending on the specific application. The most widely

adopted ones are variations of a dot product between binned spectra [54].

For example, in weighted cosine similarity [55], the 𝑖-th element of a binned

vector is defined as m𝑎
𝑖 i
𝑏
𝑖 instead of the standard i𝑖 . Parameters 𝑎 and 𝑏 (e.g.,

𝑎 = 3, 𝑏 = 0.6) are typically empirically estimated from data. Modified cosine

similarity [56] generalizes the dot product by considering not only the products of

peaks within the same m/z bins but also the products of peaks shifted by the dif-

ference in precursor m/z values. Such a modification makes the cosine similarity
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invariant to distinct adducts.

Recently, contrastive learning methods have been proposed aiming to learn

spectral similarity with improved correlation with respect to underlying molecular

structures. In essence, this approach involves training a neural network 𝑓 using a

loss function of the form L(s1, s2) = 𝑑 (𝑓 (s1), 𝑓 (s2)), where 𝑑 is a distance mea-

sure that is minimized if spectra s1 and s2 correspond to similar molecules and

maximized otherwise. Once the neural network is trained, 𝑑 can be used as a

spectral similarity measure. For instance, MS2DEEPSCORE [57] employs a feed-

forward network 𝑓 operating on binned spectra, with cosine similarity as the dis-

tance measure 𝑑. The minimization/maximization of L is achieved by minimizing

the Euclidean distance between 𝑑 and the Tanimoto similarity of the correspond-

ing compounds.

Voronov et al. [58] propose a similar approach but with a different neural

network architecture, defining 𝑓 as a standard Transformer [38] encoder that op-

erates on spectral peaks encoded with sinusoidal embeddings [59, 38]. Bittrem-

ieux et al. [60] introduce the contrastive learning method GLEAMS to cluster

proteomics tandem mass spectra, utilizing a convolutional neural network as 𝑓 ,

Euclidean distance as 𝑑, and minimization/maximization performed for spectra of

identical/different peptides.

Another two methods aiming to advance the spectral similarity are MS2LDA

[61] and word2vec [62]. Since, technically, they are not necessarily limited to the

sole comparison of mass spectra and are unsupervised, we discuss them in section

Unsupervised representation learning.

3.2 Forward annotations

The main drawback of spectral similarity searches is the limited size of spectral

libraries. Nevertheless, in principle, possessing a flawless forward predictor, one

could generate a spectrum for any molecule of interest. Datasets generated in

this way are referred to as in silico spectral libraries. Traditional forward meth-

ods, such as CFM-ID [63], MAGMA [64], and METFRAG [65], recursively frag-

ment a molecule in a combinatorial way and assign a plausibility score for each

fragment candidate based on hand-crafted rules or simple machine-learning tech-

niques. The resulting tandem mass spectrum is determined by the cascade of

23



3. RELATED WORK

fragmentations with the highest plausibility.

Alternatively, deep-learning-based methods employ feed-forward networks to

directly predict mass spectra from molecular fingerprints [66] or from molecular

graphs using classic graph neural networks such as GCN [67, 68], GAT [69, 68,

70], or GRAPHORMER [71, 72]. Some methods also utilize an ensemble of both

approaches [73].

More sophisticated methods reformulate the forward annotation as a predic-

tion of chemical formulas determining m/z values. Goldman et al. propose the

SCARF model, which comprises two neural networks: one for predicting the set of

chemical formulas constrained by the precursor formula and another for predict-

ing the corresponding intensities [74]. Murphy et al. introduce the GRAFF-MS

method, which predicts probability distributions over the space of plausible chem-

ical formulas pruned by the mass decomposition algorithm [75, 76]. Alternatively,

Goldman et al. propose the ICEBERG algorithm, which simulates fragmentation

similarly to the classic methods but utilizes neural network predictions instead of

a hand-crafted scoring [74].

3.3 Inverse annotations

Inverse methods aiming to predict molecules from spectra can be classified into

two categories. The first one consists of methods predicting molecular fingerprints

or other approximate representations of compounds. The second category consists

of de novo generative models, which aim to construct entire molecular structures.

3.3.1 Approximate inverse annotations

The SIRIUS software [15], belonging to the first category, can be considered the

state-of-the-art method for elucidating mass spectra. It comprises a collection of

tools, among which fragmentation trees [16], CSI:FINGERID [17], and CANO-

PUS [18] are the most prominent ones. Fragmentation trees aim to represent a

spectrum as a tree graph, where nodes correspond to chemical formulas of frag-

ments and edges represent associated losses. As a result, the root node of a tree

with the highest likelihood represents the chemical formula of the whole molecule.

The notion of likelihood is determined by hand-crafted scoring functions through

maximum a posteriori estimation.
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CSI:FINGERID utilizes fragmentation trees to predict the chemical fingerprint

of a molecule. Each bit of the fingerprint is calculated by a separately trained Sup-

port Vector Machine (SVM) [77] involving kernels specifically designed for mass

spectra and fragmentation trees. The latest version of SIRIUS also incorporates

deep kernel learning [78]. Since the molecular fingerprint can be easily computed

for any molecule, CSI:FINGERID predictions are often directly used to retrieve the

compounds with the most similar fingerprints from chemical databases such as

PubChem [79]. Finally, given a CSI:FINGERID fingerprint and the corresponding

molecular formula, CANOPUS predicts the chemical class of the compound using

a feed-forward neural network.

Although the prediction of chemical formulas is considered to be solved for the

most common chemical elements (C, H, N, O, P, S), the accurate retrieval of molec-

ular structures remains challenging. As a result, several deep learning methods

have recently been proposed to replace SVMs for predicting CSI:FINGERID finger-

prints. Given that the community is still exploring mass spectrometry-specific in-

ductive biases, researchers have investigated both simple feed-forward networks.

Since the community is still searching for mass-spectrometry-specific inductive

biases, there were investigated either simple feed-forward networks [80, 81] or

more advanced architectures utilizing the outputs from traditional methods. Gold-

man et al. propose MIST [82] - a Transformer neural network modified to operate

on chemical formulas assigned by SIRIUS and substructures assigned by MAGMA.

Notably, the authors also investigate the contrastive fine-tuning of the model pre-

trained to predict molecular fingerprints.

Instead of predicting fingerprints, another kind of related works focuses on the

prediction of task-specific molecular properties. For instance, MS2PROP [83] pre-

dicts a quantitative estimate of drug-likeness (i.e. how likely it is that a molecule

is a drug) [84] and synthetic accessibility (i.e. how easy it is to synthesize a

molecule) [85] directly from spectra employing a standard Transformer encoder

architecture. Likewise, Gebhard et al. [86] experiment with several machine-

learning algorithms such as linear regression or XGBoost [87] for the prediction of

molecular complexity (MC) [88]. They motivate the prediction of such a property

by highlighting the efficiency of mass-spectrometry-based search of biosignatures

(i.e. life signals) beyond Earth.
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3.3.2 De novo inverse annotations

Despite the current practicability of the approximate approaches, they are not

as conceptually appealing as de novo methods directly generating molecular struc-

tures. Indeed, knowing a molecular structure, one could easily compute any chem-

ical fingerprint or the above-mentioned molecular property.

There were proposed several works formulating this problem as a Transformer-

based translation between mass spectra and SMILES strings. For example, Zhang

et al. propose MASSGENIE [89] which is a standard Transformer architecture aug-

mented with VAE-SIM [90] - SMILES-based variational autoencoder [91] help-

ing to search for candidate molecules. Shrivastava et al. experiment with MS2-

TRANSFORMER [92] - a slightly modified Transformer architecture utilizing frag-

mentation trees. Each Transformer encoder layer sum up the output of Attention

block (i.e. Global Aggregation) operating on a set of embedded peak with the

output of MPNN (message passing neural network [93]; i.e. Local Aggregation)

operating on embedded peaks structured in the corresponding fragmentation tree

graph. Another approach employing SIRIUS outputs is MSNOVELIST [94]. Given a

CSI:FINGERID and a molecular formula, it autoregressively decodes SMILES in a

series of LSTM (long short-term memory) [95] blocks. Another related sequence-

to-sequence approach CASANOVO was proposed for proteomics. It utilizes the

Transformer architecture, where the encoder operates on peaks and the decoder

generates peptide sequences - strings over the vocabulary of over 20 amino acids.

3.4 Molecular networking

Unfortunately, current computational tools have not yet reached the capacity to

provide accurate automated solutions for comprehensively interpreting mass spec-

trometry data. The most widely employed method for the annotation of mass spec-

tra involves combining spectral similarity, inverse, and forward predictions for fur-

ther manual inspection. Typically, a collection of mass spectra (e.g., spectra from

several LC-MS/MS runs or spectra of interest combined with spectral libraries) is

examined as a molecular network (MN). In the network, edges represent spectral

similarity, while nodes are annotated using inverse methods. Forward methods

may further expand the network.

The original molecular networking approach [56] employs modified cosine
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Figure 3.2: The fragment of a molecular network. Each node is associated with a
tandem mass spectrum and edge colors represent their cosine similarities. The node values
correspond to precursor m/z ratios, and their colors denote the CANOPUS predictions of
chemical classes. The molecular networking approach enables propagating the predictions
to the spectra, which were not confidently annotated by CANOPUS, suggesting the peptidic
compounds as the annotation for the green nodes. The underlying mass spectrometry
dataset belongs to an unpublished study on plant metabolome conducted by Tito Damiani
et al.

similarity to generate edges. However, there are various orthogonal modifications

or extensions to the original node similarity concept. For instance, MetGem [96]

is based on t-SNE dimensionality reduction [97] of pairwise cosine distances, and

feature-based molecular networking [98] extends MN by considering MS1 features

such as retention time or ion mobility separation [79]. Ion identity molecular net-

working additionally takes into account the correlation within different adduct

species of the same molecule [99]. Overall, molecular networking is a flexible and

powerful tool [100] that has successfully demonstrated its applicability in numer-

ous biological studies [56, 101, 102, 103, 104].

3.5 Unsupervised representation learning

One way or another, all aforementioned methods rely on annotated spectral li-

braries. To the best of our knowledge, there exist only three works at least par-

tially aiming to learn representations of mass spectra directly from unlabeled data.

Namely, MS2LDA [61] and SPEC2VEC [62] are especially relevant to our method.

These works are inspired by natural language processing algorithms LDA [105]

and WORD2VEC [106], which are precursors of BERT [39] inspiring our work.

LDA (2003) word2vec (2013) BERT (2018)

MS2LDA (2016) spec2vec (2021) Our work (2023)
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In essence, MS2LDA treats each spectrum (“document”) as a set of Mass2Motifs

(“words”) - discretized masses of peaks and neutral losses. Then, it statistically

searches for the reoccurring motifs determining “topics” of mass spectra. Such

derived “topics” are able to encode both generic and specific biologically-relevant

structural features and therefore enhance the annotation of mass spectra. Another

algorithm spec2vec represents each spectrum in a similar way but derives rep-

resentations of spectra by implementing the word2vec continuous bag of words

approach. The concept is to train a shallow neural network predicting an m/z

value of a peak given m/z values of (e.g. 500) neighboring peaks. As a result

of such unsupervised5 training, cosine distance on representations of spectra ex-

tracted from the neural network outperforms traditional spectral similarities in

terms of structural similarity between underlying molecules.

A different machine-learning technique utilizing unannotated data is proposed

by Kutuzova et al. [107]. They investigate a bi-modal variational autoencoder

[108] jointly operating on mass spectra and the associated SMILES strings. Prior

to bi-modal training, the authors experiment with uni-modal pre-training on both

unlabeled data modalities. They show that using compounds unpaired with mass

spectra improves the annotation of molecules from spectra. However, uni-modal

pre-training on unannotated spectra worsens model performance in the examined

experiments. The authors hypothesize that such a drawback could be caused by

the heterogeneity of experimental MS data.

Similar to how word2vec is unable to capture long-range dependencies be-

tween words and LDA relies on assumptions about topic distributions, spec2vec

and MS2LDA generate limited representations of mass spectra and cannot be

trained on large datasets. Consequently, they have only been investigated in

the context of spectral similarity. In contrast, BERT is a Transformer-based self-

supervised learning algorithm that is easily scalable to large text corpora. Al-

though it is also trained to predict masked parts of input sentences, it produces

significantly richer representations and offers more flexibility for use in various

tasks. BERT has truly revolutionized the domain of natural language processing,

thereby motivating our work in mass spectrometry.

5Technically, spec2vec is trained on annotated data and the information about molecular struc-
tures is used to define datasets and estimate model hyperparameters. Nevertheless, similarly, as
word2vec is conceptually designed as an unsupervised algorithm, spec2vec does not use any an-
notations for training.
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CHAPTER 4
Training data collection and analysis

4.1 Analysis and processing of annotated NIST20

and MoNA datasets

As mentioned in the previous chapter, nearly all machine learning models for mass

spectrometry are supervised and therefore depend on annotated spectral libraries.

The two most prominent and easily accessible annotated datasets are the Mass

Bank of North America (MoNA) [25] and NIST20 [24]. In this section, we briefly

analyze both libraries and demonstrate that they are not rich enough for exclu-

sively supervised approaches. Nevertheless, they represent the primary source of

molecular information available for mass spectra. Consequently, we also use them

to validate the effectiveness of pre-training and supervised fine-tuning of the pre-

trained model. To make the best use of these libraries in a supervised setup, we

develop a novel approach for defining train/validation splits. Our splitting method

surpasses existing approaches in both qualitative and quantitative aspects.

4.1.1 Basic statistics of spectral libraries

NIST20 is a dataset created by a team of experienced mass spectrometrists at the

National Institute of Standards and Technology (NIST). Over the course of three

decades, the dataset has been continuously expanded and thoroughly evaluated,

ensuring that every spectrum is accurately measured and examined for correct-

ness. In contrast, MoNA is a community-driven repository of spectra that is cu-

rated in an automatic way. MoNA includes more than 20 spectral libraries, among

which MassBank and GNPS are the largest and most notable. These libraries form
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Figure 4.1: Counts of unique mass spectra, molecules, and molecular scaffolds in
NIST20 and MoNA datasets. Notice the exponential scale highlighting the overabun-
dance of similar molecular structures.

the core training data for machine learning algorithms, with additional datasets

being rarely used.

There is a certain property of spectral libraries which, we believe, makes them

quite characteristic in the context of machine learning datasets. For most molecules,

one can find at least several but not more than tens of spectra. This observa-

tion underscores both the advantages and limitations of utilizing such datasets for

training.

In terms of the number of mass spectra, both datasets are relatively large com-

prising roughly 850 thousand spectra merged together6. However, in terms of

distinct molecules, the datasets are rather small. The union of the two datasets

contains approximately 36 thousand unique compounds, which is a tiny fraction

of the known 111 million substances in PubChem [79]. Furthermore, a significant

proportion of the included molecules are mutual derivatives (Figure 1.1), yield-

ing less than 10,000 unique molecular scaffolds. Important to mention, that the

distribution of precursor masses is skewed towards the range [1, 500] Da leading

to mere 6,342 larger unique compounds and 2,936 unique scaffolds in the range

of [500, 1000] Da (Figure 4.2). Such a limited inclusion of molecular structures

makes it challenging for machine learning models to extrapolate to the level of de

novo prediction of arbitrary molecules.

Such redundancy arises from the richness of available mass spectrometry se-

6For both libraries we consider only spectra acquired in positive ionization mode. We use the
LC-MS/MS Positive Mode library of MoNA downloaded on 8 Mar. 2023.
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Figure 4.2: Distribution of precursor m/z ratios in NIST20 and MoNA datasets. Spec-
tral libraries poorly cover the molecules within the mass range of [500, 1000] Da.

tups for the same compound. In particular, MoNA and NIST20 provide spectra

acquired with different instruments and CID fragmentation energies, as well as

spectra with the same precursor molecules but various adducts and charge states

(Figure 4.3). In principle, it may help a machine learning model to learn “the

manifold” of plausible spectra. However, the common practice prevailing in the

literature is to reduce the datasets to consistent data points, such as only spectra

of precursors with [M+H]+ adduct.
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Figure 4.3: Histograms of spectral metadata entities in NIST20 and MoNA. The variety
of mass spectrometry settings is the reason and the cause of overabundance of similar
molecular structures.
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4.1.2 Data splitting with Murcko histograms

Suppose we aim to develop a new machine learning method for the de novo inverse

annotation of mass spectra (see De novo inverse annotations). Regardless of the

methodology we implement, the goal of training is to obtain a model that can

extrapolate beyond the training data and generate valid molecules for previously

unobserved spectra. How can we validate such a model? To achieve this, the

computational mass spectrometry community organizes regular CASMI (Critical

Assessment of Small Molecule Identification) contests [109], in which models are

evaluated on several benchmarks and novel mass spectrometry data. However,

these competitions are held at most once a year and are designed primarily as the

ultimate test of model performance rather than for their gradual development.

With the current limited capacity of spectral libraries, one has to employ a stan-

dard machine-learning technique of training data splitting, where a fraction of the

available data is used as a held-out validation benchmark and excluded from train-

ing. Frequently, this fraction is determined by random subsampling. However,

this often results in biased datasets, leading to biased models that fail to gener-

alize to unobserved data [110]. In the mass spectrometry domain, non-random

train and validation folds are currently obtained using either structure-disjoint

or scaffold-disjoint splitting. The structure-disjoint split separates molecules with

non-identical connectivity of atoms (i.e. the first 14 characters of InChI keys),

while the scaffold-disjoint split separates molecules with non-identical Murcko

scaffolds [111]. A Murcko scaffold is a core molecular structure obtained by re-

moving side chains and retaining only the essential ring systems and linkers that

define the overall architecture of a molecule.

Let us consider the molecules from NIST20 shown in Figure 4.4 as. If we de-

fine the de novo inverse annotation as a graph generation problem (for instance, by

defining a loss function as the mean binary cross-entropy over the adjacency ma-

trix of the molecular graph), we can see that molecules (A) - (D) are quite similar

to each other. Therefore, the de novo predictor generating molecule (B) from the

spectrum of (C) can be considered reasonably effective. However, to the best of

our knowledge, none of the existing train/validation splitting approaches is capa-

ble of grouping all four molecules in the same fold. Consequently, given the entire

NIST20 dataset, a model is always trained on some of the four molecules and val-

idated on the remaining ones. This implies that if a model can find some trivial
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Figure 4.4: Four molecular structures from NIST20 illustrating the shortcomings of
currently applied train/validation splitting techniques. (A-D) Four molecules from
NIST20, which can be characterized by two spectral peaks at 177.0223 and 101.0163 m/z
values. The combination of the two peaks does not occur in any other spectrum within
NIST20 and MoNA. (E) Molecule from the unpublished in-house MCE library prepared by
Corinna Brungs et al. yielding the aforementioned combination of m/z values7.

pattern that uniquely characterizes the four molecules in the scope of training data

(i.e. overfit), it can achieve relatively high validation performance. In fact, an ex-

ample of such a pattern is the presence of two peaks at 177.0223 and 101.0163

m/z values. However, given the vast combinatorial space of plausible molecular

structures, an overfitted model obviously cannot extrapolate beyond NIST20. For

instance, a molecule from our in-house library yields the same combination of

m/z values but lacks the distinctive nitrogenated Thiane ring. It’s worth noting

that this analysis is not far-fetched, but rather a more in-depth investigation of a

single cluster depicted in Figure 1.1.

The observations described above motivate us to develop a new train/validation

scheme. First, we note that existing splits are agnostic to the fragmentation na-

ture of tandem mass spectrometry. For instance, two molecules differing only in

the length of the carbon chain connecting two subfragments possess distinct struc-

tures and scaffolds, yet such chains can be easily fragmented by CID, resulting in

nearly identical spectra. Moreover, contemporary approaches often allocate entire

molecules and their abundant fragments (which appear as separate data samples)

to different folds (see bottom examples in Figure 1.1), which consequently makes

machine learning models susceptible to overfitting.

Secondly, we believe that the splitting methods currently employed are concep-

7Here m/z values are considered to be distinct up to the absolute difference of 5 ∗ 10−4.
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tually flawed. While, by definition, the design of train/validation splits should start

with the question of “How to distribute similar molecules across different folds?”,

existing methods instead seek to answer “How to cluster different molecules within

the same folds?”. More exactly, the distinction between the two approaches ap-

pears in the number of compounds per fold, where the fold is purely the output

of the splitting algorithm. The latter approach often results in the abundance of

clusters containing almost identical molecules, which must be further combined to

form a meaningful amount of data folds. However, since the underlying methodol-

ogy does not differentiate but unify molecules, they are often combined randomly,

making one unaware of possible data leakages.

To address the issue of insensitivity to fragmentation, our method operates on

molecular fragments as the primary design principle. To address the second issue,

we define a heavily relaxed notion of molecular similarity, such that the distinc-

tion between folds is well-defined and easily understood. We term our algorithm

Murcko histograms since it operates on the histograms associated with Murcko

scaffolds.

Given the Murcko scaffold of a molecule, algorithm Data splitting with Murcko

histograms operates on two separate groups of its atoms. The first group consists

of sets of atoms, with each set determining a ring, whereas the second group in-

cludes all atoms connecting these rings. For each ring, the algorithm calculates a

pair of natural numbers: the number of neighboring rings and the number of adja-

cent linkers. These pairs define the domain of the resulting histogram, where the

values represent the counts of such pairs within a molecule. Figure 4.5 provides

examples of molecules and their corresponding Murcko histograms.

In a straightforward manner, two molecules can be considered similar if they

have identical Murcko histograms and be considered dissimilar otherwise. This

process resembles a single iteration of the Weisfeiler-Lehman (WL) graph isomor-

phism test [112] on a coarse-grained molecular graph, where rings are collapsed

into single nodes and are colored differently from linkers. However, a notable

difference between Murcko histograms and the histograms arising in the WL test

is that Murcko histograms are calculated solely for rings. This approach makes

the algorithm invariant to the lengths of linkers, which is a desired property for

assessing molecular similarity with respect to fragmentation mass spectra.
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Algorithm 1: Definition of Murcko histogram
Input: Molecular graph

𝐺 = (𝑉 , 𝐸),𝑉 = {1, . . . , 𝑛}, 𝐸 ⊆ {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉 ∧ 𝑢 ≠ 𝑣}.
Output: Murcko histogram ℎ.

1 𝐺 ← MURCKOSCAFFOLD(𝐺)
2 𝑉𝑅 ← {𝑉𝑟 ⊂ 𝑉 | 𝑉𝑟 contains nodes of all cycles sharing at least two edges}
3 𝑉𝐿 ← {𝑣 ∈ 𝑉 | deg(𝑣) > 1 ∧ 𝑣 is in not in any cycle}
4 ℎ ← a map ℕ2 → ℕ initialized as (∀𝑖, 𝑗 ∈ ℕ2) (ℎ(𝑖, 𝑗) = 0)
5 for 𝑉𝑟 ∈ 𝑉𝑅 do
6 𝑟 ← ∑{|𝑉𝑟 ∩𝑉 ′𝑟 /2| | 𝑉 ′𝑟 ∈ 𝑉𝑅 \𝑉𝑟 }
7 𝑙 ← |𝑉𝑟 ∩𝑉𝑙 |
8 ℎ(𝑟, 𝑙) ← ℎ(𝑟, 𝑙) + 1

9 return ℎ

To further refine the similarity measure with respect to mass spectrometry,

we establish a more lenient relation on Murcko histograms than strict identity.

Specifically, we consider two molecules as related if the Murcko histogram of one

molecule is a subhistogram of the other solely in rings. Additionally, two molecules

are considered similar if they are transitively related, regardless of the symmetry

of chained relations. To prevent the collapse of all molecules into a single fold,

this relation is replaced with an identity if at least one of the two molecules being

examined in a pair has fewer than 𝑘 rings. We set 𝑘 = 3 by default. This re-

laxed approach enables the similarity measure to group subfragments of the same

compound. Figure 4.7 illustrates an example of three such molecules.

While the strict identity on Murcko histograms clusters the entire NIST20 dataset

Algorithm 2: Definition of relation on Murcko histograms
Input: Two Murcko histograms ℎ1, ℎ2, minimum number of rings 𝑘 to

compute the non-identity relation.
Output: TRUE if one of ℎ1, ℎ2 is a subhistogram of another in Murcko

rings, FALSE otherwise.
1 if min{∑𝑖, 𝑗∈ℕ ℎ1(𝑖, 𝑗),

∑
𝑖, 𝑗∈ℕ ℎ2(𝑖, 𝑗)} ≤ 𝑘 then

2 return ℎ1 = ℎ2

3 if (∀𝑖 ∈ ℕ) (∑ 𝑗∈ℕ ℎ1(𝑖, 𝑗) ≤
∑
𝑗∈ℕ ℎ2(𝑖, 𝑗)) then

4 return TRUE

5 if (∀𝑖 ∈ ℕ) (∑ 𝑗∈ℕ ℎ2(𝑖, 𝑗) ≤
∑
𝑗∈ℕ ℎ1(𝑖, 𝑗)) then

6 return TRUE

7 return FALSE
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Figure 4.5: Groups of NIST20 molecules sharing identical Murcko histograms.
Schematic molecules under the histograms denote the number of adjacent rings and
linkers. Notice, that in the context of structure- and scaffold-disjoint splitting, all the
molecules are regarded as distinct.

into 314 equivalence classes, the relaxed similarity relation results in 39 unique

components. Of these, four clusters account for 99.5% of the molecules (39%

+ 29% + 17% + 15%), with the remaining ones featuring complex fused rings

that make them outliers in terms of Murcko histograms. By isolating the group

representing 15% of compounds, we achieve a 73%/27% train/validation split,

significantly alleviating data leakage issues compared to existing approaches (Fig-

ure 4.6). Importantly, we can interpret the possible leakage given by our method

as necessarily the pair of compounds, among which one of the compounds is a

fragment of another and contains less than 𝑘 rings.
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Figure 4.6: Murcko histograms surpass currently applied data splitting techniques in
terms of Tanimoto similarity. (A) Distribution density of maximum Tanimoto distances
when searching for the most similar training-fold molecules for 500 random validation-
fold samples within NIST20. (B) Scaled [0.9, 1] domain from Figure (A). The commonly-
applied structure-disjoint split is inadequate as a validation of machine learning algo-
rithms, as it results in many data leakages (i.e., 1.0 similarities between training and
validation examples). While the scaffold-disjoint splitting mitigates the leakages, its dis-
tribution is skewed towards the [0.8, 1.0] range. In contrast, Murcko histograms result in
a distribution centered around 0.55 and rarely produce similarities above 0.9.
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Figure 4.7: Murcko histograms relation links subfragments within identical folds.
The figure shows molecules from the NIST20 dataset with different Murcko histograms
that belong to the same connected component in the graph defined by the subhistogram
relation. Although molecules (B) and (C) do not share mutually inclusive Murcko his-
tograms, the histograms of both (B) and (C) are subhistograms of (A), resulting in the
shortest undirected path between (B) and (C).

37



4. TRAINING DATA COLLECTION AND ANALYSIS

4.2 Mining millions of unannotated MS𝑛 spectra

from MassIVE repository

To overcome the limitation of spectral libraries, we collect an orders-of-magnitude-

larger dataset of high-quality unannotated mass spectra from the MassIVE repos-

itory. MassIVE8 is a community resource developed by the NIH-funded Center

for Computational Mass Spectrometry to promote the global, free exchange of

mass spectrometry data. The repository contains raw and processed data and is

designed to support a wide range of mass spectrometry-based studies, including

proteomics, metabolomics, and lipidomics. MassIVE contains data from various

mass spectrometry instruments and data formats, making it a versatile and com-

prehensive database. Currently, it comprises around 500TB of data containing 6.4

billion mass spectra. Even though historically MassIVE was developed as a re-

source for proteomics, it has recently started to rapidly expand as a metabolomics

database (Figure 4.8).

The MassIVE repository is comprised of datasets, each corresponding to a spe-

cific applied mass spectrometry study and possessing a unique MSV identifier.

For example, MSV000091421 dataset studies metabolomics of blood samples for

Asthma cohort, MSV000090317 comprises a mass spectrometry analysis of the

roots of Vietnamese Fibraurea recisa plant, whereas MSV000081119 contains the

study of beer samples from different locations. A dataset is essentially a directory

of files and does not undergo strict specification. Any registered user can upload

a dataset, regardless of the purpose of the conducted experiments or the quality

of MS data. Such broad inclusivity is crucial for achieving our goal of collecting a

diverse and extensive dataset. However, the raw nature of the data, along with its

immense scale, presents a series of challenges:

• How can we extract a subset of high-quality MS𝑛 spectra? Given the vari-

ability of experimental setups, how can we define a “high quality MS𝑛 spec-

trum”?

• How can we minimize redundancy in the extracted dataset and make it bal-

anced with respect to unknown fragmented molecules?

• Given MassIVE’s bias towards proteomics, how can we identify mass spectra

corresponding to metabolites?

8https://massive.ucsd.edu
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4.2. Mining millions of unannotated MS𝑛 spectra from MassIVE repository

In the following sections, we describe our approach to overcoming these chal-

lenges and introduce a pipeline of algorithms that enable us to extract large refined

collections of unannotated MS𝑛 spectra from MassIVE, which we refer to as MSV𝑛

datasets.

4.2.1 Collecting metabolomics data files

Contradictorily, despite not limiting our work to a specific class of molecules, we

currently have to exclude the majority of MassIVE’s volume, which predominantly

corresponds to proteomics research studies. This implies that most tandem mass

spectra in MassIVE are associated with peptides. Although such spectra are of

great interest in their own right, incorporating them into our work would limit

the generalization capabilities of the deep learning model and introduce a bias

towards peptides. Regrettably, given the metadata available in MassIVE, distin-

guishing between metabolomics and proteomics studies is challenging. Moreover,

metabolomics samples may contain a variety of peptides in addition to the antici-

pated metabolites.

Fortunately, the metabolomics community typically follows the convention of

naming metabolomics datasets with the “GNPS” prefix [100]. Thus, we further

concentrate only on GNPS datasets within MassIVE. However, we emphasize that
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Figure 4.8: Growth of MassIVE as a standardized repository for metabolomics data.
(A) Starting with approximately the MSV ID of 80,000 MassIVE began consistently increas-
ing in the number of GNPS datasets containing .mzML and .mzXML files with metabolomics
data. (B) Along with the emergence of GNPS datasets MassIVE started to converge to two
aforementioned file standards (.xml files describe metadata and .raw files are automati-
cally converted to .mzML).
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Figure 4.9: Data file-level statistics of the GNPS part of MassIVE. Even though the
GNPS part contains approximately the same number of files as its complementary part,
GNPS occupies considerably less storage space. Such observation indicates the diversity
of metabolomics data files.

estimating the number of metabolomics datasets present in the complementary

non-GNPS portion of MassIVE is difficult, as this information is only available in

the form of text descriptions.

Each vendor of mass spectrometry instruments provides its own data format,

resulting in MassIVE datasets being composed of various file formats. Despite the

variability in file extensions, two major data formats have become dominant (Fig-

ure 4.8) across MassIVE: .mzML [113] and its predecessor, .mzXML [114]. These

formats were developed with the full participation of vendors and researchers

in order to create a single open specification for mass spectrometry data. The

dominance of these formats is also a consequence of a feature of MassIVE, which

automatically converts raw data formats (such as .RAW from Waters or .TDF from

Bruker Daltonics) to .mzML. As a result, we extract spectra only from files that are

in the .mzML and .mzXML formats. Essentially, these files contain three-dimensional

mass spectrometry datasets, as introduced in section Liquid chromatography tan-

dem mass spectrometry, where two-dimensional mass spectra are ordered by chro-

matographic retention time.

After selecting only GNPS datasets and .mzML, .mzXML files we obtain 649,494

files occupying 32.51 TB. To eliminate identical or similar files, we select only

the most recent file among files with the same name and MSV ID but located in

different subdirectories. It yields the final 338,649 files occupying 18.35 TB.
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4.2. Mining millions of unannotated MS𝑛 spectra from MassIVE repository

4.2.2 Processing and storage of MS data files

Once we have identified the MassIVE files of interest, we download and process

each of them. We perform on-the-fly processing, retaining only a specific portion

of the information. In this phase, our goal is to preserve nearly all MS𝑛 spectra

while discarding MS1 spectra not triggered for MS2 acquisition. We also carry out

basic filtering to eliminate empty or corrupted spectra. During this workflow, we

(i) gather metadata that can be utilized by machine learning algorithms, and (ii)

compute data quality indicators that enable us to further construct high-quality

subdatasets. Finally, we store the spectra in the .hdf5 format, which is suitable

for deep learning applications.

Collecting spectra and their metadata

If we were to keep all MS𝑛 spectra from the collected data files, we would have

roughly 814 million spectra. However, we discard certain spectra that we consider

invalid, despite following the principle of collecting as many tandem spectra as

possible regardless of their quality (Figure 4.11). Specifically, we remove approxi-

mately 40 million spectra that do not possess any single peak, as well as the other

spectra that do not have only unique m/z values, have non-positive values, or do

not have m/z values sorted. We also exclude spectra with zero intensities, as they

are likely acquired in a profile mode or have undergone an undesired preprocess-

ing step, such as binning of the m/z range. Furthermore, we subject precursor

MS1 spectra to the same filtering conditions, resulting in a reduced dataset of

approximately 714 million tandem mass spectra.

Precursor MS1 spectrum is a primary piece of metadata for each MS𝑛 spectrum.

It contains important information about isotopic and adduct distributions of the

10 7 10 5 10 3 10 1 101

Size [GB]

0

5000

10000

15000

#
 F

ile
s

Not GNPS
GNPS

Figure 4.10: GNPS part of MassIVE is balanced regarding the size of data files. The
figure shows that the distribution of data file sizes is log-normal-like for the GNPS part of
MassIVE and is less balanced for the complementary fraction.
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Figure 4.11: Outcomes of filtering invalid or inappropriate data from the GNPS sub-
set of MassIVE. Figure (A) reveals that roughly 25% of files are not MS/MS experiments.
Figure (B) indicates that out of 814 million spectra, 100 million are invalid, while Figure
(C) presents similar statistics for precursor spectra. Figure (D) characterizes the invalid
spectra. Figure (E) demonstrates that the distribution of valid MS𝑛 spectra across files
resembles a log-normal pattern.

precursor molecule and allows, for example, the detection of chimeric spectra by

analyzing the density of peaks within the isolation window around precursor m/z.

Therefore we collect precursor spectra for all extracted MS𝑛 spectra. Further, we

equip tandem mass spectra with “data-file-level” and “spectrum-level” metadata.

More precisely, by “data-file-level” we mean the underlying instrument informa-

tion and the overall structure of the MS dataset (Figure 4.12), which directly re-

flect the quality of MS data and discussed in the following section Estimating MS

data quality.

“Spectrum-level” metadata refers to the information characterizing each indi-

vidual spectrum. Among such data, the most valuable entries include the m/z

of the precursor molecule triggered for fragmentation and the MS level (i.e., 𝑛

in MS𝑛) of a spectrum, which determines the number of consecutive recursive

acquisitions starting with the same MS1 spectrum. For any method annotating

MS𝑛 spectrum, the precursor m/z is essential as it reveals the mass of the entire

fragmented compound. MS levels enable the aggregation of multiple spectra cor-

responding to the same precursor. This aggregated “gestalt” contains significantly

more structural information compared to individual spectra. However, unfortu-

nately, multi-stage MS𝑛 fragmentation data is rarely available (Figure 4.13).
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Figure 4.12: Histograms of file-level quality-related metadata entities computed on
the downloaded GNPS subset of MassIVE. Figure (A) demonstrates that information re-
garding the MS instrument is often missing. Figure (B) indicates that a non-empty fraction
of data files do not have their spectra ordered with respect to retention time. Figure (C)
displays the distribution of spectra ordering by MS level, including non-downloaded types
such as INVALID or UNIFORM MS1. Notably, a significant portion of files with MS𝑛 contain
only a single spectrum (SINGLE MSN) or lack MS1 data (UNIFORM MSN).

While the precursor m/z and MS level information are always specified in

MS datasets, other valuable metadata entities are often unavailable due to their

recording being limited to certain MS instrument models. For instance, the pre-

cursor charge can provide an annotation method with insights into the molecular

structure’s size. The number of charge sites, for example, can suggest the diameter

and curvature of the molecular graph. However, the charge is unknown in approx-
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Figure 4.13: Histograms of spectrum-level metadata entities computed on the down-
loaded GNPS subset of MassIVE. Figure (A) demonstrates that the vast majority of spec-
tra are acquired in positive ionization mode. However, Figure (B) shows that the precursor
charge is frequently unknown. Figure (C) indicates that multi-stage MS𝑛 data for 𝑛 > 2 is
almost non-existent within the filtered files. Lastly, Figure (D) illustrates that a substantial
portion of spectra is stored in unprocessed profile mode. Note that all counts represent
non-zero values.
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imately 66% of cases (Figure 4.13). Similarly, extracting useful information from

the CID energy specified in data files is challenging, as it lacks standardization.

Estimating MS data quality

The quality of mass spectrometry (MS) data plays a critical role in computational

metabolomics workflows. However, the concept of quality is difficult to define rig-

orously. In this work, we utilize the term “quality” to refer to the richness of MS

data with respect to the information about molecules present in a given sample.

This notion of “richness” constitutes a somewhat latent concept and its complete-

ness cannot be evaluated by any contemporary method. Nevertheless, the quality

of individual MS datasets can be compared based on certain characteristics.

Some of these characteristics are directly implied by the model of the mass

spectrometry instrument. For example, instrument vendors often provide parts

per million (ppm) accuracy and resolution specifications, which can be leveraged

by MS data processing methods. In particular, the higher the accuracy, the more

precise the MS1 isotopic distributions, which in turn results in a greater richness

of MS information. However, instrument characteristics cannot significantly fa-

cilitate our large-scale data processing of MassIVE, as the instrument model is

unknown in roughly one-third of cases (Figure 4.12). Moreover, other qualita-

tive parameters, such as the number of non-noise peaks in MS𝑛 spectra, are not

directly associated with the instrument but rather with its setup by the user. For

instance, insufficient collision-induced dissociation (CID) energy can result in only

a few peaks (molecular fragments) and an information-poor spectrum. Therefore,

we implement several heuristic data-centric algorithms to estimate the quality of

MS datasets directly from spectra and their structure.

Given an MS dataset, we first assess its global structure. First of all, it means

that we validate the retention time ordering of spectra. If spectra are not ascend-

ingly ordered by RT, we sort them, yet indicating this step in the output data

format as may suggest it’s low quality. Secondly, we classify the retention time

ordering of spectra with respect to MS levels into the following categories:
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MSLevelOrder(l) =



SINGLE MS1, if |l| = 1 ∧ l1 = 1,

SINGLE MSN, else if |l| = 1 ∧ l1 > 1,

UNIFORM MS1, else if l𝑖 = l𝑖−1 = 1,

UNIFORM MSN, else if l𝑖 = l𝑖−1 > 1,

CONSEQUENT MSN, else if l𝑖 − l𝑖−1 ∈ {0, 1} ∨ l𝑖−1 = 1,

MIXED MSN, else if l𝑖 − l𝑖−1 ∈ {0, 1} ∪ ℤ−,
INVALID, otherwise,

where l ∈ ℕ𝑟 are MS levels of spectra ordered by 𝑟 retention times and all con-

ditions involving l𝑖 hold ∀𝑖 ∈ {2, . . . , 𝑟 }. The rationale behind such an approach

is to discard MS𝑛 spectra missing precursor information and to detect corrupted

mass spectrometry data files.

For example, we are not interested in SINGLE MS1 or UNIFORM MSN categories,

which contain only MS1 data. Further, we classify tandem data into three ma-

jor types: UNIFORM MSN, CONSEQUENT MSN, and MIXED MSN. While CONSEQUENT MSN

type guarantees the clean ordering of spectra, it does not account for multiple

MS3 acquisitions starting with a single MS1. Therefore, we define MIXED MSN cat-

egory as MS𝑛 spectra followed by MS1 without a strictly defined format. Different

approaches to internal data handling by the instrument may result in a different

ordering of multi-stage fragmentation spectra. Finally, UNIFORM MSN is associated

with files containing only tandem data of the same MS level. Such a format may

suggest the manual pre-processing of the data and indicate its low quality.

Each spectrum in MassIVE may be in a different format, depending on the

instrumental setup. Some spectra may be centroided, while others may remain in

a raw profile form. To ensure consistency in our dataset, we aim to predict the type

of each spectrum and keep only the centroided ones. To achieve this, we employ

the heuristic MZmine 3 algorithm Estimating MS data quality [115]. In essence,

the algorithm assesses whether the base peak of a spectrum is represented as a

sequence of densely packed high peaks or not. If it is, the spectrum is classified as

profile (or thresholded, meaning that it does not contain any zero intensity), and

if not, it is classified as centroided.

Although MSLevelOrder and spectrum type can filter undesired spectra, these
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Algorithm 3: Estimate the type of a spectrum
Input: Spectrum m/z values m ∈ ℝ𝑛 and intensities i ∈ ℝ𝑛.
Output: Estimated type of the spectrum.

1 if 𝑛 < 5 then
2 return CENTROID

3 𝑏 ← arg max i
4 𝑆 ← {𝑠 ∈ {1, . . . , 𝑛} | (∀𝑠′ ∈ {0, . . . , 𝑠 − 𝑏})(i𝑏+𝑠′ > i𝑏

2 )}
5 if max 𝑆 −min 𝑆 < 3 or mmax 𝑆 −mmin 𝑆 >

max m−min m
1000 then

6 return CENTROID
7 else
8 if (∃𝑖 ∈ i) (𝑖 = 0) then
9 return PROFILE

10 else
11 return THRESHOLDED

categorical metrics do not provide any information-richness score. As MS datasets

describe samples in terms of molecular masses, we emphasize that the most valu-

able characteristics of data quality should be expressed in terms of masses. Thus, it

is crucial to estimate instrument accuracy for measuring m/z values directly from

the data. To achieve this, we implement the Estimating MS data quality algorithm,

which takes an MS dataset as input and produces a real-valued score estimating

the absolute accuracy of the underlying instrument.

The proposed algorithm for estimating instrument accuracy is based on cal-

culating the variance of the same m/z value across different retention time (RT)

steps. To achieve this, the algorithm constructs an extracted ion chromatogram

(XIC), which is a slice of a 3D mass spectrometry dataset that is orthogonal to a

certain m/z ratio. The width of the slice is defined by a parameter called the m/z

tolerance, which determines the notion of being ”the same”. Initially, the algo-

rithm collects the masses of the highest peaks within the dataset and constructs an

XIC for each peak, using a high m/z tolerance. This step allows the algorithm to

determine putative sequences of m/z values that correspond to the same molecule.

Next, the algorithm constructs a new collection of narrower XICs, starting with

the median m/z of each individual XIC from the first round. The median standard

deviation of the resulting long sequences is considered the estimation of the abso-

lute instrument accuracy. This process helps to identify the m/z values that deviate

from their actual values due to various factors, including instrument imprecision
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4.2. Mining millions of unannotated MS𝑛 spectra from MassIVE repository

Figure 4.14: The red vertical lines depict two thresholds, which we fuzzily use to distin-
guish ”high” accuracy (below 10−4) from ”medium” (below 10−3) and ”low” accuracies
(above 10−4). Note that the figure does not aim to validate the instruments, but rather to
assess the adequacy of the accuracy estimation. In fact, the accuracy of instruments such
as TripleTOF depends on user-defined parameters.

or systematic bias. Figure 4.14 demonstrates the estimations of the m/z accuracy

for different MS instruments.

In addition to the global dataset-level qualitative features, we calculate local

spectrum-level properties to estimate the quality of individual spectra. One such

property is the number of high-intensity9 peaks present within a given spectrum.

Although, it is worth noting that the number of peaks does not necessarily corre-

late positively with the level of information richness regarding the molecular struc-

ture. On one hand, carefully prepared datasets such as the CASMI16 contest can

contain spectra with only a few peaks, which are sufficient to annotate the molec-

9For the specific choices of spectrum-level thresholds see section Formation of high-quality
MSV𝑛 datasets.
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Algorithm 4: Estimate the absolute accuracy of a mass spectrometry in-
strument

Input: Mass spectrometry dataset given as a collection of m/z values
{m(𝑡)}𝑟

𝑡=1 and intensities {i(𝑡)}𝑟
𝑡=1 corresponding to individual MS1

spectra indexed by retention order 𝑡 ∈ {1, . . . , 𝑟 }.
Output: Estimated absolute accuracy of the MS instrument.

1 Function BUILDXIC(𝑡, 𝑖, 𝜖, b):
2 𝑋 ← {}
3 𝑖∗ ← i(𝑡)

𝑖
4 for 𝑡 ′← 𝑖 + 1 to 𝑟 , 𝑡 ′← 𝑖 − 1 to 1 do
5 if (∃𝑖′ ∈ {1, . . . , |m(𝑡 ′) |) ( |m(𝑡

′)
𝑖′ −m(𝑡)

𝑖
| < 𝜖 ∧ i(𝑡

′)
𝑖′ < b𝑖∗) then

6 𝑋 ← 𝑋 ∪ (𝑡 ′, 𝑖′)
7 𝑖∗ ← 𝑖′

8 else
9 break

10 return 𝑋

11 𝐼1 ← {}
12 for 𝑡 ← 1 to 𝑟 do
13 for 𝑖 ← 1 to |m(𝑡) | do
14 if i(𝑡)

𝑖
∈ arg max3 i(𝑡) and (∀𝑗 ∈ 𝐼1) ( |m(𝑡)𝑗 −𝑚 | ≥ 1.5) then

15 𝐼1 ← 𝐼1 ∪ {(𝑡, 𝑖)}

16 𝑋1 ← {}
17 for (𝑡, 𝑖) in 𝐼1 do
18 𝑋 ← BUILDXIC(𝑡, 𝑖, 0.5, 0.1)
19 if |𝑋 | ≥ 5 then
20 𝑋1 ← 𝑋1 ∪ 𝑋

21 𝐼2 ← {}
22 for 𝑋 in 𝑋1 do
23 𝑚∗ ←Median{𝑚 | (𝑚, 𝑖) ∈ 𝑋 }
24 𝐼 ← {(𝑡, 𝑖) ∈ {1, . . . , 𝑟 } × {1, . . . , |m(𝑡) |} | |m𝑡

𝑖 −𝑚∗ | < 0.5}
25 𝐼2 ← 𝐼2 ∪ {(𝑡, 𝑖) | 𝑖 = max {𝑖′ | (∃𝑡 ′ ∈ {1, . . . , 𝑟 })((𝑡 ′, 𝑖′) ∈ 𝐼 )}}
26 𝑋2 ← {}
27 for (𝑡, 𝑖) in 𝐼2 do
28 𝑋 ← BUILDXIC(𝑡, 𝑖, 0.01, 0.1)
29 if |𝑋 | ≥ 5 then
30 𝑋2 ← 𝑋2 ∪ 𝑋

31 𝑆 ← {STDEV({m𝑡
𝑖 | (𝑡, 𝑖) ∈ 𝑋 }) | 𝑋 ∈ 𝑋2}

32 return MEDIAN(𝑆)
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ular structure (e.g., spectrum SM88210210). On the other hand, it is not uncom-

mon for a typical mass spectrometry experiment in MassIVE to produce spectra

with hundreds of low-accuracy peaks, among which only a few are not instrument

noise. Consequently, it may become impossible or nearly impossible to assemble

the complete molecular structures from such spectra. Nevertheless, given the ex-

perimental nature of MassIVE datasets, filtering millions of spectra based on the

minimum number of high-relative-intensity peaks can effectively eliminate many

information-poor spectra.

Determining whether a given peak is noise or not is a pivotal aspect of MS data

processing. The most common approach utilized for this purpose is to classify a

peak as noise if its intensity falls below a certain threshold and classify it as a

true peak otherwise. This classification scheme is often used to eliminate noisy

peaks, allowing the data processing workflow to operate solely on the remaining

filtered spectrum. It is indeed often the case that such a procedure eliminates

the majority of noisy peaks, however, it typically leads to the elimination of im-

portant low-intensity peaks. In other words, establishing a threshold that yields

both high precision and high recall in the identification of noisy peaks is challeng-

ing, especially given the dispersion of intensity behaviors varying from instrument

to instrument. As our objective is to collect a dataset of raw spectra, we do not

eliminate any peaks. Instead, we eliminate entire spectra if they do not possess

a sufficiently large intensity amplitude. We define the intensity amplitude as the

ratio of the maximum intensity to the minimum intensity within a spectrum.

Storing resulting data files

Upon downloading each MassIVE file, we collect its data and metadata and com-

pute its qualitative metrics. We then extract all this information into the com-

pressed .hdf5 format, which enables us to (i) effectively store the immense Mas-

sIVE in a compact, compressed format and (ii) organize the data into tensor-

shaped structures suitable for deep learning. This process allows us to store

338,649 MassIVE files, which occupy a total of 18.35 TB, into a mere 2.9 TB

(including a .log file associated with each .hdf5 that contains statistics on the

not collected complements of the data files). Table 4.1 shows the full specification

of the .hdf5 format.

10https://mona.fiehnlab.ucdavis.edu/spectra/display/SM883903
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MS𝑛 data Data type

M/z values float64
Intensities float32
MS level int8
RT float32
Charge int8
Polarity int8
Precursor m/z float32
Window lbound float32
Window ubound float32
CID energy float32
Spectrum type int8
Ion injection time float32
Definition string utf-8 str
Precursor id int32

Metadata Data type

File name utf-8 str
Instrument name utf-8 str
MSLevelOrder utf-8 str
|𝑋1 | int64
|𝑋2 | int64
MEAN(𝑆) float64
MEDIAN(𝑆) float64

Precursor data Data type

M/z values float64
Intensities float32
RT float32
Ion injection time float32
Scan id int32

Table 4.1: Specification of our .hdf5 format for MS𝑛 spectra. “MS𝑛 data” and “Precur-
sor data” are .hdf5 groups, whereas “Metadata” entities are .hdf5 attributes. All tensors
are 1-dimensional of the length 𝑚 equal to the number of collected spectra. The only
exception is “M/z values” and “Intensities” which are of the shape (𝑚,𝑛), where 𝑛 is the
maximum number of peaks across all spectra. Spectra having less than 𝑘 peaks are padded
with zeros. |𝑋1 |, |𝑋2 |, MEAN(𝑆), and MEDIAN(𝑆) refer to the Estimating MS data quality
algorithm.

4.2.3 Formation of high-quality MSV𝑛 datasets

Having more than 700 hundred million of MS𝑛 spectra with rich metadata pro-

vides us with the flexibility to establish several subsets with varying degrees of

MS data quality. Considering only the entire collected dataset or solely a refined

high-quality subset would limit our investigation of self-supervised pre-training.

In fact, it is not completely understood if large deep learning models benefit or

suffer from noisy training examples [116]. Clearly, the lower the quality of data

we tolerate, the substantially larger dataset the model has the freedom to operate

on.

Yet, there are certain properties of mass spectra that we strictly disallow in

the context of this work. Specifically, we discard spectra that exhibit features

suggesting a peptide- or lipid-like nature of the underlying compounds, which

are presumably dominant in MassIVE and therefore expected to be present in the

GNPS part as well. These features include spectra with a charge greater than one

(if known), precursor m/z greater than 1500 Da, or maximum m/z of a peak in a
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1 2 3 4 5 6 7
# spectra after and before applying filter 1e8

# file spectra after filtering < 3
Intensity amplitude < 20/20/18

# high (> 0.1) peaks < 3
Profile spectrum

Max m/z > 1000/1500/1500
MS level > 2/-/-

Precursor m/z > 1000/1500/1500
Charge > 1

Unknown charge/Unknown charge/-
Negative polarity

Est. instrument acc. < 0.0001/0.001/0.001
# file spectra < 3

Not ordered RT

Fi
lt
er

MSVn A
MSVn B
MSVn C

Figure 4.15: Construction of MSV𝑛 dataset from 700 million MS𝑛 spectra down-
loaded from the GNPS part of MassIVE. The rows are ordered consistently with our
implemented filtering pipeline, illustrating the cumulative reduction of data volume. The
final filtered datasets contain 41,951,922, 99,876,649, and 201,223,336 mass spectra,
respectively. The figure reveals that MSV𝑛 A is primarily filtered by selecting only high-
accuracy mass spectra, while MSV𝑛 B is reduced mainly by filtering out unknown charges.
Lastly, MSV𝑛 C is predominantly filtered based on the intensity properties of mass spectral
peaks.

spectrum greater than 1500 Da. These features are direct indicators of the large

size of molecules, which is beyond the scope of “small-molecule” metabolomics.

Additionally, we do not consider any spectra acquired in negative ionization

mode. While the molecules ionizable in negative and positive ESI modes are

roughly disjoint and provide orthogonal sources of information [117], we exclude

negative ionization mode spectra in this work. This decision is based on the fact

that negative mode is highly underrepresented in the collected data (Figure 4.11),

and MS𝑛 spectra often exhibit distinct fragmentation behaviors [118, 119].

Finally, we remove data files with untrustworthy content. Specifically, we dis-

card data files that contain fewer than three spectra before or after filtering con-

ditions are applied. Additionally, any files having spectra shuffled with respect to

retention time or MS levels are eliminated. Spectra estimated to be in a profile

format are also discarded. It is important to note that we have retained only those

spectra that possess at least three high-intensity peaks. In this context, “high-

intensity” refers to a peak with an intensity of at least 10% of the intensity of a

base peak. As discussed in section Self-supervised pre-training on raw MS𝑛 spec-

tra, this criterion is crucial for defining self-supervision objectives over the final

filtered datasets.
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To establish variations with varying degrees of MS quality, we employ four

major filtering conditions: estimated accuracy of the MS instrument, knowledge

of precursor charge, intensity amplitude, and m/z thresholds. Specifically, we

establish three datasets: MSV𝑛 A, MSV𝑛 B, and MSV𝑛 C. We name the datasets

such that the alphabetical order of A, B, C correlates positively with data size but

negatively with data quality.

Figure 4.15 shows the individual filters applied to refine the dataset into three

variants. The A variant is primarily filtered by the rigorous instrument accuracy

threshold of 0.0001. Such filtering implicitly discards nearly all spectra containing

m/z values beyond 1000 Da and with a charge greater than one. This confirms

the rationality of the accuracy estimation since instrument accuracy is naturally

an increasing function of a molecular mass. For subset B, we relax the filtering

mainly by tolerating accuracy estimates below 0.001 and m/z values below 1500

Da. In this setup, the unknown charge of the precursor is the most severe filtering

condition. We further relax this step to form the largest subset C. As it transpires,

the strictest filtering requirements for MSV𝑛 C are the two structural properties of

spectral peaks: number of intense peaks and intensity amplitude.

Clustering spectra with locality-sensitive hashing

Each of the extracted MSV𝑛 datasets is relatively clean with respect to our defi-

nition of spectral quality. However, the applied quality operates on a spectrum-

or file-wise basis and does not provide information about the quality of the final

collections of spectra combined from different sources. In particular, without fur-

ther analysis, we cannot determine whether datasets contain duplicate spectra or

the degree of such possible redundancy. Nevertheless, considering the dataset as

high-quality from a machine learning standpoint necessitates a minimal degree of

redundancy.

Given the dataset of size 𝑛, a naive approach attempting to at least eliminate

identical or nearly identical spectra would require all Θ
(
𝑛(𝑛−1)

2

)
pairwise com-

parisons. Even for the smallest MSV𝑛 A dataset, it leads to the intractable 1015

comparisons. To address the limitation, we employ the approximate method al-

lowing us to efficiently cluster spectra in Θ(𝑛) operations11 (i.e. in linear time).

11Here, we use the Big Theta notation to ignore the initialization of the algorithm and multi-
plicative factors arising from several operations performed for each spectrum.
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Moreover, the introduced approach approximates the cosine similarity of spectra

which has been conventionally used to compare spectra for decades (see section

Spectral similarity).

Our approach employs the algorithm of random projections belonging to the

family of locality-sensitive hashes (LSH) [120]. Given a binned spectrum s ∈ ℝ𝑛,

its corresponding hash ℎ(s) is computed with a map ℎ : ℝ𝑛 → {0, 1}𝑚 defined as

ℎ(s) = [Ws ≥ 0], where W ∈ ℝ𝑚,𝑛, W𝑖 𝑗 ∼ N(0, 1),

where [·] denotes an element-wise Iverson bracket. Intuitively, for each 𝑖 ∈
{1, . . . ,𝑚}, W𝑖,:s is a dot product of s with a random 𝑛-dimensional hyperplane.

Each of such 𝑚 hyperplanes splits the 𝑛-dimensional space into two complemen-

tary subspaces, which means that the sign of each of the dot products [W𝑖,:s ≥ 0]
determines to which of the two subspaces s belongs to. Since the hyperplanes pass

the origin of the space, random projections are identical in all dot-products only if

spectra are “similar” in a sense of cosine similarity. The larger𝑚 is, the more such

“similarity” reflects the cosine similarity. More precisely, it can be shown [120]

that for the fixed𝑚 it holds that

ℙ(ℎ(s𝑖) = ℎ(s 𝑗 )) = 1 − arccos

(
s⊤𝑖 s 𝑗
∥s𝑖 ∥∥s 𝑗 ∥

)
︸       ︷︷       ︸
Cosine similarity

1

𝜋
,

where ℙ is the probability over s𝑖, s 𝑗 ∈ ℝ𝑛. In other words, ℙ(ℎ(s𝑖) = ℎ(s 𝑗 ))
is monotonically increasing as a function of cosine similarity. Indeed, arccos is

monotonically decreasing with the codomain of [0, 𝜋]. Further normalizing it

with 𝜋 and subtracting from one gives a monotonically increasing function with

the codomain of [0, 1].

As a consequence of such an approach, spectra can be clustered based on the

equality of the corresponding hashes, which requires only a single traversal over

the given collection of spectra. Therefore, we apply LSH for each of the MSV𝑛

datasets. There are two parameters of the described method: the number of hy-

perplanes (i.e. 𝑚) and the width of a bin when converting spectra to the binned

representations (determining 𝑛). While we observe almost no difference when

considering different bin sizes in the range of [0.05, 0.5], the number of hyper-

planes significantly affects the resulting notion of redundancy within the spectra.

Thus, we produce the condensed datasets with the computationally cheap yet rel-

atively precise bin size of 0.5. With regard to the number of hyperplanes, we form
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Figure 4.16: The impact of the number of hyperplanes on locality-sensitive hash-
ing of mass spectra. The figure presents examples of MSV𝑛 A spectra sharing identical
locality-sensitive hashes (LSH) obtained using different numbers of random hyperplanes.
(Top) LSHs obtained with 25 random hyperplanes. (Bottom) LSHs obtained with 1,000
random hyperplanes. Both configurations are robust to noise but are better suited for dif-
ferent purposes. While 1,000 hyperplanes cluster only ”identical” spectra, 25 hyperplanes
cluster all ”similar” spectra. For instance, the top-left-most spectrum contains an intense
peak at approximately 70 Da, which is not observed in the rest of the spectra in the top
panel.

two extra subsets for each MSV𝑛. The first variant is designed to strictly elimi-

nates all similar spectra by setting low𝑚 = 25. Since the number of distinct LSH

increases exponentially with 𝑛, we set significantly larger 𝑚 = 1000 for the sec-

ond variant. As Figure 4.16 demonstrates in the example, such high𝑚 leads to a

significantly moderate reduction of the spectra. Finally, by choosing only a single

random spectrum from all spectra yielding identical LSHs we form 6 additional

deduplicated subsets, which sizes are summarized in Table 4.2.

# LSH hyperplanes MSV𝑛 A MSV𝑛 B MSV𝑛 C

− 41,951,922 99,876,649 201,223,336
1000 13,705,892 33,541,098 79,342,367
25 2,611,997 5,685,087 11,777,221

Table 4.2: The sizes of the MSV𝑛 variants after applying the filtering based on
locality-sensitive hashes. Notably, each of the full MSV𝑛 datasets contain approximately
95% of “similar” spectra (25 hyperplanes) and 70% of nearly “identical” spectra (1000
hyperplanes). Nevertheless, from the principle of LSH, “similar” and “identical” here are
robust to low-intensity noise.
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CHAPTER 5
Methods and experimental setup

In the previous chapters, we have shown that annotated tandem mass spectrom-

etry data is sparse and is not particularly appropriate for pure data-driven ap-

proaches. We believe it explains the longstanding superiority of classic machine

learning algorithms equipped with human priors (i.e. SIRIUS software) over the

deep learning methods. Although neural networks are trivially limited by the

capacity of spectral libraries, encoded human expertise mitigates the sparsity of

available annotations. In this work, we, however, pursue an alternative approach.

We aim to minimize the inclusion of human expertise but maximize the number of

experimental training spectra regardless of their annotations. Therefore, we col-

lect MSV𝑛 datasets comprising hundreds of millions of diverse unannotated tan-

dem mass spectra. In this chapter, we describe our deep learning method, which

is able to comprehend MSV𝑛 datasets and extract the knowledge from raw exper-

imental data. We start the chapter by introducing the DREAMS (Deep Represen-

tations Empowering the Annotation of Mass Spectra) neural network architecture

with a focus on its expressivity. Afterward, we describe the training objectives al-

lowing the model to learn from the unlabeled MSV𝑛 spectra in a self-supervised

manner. Finally, we define validation metrics allowing us to assess the effective-

ness of the introduced self-supervised training.

5.1 DreaMS architecture

As a deep neural network, our model consists of multiple layers stacked upon

each other to form a high-order composition of parametrized functions. Given a

mass spectrum, the model firstly encodes each spectral peak with a PEAKENCODER
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layer and then processes the whole set of encoded peaks with TENCODER – a

series of Transformer encoder blocks. The output of TENCODER is 𝑑-dimensional

continuous representations of individual peaks. The embedding of a precursor

peak is exactly the “representation” in the DREAMS acronym. During the training,

the final shallow PEAKDECODER layer is used to adjust the representations for a

loss function. While in the next section, we discuss the training objectives, in this

section, we focus exclusively on the model architecture and its expressivity.

5.1.1 Input representation of a mass spectrum

Mass spectrum as a matrix

Each mass spectrum can be naturally represented as a matrix S ∈ ℝ2,𝑛 constructed

as

S =

[
m1 m2 . . . m𝑛

i1 i2 . . . i𝑛

]
,

where each column corresponds to one of the 𝑛 spectral peaks and is represented

as a continuous vector [m𝑖, i𝑖]⊤ ∈ ℝ2. Although this representation fully describes

the spectrum, it requires some enhancements. Firstly, it is beneficial to include

additional information describing the precursor m/z. Often, MS𝑛 spectra do not

contain peaks representing the entire unfragmented molecules. However, the pre-

cursor mass is always available and significantly valuable for annotating a mass

spectrum. Therefore, we prepend an additional column with the precursor mass

𝑚0 and an artificial intensity of 1.1:

S =

[
m0 m1 m2 . . . m𝑛

1.1 i1 i2 . . . i𝑛

]
.

The addition of a precursor peak also has a beneficial property from the stand-

point of the neural network architecture. The Transformer encoder, TENCODER

(discussed later), can be seen as a graph neural network, where the nodes of a

graph are spectral peaks, and the “appropriate” edges are discovered by the model

during training. Since one often wants to aggregate the learned information on

nodes into a single representation of a graph, it is a common practice to intro-

duce an additional “master node” that serves as an embedding of the entire graph

[121, 122]. In our case, the peak [m0, 1.1]⊤ serves as such a master node.

Another important remark is that all spectra within the training dataset are

standardized to have an identical length (i.e., the number of peaks 𝑛). In principle,
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one could train a Transformer with variable lengths of spectra, as its architecture

is agnostic to 𝑛. In other words, there is no Transformer parameter expressed

in terms of 𝑛. However, it is a common practice in deep learning to pack input

samples into batches and perform training iterations by averaging the loss over

them. Since a batch is formally a tensor with the first dimension corresponding to

the number of packed samples and the other dimensions representing individual

samples, it would be impossible to accomplish with a varying number of peaks.

Therefore, we employ a standardization procedure to retain exactly 𝑛 peaks in

each spectrum. Denoting the number of spectral peaks as 𝑘, we choose the 𝑛 most-

intense peaks if 𝑘 > 𝑛 and pad the missing peaks with zero values s𝑖 = [0, 0]⊤ for

all 𝑖 ∈ 𝑘, 𝑘 + 1, . . . , 𝑛 if 𝑘 < 𝑛.

S =

[
m0 m1 m2 . . . m𝑘 0 . . . 0

1.1 i1 i2 . . . i𝑘 0 . . . 0

]
.

PEAKENCODER

As discussed in the subsequent section, each layer of TENCODER preserves the

input shape of every peak. In other words, given the aforementioned spectrum

representation, TENCODER is constrained to two-dimensional representations of

peaks. The most direct method to elevate a peak’s dimensionality to an arbitrary

𝑑 is by employing a peak-wise feed-forward neural network, FFNpeak : ℝ2 → ℝ𝑑 .

However, we find that such a modification lacks sufficient sensitivity to high-

resolution m/z values (Figure 5.1), which is an issue considering that the first

decimals of masses are crucial for elucidating mass spectra [123]. To tackle the

problem, we utilize the approach of Fourier Features from computer vision [124],

which allows the model to better operate on high frequencies.

Specifically, we map each m/z ratio m𝑖 to a frequency domain with a function

FOURIERFEATURES : ℝ→ [0, 1]2𝑡 of pre-defined sine and cosine functions:

FOURIERFEATURES(𝑚)𝑡 = sin(2𝜋𝑏𝑡𝑚),
FOURIERFEATURES(𝑚)𝑡+1 = cos(2𝜋𝑏𝑡𝑚).

Each 𝑏𝑡 here defines a frequency. While the authors of Fourier features randomly

set the frequencies without observing significant differences for computer vision

tasks, we notice improvements when incorporating a modest chemical prior spe-

cific to the mass spectrometry domain. From the construction of each MSV𝑛
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dataset, we know the lower bound 𝑚min and the upper bound 𝑚max for m/z val-

ues present in the datasets. While 𝑚max is determined by the maximum mass

threshold, we set 𝑚min equal to the instrument accuracy estimate. To obtain the

frequencies, we uniquely associate each 𝑏𝑡 with a single element from the follow-

ing set:{
1

𝑘𝑚min

��� 𝑘 ∈ ℕ ∧𝑚min ≤ 𝑘𝑚min ≤ 1

}
∪

{
1

𝑘

��� 𝑘 ∈ ℕ ∧ 1 ≤ 𝑘 ≤ 𝑚max

}
.

Intuitively, the first term ensures the encoding of high-resolution decimals, while

the second term guarantees the encoding of an integer part of a mass. Decimals

are encoded with frequencies given as every second multiplier of 𝑚min up to 1,

and integers are encoded with natural frequencies up to 𝑚max. For instance, in

the MSV𝑛 A dataset, where𝑚min = 10−4 and𝑚max = 1000, such a schema yields

5000 high frequencies and 1000 low ones. Consequently, we apply a feed-forward

network FFN𝐹 : ℝ2𝑡 → ℝ𝑑𝑚 with 𝑙𝐹 layers, which maps the frequencies to 𝑑𝑚-

dimensional representations, internally learning their linear combinations.

Our frequency definition is inspired by the fact that the space of possible m/z

values is not continuous, but rather determined by the intricate space of feasible

elemental compositions of molecules [125]. As such, treating each m/z as an indi-

vidual real value limits a neural network’s performance. We posit that introducing

a feed-forward layer operating in the frequency domain may enable the entire

model to learn the structure of the space of masses.

It is worth noting that the Fourier Features method has previously been ex-

plored in the context of mass spectrometry under the name of sinusoidal embed-

dings [58, 59]. However, the authors employed a distinct strategy for defining

frequencies and did not incorporate additional feed-forward layers. Examining

the strategies in the auxiliary experiment evaluating their sensitivity to precise

m/z ratios of Cl isotopes, we observe the superiority of our approach (Figure 5.1).

For the input intensities, we apply a separate feed-forward network FFN𝑃 :

ℝ2 → ℝ𝑑𝑝 of 𝑙𝑃 layers operating of both m/z and intensity values. We combine

the outputs of FFN𝑃 and FFN𝐹 by concatenation yielding the final composition of

PEAKENCODER : ℝ2 → ℝ𝑑𝑚+𝑑𝑝 :

PEAKENCODER(𝑚, 𝑖) = FFN𝐹 (FOURIERFEATURES(𝑚)) ∥ FFN𝑃 (𝑚, 𝑖),
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Figure 5.1: Supporting experiment motivating the use of Fourier features. The curves
depict the training loss over training steps for binary classification in identifying the pres-
ence of Cl within a subset of NIST20. For the positive class, we select all NIST20 samples
where precursors contain chlorine and their spectra exhibit mass differences of 1.997 Da,
characteristic of the isotopic difference between 37Cl and 35Cl. The negative class consists
of randomly sampled spectra that neither reflect chlorinated precursors nor contain the
mass difference of 1.9970 Da. In essence, the binary classification is perfectly solved if
the model can accurately determine the presence of the 1.9970 Da mass difference up
to the fourth decimal place. We train the shallow DEEPSETS architecture without Fourier
features, with the Fourier features strategy proposed by Vornov et al. [58], and with our
strategy by setting the minimum wavelength to 10−4. The DEEPSETS model does not con-
verge without the features, as it is insensitive to high frequencies. In contrast, the model
converges with Fourier features and performs optimally using our strategy. Notably, none
of the setups yield a perfect predictor, which we designate as a high-priority area for future
research.

making the final representation of a spectrum S ∈ ℝ𝑑𝑚+𝑑𝑝 ,𝑛 look as following:

S =


| | | | |

FOURIERF(s0) FOURIERF(s1) . . . FOURIERF(s𝑘) 0 . . . 0

| | | | |


5.1.2 Transformer encoder backbone

The entire Transformer encoder [38, 126] TENCODER takes a matrix S and subse-

quently updates its elements by applying 𝑙 stacked TENCODERLAYER blocks. Thus,

Transformer encoder is a map TENCODER : ℝ𝑑,𝑛 → ℝ𝑑,𝑛 constructed as the com-

position TENCODER(S) = TENCODERLAYER𝑙 ◦ · · · ◦ TENCODERLAYER1(S). Impor-

tantly, each TENCODERLAYER has an identical domain and range, which allows

for the composition of arbitrary depth. We will further denote the intermediate
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output of 𝑖th encoder layer and input for the 𝑖 + 1th layer as S𝑖 , while still using S

for describing an input to arbitrary encoder layer.

Each Transformer encoder layer consists of three major components: MUTLI-

HEADATTENTION, FFN, LAYERNORM. Among them MUTLIHEADATTENTION is the

most crucial one. While the rest of the Transformer components operate peak-

wise, MUTLIHEADATTENTION is the only layer interchanging the information be-

tween peaks12.

MUTLIHEADATTENTION

It starts with projecting S with three parametrized linear maps W𝑄 , W𝐾 , W𝑉 ∈
ℝ𝑑,𝑑 as

Q = W𝑄S, K = W𝐾S, V = W𝑉S,

which are referred to as queries, keys, and values respectively. Then single-head

attention is computed as

ATTENTION(Q,K, V) = V softmax

(
Q⊤K
√
𝑑

)
,

where softmax : ℝ𝑛,𝑛 → (0, 1)𝑛,𝑛 is defined as softmax(X)𝑖, 𝑗 = 𝑒S𝑖, 𝑗/∑𝑛
𝑘=1 𝑒

X𝑘,𝑗 .

Let us firstly decompose the definition of the attention mechanism supposing that

there were no W𝑄 , W𝐾 , W𝑉 applied and Q = K = V = S, which allows interpreting

each of the matrices as the original spectrum. Matrix multiplication QK⊤ computes

dot products between all pairs of spectral peaks. Division by
√
𝑑 is a technical de-

tail that scales down the result of multiplication improving the numerical stability

of the training procedure. softmax function exponentially normalizes each row

of the Q⊤K matrix such that it sums up to one. As a result, each column can be

interpreted as a distinct probability distribution over the peaks (rows) assigned to

each of the peaks (columns). Semantics underlying the distributions are encoded

in Q⊤K dot products and are learned by the model during the training. It means

that the notion of similarity between each pair of peaks is determined by all the

preceding parametrized transformations. Intuitively, such an attention block is ca-

pable of capturing, for example, certain characteristic m/z differences or encoding

the molecular subfragment relation manifested in fragmentation trees. We further

refer to the matrix of distributions as an “attention matrix” or A = Q⊤K ∈ ℝ𝑛,𝑛.

12Pedantically, here the attention mechanism should be referred to as self-attention, since peaks
only “attend” to the other peaks within the same spectrum.
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5.1. DreaMS architecture

|| + +

Figure 5.2: DREAMS neural network architecture. Yellow layers operate peak-wise,
whereas a purple block operates spectrum-wise. The input and output illustrate the self-
supervision training objective, where an input m/z value is masked with -1 and the net-
work learns to predict its one-hot representation. The training objectives are introduced
in the following section.

Finally, the representation of each peak is updated as the weighted average of

original values V with respect to the corresponding attention distribution, which is

exactly the VA multiplication. In such a way the representation of each peak aggre-

gates the information from all other peaks. Important to mention, that the atten-

tion mechanism is prevented from attending to/from padded zero-valued peaks.

This is achieved by substituting all the elements of Q⊤K at positions 𝑖, 𝑗 , such that

𝑖 > 𝑘 or 𝑗 > 𝑘, with a large negative value such as −109. Since, lim𝑥→−∞ 𝑒 (𝑥) = 0,

softmax transforms the elements of A at the corresponding positions to close-to-

zero values.

Linear projections W𝑄 , W𝐾 , W𝑉 increase the capacity of the attention layer by

allowing it to operate on the same peaks from different spaces. In particular, since

W𝑄 ≠ W𝐾 , the attention mechanism is non-commutative, whereas sole dot prod-

ucts would be. As will become clear through the following paragraphs, despite

peaks essentially “attend” to each other with a simple dot-product, such a mech-

anism has a rich expressive power due to the heavy parametrization and stacked

nature of the preceding layers.

In order not to limit the Transformer architecture to a single attention mech-

anism per TENCODERLAYER and, therefore, to allow the model to discover the

higher diversity of relations between input elements, ATTENTION block is typically
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5. METHODS AND EXPERIMENTAL SETUP

generalized to MULTIHEADATTENTION.

MULTIHEADATTENTION(Q,K, V) = W𝑂

ℎ
𝑖=1

ATTENTION𝑖 (Q,K, V),

where W𝑂 ∈ ℝℎ𝑑,𝑛 is an additional parameter. Essentially, MULTIHEADATTENTION

concatenates the outputs of ℎ distinct attention layers yielding a ℎ𝑑-dimensional

representation of each spectral peak. Afterwards, W𝑂 projects the ℎ𝑑-dimensional

peaks back to a 𝑑-dimensional form.

Now suppose that the TENCODERLAYER consists only of MULTIHEADATTENTION

blocks, and, therefore, TENCODER is a composition of lone MULTIHEADATTENTION

layers. In such a scenario, the entire model would be parametrized solely by lin-

ear projections W𝑄 , W𝐾 , W𝑉 , W𝑂 of each ATTENTION block. Intuitively, the model

would not possess enough degrees of freedom to prepare the output of one MULTI-

HEADATTENTION as an input to another. For this purpose, MULTIHEADATTENTION

are altered (w.r.t. the sequence of layers) with additional shallow feed-forward

neural networks operating peak-wise.

FFN𝐸

Each such feed-forward network FFN𝐸 is defined as

FFN𝐸 (s) = W2GELU(W1s + b1) + b2,

where W1 ∈ ℝ4𝑑,𝑑,W2 ∈ ℝ𝑑,4𝑑, b1 ∈ ℝ4𝑑, b2 ∈ ℝ𝑑 are parameters, and GELU

[127] is an activation function defined as GELU(𝑥) = 𝑥ℙ𝑋∼N(0,1) (𝑋 < 𝑥), which

is applied element-wise. Since the probability term is exactly the standard Gaus-

sian cumulative distribution function, GELU can be seen as the smooth version of

ReLU given that ReLU(𝑥) = max{0, 𝑥} = 𝑥𝟙𝑥>0 with 𝟙 being an indicator function.

Intuitively, such a two-layer feed-forward network adjusts 𝑑-dimensional peak rep-

resentations in 4𝑑-dimensional space for the subsequent attention layer. Thus,

MULTIHEADATTENTION and FFN𝐸 constitute two core TENCODERLAYER compo-

nents complementing each other. MULTIHEADATTENTION mixes the propagated

information within peaks, whereas FFN𝐸 operates purely on the information of

standalone peaks.

Composition of blocks into TENCODERLAYER

To better propagate the information along stacked TENCODERLAYER’s, TENCODER

architecture employs skip connections [128] for both MULTIHEADATTENTION and
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5.2. Self-supervised pre-training on raw MS𝑛 spectra

FFN𝐸 blocks. Denoting either of layers as 𝑓 and the corresponding input as X,

the skip connection adjusts the output of the block to be X + 𝑓 (X) instead of the

regular 𝑓 (X).

Furthermore, after each skip connection, the original Transformer architec-

ture employs LAYERNORM blocks [129]. They explicitly control the mean and the

variance of individual activations enabling more stable and robust training. LAY-

ERNORM transforms the representation of each peak s according to

LAYERNORM(s) = s − ` (s)√︁
𝜎 (s) + 𝜖

∗𝜸 + 𝜷,

where ` and 𝜎 are mean and variance, 𝜸 , 𝜷 ∈ ℝ𝑑 are parameters, ∗ denotes

an element-wise product, ` (s) is substracted from each dimension of s, and 𝜖 is

a close-to-zero positive constant. Since the combination of skip connection and

the subsequent layer normalization may destabilize the training [130], we follow

Wang et al. [131] and apply LAYERNORM blocks prior to the skip connections.

In summary, each TENCODERLAYER comprises the following composition:

TENCODERLAYER(S) = S + FFN𝐸 (MULTIHEADATTENTION(LAYERNORM(S))) .

5.1.3 Decoding output representations

The primary focus of our study is the intermediate embeddings learned by the

model during training. However, for the training procedure, it is necessary to

prepare the output representations in an appropriate shape. To achieve this, we

employ a PEAKDECODER, which consists of a single shallow feed-forward network

with one hidden layer of size 𝑑: FFN𝐷 : ℝ𝑑 → ℝ𝑧. The value of 𝑧 is a task-specific

output shape. For instance, if our goal is to predict the number of precursor carbon

atoms from the spectrum, we set 𝑧 = 1. Alternatively, if we aim to predict a 2048-

bit molecular fingerprint, we set 𝑧 = 2048.

5.2 Self-supervised pre-training on raw MS𝑛 spectra

Suppose the following problem. Given a sole theoretical MS𝑛 spectrum (i.e. an

arbitrary set of m/z ratios and the corresponding signal intensities), can one con-

clude if the spectrum can be observed experimentally? Alternatively, given an

experimentally measured mass spectrum with some peaks being removed, is it
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possible to fill them based on the context of the other peaks? Imagine a deep

learning predictor that can perfectly solve at least one of such problems. Is it

possible for the predictor to achieve such high performance without internally as-

sociating individual peaks with molecular fragments and without operating on the

level of chemical structures?

Our assertion is that the answer is negative. In other words, we claim that

asymptotically the knowledge of chemical principles and molecular structures in

a deep learning model solving synthetic problems such as the identification of

corrupted spectra or prediction of masked signals is equivalent to the knowledge

embedded in a deep learning model directly solving the inverse annotation. How-

ever, while the straightforward inverse annotation is designated to operate solely

on labeled spectral libraries, the model trained on synthetic tasks can operate on

billions of artificially constructed training examples. Indeed, one can generate

hundreds of “labels” for each of the hundreds of millions of raw mass spectra by

simply modifying the peak values.

It should be understood that the subject of interest is not the problem itself but

the knowledge encoded in the model while searching for the corresponding solu-

tion. Therefore, the synthetic problem has to be challenging for the neural network

but still solvable. For example, determining the number of spectral peaks is obvi-

ously a too simple problem and does not require an understanding of the desired

structural properties of the underlying molecules. On the other hand, masking

90% of spectral peaks and training the model to restore them is an unreasonably

hard task, as the model lacks valuable input.

5.2.1 Definition of training objectives

The formulation of annotation-free objectives and the corresponding process of

learning can be formalized as self-supervised training over the constructed MSV𝑛

datasets. For the training, we employ the DREAMS neural network, where the

desired chemical knowledge can be formalized as the outputs S𝑙 and derived by

attention layers. In particular, we focus on three kinds of objectives in the scope

of this work.
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Prediction of masked peaks as regression

First of all, we consider the simplest approach, where peaks in the mass spectrum

are masked, and the model is trained to restore them. More precisely, given an

original matrix S, we construct its masked representation S∗ by modifying some

of the columns to be S∗:𝑖 = [−1,−1]⊤, where 𝑖 ∈ 𝐼 ⊂ {1, . . . , 𝑛}. We mask only

a fraction of random high-intensity peaks, which means that the indices 𝐼 are

sampled from { 𝑗 ∈ {1, . . . , 𝑛} | i 𝑗 ≥ 0.1}. Furthermore, we make the sampling

deterministic with respect to the spectrum. It implies that in each training epoch,

we mask identical peaks.

In the context of this work, we limit the size of 𝐼 to at most two peaks. Such a

limitation is caused by our approach to the formation of MSV𝑛 datasets. Since we

filter out all spectra having less than three intense signals, it is not guaranteed that

for each MSV𝑛 spectrum, there exists 𝐼 with more than two elements. Similarly,

we never mask the precursor peak s0, since it is always available and therefore

should always serve the purpose of the master node, as discussed previously. As

an implication of the moderate masking of peaks, we do not experiment with

more advanced masking strategies such as replacing the peak with minus ones,

original values, and random values with 0.8, 0.1, and 0.1 respective probabilities

[39]. Neither do we experiment with the non-deterministic sampling of masking

positions.

Having matrices S∗ determined, we accordingly set the last layer of the PEAKDE-

CODER to produce 2-dimensional outputs. Then, the prediction of the masked peak

can be formulated as the following regression problem:

L(Ŝ, S) =
∑︁
𝑖∈𝐼
∥Ŝ:𝑖 − S:𝑖 ∥22,

where Ŝ = DREAMS(S∗).

Prediction of masked peaks as classification

Even though such formulation is the most straightforward, it has a certain severe

limitation. In particular, it does not allow the model to capture the ambiguity

of the prediction [44]. For instance, a spectrum acquired in a low CID energy

regime can naturally lack a peak that corresponds to a rare fragment. Yet, it may

happen that the model learned the presence of such a peak from the other train-

ing examples. From the mass spectrometry standpoint prediction of both peaks
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can be considered as correct. However, the regressive nature of the loss function

would force the model to predict the mean of both peaks instead of the distribu-

tion across possible values. To address this issue we treat each output m/z ratio as

a discretized value. More precisely, we split the m/z range [0,𝑚max], given by the

MSV𝑛 thresholds, into bins of 0.5 widths forming 𝑐 = 𝑚max
0.5 bins in total. Then we

set the shapes of the PEAKDECODER parameters to yield 𝑐-dimensioanl values and

extend it with softmax such that it transforms output values to a categorical distri-

bution. Then the masking modeling can be expressed as a classification problem

with the cross-entropy loss function

L(Ŝ, S) = −
∑︁
𝑖∈𝐼

∑︁
𝑗∈{0,...,𝑐−1}

𝟙 𝑗 (S1𝑖) log Ŝ 𝑗𝑖

where 𝟙 𝑗 (S1𝑖) equals to 1 only if 0.5 𝑗 < S1𝑖 ≤ 0.5( 𝑗+1), and equals to 0 otherwise.

To extend the problem to the prediction of intensities but not only m/z values, we

similarly bin intensity range of [0, 1] to ten bins of 0.1 widths and define an

identical loss function but with a separate PEAKDECODER. Then the prediction of

a whole peak can be defined by summing two loss functions. In our experiments,

we weight the intensity loss with a 0.5 multiplicative factor.

Prediction of shuffled intensities

The general critique of self-supervised training by masking is that such methods

are forced to operate on corrupted data points [132, 133]. Indeed, regardless of

the training setup, one wants to employ the model on real mass spectrometry data

but not on the partially masked peaks. However, both loss functions introduced

forehand are computed from the representations of masked peaks. As a result of

backpropagation, the “chemical knowledge” may be encapsulated exclusively in

the masked tokens which are absent during the inference on complete spectra. To

overcome the issue, we experiment with an alternative self-supervision objective.

Given a mass spectrum, we randomly shuffle the intensities of peaks 𝐼 with the

other random peaks, while retaining the original m/z values unchanged. Formally,

we modify the row of intensities i = S2: as

i∗ = Pi,

where with 50% probability P ∈ {0, 1}𝑛,𝑛 is an identity map and with 50% proba-

bility P is a random permutation matrix satisfying

(∀𝑖 ≠ 𝑗 ∈ {1, . . . , 𝑛})(E𝑛 ∋ P𝑖: ≠ P 𝑗 : ∈ E𝑛) ∧ (∀𝑖 ∈ 𝐼 ) (P𝑖: ≠ e𝑖) .
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E𝑛 = {e𝑖, . . . , e𝑛} denotes the standard base of ℝ𝑛. Then the loss function is

defined as a binary cross-entropy

L(Ŝ, S) = −
∑︁
𝑗∈{0,1}

𝟙 𝑗 log Ŝ11

with the indicator 𝟙 𝑗 = 𝑗 only if the intensities were not shuffled (i.e. (∀𝑖 ∈
{1, . . . , 𝑛})(P𝑖 = e𝑖)), and 0 otherwise. The shapes of the parameters constituting

PEAKDECODER are accordingly adjusted to output 1-dimensional values. Notably,

the prediction is inferred solely from the precursor peak (i.e. Ŝ11).

5.2.2 Pre-training validation

Consider, for instance, a set of one hundred distinct models trained through a

self-supervised technique. Which one has gained greater knowledge about molec-

ular structures underlying mass spectra? Although the standard deep learning ap-

proach entails monitoring the validation loss on a held-out portion of the training

data, this method is inapplicable in a self-supervised context. Indeed, as previ-

ously mentioned, the self-supervision process must be sufficiently challenging for

the model, meaning that low training and validation losses are not necessarily

demanded.

Conversely, one could directly fine-tune each pre-trained model by employing

labeled spectral libraries, concentrating on problems that necessitate an under-

standing of chemical structures. However, this method is computationally de-

manding and lacks flexibility. In particular, it limits the understanding of the dy-

namics of self-supervision across training iterations.

Validation metrics

To continually and efficiently monitor the performance of pre-training, we em-

ploy validation metrics based on extracted embeddings. Specifically, after each

training epoch, we calculate the representations S𝑙 for a subset of NIST20 anno-

tated spectra. We then compute certain metrics derived from pairwise distances

between these representations. This approach enables us to evaluate the mutual

dependencies between embedded spectra and assess the structure of the learned

embedding space.

Our first evaluation metric is the Pearson correlation between the pairwise dis-

tances of spectral embeddings and the Tanimoto distances between the associated
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Algorithm 5: Contrastive validation
Data: 𝑘 classes, each given by 𝑛 𝑑-dimensional continuous vectors:

{x(𝑐)
𝑗
}𝑛
𝑗=1 ⊂ ℝ𝑑 for all 𝑐 ∈ {1, . . . , 𝑘}. Element-wise distance

measure on the classes: 𝑑 : ℝ𝑑 ×ℝ𝑑 → ℝ.
Result: Average intra-inter distance between classes.

1 𝑝 ← 𝑛(𝑛−1)
2

2 𝑚 ← 0
3 for 𝑘1 ∈ {1, . . . , 𝑘} do
4 𝑚1 ←

∑𝑛
𝑖=1

∑𝑖−1
𝑗=1 𝑑 (x

(𝑘1)
𝑖

, x(𝑘1)
𝑗
)

5 𝑚2 ← 0
6 for 𝑘2 ∈ {1, . . . , 𝑘} \ {𝑘1} do
7 𝐼 ← sample ⌊ 𝑝

𝑘−1⌋ pairs from {1, . . . , 𝑛}2

8 𝑚2 ←𝑚2 +
∑
𝑖, 𝑗∈𝐼 𝑑 (x

(𝑘1)
𝑖

, x(𝑘2)
𝑗
)

9 𝑚 ←𝑚 + 𝑚1−𝑚2
𝑝

10 return 𝑚
𝑘

molecules. As a distance on the embeddings, we experiment with cosine similarity

and the standard Euclidean distance. For the Tanimoto distance, we employ stan-

dard 2048-bit circular fingerprints. The underlying principle is that, throughout

the training iterations, effective pre-training should progressively maximize the

correlation. We perform the validation on random 10,000 pairs of samples from

NIST20 maximizing the entropy of the pairwise Tanimoto similarity distribution.

We also utilize a second group of metrics, which we term “contrastive vali-

dation”. For this purpose, we create subsets of NIST20, with each one contain-

ing equally-sized groups sharing specific discrete-valued properties. For example,

one subset is organized into six groups containing spectra of molecules with 5,

10, 15, 20, 25, and 30 carbon atoms. Another subset is divided into five groups

based on commonly observed adducts. In total, we create 11 datasets: seven are

separated by chemical element counts, while the remaining four are grouped by

MS instrument models, molecular structures, CID energies, and adducts. Con-

trastive validation involves calculating the average embedding distances within

groups (intra-distances) and between groups (inter-distances). Subtracting the

mean intra-distance from the mean inter-distance (intra-inter-distance) yields a

value that reflects the capacity of the learned embeddings. In other words, a

lower intra-inter distance indicates a better model differentiation of spectra with

distinct contrastive labels.
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Ranking induced by validation metrics

The objective of validation metrics is to identify the highest-performing model.

Consequently, it is necessary to consolidate the 12 aforementioned metrics into a

single value that can effectively represent the pre-training performance measure.

This process can be divided into two phases: selecting the most effective epoch

for each individual model and choosing the top-performing model from a pool of

pre-trained models. For both phases, we consistently apply the same rank product

approach [134].

With a pool of models and their corresponding metric values, we first assign a

rank 𝑟𝑖 (𝑚) ∈ ℕ to each𝑚th model for each 𝑖th metric. The greater the rank value,

the better the performance of the model metric-wise. Denoting the correlation

validation rank as 𝑟𝑐 and the contrastive validation scores as 𝑟𝑑 for each contrastive

metric 𝑑 ∈ 𝐷, we obtain the unified rank for the model as

𝑟 (𝑚) = |𝐷 |+4

√︄
𝑟𝑐 (𝑚)4

∏
𝑑∈𝐷

𝑟𝑑 (𝑚).

In addition to the standard rank product procedure, we apply a heuristic weighting

factor of 4 to the correlation validation, as we consider it more significant than any

individual contrastive metric. We employ exponential weighting in a product, as

it is equivalent to the multiplicative weighting of a sum in a sense of arithmetic

hyperoperations.

5.3 Configuration of training and hyperparameters

Self-supervised pre-training

In our experiments, we investigate different combinations of model architectures,

self-supervision objectives, and training datasets. In particular, we experiment

with six MSV𝑛 datasets which comprise all LSH variants of MSV𝑛 A and MSV𝑛 B.

In the scope of this work, we omit the MSV𝑛 C subset due to its large size. We

investigate all the introduced pre-training objectives.

For the model architecture, we consider four configurations of hyperparam-

eters varying depending on three basic criteria: the number of TENCODER lay-

ers 𝑙 , the number of attention heads in each layer ℎ, and the hidden dimension

𝑑 = 𝑑𝑀 + 𝑑𝑃 . Three of the configurations are given by the extreme values of hy-
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perparameters bounded by the computational resources (Table 5.1). The fourth

configuration is roughly an average of the three extreme setups. We train the mod-

els in a single-node multi-GPU setup on the Karolina supercomputer, where each

node is equipped with 8 NVIDIA A100 GPUs. Since MSV𝑛 datasets are trimmed

to low 𝑛 = 60 peaks, we are able to achieve reasonably complete training exper-

iments on the MSV𝑛 A and MSV𝑛 B datasets by limiting the training time of each

model to 24 hours.

To solve the training optimization problem we use the Adam optimizer [135]

with standard parameters. We experiment with the training in “low” (64) and

“large” (512) batch size modes, as well as, with three learning rates: 5 · 10−5,

3 · 10−4, and 6 · 10−4. For the latter two, we use the inverse square root schedule

following Vaswani et al. [38]. We regularize the model by applying a 10% or 50%

dropout [136] on the outputs of MULTIHEADATTENTION, FFN𝐸 , as well as on the

intermediate outputs of PEAKENCODER and PEAKDECODER. For the 50% setup, we

additionally experiment with 10−5 weight decay [137]. We estimate the optimal

combination of the hyperparameters according to Table 5.1.

Hyperparameter Values

Dataset {MSV𝑛 A, MSV𝑛 B}
# peaks 𝑛 {60}
# masking peaks |𝐼 | {1, 2}
DREAMS 𝑙/ℎ/𝑑𝑀/𝑑𝑃

{12/4/320/40, 8/30/320/40, 5/8/730/38,
8/8/480/32}

Depths 𝑙𝑀/𝑙𝑃 {5/3}
Learning rate/# warmup steps {6 · 10−4/30000, 3 · 10−4/30000, 5 · 10−5/0}
Batch size {64, 512}
Dropout/weight decay {10%/0, 50%/0, 50%/10−5}

Table 5.1: Investigated configurations of hyperparameters. Parameters are grouped
with slashes (/) to highlight that we do not experiment with any other combinations
except for the ones given as elements of sets. Searching for the optimal model architecture
we traverse roughly the entire Cartesian product given that the “DREAMS 𝑙/ℎ/𝑑𝑀/𝑑𝑃 ” is
fixed to the first option. For the rest of the combinations, we traverse the space more
sparsely driven by educated guesses. Notice that the rest of the potential hyperparameters
are fixed throughout the text and therefore not present in the table.

Supervised fine-tuning

In order to additionally evaluate the capabilities of the pre-trained model, we con-

duct an end-to-end fine-tuning (i.e. additional training) on a series of downstream
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tasks using two annotated datasets. Specifically, we examine four tasks with labels

derived from precursor structures. We fine-tune the model to predict (i) 2048-bit

ECFP fingerprints, (ii) the number of oxygen atoms, (iii) the presence of nitrogen,

and (iv) the quantitative estimate of drug-likeness (QED). Each task is designed to

assess the model with a slightly different loss function: (i) average binary cross-

entropy across individual bits, (ii) mean squared error, (iii) binary cross-entropy,

and (iv) mean squared error constrained by a preceding sigmoid function. We

split the NIST20 dataset using Murcko histograms, as previously described, and

employ a 10-fold cross-validation of the GNPS dataset developed by Dührkop et

al. as evaluation data for SIRIUS 413. Crucially, we only select spectra that sat-

isfy the MSV𝑛 A filtering criteria (Figure 4.15) to mitigate the distribution shift

between pre-training and fine-tuning phases. However, in the scope of this work,

we do not experiment with the entire datasets. The resulting NIST20 subset com-

prises 259,677 training and 95,542 validation examples, whereas the GNPS subset

contains 10 folds with an average of 386 samples each. This discrepancy in dataset

sizes enables us to validate the pre-training under two distinct conditions.

For fine-tuning the pre-trained model, we make minor adjustments to the train-

ing setup. We substitute the PEAKDECODER with a single linear projection to focus

on the extraction of task-specific information directly from the TENCODER. We

experiment only with end-to-end fine-tuning without freezing any pre-trained lay-

ers. To prevent the fine-tuning process from overwriting features acquired during

self-supervision, we reduce the learning rate by a factor of six compared to the

pre-training stage. Additionally, we disable dropout within the DREAMS layers

and utilize a batch size of 64.

To compare the performance of DREAMS with that of another deep-learning

baseline, we employ the DEEPSETS architecture:

DEEPSETS(S) = FFN𝜌

(
𝑛∑︁
𝑖=1

FFN𝜙 (S:𝑖)
)
,

where FFN𝜙 : ℝ2 → ℝ768, FFN𝜌 : ℝ768 → ℝ𝑧, and 𝑧 represents the task-specific

output dimensionality. Each of the networks contains three hidden layers of 768

neurons. Given that FFN𝜌 operates on a peak-wise basis and the sum is asso-

ciative, DEEPSETS consists of a series of permutation-equivariant layers followed

13https://bio.informatik.uni-jena.de/data/
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by permutation-invariant aggregation. We stress that this property is the mini-

mum requirement for a neural network architecture applied to mass spectra14.

A standalone feed-forward network is not invariant to peak permutations and,

consequently, cannot, for example, identify the same mass difference occurring

between different peak positions.

14Note that this requirement is also satisfied by the DREAMS architecture.
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CHAPTER 6
Results

In this chapter, we present our results on the self-supervised pre-training of the

DREAMS neural network using MSV𝑛 datasets. We start by discussing our key

methodological findings related to the pre-training process and demonstrate the

emergence of molecular features through self-supervision. Subsequently, we ex-

plore the rich space of DREAMS embeddings and examine the model’s fine-tuning

for downstream tasks.

6.1 Validation of self-supervised pre-training

6.1.1 Investigation of hyperparameters

In this section, we detail the insights gained from the exploration of the hyperpa-

rameter space in relation to our ranking approach. Based on our observations from

approximately 100 training experiments, we can draw the following conclusions.

Excessiveness of high-accuracy spectra is an optimal setup for

self-supervision

• Redundancy of similar spectra is advantageous, but only for high-accuracy

spectra. For MSV𝑛 A, we observe that pre-training performance increases

proportionally with the number of LSH hyperplanes, achieving the best re-

sults in their absence. Conversely, we notice an opposite trend for MSV𝑛 B

datasets. While performance remains approximately equal for data filtered

with 25 and 1000 hyperplanes, it deteriorates by up to 50% for the complete
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MSV𝑛 B dataset, as indicated by validation metrics.

• Fewer high m/z accuracy spectra outperform a larger number of low-accuracy

spectra. Specifically, we consistently find that pre-training DREAMS on MSV𝑛

A datasets yields superior results compared to MSV𝑛 B datasets. However,

given that we have not conducted experiments with MSV𝑛 C or the entire

700-million MSV𝑛 within the scope of this study, we cannot definitively con-

clude if our observation is scalable.

Masking m/z ratios as classification spawns the richest DREAMS

representations

• Shuffling or masking intensities are overly simplistic SSL objectives. When

pre-training DREAMS for identifying shuffled or masked intensities, we ob-

serve an increase in validation loss immediately after the first epoch. This

pattern persists even for datasets containing redundancy of similar spectra,

such as full MSV𝑛 B. In cases where other objectives lead to a continuous

decrease of validation loss on random splits, objectives not involving pertur-

bations of m/z ratios are so simplistic that the model overfits within the first

epoch.

• Masking m/z is preferable to masking both m/z and intensity. In line with

the previous point, masking intensity in addition to masking m/z does not

significantly impact the training process. In fact, it marginally worsens per-

formance on validation metrics and, consequently, the derivation of molecu-

lar features.

• Masking as classification greatly outperforms masking as regression. We ob-

serve a notable difference when formulating m/z masking as a straightfor-

ward regression compared to classification over binned masses. Specifically,

while regression on average attains a 0.1 correlation in validation, classi-

fication achieves a 0.3 correlation. This fact underlines the significance of

capturing the distribution of potential peaks rather than assuming a single

possible solution.

• Masking either one or two peaks yields similar results. However, masking

two peaks leads to a more stable extraction of chemical knowledge through

self-supervised learning. We find that when masking two peaks, contrastive

validation metrics – such as the separation of spectra by adducts or by the

number of sulfur elements – exhibit substantially lower deviation throughout
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6.1. Validation of self-supervised pre-training

the training process.

Large Transformer dimensionality, large training batch size, and large

scheduled learning rate are the most effective configurations

• The hidden dimension is the most crucial hyperparameter for the Trans-

former backbone. Upon examining various combinations of the model’s

primary hyperparameters, we find that the number of attention heads and

the number of Transformer layers have no significant impact. However, we

observe that increasing the hidden dimension of the Transformer generally

leads to improved validation performance, although the effect is not consis-

tently positive.

• Larger batch sizes of 512 samples outperform smaller batches of 64 examples

on average. Utilizing larger batch sizes results in better validation metric

values and makes the training approximately two times faster.

• A lower learning rate of 5 · 10−5 typically leads to higher-than-average val-

idation metrics, but larger learning rates of 3 · 10−4 and 6 · 10−4 combined

with linear warmup yield the best overall experimental runs. Remarkably,

the top-performing models are those that closely approach the peaks of the

warmup schedule, rather than those that decay after the peak or maintain a

consistently low learning rate.

• While DREAMS often benefits from regularization, the effects of varying

dropout and weight decay values are not consistently positive and depend

on the specific combination of other hyperparameters.

6.1.2 Self-supervision on mass spectra gradually derives

molecular properties

In our exploration of training DREAMS for masked m/z classification with various

hyperparameters, we find that most training experiments exhibit a similar pat-

tern. Specifically, the training loss decreases substantially after the initial epochs,

followed by a gradual decline. At least two out of the four groups of validation

metrics (i.e. contrastive and correlation validations with cosine or Euclidean dis-

tances) improve concurrently with the loss. Furthermore, the contrastive metrics

assessing the separation of spectra based on molecular properties consistently im-

prove in tandem. These two persistent observations underscore the effectiveness
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Figure 6.1: Emergence of molecular properties through self-supervised learning on
mass spectra. The figure presents the training loss and cosine validation metrics for the
DREAMS model, trained to predict masked m/z values in a classification setting. Plot (B)
illustrates that, during self-supervision, DREAMS progressively learns to approximate the
Tanimoto distances of precursor molecules solely from their spectra. The remaining blue
curves (C) - (J) show similar behavior on contrastive validation metrics that evaluate the
separation of embeddings based on discrete structural properties of molecules. Figures
(K) - (M) reveal that the model concurrently learns to differentiate spectra according to
mass spectrometry settings. Notably, all validation metrics improve in proportion to the
training loss and consistently across all measures. This strongly suggests that the m/z
masking training objective forces the model to operate in the space of derived molecular
structures.

of self-supervised pre-training as a method for extracting molecular information

exclusively from mass spectra. Figure 6.1 depicts a typical training experiment.
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6.2. Analysis of DreaMS representations

Intriguingly, the pairs of jointly improving metric groups may change within a

single experiment. It is not uncommon for a model to exhibit consistent improve-

ment by cosine distances and deterioration in Euclidean distances up to a certain

training step, and start operating in the opposite “mode” afterward. However, such

runs typically do not yield top performance according to our ranking procedure.

Remarkably, the best model, outperforming all others in the ranking across all

experiments and training epochs, has been trained for only a single epoch over

the full MSV𝑛 A dataset. The model was configured with the largest Transformer

dimensionality of 768, 8 attention heads, and 5 encoder layers, resulting in the

most resource-intensive setup with approximately 43 million parameters. Notably,

the model employs a mere 10% dropout and was trained with the largest sched-

uled 6 · 10−4 learning rate and the largest batch size of 512. Reaching the peak

learning rate, the model accurately discovers an optimum that no other configura-

tion can surpass. Moreover, even though the ranking method evaluates cosine and

Euclidean validation metrics independently and favors the model with optimal

performance in either metric, the top model selected based on cosine distances

also attains near-optimal Euclidean correlation in the context of all experiments.

6.2 Analysis of DreaMS representations

In this section, we analyze the structure of DREAMS embedding space. First,

we outline our findings regarding the encoded structural information within in-

dividual embeddings and the connections between their mutual distances. Fol-

lowing that, we highlight the emergence of molecular networks in the collections

of DREAMS representations.

6.2.1 The space of DREAMS is organized by the structural

properties of molecules

The standalone contrastive validation metrics demonstrate that DREAMS effec-

tively encode structural features of small molecules. This is particularly evident

when considering the distribution shift between experimental MassIVE spectra and

the precise spectra of NIST20 used for the validation. To further assess the pres-

ence of structural features in experimental spectra that more closely resemble the
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practical setup, we analyze the embeddings of a random sample of MoNA 15.

We randomly sample 10,000 spectra from MoNA and compute DREAMS em-

beddings for each of them. Subsequently, we project the 768-dimensional em-

bedding space onto a 2-dimensional plane using the UMAP algorithm [138], la-

beling elements with various precursor properties (Figure 6.2). Diametrally, the

space is organized according to molecular masses, as illustrated by the number of

precursor carbon atoms (B). This observation is expected since each spectrum is

associated with a precursor m/z. Nevertheless, the space exhibits a more complex

structure concerning the counts of other elements, such as nitrogen (A). Further-

more, we evaluate the spatial organization of embeddings with respect to the

compositions of structural features. We observe a distinct region in the space cor-

responding to large carbohydrates (i.e., molecules composed of only H, C, and

O elements). Smaller carbohydrates are organized in a spiral path-like subspace

between non-carbohydrates (C). Ultimately, the space captures a complex concept

of quantitative drug-likeness estimation (QED), incorporating various molecular

properties such as logP, topological polar surface area, the number of hydrogen

bond donors and acceptors, the number of aromatic rings, and more (D).

Remarkably, the embedding space reveals a sharp local organization of spectra

regarding mass spectrometry setups. For instance, UMAP (E) displays a tendency

towards a negative correlation between CID energy and molecular size while also

capturing small clusters of similar CID settings. We observe a similar organization

of different types of MS instruments, with the QQ type forming notably dense

regions (F).

6.2.2 Distance on DreaMS reflects the distance on molecules

The correlation validation metrics were introduced to more comprehensively eval-

uate the capacity of learned molecular features, as opposed to relying solely on

the contrastive validation technique. In a similar vein, we conduct a more de-

tailed analysis of the correlation between the cosine similarity of DreaMS and the

Tanimoto similarity of the underlying molecules. Specifically, we sample 5,083

spectra from the in-house MCE spectral library16, maximizing the entropy of the

15It is important to note that MoNA spectra may be included in MassIVE.
16Here, we utilize the MCE library to further perform a fair comparison with an existing method

trained on spectral libraries.
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6.2. Analysis of DreaMS representations

distribution determined by the associated pairwise Tanimoto similarities. We then

assess the Pearson correlation between all 25,836,889 spectral and compound dis-

tances.

We discover that such zero-shot predictions of molecular similarity from spec-

tra yield a 0.44 correlation with Tanimoto similarity. We consider it a solid result,

given that DREAMS was trained solely for the prediction of masked peaks and was

not provided with any molecular information. For comparison, the classic modi-

fied cosine score achieves a correlation of 0.13, despite being considerably slower

and having an explicitly given invariance to adducts. Ultimately, we compare

DREAMS similarity with MS2DEEPSCORE, a contrastive deep-learning method ex-

plicitly trained to maximize the correlation with Tanimoto distance in a super-

vised setting using molecular annotations from spectral libraries. MS2DEEPSCORE

achieves a higher correlation of 0.56 but the difference in correlation distributions

is not extremely substantial when compared to the self-supervised DREAMS, as

shown in Figure 6.3.

6.2.3 DreaMS as a source of novel information on mass

spectra

Although the concept of molecular similarity is fundamental to the field of chemoin-

formatics, it cannot be rigorously defined or objectively evaluated [139]. While

Tanimoto similarity based on ECFP fingerprints is often used to compare large

collections of “arbitrary” compounds, there is no universal fingerprint suitable for

a wide range of biological applications [140, 141]. This implies that contrastive

learning methods applied to mass spectra, which aim to mimic predefined molecu-

lar similarities, are inherently biased towards the chosen similarity or similarities.

Such a flaw is undesirable by the definition of the untargeted metabolomics.

The MassIVE database is a vast resource of undiscovered molecules. Conse-

quently, training DREAMS in a self-supervised regime utlizing MassIVE allows the

neural network to discover the concept of molecular similarity through their spec-

tra without relying on human understanding of chemistry or the scope of known

compounds. In particular, when evaluating DREAMS against MS2DEEPSCORE and

modified cosine distance, we identified examples of spectra where DREAMS ex-

hibits a novel notion of similarity. Figure 6.4 demonstrates that our method en-

codes the resemblance of molecules that cannot be captured by either classic spec-
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tral similarity or the molecular similarity imposed on MS2DEEPSCORE.

6.2.4 DreaMS induce molecular networks

Observing that DREAMS encode structural features of molecules and serve as a

suitable similarity measure on spectra, we explore its potential as a novel approach

to molecular networking. While existing techniques integrate multiple compu-

tational tools, one could construct molecular networks within a single, unified

DREAMS framework. This framework is purely the geometry and topology of the

DREAMS embedding space.

More precisely, utilizing 10,000 random spectra from MoNA, we construct a

3-NN graph with nodes representing individual spectra, each connected to its

three nearest neighbors based on cosine distance within the DREAMS space. We

then manually investigate its local and global structure by performing breadth-

first searches (BFS) and depth-first-search-like (DFS) traversals, starting from ran-

domly chosen spectra. Our analysis consistently reveals that local neighborhoods

exhibit shared structural motifs in precursor molecules, yet develop anisotropi-

cally. In other words, spectra are not densely interconnected through 1-hop or

2-hop neighbors but rather evolve in distinct directions within the space of struc-

tural features (Figure 6.5).

To assess the 3-NN graph on a global scale, we generate cycle-free paths start-

ing with random nodes and recursively selecting the nearest neighbor. Figure 6.6

illustrates an example of such a path. Analogous to the local analysis, we fre-

quently observe a gradual morphing of molecules with respect to their structural

properties. However, considering that we examine a space limited to 10,000 sam-

ples, transitions between spectra are often sharp in terms of molecular similarity.

6.3 Fine-tuning DreaMS

In the preceding section, we showed that DREAMS gain a general knowledge of

the molecular structures through a course of self-supervised pre-training. In this

section, we evaluate the fine-tuning of the model enabling the distillation of task-

specific knowledge.
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6.3. Fine-tuning DreaMS

6.3.1 Self-supervised pre-training consistently improves the

performance of DreaMS on the variety of downstream

tasks

Employing the optimal pre-trained DREAMS model according to our ranking, we

examine further training (i.e. fine-tuning) the model on two spectral libraries for

a range of labeled downstream tasks (section Supervised fine-tuning): prediction

of (i) 2048-bit ECFP fingerprints, (ii) the number of oxygen atoms, (iii) the pres-

ence of nitrogen, and (iv) the quantitative estimate of drug-likeliness (QED). By

comparing the pre-trained model against the identical randomly initialized archi-

tecture, we observe a consistent increase in performance (Table 6.1).

In particular, the pre-trained model attains the highest validation metrics across

all eight downstream tasks. As expected, we observe that fine-tuning benefits sig-

nificantly from pre-training when conducted on a small GNPS dataset. Remark-

ably, the non-pre-trained model does not converge on the most challenging task

of predicting QED. Although we only experiment with a single configuration for

fine-tuning the pre-trained model, all our attempts to identify hyperparameters

that enable the random model to converge on the task were unsuccessful. This

finding strongly emphasizes the importance of pre-training. In general, both ran-

domly initialized and pre-trained models significantly outperform the DEEPSETS

baseline, emphasizing the strong inductive bias of the DREAMS architecture.

Task GNPS (SIRIUS split) NIST20 (Murcko hist. split)

Model ECFP↑ #O↓ Has N↑ QED↓ ECFP↑ #O↓ Has N↑ QED↓
DEEPSETS 0.26 2.27 0.44 0.52 0.12 2.65 0.6 0.46
DREAMS
(random) 0.41 1.33 0.91 0.47 0.30 2.35 0.84 0.46

DREAMS
(pre-trained) 0.54 1.02 0.94 0.11 0.32 2.13 0.88 0.17

Table 6.1: Pre-training consistently improves downstream supervised training. The
values represent the best validation metrics achieved on various tasks and datasets in-
troduced in section Supervised fine-tuning. “DREAMS (random)” refers to the randomly
initialized DREAMS architecture, while “DREAMS (pre-trained)” denotes the DREAMS ar-
chitecture pre-trained using self-supervised learning. The pre-trained model consistently
outperforms both the randomly initialized DREAMS and the DEEPSETS baseline. The sig-
nificance of pre-training is particularly noticeable in the most complex task of predicting
QED.
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82 6. Results

Figure 6.2: UMAP projections of the 10,000 DREAMS embeddings for random spec-
tra from MoNA. Top row reveals the structural organization of DREAMS with respect to
chemical formulas. Middle row demonstrates that DREAMS encode more intricate com-
positional properties of molecules such as being the carbohydrate or the quantitative esti-
mation of drug-likeness (QED). Bottom row shows the sharp localization of DREAMS with
respect to mass spectrometry setups.
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Figure 6.3: Correlation between spectral similarities and the Tanimoto similar-
ity on underlying precursor molecules. The figure showcases three spectral similar-
ity measures: cosine distance based on DREAMS, classic modified cosine distance, and
MS2DEEPSCORE. The green palette represents methods that do not employ spectral li-
braries, while the orange palette highlights the supervised MS2DEEPSCORE, explicitly
trained to maximize the correlation. Although the modified cosine distance fails to per-
form well in this evaluation, the self-supervised DREAMS demonstrates competitive per-
formance compared to the supervised MS2DEEPSCORE, even without utilizing any infor-
mation about molecular structures during pre-training.
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Figure 6.4: Examples of spectra with differing modified cosine similarity and
MS2DeepScore values, but with similar DreaMS and shared structural features in
precursor molecules. The figure illustrates that DreaMS encode latent properties of
mass spectra not captured by either spectral similarity or the molecular similarity im-
posed on MS2DeepScore. The term “pth” denotes the percentile of the distance among the
25,836,889 pairwise distances between a sample of 5,083 spectra.
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CHAPTER 7
Conclusions & Future work

Our study represents a pioneering effort in the development of a self-supervised

foundation model for mass spectrometry. Obtained experimental findings demon-

strate that by solely learning to predict masked m/z values of mass spectra, the

proposed DREAMS neural network progressively extracts properties of molecular

structures. Through the analysis of the learned representation space, we deter-

mined that it exhibits a complex organization capturing molecular properties and

mass spectrometry configurations. Moreover, we discovered that the pre-trained

model manifests a novel concept of spectral similarity, which is not attainable by

existing methods. Lastly, we illustrated how DREAMS induces molecular networks

and how end-to-end fine-tuning benefits from the pre-training on practical tasks.

The results obtained in this study underscore the potential of self-supervised

learning to shift the paradigm of computational mass spectrometry and tackle

the longstanding challenge of interpreting mass spectra. In contrast to current

approaches that depend on human expertise or labor-intensive annotations, our

method provides a way to extract knowledge purely from experimental mass spec-

trometry data. While simply scaling the DREAMS architecture and utilizing more

training data from MassIVE or other repositories may further enhance the capacity

of the representations [142], we acknowledge opportunities to make conceptual

advancements in our methodology.

Firstly, the only mass spectrometry inductive bias considered in this work is

Fourier features. We have not incorporated, for example, MS1 spectra, nor have

we equipped the attention mechanism with MS𝑛 fragmentation priors. We believe

that implementing such modifications could significantly improve the model archi-
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tecture and enable us to benchmark our method against the state-of-the-art SIRIUS

platform, which, for instance, derives chemical formulas and adducts leveraging

MS1 spectra.

Ultimately, our objective is to ensure that the DREAMS embeddings possess

sufficient capacity for the de novo generation of molecular structures from spec-

tra. Although annotated datasets are not extensive enough to solve the inverse

annotation problem, generative modeling over the pre-trained embeddings may

address this bottleneck. In particular, our plan involves investigating latent diffu-

sion models [143] and GFlowNets [144] for proposing molecules from DREAMS

embeddings. Successful experiments in this direction would imply an automated

expansion of the discovered chemical space, and therefore, a breakthrough in life

sciences.
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D’Auria, Jan Ewald, Jennifer C. Ewald, Paul D. Fraser, Patrick Giavalisco,

Robert D. Hall, Matthias Heinemann, Hannes Link, Jie Luo, Steffen Neu-

mann, Jens Nielsen, Leonardo Perez de Souza, Kazuki Saito, Uwe Sauer,

Frank C. Schroeder, Stefan Schuster, Gary Siuzdak, Aleksandra Skirycz,

Lloyd W. Sumner, Michael P. Snyder, Huiru Tang, Takayuki Tohge, Yulan

Wang, Weiwei Wen, Si Wu, Guowang Xu, Nicola Zamboni, and Alisdair R.

Fernie. Mass spectrometry-based metabolomics: a guide for annotation,

quantification and best reporting practices. Nature Methods, 18(7):747–

756, Jul 2021. ISSN 1548-7105. doi: 10.1038/s41592-021-01197-1. URL

https://doi.org/10.1038/s41592-021-01197-1.

90

https://doi.org/10.1038/s41573-020-00114-z
https://doi.org/10.1038/s41573-020-00114-z
https://www.sciencedirect.com/science/article/pii/S0166526X18300709
https://www.sciencedirect.com/science/article/pii/S0166526X18300709
https://www.mdpi.com/1420-3049/28/7/3046
https://www.mdpi.com/1420-3049/28/7/3046
https://www.sciencedirect.com/science/article/pii/S0167779904000812
https://www.sciencedirect.com/science/article/pii/S0167779904000812
https://doi.org/10.1038/s41592-021-01197-1


Bibliography

[7] Saleh Alseekh and Alisdair R. Fernie. Metabolomics 20 years on: what

have we learned and what hurdles remain? The Plant Journal, 94(6):

933–942, 2018. doi: https://doi.org/10.1111/tpj.13950. URL https://

onlinelibrary.wiley.com/doi/abs/10.1111/tpj.13950.

[8] Martin Giera, Oscar Yanes, and Gary Siuzdak. Metabolite dis-

covery: Biochemistry’s scientific driver. Cell Metabolism, 34(1):

21–34, 2022. ISSN 1550-4131. doi: https://doi.org/10.1016/

j.cmet.2021.11.005. URL https://www.sciencedirect.com/science/

article/pii/S1550413121005337.

[9] David S. Wishart. Metabolomics for investigating physiological and

pathophysiological processes. Physiological Reviews, 99(4):1819–1875,

2019. doi: 10.1152/physrev.00035.2018. URL https://doi.org/10.1152/

physrev.00035.2018. PMID: 31434538.

[10] Katja Dettmer, Pavel A Aronov, and Bruce D Hammock. Mass spectrometry-

based metabolomics. Mass Spectrom Rev, 26(1):51–78, January 2007.

doi: https://doi.org/10.1002/mas.20108. URL https://doi.org/10.1002/

mas.20108.

[11] John B. Fenn, Matthias Mann, Chin Kai Meng, Shek Fu Wong,

and Craig M. Whitehouse. Electrospray ionization for mass spec-

trometry of large biomolecules. Science, 246(4926):64–71, 1989.

doi: 10.1126/science.2675315. URL https://www.science.org/doi/abs/

10.1126/science.2675315.

[12] Fred W. McLafferty. Tandem mass spectrometry (ms/ms): a promising

new analytical technique for specific component determination in complex

mixtures. Accounts of Chemical Research, 13(2):33–39, Feb 1980. ISSN

0001-4842. doi: 10.1021/ar50146a001. URL https://doi.org/10.1021/

ar50146a001.

[13] Ricardo R. da Silva, Pieter C. Dorrestein, and Robert A. Quinn. Illuminating

the dark matter in metabolomics. Proceedings of the National Academy of

Sciences, 112(41):12549–12550, 2015. doi: 10.1073/pnas.1516878112.

URL https://www.pnas.org/doi/abs/10.1073/pnas.1516878112.

[14] Niek F. de Jonge, Kevin Mildau, David Meijer, Joris J. R. Louwen, Christoph

Bueschl, Florian Huber, and Justin J. J. van der Hooft. Good prac-

91

https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.13950
https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.13950
https://www.sciencedirect.com/science/article/pii/S1550413121005337
https://www.sciencedirect.com/science/article/pii/S1550413121005337
https://doi.org/10.1152/physrev.00035.2018
https://doi.org/10.1152/physrev.00035.2018
https://doi.org/10.1002/mas.20108
https://doi.org/10.1002/mas.20108
https://www.science.org/doi/abs/10.1126/science.2675315
https://www.science.org/doi/abs/10.1126/science.2675315
https://doi.org/10.1021/ar50146a001
https://doi.org/10.1021/ar50146a001
https://www.pnas.org/doi/abs/10.1073/pnas.1516878112


BIBLIOGRAPHY

tices and recommendations for using and benchmarking computational

metabolomics metabolite annotation tools. Metabolomics, 18(12):103,

Dec 2022. ISSN 1573-3890. doi: 10.1007/s11306-022-01963-y. URL

https://doi.org/10.1007/s11306-022-01963-y.
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Chris J. Pudney, Mark Earll, Patrick O. Helmer, Timothy R. Fallon, Tobias

Schulze, Albert Rivas-Ubach, Aivett Bilbao, Henning Richter, Louis-Félix

107

https://doi.org/10.48550/arXiv.2204.13749
https://doi.org/10.1021/jm9602928
https://doi.org/10.1021/jm9602928
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://doi.org/10.1074/mcp.R110.000133
https://doi.org/10.1074/mcp.R110.000133
https://doi.org/10.1038/nbt1031


BIBLIOGRAPHY

Nothias, Mingxun Wang, Matej Orešič, Jing-Ke Weng, Sebastian Böcker,
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APPENDIX A
Acronyms

BCE Binary cross-entropy

CE Cross-entropy

CID Collision-induced dissociation

DreaMS Deep representations empowering the annotation of mass spectra

ECFP Extended-connectivity fingerprint

FFN Feed forward neural network

GELU Gaussian error linear Unit

GNN Graph neural network

GNPS The global natural product social molecular networking

LC Liquid chromatography

LSH Locality-sensitive hashing

MLP Natural language processing

MoNA Mass bank of North America

MS Mass spectrometry

NIST National Institute of Standards and Technology
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A. ACRONYMS

QED Quantitative estimation of drug-likeness

ReLU Rectified linear unit

RT Retention time

SSL Self-supervised learning

TMAP Tree MAP

UMAP Uniform manifold approximation and projection
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APPENDIX B
Contents of enclosed CD

thesis ............................................. contents of enclosed CD
msml.......................................Python package for the thesis

algorithms..............directory with the source code for algorithms
data...........................directory with the source code for data
models ............. directory with the source code for neural networks
experiments ........... directory with the source code for experiments
utils...............directory with the source code for utility functions
definitions.py ......................... definitons of global variables

setup.py............................installation file for the msml package
tex...................................directory with the LATEXsource code
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